WO2023124601A1 - 基于酸处理氧化锡的钙钛矿电池及其制备 - Google Patents

基于酸处理氧化锡的钙钛矿电池及其制备 Download PDF

Info

Publication number
WO2023124601A1
WO2023124601A1 PCT/CN2022/132120 CN2022132120W WO2023124601A1 WO 2023124601 A1 WO2023124601 A1 WO 2023124601A1 CN 2022132120 W CN2022132120 W CN 2022132120W WO 2023124601 A1 WO2023124601 A1 WO 2023124601A1
Authority
WO
WIPO (PCT)
Prior art keywords
tin oxide
acid
perovskite
transport layer
treated
Prior art date
Application number
PCT/CN2022/132120
Other languages
English (en)
French (fr)
Inventor
卢豪
顾邦凯
杜一
郭春显
Original Assignee
苏州科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州科技大学 filed Critical 苏州科技大学
Publication of WO2023124601A1 publication Critical patent/WO2023124601A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the invention relates to the technical field of solar cell preparation, in particular to a perovskite cell based on acid-treated tin oxide and its preparation.
  • the organic-inorganic composite perovskite solar cell which came out in 2009, has attracted more and more attention due to its low cost, simple process and high photoelectric conversion efficiency.
  • the conversion efficiency of small-area perovskite solar cells has achieved a breakthrough from 3.8% to 25.2%, and the conversion efficiency of large-area perovskite solar cells has exceeded 20%.
  • Perovskite solar cells are usually composed of conductive glass (FTO, ITO), electron transport layer, perovskite light absorption layer, hole transport layer and counter electrode (Au, Ag).
  • Tin oxide is widely used as an electron transport layer material due to its advantages of low cost, high stability and high conductivity.
  • the preparation of electron transport layer by tin oxide colloidal solution is the mainstream method for preparing tin oxide electron transport layer.
  • the tin oxide colloidal solution should not be stored for a long time, and the performance of the perovskite battery prepared by using the tin oxide colloidal solution stored for a long time is obviously reduced, and the stability is not high.
  • tin oxide colloidal solution that can be stored for a long time, has high stability, and has excellent photoelectric performance as an electron transport layer material for use in optoelectronic fields such as perovskite batteries, quantum dot batteries, or photodetectors.
  • the present invention provides a perovskite battery based on acid-treated tin oxide and its preparation.
  • the perovskite battery based on acid-treated tin oxide includes a conductive substrate, the above-mentioned electron transport layer, a perovskite light-absorbing layer, a hole transport layer and a metal electrode arranged in sequence, and the material of the electron transport layer includes acid-treated tin oxide .
  • the electron transport layer has a thickness of 30-80 nm.
  • the present invention greatly improves the stability of the tin oxide colloidal solution by acid-treating the tin oxide colloidal solution, and improves and restores the performance of the tin oxide colloidal solution stored for a long time.
  • the colloidal solution of tin oxide nanoparticles after acid treatment has higher stability and is more conducive to long-term storage.
  • the acidified tin oxide of the present invention is used as an electron transport layer material, which effectively improves the electron transport capacity, and further improves the photoelectric performance and stability of the perovskite battery.
  • the second object of the present invention is to provide a kind of preparation method based on the acid-treated perovskite battery of tin oxide, comprising the following steps:
  • the particle size of the tin oxide nanoparticles is 1-10 nm.
  • the concentration of the tin oxide dispersion is 100-300mM.
  • the acid solution is selected from one or more of acetic acid, nitric acid and hydrochloric acid.
  • the molar ratio of acid to tin oxide is 1:1-50.
  • the temperature of the annealing is 150-155° C., and the time is 20-30 min.
  • the perovskite precursor solution includes a lead iodide solution dissolved in dimethylformamide and a solution of formamidine hydriodide, methylammonium bromide and methylammonium chloride dissolved in isopropanol.
  • the perovskite light-absorbing layer has a thickness of 350-500 nm.
  • the conductive substrate is fluorine doped tin oxide glass (FTO) or indium tin oxide conductive glass (ITO).
  • FTO fluorine doped tin oxide glass
  • ITO indium tin oxide conductive glass
  • the material of the hole transport layer is 2,2',7,7'-tetrakis[N,N-bis(4-methoxyphenyl)amino]-9,9'-spirobifluorene ( Spiro-OMeTAD), the thickness of the hole transport layer is 200-300nm.
  • the metal electrode is a silver electrode or a gold electrode, and the thickness of the metal electrode is 50-150 nm, preferably 100 nm.
  • the acidification of the tin oxide precursor solution in the present invention reduces the agglomeration of tin oxide nanoparticles, improves the performance of the tin oxide nanoparticle colloidal solution stored for a long time, and greatly improves the stability of the solution.
  • the acid-treated tin oxide film is uniform and dense, which optimizes the surface defects and accelerates the separation and transmission of electrons at the surface interface, thereby optimizing the photoelectric performance of the perovskite battery and greatly improving the performance of the perovskite battery. stability.
  • the third object of the present invention is to provide the application of the tin oxide thin film prepared based on the acid-treated tin oxide in the field of optoelectronics.
  • the tin oxide thin film prepared based on acid-treated tin oxide is applied to quantum dot batteries or photodetectors.
  • the acidified tin oxide thin film prepared by the acid-treated tin oxide nanoparticles in the invention can be obtained by simple coating and low-temperature sintering, has simple process and high safety, and can also be applied in photoelectric fields such as quantum dot batteries or photodetectors.
  • the preparation method of the perovskite battery comprises the following steps:
  • the prepared film sample is placed on a preheated heating stage for 150 Anneal at °C for 20 minutes to remove impurities and form an acidified tin oxide film with a thickness of 30-80nm. After the substrate is cooled to room temperature, clean it with ultraviolet light for 20 minutes;
  • tin oxide nanoparticle precursor solutions with different standing times have different effects on the performance of the device, and different standing times can reflect the optimization effect and device performance of acid-treated tin oxide nanoparticles.
  • a step of irradiating the conductive substrate with ultraviolet light is also included.
  • the purpose is to increase the hydrophilicity of the film surface to facilitate subsequent spin coating to prepare uniform and dense films.
  • a step of irradiating the electron transport layer with ultraviolet light after cooling is also included.
  • the purpose is to increase the hydrophilicity of the film surface to facilitate subsequent spin coating to prepare uniform and dense films.
  • steps S1-S3 are all completed in a glove box to isolate the influence of the external environment on the device.
  • step S1 the electron transport layer is coated by a spin coating method, and the spin coating speed is 2000-5000 rpm.
  • step S2 the perovskite light-absorbing layer is coated by a spin coating method, and the spin coating speed is 1500-3000 rpm.
  • step S3 the hole transport layer is coated by a spin coating method, and the spin coating speed is 1500-3000 rpm.
  • step S3 thermal evaporation equipment is used to evaporate metal electrodes on the surface of the hole transport layer, the evaporation source is metal, the evaporation rate is 0.7nm/s, and the evaporation pressure is 1 ⁇ 10 -5 Pa.
  • the present invention adopts the acid-treated tin oxide colloidal solution, which reduces the agglomeration of tin oxide nanoparticles in the tin oxide colloidal solution, greatly improves the stability of the solution, and prolongs the service life.
  • the acid treatment method of the present invention can improve and restore the performance of the tin oxide nanoparticle colloidal solution stored for a long time, so that it can meet the conditions for preparing high-quality perovskite batteries again.
  • the tin oxide thin film prepared by the acid-treated tin oxide colloidal solution in the present invention is uniform and dense, optimizes surface defects, accelerates the separation and transmission capacity of electrons at the surface interface, thereby optimizing the photoelectric performance of the perovskite battery , and also greatly improved the stability of perovskite batteries.
  • the acid-treated tin oxide colloidal solution of the present invention can still produce perovskite batteries with high efficiency and high stability after long-term storage.
  • Fig. 1 is a scanning electron microscope image of the acidified tin oxide thin film prepared in Example 1 of the present invention.
  • Fig. 2 is a scanning electron microscope image of the tin oxide thin film prepared in Comparative Example 1 of the present invention.
  • Fig. 3 is a scanning electron micrograph of the tin oxide thin film prepared in Comparative Example 2 of the present invention.
  • Fig. 4 is a graph of the volt-ampere characteristics (J-V) of the perovskite cells prepared in Example 1, Comparative Example 1 and Comparative Example 2 of the present invention.
  • Example 5 is a schematic diagram of the normalized photoelectric conversion efficiency of the perovskite cells prepared in Example 1, Comparative Example 1 and Comparative Example 2 of the present invention under continuous illumination.
  • Fig. 6 is a schematic diagram of the photoelectric conversion efficiency of perovskite cells made of tin oxide nanoparticles treated with acetic acid for different days of standing in the present invention.
  • Fig. 7 is the volt-ampere characteristic (J-V) curve graph of the perovskite cell prepared in embodiment 1, embodiment 2 and embodiment 3 of the present invention.
  • the tin oxide nanoparticle colloidal dispersion liquid that mass fraction is 15% is dispersed in deionized water, obtains volume ratio and is 1:7, and concentration is the tin oxide nanoparticle dispersion liquid of 125mM, the gained tin oxide nanoparticle dispersion liquid static Put 30d, obtain the tin oxide nanoparticle dispersion of standing 30d; Take acetic acid in the tin oxide nanoparticle dispersion, ultrasonic vibration 30min, be configured into the tin oxide nanoparticle precursor solution (acetic acid and tin oxide mole The ratio is 1:1); Use a pipette gun to draw 50 ⁇ L of acetic acid-treated tin oxide nanoparticle precursor solution and evenly coat it on the surface of the UV-treated FTO conductive glass.
  • Thin film place the prepared thin film sample on a preheated heating platform, anneal at 150°C for 20 minutes, remove impurities, and form an acetic acid-treated tin oxide thin film with a thickness of about 50nm. After the substrate was cooled to room temperature, it was cleaned by ultraviolet light for 20 minutes;
  • a perovskite battery which includes from bottom to top: a transparent conductive substrate, an electron transport layer, a perovskite light-absorbing layer, a hole transport layer, and a metal electrode.
  • the transparent conductive substrate is made of fluorine-doped oxide Tin glass (FTO)
  • the electron transport layer is made of acetic acid-treated tin oxide film
  • the difference is: take nitric acid in the tin oxide nanoparticle dispersion liquid, configure the tin oxide nanoparticle precursor solution (the mol ratio of nitric acid and tin oxide is 1:1).
  • the perovskite battery is prepared according to the method of Example 1, the difference is: take hydrochloric acid in the tin oxide nanoparticle dispersion liquid, configure the tin oxide nanoparticle precursor solution (the mol ratio of hydrochloric acid and tin oxide is 1:1).
  • a perovskite solar cell was prepared according to the method of Example 1, except that the precursor solution was only a tin oxide nanoparticle dispersion with a volume ratio of 1:7 and a concentration of 125 mM.
  • the perovskite solar cell was prepared according to the method of Comparative Example 1, except that the precursor solution was a tin oxide nanoparticle dispersion solution placed for 30 days, the volume ratio was 1:7, and the concentration was 125 mM.
  • Figure 1 Figure 2 and Figure 3 show that compared with Comparative Example 1 and Comparative Example 2, in Example 1 of the present invention, the tin oxide treated with acetic acid covers evenly and closely, and there is no obvious defect on the surface of the film.
  • Figure 4 shows that under the simulated sunlight irradiation of 100mW/cm 2 , the perovskite solar cell based on acetic acid-treated tin oxide nanoparticles has an open-circuit voltage of 1.08V and a short-circuit current density of 24.2mA/cm 2 . The factor is 72.6, and the highest photoelectric conversion efficiency is 19.11%.
  • Figure 6 is a schematic diagram of the photoelectric conversion efficiency of perovskite cells composed of tin oxide nanoparticles treated with acetic acid for different standing days.
  • the acidification treatment can improve and restore the performance of the tin oxide nanoparticle colloidal solution stored for a long time, so that it can meet the conditions for preparing high-quality perovskite batteries again, thereby improving the performance of the perovskite battery based on the acidification treatment of tin oxide nanoparticles. performance and stability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明涉及一种基于酸处理氧化锡的钙钛矿电池及其制备,属于太阳能电池制备技术领域。本发明钙钛矿电池包括依次设置的导电基底、电子传输层、钙钛矿吸光层、空穴传输层和金属电极,所述电子传输层的材料包括酸处理的氧化锡。本发明通过酸处理氧化锡胶体溶液,减少了氧化锡纳米粒子的团聚,极大地提高了溶液的稳定性,延长了使用寿命;酸化处理能够改善并恢复长期存放的氧化锡纳米粒子胶体溶液的性能,使其重新满足制备高质量钙钛矿电池的条件;采用酸处理的氧化锡薄膜作为电子传输层,不仅优化了表面缺陷,还加速了表界面处电子的分离和传输能力,从而优化了钙钛矿电池的光电性能,提升了稳定性。

Description

基于酸处理氧化锡的钙钛矿电池及其制备 技术领域
本发明涉及太阳能电池制备技术领域,具体涉及一种基于酸处理氧化锡的钙钛矿电池及其制备。
背景技术
2009年问世的有机-无机复合钙钛矿太阳能电池,由于其成本低、工艺简单和很高的光电转换效率,受到越来越多的关注。短短十年间,小面积的钙钛矿太阳能电池的转换效率便已实现从3.8%到25.2%的突破,大面积的钙钛矿太阳能电池的转换效率更已突破20%,有着广阔的研究和应用前景。
钙钛矿太阳电池通常由导电玻璃(FTO、ITO)、电子传输层、钙钛矿吸光层、空穴传输层和对电极(Au、Ag)等构成。氧化锡因其价廉、高稳定性和高导电性等优点,被广泛用作电子传输层材料。目前,采用氧化锡胶体溶液制备电子传输层是制备氧化锡电子传输层的主流方法。但氧化锡胶体溶液不宜长时间存放,采用长时间存放的氧化锡胶体溶液制备的钙钛矿电池的性能明显下降,且稳定性不高。因此,亟需开发一种可长时间存放、稳定性高且光电性能优秀的氧化锡胶体溶液作为电子传输层材料,用于钙钛矿电池、量子点电池或光电探测器等光电领域。
发明内容
为解决上述技术问题,本发明提供了一种基于酸处理氧化锡的钙钛矿电池及其制备。所述基于酸处理氧化锡的钙钛矿电池包括依次设置的导电基底、上述电子传输层、钙钛矿吸光层、空穴传输层和金属电极,所述电子传输层材料包括酸处理的氧化锡。
优选地,所述电子传输层的厚度为30-80nm。
本发明通过对氧化锡胶体溶液进行酸处理,极大提升了氧化锡胶体溶液的稳定性,改善并恢复了长期存放的氧化锡胶体溶液的性能。相较于未酸处理的溶液,酸处理后的氧化锡纳米粒子胶体溶液稳定性更高,更利于长期存放。
本发明酸化氧化锡作为电子传输层材料,有效提高了电子传输能力,进而提高了钙钛矿电池的光电性能和稳定性。
本发明的第二目的是提供一种所述基于酸处理氧化锡的钙钛矿电池的制备方法,包括以下步骤:
S1.将氧化锡纳米粒子分散于水中,得到氧化锡分散液,加入酸溶液,得到利用酸处理的氧化锡前驱体溶液,在导电基底上涂覆所述利用酸处理的氧化锡前驱体溶液,退火,形成酸化氧化锡的电子传输层;
S2.将钙钛矿前驱体溶液涂覆在所述电子传输层的表面,形成钙钛矿吸光层;
S3.在所述钙钛矿吸光层的表面依次制备空穴传输层和金属电极,得到所述钙钛矿电池。
优选地,所述氧化锡纳米粒子的粒径为1-10nm。
优选地,所述氧化锡分散液的浓度为100-300mM。
优选地,所述酸溶液选自乙酸、硝酸和盐酸中的一种或多种。
优选地,所述利用酸处理的氧化锡前驱体溶液中,酸与氧化锡的摩尔比为1:1-50。
优选地,步骤S1中,所述退火的温度为150-155℃,时间为20-30min。
优选地,所述钙钛矿前驱体溶液包括二甲基甲酰胺溶解的碘化铅溶液和异丙醇溶解的甲脒氢碘酸盐、甲基溴化胺和甲基氯化胺的溶液。
优选地,所述钙钛矿吸光层的厚度为350-500nm。
优选地,所述导电基底为氟掺杂氧化锡玻璃(FTO)或铟锡氧化物导电 玻璃(ITO)。
优选地,所述空穴传输层的材料为2,2',7,7'-四[N,N-二(4-甲氧基苯基)氨基]-9,9'-螺二芴(Spiro-OMeTAD),所述空穴传输层的厚度为200-300nm。
优选地,所述金属电极为银电极或金电极,所述金属电极的厚度为50-150nm,优选为100nm。
需要说明的是,本发明酸化氧化锡前驱体溶液,减少了氧化锡纳米粒子的团聚,改善了长期存放的氧化锡纳米粒子胶体溶液的性能,极大提高了溶液的稳定性。同时,酸处理的氧化锡薄膜均匀致密,优化了表面缺陷,加速了表界面处电子的分离和传输能力,从而优化了钙钛矿电池的光电性能,同时也极大提升了钙钛矿电池的稳定性。
本发明的第三目的是提供基于酸处理的氧化锡制备的氧化锡薄膜在光电领域的应用。
进一步地,所述基于酸处理的氧化锡制备的氧化锡薄膜应用于量子点电池或光电探测器。
本发明酸处理的氧化锡纳米粒子制备的酸化氧化锡薄膜,可以通过简单涂覆和低温烧结获得,工艺简单,安全性较高,还可应用于量子点电池或光电探测器等光电领域中。
具体的,所述钙钛矿电池的制备方法包括以下步骤:
S1.将氧化锡纳米粒子分散于水中,得到浓度为100-300mM的氧化锡纳米粒子分散液,将所述氧化锡分散液静置30d,得到静置30d的氧化锡分散液,取酸溶液分散于所述氧化锡分散液中,超声振荡30-35min,配置成利用酸处理的氧化锡前驱体溶液(酸和氧化锡的摩尔比为1:1-50);用移液枪吸取利用酸处理的氧化锡前驱体溶液均匀涂覆在紫外处理过的导电基底表面,通过5000转/分钟的速率旋涂30s,得到均匀的薄膜,将制备的薄膜样品置于预热过的加热台上,150℃退火20min,去除杂质,形成酸化氧化锡薄膜,其厚度为30-80nm,待基片冷却至室温,紫外清洗20min;
S2.将碘化铅溶于二甲基甲酰胺中,加热搅拌均匀,将甲脒氢碘酸盐、甲基溴化胺和甲基氯化胺溶于异丙醇中,常温搅拌均匀,得到钙钛矿前驱体溶液;取碘化铅溶液滴于所述酸化氧化锡薄膜上,以3000转/分钟的速率旋涂30s;旋涂10s后,匀速滴加钙钛矿前驱体溶液,然后150℃退火15min,得到高度结晶的亮黑色钙钛矿薄膜,形成钙钛矿吸光层,其厚度为350-500nm;
S3.待冷却至室温后,以2000转/分钟的速率旋涂空穴传输层材料Spiro-OMeTAD,其厚度为200-300nm;然后将基片转移至热蒸发仪器中,以0.7nm/s的蒸发速率蒸镀上50-150nm厚的金属电极,蒸发气压为1×10 -5Pa。
需要进一步说明的是,不同静置时长的氧化锡纳米粒子前驱体溶液对器件的性能产生不同的影响,不同静置时长能够体现酸处理氧化锡纳米粒子的优化效果和器件性能。
进一步地,涂覆所述利用酸处理的氧化锡前驱体溶液前,还包括用紫外光照射导电基底的步骤。目的是增加薄膜表面的亲水性,便于后续旋涂,以制备均匀致密的薄膜。
进一步地,退火后还包括冷却后用紫外光照射所述电子传输层的步骤。目的是增加薄膜表面的亲水性,便于后续旋涂,以制备均匀致密的薄膜。
进一步地,步骤S1-S3均在手套箱中完成,以隔绝外界环境对器件的影响。
进一步地,在步骤S1中,采用旋涂法进行涂覆电子传输层,旋涂速度为2000-5000转/分钟。
进一步地,在步骤S2中,采用旋涂法进行涂覆钙钛矿吸光层,旋涂速度为1500-3000转/分钟。
进一步地,在步骤S3中,采用旋涂法涂覆空穴传输层,旋涂速度为1500-3000转/分钟。
进一步地,在步骤S3中,采用热蒸发仪器在空穴传输层表面蒸镀金属电极,蒸发源为金属,蒸发速率为0.7nm/s,蒸发气压为1×10 -5Pa。
本发明的上述技术方案相比现有技术具有以下优点:
(1)本发明采用酸处理的氧化锡胶体溶液,减少了氧化锡胶体溶液中氧化锡纳米粒子的团聚,极大提高了溶液的稳定性,延长了使用寿命。
(2)本发明的酸处理方法,可改善并恢复长期存放的氧化锡纳米粒子胶体溶液的性能,使其重新满足制备高质量钙钛矿电池的条件。
(3)本发明由酸处理的氧化锡胶体溶液制备的氧化锡薄膜,均匀且致密,优化了表面缺陷,加速了表界面处电子的分离和传输能力,从而优化了钙钛矿电池的光电性能,同时也极大提升了钙钛矿电池的稳定性。
(4)本发明经酸处理的氧化锡胶体溶液,经过长期存放,依然能够制备出高效率、高稳定性的钙钛矿电池。
附图说明
为了使本发明的内容更容易被清楚的理解,下面根据本发明的具体实施例并结合附图,对本发明作进一步详细的说明,其中,
图1是本发明实施例1制备的酸化氧化锡薄膜的扫描电镜图。
图2是本发明对比例1制备的氧化锡薄膜的扫描电镜图。
图3是本发明对比例2制备的氧化锡薄膜的扫描电镜图。
图4本发明实施例1、对比例1和对比例2制备的钙钛矿电池的伏安特性(J-V)曲线图。
图5是本发明实施例1、对比例1和对比例2制备的钙钛矿电池在持续光照下归一化的光电转换效率示意图。
图6是本发明乙酸处理不同静置天数的氧化锡纳米粒子构成的钙钛矿电池的光电转换效率示意图。
图7是本发明实施例1、实施例2和实施例3制备的钙钛矿电池的伏安 特性(J-V)曲线图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步说明,以使本领域的技术人员可以更好地理解本发明并能予以实施,但所举实施例不作为对本发明的限定。
实施例1
S1.将质量分数为15%的氧化锡纳米粒子胶体分散液分散于去离子水中,得到体积比为1:7,浓度为125mM的氧化锡纳米粒子分散液,将所得氧化锡纳米粒子分散液静置30d,得到静置30d的氧化锡纳米粒子分散液;称取乙酸于氧化锡纳米粒子分散液中,超声振荡30min,配置成乙酸处理的氧化锡纳米粒子前驱体溶液(乙酸和氧化锡的摩尔比为1:1);用移液枪吸取50μL的乙酸处理的氧化锡纳米粒子前驱体溶液均匀涂覆在紫外处理过的FTO导电玻璃表面,通过5000r/min的速率旋涂30s,得到均匀的薄膜;将制备的薄膜样品置于预热过的加热台上,150℃退火20min,去除杂质,形成乙酸处理的氧化锡薄膜,其厚度约为50nm。待基片冷却至室温,紫外清洗20min;
S2.称取600mg的碘化铅(PbI 2),溶于1mL的二甲基甲酰胺(DMF)中,在60℃下搅拌12h,配置成透明均匀的碘化铅溶液;分别称取60mg的甲脒氢碘酸盐(HC(NH 2) 2I)、6mg的甲基溴化胺(CH 3NH 3Br)和6mg的甲基氯化胺(CH 3NH 3Cl)溶于1mL的异丙醇(IPA)中,室温下搅拌1h,配置成透明均匀的钙钛矿前驱体溶液;取50μL碘化铅溶液滴于乙酸处理的氧化锡薄膜上,以3000r/min的速率旋涂30s;旋涂10s后,匀速滴加50μL的钙钛矿前驱体溶液,然后150℃退火15min,得到高度结晶的亮黑色钙钛矿薄膜,其厚度约为400nm;
S3.待冷却至室温后,以2000r/min的速率旋涂40μL的空穴传输层材料Spiro-OMeTAD,其厚度为250nm;然后将基片转移至热蒸发仪器中,以0.7nm/s的蒸发速率蒸镀上100nm厚的银电极,蒸发源为银,蒸发气压为1×10 -5Pa。
按照上述步骤,制得钙钛矿电池,自下而上依次包括:透明导电基底、电子传输层、钙钛矿吸光层、空穴传输层和金属电极,透明导电基底材质为氟掺杂的氧化锡玻璃(FTO),电子传输层的材质为乙酸处理的氧化锡薄膜,钙钛矿吸光层材质为CH 3NH 3Br xCl 1-x:HC(NH 2) 2I薄膜(x=0-1)。
实施例2
按照实施例1的方法制备钙钛矿电池,不同之处在于:称取硝酸于氧化锡纳米粒子分散液中,配置成硝酸处理的氧化锡纳米粒子前驱体溶液(硝酸和氧化锡的摩尔比为1:1)。
实施例3
按照实施例1的方法制备钙钛矿电池,不同之处在于:称取盐酸于氧化锡纳米粒子分散液中,配置成盐酸处理的氧化锡纳米粒子前驱体溶液(盐酸和氧化锡的摩尔比为1:1)。
对比例1
按照实施例1的方法制备钙钛矿太阳能电池,不同之处在于:前驱体溶液仅为体积比为1:7,浓度为125mM的氧化锡纳米粒子分散液。
对比例2
按照对比例1的方法制备钙钛矿太阳能电池,不同之处在于:前驱体溶液为放置了30d的氧化锡纳米粒子分散液,体积比为1:7,浓度为125mM。
钙钛矿电池光电性能测试:
(1)对实施例1制备的乙酸处理的氧化锡薄膜与对比例1和对比例2制备的氧化锡薄膜进行SEM测试,结果如图1、图2和图3所示。
图1、图2和图3显示,相比于对比例1和对比例2,本发明实施例1中,乙酸处理的氧化锡覆盖均匀紧密,并且薄膜表面无明显缺陷。
(2)实施例1、对比例1和对比例2制备的钙钛矿电池的伏安特性(J-V)曲线图如图4所示。
图4显示,在100mW/cm 2的模拟太阳光照射下,基于乙酸处理的氧化锡纳米粒子构成的钙钛矿太阳能电池,其开路电压为1.08V,短路电流密度达到24.2mA/cm 2,填充因子为72.6,最高光电转换效率为19.11%。
(3)实施例1和对比例1-2制备的钙钛矿电池在持续光照下的光电转化效率进行测试,归一化的光电转换效率示意图见图5。
从图5可以发现,在1000h的光照下,基于乙酸处理的氧化锡纳米粒子构成的钙钛矿电池的光电转换效率仅下降16%,与对比例2相比,其稳定性提升明显。
(4)图6为乙酸处理不同静置天数的氧化锡纳米粒子构成的钙钛矿电池的光电转换效率示意图。
从图6可以发现,随着氧化锡纳米粒子前驱体溶液静置时间的增长,所制备的钙钛矿电池的效率明显下降,而基于乙酸处理对应天数的氧化锡纳米粒子的钙钛矿电池的效率具有较高的转换效率,并且相对稳定。该结果表明酸化处理降低了前驱体溶液中氧化锡纳米粒子的积聚,提高了溶液的稳定性。并且酸化处理能够改善并恢复长期存放的氧化锡纳米粒子胶体溶液的性能,使其重新满足制备高质量钙钛矿电池的条件,进而提升了基于酸化处理的氧化锡纳米粒子的钙钛矿电池的性能和稳定性。
(5)对实施例1、实施例2和实施例3制备的钙钛矿电池的光电转化效率进行测试,示意图见图7。
从图7可以发现,硝酸和盐酸等酸处理氧化锡纳米粒子胶体分散液,也能够改善并恢复长期存放的氧化锡纳米粒子胶体溶液的性能。相较于未酸化处理的器件,基于酸化处理的氧化锡纳米粒子构成的钙钛矿电池的性能得到提升。
显然,上述实施例仅是为清楚地说明所作的举例,并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

  1. 一种基于酸处理氧化锡的钙钛矿电池,其特征在于,所述钙钛矿电池包括依次设置的导电基底、电子传输层、钙钛矿吸光层、空穴传输层和金属电极,所述电子传输层的材料包括酸处理的氧化锡。
  2. 根据权利要求1所述的基于酸处理氧化锡的钙钛矿电池,其特征在于,所述电子传输层的厚度为30-80nm。
  3. 一种权利要求1或2所述的基于酸处理氧化锡的钙钛矿电池的制备方法,其特征在于,包括以下步骤:
    S1.将氧化锡纳米粒子分散于水中,得到氧化锡分散液,加入酸溶液,得到利用酸处理的氧化锡前驱体溶液,在导电基底上涂覆所述利用酸处理的氧化锡前驱体溶液,退火,形成酸化氧化锡的电子传输层;
    S2.将钙钛矿前驱体溶液涂覆在所述电子传输层的表面,形成钙钛矿吸光层;
    S3.在所述钙钛矿吸光层的表面依次制备空穴传输层和金属电极,得到所述钙钛矿电池。
  4. 根据权利要求3所述的制备方法,其特征在于,所述氧化锡纳米粒子的粒径为1-10nm。
  5. 根据权利要求3所述的制备方法,其特征在于,所述氧化锡分散液的浓度为100-300mM。
  6. 根据权利要求3所述的制备方法,其特征在于,所述酸溶液选自乙酸、硝酸和盐酸中的一种或多种。
  7. 根据权利要求3所述的制备方法,其特征在于,所述利用酸处理的氧化锡前驱体溶液中,酸与氧化锡的摩尔比为1:1-50。
  8. 根据权利要求3所述的制备方法,其特征在于,步骤S1中,所述退火的温度为150-155℃,时间为20-30min。
  9. 基于酸处理的氧化锡制备的氧化锡薄膜在光电领域的应用。
  10. 根据权利要求9所述的应用,其特征在于,用于量子点电池或光电探测器。
PCT/CN2022/132120 2021-12-30 2022-11-16 基于酸处理氧化锡的钙钛矿电池及其制备 WO2023124601A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111682453.3 2021-12-30
CN202111682453.3A CN114551723B (zh) 2021-12-30 2021-12-30 基于酸处理氧化锡的钙钛矿电池及其制备

Publications (1)

Publication Number Publication Date
WO2023124601A1 true WO2023124601A1 (zh) 2023-07-06

Family

ID=81670632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/132120 WO2023124601A1 (zh) 2021-12-30 2022-11-16 基于酸处理氧化锡的钙钛矿电池及其制备

Country Status (2)

Country Link
CN (1) CN114551723B (zh)
WO (1) WO2023124601A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117320463A (zh) * 2023-11-27 2023-12-29 华电电力科学研究院有限公司 一种介孔钙钛矿太阳能电池及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114551723B (zh) * 2021-12-30 2023-08-04 苏州科技大学 基于酸处理氧化锡的钙钛矿电池及其制备
CN116507143B (zh) * 2023-04-19 2024-05-10 苏州科技大学 一种空穴传输层薄膜及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016009737A (ja) * 2014-06-24 2016-01-18 株式会社リコー ペロブスカイト型太陽電池の製造方法
CN109216557A (zh) * 2018-09-03 2019-01-15 陕西师范大学 一种基于柠檬酸/SnO2电子传输层的钙钛矿太阳能电池及其制备方法
CN110504362A (zh) * 2019-07-17 2019-11-26 浙江浙能技术研究院有限公司 一种SnO2电子选择传输层的改性方法
CN113421970A (zh) * 2021-06-22 2021-09-21 河南大学 一种HCl改性二氧化锡作为电子传输层的钙钛矿太阳能电池及其制备方法
CN113421969A (zh) * 2021-06-22 2021-09-21 河南大学 一种hf改性二氧化锡作为电子传输层的钙钛矿太阳能电池及其制备方法
CN114551723A (zh) * 2021-12-30 2022-05-27 苏州科技大学 基于酸处理氧化锡的钙钛矿电池及其制备
CN114864822A (zh) * 2022-04-12 2022-08-05 华南理工大学 一种钙钛矿太阳能电池及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110061137B (zh) * 2019-04-29 2021-01-26 中国科学院化学研究所 一种基于室温成膜制备氧化锡电子传输层的钙钛矿电池及其制备方法
CN112086562A (zh) * 2019-06-12 2020-12-15 北京宏泰创新科技有限公司 半透明钙钛矿太阳能电池、组件及制备方法
CN111864084B (zh) * 2020-07-24 2022-03-01 武汉理工大学 一种稳定高效钙钛矿太阳能电池的制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016009737A (ja) * 2014-06-24 2016-01-18 株式会社リコー ペロブスカイト型太陽電池の製造方法
CN109216557A (zh) * 2018-09-03 2019-01-15 陕西师范大学 一种基于柠檬酸/SnO2电子传输层的钙钛矿太阳能电池及其制备方法
CN110504362A (zh) * 2019-07-17 2019-11-26 浙江浙能技术研究院有限公司 一种SnO2电子选择传输层的改性方法
CN113421970A (zh) * 2021-06-22 2021-09-21 河南大学 一种HCl改性二氧化锡作为电子传输层的钙钛矿太阳能电池及其制备方法
CN113421969A (zh) * 2021-06-22 2021-09-21 河南大学 一种hf改性二氧化锡作为电子传输层的钙钛矿太阳能电池及其制备方法
CN114551723A (zh) * 2021-12-30 2022-05-27 苏州科技大学 基于酸处理氧化锡的钙钛矿电池及其制备
CN114864822A (zh) * 2022-04-12 2022-08-05 华南理工大学 一种钙钛矿太阳能电池及其制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117320463A (zh) * 2023-11-27 2023-12-29 华电电力科学研究院有限公司 一种介孔钙钛矿太阳能电池及其制备方法

Also Published As

Publication number Publication date
CN114551723B (zh) 2023-08-04
CN114551723A (zh) 2022-05-27

Similar Documents

Publication Publication Date Title
WO2023124601A1 (zh) 基于酸处理氧化锡的钙钛矿电池及其制备
Luan et al. High-performance planar perovskite solar cells with negligible hysteresis using 2, 2, 2-trifluoroethanol-incorporated SnO2
CN105047821B (zh) 基于活性层与传输层修饰的反型聚合物太阳能电池及制备方法
Peng et al. Scalable, efficient and flexible perovskite solar cells with carbon film based electrode
CN108511633A (zh) 一种无机钙钛矿发光二极管及其制备方法
JPH11312541A (ja) 太陽電池
Sun et al. Interconnected SnO2 nanocrystals electron transport layer for highly efficient flexible perovskite solar cells
WO2019214079A1 (zh) 一种TiO2纳米柱-Au纳米粒子复合阵列、制备方法及其应用
CN108447995B (zh) 前驱体溶液及其制备方法,太阳能电池电子传输层的制备及太阳能电池
Hu et al. Dual functions of performance improvement and lead leakage mitigation of perovskite solar cells enabled by phenylbenzimidazole sulfonic acid
WO2020000506A1 (zh) 无机电荷传输层及其制备方法与钙钛矿太阳能电池应用
CN116546867A (zh) 柔性钙钛矿太阳能电池的制备方法
US20110174368A1 (en) Composite electrolyte and the preparation method thereof, and dye-sensitized solar cell using the same
CN108011046A (zh) 一种钙钛矿表面原位法生长钙钛矿纳米线的方法及一种钙钛矿太阳能电池
Wang et al. Effective control of the length of ZnO-TiO2 nanorod arrays as electron transport layer of perovskite solar cells with enhanced performance
CN109873078B (zh) 一种钙钛矿太阳能电池及其制备方法
Xu et al. Aged sol-gel solution-processed texture tin oxide for high-efficient perovskite solar cells
Hu et al. Interfacing pristine BiI3 onto TiO2 for efficient and stable planar perovskite solar cells
Zhang et al. Modifying the photoelectric performance of SnO2 via D-arginine monohydrochloride for high-performance perovskite solar cells
CN116801652A (zh) 一种晶硅钙钛矿叠层太阳能电池及制备方法
CN115843189B (zh) 一种通过钙钛矿晶粒二次生长提升钙钛矿太阳能电池性能的方法
CN109768168A (zh) 一种制备双电子传输层钙钛矿太阳能电池方法
CN116507143B (zh) 一种空穴传输层薄膜及其应用
US9349540B2 (en) Method for manufacturing platinum nanoparticle solution and self-assembled platinum counter electrode thereof
Li et al. Regulating Lewis Acid‐Base Interactions to Enhance Stability of Tin Oxide for High‐Performance Perovskite Solar Cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913860

Country of ref document: EP

Kind code of ref document: A1