WO2023127873A1 - シート - Google Patents

シート Download PDF

Info

Publication number
WO2023127873A1
WO2023127873A1 PCT/JP2022/048146 JP2022048146W WO2023127873A1 WO 2023127873 A1 WO2023127873 A1 WO 2023127873A1 JP 2022048146 W JP2022048146 W JP 2022048146W WO 2023127873 A1 WO2023127873 A1 WO 2023127873A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive material
sheet
condition
conductive
shaped
Prior art date
Application number
PCT/JP2022/048146
Other languages
English (en)
French (fr)
Inventor
基治 芳我
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Publication of WO2023127873A1 publication Critical patent/WO2023127873A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/10Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material
    • B32B3/18Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by an internal layer formed of separate pieces of material which are juxtaposed side-by-side
    • B32B3/22Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by a discontinuous layer, i.e. formed of separate pieces of material characterised by an internal layer formed of separate pieces of material which are juxtaposed side-by-side of spaced pieces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/025Electric or magnetic properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/24Polarising devices; Polarisation filters 
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields

Definitions

  • the present invention relates to a seat.
  • Communication devices such as mobile phones and smartphones use electromagnetic waves to enable wireless communication, and with the development of technology in this field, the frequency band of electromagnetic waves used is expanding.
  • a wireless communication system conforming to the IMT-Advanced standard defined by the International Telecommunications Union (ITU) is specified, and the frequency band that was about 800 MHz in the first generation mobile communication system (1G) is
  • the frequency band has been expanded to approximately 3 GHz.
  • the frequency band has been expanded to the 28 GHz band in order to achieve high speed, large capacity, low delay, and multiple connections.
  • Development of a sixth-generation mobile communication system (6G) using a frequency band of 100 GHz or higher is underway as a next-generation communication system.
  • electromagnetic noise control is required.
  • electromagnetic wave control materials that can reduce the influence of electromagnetic waves from the surroundings.
  • electromagnetic wave control materials for example, semiconductor packages / modules, housings of electric / electronic equipment, adhesive materials for semiconductor mounting boards or cables, wallpaper for buildings such as server rooms, or to protect the human body
  • clothing such as aprons for
  • a reflective material that reflects electromagnetic waves by using a metal plate with a large area
  • an absorption type material that absorbs electromagnetic waves by using a material in which a conductive material is kneaded with an organic material such as resin or rubber.
  • an organic material such as resin or rubber.
  • materials, etc. For example, as a result of progress in research on absorption-type materials, it has been reported that it is effective to use a substance having a structure one order of magnitude smaller than the wavelength of the electromagnetic wave to be shielded. As a means for this, development of materials containing small fillers is underway.
  • Patent Document 1 describes a sheet having excellent electromagnetic wave shielding properties at a frequency of 1 GHz, which is composed of a composite having an insulating layer and a conductive layer in which flaky silver powder having a specific particle size and bulk density is contained in a binder resin. is disclosed. Further, in Patent Document 2, a composite is made of a binder resin containing ferrite particles that are single crystals having a specific average particle size and have a spherical particle shape, and emits electromagnetic waves in the frequency band of 1 MHz to 1 GHz. A shieldable sheet is disclosed. Furthermore, in Patent Document 3, a composite made of a binder resin containing nickel nanowires in a specific amount or more is excellent in handling and flexibility, and shields electromagnetic waves in the frequency band of 18.0 to 26.5 GHz. A sheet is disclosed that can
  • an object of the present invention is to provide a sheet that enables weight reduction and shielding against electromagnetic waves in a high frequency band.
  • a sheet comprising: an insulating material; a plurality of conductive materials having a plate shape and having a substantially C shape when viewed from the top in the thickness direction of the sheet, Each conductive material is arranged so that the circumferential direction of the substantially C shape and the planar direction of the sheet are substantially parallel, At least some of the plurality of conductive materials form a plurality of conductive material laminates arranged in the thickness direction of the sheet so as not to contact each other. sheet.
  • the number of the conductive material laminated portions seen from the top in the thickness direction of the sheet with respect to the area of the sheet seen from the top in the thickness direction of the sheet is 1/mm 2 or more and 30/mm. 2 or less, the sheet according to [2].
  • the conductive material laminates are arranged to form a plurality of rows extending at equal intervals in a plane direction of the sheet and in a certain direction, By arranging each conductive material laminated portion so that each conductive material constituting each conductive material laminated portion is substantially parallel to the plane direction of the sheet, a plurality of conductive materials are formed on the same plane.
  • a plurality of planar layers including The sheet according to [2] or [3], wherein each layer of the plurality of layers in the planar direction independently has a specific region A that satisfies the following (Condition 1).
  • Condition 1 In each row of the conductive material formed extending in the certain direction in the specific region A, the conductive material at one of both ends of each row is used as a reference, and the other toward the end of the conductive material, the angle formed by the opening direction of the substantially C-shaped conductive material viewed from the upper part in the thickness direction of the sheet and the opening direction of the substantially C-shaped conductive material of the reference The conductive material is arranged in increments of ⁇ 1 ; said ⁇ 1 satisfies 0° ⁇ 1 ⁇ 360° with a tolerance of less than ⁇ 1 /2.
  • each layer of the plurality of layers in the planar direction independently satisfies the following (condition 2).
  • Condition 2 In each row of the conductive material formed extending in the direction perpendicular to the given direction in the specific region A, the conductive material at either end of each row is As a reference conductive material, the opening direction of the substantially C-shaped conductive material viewed from above in the thickness direction of the sheet toward the conductive material at the other end and the substantially C-shaped reference conductive material The conductive material is arranged so that the angle formed with the opening direction of is increased by ⁇ 1 '; the ⁇ 1 ' satisfies 0° ⁇ 1 ' ⁇ 360°, and the tolerance is ⁇ 1 '/2 is less than [8]
  • each layer of the plurality of layers in the plane direction independently satisfies the following (condition 2').
  • condition 2' In each row of the conductive material formed in the direction perpendicular to the certain direction in the specific region A, all the conductive The conductive material is arranged so that the substantially C-shaped opening direction of the material is the same.
  • the conductive material laminated portions are arranged in a plane direction of the sheet at equal intervals in a certain direction and at equal intervals in a direction perpendicular to the certain direction, By arranging each conductive material laminated portion so that each conductive material constituting each conductive material laminated portion is substantially parallel to the plane direction of the sheet, a plurality of conductive materials are formed on the same plane.
  • a plurality of planar layers including The sheet according to [2] or [3], wherein each layer of the plurality of layers in the planar direction independently has a specific region B that satisfies the following (Condition 5).
  • All of the conductive materials in the specific region B have the same opening direction of the substantially C shape when viewed from the upper part in the thickness direction of the sheet.
  • opening directions of a substantially C-shaped sheet of the conductive material forming one of the conductive material laminated portions when viewed from above in the thickness direction are different from each other at least in part.
  • the sheet according to any one of [1] to [11], comprising at least a specific conductive material laminate.
  • the specific conductive material laminated portion two conductive materials arranged on the uppermost surface side and the lowermost surface side of the sheet among the conductive materials constituting one of the specific conductive material laminated portions.
  • the specific conductive material laminate part is Any one of the two conductive materials arranged on the top surface side and the bottom surface side of the sheet is used as a reference conductive material, and the conductivity seen from the thickness direction upper part of the sheet
  • FIG. 1 is an external perspective view of one mode of a substantially C-shaped conductive material; FIG. It is a figure for demonstrating the substantially C-shaped aspect. It is a figure for demonstrating the parameter which concerns on the form of substantially C shape.
  • 1A and 1B are a plan view and a front view of one mode of a seat; FIG. It is a figure for demonstrating the conductive material which can comprise a conductive material lamination part. It is a figure for demonstrating the space part of a conductive material. It is a figure for demonstrating the conductive material which can comprise a conductive material lamination part.
  • 1A and 1B are a plan view and a front view of one mode of a seat; FIG.
  • FIG. 1A and 1B are a plan view and a front view of one mode of a seat; FIG. It is a figure for demonstrating the aspect of a conductive material.
  • FIG. 4 is a diagram for explaining the arrangement of substantially C-shaped conductive materials in the planar direction of the sheet;
  • FIG. 10 is a diagram for explaining the opening direction of a substantially C-shaped conductive material that constitutes the conductive material lamination portion; It is a figure for demonstrating a columnar-shaped electroconductive material.
  • FIG. 2 is a diagram schematically showing an experimental apparatus for evaluating electromagnetic shielding characteristics; It is an external appearance perspective view of one aspect
  • 1 is an external perspective view of one mode of a sheet in which a plurality of layer forming sheets are laminated;
  • FIG. 4 is a diagram showing the results of sheet property evaluation in Example A1.
  • FIG. 10 is a diagram showing the results of sheet property evaluation in Example A2.
  • FIG. 10 is a diagram showing the results of sheet property evaluation in Example A3.
  • FIG. 10 is a diagram showing the results of sheet property evaluation in Example A4.
  • FIG. 4 is a diagram showing the results of sheet property evaluation in Example B1.
  • FIG. 10 is a diagram showing the results of sheet property evaluation in Example B2.
  • FIG. 10 is a diagram showing the results of sheet property evaluation in Example B3.
  • FIG. 10 is a diagram showing the results of sheet property evaluation in Example B4.
  • FIG. 5 is a diagram showing the results of sheet property evaluation in Comparative Example 1.
  • FIG. FIG. 4 is a diagram showing the results of sheet property evaluation in Examples C1 to C4.
  • FIG. 10 is a diagram showing the results of sheet property evaluation in Examples C5 to C8.
  • FIG. 10 is a diagram showing the results of sheet property evaluation in Examples C9 to C11.
  • a sheet (also simply referred to as a "sheet") that is an embodiment of the present disclosure is an insulating material; a plurality of conductive materials having a plate shape and having a substantially C shape when viewed from the top in the thickness direction of the sheet, Each conductive material is arranged so that the circumferential direction of the substantially C shape and the planar direction of the sheet are substantially parallel, At least some of the plurality of conductive materials form a plurality of conductive material laminates arranged in the thickness direction of the sheet so as not to contact each other. is a sheet.
  • the present inventor paid attention to a substantially C-shaped conductive material capable of controlling polarization as a structure capable of shielding strong electromagnetic waves in the terahertz region.
  • a linearly polarized incident electromagnetic wave is incident on the C-shaped material, the polarized wave becomes an elliptically polarized wave and is emitted.
  • substantially C-shaped materials can be used for polarization control, but in the present embodiment, attention is focused on the magnitude of absorption of electromagnetic waves by using a plurality of substantially C-shaped materials instead of controlling polarization.
  • the present inventor paid attention to the fact that the substantially C shape can be regarded as an LC resonant circuit.
  • the effect of absorbing electromagnetic waves is obtained by LC resonance with the substantially C-shaped gap being the capacitance C and the substantially C-shaped itself being the inductance L.
  • the present inventors have completed the present invention by considering that the effect of absorbing electromagnetic waves can be increased by increasing the number of substantially C-shapes used.
  • the inventors have found that The width of the frequency band that can be shielded may be required to be wide or narrow depending on the application.
  • reflection of electromagnetic waves occurs when a difference in impedance occurs at an interface.
  • a plurality of substantially C-shaped conductive materials are laminated in the thickness direction of the sheet, and there are a plurality of interfaces (surfaces of the conductive material) that cause impedance differences.
  • the electromagnetic wave is repeatedly reflected, and the above absorption is efficiently performed.
  • the sheet according to the present embodiment can easily reduce the mass and weight of the product as compared to a sheet using a conventional electromagnetic wave reflecting material that uses a large-area metal plate.
  • the direction of electromagnetic waves from the outside is assumed to be the direction perpendicular to the plane of the sheet.
  • FIG. 1 shows an example of a plurality of conductive materials having a plate shape and a substantially C shape when viewed from the top in the thickness direction of the sheet.
  • the conductive material shown in FIG. 1 is a perspective view of the conductive material, the direction of the arrow in the drawing is the circumferential direction, and the direction of the arrow is the clockwise direction.
  • the shape of the conductive material when viewed from above in the thickness direction of the sheet is not particularly limited as long as it is substantially C-shaped. It may be a shape, and even if the shape of the ring shown in FIG. 2(a) as shown in FIG. 2(b) or FIG.
  • the shape of this ring may be any shape, but from the viewpoint of easily obtaining a stable effect, a circular or polygonal ring (“ring” may be rephrased as “annular”).
  • ring may be rephrased as “annular”.
  • a shape in which a portion is missing is preferable, and a shape in which a portion of a circular ring is missing is more preferable from the viewpoint of availability and ease of manufacture.
  • the shape of the outer circumference and the shape of the inner circumference, which constitute the substantially C shape may be the same as shown in FIGS.
  • the shape of the inner periphery may be circular, but from the viewpoint of availability, it is preferable that they are the same. Part of the plurality of conductive materials may be exposed.
  • the conductive material will be described in detail below, and the description will proceed on the assumption that the conductive material has a substantially C-shaped shape in which a part of a circular ring is missing, as shown in FIG.
  • the conditions in the description apply equally to other shapes to the extent applicable.
  • the “average” used in the parameter of the conductive material means the average value of multiple conductive materials.
  • the “surface in the circumferential direction of the conductive material” can be rephrased as the planar direction of the plate-shaped conductive material.
  • the type of material constituting the conductive material is not particularly limited as long as it has conductivity, and examples include carbon materials such as carbon, copper (Cu), aluminum (Al), iron (Fe), gold ( Au), silver (Ag), platinum (Pt), magnesium (Mg), zinc (Zn), tungsten (W), titanium (Ti), nickel (Ni), or manganese (Mn). Alloys composed of combinations, or metal-containing compounds such as oxides, halides, or sulfides of these metal elements or alloys, etc., are suitable for processing, and when contained in resins, etc., corrosion resistance In particular, Cu or Ag is preferable from the viewpoint of good durability of the sheet because it has a high coefficient of linear expansion and a small linear expansion coefficient.
  • the average value of the thickness of the plate-shaped conductive material is not particularly limited, but in the 100 GHz frequency band, from the viewpoint of obtaining the performance of selectively absorbing the frequency width, it is usually 0.01 ⁇ m or more, and 0.1 ⁇ m It is preferably 0.2 ⁇ m or more, more preferably 0.2 ⁇ m or more, and is usually 100 ⁇ m or less, preferably 80 ⁇ m or less, more preferably 50 ⁇ m or less, and further preferably 30 ⁇ m or less. preferable.
  • the average value of the maximum possible line segment length Do on the circumferential surface of the conductive material is not particularly limited. It is preferably 10 ⁇ m or more, more preferably 50 ⁇ m or more, and is usually 2000 ⁇ m or less, preferably 1000 ⁇ m or less, and more preferably 800 ⁇ m or less.
  • the average value of the line width W of the substantially C shape on the circumferential surface of the conductive material is not particularly limited, but from the viewpoint of forming the substantially C shape, it is usually 0.1 ⁇ m or more, preferably 1 ⁇ m or more. It is more preferably 10 ⁇ m or more, and usually 1000 ⁇ m or less, preferably 500 ⁇ m or less, and more preferably 250 ⁇ m or less.
  • the average value of the opening angle ⁇ c of the substantially C-shaped conductive material is not particularly limited, but from the viewpoint of improving the performance of absorbing electromagnetic waves, it is usually 180° or less, preferably 135° or less. It is more preferably 90° or less, and from the viewpoint of having an open ring portion to generate resonance, it is usually 1° or more, preferably 4° or more, and preferably 7° or more. more preferred.
  • the opening angle ⁇ c is an angle formed by two lines connecting the center of the substantially C shape and the center portion of the closing line described below.
  • FIG. 3 shows Do, W, and ⁇ c in a substantially C shape, which is a shape in which a part of a circular ring is missing.
  • a point Pc in FIG. 3 is the center point of the substantially C shape.
  • the lines O, I, and OM shown in FIG. 3 are referred to as the outer edge, inner edge, and closing line of the generally C shape.
  • the approximately C shape of the target if the boundary between the inner edge and the closed line or the outer edge and the closed line is not clear, the end of the approximately C shape of the target is placed on the condition that the area in the plane direction of the conductive material does not change , these boundaries can be determined by substituting an end portion having the same shape as the substantially C-shaped end portion shown in FIG.
  • the conductive material is arranged so that the circumferential direction of the substantially C shape and the planar direction of the sheet are substantially parallel. With this arrangement, an electric field is generated in a direction perpendicular to the electromagnetic wave, and the generated electric field and the substantially C shape are on the same plane, so that resonance occurs within the substantially C shape or through the open ring portion. Occur. This resonance is classified into half-wave resonance and LC resonance, and the effect of electromagnetic wave absorption and/or reflection can be easily obtained.
  • FIG. 4 shows an example of the sheet 10 according to this embodiment.
  • the sheet 10 includes three conductive material laminates 3 composed of a base material 1 containing a non-conductive material such as resin and a conductive material 2 contained in the base material 1 .
  • An example of the conductive material lamination portion is shown in FIG.
  • FIGS. 4(a) and 4(b) are respectively a plan view and a front view of the conductive material laminated portion (in the front view, depiction of a substantially C-shaped opening is omitted, and the same applies to front views in other drawings). This description is omitted in ).
  • Dz in FIG. 4 represents the distance between the conductive materials in the thickness direction. The relationship between these plan views and front views is the same for FIGS. 8(a) and (b) and FIGS. 10(a) and (b).
  • the number of conductive materials constituting one conductive material lamination portion is not particularly limited, but from the viewpoint that the greater the number of laminated conductive materials, the more the reflection and absorption performance can be improved, the number is usually 1 or more. preferably 2 or more, more preferably 4 or more, even more preferably 8 or more, and particularly preferably 10 or more. While ensuring flexibility, the number is usually 80 or less, preferably 64 or less, more preferably 48 or less, further preferably 32 or less, and 24 or less. is particularly preferred.
  • the opening direction of the substantially C-shaped conductive material constituting one conductive material lamination portion is not particularly limited, and the substantially C-shaped opening direction of all the conductive materials is the same (including substantially the same). The opening direction of the approximately C-shape of all the conductive materials may be any direction. In the present disclosure, when the term “same” is used with respect to positions and angles, it is treated as including “substantially the same”.
  • the average value of the distance Dz between the conductive materials constituting the conductive material laminate is not particularly limited, but from the viewpoint of improving the reflection / absorption performance Therefore, it is usually 1 ⁇ m or more, preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, further preferably 25 ⁇ m or more, and particularly preferably 50 ⁇ m or more. Since it is desirable to make the sheet thin when mounting inside, the thickness is usually 3000 ⁇ m or less, preferably 2000 ⁇ m or less, more preferably 1000 ⁇ m or less, further preferably 300 ⁇ m or less, and 100 ⁇ m. The following are particularly preferred.
  • the arrangement of the conductive materials constituting one conductive material laminate may be completely aligned in the thickness direction of the sheet as shown in FIG.
  • the conductive material D in the inside does not constitute the conductive material laminated part. It is preferable to have Determination of whether or not the target conductive material constitutes the conductive material lamination portion will be described. Identify the top or bottom conductive material that can constitute the conductive material laminate (hereinafter also referred to as "endmost conductive material”), and the thickness of the sheet when viewed from the side of the sheet A conductive material that has a portion that overlaps the farthest conductive material in a direction is considered a conductive material stack included in the conductive material stack that includes the farthest conductive material. In FIG.
  • a, b, c, and d are planar end portions of the conductive materials A, B, C, and D, respectively, viewed from the side of the sheet. Therefore, in FIG. 5, when the conductive material A is the endmost conductive material, both the conductive materials B and C overlap the endmost conductive material in the thickness direction of the sheet when viewed from the side of the sheet. Since it has a portion (shaded portion in FIG. 5) where the conductive material A is included in the conductive material lamination portion including the conductive material A as the endmost conductive material. On the other hand, the conductive material D in FIG. 5 does not have a portion that overlaps the endmost conductive material in the thickness direction of the sheet when viewed from the side of the sheet.
  • the conductive material contained in the conductive material lamination portion that is included as a material.
  • the conductive materials constituting the conductive material laminated portion always have portions that overlap each other in the thickness direction of the sheet when viewed from the side of the sheet. Even if they are not aligned, the electromagnetic waves are absorbed by each layer, and when reflection occurs, the electromagnetic waves are absorbed by the layer in front, and as a result, the electromagnetic waves can be shielded.
  • Whether or not the target conductive material is included in the conductive material lamination portion can be determined by the method shown in the description using FIG. 5 above, but preferably using FIG. It can be judged by the method shown in the description.
  • the top or bottom conductive material that can constitute the conductive material lamination portion (hereinafter also referred to as "endmost conductive material") is specified, and the sheet is viewed from the side of the sheet.
  • a conductive material having a space portion overlapping with a space portion of the endmost conductive material in the thickness direction is regarded as a conductive material lamination portion included in the conductive material lamination portion including the endmost conductive material. .
  • the space portion of the conductive material is a portion composed of the inner edge of the conductive material and the line connecting the ends of the lines forming the inner edge, for example, as shown in FIGS. This is the shaded part.
  • a, b, c, and d in FIG. 7 are end portions in the planar direction of the spaces of the conductive materials A, B, C, and D, respectively, when viewed from the side of the sheet. Therefore, to explain using FIG. 7, when the conductive material A is the most conductive material, both the conductive materials B and C have the most conductive properties in the thickness direction of the sheet when viewed from the side of the sheet. Since there is a portion where the material and the space portion overlap (shaded portion in FIG.
  • the conductive material D in FIG. 7 does not have a portion that overlaps the endmost conductive material in the thickness direction of the sheet when viewed from the side of the sheet. It is not the conductive material contained in the conductive material lamination portion that is included as a material.
  • the conductive material laminated portion is defined in this way, the conductive materials constituting the conductive material laminated portion always have overlapping portions in the thickness direction of the sheet when viewed from the side of the sheet.
  • the spaces of the conductive material overlap from the viewpoint of obtaining the effect of the invention.
  • the overlap of the spaces is preferable in that the electromagnetic wave reflected by the substantially C-shaped conductive material in the second and subsequent layers can be absorbed by the front layer.
  • the conductive materials that can be included in one conductive material stack in each definition are all one conductive material, regardless of the distance between each conductive material. treated as constituting a flexible material laminate. In other words, in the sheet shown in FIG. 8, all the conductive materials within each area surrounded by broken lines are treated as forming one conductive material lamination portion.
  • the degree of deviation of the conductive material contained in the conductive material laminated portion with respect to the thickness direction of the sheet as viewed from the side surface of the sheet is not particularly limited, it is the maximum line segment that can be taken on the surface of the conductive material in the circumferential direction.
  • 70% or more of the conductive materials constituting one conductive material laminated portion have a length of 1.2 in diameter. may be arranged so as to be inside the virtual circle of Such an arrangement makes it possible to improve the efficiency of sheet manufacturing, and more specifically, to facilitate control of deviation of the conductive material.
  • 70% or more of the conductive materials constituting one conductive material laminated portion are virtual with a length of 1.2 in diameter. They may be arranged so as not to fit inside a circle, but to fit inside an imaginary circle with a length of 2 in diameter. By setting it as such arrangement
  • the number of conductive materials satisfying each of the above conditions in the conductive materials constituting one conductive material laminated portion may be 70% or more as described above, but is preferably 80% or more. , more preferably 90% or more, still more preferably 95% or more, particularly preferably 100%, and may be less than 100%.
  • a plurality of conductive material lamination portions may be arranged as described above, and more specifically, a plurality of conductive material lamination portions may be arranged in the planar direction of the sheet.
  • the number of conductive material laminates seen from the top in the thickness direction of the sheet with respect to the area of the sheet seen from the top in the thickness direction of the sheet is not particularly limited, but is controlled. From the viewpoint of facilitating control of the frequency of electromagnetic waves, it may be 1/mm 2 or more, 3/mm 2 or more, 5/mm 2 or more, or 7/mm 2 or more.
  • mm 2 or more 10 pieces/mm 2 or more, 30 pieces/mm 2 or less, 25 pieces/mm 2 or less, or 20 pieces/mm 2 or more. More preferably, it may be mm 2 or less, it may be 15 pieces/mm 2 or less, or it may be 13 pieces/mm 2 or less.
  • the above number can be determined by the wavelength of the electromagnetic wave to be shielded (in this paragraph, simply referred to as "wavelength"), and is usually 1/(wavelength) 2 or more, 3 /(wavelength) is preferably 2 or more, more preferably 5/(wavelength) 2 or more, further preferably 7/(wavelength) 2 or more, and usually 30/(wavelength) ) 2 or less, preferably 20/(wavelength) 2 or less, more preferably 15/(wavelength) 2 or less, and even more preferably 10/(wavelength) 2 or less.
  • the frequency of the electromagnetic wave to be shielded is 325 GHz, it is preferably 5/mm 2 or more and 15/mm 2 or less, and preferably 7/mm 2 or more and 13/mm 2 or less. More preferably, it is 9/mm 2 or more and 11/mm 2 or less.
  • the frequency of the electromagnetic wave to be shielded is 190 GHz, the number is preferably 1/mm 2 or more and 10/mm 2 or less, and it is preferably 2/mm 2 or more and 8/mm 2 or less. More preferably, the number is 3/mm 2 or more and 5/mm 2 or less is particularly preferable.
  • the frequency of the electromagnetic wave to be shielded is 100 GHz, the number is preferably 1/mm 2 or more and 5/mm 2 or less, and more preferably 1/mm 2 or more and 3/mm 2 or less. , 1 piece/mm 2 .
  • each black dot represents a conductive material lamination portion, and representation of the substantially C-shaped conductive material constituting the conductive material lamination portion is omitted.
  • the conductive material laminates are arranged so that the conductive material laminates are placed at the vertices of each polygon when squares are arranged adjacent to each other without gaps as shown in FIG. is preferably provided, and as shown in FIG. 10(a), it is more preferable to form a plurality of rows extending in the plane direction of the sheet and in a certain direction at equal intervals. preferable.
  • FIG. 10 is a view showing the arrangement of the conductive material lamination portions viewed from the top in the thickness direction of the sheet, and in the case where the opening directions of the substantially C-shaped conductive materials are all in the same direction. .
  • FIG. 10 is a view showing the arrangement of the conductive material lamination portions viewed from the top in the thickness direction of the sheet, and in the case where the opening directions of the substantially C-shaped conductive materials are all in the same direction. .
  • Dx indicates the pitch width of the conductive material lamination portions arranged at equal intervals in the above-mentioned constant direction, and the conductive material laminated portions arranged at equal intervals in the direction perpendicular to the constant direction are shown.
  • the material lamination pitch width is indicated by Dy.
  • such an equidistant arrangement may be applied to a part of the conductive material laminated portion present in the sheet or may be applied to the entirety. From the point of view obtained, it may be applied throughout. Furthermore, from the viewpoint of improving the reflection/absorption performance, as shown in FIG. It is preferable that a plurality of planar layers containing a plurality of conductive materials are formed on the same plane by arranging them so as to be substantially parallel.
  • Such a mode may be applied to a part of the conductive material laminated portion present in the sheet or may be applied to the entirety, but from the viewpoint of sufficiently obtaining the effect obtained by this arrangement, May be applied throughout.
  • Each layer independently preferably has a specific region A that satisfies the following (Condition 1).
  • the specific region A preferably satisfies the following (Condition 3A).
  • the specific region A preferably satisfies the following (Condition 4A).
  • the number of conductive materials contained in each row of conductive materials formed extending in the predetermined direction is 360°/ ⁇ 1 .
  • each layer of the plurality of layers in the plane direction independently satisfies the following (condition 2).
  • the conductive material at either end of each row is As a reference conductive material, the opening direction of the substantially C-shaped conductive material viewed from above in the thickness direction of the sheet toward the conductive material at the other end and the substantially C-shaped reference conductive material
  • the conductive material is arranged so that the angle formed with the opening direction of is increased by ⁇ 1 '; the ⁇ 1 ' satisfies 0° ⁇ 1 ' ⁇ 360°, and the tolerance is ⁇ 1 '/2 is less than
  • the specific region A preferably satisfies the following (Condition 3B).
  • the specific region A preferably satisfies the following (Condition 4B).
  • the number of conductive materials contained in each row of conductive materials extending in a direction perpendicular to the certain direction is 360°/ ⁇ 1 '.
  • ⁇ 1 " and “ ⁇ 1 '" described above and “ ⁇ 2 " described later are used to indicate the degree of rotation of the conductive material.
  • the angle may deviate from ⁇ 1 .
  • the desired effect can be obtained if the deviation is not large. Therefore, in the present embodiment, an expression such as "the tolerance is less than ⁇ 1 /2" is used to indicate the allowable range of deviation.
  • the angle increase from the first layer to the second layer is 30 ° ⁇ 15 ° less (more than 15 °, less than 45 °), and the increase in angle from the first layer to the third layer is less than 60 ° ⁇ 15 ° (more than 45 °, less than 75 °) .
  • the tolerance of ⁇ 1 is usually less than ⁇ 1 /2, preferably ⁇ 1 /3 or less, independently from the viewpoint of improving shielding performance, reducing reflectance, and increasing absorptance.
  • ⁇ 1 /4 or less is preferable, ⁇ 1 /5 or less is preferable, ⁇ 1 /10 or less is preferable, ⁇ 1 /20 or less is preferable, and ⁇ 1 /100 is preferable.
  • the conductive material laminated portion further includes: Arranged so as to form a plurality of rows formed extending at equal intervals in the plane direction of the sheet and in a direction perpendicular to the certain direction, In the specific region A, it is preferable that each of the plurality of layers in the planar direction independently satisfies the following (condition 2'). (Condition 2') In each row of the conductive material formed in the direction perpendicular to the certain direction in the specific region A, all the conductive The conductive material is arranged so that the substantially C-shaped opening direction of the material is the same.
  • the number of conductive material laminates contained in the sheet is taken as 100%, the number of conductive material laminates contained in the entire area corresponding to the specific area A is not particularly limited, but the reflection/absorption From the viewpoint of improving the performance, it is usually 30% or more, preferably 50% or more, more preferably 70% or more, further preferably 80% or more, and 90% or more. It is particularly preferred and most preferably 100%, and may be 100% or less or less than 100%.
  • the above (condition 1), (condition 2), (condition 3A), (condition 3B), (condition 4A), and (condition 4B) are satisfied, and the above ⁇ 1 is 120°
  • An example of arrangement of conductive materials is shown in FIG.
  • all of the plurality of layers in the planar direction may be arranged as shown in FIG.
  • the arrangement of each layer may be different from each other so as to achieve the arrangement of (b).
  • the above ⁇ 1 is usually 2° from the viewpoint that the reflection/absorption performance is preferably averaged even if the sheet rotates in the plane direction when the direction of the electromagnetic wave transmitted in the thickness direction of the sheet is fixed. or more, preferably 10° or more, more preferably 30° or more, further preferably 90° or more, may be more than 90°, and 180° or less, It may be less than 180°.
  • each of the plurality of layers is , independently, instead of the above-mentioned specific region A, it is preferable to have a specific region B that satisfies the following (condition 5). (Condition 5) All of the conductive materials in the specific region B have the same opening direction (including substantially the same opening direction) when viewed from above in the thickness direction of the sheet.
  • This specific region B is a region where the conductive materials in each layer are arranged as shown in FIG. 10(a).
  • each layer of the plurality of layers independently satisfies (Condition 5)
  • the substantially C-shaped opening direction of all the conductive materials contained in the plurality of layers in the plane direction is the same (or substantially the same).
  • the layers are arranged such that the opening direction of the substantially C-shaped conductive material in the first layer and the opening direction of the substantially C-shaped conductive material in the second layer are different from each other. may be different from each other.
  • ⁇ 1 is 360°, (Condition 5 ).
  • the pitch width (the distance between the centers of adjacent conductive material laminates) when the conductive material laminates are arranged at equal intervals is not particularly limited, but the reflectivity of electromagnetic waves increases in the nearly C-shaped dense portions. From the viewpoint of worsening the absorption performance due to this, it is usually 50 ⁇ m or more, preferably 100 ⁇ m or more, more preferably 150 ⁇ m or more, and further preferably 200 ⁇ m or more. From the viewpoint that absorption performance deteriorates due to an increase in electromagnetic wave permeability at a portion, the thickness is usually 5000 ⁇ m or less, preferably 4000 ⁇ m or less, more preferably 3000 ⁇ m or less, and even more preferably 2000 ⁇ m or less.
  • the above pitch width condition is satisfied only in the certain direction. It may be filled in both a certain direction and a direction perpendicular to the certain direction, but due to the unevenness of the approximately C-shaped sparseness, the electromagnetic wave permeability increases in the rough portions, resulting in poor absorption performance. From the point of view of getting worse, it is preferable that both are satisfied.
  • the sheet When the direction of the electromagnetic wave transmitted in the thickness direction of the sheet is fixed, the sheet preferably averages the reflection/absorption performance even if the sheet does not rotate in the plane direction, as shown in FIG.
  • the opening direction of the substantially C-shaped when viewed from the thickness direction upper part of the sheet of the conductive material constituting one of the conductive material laminated portions is at least partially different from each other Specific conductivity It preferably includes at least a material laminate.
  • the sheet minimizes the difference between the effect obtained when an electromagnetic wave is incident on the sheet from the direction of one surface and the effect obtained when the electromagnetic wave is incident on the sheet from the direction of the other surface.
  • the conductive materials at least a specific conductive material laminated portion in which two conductive materials arranged on the uppermost surface side and the lowermost surface side of the sheet have the same opening direction (including substantially the same). preferably included.
  • the sheet preferably averages the reflection and absorption performance even if the substantially C shape does not rotate in the thickness direction. It is preferable that at least a specific conductive material laminated portion that satisfies the following (Condition 6) is included as the specific conductive material laminated portion.
  • the specific conductive material laminate part is Any one of the two conductive materials arranged on the top surface side and the bottom surface side of the sheet is used as a reference conductive material, and the conductivity seen from the thickness direction upper part of the sheet
  • the opening direction of the substantially C- shaped conductive material other than be.
  • the performance is preferably averaged, it is usually 2 ° or more, preferably 10 ° or more, more preferably 30 ° or more, further preferably 90 ° or more, 90 ° It may be greater than or equal to or less than 180° and may be less than 180°.
  • the above k is not particularly limited as long as it is a natural number, but from the viewpoint that the thicker the sheet thickness, the better the reflection and absorption performance, and the performance peaks at a certain thickness, it is usually 1 or more, and 2 or more.
  • the conductive materials constituting one conductive lamination are arranged at 0° and 120° in order from the end.
  • the conductive material lamination portion includes all the conductive material lamination portions constituting one of the conductive material lamination portions viewed from the upper portion in the thickness direction of the sheet. It may include at least an electrically conductive material laminated portion in which the substantially C-shaped opening direction of the electrically conductive material is the same (including substantially the same).
  • the opening directions of the substantially C-shaped conductive material laminated portions may be the same (including substantially the same) or may be different from each other. In the aspects of (Condition 6) and (Condition 7) above, if ⁇ 1 is assumed to be 360°, the opening direction of the substantially C-shaped portion is the same (including substantially the same). Become.
  • the sheet includes, as a conductive material laminated portion, each conductive material 2 constituting the conductive material laminated portion and other conductive materials 2 arranged adjacent to each other in the thickness direction. It may include at least a conductive material lamination portion 3 including a columnar conductive material 4 to be connected.
  • the pillar-shaped conductive material preferably connects the ends of each conductive material 2 together.
  • illustration of the thickness of the substantially C-shaped conductive material is omitted.
  • the overlapping spaces repeat the phenomenon that the electromagnetic wave reflected by the substantially C-shaped metal in the second and subsequent layers is absorbed by the front layer.
  • the absorptive effect is greater. Electromagnetic waves can be shielded regardless of the presence or absence of the pillar-shaped conductive material 4, but the electromagnetic wave shielding performance can be improved in an embodiment without the pillar-shaped conductive material 4.
  • An aspect without the column-shaped conductive material 4 can be expressed as an aspect in which the conductive materials constituting the conductive material lamination portion are not electrically connected to each other.
  • the shape of the column is not particularly limited, and may be a columnar shape or a polygonal columnar shape such as a triangular columnar shape or a square columnar shape.
  • a cylindrical shape is preferable because the distance becomes longer and the LC resonance becomes more efficient, but the loss of the effect at the corner portion becomes larger.
  • the substantially C-shaped material described above can be similarly applied. Although they may be made of the same material, they are preferably made of the same material from the viewpoint of manufacturing cost reduction.
  • the volume resistivity of the conductive material is not particularly limited as long as it is a value that allows a minute current to flow.
  • tungsten with a volume resistivity of 4.9 ⁇ cm (0° C.) It was confirmed that the resonance frequency hardly changed between An example of the value at which a very small amount of electric current flows is a volume resistivity of 3352.8 ⁇ cm (20° C.) when carbon (graphite) is used.
  • the thermal conductivity of the conductive material is not particularly limited. As a result of investigation by the present inventor, the resonance frequency of copper with a thermal conductivity of 394 W/m K, silver with a thermal conductivity of 427 W/m K, and tungsten with a thermal conductivity of 174.3 W/m K was was found to have hardly changed.
  • the base material containing the above conductive material may be a rigid material or a flexible material. It is not particularly limited as long as it is an insulating material (non-conductive material), and examples thereof include resins, cellulose, ceramics, and rubber. From the viewpoints of corrosive gas shielding properties and flexibility, resins are preferred. Specific aspects of the insulating material are shown below.
  • an inorganic solid insulating material such as mica (mica), porcelain (ceramics), glass, or the like can be used for electrical and electric power applications.
  • Mica is a naturally occurring crystal with excellent insulation and heat resistance.
  • White mica and gold mica are processed into mica products such as plates, sheets, and tapes, and are widely used for coils and other insulation. .
  • Porcelain is made by molding mineral powder and firing it at high temperature. Feldspar porcelain used for insulators and insulators, high frequency insulators, steatite porcelain used for semiconductor packages, alumina porcelain, etc. are mentioned.
  • glass is hard and brittle, it is transparent, heat-resistant, and has excellent insulating properties.
  • Glass fibers which are obtained by stretching molten glass into thin fibers, are used for varnished glass cloth, base materials for laminates, electric wire coatings, and the like.
  • Inorganic solid insulators such as silicon dioxide SiO 2 (silica) are used for insulation inside semiconductor elements.
  • Organic fibrous materials As types of insulating materials, organic fibrous materials such as paper, cotton thread, silk, polyester, or synthetic fibers such as polyamide (nylon) can be used. Paper has long been impregnated with insulating oil or the like and used to insulate transformers, cables, or capacitors.
  • Resin Material Shellac, rosin, or the like can be used as a natural resin that can be used as an insulating material.
  • Synthetic resin materials that can be used as insulating materials include thermoplastic resins such as polyethylene terephthalate, polyethylene, polyvinyl chloride, polystyrene, and polyester, and thermal resins such as phenol resin, melamine resin, epoxy resin, and silicone resin. There is a curable resin.
  • Rubber-based material As an insulating material, a rubber-based material such as natural rubber, butyl rubber, ethylene propylene rubber, or silicone rubber can be used.
  • Coating-based materials such as coil varnish obtained by dissolving a natural resin or synthetic resin in a solvent, or enamel varnish can be used as the insulating material.
  • thermosetting resin When a resin is used as the insulating material, it may be a thermosetting resin or a thermoplastic resin.
  • Thermosetting resins include thermosetting resins and photocurable resins, and thermosetting resins include thermosetting acrylic resins, unsaturated polyester resins, epoxy resins, melamine resins, phenolic resins, and thermosetting resins. resins, silicone resins, polyimide resins, urethane resins, etc., and photocurable resins include photocurable epoxy, photocurable polyester, photocurable vinyl compound, photocurable epoxy (meth ) acrylate, or photocurable urethane (meth)acrylate.
  • unsaturated polyester-based resins unsaturated polyester-based resins, photocurable polyesters, epoxy resins, or photocurable epoxies are preferable, and from the viewpoint of heat resistance, epoxy resins or photocurable epoxies are particularly preferable.
  • One of these resins may be used alone, or two or more of these resins may be used in combination in any desired type and ratio.
  • the content of the base material in the sheet is not particularly limited and can be set within a range where the effects of the invention of the present disclosure can be obtained.
  • % or more, 60 wt% or more, 70 wt% or more, 80 wt% or more, 90 wt% or more, 95 wt% or more % or more may be 99% by weight or more, may be 99.9% by weight or more, may be 99.95% by weight or more, and may be 99.99% by weight or less may be 99.9% by weight or less, may be 99% by weight or less, may be 95% by weight or less, may be 90% by weight or less, may be 80% by weight % or less, 70 wt % or less, 60 wt % or less, or 50 wt % or less.
  • the conductive material is completely buried in the base material, it is not completely buried (only partly buried), that is, part of the conductive material is exposed to the outside air. It may be in an exposed mode.
  • the refractive index of the resin is not particularly limited, it is usually 1.35 to 1.76, preferably 1.55 to 1.61 for epoxy resin, from the viewpoint of improving electromagnetic wave shielding properties.
  • a refractive index can be measured by a known method.
  • the sheet may have a material (other material) other than the above conductive material and any base material, and examples thereof include inorganic fillers other than the conductive material.
  • the linear expansion coefficient of the sheet can be adjusted by adding an inorganic filler, thereby facilitating prevention of sheet warpage, deflection, undulation, and the like.
  • the content of the inorganic filler other than the conductive material in the sheet is not particularly limited, and may be arbitrarily contained within the range in which the effects of the present embodiment can be obtained.
  • the shape of the sheet is not particularly limited as long as it is a sheet shape, and can be appropriately changed according to the place where the sheet is installed.
  • the sheet may be a single-layer sheet or a laminated sheet.
  • a laminated sheet When a laminated sheet is used, a plurality of sheets according to the present embodiment may be laminated, or other sheets may be laminated to provide various functions.
  • the thickness of the sheet is not particularly limited, and is usually 10 ⁇ m or more, preferably 20 ⁇ m or more, from the viewpoint of miniaturization, light weight, and thinning of electronic devices typified by recent mobile phones, smartphones, tablets, and the like.
  • the shape of the sheet is preferably 50 ⁇ m or more, more preferably 100 ⁇ m or more, and is usually 20 mm or less, preferably 10 mm or less, more preferably 5 mm or less, and 3 mm or less. is more preferred.
  • the shape of the sheet is a plane, but it may have an uneven shape within a range that can be approximately regarded as a plane, or it may be partially curved. Moreover, the shape of the sheet observed from the surface may be circular or polygonal such as triangular or square.
  • evaluation of electromagnetic wave shielding properties is performed by evaluating power transmittance T( ⁇ ) by the following method.
  • This evaluation method is based on the terahertz time domain spectroscopy used in the transmittance measurement experiment.
  • a schematic diagram of the experimental apparatus is shown in FIG. First, light from a femtosecond laser is split into pump light and probe light by a beam splitter.
  • the pump light works as light that excites terahertz waves.
  • the probe light matches the timing for measuring the terahertz wave. By moving the delay stage, the optical path length of this probe light is changed to shift the detection timing.
  • the electric field E sam (t) after the terahertz wave has passed through the sample and the electric field E ref (t) after it has passed through air without the sample are detected. These values are used to derive the complex refractive index, complex dielectric constant, transmittance, absorption coefficient, reflection coefficient, power spectrum, and the like. Transmittance is derived by Fourier transform from the data obtained from the above measurements. Fourier transformation of the obtained electric field waveforms E sam (t) and E ref (t) yields E sam ( ⁇ ) and Eref ( ⁇ ), respectively. Using these, the power transmittance T( ⁇ ) is represented by the following formula (A).
  • the above transmittance can be measured by a terahertz spectroscopic system (eg TAS7500TSH manufactured by Advantest).
  • a terahertz spectroscopic system eg TAS7500TSH manufactured by Advantest.
  • the shielding performance L is not particularly limited, but is usually -2 dB or less, preferably -5 dB or less, more preferably -10 dB or less, and from the viewpoint of preventing malfunction of electronic devices such as computers, -20 dB or less is preferable. -30 dB or less is more preferable, -40 dB or less is more preferable, -60 dB or less is particularly preferable, and -80 dB or less is particularly preferable, and there is no need to set a lower limit. is usually -90 dB or more.
  • the power transmittance T( ⁇ ) of the electromagnetic wave is -20 dB (shield rate: 90%) when the electromagnetic wave is 1/10, and -40 dB (shield rate: 99%) when it is 1/100. , -60 dB (shielding ratio: 99.9%) when it becomes 1/1000, and -80 dB (shielding ratio: 99.99%) when it becomes 1/10000.
  • a first aspect of a method for manufacturing a sheet (also simply referred to as a "sheet” in the description of this embodiment), which is another embodiment of the present disclosure, is a method for manufacturing a sheet, comprising: A step of producing a plurality of layer-forming sheets having a base material and a substantially C-shaped conductive material, wherein the conductive material is distributed in the circumferential direction of the substantially C-shaped conductive material and in the planar direction of the layer-forming sheet.
  • a layer forming sheet manufacturing step in which the two are arranged so as to be substantially parallel, and a plurality of conductive material laminates in which at least part of the plurality of conductive materials are arranged in the thickness direction of the sheet so as not to contact each other.
  • a method of manufacturing a sheet comprising:
  • the sheet manufacturing method in the case where the sheet has the columnar conductive material described above is a sheet manufacturing method comprising: A layer having a base material, a substantially C-shaped conductive material, and a pillar-shaped conductive material connecting the substantially C-shaped conductive material (preferably, the ends of the substantially C-shaped conductive material) A step of producing a plurality of forming sheets, in which the conductive material is arranged so that the circumferential direction of the substantially C-shaped conductive material and the plane direction of the layer forming sheet are substantially parallel to each other.
  • a method of manufacturing a sheet comprising:
  • the sheet manufacturing method includes the above-described layer forming sheet preparation step and lamination step, but may also include other steps.
  • a method for manufacturing a sheet will be described in detail below, including other steps, but in this description, a method for manufacturing a sheet that does not have a pillar-shaped conductive material will be described. This detailed description can also be applied to a method of manufacturing a sheet having column-shaped conductive material to the extent applicable.
  • composition preparation step The method for producing a sheet according to the first aspect may have a composition producing step of producing a composition by dissolving and mixing the base material (for example, resin) and other materials described above in a solvent.
  • a mixing method is not particularly limited, and a known method can be applied.
  • the type of solvent is not particularly limited as long as it can dissolve the above base material and other materials.
  • the solvent may not be used.
  • a curing agent may be added depending on the type of base material used, and the type thereof may be a known one as appropriate depending on the base material.
  • the content of the curing agent in the composition can be, for example, 0.05 to 15% by weight.
  • a polymerization initiator may be added depending on the type of base material used.
  • a photoradical generator, a photocation generator, a photoanion generator, or the like can be used.
  • a method for manufacturing a sheet according to a first aspect is a step of producing a plurality of layered sheets having a base material and a substantially C-shaped conductive material, and the conductive material is substantially C-shaped of the conductive material. It has a layer-forming sheet producing step in which the circumferential direction of the shape and the plane direction of the layer-forming sheet are arranged so as to be substantially parallel to each other.
  • the method for producing such a layered sheet is not particularly limited.
  • a method of curing the composition includes a method utilizing heat or light such as ultraviolet rays. Moreover, the method utilized for manufacture of a general printed wiring board can be used. Specifically, after producing a cured sheet by curing the above composition, a conductive material foil is formed on one side of the cured sheet, and the conductive material foil after etching remains in a substantially C shape. After coating or laminating a photosensitive resist in such a pattern, etching is performed to laminate a substantially C-shaped conductive material on the cured sheet to obtain a layered sheet.
  • the arrangement of the substantially C-shaped conductive material in the layer forming sheet can similarly apply the conditions for the planar direction arrangement of the substantially C-shaped conductive material in the sheet as long as it is applicable. can.
  • holes (vias) were made at the ends of the substantially C-shaped conductive material contained in the obtained layered sheet using a drill or laser.
  • a step of pouring a molten material or the like of the conductive material into the hole and solidifying it may be included.
  • the plurality of layers are arranged so that the column-shaped conductive material is arranged at the end of the substantially C-shaped conductive material in another adjacently laminated sheet.
  • the forming sheets are laminated.
  • the method for manufacturing the sheet includes: forming a plurality of conductive material laminates in which at least a portion of the plurality of conductive materials are arranged in the thickness direction of the sheet so as not to contact each other; It has a lamination step of laminating the forming sheets.
  • the lamination method is not particularly limited, and for example, using a material such as glue, as shown in FIG. A method of laminating a plurality of layer forming sheets so that the materials are aligned in the thickness direction of the sheets can be mentioned.
  • a second aspect of a sheet manufacturing method (also referred to simply as a "sheet” in the description of the present embodiment), which is another embodiment of the present disclosure, is a sheet manufacturing method comprising: It is a step of forming a substantially C-shaped conductive material 1 on the surface of a base material layer 1 including a base material 1 to produce a layer forming sheet, wherein the conductive material is formed around the substantially C-shaped circumference of the conductive material.
  • a method of manufacturing a sheet comprising:
  • the method for manufacturing a sheet according to the second aspect includes the above-described layer forming sheet preparation step and lamination step, but may also include other steps.
  • a method for manufacturing a sheet will be described in detail below, including other steps, but in this description, a method for manufacturing a sheet that does not have a pillar-shaped conductive material will be described. This detailed description can also be applied to a method of manufacturing a sheet having column-shaped conductive material to the extent applicable.
  • composition preparation step The method for producing a sheet according to the second aspect may have a composition producing step of producing a composition by dissolving and mixing the base material (for example, resin) and other materials described above in a solvent.
  • the composition-producing step in the first aspect described above can be similarly applied.
  • the sheet manufacturing method is a step of forming a substantially C-shaped conductive material 1 on the surface of a base material layer 1 containing a base material 1 to produce a layer-formed sheet.
  • This layer-formed sheet-producing step can be carried out by the same method as the layer-formed sheet-producing step in the first aspect described above.
  • a plurality of conductive materials are arranged in the thickness direction of the sheet so that at least a part of the conductive material does not contact each other so as to form the sheet shown in FIG.
  • a base material layer 2 having a base material 2 on the surface of the layer forming sheet on which the conductive material is present, and a substantially C-shaped (on the surface of the base material layer 2) so that a laminated portion is formed. It has a lamination step of forming the conductive material 2 .
  • the method of forming the base material layer 2 containing the base material 2 on the surface of the layer-forming sheet on which the conductive material is present is not particularly limited.
  • a method of pressing a sheet against the surface of the layer-forming sheet and the like can be mentioned.
  • the method of forming the substantially C-shaped conductive material 2 on the surface of the base material layer 2 is not particularly limited, and the method of manufacturing the printed wiring board in the first aspect described above can be used.
  • the thin film conductive material foil before etching and the base material layer 2 may be press-bonded together to the layer forming sheet using a press or the like.
  • one of the two layers to be adhered is subjected to a treatment to impart adhesiveness, such as a blackening treatment, a browning treatment, or an adhesive coating treatment.
  • a treatment to impart adhesiveness such as a blackening treatment, a browning treatment, or an adhesive coating treatment.
  • You may The number of times of the treatment for forming the base material layer 2 having the base material 2 and the substantially C-shaped conductive material 2 (on the surface of the base material layer 2) is not particularly limited.
  • the sheet obtained in the first step may have two layers, but the sheet finally obtained after repeating the steps may have three or more layers.
  • this treatment may be performed only on one side of the layer-forming sheet, or may be performed on both sides from the viewpoint of production efficiency.
  • the layers laminated by the above method can be regarded as layers in which the layers containing the conductive material and the base material are repeated, and each layer can be regarded as a layer forming sheet. Further, in the case of manufacturing a sheet having a pillar-shaped conductive material, each time each layer-forming sheet is formed, a drill or a laser is applied to the end of the substantially C-shaped conductive material included in the layer-forming sheet. A step of forming a hole (via) using the sintering agent and then pouring a molten material or the like of the conductive material into the hole and solidifying the material may be included. In this case, a plurality of layer forming sheets are laminated such that the columnar conductive material is arranged at the end of the substantially C-shaped conductive material in the adjacent laminated sheet.
  • Telecommunications equipment such as electronics, cables, smartphones, tablets, smartwatches, smart security devices, surveillance devices or smart appliances; Consumer electronic devices such as computer circuits, radio transmitters (including smartphones), electric motors, flat panel displays, or liquid crystal displays (LCDs): Automotive equipment such as safety systems, mobile media, communications, wireless headsets, battery-powered, electric or hybrid powertrains, or high-voltage battery systems; smart beds, ventilators, CT scan machines, or pulse and blood pressure; Medical devices such as transducers that need to acquire information such as and convert it into electronic signals; Aerospace or defense equipment such as aircraft, vehicles, combat equipment, weapons, elastomeric gaskets, conductive paints, or EMI shielded displays; Systems such as railroad systems, mass transit systems, high voltage contact switching systems, signal transmission systems, or control systems; or digital weapons such as electromagnetic or electronic bombs based on high power surges; Adhesives for cables: Wallpaper for buildings such as server rooms: Clothing such as aprons or other equipment
  • the mode of use of the resin molded body in each of the above embodiments is not particularly limited as long as the mode includes the resin molded body as a member. Moreover, in each embodiment, the resin molding is particularly preferably used for electromagnetic wave shielding sheets. For this step, the conditions of the resin composition preparation step in the first production method can be similarly applied.
  • electromagnetic wave control sheet electromagnetic wave shield sheet
  • electromagnetic wave shield sheet it can be used arbitrarily as long as it is used for controlling (shielding) electromagnetic waves. By installing it, it is possible to suppress the malfunction.
  • the above electromagnetic wave control sheet is superior in shielding electromagnetic waves in a high frequency band compared to conventional electromagnetic wave control sheets. It can be applied to a wider range of fields than conventional electromagnetic wave control sheets in that it can shield from electromagnetic waves originating from communication devices such as mobile phones and smartphones, which are being developed in high frequency bands.
  • communication devices such as mobile phones and smartphones
  • Example A1 (X direction, Y direction: no rotation, rotation in thickness direction)
  • the surface has a rectangular shape with a length (referred to as the X direction) of 40 mm and a width (referred to as the Y direction, which is a direction perpendicular to the X direction) of 40 mm, and has a thickness shown in Table 1, and , a rectangular epoxy resin film (insulating layer) containing an insulating filler was prepared. Since this filler is insulative, it can be treated substantially the same as an epoxy resin from the viewpoint of properties such as shielding performance, which will be described later. Thereafter, a copper foil having a thickness Hc shown in Table 1 was thermocompression bonded to both surfaces of the film.
  • the final substantially C-shaped conductive material is arranged at regular intervals both in the vertical direction (the same direction as the X direction described above) and in the horizontal direction (the same direction as the Y direction described above) to form a square as a whole.
  • a photosensitive resist is applied onto the layers of copper foil on both sides of the film so as to provide a geometric arrangement and such that the conditions for the placement of the conductive material in the final sheet meet the conditions for the placement of the conductive material.
  • the number of conductive materials present in the sheet was 78 (X direction) ⁇ 78 (Y direction) per sheet of copper foil on one side.
  • Table 1 shows specific conditions for disposing the conductive material.
  • the alignment pitch in Table 1 is the distance between the centers of adjacent conductive materials in the conductive materials aligned in the X direction, and the distance between the centers of adjacent conductive materials in the conductive materials aligned in the Y direction. (the distance between the centers of adjacent conductive materials is the same in the X and Y directions).
  • the substantially C-shaped conductive material was arranged so that the rectangular shape formed by arranging the substantially C-shaped conductive materials was aligned with the center of the epoxy resin film.
  • a sheet in which the layer forming sheets were laminated so that the conductive material laminated portion was formed by the substantially C-shaped conductive material in each layer forming sheet was produced. Both surfaces of the obtained layered sheet were subjected to the following treatment. The surface of the obtained layer-formed sheet was subjected to general blackening treatment (treatment of degreasing, soft etching, washing with acid, and blackening treatment). After that, using a welding lay-up machine, these members were press-bonded so that the layer-forming sheet, the layer made of the same resin as the epoxy resin, and the copper foil were laminated in this order.
  • the copper foil was etched by exposure in the same manner as in the preparation of the layer-formed sheet described above to form a substantially C-shaped conductive material. Furthermore, the process from the blackening treatment to the etching of the copper foil by exposure is repeated until the final number of layers of the conductive material is 16 (that is, on both sides of the first layer-forming sheet, The process from the blackening treatment to the etching of the copper foil by exposure was repeated seven times to produce a sheet.In this sheet, the arrangement of each conductive material that constitutes one conductive material lamination part is equal to the thickness of the sheet. However, regarding this deviation, the placement of the conductive materials other than the endmost conductive material, such as the placement of the conductive materials A, B, and C shown in FIG.
  • the arrangement of the conductive materials other than the arranged conductive material has a portion where the outermost arranged conductive material and the space overlap in the thickness direction of the sheet when viewed from the side of the sheet.
  • the length Do of the maximum line segment that can be taken on the surface of the material in the circumferential direction is 1, when viewed from the top in the thickness direction of the sheet, all the conductive materials that make up one conductive material laminated portion have a diameter of They were placed inside a virtual circle with a length of 2.0.
  • the conductive material laminate is It has a reference conductive material that is one of two conductive materials arranged on the uppermost surface side and the lowermost surface side of the sheet, and furthermore, when viewed from the thickness direction upper part of the sheet When the angle between the opening direction of the approximately C-shaped conductive material and the opening direction of the approximately C-shaped conductive material of the reference is 120° ( ⁇ 2 ), d or less that satisfies the following (condition 7a1) For each natural number m of , there are five conductive materials each having a substantially C-shaped opening direction that satisfies m ⁇ 2 .
  • Example A2 (X direction, Y direction: no rotation, rotation in thickness direction)] A sheet was produced in the same manner as in Example A1, except that the alignment pitch in the above (condition 6a1) was changed to that shown in Table 1.
  • Example A3 (X direction, Y direction: no rotation, rotation in thickness direction)] A sheet was produced in the same manner as in Example A1, except that the alignment pitch in the above (condition 6a1) was changed to that shown in Table 1.
  • Example A4 (X direction, Y direction: with rotation, with rotation in thickness direction)] Regarding the conditions for arranging the conductive material, the condition that "each of the plurality of layer-forming sheets independently satisfies the following (condition 5a1)" was changed to "each of the plurality of layer-forming sheets independently satisfies the following (condition 1a4): ) and (Condition 2a4).
  • the number of specific areas A present in the sheet was 3 (X direction) ⁇ 3 (Y direction).
  • the angle formed by the opening direction of the substantially C-shaped conductive material viewed from the top in the thickness direction of the sheet toward the conductive material at one end and the opening direction of the substantially C-shaped conductive material of the reference is 360°/ ⁇ 1 ' conductive materials are arranged in increments of 120° ( ⁇ 1 ').
  • the electromagnetic wave is incident perpendicular to the sheet plane, and the data at each angle was acquired while rotating the sheet on the plane.
  • the ring-opening direction of the substantially C-shaped conductive material on the sheet outermost surface (first layer) and the Y direction are parallel, and the electric field ( E)
  • the sheet was rotated clockwise, defined as an angle of 0° in which the direction and the X direction are parallel.
  • Example A4 in which there is rotation in the X direction and Y direction, the ring opening direction of any one of the plurality of substantially C shapes in the specific region A and the Y direction are parallel
  • the angle of arrangement in which the electric field (E) direction and the X direction are parallel was defined as 0°, and the sheet was rotated clockwise.
  • measurements were taken at each point rotated 30°, 45°, and 90° from these 0° reference orientations.
  • Examples B3 and B4 which will be described later, measurements were performed only at 0°, 45°, and 90°.
  • the angle at which particularly excellent electromagnetic shielding properties were confirmed was evaluated as the "maximum performance angle".
  • the electromagnetic shielding performance in Table 1 indicates the numerical value of the electromagnetic shielding performance (maximum value of the peak) at a particularly large peak among the peaks that indicate the improvement of the shielding performance in the frequency range excluding the noise band on the low frequency side. Furthermore, the frequencies shown in parentheses in Table 1 indicate the frequencies at which the maximum values of the peaks were observed. For the reflectance and absorptance, the values at the frequency at which the maximum value of this peak was observed were also adopted.
  • the numerical values of the electromagnetic shielding performance shown in Table 1 are those measured at the maximum performance angle, and for those with multiple maximum performance angles, the values measured at one of them. is described.
  • the value with the smallest shielding performance value is shown in the electromagnetic shielding performance column of Table 1.
  • the value with the largest reflectance value is shown in Table 1
  • the value with the smallest absorptance value is shown in Table 1 with the absorptivity column.
  • ⁇ Do The average value of the maximum possible length of a line segment on the circumferential surface of the conductive material
  • ⁇ P The pitch width of the conductive material laminate (also expressed as the distance between the centers of adjacent conductive material laminates) and the pitch width is the same in both the X and Y directions.)
  • ⁇ W average value of approximately C-shaped line width on the circumferential surface of the conductive material
  • ⁇ Hc average value of the thickness of one conductive material
  • ⁇ Hr thickness of the insulating layer in one layer forming sheet
  • Average value of ⁇ c Average value of the opening angle of the substantially C-shaped conductive material ⁇ 1 and ⁇ 1 ': In each row of the conductive material formed in the X direction and the Y direction, respectively, With the conductive material at one end of the two ends as a reference, the opening direction of the substantially C-shaped conductive material viewed from the top in the thickness direction of the
  • ⁇ 2 The angle formed by the opening direction of the substantially C-shaped conductive material viewed from the top in the thickness direction of the sheet in each conductive material laminated portion and the opening direction of the substantially C-shaped reference conductive material (Table The notation of "-" in 1 indicates that the opening directions of the approximately C-shaped portions in each conductive material laminated portion are aligned.)
  • Example B1 (X direction, Y direction: no rotation, no rotation in thickness direction)]
  • the value of each parameter related to the conductive material is changed to the value of the parameter shown in Table 2, and the conditions for arranging the conductive material are changed to "All the conductive material laminates included in the sheet are the following (condition 6a1 ) and (Condition 7a1)” was changed to the condition “All the conductive material laminates contained in the sheet satisfy the following (Condition 8b1)”.
  • a sheet was produced by the method of (Condition 8b1) All the conductive materials forming one of the conductive material lamination portions viewed from above in the thickness direction of the sheet have the same substantially C-shaped opening direction.
  • the number of conductive materials included in the conductive material lamination portion was set to 16. Specifically, for each conductive material laminated portion, the opening directions of the approximately C-shaped conductive material from the conductive material at one end to the conductive material at the other end are 0°, 0°, 0°, and 0°. 0°, 0°, 0°, 0°, 0°, 0°, 0°, 0°, 0°, 0°, 0° bottom.
  • Example B2 (X direction, Y direction: with rotation, with thickness direction rotation)]
  • condition 5a1 the condition that "each of the plurality of layer-forming sheets independently satisfies the following (condition 5a1)” was changed to "each of the plurality of layer-forming sheets independently satisfies the following (condition 1b2): ) and (Condition 2b2) are composed only of a plurality of specific regions A”
  • condition 8b1 was changed to the following (Condition 6b2) and (Condition 7b2)
  • a sheet was produced in the same manner as in Example B1.
  • the number of specific regions A present in the sheet was 3 (X direction) ⁇ 3 (Y direction).
  • the angle between the opening direction of the substantially C-shaped conductive material viewed from the top in the thickness direction of the sheet toward the conductive material at one end and the opening direction of the substantially C-shaped conductive material of the reference is 360°/ ⁇ 1 ' conductive materials are arranged in increments of 120° ( ⁇ 1 ').
  • the conductive material laminated portion is It has a reference conductive material that is one of two conductive materials arranged on the top surface side and the bottom surface side of the sheet, and furthermore, when viewed from the thickness direction upper part of the sheet d or less that satisfies the following (condition 7b2) when the angle between the opening direction of the substantially C-shaped conductive material and the opening direction of the substantially C-shaped conductive material of the reference is 120 ° ( ⁇ 2 ) For each natural number m of , there are five conductive materials each having a substantially C-shaped opening direction that satisfies m ⁇ 2 .
  • Example B3 (X direction, Y direction: no rotation, rotation in thickness direction)
  • the surface has a rectangular shape with a length (referred to as the X direction) of 40 mm and a width (referred to as the Y direction, which is a direction perpendicular to the X direction) of 40 mm, and has a thickness shown in Table 2, and , a square-shaped epoxy resin film containing an insulating filler was prepared. Since this filler is insulative, it can be treated substantially the same as an epoxy resin from the viewpoint of properties such as shielding performance, which will be described later. After that, using an inkjet printer, a copper foil having a thickness Hc shown in Table 2 was thermocompression bonded to both surfaces of the film.
  • the final substantially C-shaped conductive material is arranged at regular intervals both in the vertical direction (the same direction as the X direction described above) and in the horizontal direction (the same direction as the Y direction described above) to form a square as a whole.
  • a photosensitive resist is applied onto the layers of copper foil on both sides of the film so as to provide a geometric arrangement and such that the conditions for the placement of the conductive material in the final sheet meet the conditions for the placement of the conductive material.
  • the substantially C-shaped conductive material was arranged so that the rectangular shape formed by arranging the substantially C-shaped conductive materials was aligned with the center of the epoxy resin film.
  • the substantially C-shaped conductive material in each layer forming sheet forms a conductive material laminated portion, and the pillar-shaped conductive material is formed as shown in FIG.
  • a sheet was prepared by laminating the layer forming sheet so as to be arranged at the end of the substantially C-shaped conductive material in another adjacently laminated sheet. Both surfaces of the obtained layer-formed sheet were subjected to the following treatment. The surface of the obtained layer-formed sheet was subjected to general blackening treatment (treatment of degreasing, soft etching, washing with acid, and blackening treatment).
  • these members were press-bonded so that the layer-forming sheet, the layer made of the same resin as the epoxy resin, and the copper foil were laminated in this order.
  • a hole (via) is drilled so as to penetrate the substantially C-shaped end existing on the outermost surface before lamination and the substantially C-shaped end existing on the outermost surface after lamination, The hole was filled with copper.
  • the copper foil was etched by exposure in the same manner as in the preparation of the layer-formed sheet described above to form a substantially C-shaped conductive material.
  • the process from this blackening treatment to copper filling after drilling is repeated until the final number of conductive material layers is 16 (that is, for both sides of the first layered sheet, The treatment from blackening treatment to etching of the copper foil by exposure was repeated 7 times) to produce a sheet.
  • the layered sheet has three or more layers, the holes were drilled so as to penetrate the substantially C-shaped ends of the two layers of the conductive material that were laminated most recently at the time of drilling.
  • the conductive materials constituting one conductive material laminated portion were arranged in the thickness direction of the sheet as shown in FIG.
  • a sheet was produced in the same manner as in Example B1, except that the above (condition 8b1) was changed to the following (condition 6b3) and (condition 7b3).
  • the conductive material laminated portion is It has a reference conductive material that is one of two conductive materials arranged on the uppermost surface side and the lowermost surface side of the sheet, and furthermore, when viewed from the thickness direction upper part of the sheet When the angle between the opening direction of the approximately C-shaped conductive material and the opening direction of the approximately C-shaped conductive material of the reference is 72° ( ⁇ 2 ), d or less that satisfies the following (condition 7b3) For each natural number m of , there are three conductive materials whose opening directions in a substantially C shape satisfy m ⁇ 2 .
  • Example B4 (X direction, Y direction: no rotation, rotation in thickness direction)] A sheet was produced in the same manner as in Example B1 except that the above (Condition 8b1) was changed to the following (Condition 56b4) and (Condition 7b4).
  • the conductive material laminated portion is It has a reference conductive material that is one of two conductive materials arranged on the top surface side and the bottom surface side of the sheet, and furthermore, when viewed from the thickness direction upper part of the sheet When the angle formed by the opening direction of the substantially C-shaped conductive material and the opening direction of the substantially C-shaped conductive material of the reference is 120 ° ( ⁇ 2 ), d or less that satisfies the following (condition 6) For each natural number m of , there are five conductive materials each having an approximately C-shaped opening direction that satisfies m ⁇ 2 .
  • Example B2 yields similar results to those of Example A4. Further, it was found that the sheet according to Example B3 was not affected by the rotation angle of the sheet and could obtain electromagnetic wave shielding performance, but the absorption rate was low. Further, it was found that the sheet according to Example B4 can obtain electromagnetic wave shielding performance without being affected by the sheet rotation angle, and that a high absorption rate can be obtained particularly when the sheet rotation angle is 30°. rice field.
  • Example 3 [Comparative Example 1 (no conductive material)] A sheet was produced in the same manner as in Example A1, except that no conductive material was used. Evaluation of the electromagnetic wave shielding property was performed by the same method as the method performed for Example A1 described above. FIG. 25 shows the evaluation results of the sheet properties. In Comparative Example 1, only power transmittance T( ⁇ ) and electromagnetic wave shielding performance L(dB) were evaluated. In this comparative example, an electromagnetic wave was vertically incident on the sheet surface, and the transmittance was measured without rotating the sheet. From FIG. 25, it was found that the sheet of Comparative Example 1 had high transmittance and poor shielding performance.
  • Example C1 (X direction, Y direction: with rotation, with rotation in thickness direction)]
  • the value of each parameter related to the conductive material is changed to the value of the parameter shown in Table 3, and the condition for arranging the conductive material is set to "each of the plurality of layer forming sheets independently satisfies the following (condition 5a1) satisfy” was changed to the condition that "each of the plurality of layer-forming sheets is independently composed of only a plurality of specific regions A that satisfy the following (conditions 1c1) and (conditions 2c1)", " The condition that "all the conductive material laminates included in the sheet satisfy the following (conditions 6a1) and (conditions 7a1)” is changed to "all the conductive material laminates included in the sheet satisfy the following (conditions 5c1) and ( Except that the condition was changed to "satisfy condition 6c1)", and that the arrangement of the conductive materials constituting one conductive material laminated portion was aligned in the thickness direction of the sheet as shown in FIG. produced
  • the angle formed by the opening direction of the substantially C-shaped conductive material viewed from the top in the thickness direction of the sheet toward the conductive material at one end and the opening direction of the substantially C-shaped conductive material of the reference is 360°/ ⁇ 1 ' conductive materials are arranged in increments of 120° ( ⁇ 1 ').
  • the conductive material laminated portion is It has a reference conductive material that is one of two conductive materials arranged on the top surface side and the bottom surface side of the sheet, and furthermore, when viewed from the thickness direction upper part of the sheet When the angle formed by the opening direction of the substantially C-shaped conductive material and the opening direction of the substantially C-shaped conductive material of the reference is 120 ° ( ⁇ 2 ), d or less that satisfies the following (condition 6) For each natural number m of , there are five conductive materials each having an approximately C-shaped opening direction that satisfies m ⁇ 2 .
  • Example C2 (X direction, Y direction: with rotation, with rotation in thickness direction)] A sheet was produced in the same manner as in Example C1, except that the parameter values related to the conductive material were changed to those shown in Table 3.
  • Example C3 (X direction, Y direction: with rotation, with rotation in thickness direction)] A sheet was produced in the same manner as in Example C1, except that in (Condition 6c1), the conductive material located at the end of the conductive material laminate opposite to the reference conductive material was not used. .
  • the opening direction is 0° (reference conductive material), 120°, 240°, 360°, 120°, 240°, 360°, 120°, 240°, 360°, 120°, 240°, 360°, 120°, 240°, 360°, 120°, 240°, 360°, Each conductive material was arranged so as to be 120° and 240°.
  • Example C4 (X direction, Y direction: with rotation, with rotation in thickness direction)]
  • condition 6c1 and conditions 7c1) are changed to "all the conductive material laminates included in the sheet satisfy the following (conditions 6c4) and A sheet was produced in the same manner as in Example C1, except that the condition was changed to "meet (condition 7c4)".
  • the conductive material laminated portion is It has a reference conductive material that is one of two conductive materials arranged on the top surface side and the bottom surface side of the sheet, and furthermore, when viewed from the thickness direction upper part of the sheet When the angle between the opening direction of the approximately C-shaped conductive material and the opening direction of the approximately C-shaped conductive material of the reference is 120° ( ⁇ 2 ), d or less that satisfies the following (condition 7c4) For each natural number m of , there is one conductive material whose substantially C-shaped opening direction satisfies m ⁇ 2 .
  • Example C5 (X direction, Y direction: with rotation, with rotation in thickness direction)]
  • condition 6c1 and conditions 7c1) are changed to "all the conductive material laminates included in the sheet satisfy the following (conditions 6c5) and A sheet was produced in the same manner as in Example C1, except that the condition was changed to "meet (condition 7c5)".
  • the conductive material laminated portion is It has a reference conductive material that is one of two conductive materials arranged on the top surface side and the bottom surface side of the sheet, and furthermore, when viewed from the thickness direction upper part of the sheet d or less that satisfies the following (condition 6) when the angle formed by the opening direction of the substantially C-shaped conductive material and the opening direction of the substantially C-shaped conductive material of the reference is 24 ° ( ⁇ 2 ) For each natural number m of , there is one conductive material whose substantially C-shaped opening direction satisfies m ⁇ 2 .
  • Example C6 (X direction, Y direction: with rotation, with rotation in thickness direction)] For each conductive material stack, a generally C-shaped profile of each conductive material from the reference conductive material to the conductive material located at the end of the conductive material stack opposite the reference conductive material.
  • the opening direction is 0° (reference conductive material), 360°, 360°, 360°, 360°, 360°, 120°, 120°, 120°, 120°, 240°, A sheet was produced in the same manner as in Example C1, except that the conductive materials were arranged at angles of 240°, 240°, 240°, and 240°.
  • Example C7 (X direction, Y direction: with rotation, with rotation in thickness direction)]
  • condition 6c1 and conditions 7c1) are changed to "all the conductive material laminates included in the sheet satisfy the following (conditions 6c7) and A sheet was produced in the same manner as in Example C1, except that the condition was changed to "meet (condition 7c7)".
  • the conductive material laminated portion is It has a reference conductive material that is one of two conductive materials arranged on the top surface side and the bottom surface side of the sheet, and furthermore, when viewed from the thickness direction upper part of the sheet d or less that satisfies the following (condition 7c7) when the angle formed by the opening direction of the substantially C-shaped conductive material and the opening direction of the substantially C-shaped conductive material of the reference is 180 ° ( ⁇ 2 )
  • condition 7c7 when the angle formed by the opening direction of the substantially C-shaped conductive material and the opening direction of the substantially C-shaped conductive material of the reference is 180 ° ( ⁇ 2 )
  • Example C8 (X direction, Y direction: with rotation, without rotation in thickness direction)]
  • condition 6c1 and conditions 7c1) are changed to "all the conductive material laminates included in the sheet satisfy the following (condition 8c8).”
  • a sheet was produced in the same manner as in Example C1, except that the condition was changed to "satisfy".
  • the conductive materials forming one of the conductive material lamination portions viewed from above in the thickness direction of the sheet have the same opening direction of the substantially C shape.
  • the number of conductive materials included in the conductive material lamination portion was set to 16. Specifically, for each conductive material laminated portion, the opening directions of the substantially C-shaped conductive material from the conductive material at one end to the conductive material at the other end are 0°, 0°, 0°, and 0°. 0°, 0°, 0°, 0°, 0°, 0°, 0°, 0°, 0°, 0°, 0°, 0° bottom.
  • Example C9 (X direction: with rotation, Y direction: no rotation, no rotation in thickness direction)]
  • the condition that "each of the plurality of layer-forming sheets is independently composed of only a plurality of specific regions A that satisfy the following (conditions 1c1) and (conditions 2c1)" is changed to "each of the plurality of layer-forming sheets is independently A sheet was produced in the same manner as in Example C8, except that the condition was changed to "consisting only of a plurality of specific regions A satisfying the following (Condition 1c1) and (Condition 2c9).”
  • Example C10 (X direction: with rotation, Y direction: without rotation, with thickness direction rotation)]
  • condition 6c1 and conditions 7c1) The condition that "all conductive material laminates included in the sheet satisfy the following (conditions 6c1) and (conditions 7c1)” was changed to "all the conductive material laminates included in the sheet satisfy the following (conditions 6c10) and A sheet was produced in the same manner as in Example C9, except that the condition was changed to "Meet (Condition 7c10)".
  • the conductive material laminated portion is It has a reference conductive material that is one of two conductive materials arranged on the uppermost surface side and the lowermost surface side of the sheet, and furthermore, when viewed from the thickness direction upper part of the sheet When the angle between the opening direction of the approximately C-shaped conductive material and the opening direction of the approximately C-shaped conductive material of the reference is 120° ( ⁇ 2 ), d or less that satisfies the following (condition 6) For each natural number m of , there are five conductive materials each having a substantially C-shaped opening direction that satisfies m ⁇ 2 .
  • Example C11 (X direction, Y direction: with rotation, with thickness direction rotation)]
  • condition 6c1 and conditions 7c1) are changed to "all the conductive material laminates included in the sheet satisfy the following (conditions 6c11) and A sheet was produced in the same manner as in Example C1, except that the condition was changed to "(Condition 7c11) is satisfied.”
  • the conductive material laminated portion is It has a reference conductive material that is one of two conductive materials arranged on the top surface side and the bottom surface side of the sheet, and furthermore, when viewed from the thickness direction upper part of the sheet When the angle between the opening direction of the approximately C-shaped conductive material and the opening direction of the approximately C-shaped conductive material of the reference is 72° ( ⁇ 2 ), d or less that satisfies the following (condition 6) For each natural number m of , there are three conductive materials whose opening directions in a substantially C shape satisfy m ⁇ 2 .
  • the sheets of Examples C1 to C11 can shield electromagnetic waves in a high frequency band.
  • the sheet of Example C10 was relatively superior and the sheet of C4 was relatively inferior in terms of electromagnetic wave shielding performance, reflectance, and absorptance.
  • the electromagnetic wave shielding performance is preferably not Y-rotation, and the reflectance and absorption rate are I found one to be preferable.
  • the electromagnetic wave shielding performance does not have Y rotation, and that the reflectance and absorbance also preferably do not have Y rotation. It was found that a resonance frequency band appeared around a frequency of 250 ⁇ 25 GHz, and a shielding performance of -30 dB was achieved in this frequency band (however, the reflectance was 70% and the absorption was 30%). Further, when considering the rotation in the thickness direction, from the comparison between Examples C1 and C6 (where ⁇ 2 is the same), it is found that Example C6 has superior shielding performance, while the reflectance increases and the absorptance decreases. I found out.
  • Example C1 the front and back are the same
  • Example C3 a sheet without one of the outermost layers of the sheet of Example C1, and the front and back are not the same
  • the shielding performance shows that the shielding performance , reflectance, and absorptance.
  • Example C6 was measured on both sides of the sheet, and it was found that there was no difference in shielding performance, reflectance, and absorbance.
  • Example C1 Considering the effect of the thickness of the sheet, from the comparison between Example C1 (16 layers) and Example C4 (4 layers), Example C1 with a larger sheet thickness has better shielding performance, reflectance, and absorptance. It was found to be excellent in all properties. In addition, when considering the influence of ⁇ c, from a comparison of Example C1 (38°) and Example C2 (23°), even if ⁇ c is changed, all the characteristics of shielding performance, reflectance, and absorptance are the same.
  • Example C2 exhibited a resonance frequency band near a frequency of 275 GHz, and achieved a shielding performance of -30 dB, a reflectance of 30%, and an absorption of 70% in this frequency band.
  • the present inventor believes that when ⁇ c is reduced, the LC resonance becomes longer, so that the broad waveform becomes sharper, and the resonance frequency band appears at 275 GHz, which is lower than the 300 GHz band.
  • Example C1 5 ⁇ m
  • Example A4 9 ⁇ m

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Insulating Bodies (AREA)
  • Laminated Bodies (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

シートであって、絶縁性材料と、板形状であり、かつ、前記シートの厚さ方向上部から見た形状が略C形状である複数の導電性材料とを含み、各導電性材料は、略C形状の周方向と前記シートの平面方向とが略平行となるように配置され、前記複数の導電性材料の少なくとも一部が、互いに接触しないように前記シートの厚さ方向に複数配置された導電性材料積層部を形成する、シート。

Description

シート
 本発明は、シートに関する。
 携帯電話やスマートフォン等の通信機器は、電磁波を利用して無線通信を可能としており、本分野の技術の発展に伴い、利用される電磁波の周波数帯が広がってきている。具体的には、国際電気通信連合(ITU)が定めるIMT-Advanced規格に準拠する無線通信システムが規定されており、第1世代移動通信システム(1G)でおよそ800MHz帯であった周波数帯域が、第4世代移動通信システム(4G)ではおよそ3GHz帯の周波数帯域まで拡大されている。そして、現在採用される第5世代移動通信システム(5G)では、高速化、大容量、低遅延、及び多接続を達成するために、28GHz帯まで周波数帯域が拡大されており、さらに現在では、次世代の通信システムとして100GHz以上の周波数帯域を利用する第6世代移動通信システム(6G)の開発が進められている。このように、高い周波数帯での電磁波の利用が注目されている一方で、利用電磁波の高周波化によって、電子機器の誤動作問題、通信障害問題、情報漏洩問題、及び健康問題等が生じやすくなってしまうため、電磁波のノイズの制御(EMC)が必要となっている。具体的には、エミッションEMI(加害者)とイミュニティーEMS(被害者)の両方を抑制可能な新規材料の開発が要求されている。この問題を解決する一つの手段に、周囲からの電磁波の影響を軽減させることができる電磁波制御材料の利用が挙げられる。電磁波制御材料の形態も多様に存在し、例えば、半導体のパッケージ/モジュール、電気/電子機器の筐体、半導体実装基板もしくはケーブル用の貼付材、サーバールーム等の建物の壁紙、又は人体を保護するためのエプロン等の衣類などがある。
 電磁波制御材料には種々の種類のものが存在し、幅広く研究が進められている。例えば、面積の大きい金属板を用いることにより電磁波を反射させる反射型の材料、また、導電性材料を樹脂やゴム等の有機材料に混錬させた材料を用いることにより電磁波を吸収する吸収型の材料等が存在する。
 例えば、吸収型の材料に関する研究が進んだ結果、遮蔽したい電磁波の波長の長さよりも一桁小さいサイズの構造を有する物質を用いることが効果的であることが報告され、このような構造を形成する手段として、小さなフィラーを含有させた材料の開発が進められている。
 特許文献1には、絶縁層と、バインダー樹脂に特定の粒子径及び嵩密度を有するフレーク状銀粉を含有させた導電層とを有する複合体からなり、1GHzの周波数での電磁波シールド性が優れるシートが開示されている。また、特許文献2には、バインダー樹脂に特定の平均粒子径を有する単結晶でありかつ真球状の粒子形状を備えるフェライト粒子を含有させた複合体からなり、1MHz~1GHzの周波数帯域の電磁波を遮蔽することができるシートが開示されている。さらに、特許文献3には、バインダー樹脂にニッケルナノワイヤーを特定量以上含有させた複合体からなり、ハンドリング性やフレキシブル性に優れ、かつ、18.0~26.5GHzの周波数帯域の電磁波を遮蔽することができるシートが開示されている。
特開2011-86930号公報 国際公開第2017/212997号 特開2019-67997号公報
 反射型の材料を用いたシートでは、面積の大きい金属板の使用により製品質量が大きくなるという問題が生じていた。一方で、吸収型の材料を用いたシートでは、上述の特許文献1~3に開示されるように、これまでの無線通信システムで利用されていた周波数帯域から1桁以上増加する次世代の無線通信システムの周波数帯域における電磁波には対応できない問題が生じていた。よって、これらの問題のような周波数帯域における電磁波に対応し得る高性能なシートの開発が要求されている。
 そこで、本発明は、軽量化及び高周波数帯の電磁波のシールドを可能とするシートを提供することを課題とする。
 本発明者は、鋭意検討の結果、樹脂に特定の形状の導電性材料を特定の態様で配置することにより、上記課題を解決できることを見出し、本発明に到達した。
 即ち、本発明は以下の特徴を有する。
[1] シートであって、
 絶縁性材料と、
板形状であり、かつ、前記シートの厚さ方向上部から見た形状が略C形状である複数の導電性材料とを含み、
 各導電性材料は、略C形状の周方向と前記シートの平面方向とが略平行となるように配置され、
 前記複数の導電性材料の少なくとも一部が、互いに接触しないように前記シートの厚さ方向に複数配置された導電性材料積層部を形成する、
 シート。
[2] 前記シートの平面方向に前記導電性材料積層部が複数配置される、[1]に記載のシート。
[3] 前記シートの厚さ方向上部から見た前記シートの面積に対する、前記シートの厚さ方向上部から見た前記導電性材料積層部の個数が、1個/mm以上、30個/mm以下である、[2]に記載のシート。
[4] 前記導電性材料積層部が、前記シートの平面方向に、かつ、一定の方向に等間隔で延びる複数の列を形成するように配置され、
 各導電性材料積層部が、各導電性材料積層部を構成する各導電性材料が前記シートの平面方向に略平行となるように配置されることにより、同一平面状に複数の導電性材料を含む平面方向の層が複数形成され、
 前記平面方向の複数の層の各層が、独立して、下記(条件1)を満たす特定領域Aを有する、[2]又は[3]に記載のシート。
(条件1)前記特定領域Aにおける前記一定の方向に延びて形成される導電性材料の各列において、該各列の両端のうちのいずれか一方の端の導電性材料を基準として、もう一方の端の導電性材料に向かって、前記シートの厚さ方向上部から見た導電性材料の略C形状の開口方向と該基準の各導電性材料の略C形状の開口方向とのなす角度がθずつ増加されるように導電性材料が配置され;前記θは、0°<θ<360°を満たし、その公差がθ/2未満である。
[5] 前記特定領域Aが、さらに、下記(条件3A)を満たす、[4]に記載のシート。
(条件3A)前記θは、「(360°/θ)=n(nは1を除く自然数)」を満たす。
[6] 前記特定領域Aが、さらに、下記(条件4A)を満たす、[5]に記載のシート。
(条件4A)前記一定の方向に延びて形成される導電性材料の各列に含まれる導電性材料の数が、360°/θである。
[7] 前記導電性材料積層部が、さらに、前記シートの平面方向に、かつ、前記一定の方向と直角をなす方向に等間隔で延びて形成される複数の列を形成するように配置され、
 前記特定領域Aにおいて、前記平面方向の複数の層の各層が、独立して、下記(条件2)を満たす、[5]~[6]のいずれかに記載のシート。
(条件2)前記特定領域Aにおける前記一定の方向と直角をなす方向に延びて形成される導電性材料の各列において、該各列の両端のうちのいずれか一方の端の導電性材料を基準の導電性材料として、もう一方の端の導電性材料に向かって、前記シートの厚さ方向上部から見た導電性材料の略C形状の開口方向と該基準の導電性材料の略C形状の開口方向とのなす角度がθ’ずつ増加されるように導電性材料が配置され;前記θ’は、0°<θ’<360°を満たし、その公差がθ’/2未満である。
[8] 前記特定領域Aが、さらに、下記(条件3B)を満たす、[7]に記載のシート。
(条件3B)前記θ’は、「(360°/θ’)=n(nは1を除く自然数)」を満たす。
[9] 前記特定領域Aが、さらに、下記(条件4’)を満たす、[8]に記載のシート。
(条件4B)前記一定の方向と直角をなす方向に延びて形成される導電性材料の各列に含まれる導電性材料の数が、360°/θ’である。
[10] 前記導電性材料積層部が、さらに、前記シートの平面方向に、かつ、前記一定の方向と直角をなす方向に等間隔で延びて形成される複数の列を構成するように配置され、
 前記特定領域Aにおいて、前記平面方向の複数の層の各層が、独立して、下記(条件2’)を満たす、[4]~[6]のいずれかに記載のシート。
(条件2’)前記特定領域Aにおける前記一定の方向と直角をなす方向に形成される導電性材料の各列において、前記シートの厚さ方向上部から見た各列を構成する全ての導電性材料の略C形状の開口方向が同一となるように導電性材料が配置される。
[11] 前記導電性材料積層部が、前記シートの平面方向に、一定の方向に等間隔で、かつ、該一定の方向と直角をなす方向に等間隔で配置され、
 各導電性材料積層部が、各導電性材料積層部を構成する各導電性材料が前記シートの平面方向に略平行となるように配置されることにより、同一平面状に複数の導電性材料を含む平面方向の層が複数形成され、
 前記平面方向の複数の層の各層が、独立して、下記(条件5)を満たす特定領域Bを有する、[2]又は[3]に記載のシート。
(条件5)前記特定領域Bにおけるシートの厚さ方向上部から見た全ての導電性材料の略C形状の開口方向が同一である。
[12] 前記導電性材料積層部として、導電性材料積層部の1つを構成する導電性材料の前記シートの厚さ方向上部から見た略C形状の開口方向が、少なくとも一部で互いに異なる特定導電性材料積層部を少なくとも含む、[1]~[11]のいずれかに記載のシート。
[13] 前記特定導電性材料積層部として、特定導電性材料積層部の1つを構成する導電性材料のうち、前記シートの最上面側と最下面側に配置される2つの導電性材料の略C形状の開口方向が同一である特定導電性材料積層部を少なくとも含む、[12]に記載のシート。
[14] 前記特定導電性材料積層部として、下記(条件6)を満たす特定導電性材料積層部を少なくとも含む、[1]~[13]のいずれかに記載のシート。
(条件6)前記特定導電性材料積層部は、
前記シートの最上面側と最下面側に配置される2つの導電性材料のうちのいずれか1つの導電性材料を基準の導電性材料とし、かつ、シートの厚さ方向上部から見た導電性材料の略C形状の開口方向と前記基準の導電性材料の略C形状の開口方向とのなす角度をθとした場合において、前記特定導電性材料積層部に含まれる前記基準の導電性材料以外の導電性材料の略C形状の開口方向がmθで表され;前記mは自然数であり;前記θは0°<θ<360°を満たし、その公差がθ/2未満である。
[15] 前記特定導電性材料積層部は、前記mが下記(条件7)を満たすd以下の各自然数であり、略C形状の開口方向がmθを満たす導電性材料をk個(kは自然数)ずつ有する、[14]に記載のシート。
(条件7)前記dは、「(360°/θ)=d(dは1を除く自然数)」を満たす。
[16] 前記導電性材料積層部として、前記シートの厚さ方向上部から見た導電性材料積層部の1つを構成する全ての導電性材料の略C形状の開口方向が同一である電性材料積層部を少なくとも含む、[1]~[11]のいずれかに記載のシート。
[17] 前記導電性材料の周方向の面において取り得る最大の線分の長さの平均値が、1μm以上、2000μm以下である、[1]~[16]のいずれかに記載のシート。
[18] 前記シートの厚さ方向に沿った前記導電性材料同士の距離の平均値は、1μm以上、3000μm以下である、[1]~[17]のいずれかに記載のシート。
[19] 前記導電性材料積層部として、導電性材料積層部を構成する各導電性材料と、厚さ方向に隣接して配置される他の導電性材料とを接続する柱形状の導電性材料とを含む導電性材料積層部を少なくとも含む、[1]~[18]のいずれかに記載のシート。
[20] 前記導電性材料積層部を構成する導電性材料が、互いに電気的に連続していない、[1]~[19]のいずれかに記載のシート。
[21] 電磁波シールドシートである、[1]~[20]のいずれかに記載のシート。
 本発明により、軽量化及び高周波数帯の電磁波を遮蔽することができるシートを提供することができる。
略C形状の導電性材料の一態様の外観斜視図である。 略C形状の態様を説明するための図である。 略C形状の形態に係るパラメータを説明するための図である。 シートの一態様の平面図と正面図である。 導電性材料積層部を構成し得る導電性材料を説明するための図である。 導電性材料の空間部を説明するための図である。 導電性材料積層部を構成し得る導電性材料を説明するための図である。 シートの一態様の平面図と正面図である。 シートの一態様の平面図と正面図である。 導電性材料の態様を説明するための図である。 シートの平面方向における略C形状の導電性材料の配列を説明するための図である。 導電性材料積層部を構成する略C形状の導電性材料の開口方向を説明するための図である。 柱形状の導電性材料を説明するための図である。 電磁波シールド特性の評価に係る実験装置を模式的に表す図である。 層形成シートの一態様の外観斜視図である。 複数の層形成シートを積層させたシートの一態様の外観斜視図である。 実施例A1におけるシートの特性評価の結果を示すための図である。 実施例A2におけるシートの特性評価の結果を示すための図である。 実施例A3におけるシートの特性評価の結果を示すための図である。 実施例A4におけるシートの特性評価の結果を示すための図である。 実施例B1におけるシートの特性評価の結果を示すための図である。 実施例B2におけるシートの特性評価の結果を示すための図である。 実施例B3におけるシートの特性評価の結果を示すための図である。 実施例B4におけるシートの特性評価の結果を示すための図である。 比較例1におけるシートの特性評価の結果を示すための図である。 実施例C1~C4におけるシートの特性評価の結果を示すための図である。 実施例C5~C8におけるシートの特性評価の結果を示すための図である。 実施例C9~C11におけるシートの特性評価の結果を示すための図である。
 以下に本発明の実施の形態を詳細に説明するが、各実施形態における各構成及びそれらの組み合わせ等は、一例であって、本発明の主旨から逸脱しない範囲内で、適宜、構成の付加、省略、置換、及びその他の変更が可能である。本開示は、実施形態によって限定されることはなく、クレームの範囲によってのみ限定される。
 本開示において、「~」を用いて表される数値範囲は、「~」の前後に記載された数値を下限値及び上限値として含む範囲を意味し、「A~B」は、A以上B以下であることを意味する。
 また、本開示では複数の実施形態を説明するが、適用できる範囲で各実施形態における種々の条件を互いに適用し得る。
 また、本開示において、「複数」とは、「2以上」を意味する。
 本実施形態に記載されている構成要素の寸法、材質、形状、その相対配置等は一例である。また、本実施形態について適宜図面を用いて説明するが、図における寸法等も一例である。
<シートの構成>
 本開示の一実施形態であるシート(単に「シート」とも称する。)は、
 絶縁性材料と、
板形状であり、かつ、前記シートの厚さ方向上部から見た形状が略C形状である複数の導電性材料とを含み、
 各導電性材料は、略C形状の周方向と前記シートの平面方向とが略平行となるように配置され、
 前記複数の導電性材料の少なくとも一部が、互いに接触しないように前記シートの厚さ方向に複数配置された導電性材料積層部を形成する、
 シートである。
 本発明者は、テラヘルツ領域での強い電磁波をシールドすることができる構造として、偏波を制御することができる略C形状を有する導電性材料に着目した。直線偏波の入射電磁波を該C形状の材料に入射すると偏波が楕円偏波となり、出射される。このように略C形状の材料は偏波の制御に用いることができるが、本実施形態では、偏波の制御ではなく、略C形状を複数用いることによる電磁波の吸収の大きさに着目した。
 さらに、本発明者は、上記略C形状が、LC共振回路とみなせることに着目した。この場合、略C形状の材料の透過率を見てみると、略C形状のギャップをキャパシタンスC、略C形状自身をインダクタンスLとするLC共振による電磁波の吸収の効果が得られる。そして、略C形状の使用数を増加させることにより、この電磁波の吸収の効果を増加させることができると考え本発明を完成するに至った。
 さらには、シールドできる電磁波の周波数帯を高くするだけでなく、導電性材料の条件を適宜選定することにより、シールドできる周波数を制御できたり、シールドできる周波数帯の幅を狭く又は広くしたりすることができることを本発明者は見出した。シールドできる周波数帯の幅について、用途によって、幅が広いことが求められることもあり、幅が狭いことが求められることもある。
 また、電磁波の反射は、界面でのインピーダンスに差が起こると生じる。上記の実施形態に係るシートでは、複数の略C形状の導電性材料がシートの厚さ方向に複数積層されており、インピーダンスの差を生じさせる界面(導電性材料の表面)が複数存在するため、電磁波の反射が繰り返されて上記の吸収が効率的に行われることとなる。
 また、本実施形態に係るシートでは、面積の大きい金属板を使用していた従来の電磁波反射型の材料を用いたシートと比較して、製品質量を小さくし軽量化することが容易である。
 本開示では、特段の断りがいない限り、外部からの電磁波の方向は、シート平面の方向に垂直な方向であるとして説明を行う。
[導電性材料]
 板形状であり、シートの厚さ方向上部から見た形状が略C形状である複数の導電性材料の一例を図1に示す。図1に示す導電性材料は導電性材料の斜視図であり、図中の矢印の方向が周方向であり、矢印の向きを時計回りの向きとする。
 導電性材料をシートの厚さ方向上部から見た形状は略C形状であれば特段制限されず、略C形状とは、図2(a)に示すような円形の輪の一部が欠けた形状であってもよく、図2(b)や図2(c)に示すような図2(a)に示す輪の形状が三角形や四角形のような多角形となっている形状であってもよく、この輪の形状が任意の形状であってもよいが、安定した効果が得られやすい観点から、円形又は多角形の輪(「輪」を「環状」と換言してもよい。)の一部が欠けた形状であることが好ましく、入手容易性や製造容易性の観点から、円形の輪の一部が欠けた形状であることがより好ましい。また、略C形状を構成する外周の形状と内周の形状は、図2(a)~(c)に示すように同一であってもよいが、異なる形状、例えば、外周の形状が四角形で内周の形状が円形であってもよいが、入手容易性の観点から、同一であることが好ましい。
 なお、複数の導電性材料の一部の導電性材料は露出していてもよい。
 以下、導電性材料について詳細に説明するが、略C形状が図2(a)に示すような円形の輪の一部が欠けた形状である導電性材料を想定して説明を進めるが、該説明における条件は適用可能な範囲で他の形状についても同様に適用される。
 また、本開示において、導電性材料のパラメータで用いる「平均」とは、複数存在する導電性材料の平均値を意味する。
 また、本開示において、「導電性材料の周方向の面」とは、板状の導電性材料の平面方向と換言することができる。
 導電性材料を構成する材料の種類は、導電性を有していれば特段制限されず、例えば、カーボン等の炭素材料や、銅(Cu)、アルミニウム(Al)、鉄(Fe)、金(Au)、銀(Ag)、白金(Pt)、マグネシウム(Mg)、亜鉛(Zn)、タングステン(W)、チタン(Ti)、ニッケル(Ni)、もしくはマンガン(Mn)等、これらの金属元素の組合せからなる合金、又はこれらの金属元素又は合金の酸化物、ハロゲン化物、もしくは硫化物等の金属含有化合物等が挙げられ、弾性率が加工に適しており、樹脂等に含有した場合、腐食耐性がよく、線膨張係数も小さいので、シートの耐久性が良好であるという観点から、特にCu、又はAgが好ましい。
 板形状である導電性材料の厚さの平均値は特段制限されないが、周波数100GHz帯において、周波数幅を選択的に吸収する性能を得られる観点から、通常0.01μm以上であり、0.1μm以上であることが好ましく、0.2μm以上であることがより好ましく、また、通常100μm以下であり、80μm以下であることが好ましく、50μm以下であることがより好ましく、30μm以下であることがさらに好ましい。
 導電性材料の周方向の面において取り得る最大の線分の長さDoの平均値は特段制限されないが、周波数100GHz帯において、ピーク周波数を選択的に吸収する性能を得られる観点から、通常1μm以上であり、10μm以上であることが好ましく、50μm以上であることがより好ましく、また、通常2000μm以下であり、1000μm以下であることが好ましく、800μm以下であることがより好ましい。
 導電性材料の周方向の面における略C形状の線幅Wの平均値は特段制限されないが、略C形状を形成する観点から、通常0.1μm以上であり、1μm以上であることが好ましく、10μm以上であることがより好ましく、また、通常1000μm以下であり、500μm以下であることが好ましく、250μm以下であることがより好ましい。
 導電性材料の略C形状の開口角度θcの平均値は特段制限されないが、電磁波を吸収する性能を向上させることができる観点から、通常180°以下であり、135°以下であることが好ましく、90°以下であることがより好ましく、また、共振を発生させるには開環部を保有する観点から、通常1°以上であり、4°以上であることが好ましく、7°以上であることがより好ましい。開口角度θcは、略C形状の中心から、下記で説明する閉じ線の中心部分を結ぶ2つの線で形成される角度である。
 図3に、円形の輪の一部が欠けた形状である略C形状におけるDo、W、及びθcを示す。図3中の点Pcは、略C形状の中心点である。また、本開示では、図3で示されるОの線、Iの線、及びО-Iの線を、略C形状の外縁、内縁、及び閉じ線と称する。対象の略C形状において、内縁と閉じ線、又は外縁と閉じ線の境が明確でない場合には、対象の略C形状の端部を、導電性材料の平面方向の面積が変わらないことを条件として、図3に示す略C形状の端部と同じ形状となるような端部に置換して、これらの境を決定することができる。
 導電性材料は、略C形状の周方向と前記シートの平面方向とが略平行となるように配置される。このような配置とすることにより、電磁波と直角な方向に電界が発生し、その発生した電界と略C形状が同一平面上にあることで、略C形状内もしくは、開環部を通じて、共振が発生する。この共振は、半波長共振とLC共振に分類され、電磁波の吸収及び/又は反射の効果が得られやすくなる。
 複数の導電性材料は、電磁波を反射及び/又は吸収する性能(以下、「反射・吸収性能」とも称する。)を向上させることができる観点から、その少なくとも一部の導電性材料が互いに接触しないように前記シートの厚さ方向に複数配置された導電性材料積層部を形成する。図4に、本実施形態に係るシート10の一例を示す。該シート10は、樹脂等の非導電性材料を含むベース材料1、及び該ベース材料1に含まれる導電性材料2から構成される導電性材料積層部3を3つ含む。導電性材料積層部の一例を図4に示す。図4(a)及び(b)は、それぞれ導電性材料積層部の平面図及び正面図(該正面図では略C形状の開口部の描写を省略しており、他の図面における正面図でも同様にこの描写を省略する。)を表す。図4中のDzは、厚さ方向における導電性材料の間の距離を表す。これらの平面図と正面図の関係については、図8(a)及び(b)、並びに図10(a)及び(b)についても同様である。
 1つの導電性材料積層部を構成する導電性材料の個数は特段制限されないが、積層される導電性材料の個数が多いほど反射・吸収性能を向上させることができる観点から、通常1個以上であり、2個以上であることが好ましく、4個以上であることがより好ましく、8個以上であることがさらに好ましく、10個以上であることが特に好ましく、また、十分な反射・吸収性能を確保しつつ、フレキシブル性を有する観点から、通常80個以下であり、64個以下であることが好ましく、48個以下であることがより好ましく、32個以下であることがさらに好ましく、24個以下であることが特に好ましい。
 また、1つの導電性材料積層部を構成する導電性材料の略C形状の開口方向は特段制限されず、全ての導電性材料の略C形状の開口方向が同一(略同一も含む。)の方向であってもよく、全ての導電性材料の略C形状の開口方向が任意の方向であってよい。
 本開示において、位置や角度に関して「同一」の文言を用いる場合には、「略同一」も含むものとして扱う。
 導電性材料積層部を構成する各導電性材料間の距離(シートの厚さ方向に沿った前記導電性材料同士の距離)Dzの平均値は特段制限されないが、反射・吸収性能を向上させる観点から、通常1μm以上であり、5μm以上であることが好ましく、10μm以上であることがより好ましく、25μm以上であることがさらに好ましく、50μm以上であることが特に好ましく、また、スマートフォンやタブレット等の内部に実装する場合にはシートを薄くすることが望まれるため、通常3000μm以下であり、2000μm以下であることが好ましく、1000μm以下であることがより好ましく、300μm以下であることがさらに好ましく、100μm以下であることが特に好ましい。
 1つの導電性材料積層部を構成する各導電性材料の配置は、図4に示すように、シートの厚さ方向に完全に揃っていてもよいが、図5(後述するように、図5中のDの導電性材料は導電性材料積層部を構成しない。)に示すように揃っていなくともよい(ずれていてもよい)が、反射性能、及び吸収性能が向上する観点から、揃っている方が好ましい。
 対象の導電性材料が導電性材料積層部を構成するものか否かの判断について説明する。導電性材料積層部を構成し得る一番上又は一番下の導電性材料(以下、「最端配置導電性材料」とも称する。)を特定し、シートの側面側から見てシートの厚さ方向に最端配置導電性材料と重複する部分を有する導電性材料は、最端配置導電性材料を含む導電性材料積層部に含まれる導電性材料積層部とみなす。図5におけるa、b、c、及びdは、それぞれ、シートの側面側から見た導電性材料A、B、C、及びDの平面方向の端部である。よって、図5においては、導電性材料Aを最端配置導電性材料した場合、導電性材料B及びCともに、シートの側面側から見てシートの厚さ方向に最端配置導電性材料と重複する部分(図5中の網掛け部分)を有するため、導電性材料Aを最端配置導電性材料として含む導電性材料積層部に含まれる導電性材料である。一方で、図5における導電性材料Dは、シートの側面側から見てシートの厚さ方向に最端配置導電性材料と重複する部分を有しないため、導電性材料Aを最端配置導電性材料として含む導電性材料積層部に含まれる導電性材料ではない。このように導電性材料積層部を定義した場合、導電性材料積層部を構成する各導電性材料は互いに、シートの側面から見てシートの厚さ方向に必ず重複する部分を有するため、完全に揃っていなくても、各層で電磁波が吸収され、さらに、反射が起きた場合には、手前の層で吸収され、結果的に電磁波をシールドすることができる。
 対象の導電性材料が導電性材料積層部に含まれるか否かの判断は、上記の図5を用いた説明で示される方法で判断することができるが、好ましくは、下記の図7を用いた説明で示される方法で判断することができる。
 また、導電性材料積層部を構成し得る一番上又は一番下の導電性材料(以下、「最端配置導電性材料」とも称する。)を特定し、シートの側面側から見てシートの厚さ方向に最端配置導電性材料の空間部と重複する部分を空間部に有する導電性材料は、最端配置導電性材料を含む導電性材料積層部に含まれる導電性材料積層部とみなす。導電性材料の空間部とは、導電性材料の内縁と、内縁を構成する線の端部同士を結ぶ線とから構成される部分であり、例えば、図6(a)~(c)に示す網掛け部分である。また、図7におけるa、b、c、及びdは、それぞれ、シートの側面側から見た導電性材料A、B、C、及びDの空間部の平面方向の端部である。よって、図7を用いて説明すると、導電性材料Aを最端配置導電性材料した場合、導電性材料B及びCともに、シートの側面側から見てシートの厚さ方向に最端配置導電性材料と空間部が重複する部分(図7中の網掛け部分)を有するため、導電性材料Aを最端配置導電性材料として含む導電性材料積層部に含まれる導電性材料である。一方で、図7における導電性材料Dは、シートの側面側から見てシートの厚さ方向に最端配置導電性材料と重複する部分を有しないため、導電性材料Aを最端配置導電性材料として含む導電性材料積層部に含まれる導電性材料ではない。このように導電性材料積層部を定義した場合、導電性材料積層部を構成する各導電性材料は互いに、シートの側面から見てシートの厚さ方向に必ず重複する部分を有するため、略C形状による電磁波の反射・吸収の効果は、略C形状の空間部に大きく依存するため、発明の効果を得る観点からは、導電性材料の空間部が重複することが好ましい。空間部が重複することで、2層目以降の略C形状の導電性材料で反射された電磁波を手前の層で吸収することができる点で好ましい。
 上記の2つの導電性材料積層部の定義のいずれにおいても、各定義における1つの導電性材料積層部に含まれ得る導電性材料は、各導電性材料間の距離に関わらず、全て1つの導電性材料積層部を構成するものとして扱う。つまり、図8に示すシートでは、破線で囲まれた各領域内の全ての導電性材料が1つの導電性材料積層部を構成するものとして扱う。
 シートの側面側から見たシートの厚さ方向に対する導電性材料積層部に含まれる導電性材料のずれの程度は特段制限されないが、導電性材料の周方向の面において取り得る最大の線分の長さDoを1として、シートの厚さ方向上部から見た場合において、1つの導電性材料積層部を構成する導電性材料の70%以上の個数の導電性材料が直径1.2の長さの仮想的な円の内側に入るように配置されていてもよい。このような配置とすることにより、シートの製造を効率化することができる、具体的には、導電性材料のずれの制御を容易にすることができる。また、同様の条件で導電性材料を観察した場合において、1つの導電性材料積層部を構成する導電性材料の70%以上の個数の導電性材料が直径1.2の長さの仮想的な円の内側には入らないが、直径2の長さの仮想的な円の内側に入るように配置されていてもよい。このような配置とすることにより、電磁波の吸収性能を向上させることができる。
 1つの導電性材料積層部を構成する導電性材料中の上記の各条件を満たす導電性材料の個数は、上述のように70%以上であってもよいが、80%以上であることが好ましく、90%以上であることがより好ましく、95%以上であることがさらに好ましく、100%であることが特に好ましく、100%未満であってもよい。
 導電性材料積層部は、上述のように複数で配置されていてよく、具体的には、シートの平面方向に複数配置されていてよい。
 導電性材料積層部が複数配置される場合、シートの厚さ方向上部から見たシートの面積に対する、シートの厚さ方向上部から見た導電性材料積層部の個数は特段制限されないが、制御する電磁波の周波数を制御し易くする観点から、1個/mm以上であってもよく、3個/mm以上であってもよく、5個/mm以上であってもよく、7個/mm以上であってもよく、10個/mm以上であってもよく、また、30個/mm以下であってもよく、25個/mm以下であってもよく、20個/mm以下であってもよくることがより好ましく、15個/mm以下であってもよく、13個/mm以下であってもよい。
 具体的に、上記の個数は、シールド対象の電磁波の波長(本段落においては、単に「波長」とも称する。)によって決定することができ、通常1個/(波長)以上であり、3個/(波長)以上であることが好ましく、5個/(波長)以上であることがより好ましく、7個/(波長)以上であることがさらに好ましく、また、通常30個/(波長)以下であり、20個/(波長)以下であることが好ましく、15個/(波長)以下であることがより好ましく、10個/(波長)以下であることがさらに好ましい。
例えば、シールド対象の電磁波の周波数が325GHzであれば、5個/mm以上、15個/mm以下であることが好ましく、7個/mm以上、13個/mm以下であることがより好ましく、9個/mm以上、11個/mm以下であることが特に好ましい。
 また、シールド対象の電磁波の周波数が190GHzであれば、1個/mm以上、10個/mm以下であることが好ましく、2個/mm以上、8個/mm以下であることがより好ましく、3個/mm以上、5個/mm以下であることが特に好ましい。
 シールド対象の電磁波の周波数が100GHzであれば、1個/mm以上、5個/mm以下であることが好ましく、1個/mm以上、3個/mm以下であることがより好ましく、1個/mmであることが特に好ましい。
 導電性材料積層部が複数配置される場合、その配置の態様は特段制限されず、任意に配置されていてもよく、例えば、図9(a)~(c)に示すように、三角形、四角形、もしくは六角形を隙間なく隣接させて並べたときの各多角形の頂点に導電性材料積層部を設ける配置としてもよく、また、図9(d)に示すようにランダムに導電性材料積層部を設ける配置としてもよい。図9(a)~(d)について、各黒点が導電性材料積層部を表しており、導電性材料積層部を構成する導電性材料の略C形状の表現は省略されている。導電性材料積層部の配置は、反射・吸収性能を向上させる観点から、図9(b)に示すような四角形を隙間なく隣接させて並べたときの各多角形の頂点に導電性材料積層部を設ける配置が好ましく、図10(a)に示すように、シートの平面方向に、かつ、一定の方向に等間隔で延びて形成される複数の列を形成するように配置されることがより好ましい。図10は、シートの厚さ方向上部から見た導電性材料積層部の配置の様子を示し、かつ、導電性材料の略C形状の開口方向が全て同じ方向となっている場合の図である。図10では、上記の一定の方向に対して等間隔で配置される導電性材料積層部ピッチ幅をDxで示し、該一定の方向と直角をなす方向に対して等間隔で配置される導電性材料積層部ピッチ幅をDyで示す。また、このような等間隔の配置は、シート中に存在する導電性材料積層部の一部で適用されていても、全体で適用されていてもよいが、この配置により得られる効果を十分に得られる観点から、全体で適用されていてもよい。
 さらに、反射・吸収性能を向上させる観点から、図10(b)に示すように、各導電性材料積層部が、各導電性材料積層部を構成する各導電性材料が前記シートの平面方向に略平行となるように配置されることにより、同一平面状に複数の導電性材料を含む平面方向の層が複数形成されることが好ましい。このような態様は、シート中に存在する導電材料性積層部の一部で適用されていても、全体で適用されていてもよいが、この配置により得られる効果を十分に得られる観点から、全体で適用されていてもよい。図10(b)に示す破線で囲まれた領域に含まれる導電性材料で構成される層は、上記の「同一平面状に複数の導電性材料を含む平面方向の層」の一つである。
 さらに、シートの厚さ方向に透過する電磁波の方向を固定した場合において、平面方向でシートが回転しても反射・吸収性能が平均化されることが好ましい観点から、前記平面方向の複数の層の各層が、独立して、下記(条件1)を満たす特定領域Aを有することが好ましい。
(条件1)前記特定領域Aにおける前記一定の方向に延びて形成される導電性材料の各列において、該各列の両端のうちのいずれか一方の端の導電性材料を基準として、もう一方の端の導電性材料に向かって、前記シートの厚さ方向上部から見た導電性材料の略C形状の開口方向と該基準の各導電性材料の略C形状の開口方向とのなす角度がθずつ増加されるように導電性材料が配置され;前記θは、0°<θ<360°を満たし、その公差がθ/2未満である。
 さらに、設計上および製造上の製造のし易さの観点から、前記特定領域Aは、下記(条件3A)を満たすこと好ましい。
(条件3A)前記θは、「(360°/θ)=n(nは1を除く自然数)」を満たす。
 さらに、設計上および製造上の製造のし易さの観点から、前記特定領域Aは、下記(条件4A)を満たすことが好ましい。
(条件4A)前記一定の方向に延びて形成される導電性材料の各列に含まれる導電性材料の数が、360°/θである。
 また、シートの厚さ方向に透過する電磁波の方向を固定した場合において、平面方向でシートが回転しても反射・吸収性能が平均化されることが好ましい観点からは、前記導電性材料積層部が、さらに、前記シートの平面方向に、かつ、前記一定の方向と直角をなす方向に等間隔で延びて形成される複数の列を形成するように配置され、
 前記特定領域Aにおいて、前記平面方向の複数の層の各層が、独立して、下記(条件2)を満たすことが好ましい。
(条件2)前記特定領域Aにおける前記一定の方向と直角をなす方向に延びて形成される導電性材料の各列において、該各列の両端のうちのいずれか一方の端の導電性材料を基準の導電性材料として、もう一方の端の導電性材料に向かって、前記シートの厚さ方向上部から見た導電性材料の略C形状の開口方向と該基準の導電性材料の略C形状の開口方向とのなす角度がθ’ずつ増加されるように導電性材料が配置され;前記θ’は、0°<θ’<360°を満たし、その公差がθ’/2未満である。
 さらに、設計上および製造上の製造のし易さの観点から、前記特定領域Aは、下記(条件3B)を満たすこと好ましい。
(条件3B)前記θ’は、「(360°/θ’)=n(nは1を除く自然数)」を満たす。
 さらに、設計上および製造上の製造のし易さの観点から、前記特定領域Aは、下記(条件4B)を満たすことが好ましい。
(条件4B)前記一定の方向と直角をなす方向に延びる導電性材料の各列に含まれる導電性材料の数が、360°/θ’である。
 なお、本開示では、上述したように、導電性材料の回転の程度を示すために上記の「θ」及び「θ’」、並びに後述する「θ」を用いている。例えば、導電性材料中に導電性材料をθの角度をつけて配置しようとする場合において、θの角度からずれてしまうことがある。この場合、そのずれが大きくない場合には、所望の効果を得ることができる。よって、本実施形態では、ずれの許容範囲を示すために「公差がθ/2未満」といった表現を用いている。
 上記の(条件2)における「角度がθずつ増加される」のような表現を用いた場合、例えば、θ=30°のとき、1層目から2層目までの角度の増加が30°±15°未満(15°超、45°未満)であり、1層目から3層目までの角度の増加が60°±15°未満(45°超、75°未満)であることを表す。
 θの公差は、それぞれ独立して、シールド性能の向上および反射率の低減、ひいては吸収率の増加の観点から、通常θ/2未満であり、θ/3以下であることが好ましく、θ/4以下であることが好ましく、θ/5以下であることが好ましく、θ/10以下であることが好ましく、θ/20以下であることが好ましく、また、θ/100以上であってもよく、θ/50以上であってもよく、θ/30以上であってもよく、θ/25以上であってもよい。
 このθの交差の条件は、θ’、及びθにも同様に適用することができる。
 また、シートの厚さ方向に透過する電磁波の方向を固定した場合において、平面方向のシートの特定回転角度において、反射・吸収性能が向上する観点からは、前記導電性材料積層部が、さらに、前記シートの平面方向に、かつ、前記一定の方向と直角をなす方向に等間隔で延びて形成される複数の列を構成するように配置され、
 前記特定領域Aにおいて、前記平面方向の複数の層の各層が、独立して、下記(条件2’)を満たすことが好ましい。
(条件2’)前記特定領域Aにおける前記一定の方向と直角をなす方向に形成される導電性材料の各列において、前記シートの厚さ方向上部から見た各列を構成する全ての導電性材料の略C形状の開口方向が同一となるように導電性材料が配置される。
 シート中に含まれる全ての導電性材料積層部の数を100%とした場合において、特定領域Aに相当する領域全体に含まれる導電性材料積層部の数は、特段制限されないが、反射・吸収性能を向上させる観点から、通常30%以上であり、50%以上であることが好ましく、70%以上であることがより好ましく、80%以上であることがさらに好ましく、90%以上であることが特に好ましく、100%であることが最も好ましく、また、100%以下であってもよく、100%未満であってもよい。
 上記の(条件1)、(条件2)、(条件3A)、(条件3B)、(条件4A)、及び(条件4B)が満たされる態様であり、上記のθが120°である場合の導電性材料の配置の例を図11に示す。この場合、上記の平面方向の複数の層の全てが図11(a)の配置となっていてもよく、また、1層目が図11(a)の配置であり、2層目が図11(b)の配置となるように、各層の配置が互いに異なっていてもよい。
 上記のθは、シートの厚さ方向に透過する電磁波の方向を固定した場合において、平面方向でシートが回転しても反射・吸収性能が平均化されることが好ましい観点から、通常2°以上であり、10°以上であることが好ましく、30°以上であることがより好ましく、90°以上であることがさらに好ましく、90°超であってもよく、また、180°以下であり、180°未満であってもよい。
 また、シートの厚さ方向に透過する電磁波の方向を固定した場合において、平面方向のシートの特定回転角度において、反射・吸収性能が向上することが好ましい観点からは、前記複数の層の各層は、独立して、上記特定領域Aに代替して、下記(条件5)を満たす特定領域Bを有することが好ましい。
(条件5)前記特定領域Bにおけるシートの厚さ方向上部から見た全ての導電性材料の略C形状の開口方向が同一(略同一も含む。)である。
 この特定領域Bは、各層中の導電性材料が図10(a)に示す配置となる領域である。
 前記複数の層の各層が独立して、(条件5)を満たす態様の場合、上記の平面方向の複数の層に含まれる全ての導電性材料の略C形状の開口方向が同一(略同一も含む。)であってもよく、また、1層目における導電性材料の略C形状の開口方向と2層目における導電性材料の略C形状の開口方向とが互いに異なるように、各層の配置が互いに異なっていてもよい。
 なお、上記の(条件1)、(条件2)、(条件3A)、(条件3B)、(条件4A)、及び(条件4B)の態様において、仮にθを360°とすると、(条件5)の態様となる。
 導電性材料積層部が等間隔に配置される場合のピッチ幅(隣接する導電性材料積層部の中心間の距離)は特段制限されないが、略C形状の密な部分では電磁波の反射性が上がることにより吸収性能が悪くなる観点から、通常50μm以上であり、100μm以上であることが好ましく、150μm以上であることがより好ましく、200μm以上であることがさらに好ましく、また、略C形状の粗な部分において電磁波の透過性が上がることにより吸収性能が悪くなる観点から、通常5000μm以下であり、4000μm以下であることが好ましく、3000μm以下であることがより好ましく、2000μm以下であることがさらに好ましい。
 シートの平面方向に、一定の方向に等間隔で、かつ、該一定の方向と直角をなす方向に等間隔で配置される場合、上記のピッチ幅の条件は、一定の方向のみで満たされてもよく、一定の方向及び該一定の方向と直角をなす方向の両方で満たされてもよいが、略C形状の粗密のバラツキにより、粗な部分では電磁波の透過性が上がることにより吸収性能が悪くなる観点から、両方で満たされることが好ましい。
 シートは、シートの厚さ方向に透過する電磁波の方向を固定した場合において、平面方向でシートが回転しなくても反射・吸収性能が平均化されることが好ましい観点から、図12に示すように、導電性材料積層部として、導電性材料積層部の1つを構成する導電性材料のシートの厚さ方向上部から見た略C形状の開口方向が、少なくとも一部で互いに異なる特定導電性材料積層部を少なくとも含むことが好ましい。
 さらに、シートは、該シートに対して一方の面の方向から電磁波が入射した場合に得られる効果と、もう一方の面の方向から電磁波が入射した場合に得られる効果との差異をできるだけ減少させることができる、つまり、表面と裏面を考慮することなくシートを使用しやすくなる観点から、図12に示すように、特定導電性材料積層部として、特定導電性材料積層部の1つを構成する導電性材料のうち、シートの最上面側と最下面側に配置される2つの導電性材料の略C形状の開口方向が同一(略同一も含む。)である特定導電性材料積層部を少なくとも含むことが好ましい。
 さらに、シートは、シートの厚さ方向に透過する電磁波の方向を固定した場合において、厚み方向に略C形状が回転しなくても反射・吸収性能が平均化されることが好ましい観点から、前記特定導電性材料積層部として、下記(条件6)を満たす特定導電性材料積層部を少なくとも含むことが好ましい。
(条件6)前記特定導電性材料積層部は、
前記シートの最上面側と最下面側に配置される2つの導電性材料のうちのいずれか1つの導電性材料を基準の導電性材料とし、かつ、シートの厚さ方向上部から見た導電性材料の略C形状の開口方向と前記基準の導電性材料の略C形状の開口方向とのなす角度をθとした場合において、前記特定導電性材料積層部に含まれる前記基準の導電性材料以外の導電性材料の略C形状の開口方向がmθで表され;前記mは自然数であり;前記θは0°<θ<360°を満たし、その公差がθ/2未満である。
 さらに、設計上および製造上の製造のし易さの観点から、前記特定導電性材料積層部は、前記mが下記(条件7)を満たすd以下の各自然数であり、略C形状の開口方向がmθを満たす導電性材料をk個(kは自然数)ずつ有することが好ましい。
(条件7)前記dは、「(360°/θ)=d(dは1を除く自然数)」を満たす。
 上記の(条件7)が満たされる場合、前記特定導電性材料積層部は、前記基準の導電性材料と、d×k個の導電性材料とから構成されていてもよい。例えば、後述する実施例における実施例1では、基準の導電性材料と、3×5(d=3、k=5)=15個の導電性材料との合計16個の導電性材料から構成されている。
 図12は、上記の(条件6)及び(条件7)が満たされる態様であり、上記のθが120°であり、k=1である場合の導電性材料の配置の例である。つまり、図12の最上部又は最下部に配置される2つの導電性材料のうちのいずれか一つの導電性材料が基準の導電性材料であり、その他の導電性材料が、略C形状の開口方向がmθ(θ=120°)である導電性材料である。
 上記のθは、上記の条件6を満たせば特段制限されないが、シートの厚さ方向に透過する電磁波の方向を固定した場合において、厚み方向に略C形状が回転しなくても反射・吸収性能が平均化されることが好ましい観点から、通常2°以上であり、10°以上であることが好ましく、30°以上であることがより好ましく、90°以上であることがさらに好ましく、90°超であってもよく、また、180°以下であり、180°未満であってもよい。
 上記のkは、自然数であれば特段制限されないが、シート厚さが厚い方が反射・吸収性能が向上し、有る程度の厚さで性能が頭打ちする観点から、通常1以上であり、2以上であることが好ましく、3以上であることがより好ましく、4以上であることがさらに好ましく、また、通常32以下であり、16以下であることが好ましく、12以下であることがより好ましく、8以下であることがさらに好ましい。
 なお、「略C形状の開口方向がmθを満たす導電性材料をk個ずつ有する」について、(1)一つの導電性積層を構成する導電性材料が、端部から順に、0°、120°、240°、0°、120°、240°、及び0°の開口方向を有する態様(略C形状の開口方向が回転するように配置される態様)において得られる効果と、(2)0°、0°、120°、120°、240°、240°、及び0°の開口方向を有する態様において得られる効果とを比較すると、(2)の方がシールド性能が優れ、反射率が小さく、吸収率が大きくなる傾向がある。
 また、シートの厚さ方向に透過する電磁波の方向を固定した場合、前記導電性材料積層部は、前記シートの厚さ方向上部から見た導電性材料積層部の1つを構成する全ての導電性材料の略C形状の開口方向が同一(略同一も含む。)である電性材料積層部を少なくとも含んでいてもよい。
 導電性材料積層部が複数存在する場合、各導電性材料積層部の略C形状の開口方向は同一(略同一も含む。)であってもよく、また、互いに異なっていてもよい。
 なお、上記の(条件6)及び(条件7)の態様において、仮にθ1を360°とすると、略C形状の開口方向が同一(略同一も含む。)である電性材料積層部の態様となる。
 シートは、図13に示すように、導電性材料積層部として、導電性材料積層部を構成する各導電性材料2と、厚さ方向に隣接して配置される他の導電性材料2とを接続する柱形状の導電性材料4とを含む導電性材料積層部3を少なくとも含んでいてもよい。柱形状の導電性材料は、好ましくは、各導電性材料2の端部同士を接続することが好ましい。なお、図13では、略C形状の導電性材料の厚さの描写を省略している。
 柱形状の導電性材料4を有する場合、空間部が無く、3次元の疑似的なコイル形状、つまりヘリカルアンテナとなり、反射が増大するため、電磁波の反射性と吸収性の効果を比較した場合、反射性の効果の方が大きくなる。
 一方で、柱形状の導電性材料4を有さない場合、空間部が重複することで、2層目以降の略C形状の金属で反射された電磁波を手前の層で吸収する現象を繰り返すため、電磁波の反射性と吸収性の効果を比較した場合、吸収性の効果の方が大きくなる。
 柱形状の導電性材料4の有無に関わらず、電磁波のシールドを行うことは可能であるが、柱形状の導電性材料4を有しない態様の方が電磁波のシールド性を向上させることができる。柱形状の導電性材料4を有しない態様は、導電性材料積層部を構成する導電性材料が、互いに電気的に連続していない態様と表すことができる。
 柱形状は、特段制限されず、円柱形状であっても、三角柱形状や四角柱形状等の多角柱形状であってもよいが、略C形状の全長が長い多角柱形状では、電解の往復運動距離が長くなりLC共振が効率的となる一方で、角の部位での効果の損失が大きくなってしまうため、円柱形状であることが好ましい。
 柱形状の導電性材料の材料は、上述した略C形状の材料を同様に適用することができ、柱形状の導電性材料の材料と略C形状の材料とは同じ材料であっても、異なる材料であってもよいが、製造コスト低減の観点から、同じ材料であることが好ましい。
 導電性材料の体積抵抗率は、特段制限されず、微小な電流が流れる程度の値であれば特段制限されない。本発明者が検討を行ったところ、体積抵抗率1.55μΩcm(0℃)の銅と、体積抵抗率1.47μΩcm(0℃)の銀と、体積抵抗率4.9μΩcm(0℃)のタングステンとで共振周波数はほとんど変化しなかったことを確認できた。上記の微小な電量が流れる程度の値としては、例えば、カーボン(グラファイト)を用いた場合の体積抵抗率3352.8μΩcm(20℃)が挙げられる。
 導電性材料の熱伝導率は、特段制限されない。本発明者が検討を行ったところ、熱伝導率394W/m・Kの銅と、熱伝導率427W/m・Kの銀と、熱伝導率174.3W/m・Kのタングステンとで共振周波数はほとんど変化しなかったことを確認できた。
[ベース材]
 シートにおいて、上記の導電性材料が含まれるベース材は、リジッドな材料であってもよく、フレキシブルな材料であってもよく、ベース材となる材料(以下、「ベース材」とも称する。)は絶縁性材料(非導電性材料)であれば特段制限されず、例えば、樹脂、セルロース、セラミックス、又はゴム等が挙げられるが、エレクトロニクス機器への用途としては、高耐熱性、耐候性(水分、腐食性ガスの遮蔽性)、及びフレキシブル性の観点から、樹脂が好ましい。絶縁性材料の具体的態様を以下に示す。
(1)無機固体絶縁材料
 絶縁性材料として、電気・電力用途としては、マイカ(雲母(うんも))、磁器(セラミックス)、又はガラスなどの無機固体絶縁材料を用いることができる。マイカは絶縁性、及び耐熱性が非常に優れる天然産の結晶で、白マイカや金マイカが、板、シート、又はテープなどのマイカ製品に加工され、コイル、その他の絶縁に広く用いられている。磁器は鉱物質粉末を成形して高温で焼成したもので、碍子(がいし)、碍管に用いられる長石磁器、もしくは高周波用絶縁物、又は半導体用パッケージなどに用いられるステアタイト磁器、もしくはアルミナ磁器などが挙げられる。ガラスは硬くもろいが、透明で耐熱性、及び絶縁性が優れる材料で、ソーダ石灰ガラス、鉛ガラス、ホウケイ酸ガラス、又はシリカガラス(石英ガラス)などが電球、又はブラウン管などに用いられる。溶融ガラスを引き伸ばし、細い繊維にしたガラス繊維は、ワニスガラスクロス、積層板の基材、又は電線の被覆などに用いられている。なお、半導体素子の内部の絶縁には二酸化ケイ素SiO(シリカ)などの無機固体絶縁体が用いられている。
(2)有機繊維質材料
 絶縁性材料の種類として、紙、綿糸、絹、ポリエステル、又はポリアミド(ナイロン)などの合成繊維等の有機繊維質材料を用いることができる。紙は古くから絶縁油などに含浸させて、変圧器、ケーブル、又はコンデンサーの絶縁に使用されている。
(3)樹脂系材料
 絶縁性材料に用い得る天然樹脂としては、セラック、又はロジンなどを用いることができる。また、絶縁性材料に用い得る合成樹脂系材料としては、ポリエチレンテレフタレート、ポリエチレン、ポリ塩化ビニル、ポリスチレン、もしくはポリエステルなどの熱可塑性樹脂、又はフェノール樹脂、メラミン樹脂、エポキシ樹脂、もしくはシリコーン樹脂などの熱硬化性樹脂とがある。
(4)ゴム系材料
 絶縁性材料として、天然ゴム、ブチルゴム、エチレンプロピレンゴム、又はシリコーンゴム等のゴム系材料を用いることができる。
(5)塗料系材料
 絶縁性材料として、天然樹脂または合成樹脂などを溶剤に溶かして得られるコイルワニス、又はエナメルワニス等の塗料系材料を用いることができる。
 絶縁性材料として樹脂を用いる場合、熱硬化性樹脂であっても、熱可塑性樹脂であってもよいが、電磁波シールドシートの使用用途によっては高温となることもあり得るため、熱硬化性樹脂であることが好ましい。熱硬化性樹脂としては、熱硬化性樹脂や光硬化性樹脂が挙げられ、さらに、熱硬化性樹脂としては、熱硬化性アクリル系樹脂、不飽和ポリエステル系樹脂、エポキシ樹脂、メラミン系樹脂、フェノール系樹脂、シリコーン系樹脂、ポリイミド系樹脂、又はウレタン系樹脂等が挙げられ、光硬化性樹脂としては、光硬化性エポキシ、光硬化性ポリエステル、光硬化性ビニル系化合物、光硬化性エポキシ(メタ)アクリレート、又は光硬化性ウレタン(メタ)アクリレート等が挙げられる。これらの中でも、不飽和ポリエステル系樹脂、光硬化性ポリエステル、エポキシ樹脂、又は光硬化性エポキシが好ましく、特に耐熱性の観点から、エポキシ樹脂、又は光硬化性エポキシが好ましい。これらの樹脂は、1種類を単独で用いてもよいが、2種類以上を任意の種類及び比率で併用してもよい。
 シート中のベース材の含有量は、特段制限されず本開示の発明の効果が得られる範囲で設定でき、30重量%以上であってもよく、40重量%以上であってもよく、50重量%以上であってもよく、60重量%以上であってもよく、70重量%以上であってもよく、80重量%以上であってもよく、90重量%以上であってもよく、95重量%以上であってもよく、99重量%以上であってもよく、99.9重量%以上であってもよく、99.95重量%以上であってもよく、また、99.99重量%以下であってもよく、99.9重量%以下であってもよく、99重量%以下であってもよく、95重量%以下であってもよく、90重量%以下であってもよく、80重量%以下であってもよく、70重量%以下であってもよく、60重量%以下であってもよく、50重量%以下であってもよい。
 導電性材料は、ベース材に完全に埋没している態様であることが好ましいが、完全に埋没していない(一部のみが埋没している)、つまり、導電性材料の一部が外気に晒されている態様であってもよい。
 樹脂の屈折率は、特段制限されないが、電磁波シールド性の向上の観点から、通常1.35~1.76であり、好ましくは、エポキシ樹脂の1.55~1.61である。屈折率は公知の方法により測定することができる。
[その他の材料]
 シートは、上記の導電性材料、及び任意のベース材以外の材料(その他の材料)を有していてもよく、例えば、導電性材料以外の無機フィラー等が挙げられる。例えば、無機フィラーの添加によりシートの線膨張係数を調整することができ、これにより、シートの反りや、たわみ、うねり等を防止することが容易となる。
 シート中の導電性材料以外の無機フィラーの含有量は特段制限されず、本実施形態の効果が得られる範囲で任意に含有されてよい。
[シートの形態]
 シートの形状は、シート形状であれば特段制限されず、該シートを設置する場所に応じて適宜変更できる。シートは、単層のシートであっても、積層のシートであってもよい。積層のシートとする場合、本実施形態のシートを複数積層する態様であっても、種々の機能を付与するために他のシートを積層する態様であってもよい。
 シートの厚さは、特段制限されず、近年の携帯電話、スマートフォン、又はタブレットなどに代表される電子機器の小型、軽量、及び薄型化の観点から、通常10μm以上であり、20μm以上であることが好ましく、50μm以上であることがより好ましく、100μm以上であることがさらに好ましく、また、通常20mm以下であり、10mm以下であることが好ましく、5mm以下であることがより好ましく、3mm以下であることがさらに好ましい。
 シートの形状は、平面であるが、近似的に平面とみなすことができる範囲で凹凸形状を有していても、一部が湾曲していてもよい。また、表面から観測されるシートの形状は、円形状でも、三角形状や四角形状等の多角形状であってもよい。
[シートの特性]
 本開示では、電磁波シールド性の評価は、以下の方法によりパワー透過率T(ω)を評価して行う。この評価方法は、透過率測定実験において用いたテラヘルツ時間領域分光法に基づく方法である。
 実験装置の模式図を図14に示す。まず、フェムト秒レーザーからの光がビームスプリッターによってポンプ光とプローブ光に分けられる。ポンプ光はテラヘルツ波を励起させる光として働く。プローブ光はテラヘルツ波を計測するタイミングを合わせる。遅延ステージを移動させることによってこのプローブ光の光路長を変化させて検出のタイミングをずらす。テラヘルツ波がサンプルを通過したあとの電場Esam(t)と、サンプルがない空気中を通過したあとの電場Eref(t)とを検出する。これらの値を用いて複素屈折率や複素誘電率、透過率、吸収係数、反射係数、パワースペクトルなどを導出する。
 上記の測定から得られたデータより、フーリエ変換によって透過率の導出を行う。得られた電場波形Esam(t)、Eref(t)をそれぞれフーリエ変換するとEsam(ω)、Eref(ω)となる。パワー透過率T(ω)はこれらを用いて下記の式(A)で表される。
Figure JPOXMLDOC01-appb-M000001
 上記の透過率は、テラヘルツ分光システム(例えば、アドバンテスト社製のTAS7500TSH)により測定することができる。
 上記パワー透過率T(ω)より下記式(B)よりシールド性能L(dB)を求めることができる。
L=10×Log10(T(ω)/100)   (B)
 シールド性能Lは、特段制限されないが、通常-2dB以下、好ましくは-5dB以下、更に好ましくは-10dB以下、また、コンピュータ等の電子機器の誤作動を防止する観点から、-20dB以下が好ましく、-30dB以下であることがより好ましく、-40dB以下であることがさらに好ましく、-60db以下であることが特に好ましく、-80db以下であることがことさら特に好ましく、また、下限を設定する必要はないが、通常-90dB以上である。なお、電磁波のパワー透過率T(ω)は、電磁波が1/10になった場合に-20dB(シールド率:90%)、1/100になった場合に-40dB(シールド率:99%)、1/1000になった場合に-60dB(シールド率:99.9%)、1/10000になった場合に-80dB(シールド率:99.99%)と表される。
<シートの製造方法>
 以下、シートの製造方法に係る実施形態を説明するが、上述のシートの製造方法はこれらの製造方法に限定されない。また、それぞれの実施形態で相互に適用することができる製造条件については、相互に適用することができる。また、適用可能な範囲で、上記のシートの条件を以下の製造方法の条件に適用することができる。
<第1の態様>
 本開示の別の実施形態であるシートの製造方法(本実施形態の説明においては、単に「シート」とも称する)の第1の態様は、シートの製造方法であって、
 ベース材と、略C形状の導電性材料とを有する層形成シートを複数作製する工程であり、前記導電性材料が、前記導電性材料の略C形状の周方向と前記層形成シートの平面方向とが略平行となるように配置される層形成シート作製工程、及び
 前記複数の導電性材料の少なくとも一部が、互いに接触しないように前記シートの厚さ方向に複数配置された導電性材料積層部が形成されるように、前記複数の層形成シートを積層する積層工程、
 を含む、シートの製造方法である。
 シートが上述した柱形状の導電性材料を有する場合のシート製造方法は、シートの製造方法であって、
 ベース材と、略C形状の導電性材料と、該略C形状の導電性材料(好ましくは、該略C形状の導電性材料の端部)を接続する柱形状の導電性材料とを有する層形成シートを複数作製する工程であり、前記導電性材料が、前記導電性材料の略C形状の周方向と前記層形成シートの平面方向とが略平行となるように配置される層形成シート作製工程、及び
 前記複数の導電性材料の少なくとも一部が、互いに接触しないように前記シートの厚さ方向に複数配置された導電性材料積層部が形成されるように、かつ、一方のシートにおける略C形状の導電性材料(好ましくは、該略C形状の導電性材料の端部)と、もう一方のシートにおける柱形状の導電性材料とを接触させるように、前記複数の層形成シートを積層する積層工程、
 を含む、シートの製造方法である。
 シートの製造方法は、上記の層形成シート作製工程、及び積層工程を有するが、さらに、他の工程を有していてもよい。この他の工程も含め、以下、シートの製造方法を詳細に説明するが、この説明では、柱形状の導電性材料を有さないシートの製造方法を説明する。この詳細な説明は、適用可能な範囲で柱形状の導電性材料を有するシートの製造方法にも適用することができる。
[組成物作製工程]
 第1の態様に係るシートの製造方法は、上述したベース材(例えば樹脂)やその他の材料を溶剤に溶解させ、混合させた組成物を製造する組成物作製工程を有していてもよい。混合する方法は特段制限されず、公知の方法を適用することができる。
 溶剤の種類は、上記のベース材やその他の材料を溶解させることができれば特段制限されない。なお、溶剤を用いなくとも成形可能であれば、溶剤を用いなくともよい。
 また、使用するベース材の種類に応じて硬化剤を加えてもよく、その種類はベース材に応じて公知のものを適宜用い得る。組成物中の硬化剤の含有量は、例えば、0.05~15重量%とすることができる。
 また、使用するベース材の種類に応じて、重合開始剤を加えてもよく、例えば、熱重合開始剤としては、ベンゾイルパーオキシドなどの過酸化物等の熱ラジカル発生剤を用いることができ、光重合開始剤としては、光ラジカル発生剤、光カチオン発生剤、又は光アニオン発生剤等を用いることができる。
[層形成シート作製工程]
 第1の態様に係るシートの製造方法は、ベース材と、略C形状の導電性材料とを有する層形成シートを複数作製する工程であり、前記導電性材料が、前記導電性材料の略C形状の周方向と前記層形成シートの平面方向とが略平行となるように配置される層形成シート作製工程を有する。このような層形成シートを作製する方法は特段制限されないが、例えば、略C形状の導電性材料が配置される金型を準備し、該金型に上記の組成物作製工程で得られた組成物を流し込み、組成物を硬化させ、図15に示すような、組成物の硬化物21(ベース材料21)、及び略C形状の導電性材料2を有する層形成シート20を得る方法が挙げられる。組成物を硬化させる方法は、熱、又は紫外線等の光等を利用する方法が挙げられる。
 また、一般的なプリント配線板の製造に利用される方法を用いることができる。具体的には、上記の組成物を硬化させることにより硬化シートを作製した後、該硬化シートの片面に導電性材料箔を形成させ、さらに、エッチング後の導電性材料箔が略C形状で残るようなパターンで感光性レジストをコーティング又はラミネートした後、エッチングを行うことにより硬化シート上に略C形状の導電性材料を積層させて層形成シートを得る方法が挙げられる。エッチングを利用した硬化シートへの略C形状の導電性材料の積層方法としては、上記の感光性レジストを用いた方法以外にも、直接略C形状を形成させるインクジェット印刷やスクリーン印刷により行ってもよい。
 なお、層形成シートにおいける略C形状の導電性材料の配置は、適用可能な範囲で、上述したシートにおける略C形状の導電性材料の平面方向の配置の条件を同様に適用することができる。
 柱形状の導電性材料を有するシートを製造する場合には、得られた層形成シートに含まれる略C形状の導電性材料の端部にドリル又はレーザー等を用いて穴(ビア)を空けた後、この穴に導電性材料の溶融物等を流し込み固化させる工程を含んでいてもよい。この場合には、後述する積層工程において、柱形状の導電性材料が、隣接して積層される他のシート中の略C形状の導電性材料の端部に配置されるように、複数の層形成シートを積層させる。
[積層工程]
 シートの製造方法は、前記複数の導電性材料の少なくとも一部が、互いに接触しないように前記シートの厚さ方向に複数配置された導電性材料積層部が形成されるように、前記複数の層形成シートを積層する積層工程を有する。
 積層する方法は特段制限されず、例えば、糊等の材料を用いて、図16に示すように、一方のシートにおける略C形状の導電性材料と、もう一方のシートにおける略C形状の導電性材料とを、シートの厚さ方向に揃えるように複数の層形成シートを積層する方法が挙げられる。
<第2の態様>
 本開示の別の実施形態であるシートの製造方法(本実施形態の説明においては、単に「シート」とも称する)の第2の態様は、シートの製造方法であって、
 ベース材1を含むベース材層1の表面に略C形状の導電性材料1を形成させて層形成シートを作製する工程であり、前記導電性材料が、前記導電性材料の略C形状の周方向と前記層形成シートの平面方向とが略平行となるように配置される層形成シート作製工程、及び
 前記導電性材料の少なくとも一部が、互いに接触しないように前記シートの厚さ方向に複数配置された導電性材料積層部が形成されるように、かつ、前記層形成シートの前記導電性材料が存する側の表面に、ベース材2を含むベース材層2、及び(前記ベース材層2の表面に)略C形状の導電性材料2を形成させる積層工程、
 を含む、シートの製造方法である。
 第2の態様に係るシートの製造方法は、上記の層形成シート作製工程、及び積層工程を有するが、さらに、他の工程を有していてもよい。この他の工程も含め、以下、シートの製造方法を詳細に説明するが、この説明では、柱形状の導電性材料を有さないシートの製造方法を説明する。この詳細な説明は、適用可能な範囲で柱形状の導電性材料を有するシートの製造方法にも適用することができる。
[組成物作製工程]
 第2の態様に係るシートの製造方法は、上述したベース材(例えば樹脂)やその他の材料を溶剤に溶解させ、混合させた組成物を製造する組成物作製工程を有していてもよい。この組成物作製工程は、上述した第1の態様における組成物作製工程を同様に適用することができる。
[層形成シート作製工程]
 第2の態様に係るシートの製造方法は、ベース材1を含むベース材層1の表面に略C形状の導電性材料1を形成させて層形成シートを作製する工程であり、前記導電性材料が、前記導電性材料の略C形状の周方向と前記層形成シートの平面方向とが略平行となるように配置される層形成シート作製工程を有する。この層形成シート作製工程は、上述した第1の態様における層形成シート作製工程と同様の方法により実施することができる。
[積層工程]
 第1の態様に係るシートの製造方法は、図16に示すシートとなるように、導電性材料の少なくとも一部が、互いに接触しないように前記シートの厚さ方向に複数配置された導電性材料積層部が形成されるように、かつ、層形成シートの導電性材料が存する側の表面に、ベース材2を有するベース材層2、及び(前記ベース材層2の表面に)略C形状の導電性材料2を形成させる積層工程を有する。
 層形成シートの導電性材料が存する側の表面に、ベース材2を含むベース材層2を形成させる方法は特段制限されず、ベース材2を溶媒に溶解させた溶液を層形成シートの表面に塗布した後に溶媒を除去する方法、溶融したベース材2を含む液体を層形成シートの表面に塗布した後に固化させる方法、又はベース材2を含むシートを別途で作製し、プレス等を用いてこのシートを層形成シートの表面に圧着させる方法等が挙げられる。
 ベース材層2の表面に略C形状の導電性材料2を形成させる方法は特段制限されず、上述した第1の態様におけるプリント配線板の製造の方法を利用することができる。この場合、エッチングする前の薄膜導電性材料箔と上記のベース材層2とを、プレス等を用いて併せて層形成シートに圧着させてもよい。
 また、各層間での接着が難しい場合には、接着する2層のいずれか一方の層に対して、接着性を付与する処理、例えば、黒化処理、ブラウン処理、又は接着剤塗布処理を実施してもよい。
 上記のベース材2を有するベース材層2、及び(前記ベース材層2の表面に)略C形状の導電性材料2を形成させる処理の回数は特段制限されず、1回実施して最終的に得られるシートを2層としてもよいが、複数回実施して最終的に得られるシートを3層以上としてもよい。また、この処理は、層形成シートの片面のみに実施してもよく、また、製造効率化の観点から、両面に実施してもよい。
 上記の方法で積層された層は、導電性材料及びベース材を含む層が繰り返された層とみなし、各層を層形成シートとみなすことができる。
 また、柱形状の導電性材料を有するシートを製造する場合には、各層形成シートが形成されるごとに、層形成シートに含まれる略C形状の導電性材料の端部にドリル又はレーザー等を用いて穴(ビア)を空けた後、この穴に導電性材料の溶融物等を流し込み固化させる工程を含んでいてもよい。この場合には、柱形状の導電性材料が、隣接して積層される他のシート中の略C形状の導電性材料の端部に配置されるように、複数の層形成シートを積層させる。
<シートの用途>
 上述したシートの用途は特段制限されないが、電磁波シールドシートとして用いられることが好ましい。
 本願発明の別の実施形態は、上記の樹脂成形体を備える、
電子機器、ケーブル、スマートフォン、タブレット、スマートウォッチ、スマートセキュリティデバイス、監視デバイス、もしくはスマート家電等の電気通信機器;
コンピューター回路、無線送信機(スマートフォンを含む)、電気モーター、フラットパネルディスプレイ、もしくは液晶ディスプレイ(LCD)等の民生電子機器:
安全システム、モバイルメディア、通信、ワイヤレスヘッドセット、電池式、電気式、ハイブリッド式のパワートレイン、もしくは高電圧バッテリーシステム等の自動車用機器;スマートベッド、人工呼吸器、CTスキャンマシン、もしくは脈拍や血圧などの情報を取得して電子信号に変換する必要があるトランスデューサ等の医療機器;
航空機、車両、戦闘機材、武器、エラストマーガスケット、導電性塗料、もしくはEMIシールドディスプレイ等の航空宇宙機器又は防衛機器;
鉄道システム、大量輸送システム、高電圧接点スイッチングシステム、信号伝達システム、もしくは制御システム等のシステム;又は
高出力サージに基づく電磁爆弾、もしくは電子爆弾等のデジタル兵器;
ケーブル用の貼付材:
サーバールーム等の建物の壁紙:
人体を保護するためのエプロン等の衣類又は
その他の機器(上記の対象以外で樹脂成形体を備え得る機器);
等である。
 上記の各実施形態における樹脂成形体の使用態様は特段制限されず、樹脂成形体を一部材として備える態様であればよい。また、各実施形態は、特に樹脂成形体が電磁波シールドシートの用途で好ましく用いられる。
該工程は、上記の第1の製造方法における樹脂組成物作製工程の条件を同様に適用することができる。
 特に電磁波制御シート(電磁波シールドシート)として使用する場合、電磁波を制御(シールド)する用途であれば、任意に使用でき、例えば、電磁波により誤作動が生じ得る電子機器を囲むように電磁波制御シートを設置することにより、該誤作動の抑制等を可能とする。特に、上記の電磁波制御シートは、従来の電磁波制御シートと比較して高周波帯域の電磁波の遮蔽に優れるため、高速化、大容量化、及び低遅延化等を目的に高周波化、特に100GHz以上といった高い周波数帯への展開が進められる携帯電話やスマートフォン等の通信機器に由来する電磁波から遮蔽することができる点で、従来の電磁波制御シートよりも幅広い分野に適用することができる。なお、上記のシートでは、外部から電磁波が届く方向とシートの平面が垂直であるとき、特に大きな電磁波制御効果が得られる。
 以下、実施例を示して本開示について更に具体的に説明する。ただし、本開示は以下の実施例に限定して解釈されるものではない。
 なお、本実施例において、θ、θ’、又はθの角度をつけて複数の導電性材料を配置したものが存在するが、いずれの実施例においても、この配置の際、θの公差はθ/20、θ’の公差はθ’/20、θの公差はθ/20であった。
<実験1>
[実施例A1(X方向、Y方向:回転なし、厚さ方向回転あり)]
 表面が縦(X方向と称する。)40mm、横(Y方向と称し、X方向に直角をなす方向である。)40mmの四角形状であり、厚さが表1に示す厚さであり、かつ、絶縁性のフィラーを含有する四角形状のエポキシ樹脂のフィルム(絶縁層)を準備した。このフィラーは絶縁性であるため、後述するシールド性能等の特性の観点からは、実質的にエポキシ樹脂と同視して扱うことができる。
 その後、該フィルムの両面に、表1に示すHcの厚さを有する銅箔を熱圧着させた。その後、最終的な略C形状の導電性材料が縦方向(上記のX方向と同様の方向)と横方向(上記のY方向と同様の方向)のいずれにおいても等間隔で並んで全体が四角形状の配置となるように、かつ、最終的に得られるシートの導電性材料の配置の条件が導電性材料の配置の条件を満たすように、フィルム両面の銅箔の層の上に感光性レジストをラミネートし、露光装置を用いて露光によりエッチングをした後、感光性レジストを剥離して得られる層形成シートを複数作製した。シート中に存在する導電性材料の数は、片面の銅箔1枚当たり78個(X方向)×78個(Y方向)とした。導電性材料の配置の具体的な条件を表1に示す。表1における整列ピッチとは、X方向に並ぶ導電性材料における隣接する導電性材料の中心間の距離であり、かつ、Y方向に並ぶ導電性材料における隣接する導電性材料の中心間の距離である(隣接する導電性材料の中心間の距離は、X方向とY方向とで同じとした)。なお、略C形状の導電性材料が並んで形成される四角形状と、エポキシ樹脂のフィルムの中心とが一致するように、略C形状の導電性材料を配置した。
 さらに、以下の方法を用いて、各層形成シート中の略C形状の導電性材料により導電性材料積層部が形成されるようにして層形成シートが積層されたシートを作製した。
 得られた層形成シートの両面に対して、以下の処理を行った。
 得られた層形成シートの表面に対して、一般的な黒化処理(脱脂し、ソフトエッチングし、酸で洗浄し、黒化処理する処理)を実施した。その後、溶着式レイアップ機を用いて、層形成シート、上記のエポキシ樹脂と同様の樹脂からなる層、及び銅箔の順番で積層されるようにこれらの部材を圧着させた。その後、上記の層形成シートの作製と同様の方法で、露光による銅箔のエッチングを行い、略C形状の導電性材料を形成させた。さらに、この黒化処理から露光による銅箔のエッチングまでの処理を、最終的な導電性材料の層数が16層となるまで繰り返し(つまり、最初の層形成シートの両面に対して、それぞれ、黒化処理から露光による銅箔のエッチングまでの処理を7回繰り返し、シートを製造した。このシートにおいては、1つの導電性材料積層部を構成する各導電性材料の配置は、シートの厚さ方向にずれが生じていた。ただし、このずれについて、図5に示す導電性材料A、B、及びCの配置のように、最端配置導電性材料以外の導電性材料の配置は、シートの側面側から見てシートの厚さ方向に最端配置導電性材料と重複する部分を有するものであり、また、図7に示す導電性材料A、B、及びCの配置のように、最端配置導電性材料以外の導電性材料の配置は、シートの側面側から見てシートの厚さ方向に最端配置導電性材料と空間部が重複する部分を有するものであった。また、導電性材料の周方向の面において取り得る最大の線分の長さDoを1として、シートの厚さ方向上部から見た場合において、1つの導電性材料積層部を構成する全ての導電性材料が直径2.0の長さの仮想的な円の内側に入るように配置させた。
(導電性材料の配置の条件)
・シート平面方向の導電性材料の配置の条件
 前記複数の各層形成シートが、独立して、下記(条件5a1)を満たす。
(条件5a1)シートの厚さ方向上部から見た全ての導電性材料の略C形状の開口方向が同一である。
・シート厚さ方向の導電性材料の配置の条件
 シートに含まれる全ての導電性材料積層部が、下記(条件6a)及び(条件7a)を満たす。
(条件6a1)前記導電性材料積層部は、
前記シートの最上面側と最下面側に配置される2つの導電性材料のうちのいずれか1つの導電性材料である基準の導電性材料を有し、さらに、シートの厚さ方向上部から見た導電性材料の略C形状の開口方向と該基準の導電性材料の略C形状の開口方向とのなす角度が120°(θ)とした場合において、下記(条件7a1)を満たすd以下の各自然数mについて、略C形状の開口方向がm×θを満たす導電性材料を5個ずつ有する。
(条件7a1)上記(条件6a1)におけるdは、「(360°/θ)=d(dは1を除く自然数)」を満たす。
 具体的に、θが120°であるため、dが3となり、mが1、2、3となるため、各導電性材料積層部について、基準の導電性材料から、基準の導電性材料とは反対側の導電性材料積層部の端部に位置する導電性材料までの各導電性材料の略C形状の開口方向が、0°(基準の導電性材料)、120°、240°、360°、120°、240°、360°、120°、240°、360°、120°、240°、360°、120°、240°、360°となるように各導電性材料を配置した。
[実施例A2(X方向、Y方向:回転なし、厚さ方向回転あり)]
 上記(条件6a1)における整列ピッチを表1に示すものに変更したこと以外は、実施例A1と同様の方法でシートを作製した。
[実施例A3(X方向、Y方向:回転なし、厚さ方向回転あり)]
 上記の(条件6a1)における整列ピッチを表1に示すものに変更したこと以外は、実施例A1と同様の方法でシートを作製した。
[実施例A4(X方向、Y方向:回転あり、厚さ方向回転あり)]
 導電性材料の配置の条件について、「前記複数の各層形成シートが、独立して、下記(条件5a1)を満たす」という条件を「前記複数の各層形成シートが、独立して、下記(条件1a4)及び(条件2a4)を満たす複数の特定領域Aのみから構成される」という条件に変更したこと以外は、実施例A3と同様の方法でシートを作製した。シート中に存在する特定領域Aの数は、3(X方向)×3(Y方向)とした。
(条件1a4)前記特定領域Aにおける前記X方向に形成される導電性材料の各列において、該各列の両端のうちのいずれか一方の端の導電性材料を基準として、もう一方の端の導電性材料に向かって、前記シートの厚さ方向上部から見た導電性材料の略C形状の開口方向と該基準の各導電性材料の略C形状の開口方向とのなす角度が120°(θ)ずつ増加されるように360°/θ個の導電性材料が配置される。
(条件2a4)前記特定領域Aにおける前記Y方向に形成される導電性材料の各列において、該各列の両端のうちのいずれか一方の端の導電性材料を基準の導電性材料として、もう一方の端の導電性材料に向かって、前記シートの厚さ方向上部から見た導電性材料の略C形状の開口方向と該基準の導電性材料の略C形状の開口方向とのなす角度が120°(θ’)ずつ増加されるように360°/θ’個の導電性材料が配置される。
[特性評価]
(電磁波シールド性)
 電磁波シールド性の評価は、テラヘルツ分光システム(アドバンテスト社製のTAS7500TSH)を用いてパワー透過率T(ω)を測定することにより行った。アパーチャは直径10mmのものを用いた。
 次いで、測定により得られたパワー透過率T(ω)から、下記式(B)に基づき電磁波シールド性能L(dB)を算出した。
L=10×Log10(T(ω)/100)   (B)
 さらに、上記のパワー透過率Tを100%とした場合において、この透過率から上記の装置により得られた反射率を減じた数値を吸収率として評価した。
 電磁波はシート平面への垂直入射であり、シートを平面上で回転させながら、各角度のデータ取得を実施した。実施例のうち、X方向Y方向の回転がない実施例A1~A3では、シート最表面(1層目)の導電性材料の略C形状の開環方向とY方向とが並行となり、電界(E)方向とX方向とが並行となる配置の角度0°と定義し、時計回りにシートを回転させた。また、実施例のうち、X方向Y方向の回転がある実施例A4では、前記特定領域Aの内、複数の略C形状の内のいずれか1つの開環方向とY方向とが並行となり、電界(E)方向とX方向とが並行となる配置の角度を0°と定義し、時計回りにシートを回転させた。本実施例では、これらの0°の基準の配置から30°、45°、及び90°で回転させた各時点で測定を行った。なお、後述する実施例B3及びB4では、0°、45°、及び90°でのみ測定を行った。これらの各角度における電磁波シールド性の評価で特に優れる電磁波シールド性が確認できた角度を「最大性能発揮角度」として評価した。
 上記の各特性の評価結果を表1及び図17~20に示す。
 表1の電磁波シールド性は、低周波数側のノイズ帯を除いた周波数の範囲で、シールド性能の向上を表すピークのうちの特に大きなピークにおける電磁波シールド性能の数値(ピークの最大値)を示し、さらに、表1の括弧書きで示されている周波数は、そのピークの最大値が観測された周波数を示す。反射率及び吸収率についても、このピークの最大値が観測された周波数における数値を採用した。なお、表1に示す電磁波シールド性能の数値は、最大性能発揮角度で測定されたものを記載しており、最大性能発揮角度が複数あるものについてはそれらのうちの一つの角度で測定されたものを記載している。また、この選定された最大性能発揮角度での測定において、低周波領域(0.1THz以下)のノイズ部分を除き、シールド性能の数値が最も小さくなった値を表1の電磁波シールド性能の欄に記載し、反射率の数値が最も大きくなった値を表1の反射率の欄に記載し、吸収率の数値が最も小さくなった値を表1の吸収率の欄に記載した。これらは後述する表2および3においても同様である。本実施例で採用しているテラヘルツ時間領域分光法では、0.1THz(100GHz)以下では、ノイズが発生し、特に0.05THz(50GHz)以下では激しいノイズが発生する。
 表1における各記号が表すパラメータを以下に示す。これらの表記は、後述する表2および3においても同様である。
・Do:導電性材料の周方向の面において取り得る最大の線分の長さの平均値
・P:導電性材料積層部のピッチ幅(隣接する導電性材料積層部の中心間の距離とも表され、X方向及びY方向ともに同じピッチ幅である。)
・W:導電性材料の周方向の面における略C形状の線幅の平均値
・Hc:導電性材料1つの厚さの平均値
・Hr:1枚の層形成シート中の絶縁層の厚さの平均値
・θc:導電性材料の略C形状の開口角度の平均値
・θ及びθ’:それぞれ、X方向及びY方向に形成される導電性材料の各列において、該各列の両端のうちのいずれか一方の端の導電性材料を基準として、もう一方の端の導電性材料に向かって、前記シートの厚さ方向上部から見た導電性材料の略C形状の開口方向と該基準の各導電性材料の略C形状の開口方向とのなす角度(表1中の「-」の表記は、各層形成シート中の略C形状の開口方向の向きが揃っていることを表す。)
・θ:各導電性材料積層部における、シートの厚さ方向上部から見た導電性材料の略C形状の開口方向と基準の導電性材料の略C形状の開口方向とのなす角度(表1中の「-」の表記は、各導電性材料積層部における略C形状の開口方向の向きが揃っていることを表す。)
Figure JPOXMLDOC01-appb-T000002
<実験2>
[実施例B1(X方向、Y方向:回転なし、厚さ方向回転なし)]
 導電性材料に係る各パラメータの値を表2に示すパラメータの値に変更し、かつ、導電性材料の配置の条件について、「シートに含まれる全ての導電性材料積層部が、下記(条件6a1)及び(条件7a1)を満たす。」という条件を「シートに含まれる全ての導電性材料積層部が、下記(条件8b1)を満たす。」という条件に変更したこと以外は、実施例A1と同様の方法でシートを作製した。
(条件8b1)前記シートの厚さ方向上部から見た導電性材料積層部の1つを構成する全ての導電性材料の略C形状の開口方向が同一である。
 また、導電性材料積層部に含まれる導電性材料の数を16とした。具体的に、各導電性材料積層部について、一方の端の導電性材料から、他方の端の導電性材料までの各導電性材料の略C形状の開口方向が、0°、0°、0°、0°、0°、0°、0°、0°、0°、0°、0°、0°、0°、0°、0°、0°となるように各導電性材料を配置した。
[実施例B2(X方向、Y方向:回転あり、厚さ方向回転あり)]
 導電性材料の配置の条件について、「前記複数の各層形成シートが、独立して、下記(条件5a1)を満たす」という条件を「前記複数の各層形成シートが、独立して、下記(条件1b2)及び(条件2b2)を満たす複数の特定領域Aのみから構成される」という条件に変更したこと、及び上記(条件8b1)を下記(条件6b2)及び(条件7b2)に変更したこと以外は、実施例B1と同様の方法でシートを作製した。シート中に存在する特定領域Aの数は、3(X方向)×3(Y方向)とした。
(条件1b2)前記特定領域Aにおける前記X方向に形成される導電性材料の各列において、該各列の両端のうちのいずれか一方の端の導電性材料を基準として、もう一方の端の導電性材料に向かって、前記シートの厚さ方向上部から見た導電性材料の略C形状の開口方向と該基準の各導電性材料の略C形状の開口方向とのなす角度が120°(θ)ずつ増加されるように360°/θ個の導電性材料が配置される。
(条件2b2)前記特定領域Aにおける前記Y方向に形成される導電性材料の各列において、該各列の両端のうちのいずれか一方の端の導電性材料を基準の導電性材料として、もう一方の端の導電性材料に向かって、前記シートの厚さ方向上部から見た導電性材料の略C形状の開口方向と該基準の導電性材料の略C形状の開口方向とのなす角度が120°(θ’)ずつ増加されるように360°/θ’個の導電性材料が配置される。
(条件6b2)前記導電性材料積層部は、
前記シートの最上面側と最下面側に配置される2つの導電性材料のうちのいずれか1つの導電性材料である基準の導電性材料を有し、さらに、シートの厚さ方向上部から見た導電性材料の略C形状の開口方向と該基準の導電性材料の略C形状の開口方向とのなす角度を120°(θ)とした場合において、下記(条件7b2)を満たすd以下の各自然数mについて、略C形状の開口方向がm×θを満たす導電性材料を5個ずつ有する。
(条件7b2)上記(条件6b2)におけるdは、「(360°/θ)=d(dは1を除く自然数)」を満たす。
 具体的に、各導電性材料積層部について、基準の導電性材料から、基準の導電性材料とは反対側の導電性材料積層部の端部に位置する導電性材料までの各導電性材料の略C形状の開口方向が、0°(基準の導電性材料)、120°、240°、360°、120°、240°、360°、120°、240°、360°、120°、240°、360°、120°、240°、360°となるように各導電性材料を配置した。
[実施例B3(X方向、Y方向:回転なし、厚さ方向回転あり)]
 表面が縦(X方向と称する。)40mm、横(Y方向と称し、X方向に直角をなす方向である。)40mmの四角形状であり、厚さが表2に示す厚さであり、かつ、絶縁性のフィラーを含有する四角形状のエポキシ樹脂のフィルムを準備した。このフィラーは絶縁性であるため、後述するシールド性能等の特性の観点からは、実質的にエポキシ樹脂と同視して扱うことができる。
 その後、インクジェットプリンタを用いて、該フィルムの両面に、表2に示すHcの厚さを有する銅箔を熱圧着させた。その後、最終的に得られる層形成シートにおける略C形状の端部端部を貫くようにドリルで穴(ビア)をあけ、穴に銅を充填させた。その後、最終的な略C形状の導電性材料が縦方向(上記のX方向と同様の方向)と横方向(上記のY方向と同様の方向)のいずれにおいても等間隔で並んで全体が四角形状の配置となるように、かつ、最終的に得られるシートの導電性材料の配置の条件が導電性材料の配置の条件を満たすように、フィルム両面の銅箔の層の上に感光性レジストをラミネートし、露光装置を用いて露光によりエッチングをした後、感光性レジストを剥離して得られる層形成シートを複数作製した。シート中に存在する導電性材料の数は、片面の銅箔1枚当たり78個(X方向)×78個(Y方向)とした。導電性材料の配置の具体的な条件を表2に示す。表2における整列ピッチとは、X方向に並ぶ導電性材料における隣接する導電性材料の中心間の距離であり、かつ、Y方向に並ぶ導電性材料における隣接する導電性材料の中心間の距離である(隣接する導電性材料の中心間の距離は、X方向とY方向とで同じとした)。なお、略C形状の導電性材料が並んで形成される四角形状と、エポキシ樹脂のフィルムの中心とが一致するように、略C形状の導電性材料を配置した。
 さらに、以下の方法を用いて、各層形成シート中の略C形状の導電性材料により導電性材料積層部が形成されるように、かつ、柱形状の導電性材料が、図13に示すように隣接して積層される他のシート中の略C形状の導電性材料の端部に配置されるようにして層形成シートが積層されたシートを作製した。
 得られた層形成シートの両面に対して、以下の処理を行った。
 得られた層形成シートの表面に対して、一般的な黒化処理(脱脂し、ソフトエッチングし、酸で洗浄し、黒化処理する処理)を実施した。その後、溶着式レイアップ機を用いて、層形成シート、上記のエポキシ樹脂と同様の樹脂からなる層、及び銅箔の順番で積層せれるようにこれらの部材を圧着させた。その後、積層前において最表面に存在している略C形状の端部と積層後において最表面に存在することとなる略C形状の端部とを貫くようにドリルで穴(ビア)をあけ、穴に銅を充填させる処理を行った。
 その後、上記の層形成シートの作製と同様の方法で、露光による銅箔のエッチングを行い、略C形状の導電性材料を形成させた。さらに、この黒化処理から穴あけ後の銅の充填までの処理を、最終的な導電性材料の層数が16層となるまで繰り返し(つまり、最初の層形成シートの両面に対して、それぞれ、黒化処理から露光による銅箔のエッチングまでの処理を7回繰り返し)、シートを製造した。なお、層形成シートが3層以上となった場合における穴あけは、穴あけの時点での直近で積層させた2層分の導電性材料の略C形状の端部を貫くようにして実施した。このシートにおいては、1つの導電性材料積層部を構成する各導電性材料の配置は、図4に示すように、シートの厚さ方向に揃っていた。
 導電性材料の配置については、上記(条件8b1)を下記(条件6b3)及び(条件7b3)に変更したこと以外は、実施例B1と同様の方法でシートを作製した。
(条件6b3)前記導電性材料積層部は、
前記シートの最上面側と最下面側に配置される2つの導電性材料のうちのいずれか1つの導電性材料である基準の導電性材料を有し、さらに、シートの厚さ方向上部から見た導電性材料の略C形状の開口方向と該基準の導電性材料の略C形状の開口方向とのなす角度を72°(θ)とした場合において、下記(条件7b3)を満たすd以下の各自然数mについて、略C形状の開口方向がm×θを満たす導電性材料を3個ずつ有する。
(条件7b3)上記(条件5B)におけるdは、「(360°/θ)=d(dは1を除く自然数)」を満たす。
 具体的に、各導電性材料積層部について、基準の導電性材料から、基準の導電性材料とは反対側の導電性材料積層部の端部に位置する導電性材料までの各導電性材料の略C形状の開口方向が、0°(基準の導電性材料)、72°、144°、216°、288°、360°、72°、144°、216°、288°、360°、72°、144°、216°、288°、360°となるように各導電性材料を配置した。
[実施例B4(X方向、Y方向:回転なし、厚さ方向回転あり)]
 上記(条件8b1)を下記(条件56b4)及び(条件7b4)に変更したこと以外は、実施例B1と同様の方法でシートを作製した。
(条件6b4)前記導電性材料積層部は、
前記シートの最上面側と最下面側に配置される2つの導電性材料のうちのいずれか1つの導電性材料である基準の導電性材料を有し、さらに、シートの厚さ方向上部から見た導電性材料の略C形状の開口方向と該基準の導電性材料の略C形状の開口方向とのなす角度を120°(θ)とした場合において、下記(条件6)を満たすd以下の各自然数mについて、略C形状の開口方向がm×θを満たす導電性材料を5個ずつ有する。
(条件7b4)上記(条件6b4)におけるdは、「(360°/θ)=d(dは1を除く自然数)」を満たす。
 具体的に、各導電性材料積層部について、基準の導電性材料から、基準の導電性材料とは反対側の導電性材料積層部の端部に位置する導電性材料までの各導電性材料の略C形状の開口方向が、0°(基準の導電性材料)、120°、240°、360°、120°、240°、360°、120°、240°、360°、120°、240°、360°、120°、240°、360°となるように各導電性材料を配置した。
[特性評価]
(電磁波シールド性)
 電磁波シールド性の評価は、上述した実施例A1に対して行った方法と同様の方法で評価を行った。各シートの特性の評価結果を表2及び図21~24に示す。
Figure JPOXMLDOC01-appb-T000003
 表1から、実施例A1~3に係るシートでは、シート回転角度の影響は受けるが、高い電磁波シールド性能を得ることができることが分かった。なお、実施例A1については、シート回転角度180°での実験も行い、最大性能発揮角度となることを本発明者は確認した。
 また、実施例A3に係るシートでは、シート回転角度が0°の場合に吸収率が高くなることが分かった。
 また、実施例A4に係るシートでは、シート回転角度の影響を受けず、電磁波シールド性能を得ることができるが、吸収率が高いことが分かった。
 表2から、略C形状の大きさを大きくしても、電磁波シールド性能を得ることができることが分かった。
 また、実施例B2に係るシートでは、実施例A4と同じような結果が得られることが分かった。
 また、実施例B3に係るシートでは、シート回転角度の影響を受けず、電磁波シールド性能を得ることができるが、吸収率が低いことが分かった。
 また、実施例B4に係るシートでは、シート回転角度の影響を受けず、電磁波シールド性能を得ることができるが、特にシート回転角度が30°である場合に高い吸収率を得ることができることが分かった。
<実験3>
[比較例1(導電性材料なし)]
 導電性材料を用いなかったこと以外は、実施例A1と同様の方法でシートを作製した。
 電磁波シールド性の評価は、上述した実施例A1に対して行った方法と同様の方法で評価を行った。シートの特性の評価結果を図25に示す。比較例1では、パワー透過率T(ω)および電磁波シールド性能L(dB)のみを評価した。本比較例では、電磁波をシート表面へ垂直入射させ、シートは回転させずに透過率の測定を行った。
 図25から、比較例1のシートでは、透過率が高く、シールド性能に劣ることが分かった。
<実験4>
[実施例C1(X方向、Y方向:回転あり、厚さ方向回転あり)]
 導電性材料に係る各パラメータの値を表3に示すパラメータの値に変更し、かつ、導電性材料の配置の条件について、「前記複数の各層形成シートが、独立して、下記(条件5a1)を満たす」という条件を「前記複数の各層形成シートが、独立して、下記(条件1c1)及び(条件2c1)を満たす複数の特定領域Aのみから構成される」という条件に変更したこと、「シートに含まれる全ての導電性材料積層部が、下記(条件6a1)及び(条件7a1)を満たす」という条件を「シートに含まれる全ての導電性材料積層部が、下記(条件5c1)及び(条件6c1)を満たす」という条件に変更したこと、及び1つの導電性材料積層部を構成する各導電性材料の配置について、図4に示すように、シートの厚さ方向に揃っていたこと以外は、実施例A1と同様の方法でシートを作製した。
(条件1c1)前記特定領域Aにおける前記X方向に形成される導電性材料の各列において、該各列の両端のうちのいずれか一方の端の導電性材料を基準として、もう一方の端の導電性材料に向かって、前記シートの厚さ方向上部から見た導電性材料の略C形状の開口方向と該基準の各導電性材料の略C形状の開口方向とのなす角度が120°(θ)ずつ増加されるように360°/θ個の導電性材料が配置される。
(条件2c1)前記特定領域Aにおける前記Y方向に形成される導電性材料の各列において、該各列の両端のうちのいずれか一方の端の導電性材料を基準の導電性材料として、もう一方の端の導電性材料に向かって、前記シートの厚さ方向上部から見た導電性材料の略C形状の開口方向と該基準の導電性材料の略C形状の開口方向とのなす角度が120°(θ’)ずつ増加されるように360°/θ’個の導電性材料が配置される。
(条件6c1)前記導電性材料積層部は、
前記シートの最上面側と最下面側に配置される2つの導電性材料のうちのいずれか1つの導電性材料である基準の導電性材料を有し、さらに、シートの厚さ方向上部から見た導電性材料の略C形状の開口方向と該基準の導電性材料の略C形状の開口方向とのなす角度を120°(θ)とした場合において、下記(条件6)を満たすd以下の各自然数mについて、略C形状の開口方向がm×θを満たす導電性材料を5個ずつ有する。
(条件7c1)上記(条件6c1)におけるdは、「(360°/θ)=d(dは1を除く自然数)」を満たす。
 具体的に、各導電性材料積層部について、基準の導電性材料から、基準の導電性材料とは反対側の導電性材料積層部の端部に位置する導電性材料までの各導電性材料の略C形状の開口方向が、0°(基準の導電性材料)、120°、240°、360°、120°、240°、360°、120°、240°、360°、120°、240°、360°、120°、240°、360°となるように各導電性材料を配置した。
[実施例C2(X方向、Y方向:回転あり、厚さ方向回転あり)]
 導電性材料に係る各パラメータの値を表3に示すパラメータの値に変更したこと以外は、実施例C1と同様の方法でシートを作製した。
[実施例C3(X方向、Y方向:回転あり、厚さ方向回転あり)]
 (条件6c1)において、基準の導電性材料とは反対側の導電性材料積層部の端部に位置する導電性材料を用いなかったこと以外は、実施例C1と同様の方法でシートを作製した。
 各導電性材料積層部について、基準の導電性材料から、基準の導電性材料とは反対側の導電性材料積層部の端部に位置する導電性材料までの各導電性材料の略C形状の開口方向が、0°(基準の導電性材料)、120°、240°、360°、120°、240°、360°、120°、240°、360°、120°、240°、360°、120°、240°となるように各導電性材料を配置した。
[実施例C4(X方向、Y方向:回転あり、厚さ方向回転あり)]
 「シートに含まれる全ての導電性材料積層部が、下記(条件6c1)及び(条件7c1)を満たす」という条件を「シートに含まれる全ての導電性材料積層部が、下記(条件6c4)及び(条件7c4)を満たす」という条件に変更したこと以外は、実施例C1と同様の方法でシートを作製した。
(条件6c4)前記導電性材料積層部は、
前記シートの最上面側と最下面側に配置される2つの導電性材料のうちのいずれか1つの導電性材料である基準の導電性材料を有し、さらに、シートの厚さ方向上部から見た導電性材料の略C形状の開口方向と該基準の導電性材料の略C形状の開口方向とのなす角度を120°(θ)とした場合において、下記(条件7c4)を満たすd以下の各自然数mについて、略C形状の開口方向がm×θを満たす導電性材料を1個ずつ有する。
(条件7c4)上記(条件6c4)におけるdは、「(360°/θ)=d(dは1を除く自然数)」を満たす。
 具体的に、各導電性材料積層部について、基準の導電性材料から、基準の導電性材料とは反対側の導電性材料積層部の端部に位置する導電性材料までの各導電性材料の略C形状の開口方向が、0°(基準の導電性材料)、120°、240°、360°となるように各導電性材料を配置した。
[実施例C5(X方向、Y方向:回転あり、厚さ方向回転あり)]
 「シートに含まれる全ての導電性材料積層部が、下記(条件6c1)及び(条件7c1)を満たす」という条件を「シートに含まれる全ての導電性材料積層部が、下記(条件6c5)及び(条件7c5)を満たす」という条件に変更したこと以外は、実施例C1と同様の方法でシートを作製した。
(条件6c5)前記導電性材料積層部は、
前記シートの最上面側と最下面側に配置される2つの導電性材料のうちのいずれか1つの導電性材料である基準の導電性材料を有し、さらに、シートの厚さ方向上部から見た導電性材料の略C形状の開口方向と該基準の導電性材料の略C形状の開口方向とのなす角度を24°(θ)とした場合において、下記(条件6)を満たすd以下の各自然数mについて、略C形状の開口方向がm×θを満たす導電性材料を1個ずつ有する。
(条件7c5)上記(条件6c5)におけるdは、「(360°/θ)=d(dは1を除く自然数)」を満たす。
 また、各導電性材料積層部について、基準の導電性材料から、基準の導電性材料とは反対側の導電性材料積層部の端部に位置する導電性材料までの各導電性材料の略C形状の開口方向が、0°(基準の導電性材料)、24°、48°、72°、96°、120°、144°、168°、192°、216°、240°、264°、288°、312°、336°、360°となるように各導電性材料を配置した。
[実施例C6(X方向、Y方向:回転あり、厚さ方向回転あり)]
 各導電性材料積層部について、基準の導電性材料から、基準の導電性材料とは反対側の導電性材料積層部の端部に位置する導電性材料までの各導電性材料の略C形状の開口方向が、0°(基準の導電性材料)、360°、360°、360°、360°、360°、360°、120°、120°、120°、120°、120°、240°、240°、240°、240°、240°となるように各導電性材料を配置したこと以外は、実施例C1と同様の方法でシートを作製した。
[実施例C7(X方向、Y方向:回転あり、厚さ方向回転あり)]
 「シートに含まれる全ての導電性材料積層部が、下記(条件6c1)及び(条件7c1)を満たす」という条件を「シートに含まれる全ての導電性材料積層部が、下記(条件6c7)及び(条件7c7)を満たす」という条件に変更したこと以外は、実施例C1と同様の方法でシートを作製した。
(条件6c7)前記導電性材料積層部は、
前記シートの最上面側と最下面側に配置される2つの導電性材料のうちのいずれか1つの導電性材料である基準の導電性材料を有し、さらに、シートの厚さ方向上部から見た導電性材料の略C形状の開口方向と該基準の導電性材料の略C形状の開口方向とのなす角度を180°(θ)とした場合において、下記(条件7c7)を満たすd以下の各自然数mについて、略C形状の開口方向がm×θを満たす導電性材料を7個ずつ有し、さらに、基準の導電性材料とは反対側の導電性材料積層部の端部にθ=180°の導電性が設けられた。
(条件7c7)上記(条件6c7)におけるdは、「(360°/θ)=d(dは1を除く自然数)」を満たす。
 具体的に、各導電性材料積層部について、基準の導電性材料から、基準の導電性材料とは反対側の導電性材料積層部の端部に位置する導電性材料までの各導電性材料の略C形状の開口方向が、0°(基準の導電性材料)、180°、360°、180°、360°、180°、360°、180°、360°、180°、360°、180°、360°、180°、360°、180°となるように各導電性材料を配置した。
[実施例C8(X方向、Y方向:回転あり、厚さ方向回転なし)]
 「シートに含まれる全ての導電性材料積層部が、下記(条件6c1)及び(条件7c1)を満たす」という条件を「シートに含まれる全ての導電性材料積層部が、下記(条件8c8)を満たす」という条件に変更したこと以外は、実施例C1と同様の方法でシートを作製した。
(条件8c8)前記シートの厚さ方向上部から見た導電性材料積層部の1つを構成する全ての導電性材料の略C形状の開口方向が同一である。
 また、導電性材料積層部に含まれる導電性材料の数を16とした。具体的に、各導電性材料積層部について、一方の端の導電性材料から、他方の端の導電性材料までの各導電性材料の略C形状の開口方向が、0°、0°、0°、0°、0°、0°、0°、0°、0°、0°、0°、0°、0°、0°、0°、0°となるように各導電性材料を配置した。
[実施例C9(X方向:回転あり、Y方向:回転なし、厚さ方向回転なし)]
 「前記複数の各層形成シートが、独立して、下記(条件1c1)及び(条件2c1)を満たす複数の特定領域Aのみから構成される」という条件を「前記複数の各層形成シートが、独立して、下記(条件1c1)及び(条件2c9)を満たす複数の特定領域Aのみから構成される」という条件に変更したこと以外は、実施例C8と同様の方法でシートを作製した。
(条件2c9)前記特定領域Aにおける前記Y方向に形成される導電性材料の各列において、シートの厚さ方向上部から見た各列を構成する全ての導電性材料の略C形状の開口方向が同一となるように導電性材料が配置される。
[実施例C10(X方向:回転あり、Y方向:回転なし、厚さ方向回転あり)]
 「シートに含まれる全ての導電性材料積層部が、下記(条件6c1)及び(条件7c1)を満たす」という条件を「シートに含まれる全ての導電性材料積層部が、下記(条件6c10)及び(条件7c10)を満たす」という条件に変更したこと以外は、実施例C9と同様の方法でシートを作製した。
(条件6c10)前記導電性材料積層部は、
前記シートの最上面側と最下面側に配置される2つの導電性材料のうちのいずれか1つの導電性材料である基準の導電性材料を有し、さらに、シートの厚さ方向上部から見た導電性材料の略C形状の開口方向と該基準の導電性材料の略C形状の開口方向とのなす角度を120°(θ)とした場合において、下記(条件6)を満たすd以下の各自然数mについて、略C形状の開口方向がm×θを満たす導電性材料を5個ずつ有する。
(条件7c10)上記(条件5A)におけるdは、「(360°/θ)=d(dは1を除く自然数)」を満たす。
 具体的に、各導電性材料積層部について、基準の導電性材料から、基準の導電性材料とは反対側の導電性材料積層部の端部に位置する導電性材料までの各導電性材料の略C形状の開口方向が、0°(基準の導電性材料)、120°、240°、360°、120°、240°、360°、120°、240°、360°、120°、240°、360°、120°、240°、360°となるように各導電性材料を配置した。
[実施例C11(X方向、Y方向:回転あり、厚さ方向回転あり)]
 「シートに含まれる全ての導電性材料積層部が、下記(条件6c1)及び(条件7c1)を満たす」という条件を「シートに含まれる全ての導電性材料積層部が、下記(条件6c11)及び(条件7c11)を満たす」という条件に変更したこと以外は、実施例C1と同様の方法でシートを作製した。
(条件6c11)前記導電性材料積層部は、
前記シートの最上面側と最下面側に配置される2つの導電性材料のうちのいずれか1つの導電性材料である基準の導電性材料を有し、さらに、シートの厚さ方向上部から見た導電性材料の略C形状の開口方向と該基準の導電性材料の略C形状の開口方向とのなす角度を72°(θ)とした場合において、下記(条件6)を満たすd以下の各自然数mについて、略C形状の開口方向がm×θを満たす導電性材料を3個ずつ有する。
(条件7c11)上記(条件5A)におけるdは、「(360°/θ)=d(dは1を除く自然数)」を満たす。
 具体的に、各導電性材料積層部について、基準の導電性材料から、基準の導電性材料とは反対側の導電性材料積層部の端部に位置する導電性材料までの各導電性材料の略C形状の開口方向が、0°(基準の導電性材料)、72°、144°、216°、288°、360°、72°、144°、216°、288°、360°、72°、144°、216°、288°、360°となるように各導電性材料を配置した。
[特性評価]
(電磁波シールド性)
 電磁波シールド性の評価は、上述した実施例A1に対して行った方法と同様の方法で評価を行った。各シートの特性の評価結果を表3及び図26~28に示す。なお、「最大性能発揮角度」について、表3にはいずれの実施例においても0°、30°、45°、90°を記載したが、各実施例において、いずれの角度でも類似の結果が得られたため、図26~28ではこれらのうちの45°の場合の結果のみを記載した。
 表3におけるX方向回転、Y方向回転、および厚さ方向回転の欄について、回転ありを「R」と表記し、回転なしを「-」と表記した。
Figure JPOXMLDOC01-appb-T000004
 表3から、実施例C1~C11のシートであれば、高周波数帯の電磁波のシールドが可能であることが分かった。
 また、周波数300GHz帯での性能を比較すると、電磁波シールド性能、反射率、および吸収率の観点からは、実施例C10のシートが比較的優れ、C4のシートが比較的劣っていることが分かった。
 また、XY方向の回転の影響を検討すると、実施例C8とC9(θ=0°)との比較から、電磁波シールド性能はY回転がない方が好ましく、反射率および吸収率はY回転がある方が好ましいことが分かった。また、実施例C1とC10(θ=120°)との比較から、電磁波シールド性能はY回転がない方が好ましく、反射率および吸収率もY回転がない方が好ましいこと、また、C10では周波数250±25GHz付近に共振周波数帯が発現し、この周波数帯でシールド性能-30dBを達成したことが分かった(ただし、反射率は70%、吸収率は30%であった)。
 また、厚み方向の回転を検討すると、実施例C1とC6(θは同じ)との比較から、実施例C6の方がシールド性能に優れる一方で、反射率が大きくなり、吸収率が小さくなることが分かった。よって、厚み方向に回転しながら積層することが好ましいことが分かった。
 また、シートの裏表の影響を検討すると、実施例C1(裏表同一)と実施例C3(実施例C1のシートの一方の最表層がないシートであり、裏表同一でない)との比較から、シールド性能、反射率、および吸収率のいずれも差がないことが分かった。また、上記の評価とは別に、実施例C6のみ、シートの裏表の両面で測定を行ったが、シールド性能、反射率、および吸収率のいずれも差がないことが分かった。
 シートの厚みの影響を検討すると、実施例C1(16層)と実施例C4(4層)との比較から、シートの厚みが大きい実施例C1の方がシールド性能、反射率、および吸収率のいずれの特性でも優れていることが分かった。
 また、θcの影響を検討すると、実施例C1(38°)と実施例C2(23°)との比較から、θcを変えても、シールド性能、反射率、および吸収率のいずれの特性も同程度であることが分かった。一方で、実施例C2のシートでは、周波数275GHz付近に共振周波数帯が発現し、この周波数帯でシールド性能-30dB、反射率30%、および吸収率70%を達成したことが分かった。θcを小さくすると、LC共振が長くなるため、ブロードな波形がシャープな波形になり、300GHz帯よりも周波数が低い275GHzで共振周波数帯が発現したものと本発明者は考えている。
 また、銅箔の厚みHcの影響を検討すると、実施例C1(5μm)と実施例A4(9μm)との比較から、シールド性能は同程度であるが、Hcが厚い実施例A4の方が(銅箔の体積が大きい方が)反射率は小さく、吸収率は大きくなることが分かった。
 以上に示す通り、本開示によれば、面積の大きい金属板を使用していた従来の電磁波反射型の材料を用いたシートと比較して製品質量を小さくし軽量化することができ、さらに、高周波数帯の電磁波を遮蔽することができる電磁波シールド、及びその製造方法を提供することができる。
1  ベース材料
2  略C形状の導電性材料
3  導電性材料積層部
4  柱形状の導電性材料
10 シート
20 層形成シート
21 ベース材料

Claims (21)

  1.  シートであって、
     絶縁性材料と、
    板形状であり、かつ、前記シートの厚さ方向上部から見た形状が略C形状である複数の導電性材料とを含み、
     各導電性材料は、略C形状の周方向と前記シートの平面方向とが略平行となるように配置され、
     前記複数の導電性材料の少なくとも一部が、互いに接触しないように前記シートの厚さ方向に複数配置された導電性材料積層部を形成する、
     シート。
  2.  前記シートの平面方向に前記導電性材料積層部が複数配置される、請求項1に記載のシート。
  3.  前記シートの厚さ方向上部から見た前記シートの面積に対する、前記シートの厚さ方向上部から見た前記導電性材料積層部の個数が、1個/mm以上、30個/mm以下である、請求項2に記載のシート。
  4.  前記導電性材料積層部が、前記シートの平面方向に、かつ、一定の方向に等間隔で延びる複数の列を形成するように配置され、
     各導電性材料積層部が、各導電性材料積層部を構成する各導電性材料が前記シートの平面方向に略平行となるように配置されることにより、同一平面状に複数の導電性材料を含む平面方向の層が複数形成され、
     前記平面方向の複数の層の各層が、独立して、下記(条件1)を満たす特定領域Aを有する、請求項2又は3に記載のシート。
    (条件1)前記特定領域Aにおける前記一定の方向に延びて形成される導電性材料の各列において、該各列の両端のうちのいずれか一方の端の導電性材料を基準として、もう一方の端の導電性材料に向かって、前記シートの厚さ方向上部から見た導電性材料の略C形状の開口方向と該基準の各導電性材料の略C形状の開口方向とのなす角度がθずつ増加されるように導電性材料が配置され;前記θは、0°<θ<360°を満たし、その公差がθ/2未満である。
  5.  前記特定領域Aが、さらに、下記(条件3A)を満たす、請求項4に記載のシート。
    (条件3A)前記θは、「(360°/θ)=n(nは1を除く自然数)」を満たす。
  6.  前記特定領域Aが、さらに、下記(条件4A)を満たす、請求項5に記載のシート。
    (条件4A)前記一定の方向に延びて形成される導電性材料の各列に含まれる導電性材料の数が、360°/θである。
  7.  前記導電性材料積層部が、さらに、前記シートの平面方向に、かつ、前記一定の方向と直角をなす方向に等間隔で延びて形成される複数の列を形成するように配置され、
     前記特定領域Aにおいて、前記平面方向の複数の層の各層が、独立して、下記(条件2)を満たす、請求項4~6のいずれか1項に記載のシート。
    (条件2)前記特定領域Aにおける前記一定の方向と直角をなす方向に延びて形成される導電性材料の各列において、該各列の両端のうちのいずれか一方の端の導電性材料を基準の導電性材料として、もう一方の端の導電性材料に向かって、前記シートの厚さ方向上部から見た導電性材料の略C形状の開口方向と該基準の導電性材料の略C形状の開口方向とのなす角度がθ’ずつ増加されるように導電性材料が配置され;前記θ’は、0°<θ’<360°を満たし、その公差がθ’/2未満である。
  8.  前記特定領域Aが、さらに、下記(条件3B)を満たす、請求項7に記載のシート。
    (条件3B)前記θ’は、「(360°/θ’)=n(nは1を除く自然数)」を満たす。
  9.  前記特定領域Aが、さらに、下記(条件4’)を満たす、請求項8に記載のシート。
    (条件4B)前記一定の方向と直角をなす方向に延びて形成される導電性材料の各列に含まれる導電性材料の数が、360°/θ’である。
  10.  前記導電性材料積層部が、さらに、前記シートの平面方向に、かつ、前記一定の方向と直角をなす方向に等間隔で延びて形成される複数の列を構成するように配置され、
     前記特定領域Aにおいて、前記平面方向の複数の層の各層が、独立して、下記(条件2’)を満たす、請求項4~6のいずれか1項に記載のシート。
    (条件2’)前記特定領域Aにおける前記一定の方向と直角をなす方向に形成される導電性材料の各列において、前記シートの厚さ方向上部から見た各列を構成する全ての導電性材料の略C形状の開口方向が同一となるように導電性材料が配置される。
  11.  前記導電性材料積層部が、前記シートの平面方向に、一定の方向に等間隔で、かつ、該一定の方向と直角をなす方向に等間隔で配置され、
     各導電性材料積層部が、各導電性材料積層部を構成する各導電性材料が前記シートの平面方向に略平行となるように配置されることにより、同一平面状に複数の導電性材料を含む平面方向の層が複数形成され、
     前記平面方向の複数の層の各層が、独立して、下記(条件5)を満たす特定領域Bを有する、請求項2又は3に記載のシート。
    (条件5)前記特定領域Bにおけるシートの厚さ方向上部から見た全ての導電性材料の略C形状の開口方向が同一である。
  12.  前記導電性材料積層部として、導電性材料積層部の1つを構成する導電性材料の前記シートの厚さ方向上部から見た略C形状の開口方向が、少なくとも一部で互いに異なる特定導電性材料積層部を少なくとも含む、請求項1~11のいずれか1項に記載のシート。
  13.  前記特定導電性材料積層部として、特定導電性材料積層部の1つを構成する導電性材料のうち、前記シートの最上面側と最下面側に配置される2つの導電性材料の略C形状の開口方向が同一である特定導電性材料積層部を少なくとも含む、請求項12に記載のシート。
  14.  前記特定導電性材料積層部として、下記(条件6)を満たす特定導電性材料積層部を少なくとも含む、請求項1~13のいずれか1項に記載のシート。
    (条件6)前記特定導電性材料積層部は、
    前記シートの最上面側と最下面側に配置される2つの導電性材料のうちのいずれか1つの導電性材料を基準の導電性材料とし、かつ、シートの厚さ方向上部から見た導電性材料の略C形状の開口方向と前記基準の導電性材料の略C形状の開口方向とのなす角度をθとした場合において、前記特定導電性材料積層部に含まれる前記基準の導電性材料以外の導電性材料の略C形状の開口方向がmθで表され;前記mは自然数であり;前記θは0°<θ<360°を満たし、その公差がθ/2未満である。
  15.  前記特定導電性材料積層部は、前記mが下記(条件7)を満たすd以下の各自然数であり、略C形状の開口方向がmθを満たす導電性材料をk個(kは自然数)ずつ有する、請求項14に記載のシート。
    (条件7)前記dは、「(360°/θ)=d(dは1を除く自然数)」を満たす。
  16.  前記導電性材料積層部として、前記シートの厚さ方向上部から見た導電性材料積層部の1つを構成する全ての導電性材料の略C形状の開口方向が同一である電性材料積層部を少なくとも含む、請求項1~11のいずれか1項に記載のシート。
  17.  前記導電性材料の周方向の面において取り得る最大の線分の長さの平均値が、1μm以上、2000μm以下である、請求項1~16のいずれか1項に記載のシート。
  18.  前記シートの厚さ方向に沿った前記導電性材料同士の距離の平均値は、1μm以上、3000μm以下である、請求項1~17のいずれか1項に記載のシート。
  19.  前記導電性材料積層部として、導電性材料積層部を構成する各導電性材料と、厚さ方向に隣接して配置される他の導電性材料とを接続する柱形状の導電性材料とを含む導電性材料積層部を少なくとも含む、請求項1~18のいずれか1項に記載のシート。
  20.  前記導電性材料積層部を構成する導電性材料が、互いに電気的に連続していない、請求項1~19のいずれか1項に記載のシート。
  21.  電磁波シールドシートである、請求項1~20のいずれか1項に記載のシート。
PCT/JP2022/048146 2021-12-27 2022-12-27 シート WO2023127873A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-213484 2021-12-27
JP2021213484 2021-12-27

Publications (1)

Publication Number Publication Date
WO2023127873A1 true WO2023127873A1 (ja) 2023-07-06

Family

ID=86999069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/048146 WO2023127873A1 (ja) 2021-12-27 2022-12-27 シート

Country Status (1)

Country Link
WO (1) WO2023127873A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10223467A (ja) * 1997-02-13 1998-08-21 Matsushita Electric Ind Co Ltd 積層部品の製造装置および製造方法
JP2005252141A (ja) * 2004-03-08 2005-09-15 Murata Mfg Co Ltd 電子部品及びその製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10223467A (ja) * 1997-02-13 1998-08-21 Matsushita Electric Ind Co Ltd 積層部品の製造装置および製造方法
JP2005252141A (ja) * 2004-03-08 2005-09-15 Murata Mfg Co Ltd 電子部品及びその製造方法

Similar Documents

Publication Publication Date Title
CN110600888B (zh) 一种射频吸收器表皮及其制造方法
US20160007510A1 (en) Electromagnetic interference shielding film
JP4981618B2 (ja) 配線回路基板
KR20190104131A (ko) 전자 차폐 필름 및 그 제조방법
EP1945010B1 (en) Multi-layer substrate and electronic device having the same
KR101759580B1 (ko) 다층형 전자기파 흡수체 및 다층형 전자기파 흡수체 제조방법
KR20100070997A (ko) 정전기 대책 소자 및 그 복합 전자 부품
JP3972951B2 (ja) スイッチング電源、電源装置および電子機器
US10631446B2 (en) Electromagnetic wave absorber and electronic device
WO2002091515A1 (en) Transmission line type components
JP2008270370A (ja) 電磁波遮蔽シート
CN105744816B (zh) 电磁波屏蔽复合膜
TWI482585B (zh) 屏蔽複合膜片
CN103929933A (zh) 抑制电磁波干扰结构及具有该结构的软性印刷电路板
JP2000013081A (ja) 電子部品
WO2023127873A1 (ja) シート
JP2006032845A (ja) 透明シールドケース及びその製造方法並びに遊技機
JP5354589B2 (ja) シールドフレキシブルプリント基板およびその製造方法
US10573951B2 (en) Split resonator and printed circuit board including the same
US10098268B2 (en) Electromagnetic wave shielding tape using nanomaterials
JP2013153041A (ja) ノイズ抑制構造体
JP2008270714A (ja) 電磁波遮蔽シート
KR100652860B1 (ko) 노이즈 감쇄필름, 노이즈 감쇄 회로기판 및 이들의제조방법
WO2022009960A1 (ja) 樹脂成形体及びその製造方法
WO2023037770A1 (ja) 電磁波シールドフィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22916095

Country of ref document: EP

Kind code of ref document: A1