WO2023125811A1 - 涡旋压缩机 - Google Patents

涡旋压缩机 Download PDF

Info

Publication number
WO2023125811A1
WO2023125811A1 PCT/CN2022/143402 CN2022143402W WO2023125811A1 WO 2023125811 A1 WO2023125811 A1 WO 2023125811A1 CN 2022143402 W CN2022143402 W CN 2022143402W WO 2023125811 A1 WO2023125811 A1 WO 2023125811A1
Authority
WO
WIPO (PCT)
Prior art keywords
scroll
stator
flange
rotor
compressor
Prior art date
Application number
PCT/CN2022/143402
Other languages
English (en)
French (fr)
Inventor
孙玉松
姚丽
刘万振
林岩
张喜双
刘三祥
Original Assignee
丹佛斯(天津)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111681231.XA external-priority patent/CN116412128A/zh
Priority claimed from CN202123449502.7U external-priority patent/CN217002271U/zh
Application filed by 丹佛斯(天津)有限公司 filed Critical 丹佛斯(天津)有限公司
Publication of WO2023125811A1 publication Critical patent/WO2023125811A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/02Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents

Definitions

  • the present invention relates to a scroll compressor.
  • the present invention has been made to solve the above-mentioned problems and potentially other technical problems.
  • Scroll compressors include:
  • a compressor housing; a bracket mounted within said compressor housing; a scroll assembly comprising:
  • a second scroll located within the compressor housing and co-rotating with the first scroll to define a compression pocket between the first scroll and the second scroll;
  • a flange rotatably supported on the bracket and supporting a first scroll and a second scroll, wherein the flange is connected to the first scroll;
  • the actuating mechanism is installed in the compressor housing and connected to the flange to drive the flange to rotate, thereby driving the first scroll to rotate, and the first scroll drives the second scroll to rotate together, wherein the actuating mechanism Includes axial flux motors.
  • the axial flux motor may be a disc motor.
  • the axial flux motor includes a stator and a rotor, the stator is fixed on the support, and the rotor is connected with the flange to drive the flange to rotate.
  • the rotor is located below the stator.
  • Axial flux motors have a speed range of 0 to 40000rpm.
  • the rotor and the flange are connected in an interference manner, and the stator and the bracket are connected by screws.
  • the stator includes a stator yoke, stator teeth, a stator support ring, and windings wound on the stator teeth.
  • the stator further includes a winding frame, the winding frame is sleeved on the stator teeth, and the winding is wound on the winding frame.
  • stator yoke is fixedly connected to the stator support ring, and the stator support ring is interference fit with the compressor housing.
  • the stator is accommodated in the bracket, and threaded holes are provided on the outer edge of the bracket and the stator support ring, and the bracket and the stator support ring are fixedly connected by screws.
  • cooling ribs are provided on the outer surface of the stator.
  • the heat dissipation rib is a component manufactured independently of the stator, or a component integrally formed with the stator.
  • the rotor includes a permanent magnet, a rotor yoke and a rotor hub, the permanent magnet is supported and fixed by the rotor yoke, and the rotor hub is connected to the flange in an interference manner.
  • Scroll compressors include:
  • the bracket is installed in the compressor casing
  • a scroll assembly including a first scroll located within the compressor housing, and a second scroll located within the compressor housing and co-rotating with the first scroll to A compression chamber is defined between the second scroll and the second scroll;
  • a flange rotatably supported on the bracket and supporting the first scroll and the second scroll, wherein the flange is connected to the first scroll;
  • An actuating mechanism the actuating mechanism is installed in the compressor casing and connected to the flange to drive the flange to rotate, the flange drives the first scroll to rotate, and the first scroll drives the second scroll to rotate together, wherein , the actuating mechanism comprises a radial flux motor.
  • the structure of the scroll compressor is more compact.
  • FIG. 1A is a longitudinal sectional view of a scroll compressor according to an exemplary embodiment of the present invention
  • Fig. 1B is an exploded view of the scroll compressor shown in Fig. 1A, some components are omitted in Fig. 1B to make the drawing more concise;
  • Fig. 2 is a schematic diagram of the suction path, discharge path and lubricating path of the scroll compressor shown in Fig. 1A;
  • Fig. 3 is a perspective view of the second scroll shown in Fig. 1B;
  • FIG. 4 is a longitudinal sectional view of a part of a scroll compressor according to an exemplary embodiment of the present invention.
  • 5A, 5B, 5C and 5D are respectively a perspective view, a side view, a top view and a sectional view taken along plane C-C in FIG. 5B of a stator of a disc motor according to an exemplary embodiment of the present invention.
  • 6A, 6B, 6C and 6D are respectively a perspective view, a side view, a top view and a sectional view taken along the plane D-D in FIG. 6B of the rotor of the disc motor according to an exemplary embodiment of the present invention.
  • FIG. 7A and 7B are a top view and a side view, respectively, of another modification example of the stator shown in FIG. 5A .
  • FIG. 8A and 8B are a plan view and a side view, respectively, of another modification example of the stator shown in FIG. 5A .
  • 9A and 9B are a top view and a side view, respectively, of another modified example of the stator shown in FIG. 5A .
  • FIG. 10 shows a longitudinal sectional view of a scroll compressor according to another exemplary embodiment of the present invention.
  • FIG. 1A is a longitudinal sectional view of a scroll compressor according to an exemplary embodiment of the present invention.
  • Fig. 1B is an exploded view of the scroll compressor shown in Fig. 1A, some parts are omitted in Fig. 1B to make the drawing more concise.
  • FIG. 3 is a perspective view of the second scroll shown in FIG. 1B seen from another viewing angle.
  • the scroll compressor includes a compressor housing and a bracket 4 installed in the compressor housing, a scroll assembly (5, 6), an actuating mechanism 7, and a flange 8 , a plurality of supports (for example, bearings or bushings or washers) 11, 12, 13, 14, 15, 16, and the crankshaft 9 and the like.
  • the compressor shell includes an upper cover 1 , a middle shell 2 and a lower shell 3 .
  • a discharge port 1001 is provided on the upper cover 1 .
  • a discharge chamber 1002 is formed between the upper cover 1 and the top surface of the middle case 2 .
  • a suction port 2001 is provided on the middle shell 2 for sucking fluid (such as refrigerant).
  • An oil pool 31 is formed at the bottom of the lower case 3 for storing lubricating oil.
  • the middle shell 2 and the lower shell 3 form a closed space, the bracket 4, the scroll assembly (5, 6), the actuating mechanism 7, the flange 8, a plurality of supports 11, 12, 13, 14, 15, 16 and the crankshaft 9 Wait for it to be accommodated in the sealed space.
  • a plurality of feet 32 are provided on the bottom surface of the lower case 3, and fixing holes 33 are provided on the legs 32, so that the lower case 3 can be fixed to a support (such as the ground) by fasteners such as fixing screws.
  • the stand 4 includes a hub 41 and a support arm 42 .
  • a plurality of threaded holes 43 are defined on the upper surface of the support arm 42 .
  • an oil leakage hole 44 is provided on the bottom surface of the joint between the support arm 42 and the hub 41 .
  • the bracket 4 can be fixed in the lower casing 3 of the compressor, for example, fixed in the lower casing 3 through the lower end of the hub 41 .
  • the scroll assembly includes a first scroll 5 and a second scroll 6 .
  • the second scroll 6 is capable of co-rotating with the first scroll 5 to define a compression chamber 56 between the first scroll 5 and the second scroll 6 .
  • the first scroll 5 has a scroll 51 extending downward and a central hole 52 at the top thereof.
  • the second scroll 6 has a hub 61 extending downward and a wrap 62 extending upward. The wraps 51 and 62 are engaged with each other to form a compression chamber 56 .
  • the flange 8 is supported on the frame 4 and includes a tray 81 , a hub 82 and a central hole 83 .
  • a convex portion 831 and a concave portion 832 may be provided in the central hole 83 .
  • the upper surface 811 of the tray 81 supports the first scroll 5 and the second scroll 6 .
  • the flange 8 may be connected to the first scroll 5 through a tray 81 to drive the first scroll 5 to rotate.
  • the actuating mechanism 7 may be an axial flux motor (eg a disc motor) or a radial flux motor (eg an interior permanent magnet motor).
  • the rotational speed of the actuating mechanism 7 can reach 40000 rpm.
  • a disc motor includes a stator 71 and a rotor 72 .
  • the stator 71 can be fixed on the bracket 4 , or alternatively directly on the inner wall of the middle shell 2 .
  • the central hole 722 of the rotor 72 is fixedly connected with the hub 82 of the flange 8 (for example, by means of interference fit, spline fit, etc.) to drive the flange 8 to rotate, thereby driving the first scroll 5 and the second scroll
  • the disks 6 rotate together, for example, the first scroll disk 5 is driven to rotate, and the gas force generated by the rotation of the first scroll disk 5 drives the second scroll disk 6 to rotate together.
  • the crankshaft 9 is located in the central hole 83 of the flange 8 .
  • the upper end of the crankshaft 9 is connected to the hub 61 of the second scroll 6 .
  • the scroll compressor may further include an oiling screw 10 .
  • the upper end 101 of the oiling screw 10 is matched with the hub 61 of the second scroll 6 , and the lower end 103 of the oiling screw 10 extends into the oil pool 31 .
  • the crankshaft 9 is generally cylindrical and has an axial through hole 91 , an upper section 92 and a lower section 93 .
  • the oiling screw 10 is disposed in the axial through hole 91 , and the central axis O 2 of the oiling screw 10 is parallel to and not coincident with the central axis O 1 of the crankshaft 9 .
  • the oiling screw 10 is arranged eccentrically with respect to the crankshaft 9 .
  • the outer and inner diameters of the upper section 92 of the crankshaft 9 are respectively larger than the outer and inner diameters of the lower section 93 , thereby forming an outer stepped surface 95 at the junction of the upper section 92 and the lower section 93 .
  • An oil return hole 97 is provided on the upper end surface 94 of the crankshaft 9 .
  • the oil return hole 97 extends downward and penetrates the upper section 92 and the lower section 93 , thereby forming oil return passages 99 and 100 .
  • these supports may include a first slide support 11 , a second slide support 12 and a third slide support 13 .
  • the first slide bearing 11 is located between the inner peripheral surface of the upper section 92 of the crankshaft 9 and the outer peripheral surface of the hub 61 of the second scroll 6 .
  • the second sliding bearing 12 is situated between the inner peripheral surface of the central bore 83 of the flange 8 and the outer peripheral surface of the upper section 92 of the crankshaft 9 .
  • the third slide bearing 13 is located between the inner peripheral surface of the central bore 83 of the flange 8 and the outer peripheral surface of the lower section 93 of the crankshaft 9 .
  • a pin groove 96 is provided on the inner surface of the upper section 92 of the crankshaft 9 .
  • the pin 19 is embedded in the pin groove 96 and cooperates with the driving surface 111 of the first sliding bearing 11 .
  • the first sliding bearing 11 may comprise a substantially cylindrical sleeve body and a bearing sleeve interference-fitted within the sleeve body.
  • a concave portion 121 and a convex portion 122 may be provided on the outer peripheral surface of the second sliding support member 12 for cooperating with the convex portion 831 and the concave portion 832 in the central hole 83 of the flange 8 respectively. In this way, when the flange 8 rotates, it can drive the second sliding bearing 12 to rotate.
  • the second support member 12 may include a generally cylindrical sleeve body and a bearing sleeve interference fit within the sleeve body.
  • These supports may also comprise a first thrust bearing 15 , a second thrust bearing 14 and a third thrust bearing 16 .
  • the first thrust bearing 15 is located between the inner step surface 84 of the flange 8 and the outer step surface 95 of the crankshaft 9 .
  • the second thrust bearing 14 is located between the lower surface of the second scroll 6 and the upper surface 811 of the tray 81 of the flange 8 .
  • the third thrust bearing 16 is located between the bottom face of the flange 8 and the junction of the hub 41 and the support arm 42 of the bracket 4 .
  • first thrust bearing 15 , the second thrust bearing 14 and the third thrust bearing 16 may be configured in the form of thrust washers or thrust bearings.
  • first thrust bearing 15 is configured in the form of a thrust washer.
  • a plurality of oil grooves 151 staggered from each other are arranged on the upper surface and the lower surface of the first thrust support member 15 for accumulating lubricating oil so as to form an oil film on the surface of the friction pair.
  • the oil groove 151 shown in FIG. 1B is generally in the shape of a rectangle. It should be understood that the oil groove 151 may also be in the shape of a circle or other suitable shapes.
  • the other thrust bearings 14 and 16 may be constructed similarly to the first thrust bearing.
  • the material constituting the thrust bearing may be wear-resistant metal or non-metallic material.
  • the hub 61 of the second scroll 6 has an inner hole 610 (see FIG. 3 ), and the inner shape of the inner hole 610 matches the outer shape of the upper end 101 of the oiling screw 10, thereby allowing the upper end 101 of the oiling screw 10 to cooperate. into bore 610. Specifically, the outer peripheral surface of the upper end 101 of the oiling screw 10 can interfere with the inner peripheral surface of the inner hole 610 of the hub 61 of the second scroll 6 to prevent the oiling screw 10 from moving against the second scroll 6. rotate.
  • the outer peripheral surface of the upper end 101 of the oiling screw 10 includes a first plane 1011, and correspondingly, the inner peripheral surface of the inner hole 610 of the hub 61 of the second scroll 6 includes a second plane. 611 (see Figure 3).
  • first plane 1011 and the second plane 611 fit each other to prevent the oiling screw 10 from moving against the second scroll 6. Turntable 6 rotates.
  • a stopper portion 102 is provided on the outer peripheral surface of the upper end 101 of the oiling screw 10 .
  • a retaining ring groove 612 is provided on the inner peripheral surface of the inner hole 610 of the hub 61 of the second scroll 6 and the retaining ring 20 is disposed in the retaining ring groove 612 .
  • the scroll compressor according to the invention also includes a protective sleeve 17 .
  • the cylinder wall 171 of the protective sleeve 17 is located between the suction port 2001 and the scroll assembly, so as to prevent the fluid (such as refrigerant) from directly impacting the scroll assembly when the scroll compressor sucks the fluid so as to damage the scroll assembly. Spin the assembly to cause damage.
  • the protective sleeve 17 generally has a cylindrical thin-walled configuration with a cylindrical wall 171 and a lower flange 172 .
  • a plurality of threaded holes (or through holes) 173 are provided on the lower flange 172 .
  • These threaded holes 173 correspond to the threaded holes 712 on the stator supporting ring 711 of the stator 71 , and the protective sleeve 17 and the stator 71 can be fixed to the bracket 4 by using a plurality of screws 18 .
  • a radial through hole 90 is provided on the crankshaft 9 .
  • One end opening of the radial through hole 90 is located on the outer peripheral surface of the crankshaft 9
  • the other end opening of the radial through hole 90 is located on the inner peripheral surface of the axial through hole 91 of the crankshaft 9 .
  • another or more radial through holes 98 are provided on the crankshaft 9 .
  • One end opening of the radial through hole 98 is located on the outer peripheral surface of the crankshaft 9 , and the other end opening of the radial through hole 98 communicates with the oil return passage 99 .
  • the radial through hole 90 is used to deliver the lubricating oil from the oil sump 31 to the parts to be lubricated in the scroll compressor; the radial through hole 98 is used for oil return, and can communicate with the oil return passage 99 at the same time and 100.
  • FIG. 2 is a schematic diagram of a suction path, a discharge path, and a lubricating path of the scroll compressor shown in FIG. 1A .
  • FIG. 2 mainly shows two suction paths XQ1, XQ2, four lubrication paths RH1, RH2, RH3, RH4 and two oil return paths HY1, HY2.
  • the fluid paths described below within the scroll compressor according to the present invention are illustrative only, and not limiting or exhaustive. In practical applications, more or fewer fluid paths may be provided.
  • the refrigerant enters the middle casing 2 of the scroll compressor through the suction port 2001, is blocked by the cylinder wall 171 of the protective sleeve 17 and flows upward, and then passes through the cylinder wall 171 and the scroll assembly. (Specifically, the first scroll 5 ) flows downward through the gap, and then enters the compression chamber 56 through the fluid channel provided in the tray 81 of the flange 8 and the first scroll 5 .
  • the refrigerant enters the middle casing 2 of the scroll compressor through the suction port 2001, is blocked by the cylinder wall 171 of the protective sleeve 17 and flows downward, and then passes through the stator 71 and the rotor of the actuating mechanism 7 72 (see FIG. 4, gap 720) and the gap between the central hole of the stator 71 and the outer peripheral surface of the flange 8, and then enter through the fluid channel provided in the tray 81 and the scroll assembly of the flange 8 In the compression chamber 56.
  • the lubricating oil initially stored in the oil pool 31 rises to the second sliding bearing 12 as the oiling screw 10 rotates, and then reaches the first thrust bearing 15 .
  • a part of lubricating oil flows down in the oil return channel 99 through the oil return hole 97, and further enters in the oil return channel 100;
  • the clearance on the side flows down to the radial through hole 98 , then enters the oil return channel 99 via the radial through hole 98 , and further enters the oil return channel 100 .
  • the lubricating oil in the oil return channel 100 finally flows back into the oil pool 31 . In this way, the oil return path HY1 is formed.
  • the lubricating oil initially stored in the oil pool 31 rises to the second thrust bearing 14 with the rotation of the oiling screw 10, and then flows through the second thrust bearing 14 to the 8, the tray 81 and the fluid channel in the scroll assembly, and finally enters the compression chamber 56 together with the refrigerant.
  • the fluid in the compression chamber 56 flows into the discharge chamber 1002 through the center hole 52 at the top of the first scroll 5 and the center hole 2002 at the top of the middle shell 2, and then is discharged to the scroll compressor through the discharge port 1001 outside, thereby forming the discharge path PQ.
  • the lubricating oil initially stored in the oil pool 31 rises to the radial through hole 90 as the oiling screw 10 rotates.
  • the flow goes to the third sliding bearing 13 via the radial through-holes 90 .
  • a part of the lubricating oil flows upward to the first thrust bearing 15, thereby forming a lubrication path RH3, and another part of the lubricating oil flows downward to the third thrust bearing 16, thereby forming a lubrication path RH4.
  • the lubricating oil after lubricating the third thrust bearing 16 and the lubricating oil flowing down from above can flow on the bottom surface of the connection between the support arm 42 and the hub 41, and finally flow back to the bottom through the oil leakage hole 44 on the bracket 4 In the oil pool 31. In this way, the oil return path HY2 is formed.
  • the basic configuration of the actuating mechanism 7 is described above with reference to FIGS. 1A and 1B . Next, the basic construction of the actuating mechanism 7 will be described in more detail with further reference to Fig. 4 .
  • FIG. 4 is a longitudinal sectional view of a part of a scroll compressor according to an exemplary embodiment of the present invention.
  • FIG. 4 mainly shows the basic configuration of an actuating mechanism 7 such as a disk motor belonging to the class of axial flux motors.
  • the stator 71 has an outer peripheral edge (hereinafter also referred to as a stator support ring) 711, a stator frame 710, a stator yoke 713, a stator tooth 714, and a plurality of coils wound on the stator tooth. Winding 717.
  • the stator yoke 713 and the stator teeth 714 are actually two different parts of the same part, as shown in FIG. The lower part) is called the stator tooth, and the part not used for winding the winding (the upper part of the part in Fig. 1A, Fig. 1B and Fig. 4) is called the stator yoke.
  • the stator yoke 713 is fixedly connected with the stator support ring 711 .
  • the stator support ring 711 may have an interference fit with the compressor housing.
  • a plurality of threaded holes (or through holes) 712 are provided on the stator support ring 711 , and threaded holes 43 are provided on the outer edge of the bracket 4 (ie, the top of the support arm 42 ).
  • the threaded holes 712 are in one-to-one correspondence with the threaded holes 43 , so that the stator 71 can be fixed to the bracket 4 by using a plurality of screws 18 .
  • the stator 71 may also include a bobbin 716 .
  • the winding frame 716 is sleeved on the stator teeth 714 , and then the winding 717 is wound on the winding frame 716 .
  • a tooth shoe (not shown) may be further provided on the bottom surface of the stator tooth 714 .
  • the tooth shoe is made of soft magnetic material and installed on the end surface (ie bottom surface) 715 of the stator tooth 714 facing the rotor 72 .
  • the area of the tooth shoe is larger than the area of the bottom surface 715 of the stator tooth 714 in order to limit the vertical movement of the winding 717 and bobbin 716 .
  • the tooth shoe can increase the area receiving the magnetic field of the rotor 72 by using a magnetically permeable soft magnetic material.
  • the bobbin 716 is not necessary, and the winding 717 can also be directly wound on the stator teeth 714 .
  • the tooth shoes may be formed integrally with the stator teeth 714 and machined together.
  • the winding 717 can be fixed with resin and/or insulating varnish 718 , and the winding 717 , bobbin 716 , stator teeth 714 and stator yoke 713 can also be encapsulated with resin.
  • insulating varnish 718 can be used for the above-mentioned fixing and/or packaging, which is beneficial for the refrigerant to cool the winding 717 better.
  • the rotor 72 includes permanent magnets 723 , a rotor yoke 725 and a rotor hub 721 .
  • the permanent magnet 723 is supported and fixed by the rotor yoke 725 .
  • a central hole 722 is provided at the center of the rotor hub 721 , and the central hole 722 is interference-fitted with the flange 8 , thereby fixing the rotor 72 to the flange 8 .
  • an encapsulation resin 724 may be provided on top of the permanent magnet 723.
  • a gap 720 is left between the stator 71 and the rotor 72 .
  • stator 71 is located below the stator 71 .
  • the arrangement of stator 71 and rotor 72 is based on the following reasons:
  • the gas forces are largely balanced by the compression chamber 56 .
  • the downward gas force ie reverse thrust
  • this gas force pushes down the second scroll 6 , which in turn pushes down the flange 8 , and is then transmitted to the rotor 72 and acts on the frame 4 .
  • the stator 71 has an upward electromagnetic force on the rotor 72 , and the rotor is fixedly connected to the flange 8 . Therefore, the upward electromagnetic force of the stator 71 on the rotor 72 can counteract/balance the downward thrust generated by the above-mentioned gas force and transmitted to the rotor 72 . In this way, the stress on the bracket 4 can be reduced, and the supporting parts, especially the third thrust supporting part 16 can be protected.
  • the size of the gas force under different working conditions is different, so when designing the electromagnetic force, it can be considered that the electromagnetic force is greater than the gas force under any working conditions, or it can be considered that the balance of just 1 : 1, or it can also be considered that the electromagnetic force is less than Gas Forces - These are largely dependent on the design of the support and the amount of force it can withstand.
  • 5A, 5B, 5C and 5D are respectively a perspective view, a side view, a top view and a sectional view taken along plane C-C in FIG. 5B of a stator of a disc motor according to an exemplary embodiment of the present invention.
  • stator 71 The basic structure of the stator 71 has been described above with reference to FIG. 1A , FIG. 1B and FIG. 4 , and will not be repeated here.
  • FIG. 5D In the cross-sectional view of the stator 71 shown in FIG. 5D , a plurality of windings 717 uniformly arranged around the center of the stator 71 and corresponding bobbins 716, stator teeth 714 and components for encapsulating these components are shown. Insulating varnish 718.
  • 6A, 6B, 6C and 6D are respectively a perspective view, a side view, a top view and a sectional view taken along the plane D-D in FIG. 6B of the rotor of the disc motor according to an exemplary embodiment of the present invention.
  • FIG. 6D The basic structure of the rotor 72 has been described above with reference to FIG. 1A , FIG. 1B and FIG. 4 , and will not be repeated here.
  • a plurality of permanent magnets 723 uniformly arranged around the rotation center of the rotor 72 and a rotor yoke 725 embedded between the permanent magnets 723 and the rotor hub 721 are shown,
  • the part between adjacent permanent magnets 723 is encapsulated resin 724 .
  • FIGS. 7A and 7B are a top view and a side view, respectively, of a modification of the stator shown in FIG. 5A .
  • multiple (four in FIG. 7A ) cooling ribs 719 are provided on the outer surface (upper surface in FIG. 7A ) of the stator 71 .
  • the cooling ribs 719 are evenly distributed at equal central angular intervals.
  • the heat dissipating rib 719 may be a component manufactured separately from the stator 71 and then assembled to the stator 71 .
  • the cooling ribs 719 may be integrally formed with the outer surface of the stator 71 .
  • FIGS. 8A and 8B are a plan view and a side view, respectively, of another modification example of the stator shown in FIG. 5A .
  • a plurality of (four in FIG. 8A ) cooling ribs 719' are provided on the outer surface (the upper surface in FIG. 8A ) of the stator 71 .
  • cooling ribs 719' are similar to those in Figures 7A and 7B, the difference being that, as shown in Figures 8A and 8B, the cooling ribs 719 are located entirely on the upper surface of the stator 71, and the cooling ribs 719 The radially outer ends of the ribs do not extend to the stator support ring 711; as shown in Figure 8A and Figure 8B, the radially outer ends of the cooling ribs 719' extend to the stator supporting ring 711 and are connected to the stator supporting ring 711, but the cooling ribs 719' With respect to the stator support ring 711 is a separate component, ie a component made separately.
  • FIG. 9A and 9B are a top view and a side view, respectively, of another modified example of the stator shown in FIG. 5A .
  • a plurality of (in Fig. 9A is 4) cooling ribs 719 ".
  • the quantity of these cooling ribs 719 " 7A and 7B, the difference is that: the cooling ribs 719" are formed integrally with the stator supporting ring 711.
  • FIG. 10 shows a longitudinal sectional view of a scroll compressor according to another exemplary embodiment of the present invention.
  • the actuating mechanism 7' is a radial flux motor.
  • the radial flux motor includes a stator 71' and a rotor 72'.
  • the stator 71' includes a stator support ring 711' and a plurality of stator teeth 714'. Around each stator tooth 714' is wound a corresponding winding 717'.
  • the rotor 72' is disposed radially inside the stator 71'.
  • the rotor 72' includes a plurality of permanent magnets 722' and a rotor hub 721'.
  • the stator support ring 711' of the stator 71' and the rotor hub 721' of the rotor 72' are similar in structure and connection to the corresponding structure and connection of the axial flux motor described above: the permanent magnet 722' is fixed on the rotor hub 721' Above, the inner peripheral surface of the rotor hub 721 ′ is fixedly fitted (such as interference fit or spline fit) to the outer peripheral surface of the flange 8 , and the stator 71 ′ is fixed to the bracket 4 .
  • the radial flux motor has a speed range of 0 to 40000rpm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Rotary Pumps (AREA)

Abstract

一种涡旋压缩机包括:压缩机壳体;支架(4),其安装于压缩机壳体内;第一涡旋盘(5),其位于压缩机壳体内;第二涡旋盘(6),其位于压缩机壳体内并随着第一涡旋盘(5)共同旋转,以在第一涡旋盘(5)与第二涡旋盘(6)之间限定压缩腔(56),第二涡旋盘(6)具有从其下表面向下延伸的毂(41);变形法兰(8),其支撑于支架(4)上并支承第一涡旋盘(5)和第二涡旋盘(6),变形法兰(8)连接到第一涡旋盘(5);致动机构(7),其安装于压缩机壳体内并连接到变形法兰(8),以驱动变形法兰(8)旋转,进而带动第一涡旋盘(5)和第二涡旋盘(6)共同旋转;曲轴(9)组件,其位于变形法兰(8)内并包括上油螺杆(10),上油螺杆(10)的上端(101)与第二涡旋盘(6)的毂(61)相配合,上油螺杆(10)的下端伸入油池(31)中;以及多个支承件(11、12、13、14、15、16)诸如轴承或衬套或垫圈,其位于压缩腔(56)的同一侧。

Description

涡旋压缩机
相关申请的交叉引用
本申请要求于2021年12月31日向中国国家知识产权局递交的申请号分别为202111681231.X和202123449502.7的中国专利申请的权益,该中国专利申请的全部内容以引用的方式并入本文中。
技术领域
本发明涉及一种涡旋压缩机。
背景技术
现有的共同旋转式涡旋压缩机(CRC)的体积较大,因而占用空间较大。
发明内容
为了解决上述问题以及潜在的其他技术问题而做出了本发明。
根据本发明的一个方面,提供一种涡旋压缩机。涡旋压缩机包括:
压缩机壳体;支架,安装于所述压缩机壳体内;涡旋组件,包括:
第一涡旋盘,其位于压缩机壳体内;和
第二涡旋盘,其位于压缩机壳体内并随着第一涡旋盘共同旋转,以在第一涡旋盘与第二涡旋盘之间限定压缩腔;
法兰,可旋转地支撑于支架上并支承第一涡旋盘和第二涡旋盘,其中,法兰连接到所述第一涡旋盘;以及
致动机构,安装于压缩机壳体内并连接到法兰,以驱动法兰旋转,从而驱动第一涡旋盘旋转,第一涡旋盘驱动第二涡旋盘共同旋转,其中,致动机构包括轴向磁通电动机。
可选地,轴向磁通电动机可以是盘式电动机。具体地,轴向磁通电动机包括定子和转子,定子固定于支架上,转子与法兰相连以驱动法兰旋转。
可选地,转子位于定子的下方。轴向磁通电动机的转速范围为0至40000rpm。
可选地,转子与法兰以过盈方式连接,定子和支架通过螺钉进行连接。定子包括定子轭、定子齿、定子支撑环以及缠绕在定子齿上的绕组。
可选地,定子还包括绕线架,绕线架套设在定子齿上,绕组缠绕在绕线架上。
可选地,定子轭与定子支撑环固定连接,定子支撑环与压缩机壳体过盈配合。
可选地,定子容纳于支架内,在支架的外沿和定子支撑环上设置有螺纹孔,通过螺钉将支架和定子支撑环固定连接。
可选地,在定子的外表面上设置有散热筋。散热筋是相对于定子独立地制成的部件,或者是与定子一体地成型的部件。
可选地,转子包括永磁体、转子轭和转子毂,永磁体由转子轭支撑固定,转子毂与法兰以过盈方式连接。
根据本发明的另一个方面,提供一种涡旋压缩机。涡旋压缩机包括:
压缩机壳体;
支架,安装于压缩机壳体内;
涡旋组件,包括:第一涡旋盘,其位于压缩机壳体内,和第二涡旋盘,其位于压缩机壳体内并随着第一涡旋盘共同旋转,以在第一涡旋盘与第二涡旋盘之间限定压缩腔;
法兰,可旋转地支撑于支架上并支承第一涡旋盘和第二涡旋盘,其中,法兰连接到第一涡旋盘;
致动机构,致动机构安装于压缩机壳体内并连接到法兰,以驱动法兰旋转,法兰驱动第一涡旋盘旋转,第一涡旋盘驱动第二涡旋盘共同旋转,其中,致动机构包括径向磁通电动机。
通过采用本发明的技术方案,涡旋压缩机的结构更紧凑。
附图说明
为了便于理解本发明,在下文中基于示例性实施例并结合附图描述本发明。在附图中使用相同或相似的附图标记来表示相同或相似的构件。应当理解,附图仅是示意性的。
图1A是根据本发明的示例性实施例的涡旋压缩机的纵剖视图;
图1B是图1A所示的涡旋压缩机的分解图,图1B中省略了一些部件,以使图面更简洁;
图2是图1A所示的涡旋压缩机的吸入路径、排出路径和润滑路径的示意图;
图3是图1B中示出的第二涡旋盘的立体图;
图4是根据本发明的示例性实施例的涡旋压缩机的一部分的纵剖视图;
图5A、图5B、图5C和图5D分别是根据本发明的示例性实施例的盘式电动机的定子的立体图、侧视图、俯视图和沿着图5B中的平面C-C截取的剖视图。
图6A、图6B、图6C和图6D分别是根据本发明的示例性实施例的盘式电动机的转子的立体图、侧视图、俯视图和沿着图6B中的平面D-D截取的剖视图。
图7A和图7B分别是图5A所示的定子的另一个变型例的俯视图和侧视图。
图8A和图8B分别是图5A所示的定子的另一个变型例的俯视图和侧视图。
图9A和图9B分别是图5A所示的定子的另一个变型例的俯视图和侧视图。
图10示出根据本发明的另一个示例性实施例的涡旋压缩机的纵剖视图。
具体实施方式
在下文中参照附图来详细描述本发明的具体实施例和变型例。
【涡旋压缩机的总体构造】
图1A是根据本发明的示例性实施例的涡旋压缩机的纵剖视图。图1B是图1A所示的涡旋压缩机的分解图,在图1B中省略了一些部件,以使图面更简洁。图3是图1B中示出的第二涡旋盘被从另一个视角看到的立体图。
如图1A和图1B所示,根据本发明的涡旋压缩机包括压缩机壳体 以及安装于压缩机壳体内的支架4、涡旋组件(5、6)、致动机构7、法兰8、多个支承件(例如轴承或衬套或垫圈)11、12、13、14、15、16以及曲轴9等。
具体地,压缩机壳体包括上盖1、中壳2和下壳3。在上盖1上设置有排出口1001。在上盖1与中壳2的顶面之间形成排出腔1002。在中壳2上设置有吸入口2001,用于吸入流体(例如制冷剂)。在下壳3的底部形成有油池31,用于储存润滑油。中壳2和下壳3形成封闭空间,支架4、涡旋组件(5、6)、致动机构7、法兰8、多个支承件11、12、13、14、15、16以及曲轴9等容纳再该密封空间中。另外,在下壳3的底面上设置有多个支脚32,在支脚32上设置有固定孔33,以便利用固定螺钉等紧固件将下壳3固定到支撑物(例如地面)上。
支架4包括毂41和支撑臂42。在支撑臂42的上表面上开设有多个螺纹孔43。另外,在支撑臂42与毂41连接处的底面上设置有漏油孔44。支架4可以固定于压缩机的下壳3中,比如通过毂41的下端固定于下壳体3中。
涡旋组件包括第一涡旋盘5和第二涡旋盘6。第二涡旋盘6能够与第一涡旋盘5共同旋转,以在第一涡旋盘5与第二涡旋盘6之间限定压缩腔56。第一涡旋盘5具有向下延伸的涡卷51和位于其顶部的中心孔52。第二涡旋盘6具有向下延伸的毂61和向上延伸的涡卷62。涡卷51和62彼此卡合而形成压缩腔56。
法兰8支撑于支架4上并包括托盘81、毂82和中心孔83。在中心孔83中可以设置有凸部831和凹部832。托盘81的上表面811支承第一涡旋盘5和第二涡旋盘6。具体地,法兰8可以通过托盘81连接到第一涡旋盘5,以驱动第一涡旋盘5旋转。
致动机构7可以是轴向磁通电动机(例如盘式电动机)或径向磁通电动机(例如内置式永磁电动机)。致动机构7的转速可以达到40000rpm。
根据本发明的示例性实施例,盘式电动机包括定子71和转子72。定子71可以固定在支架4上,或者可选地直接固定到中壳2的内壁上。转子72的中心孔722与法兰8的毂82(例如通过过盈配合、花键配合 等方式)固定地相连,以驱动法兰8旋转,进而带动第一涡旋盘5和第二涡旋盘6共同旋转,例如,驱动第一涡旋盘5旋转,第一涡旋盘5旋转所产生的气体力驱动第二涡旋盘6共同旋转。
曲轴9位于法兰8的中心孔83内。曲轴9的上端连接至第二涡旋盘6的毂61。另外,涡旋压缩机还可以包括上油螺杆10。上油螺杆10的上端101与第二涡旋盘6的毂61相配合连接,上油螺杆10的下端103伸入油池31中。
曲轴9总体上呈圆柱状并具有轴向通孔91、上部区段92和下部区段93。上油螺杆10设置于轴向通孔91内,并且上油螺杆10的中心轴线O 2与曲轴9的中心轴线O 1平行而不重合。换句话说,上油螺杆10相对于曲轴9偏心地布置。曲轴9的上部区段92的外径及内径分别大于下部区段93的外径及内径,从而在上部区段92与下部区段93的接合处形成外部台阶面95。在曲轴9的上端面94上设置有回油孔97。回油孔97向下延伸并贯穿上部区段92和下部区段93,由此形成回油通道99和100。
在本发明的示例性实施例中,可以将所有支承件11、12、13、14、15、16设置于压缩腔56的同一侧。在图1A的视角下,这些支承件均位于压缩腔56的下侧。
具体地,这些支承件可以包括第一滑动支承件11、第二滑动支承件12和第三滑动支承件13。第一滑动支承件11位于曲轴9的上部区段92的内周面与第二涡旋盘6的毂61的外周面之间。第二滑动支承件12位于法兰8的中心孔83的内周面与曲轴9的上部区段92的外周面之间。第三滑动支承件13位于法兰8的中心孔83的内周面与曲轴9的下部区段93的外周面之间。
在曲轴9的上部区段92的内表面上设置有销槽96。销19嵌设在销槽96内并与第一滑动支承件11的驱动面111相配合。第一滑动支承件11可以包括一个大致圆筒状的套筒主体以及过盈配合在该套筒主体内的轴承套。第二滑动支承件12的外周面上可以设置有凹部121和凸部122,用于分别与法兰8的中心孔83中的凸部831和凹部832相配合。这样,当法兰8旋转时,可以带动第二滑动支承件12旋转。第二 支承件12可以包括一个大致圆筒状的套筒主体以及过盈配合在该套筒主体内的轴承套。
这些支承件(例如轴承或衬套或垫圈)还可以包括第一止推支承件15、第二止推支承件14和第三止推支承件16。第一止推支承件15位于法兰8的内部台阶面84与曲轴9的外部台阶面95之间。第二止推支承件14位于第二涡旋盘6的下表面与法兰8的托盘81的上表面811之间。第三止推支承件16位于法兰8的底面与支架4的毂41和支撑臂42的接合处之间。
第一止推支承件15、第二止推支承件14和第三止推支承件16中的一个或多个可以被构造为止推垫片或止推轴承的形式。以第一止推支承件15为例,如图1B所示,第一止推支承件15被构造为止推垫片的形式。在第一止推支承件15的上表面和下表面上设置有彼此错开的多个油槽151,用于积蓄润滑油,以便在摩擦副的表面形成油膜。图1B所示的油槽151总体上呈矩形形状,应当理解的是,油槽151还可以呈圆形或其他适当的形状。其他止推支承件14和16的构造可以与第一止推支承件的构造类似。另外,构成止推支承件的材料可以是耐磨金属或非金属材料。
第二涡旋盘6的毂61具有内孔610(参见图3),该内孔610的内部形状与上油螺杆10的上端101的外部形状相互匹配,从而允许上油螺杆10的上端101配合到内孔610中。具体地,上油螺杆10的上端101的外周面可以与第二涡旋盘6的毂61的内孔610的内周面过盈配合,以防止上油螺杆10相对于第二涡旋盘6旋转。
可选地,如图1B所示,上油螺杆10的上端101的外周面包括第一平面1011,相应地,第二涡旋盘6的毂61的内孔610的内周面包括第二平面611(参见图3)。当上油螺杆10的上端101配合到第二涡旋盘6的毂61的内孔610中时,第一平面1011和第二平面611相互贴合,以防止上油螺杆10相对于第二涡旋盘6旋转。
另外,在上油螺杆10的上端101的外周面上设置有止挡部102。如图3所示,在第二涡旋盘6的毂61的内孔610的内周面上设置有挡圈槽612并且在挡圈槽612中设置有挡圈20。当上油螺杆10的上端101 配合到第二涡旋盘6的毂61的内孔610中时,止挡部102嵌入挡圈槽612中,挡圈20能够从下方卡住止挡部102,以防止上油螺杆10的上端101从第二涡旋盘6的毂61的内孔610中脱出。
根据本发明的涡旋压缩机还包括保护套筒17。如图1A所示,保护套筒17的筒壁171位于吸入口2001与涡旋组件之间,以避免当涡旋压缩机吸入流体(例如制冷剂)时该流体直接冲击涡旋组件以致对涡旋组装造成破坏。如图1B所示,保护套筒17总体上具有圆筒状薄壁构造,具有筒壁171和下部凸缘172。在下部凸缘172上设置有多个螺纹孔(或通孔)173。这些螺纹孔173与定子71的定子支撑环711上的多个螺纹孔712相对应,可以利用多个螺钉18将保护套筒17和定子71固定到支架4。
如图1A所示,在曲轴9上设置有径向通孔90。径向通孔90的一端开口位于曲轴9的外周面上,径向通孔90的另一端开口位于曲轴9的轴向通孔91的内周面上。另外,在曲轴9上设置有另一个或多个径向通孔98。径向通孔98的一端开口位于曲轴9的外周面上,径向通孔98的另一端开口与回油通道99连通。如将在下文中描述的,径向通孔90用于将来自油池31的润滑油输送到涡旋压缩机的待润滑部件;径向通孔98用于回油,同时可以联通回油通道99和100。
【涡旋压缩机的流体路径】
接下来,参照图2描述根据本发明的涡旋压缩机内部的流体路径。图2是图1A所示的涡旋压缩机的吸入路径、排出路径和润滑路径的示意图。如图2所示,主要示出了两条吸入路径XQ1、XQ2,四条润滑路径RH1、RH2、RH3、RH4和两条回油路径HY1、HY2。应当理解,以下描述的根据本发明的涡旋压缩机内部的流体路径仅是示意性的,而非限制性的或穷举性的。在实际应用中,可以设置更多或更少的流体路径。
具体地,沿着吸入路径XQ1,制冷剂经由吸入口2001进入涡旋压缩机的中壳2内,受到保护套筒17的筒壁171的阻挡而向上流动,然后通过筒壁171与涡旋组件(具体地是第一涡旋盘5)之间的间隙向下流动,然后经由设置于法兰8的托盘81和第一涡旋盘5中的流体通道 进入压缩腔56中。
沿着吸入路径XQ2,制冷剂经由吸入口2001进入涡旋压缩机的中壳2内,受到保护套筒17的筒壁171的阻挡而向下流动,然后通过致动机构7的定子71与转子72之间的间隙(参见图4,间隙720)以及定子71的中心孔与法兰8的外周面之间的间隙,然后经由设置于法兰8的托盘81和涡旋组件中的流体通道进入压缩腔56中。
沿着润滑路径RH1,最初储存于油池31中的润滑油随着上油螺杆10的旋转而上升至第二滑动支承件12,然后到达第一止推支承件15。一部分润滑油经由回油孔97向下流入回油通道99中,并进一步进入回油通道100中;另一部分润滑油沿着第二滑动支承件12两侧的间隙和第一滑动支承件11两侧的间隙向下流动到径向通孔98,然后经由径向通孔98进入回油通道99中,并进一步进入回油通道100中。回油通道100中的润滑油最终流回到油池31中。这样,形成了回油路径HY1。
沿着润滑路径RH2,最初储存于油池31中的润滑油随着上油螺杆10的旋转而上升至第二止推支承件14,然后经由第二止推支承件14流动到设置于法兰8的托盘81和涡旋组件中的流体通道中,最终随着制冷剂一起进入压缩腔56中。
压缩腔56中的流体在被压缩之后,经由第一涡旋盘5顶部的中心孔52和中壳2顶部的中心孔2002流动到排出腔1002中,然后经由排出口1001排放到涡旋压缩机外部,由此形成排出路径PQ。
此外,沿着润滑路径RH2,最初储存于油池31中的润滑油随着上油螺杆10的旋转而上升至径向通孔90。经由径向通孔90流动到第三滑动支承件13。然后,一部分润滑油向上流动到第一止推支承件15,由此形成润滑路径RH3,另一部分润滑油向下流动到第三止推支承件16,由此形成润滑路径RH4。
对第三止推支承件16进行润滑之后的润滑油以及从上方流下来的润滑油可以在支撑臂42与毂41连接处的底面上流动,最终通过支架4上的漏油孔44流回到油池31中。这样,形成了回油路径HY2。
【致动机构的基本构造】
在上文中结合图1A和图1B描述了致动机构7的基本构造。接下 来进一步参考图4来更详细地描述致动机构7的基本构造。
图4是根据本发明的示例性实施例的涡旋压缩机的一部分的纵剖视图。图4主要地示出致动机构7(例如属于轴向磁通电动机类的盘式电动机)的基本构造。
如图1A、图1B和图4所示,定子71具有外周缘(在下文中也称为定子支撑环)711、定子架710、定子轭713、定子齿714以及缠绕在该定子齿上的多个绕组717。定子轭713和定子齿714实际上是同一部件的两个不同部分,如图4所示,该部件的用于缠绕有绕组717的部分(在图1A、图1B和图4中为该部件的下部)称为定子齿,而不用于缠绕有绕组的部分(在图1A、图1B和图4中为该部件的上部)称为定子轭。定子轭713与定子支撑环711固定连接。
定子支撑环711可以与压缩机壳体过盈配合。另外,在定子支撑环711上设置有多个螺纹孔(或通孔)712,同时在支架4的外沿(即支撑臂42的顶部)上设置有螺纹孔43。螺纹孔712与螺纹孔43一一对应,从而可以利用多个螺钉18将定子71固定到支架4上。
定子71还可以包括绕线架716。绕线架716套设在定子齿714上,然后绕组717缠绕在绕线架716上。在绕线架716套设在定子齿714上之后,可以在定子齿714的底面上进一步设置齿靴(未示出)。齿靴采用软磁材料并且安装于定子齿714朝向转子72的一侧端面(即底面)715上。齿靴的面积大于定子齿714的底面715的面积,以便限制绕组717和绕线架716的竖向移动。此外,齿靴通过采用导磁的软磁材料,可以增大接收转子72的磁场的面积。
应当理解的是,绕线架716不是必须的,绕组717也可以直接缠绕在定子齿714上。另外,齿靴也可以与定子齿714形成一个整体并且被一起加工出来。
可以使用树脂和/或绝缘漆718固定绕组717,也可以使用树脂封装绕组717、绕线架716、定子齿714和定子轭713。比如,可以使用绝缘漆718进行上述固定和/封装,这样有利于制冷剂更好地冷却绕组717。
转子72包括永磁体723、转子轭725和转子毂721。永磁体723 被转子轭725支撑固定。在转子毂721的中心设置有中心孔722,该中心孔722与法兰8以过盈方式配合,从而将转子72固定至法兰8。在永磁体723的顶部,可以设置有封装树脂724。在定子71与转子72之间留有间隙720。
从图1A和图4可以看出,转子72位于定子71的下方。如此布置定子71和转子72是基于以下原因:
在本发明的示例性实施例的涡旋压缩机内,气体力大部分被压缩腔56平衡。然而,从中壳2顶部的中心孔2002向排出腔1002排出的气体所产生的向下的气体力(即反推力)没有被平衡。结果,这股气体力向下推压第二涡旋盘6,进而向下推压法兰8,然后传递到转子72并且作用到支架上4。
在如本发明的示例性实施例中的转子72位于定子71的下方的布置中,定子71对转子72有向上的电磁力,而转子与法兰8是固定相连的。因此,定子71对转子72的向上的电磁力能够抵消/平衡由上述气体力产生并传递到转子72上的向下的推力。这样,能够减小支架4的受力,保护支承件,特别是第三止推支承件16。在不同工况下的气体力的大小不同,因此在设计电磁力时,可以考率电磁力大于任何工况下的气体力,也可以考虑刚好1 1的平衡,或者也可以考虑电磁力小于气体力——以上这些主要取决于支承件的设计以及其所能承受的力的大小。
【定子的构造】
接下来进一步描述定子71的构造。图5A、图5B、图5C和图5D分别是根据本发明的示例性实施例的盘式电动机的定子的立体图、侧视图、俯视图和沿着图5B中的平面C-C截取的剖视图。
在前文中已经参照图1A、图1B和图4描述了定子71的基本构造,在此不再赘述。在图5D所示的定子71的剖面图中,示出了围绕定子71的中心均匀地排布的多个绕组717以及相应的绕线架716、定子齿714和用于将这些部件封装起来的绝缘漆718。
【转子的构造】
接下来进一步描述转子72的构造。图6A、图6B、图6C和图6D 分别是根据本发明的示例性实施例的盘式电动机的转子的立体图、侧视图、俯视图和沿着图6B中的平面D-D截取的剖视图。
在前文中已经参照图1A、图1B和图4描述了转子72的基本构造,在此不再赘述。在图6D所示的转子72的剖面图中,示出了围绕转子72的旋转中心均匀地排布的多个永磁体723以及嵌设在永磁体723与转子毂721之间的转子轭725,相邻永磁体723之间的部分为封装起来树脂724。
【散热筋的构造】
图7A和图7B分别是图5A所示的定子的变型例的俯视图和侧视图。如图7A和图7B所示,为了改善定子71的散热,在定子71的外表面(在图7A中为上表面)上设置有多个(在图7A中为4个)散热筋719。如图7A所示,这些散热筋719以相等的圆心角间隔均匀地分布。另外,散热筋719可以是相对于定子71独立地制成的部件,然后被组装到定子71上。或者,散热筋719可以是与定子71的外表面一体地成型的部件。
图8A和图8B分别是图5A所示的定子的另一个变型例的俯视图和侧视图。如图8A和图8B所示,在定子71的外表面(在图8A中为上表面)上设置有多个(在图8A中为4个)散热筋719’。这些散热筋719’的数量及分布方式与图7A及图7B中的情况相似,不同之处在于:如图8A和图8B所示,散热筋719整个位于定子71的上表面上,散热筋719的径向外端没有延伸至定子支撑环711;如图8A和图8B所示,散热筋719’的径向外端延伸至定子支撑环711并连接至定子支撑环711,但散热筋719’相对于定子支撑环711是分立的部件,即独立地制成的部件。
图9A和图9B分别是图5A所示的定子的另一个变型例的俯视图和侧视图。如图9A和图9B所示,在定子71的外表面(在图9A中为上表面)上设置有多个(在图9A中为4个)散热筋719”。这些散热筋719”的数量及分布方式与图7A及图7B中的情况相似,不同之处在于:散热筋719”是与定子支撑环711一体地成型的部件。
【涡旋压缩机的变型例】
图10示出根据本发明的另一个示例性实施例的涡旋压缩机的纵剖视图。
图10所示的示例性实施例的涡旋压缩机与图1A所示的示例性实施例的涡旋压缩机之间的主要区别在于致动机构。在图10所示的示例性实施例的涡旋压缩机中,致动机构7’是径向磁通电动机。该径向磁通电动机包括定子71’和转子72’。定子71’包括定子支撑环711’和多个定子齿714’。在每个定子齿714’的外周缠绕有相应的绕组717’。转子72’设置于定子71’的径向内侧。转子72’包括多个永磁体722’和转子毂721’。定子71’的定子支撑环711’以及转子72’的转子毂721’的构造及连接方式与前文描述的轴向磁通电动机的相应构造及连接方式相似:永磁体722’固定在转子毂721’上,转子毂721’的内周面固定配合(例如过盈配合或花键配合)到法兰8的外周面,定子71’固定至支架4。该径向磁通电动机的转速范围为0至40000rpm。
虽然在上文中参照具体的实施例和变型例对本发明的技术目的、技术方案和技术效果进行了详细的说明,但是应当理解的是,上述实施例和变型例仅是示例性的,而不是限制性的。在本发明的实质精神和原则之内,本领域技术人员做出的任何修改、等同替换、改进均被包含在本发明的保护范围之内。

Claims (17)

  1. 一种涡旋压缩机,其特征在于,所述涡旋压缩机包括:
    压缩机壳体(1、2、3);
    支架(4),所述支架安装于所述压缩机壳体内;
    涡旋组件,所述涡旋组件包括:
    第一涡旋盘(5),其位于所述压缩机壳体内;和
    第二涡旋盘(6),其位于所述压缩机壳体内并随着所述第一涡旋盘共同旋转,以在所述第一涡旋盘与所述第二涡旋盘之间限定压缩腔(56);
    法兰(8),所述法兰可旋转地支撑于所述支架上并支承所述第一涡旋盘和所述第二涡旋盘,其中,所述法兰连接到所述第一涡旋盘;以及
    致动机构(7),所述致动机构安装于压缩机壳体内并连接到所述法兰,以驱动所述法兰旋转,所述第一涡旋盘驱动所述第二涡旋盘共同旋转,其中,所述致动机构包括轴向磁通电动机。
  2. 根据权利要求1所述的涡旋压缩机,其特征在于,所述轴向磁通电动机是盘式电动机。
  3. 根据权利要求1或2所述的涡旋压缩机,其特征在于,所述轴向磁通电动机包括定子(71)和转子(72),所述定子固定于所述支架上,所述转子与所述法兰相连以驱动所述法兰旋转。
  4. 根据权利要求3所述的涡旋压缩机,其特征在于,所述转子位于所述定子的下方。
  5. 根据权利要求4所述的涡旋压缩机,其特征在于,所述轴向磁通电动机的转速范围为0至40000rpm。
  6. 根据权利要求4所述的涡旋压缩机,其特征在于,所述转子与 所述法兰以过盈方式连接,所述定子和所述支架通过螺钉(18)进行连接。
  7. 根据权利要求4所述的涡旋压缩机,其特征在于,所述定子包括定子轭(713)、定子齿(714)、定子支撑环(711)以及缠绕在所述定子齿上的绕组(717)。
  8. 根据权利要求7所述的涡旋压缩机,其特征在于,所述定子还包括绕线架(716),所述绕线架套设在所述定子齿上,所述绕组缠绕在所述绕线架上。
  9. 根据权利要求7所述的压缩机,其特征在于,所述定子轭与所述定子支撑环固定连接,所述定子支撑环与所述压缩机壳体过盈配合。
  10. 根据权利要求7所述的压缩机,其特征在于,所述定子容纳于所述支架内,在所述支架的外沿和所述定子支撑环上设置有螺纹孔,通过螺钉(18)将所述支架和所述定子支撑环(711)固定连接。
  11. 根据权利要求3所述的压缩机,其特征在于,在所述定子的外表面上设置有一个或多个散热筋(719),
    所述散热筋是相对于所述定子独立地制成的部件,或者是与所述定子一体地成型的部件。
  12. 根据权利要求4所述的压缩机,其特征在于,所述转子包括永磁体(723)、转子轭(725)和转子毂(721),所述永磁体由所述转子轭支撑固定,所述转子毂与所述法兰以过盈方式连接。
  13. 一种涡旋压缩机,其特征在于,所述涡旋压缩机包括:
    压缩机壳体(1、2、3);
    支架(4),所述支架安装于所述压缩机壳体内;
    涡旋组件,所述涡旋组件包括:
    第一涡旋盘(5),其位于所述压缩机壳体内;和
    第二涡旋盘(6),其位于所述压缩机壳体内并随着所述第一涡旋盘共同旋转,以在所述第一涡旋盘与所述第二涡旋盘之间限定压缩腔(56);
    法兰(8),所述法兰可旋转地支撑于所述支架上并支承所述第一涡旋盘和所述第二涡旋盘,其中,所述法兰连接到所述第一涡旋盘;以及
    致动机构(7),所述致动机构安装于压缩机壳体内并连接到所述法兰,以驱动所述法兰旋转,所述第一涡旋盘驱动所述第二涡旋盘共同旋转,其中,所述致动机构包括径向磁通电动机。
  14. 根据权利要求13所述的涡旋压缩机,其特征在于,所述径向磁通电动机的转速范围为0至40000rpm。
  15. 根据权利要求13所述的涡旋压缩机,其特征在于,所述径向磁通电动机包括定子(71’)和转子(72’),所述转子设置于所述定子的径向内侧,所述定子固定于所述支架上,所述转子与所述法兰相连以驱动所述法兰旋转。
  16. 根据权利要求15所述的涡旋压缩机,其特征在于,所述转子与所述法兰以过盈方式连接,所述定子固定至所述支架。
  17. 根据权利要求15所述的涡旋压缩机,其特征在于,所述定子包括定子支撑环(711’)和多个定子齿(714’),在每个定子齿的外周缠绕有相应的绕组(717’)。
PCT/CN2022/143402 2021-12-31 2022-12-29 涡旋压缩机 WO2023125811A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202123449502.7 2021-12-31
CN202111681231.XA CN116412128A (zh) 2021-12-31 2021-12-31 涡旋压缩机
CN202111681231.X 2021-12-31
CN202123449502.7U CN217002271U (zh) 2021-12-31 2021-12-31 涡旋压缩机

Publications (1)

Publication Number Publication Date
WO2023125811A1 true WO2023125811A1 (zh) 2023-07-06

Family

ID=86998010

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/143402 WO2023125811A1 (zh) 2021-12-31 2022-12-29 涡旋压缩机

Country Status (1)

Country Link
WO (1) WO2023125811A1 (zh)

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5090876A (en) * 1989-02-28 1992-02-25 Seiko Epson Corporation Scroll type fluid handling machine
JPH062670A (ja) * 1992-06-17 1994-01-11 Hitachi Ltd 回転型スクロール流体機械
JPH07229481A (ja) * 1994-02-21 1995-08-29 Sanyo Electric Co Ltd 両回転式スクロール圧縮機
JP2002371977A (ja) * 2001-06-13 2002-12-26 Ebara Corp スクロール型流体機械
US20180223849A1 (en) * 2017-02-06 2018-08-09 Emerson Climate Technologies, Inc. Scroll compressor with axial flux motor
CN108397382A (zh) * 2017-02-06 2018-08-14 艾默生环境优化技术有限公司 共旋转式压缩机
CN108397386A (zh) * 2017-02-06 2018-08-14 艾默生环境优化技术有限公司 具有多个压缩机构的共旋转式压缩机
CN108425843A (zh) * 2017-02-06 2018-08-21 艾默生环境优化技术有限公司 共旋转式压缩机
CN110382868A (zh) * 2017-02-06 2019-10-25 艾默生环境优化技术有限公司 具有轴向通量马达的涡旋式压缩机
CN211422902U (zh) * 2017-03-06 2020-09-04 Lg电子株式会社 互相旋转型涡旋压缩机
CN217002271U (zh) * 2021-12-31 2022-07-19 丹佛斯(天津)有限公司 涡旋压缩机
CN217234169U (zh) * 2021-12-31 2022-08-19 丹佛斯(天津)有限公司 法兰和包括该法兰的涡旋压缩机
CN217233793U (zh) * 2021-12-31 2022-08-19 丹佛斯(天津)有限公司 压缩机
CN217327669U (zh) * 2021-12-31 2022-08-30 丹佛斯(天津)有限公司 涡旋压缩机
CN217582486U (zh) * 2021-12-31 2022-10-14 丹佛斯(天津)有限公司 涡旋压缩机
CN217682264U (zh) * 2021-12-31 2022-10-28 丹佛斯(天津)有限公司 用于涡旋压缩机的驱动件以及涡旋压缩机
CN217898551U (zh) * 2021-12-31 2022-11-25 丹佛斯(天津)有限公司 用于涡旋压缩机的套筒以及涡旋压缩机
CN217950671U (zh) * 2021-12-31 2022-12-02 丹佛斯(天津)有限公司 涡旋压缩机
CN217976583U (zh) * 2021-12-31 2022-12-06 丹佛斯(天津)有限公司 涡旋压缩机

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5090876A (en) * 1989-02-28 1992-02-25 Seiko Epson Corporation Scroll type fluid handling machine
JPH062670A (ja) * 1992-06-17 1994-01-11 Hitachi Ltd 回転型スクロール流体機械
JPH07229481A (ja) * 1994-02-21 1995-08-29 Sanyo Electric Co Ltd 両回転式スクロール圧縮機
JP2002371977A (ja) * 2001-06-13 2002-12-26 Ebara Corp スクロール型流体機械
US20180223849A1 (en) * 2017-02-06 2018-08-09 Emerson Climate Technologies, Inc. Scroll compressor with axial flux motor
CN108397382A (zh) * 2017-02-06 2018-08-14 艾默生环境优化技术有限公司 共旋转式压缩机
CN108397386A (zh) * 2017-02-06 2018-08-14 艾默生环境优化技术有限公司 具有多个压缩机构的共旋转式压缩机
CN108425843A (zh) * 2017-02-06 2018-08-21 艾默生环境优化技术有限公司 共旋转式压缩机
CN110382868A (zh) * 2017-02-06 2019-10-25 艾默生环境优化技术有限公司 具有轴向通量马达的涡旋式压缩机
CN211422902U (zh) * 2017-03-06 2020-09-04 Lg电子株式会社 互相旋转型涡旋压缩机
CN217002271U (zh) * 2021-12-31 2022-07-19 丹佛斯(天津)有限公司 涡旋压缩机
CN217234169U (zh) * 2021-12-31 2022-08-19 丹佛斯(天津)有限公司 法兰和包括该法兰的涡旋压缩机
CN217233793U (zh) * 2021-12-31 2022-08-19 丹佛斯(天津)有限公司 压缩机
CN217327669U (zh) * 2021-12-31 2022-08-30 丹佛斯(天津)有限公司 涡旋压缩机
CN217582486U (zh) * 2021-12-31 2022-10-14 丹佛斯(天津)有限公司 涡旋压缩机
CN217682264U (zh) * 2021-12-31 2022-10-28 丹佛斯(天津)有限公司 用于涡旋压缩机的驱动件以及涡旋压缩机
CN217898551U (zh) * 2021-12-31 2022-11-25 丹佛斯(天津)有限公司 用于涡旋压缩机的套筒以及涡旋压缩机
CN217950671U (zh) * 2021-12-31 2022-12-02 丹佛斯(天津)有限公司 涡旋压缩机
CN217976583U (zh) * 2021-12-31 2022-12-06 丹佛斯(天津)有限公司 涡旋压缩机

Similar Documents

Publication Publication Date Title
CN217002271U (zh) 涡旋压缩机
US11136975B2 (en) Drive apparatus having oil passage defined in stopper body
JP4143827B2 (ja) スクロール圧縮機
US8021131B2 (en) Vacuum pump
US20100150752A1 (en) Revolution type compressor
CN217976583U (zh) 涡旋压缩机
CN217950671U (zh) 涡旋压缩机
JP2015021427A (ja) 送風ファン
JP6747354B2 (ja) 遠心圧縮機
JP6740950B2 (ja) 遠心圧縮機
KR20080081862A (ko) 자기 구동 베인 펌프
JP2013204784A (ja) 軸受装置および送風ファン
JP2014145304A (ja) 送風ファン
JP2019190458A (ja) 流体コンプレッサーを備えるヒートポンプ
WO2023125811A1 (zh) 涡旋压缩机
JP2004052657A (ja) 密閉型圧縮機
JP2015001255A (ja) 軸受機構および送風ファン
JP3096387U (ja) 動的流体軸受モジュール
JP6221035B2 (ja) 軸受機構、モータおよび送風ファン
CN116412128A (zh) 涡旋压缩机
WO2023125780A1 (zh) 涡旋压缩机
US20150035401A1 (en) Motor
WO2015107840A1 (ja) 電動過給機
JP4743377B2 (ja) スクロール圧縮機
US20070224059A1 (en) Miniature pump for liquid cooling system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22915060

Country of ref document: EP

Kind code of ref document: A1