WO2023124563A1 - 壳体组件及其制备方法和电子设备 - Google Patents

壳体组件及其制备方法和电子设备 Download PDF

Info

Publication number
WO2023124563A1
WO2023124563A1 PCT/CN2022/130992 CN2022130992W WO2023124563A1 WO 2023124563 A1 WO2023124563 A1 WO 2023124563A1 CN 2022130992 W CN2022130992 W CN 2022130992W WO 2023124563 A1 WO2023124563 A1 WO 2023124563A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
resin layer
layer
curing agent
epoxy resin
Prior art date
Application number
PCT/CN2022/130992
Other languages
English (en)
French (fr)
Inventor
陈江
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023124563A1 publication Critical patent/WO2023124563A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D7/00Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials
    • B05D7/24Processes, other than flocking, specially adapted for applying liquids or other fluent materials to particular surfaces or for applying particular liquids or other fluent materials for applying particular liquids or other fluent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D163/00Coating compositions based on epoxy resins; Coating compositions based on derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D175/00Coating compositions based on polyureas or polyurethanes; Coating compositions based on derivatives of such polymers
    • C09D175/04Polyurethanes
    • C09D175/06Polyurethanes from polyesters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K5/00Casings, cabinets or drawers for electric apparatus
    • H05K5/02Details

Definitions

  • the application belongs to the technical field of electronic products, and in particular relates to a shell assembly, a preparation method thereof, and electronic equipment.
  • Blocking water vapor in the air is of great significance to the protection of electronic equipment.
  • inorganic barrier materials are often arranged on the casing of electronic equipment to achieve the effect of blocking water vapor.
  • the matching between the inorganic barrier material and the shell is not good, and it is easy to crack and fall off, which affects the effect of isolating water vapor.
  • the present application provides a casing assembly, a manufacturing method thereof, and an electronic device.
  • the present application provides a shell assembly, including a shell and a water vapor barrier film disposed on the surface of the shell, the water vapor barrier film includes a polyester resin layer and an epoxy resin layer, and the polyester An ester resin layer is provided between the housing and the epoxy resin layer.
  • the present application provides a method for preparing a shell assembly, including:
  • Epoxy resin ink is coated on the surface of the polyester resin layer, and an epoxy resin layer is formed after final baking to obtain a shell assembly.
  • the present application provides an electronic device, comprising the casing assembly described in the first aspect, or the casing assembly manufactured by the preparation method described in the second aspect.
  • FIG. 1 is a schematic structural diagram of a housing assembly provided by an embodiment of the present application.
  • Fig. 2 is a schematic structural diagram of a housing assembly provided in another embodiment of the present application.
  • Fig. 3 is a schematic structural diagram of a housing assembly provided in another embodiment of the present application.
  • Fig. 4 is a schematic structural diagram of a housing assembly provided in another embodiment of the present application.
  • Fig. 5 is a schematic structural diagram of a housing assembly provided in another embodiment of the present application.
  • FIG. 6 is a flow chart of a method for preparing a shell assembly provided by an embodiment of the present application.
  • FIG. 7 is a flowchart of a method for preparing a shell assembly provided in another embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • An embodiment of the present application provides a shell assembly, including a shell and a water vapor barrier film disposed on the surface of the shell, the water vapor barrier film includes a polyester resin layer and an epoxy resin layer, the polyester resin A layer is disposed between the housing and the epoxy layer.
  • the epoxy resin layer includes a first resin layer and a second resin layer, the first resin layer is arranged between the polyester resin layer and the second resin layer, and the second resin layer contains Silicon dioxide, the content of the silicon dioxide in the second resin layer is less than or equal to 10%.
  • the particle size of the silicon dioxide is micro-nanometer.
  • the thickness of the first resin layer is 8 ⁇ m-10 ⁇ m
  • the thickness of the second resin layer is 10 ⁇ m-12 ⁇ m.
  • the water absorption rate of the shell assembly is less than or equal to 0.03%.
  • the raw material of the epoxy resin layer includes a first resin system and a first curing agent system
  • the first resin system includes epoxy resin
  • the first curing agent system includes alicyclic polyamine and silane coupling agent.
  • the mass content of the epoxy resin in the first resin system is 30%-50%, and the mass content of the cycloaliphatic polyamine in the first curing agent system is 50%-70%, so The mass content of the silane coupling agent is 30%-50%.
  • the mass ratio of the first curing agent system to the first resin system is (0.08-0.12):1.
  • the raw material of the polyester resin layer includes a second resin system and a second curing agent system
  • the second resin system includes polyester resin
  • the second curing agent system includes aliphatic polyisocyanate
  • the mass content of the polyester resin in the second resin system is 30%-50%, and the mass content of the aliphatic polyisocyanate in the second curing agent system is 80%-90%.
  • the mass ratio of the second curing agent system to the second resin system is (0.06-0.1):1.
  • the thickness of the epoxy resin layer is greater than or equal to 8 ⁇ m.
  • the thickness of the polyester resin layer is 3 ⁇ m-12 ⁇ m.
  • the adhesion of the water vapor barrier film in the housing assembly is greater than or equal to 5B.
  • the housing assembly further includes a decorative film, the decorative film is arranged between the housing and the water vapor barrier film, and the decorative film includes at least one of a color layer, a texture layer, a coating layer and a cover bottom layer A sort of.
  • the embodiment of the present application provides a method for preparing a shell assembly, including: coating polyester resin ink on the surface of the shell, forming a polyester resin layer after baking; coating the surface of the polyester resin layer Epoxy resin ink is final baked to form an epoxy resin layer to obtain a shell assembly.
  • the epoxy resin ink includes a first resin system and a first curing agent system, and by mass percentage, the first resin system includes 30%-50% of epoxy resin, and the first curing agent system Including 50%-70% of cycloaliphatic polyamine and 30%-50% of silane coupling agent, the mass ratio of the first curing agent system and the first resin system is (0.08-0.12):1 .
  • the polyester resin ink includes a second resin system and a second curing agent system, by mass percentage, the second resin system includes 30%-50% polyester resin, and the second curing agent system Including 80%-90% aliphatic polyisocyanate, the mass ratio of the second curing agent system and the second resin system is (0.06-0.1):1.
  • the second resin system includes 30%-50% of the polyester resin, 20%-30% of the second organic solvent and 5%-50% of the second auxiliary agent; the second curing agent system It includes 80%-90% of said aliphatic polyisocyanate and 10%-20% of curing solvent.
  • the epoxy resin ink is coated on the surface of the polyester resin layer, and the epoxy resin layer is formed after final baking, comprising: coating the first resin ink on the surface of the polyester resin layer, and forming the epoxy resin ink after curing
  • the first resin layer coating the second resin ink on the surface of the first resin layer, and forming the epoxy resin layer after the final baking.
  • the first resin ink includes a first sub-resin system and a first sub-curing agent system, and by mass percentage, the first sub-resin system includes 30%-40% of epoxy resin, and the first sub-resin system includes The sub-curing agent system includes 50%-70% alicyclic polyamine and 30%-50% silane coupling agent, and the mass ratio of the first sub-curing agent system and the first sub-resin system is ( 0.08-0.1):1.
  • the second resin ink includes a second sub-resin system and a second sub-curing agent system, and by mass percentage, the second sub-resin system includes 30%-50% of the epoxy resin and 0.1% -10% silicon dioxide, the second sub-curing agent system includes 50%-70% alicyclic polyamine and 30%-50% silane coupling agent, the second sub-curing agent system and The mass ratio of the second sub-resin system is (0.1-0.12):1.
  • the baking includes processing at 70°C-100°C for 15min-25min.
  • the final baking includes processing at 70°C-100°C for 90min-150min.
  • the coating includes atomization spraying, the atomization pressure in the atomization spraying is 240kPa-280kPa, the spraying pressure is 300kPa-400kPa, and the spraying speed is 500mm/s-700mm/s.
  • An embodiment of the present application provides an electronic device, including the above casing assembly, or the casing assembly manufactured by the above preparation method.
  • FIG. 1 is a schematic structural diagram of a housing assembly provided in an embodiment of the present application.
  • the housing assembly 100 includes a housing 10 and a water vapor barrier film 20 disposed on the surface of the housing 10.
  • the water vapor barrier film 20 includes a polyester resin layer. 21 and an epoxy resin layer 22 , the polyester resin layer 21 is disposed between the casing 10 and the epoxy resin layer 22 .
  • an inorganic material barrier layer is often provided on the surface of the casing 10 to achieve the effect of isolating water vapor; however, due to the high hardness and low flexibility of the inorganic material, when it is installed on the surface of the casing 10 of different materials, it cannot be well Matching the surface properties of the shell 10, the inorganic material barrier layer will crack or even fall off during use, which will affect the water vapor barrier effect. Matching, the barrier layer of inorganic materials is easy to fall off.
  • the present application provides a water vapor barrier film 20 with a polyester resin layer 21 and an epoxy resin layer 22. Compared with the inorganic material barrier layer, the water vapor barrier film 20 provided by the present application is formed of organic materials and has good flexibility.
  • the resin layer 21 has excellent flexibility, and can generate a strong bonding force with the shells 10 of different materials, and can be applied to the shells 10 of different materials.
  • the bonding performance between the resin layers 21 is good, which ensures the long-term stable existence of the water vapor barrier film 20 on the surface of the housing 10 , prolongs the protection effect of the water vapor barrier film 20 on the housing assembly 100 , and facilitates the use of the housing assembly 100 .
  • the provision of the epoxy resin layer 22 ensures the water vapor barrier effect of the water vapor barrier film 20 .
  • the raw materials of the epoxy resin layer 22 include a first resin system and a first curing agent system, the first resin system includes epoxy resin, and the first curing agent system includes alicyclic polyamine and silane coupling agent.
  • the degree of crosslinking of the epoxy resin can be increased, thereby improving the water vapor barrier effect of the epoxy resin layer 22, and at the same time, the first curing agent system reacts with the epoxy resin to modify the epoxy resin.
  • the generated intermediate can produce chemical bonding and intermolecular force with the polyester resin layer 21, and improve the bonding force between the epoxy resin layer 22 and the polyester resin layer 21.
  • the epoxy resin layer 22 is formed by coating and curing epoxy resin ink; that is, the raw material of the epoxy resin layer 22 is epoxy resin ink.
  • the first resin system also includes a first organic solvent and a first auxiliary agent.
  • the first organic solvent is used to dissolve the epoxy resin, and the first additive helps to improve the performance of the epoxy resin ink.
  • the first organic solvent includes at least one of ketone solvents, alcohol solvents and ester solvents
  • the first auxiliary agent includes at least one of defoamers, leveling agents, antioxidants and pigments .
  • the first organic solvent may include, but is not limited to, at least one of isophorone, butanone, methanol, ethanol, and ethyl acetate.
  • the first organic solvent includes a ketone solvent
  • the first auxiliary agent includes a pigment.
  • the ketone solvent can be but not limited to isophorone
  • the color of the pigment can be but not limited to blue, red, yellow, white, green, etc.
  • the selection of alicyclic polyamine is beneficial to improve the glossiness of epoxy resin ink, improve the transparency, weather resistance and mechanical properties of epoxy resin layer 22, and simultaneously alicyclic polyamine and polyester resin layer 21 A chemical reaction occurs between them to produce a chemical bond, which improves the binding force between the two layers, and the silane coupling agent can also produce a chemical bond with the surface of the polyester resin layer 21, which is beneficial to further improve the epoxy resin layer 22 and the polyester resin layer. Bonding performance between the resin layers 21 .
  • the cycloaliphatic polyamine may include, but is not limited to, at least one of isophoronediamine, diaminodicyclohexylmethane, and 1,2-diaminocyclohexane.
  • the silane coupling agent includes epoxy silane coupling agent.
  • the compatibility between the epoxy silane coupling agent and the epoxy resin ensures the stability of the epoxy resin ink, and is more conducive to improving the stability of the epoxy resin layer 22 .
  • the silane coupling agent includes glycidoxytrimethylsilane. Glycidoxytrimethylsilane can further improve the surface properties of the epoxy resin layer 22 and enhance the bonding force between it and the polyester resin layer 21 .
  • the first resin system includes 30%-50% epoxy resin by mass percentage.
  • the first resin system contains more epoxy resin, which is conducive to improving the degree of crosslinking during the curing process of the epoxy resin ink, thereby improving the air tightness of the formed epoxy resin layer 22 and helping to improve the water vapor barrier film 20. water vapor barrier effect.
  • the first resin system may include, but is not limited to, 30%, 35%, 37%, 40%, 42%, 45%, 48% or 50% epoxy resin in terms of mass percentage.
  • the first resin system includes 30%-40% epoxy resin by mass percentage.
  • the first resin system includes 40%-50% epoxy resin.
  • the first resin system includes 30%-50% of epoxy resin, 30%-40% of the first organic solvent and 10%-30% of the first auxiliary agent.
  • the first resin system may, but is not limited to, include 30%, 32%, 33%, 35%, 36%, 37%, 39% or 40% of the first organic solvent, the first resin system It may, but is not limited to, include 10%, 15%, 18%, 20%, 24%, 25%, 27% or 30% of the first adjuvant.
  • the first resin system includes 30%-40% epoxy resin, 35%-40% first organic solvent and 20%-30% first auxiliary agent by mass percentage. In another embodiment, by mass percentage, the first resin system includes 45%-50% of epoxy resin, 30%-35% of the first organic solvent and 15%-20% of the first additive.
  • the first curing agent system includes 50%-70% of alicyclic polyamine and 30%-50% of silane coupling agent in terms of mass percentage.
  • the above-mentioned first curing agent system can promote the crosslinking reaction between epoxy resins, improve the airtightness of the epoxy resin layer 22, and also facilitate the chemical bonding of the epoxy resin ink and the surface of the polyester resin layer 21, The bonding force between the epoxy resin layer 22 and the polyester resin layer 21 is improved.
  • the first curing agent system can include, but is not limited to, 50%, 53%, 55%, 57%, 60%, 62%, 65%, 68% or 70% of alicyclic polyamine , and 30%, 32%, 35%, 37%, 40%, 44%, 45%, 46% or 50% silane coupling agent.
  • the first curing agent system includes 50%-60% of alicyclic polyamine and 40%-50% of silane coupling agent.
  • the first curing agent system includes 60%-70% of alicyclic polyamine and 30%-40% of silane coupling agent.
  • the mass ratio of the first curing agent system and the first resin system in the epoxy resin ink is (0.08-0.12): 1, so that the epoxy resin in the first resin system is in the first curing agent Fully cross-linked under the action of the system to improve the airtightness of the epoxy resin layer 22, and can also generate more chemical bonds between the epoxy resin layer 22 and the polyester resin layer 21 to enhance the interlayer adhesion.
  • the mass ratio of the first curing agent system to the first resin system may be, but not limited to, 0.08, 0.09, 0.1, 0.11 or 0.12.
  • the mass ratio of the first curing agent system to the first resin system in the epoxy resin ink is (0.08-0.1):1.
  • the mass ratio of the first curing agent system to the first resin system in the epoxy resin ink is (0.1-0.12):1.
  • the epoxy resin layer 22 contains a pigment. That is, the first auxiliary agent includes a pigment so as to change the color of the epoxy resin layer 22 .
  • the mass content of the pigment in the epoxy resin layer 22 is less than or equal to 20%. In this way, the color of the epoxy resin layer 22 can be improved without affecting the performance of the epoxy resin layer 22 .
  • the mass content of the pigment in the epoxy resin layer 22 is 3%-20%. Specifically, the mass content of the pigment in the epoxy resin layer 22 may be, but not limited to, 3%, 5%, 10%, 14%, 15%, 17% or 20%.
  • the pigment may be, but not limited to, an inorganic pigment, such as carbon powder, titanium dioxide, chrome yellow, iron blue, cadmium red, cadmium yellow, and the like.
  • the particle size of the pigment is in the order of microns, so that it can be uniformly dispersed in the epoxy resin ink to ensure a uniform color of the epoxy resin layer 22 .
  • the particle size of the pigment is 10 ⁇ m-100 ⁇ m.
  • the particle size of the pigment is 20 ⁇ m-80 ⁇ m.
  • the particle size of the pigment is 30 ⁇ m-50 ⁇ m.
  • the pigment is carbon powder, and the carbon powder is 400-600 mesh.
  • the epoxy resin ink includes a first resin system and a first curing agent system.
  • the first resin system includes 30%-50% of epoxy resin, and the first curing agent system Including 50%-70% of cycloaliphatic polyamine and 30%-50% of silane coupling agent (such as glycidoxytrimethylsilane); the first curing agent system and the first resin in epoxy resin ink
  • the mass ratio of the system is (0.08-0.12):1.
  • the thickness of the epoxy resin layer 22 is greater than or equal to 8 ⁇ m. Providing a thicker epoxy resin layer 22 is beneficial to further improve the water vapor barrier effect of the water vapor barrier film 20 . Of course, setting the epoxy resin layer 22 with a thickness less than 8 ⁇ m can still make the water vapor barrier film 20 have a certain water vapor barrier effect. Further, the thickness of the epoxy resin layer 22 is 8 ⁇ m-22 ⁇ m, which can not only ensure the water vapor barrier effect of the water vapor barrier film 20, but also avoid excessively increasing the thickness of the housing assembly 100, which is more conducive to the thickness of the housing assembly 100. application.
  • the thickness of the epoxy resin layer 22 may be, but not limited to, 8 ⁇ m, 10 ⁇ m, 11 ⁇ m, 13 ⁇ m, 15 ⁇ m, 16 ⁇ m, 18 ⁇ m, 20 ⁇ m or 22 ⁇ m. In one embodiment, the thickness of the epoxy resin layer 22 is 8 ⁇ m-10 ⁇ m. In another embodiment, the thickness of the epoxy resin layer 22 is 18 ⁇ m-22 ⁇ m.
  • FIG. 2 is a schematic structural view of a housing assembly provided in another embodiment of the present application, wherein the epoxy resin layer 22 includes a first resin layer 221 and a second resin layer 222, and the first resin layer 221 is arranged on a polyester resin layer. Between the layer 21 and the second resin layer 222, the second resin layer 222 contains silicon dioxide. In the present application, the first resin layer 221 does not contain silicon dioxide, so that there is a strong adhesion effect between the first resin layer 221 and the polyester resin layer 21, and the second resin layer 222 contains silicon dioxide, thereby improving the second resin layer 222. The dyne value on the surface of the second resin layer 222 is more conducive to the combination between the second resin layer 222 and other layer structures, thereby further enriching the structure of the shell assembly 100 .
  • the raw materials of the first resin layer 221 include the first sub-resin system and the first sub-curing agent system, the first sub-resin system includes epoxy resin, and the first sub-curing agent system includes alicyclic polyamine and silane coupling agents.
  • the first sub-curing agent system can increase the degree of crosslinking of the first resin layer 221, thereby improving the water vapor barrier effect of the first resin layer 221, and at the same time, the first sub-curing agent system reacts with the epoxy resin to modify the epoxy resin , the generated intermediate can produce chemical bonding and intermolecular force with the polyester resin layer 21 to improve the binding force between the first resin layer 221 and the polyester resin layer 21 .
  • the first resin layer 221 may be formed by coating and curing the first resin ink; that is, the raw material of the first resin layer 221 is the first resin ink.
  • the first sub-resin system also includes a first organic solvent and a first auxiliary agent. The first organic solvent is used to dissolve the epoxy resin, and the first additive helps to improve the performance of the epoxy resin ink.
  • the first sub-resin system includes 30%-40% of epoxy resin by mass percentage.
  • the first sub-resin system contains an appropriate amount of epoxy resin to ensure the degree of crosslinking during the curing of the first resin ink, which helps to improve the flexibility of the first resin layer 221 and the water vapor barrier effect, and the formed first resin layer 221 is more effective. It can match the surface properties of the polyester resin layer 21 and improve the bonding force between the two.
  • the first sub-resin system may include, but is not limited to, 30%, 32%, 34%, 35%, 37%, 38% or 40% epoxy resin.
  • the first sub-resin system includes 30%-35% epoxy resin by mass percentage.
  • the first sub-resin system includes 35%-40% epoxy resin. Further, in terms of mass percentage, the first sub-resin system includes 30%-40% of epoxy resin, 35%-40% of the first organic solvent and 20%-30% of the first auxiliary agent, thus the existing It is beneficial to the dissolution and dispersion of epoxy resin, and it is also beneficial to the coating of epoxy resin ink.
  • the first sub-resin system may include, but is not limited to, 35%, 36%, 37%, 38%, 39% or 40% of the first organic solvent, and the first sub-resin system may, but is not limited to 20%, 22%, 23%, 25%, 26%, 27%, 29% or 30% of the first adjuvant is included.
  • the first sub-resin system includes 30%-35% of epoxy resin, 38%-40% of the first organic solvent and 25%-30% of the first auxiliary agent.
  • the first sub-resin system includes 38%-40% of epoxy resin, 35%-37% of the first organic solvent and 23%-25% of the first auxiliary agent.
  • the first sub-curing agent system includes 50%-70% of alicyclic polyamine and 30%-50% of silane coupling agent in terms of mass percentage.
  • the above-mentioned first sub-curing agent system can promote the crosslinking reaction between epoxy resins, improve the airtightness of the first resin layer 221, and also facilitate the chemical bonding between the first resin ink and the surface of the polyester resin layer 21 , to improve the bonding force between the first resin layer 221 and the polyester resin layer 21 .
  • the first sub-curing agent system can include, but is not limited to, 50%, 53%, 55%, 57%, 60%, 62%, 65%, 68% or 70% of alicyclic multi-component Amines, and 30%, 32%, 35%, 37%, 40%, 44%, 45%, 46% or 50% silane coupling agents.
  • the first sub-curing agent system includes 50%-60% of alicyclic polyamine and 40%-50% of silane coupling agent in terms of mass percentage.
  • the first sub-curing agent system includes 60%-70% of alicyclic polyamine and 30%-40% of silane coupling agent in terms of mass percentage.
  • the mass ratio of the first sub-curing agent system and the first sub-resin system in the first resin ink is (0.08-0.1):1, so that the epoxy resin in the first sub-resin system Fully cross-linked under the action of a sub-curing agent system to improve the airtightness of the first resin layer 221, and can also cause more chemical bonds and intermolecular interactions between the first resin layer 221 and the polyester resin layer 21 strength, enhance the interlayer adhesion, and can also improve the flexibility of the formed first resin layer 221, further improve the interface performance between the first resin layer 221 and the polyester resin layer 21, and improve the first resin layer 221 and the polyester resin layer. Bonding force between the resin layers 21.
  • the mass ratio of the first sub-curing agent system to the first sub-resin system in the first resin ink may be, but not limited to, 0.08, 0.085, 0.09, 0.095, or 0.1.
  • the first resin ink includes a first sub-resin system and a first sub-curing agent system.
  • the first sub-resin system includes 30%-40% of epoxy resin
  • the curing agent system includes 50%-70% of alicyclic polyamine and 30%-50% of silane coupling agent (such as glycidoxytrimethylsilane); the first sub-curing agent in the first resin ink
  • the mass ratio of the system to the first sub-resin system is (0.08-0.1):1. In this way, it is helpful to further improve the airtightness of the first resin layer 221 and the bonding force between the first resin layer 221 and the polyester resin layer 21 .
  • the first auxiliary agent may include pigments, and the mass content of pigments in the first sub-resin system is less than or equal to 20%.
  • the content of silicon dioxide in the second resin layer 222 is less than or equal to 10%.
  • the surface dyne value of the second resin layer 222 can be improved without affecting the content of epoxy resin and curing agent in the second resin layer 222 , ensuring the moisture barrier effect of the second resin layer 222 .
  • the surface dyne value of the second resin layer 222 is greater than or equal to 32; further, the surface dyne value of the second resin layer 222 is 32-40.
  • the content of silicon dioxide in the second resin layer 222 may be, but not limited to, 0.1%, 0.5%, 1%, 3%, 5%, 6%, 8% or 10%.
  • the content of silicon dioxide in the second resin layer 222 is 0.1%-3%. In another embodiment, the content of silicon dioxide in the second resin layer 222 is 5%-7%. In yet another embodiment, the content of silicon dioxide in the second resin layer 222 is 8%-10%.
  • the particle size of the silicon dioxide is micro-nanometer. In this way, the surface performance of the second resin layer 222 can be improved without affecting the optical performance of the second resin layer 222 .
  • the particle size of silicon dioxide may be, but not limited to, 50 nm, 100 nm, 200 nm, 500 nm, 1 ⁇ m, 5 ⁇ m, 10 ⁇ m, or 20 ⁇ m.
  • the particle size of the silicon dioxide is nanoscale; specifically, the particle size of the silicon dioxide may be, but not limited to, 50nm-200nm. In another embodiment, the particle size of the silicon dioxide is in the order of microns; specifically, the particle size of the silicon dioxide may be, but not limited to, 1 ⁇ m-20 ⁇ m.
  • the raw materials of the second resin layer 222 include a second sub-resin system and a second sub-curing agent system
  • the second sub-resin system includes epoxy resin and silicon dioxide
  • the second sub-curing agent system includes resin Cyclic polyamine and silane coupling agent.
  • the second resin layer 222 is formed by coating and curing the second resin ink; that is, the raw material of the second resin layer 222 is the second resin ink.
  • the second sub-resin system also includes the first organic solvent and the first auxiliary agent. The first organic solvent is used to dissolve the epoxy resin, and the first additive helps to improve the performance of the epoxy resin ink.
  • the mass content of epoxy resin in the second sub-resin system is 30%-50%, and the mass content of silicon dioxide is less than or equal to 10%.
  • the content of the epoxy resin ensures the water vapor barrier effect of the second resin layer 222 , and the silicon dioxide improves the surface properties of the second resin layer 222 .
  • the second sub-resin system may include, but is not limited to, 30%, 35%, 37%, 40%, 42%, 45% or 50% epoxy resin in terms of mass percentage.
  • the second sub-resin system includes 30%-40% epoxy resin by mass percentage. In another embodiment, by mass percentage, the second sub-resin system includes 40%-50% epoxy resin.
  • the second sub-resin system includes 30%-50% of epoxy resin, 30%-40% of the first organic solvent, 10%-30% of the first auxiliary agent and 0.1%-10 % of silicon dioxide is beneficial to the dissolution and dispersion of the epoxy resin, and at the same time is beneficial to the coating of the second resin ink, and can also improve the performance of the second resin layer 222 .
  • the second sub-resin system may include, but is not limited to, 30%, 32%, 35%, 37%, 39% or 40% of the first organic solvent, and the second sub-resin system may, but is not limited to 10%, 13%, 15%, 18%, 20%, 25%, 28% or 30% of the first adjuvant is included.
  • the second sub-resin system includes 40%-49% of epoxy resin, 30%-38% of the first organic solvent, 20%-28% of the first auxiliary agent and 0.1 %-10% silica.
  • the materials and contents of the first organic solvent and the first auxiliary agent in the second resin ink refer to the description of the first organic solvent and the first auxiliary agent in the above-mentioned epoxy resin ink, which will not be repeated here.
  • the materials and contents of the first organic solvent, the first auxiliary agent and the first curing agent system in the second resin ink and the first resin ink may be the same or different.
  • the second sub-curing agent system includes 50%-70% of alicyclic polyamine and 30%-50% of silane coupling agent in terms of mass percentage.
  • the second sub-curing agent system can promote the cross-linking reaction between epoxy resins, and improve the airtightness of the second resin layer 222 .
  • the second sub-curing agent system can include, but is not limited to, 50%, 53%, 55%, 57%, 60%, 62%, 65%, 68% or 70% of alicyclic multi-component Amines, and 30%, 32%, 35%, 37%, 40%, 44%, 45%, 46% or 50% silane coupling agents.
  • the second sub-curing agent system includes 50%-60% of alicyclic polyamine and 40%-50% of silane coupling agent in terms of mass percentage. In another embodiment, by mass percentage, the second sub-curing agent system includes 60%-70% of alicyclic polyamine and 30%-40% of silane coupling agent.
  • the mass ratio of the second sub-curing agent system and the second sub-resin system in the second resin ink is (0.1-0.12):1, so that the epoxy resin in the second sub-resin system Fully cross-linked under the action of the two sub-curing agent system, increasing the degree of cross-linking of the second resin layer 222 is conducive to improving the air tightness of the second resin layer 222 , thereby further improving the water vapor barrier effect of the water vapor barrier film 20 .
  • the mass ratio of the second sub-curing agent system to the second sub-resin system in the second resin ink may be, but not limited to, 0.1, 0.105, 0.11, 0.115, or 0.12.
  • the second resin ink includes a second sub-resin system and a second sub-curing agent system.
  • the second sub-resin system includes 30%-50% of epoxy resin, and the second sub-resin system
  • the curing agent system includes 50%-70% of alicyclic polyamines and 30%-50% of silane coupling agents (such as glycidoxytrimethylsilane); the second sub-curing agent in the second resin ink
  • the mass ratio of the system to the second sub-resin system is (0.1-0.12):1. In this way, it is helpful to further improve the airtightness of the second resin layer 222 .
  • the first auxiliary agent may include pigments, and the mass content of pigments in the second sub-resin system is less than or equal to 20%.
  • the sum of the thicknesses of the first resin layer 221 and the second resin layer 222 is greater than or equal to 8 ⁇ m, so as to ensure the water vapor barrier effect of the water vapor barrier film 20 .
  • the thickness of the first resin layer 221 is 8 ⁇ m-10 ⁇ m
  • the thickness of the second resin layer 222 is 10 ⁇ m-12 ⁇ m. In this way, the first resin layer 221 and the second resin layer 222 not only ensure the water vapor barrier effect of the epoxy resin layer 22, but also improve the bonding performance between it and the polyester resin layer 21, and at the same time improve the epoxy resin layer.
  • the thickness of the first resin layer 221 can be, but not limited to, 8 ⁇ m, 8.5 ⁇ m, 8.7 ⁇ m, 9 ⁇ m, 9.2 ⁇ m, 9.5 ⁇ m, 9.8 ⁇ m or 10 ⁇ m, etc.
  • the thickness of the second resin layer 222 can be It is not limited to 10 ⁇ m, 10.5 ⁇ m, 10.8 ⁇ m, 11 ⁇ m, 11.3 ⁇ m, 11.5 ⁇ m, 11.7 ⁇ m, or 12 ⁇ m.
  • the thickness of the first resin layer 221 is 8 ⁇ m-9 ⁇ m
  • the thickness of the second resin layer 222 is 11 ⁇ m-12 ⁇ m.
  • the thickness of the first resin layer 221 is 9 ⁇ m-10 ⁇ m
  • the thickness of the second resin layer 222 is 10 ⁇ m-11 ⁇ m.
  • the setting of the polyester resin layer 21 ensures the bonding performance between the water vapor barrier film 20 and the shell 10; since the polyester resin layer 21 is flexible, no matter it is set on the surface of the hard shell 10 or set On the surface of the shell 10 which is relatively soft, a good bond can be formed with the surface of the shell 10, and the stress matching between the polyester resin layer 21 and the shell 10 is good, thereby improving the performance of the water vapor barrier film 20 on the surface of the shell 10. stability.
  • the raw material of the polyester resin layer 21 includes a second resin system and a second curing agent system, the second resin system includes polyester resin, and the second curing agent system includes aliphatic polyisocyanate.
  • the polyester resin layer 21 is formed by coating and curing polyester resin ink; that is, the raw material of the polyester resin layer 21 is polyester resin ink.
  • the second resin system also includes a second organic solvent and a second additive. The second organic solvent is used to dissolve the polyester resin, and the second additive helps to improve the performance of the polyester resin ink.
  • the second organic solvent includes at least one of naphtha, ketone solvents, alcohol solvents, and ester solvents
  • the second additive includes defoamers, leveling agents, antioxidants, and pigments. at least one of .
  • the second organic solvent includes naphtha
  • the second auxiliary agent includes pigments.
  • the color of the pigment can be, but not limited to, blue, red, yellow, white, green, etc. By adding pigments, the color of the polyester resin layer 21 can be changed to improve the visual effect.
  • the second resin system includes 30%-50% polyester resin by mass percentage.
  • the second resin system may include, but is not limited to, 30%, 33%, 35%, 37%, 40%, 45%, 47% or 50% polyester resin in terms of mass percentage.
  • the second resin system includes 30%-40% polyester resin by mass percentage.
  • the second resin system includes 40%-50% polyester resin.
  • the second resin system contains more polyester resin, which is beneficial to improve the toughness of the polyester resin layer 21 and improve the bonding force between the polyester resin layer 21 and the casing 10 .
  • the second resin system includes 30%-50% polyester resin, 20%-30% second organic solvent and 5%-50% second auxiliary agent.
  • the second resin system may, but is not limited to, include 20%, 23%, 24%, 25%, 26%, 27%, 28% or 30% of the second organic solvent, the second resin system It may, but is not limited to, include 5%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45% or 50% of the second adjuvant.
  • the second curing agent system includes 80%-90% of aliphatic polyisocyanate by mass percentage.
  • the above-mentioned second curing agent system can promote the cross-linking reaction of the polyester resin, improve the flexibility of the polyester resin layer 21, and also produce a chemical bond with the epoxy resin layer 22, thereby improving the structural stability of the water vapor barrier film 20 .
  • the second curing agent system may include, but is not limited to, 80%, 81%, 84%, 85%, 87%, 88% or 90% aliphatic polyisocyanate in terms of mass percentage.
  • the second curing agent system includes aliphatic polyisocyanate and curing solvent.
  • the curing solvent includes at least one of ketone solvents, alcohol solvents and ester solvents.
  • the curing solvent may include, but is not limited to, at least one of butanone, methanol, ethanol, and ethyl acetate.
  • the second curing agent system includes 80%-90% aliphatic polyisocyanate and 10%-20% curing solvent. Further, in terms of mass percentage, the second curing agent system includes 80%-85% aliphatic polyisocyanate and 15%-20% curing solvent.
  • the mass ratio of the second curing agent system and the second resin system in the polyester resin ink is (0.06-0.1):1, thereby ensuring the flexibility of the polyester resin layer 21 and helping it to be compatible with
  • the combination of the shells 10 is also beneficial to increase the chemical bond between the polyester resin layer 21 and the epoxy resin layer 22 and the intermolecular force, thereby further improving the structural stability of the water vapor barrier film 20 .
  • the mass ratio of the second curing agent system to the second resin system may be, but not limited to, 0.06, 0.07, 0.08, 0.09 or 0.1.
  • the mass ratio of the second curing agent system to the second resin system in the polyester resin ink is (0.08-0.1):1.
  • the mass ratio of the second curing agent system to the second resin system in the polyester resin ink is (0.06-0.08):1.
  • the polyester resin layer 21 contains a pigment. That is, the second auxiliary agent includes a pigment, thereby changing the color of the polyester resin layer 21 .
  • the mass content of the pigment in the polyester resin layer 21 is less than or equal to 20%. In this way, the color of the polyester resin layer 21 can be enriched without affecting the performance of the polyester resin layer 21 .
  • the mass content of the pigment in the polyester resin layer 21 is 3%-20%. Specifically, the mass content of the pigment in the polyester resin layer 21 may be, but not limited to, 3%, 5%, 10%, 14%, 15%, 17% or 20%.
  • the color and particle size of the pigment are as described above, and will not be repeated here.
  • the pigment in the first auxiliary agent and the pigment in the second auxiliary agent are of the same color system, so that the housing assembly 100 presents an obvious color.
  • the polyester resin ink includes a second resin system and a second curing agent system.
  • the second resin system includes 30%-50% of polyester resin, and the second curing agent system It includes 80%-90% aliphatic polyisocyanate; the mass ratio of the second curing agent system and the second resin system in the polyester resin ink is (0.06-0.1):1. In this way, it is helpful to further improve the flexibility of the formed polyester resin layer 21 and the bonding force between the polyester resin layer 21 and the epoxy resin layer 22 .
  • the thickness of the polyester resin layer 21 is 3 ⁇ m-12 ⁇ m.
  • the thickness of the polyester resin layer 21 may be, but not limited to, 3 ⁇ m, 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 7 ⁇ m, 8 ⁇ m, 9 ⁇ m, 10 ⁇ m, 11 ⁇ m or 12 ⁇ m.
  • the thickness of the polyester resin layer 21 is 3 ⁇ m-5 ⁇ m.
  • the thickness of the polyester resin layer 21 is 8 ⁇ m-10 ⁇ m.
  • the thickness of the polyester resin layer 21 is 5 ⁇ m-7 ⁇ m.
  • the size, material and shape of the housing 10 are not limited, and can be selected and designed according to actual needs.
  • the thickness of the housing 10 may be, but not limited to, 0.1mm-1mm, such as 0.1mm, 0.2mm, 0.3mm, 0.4mm, 0.5mm, 0.6mm, 0.7mm, 0.8mm, 0.9mm or 1mm, etc., to meet the requirements of mechanical properties, and not too thick, in line with the needs of light and thin.
  • the casing 10 may be of equal thickness or unequal thickness, so as to achieve different appearance effects. In one embodiment, along the length direction of the casing 10 , the thickness of the casing 10 is gradually changed, so as to improve the tactile feeling of the casing 10 .
  • the material of the casing 10 may be, but not limited to, any known material that can be used for the casing 10 of an electronic device.
  • the material of the housing 10 includes at least one of plastic, glass, glass fiber, ceramic and metal.
  • the plastic may include, but is not limited to, polycarbonate, polymethyl methacrylate, polyethylene terephthalate, and the like.
  • the shell 10 can be, but not limited to, a polyethylene terephthalate shell, a composite shell of polycarbonate plate and polymethyl methacrylate plate, a glass shell, a glass fiber shell, a ceramic shell, a metal shell, etc. .
  • the optical transmittance of the casing 10 may be greater than 90%. Specifically, the optical transmittance of the casing 10 may be, but not limited to, greater than 92%, 93%, 94%, 95% or 96%. Wherein, the optical transmittance is the transmittance of light in the 380nm-780nm band.
  • the optical transmittance is the transmittance of light in the 380nm-780nm band.
  • the structure of the housing 10 is a 2D structure, a 2.5D structure or a 3D structure, which can be adapted to different scenarios.
  • the housing 10 has a curved surface.
  • the structure of the housing 10 is a 3D structure, which improves the three-dimensional effect and smooth touch of the housing 10 .
  • the housing 10 is a curved transparent glass shell or a curved transparent plastic shell.
  • the casing 10 has high mechanical strength and high transmittance, and has a smoother touch feeling, which is more conducive to its use.
  • the housing 10 has a curved surface, specifically, but not limited to, a 3D structure
  • the polyester resin layer 21 in the water vapor barrier film 20 has a strong bonding force with the surface of the housing 10, it is guaranteed to be curved on the curved surface.
  • Part of the water vapor barrier film 20 can still be well attached to the curved surface of the casing 10, improving product reliability.
  • patterns, characters, etc. can be silk-screened on the surface of the casing 10 , specifically, a trademark pattern (Logo) can be silk-screened.
  • the influence of water vapor on the housing assembly 100 is reduced by setting the water vapor barrier film 20 .
  • the weight of the structure before and after boiling is measured by boiling the structure in water at 80°C for 2 hours.
  • the ratio of the weight difference of the structure before and after boiling to the weight of the structure before boiling is the water absorption rate, and the water vapor barrier is evaluated by the water absorption rate. Effect.
  • the water absorption rate of the shell assembly 100 is less than or equal to 0.03%.
  • the water absorption rate of the housing assembly 100 may be, but not limited to, less than 0.013%, less than 0.015%, less than 0.017%, less than 0.018%, less than 0.02%, less than 0.021%, less than 0.024%, or less than 0.028%. Further, the water absorption rate of the shell assembly 100 is less than or equal to 0.021%. In an embodiment of the present application, the water absorption rate of the shell assembly 100 is 0.012%-0.021%. Further, the water absorption rate of the shell assembly 100 is 0.012%-0.015%.
  • the adhesion of the water vapor barrier film 20 in the casing assembly 100 is greater than or equal to 5B. In the present application, the adhesion of the water vapor barrier film 20 in the casing assembly 100 is detected by the barometer method.
  • the housing assembly 100 further includes a decorative film 30 disposed on the housing 10 .
  • FIG. 3 is a schematic structural diagram of a housing assembly provided in another embodiment of the present application.
  • the housing assembly 100 includes a stacked housing 10 , a decorative film 30 and a water vapor barrier film 20 .
  • the water vapor barrier film 20 can protect the decorative film 30, prevent water vapor from affecting the decorative effect of the decorative film 30, and prevent water vapor from affecting the decorative film 30.
  • the influence of adhesion performance improves the structural stability of the housing assembly 100 .
  • the casing assembly 100 includes a decorative film 30 , a casing 10 and a water vapor barrier film 20 arranged in a stack.
  • the decoration film 30 includes at least one of a color layer, a texture layer, a coating layer and a cover layer.
  • the color layer gives the shell assembly 100 a color appearance, and the color of the color layer can be, but not limited to, yellow, red, blue, green, purple, white, etc.; it can also be spliced with multiple colors to form a contrasting color
  • the visual effect can also be a gradient color layer; the color layer can be formed by coating and curing.
  • the color layer may have a single-layer structure or a multi-layer structure, and the colors between the multi-layer color layers may be the same or different.
  • the color layer may be a transparent color layer.
  • the setting of the color layer will not affect the appearance of other layer structures in the casing 10 .
  • the optical transmittance of the transparent color layer is greater than 90%.
  • the color layer is a solid color layer. That is, the color layer is opaque so that the color of the color layer appears more clearly.
  • the texture layer gives the housing assembly 100 a textured appearance, and the texture layer may be formed by transfer printing.
  • the texture layer is a transparent texture layer.
  • the optical transmittance of the transparent texture layer is greater than 90%.
  • the thickness of the texture layer may be, but not limited to, 9 ⁇ m-12 ⁇ m.
  • the texture layer may have a single-layer structure or a multi-layer structure, and the textures between the multi-layer texture layers may be the same or different.
  • the coating layer includes at least one of an optical film layer and a metal texture layer.
  • the optical film layer can change the refraction, transmission, reflection, etc. of the light passing through the optical film layer, so that the housing 10 presents a certain gloss change, and the metal texture layer can make the housing 10 have a metallic luster and improve the appearance effect; the coating layer can But not limited to forming by physical vapor deposition.
  • the optical film layer includes at least one of a titanium oxide layer, a trititanium pentoxide layer, a tantalum oxide layer, a zirconium oxide layer, a silicon dioxide layer, an aluminum oxide layer and a magnesium fluoride layer.
  • the optical film layer is formed by alternately stacking at least two optical films with different refractive indices. Further, the optical film layer is formed by periodically and alternately stacking at least two optical films with different refractive indices.
  • the zirconia layer, the silicon dioxide layer and the trititanium pentoxide layer are sequentially formed by means of an electron gun or a magnetron wire to obtain an optical film layer, which can improve the brightness of the housing 10 .
  • the metal texture layer is an indium layer, a tin layer or an indium-tin alloy layer.
  • the metal texture layer can be made through a non-conductive electroplating process.
  • the cover layer is formed by coating and curing the base ink, so that the housing 10 can shield the light on one side when it is used.
  • the optical transmittance of the cover layer is less than 1%.
  • the cover bottom layer may include, but is not limited to, a base color layer, a fireproof ink layer, and a grayscale layer.
  • the thickness of the capping layer may be, but not limited to, 35 ⁇ m-45 ⁇ m.
  • the decoration film 30 includes a cover layer, a coating layer, a texture layer and a color layer that are stacked. In another embodiment, the decoration film 30 includes a cover layer, a coating layer, a color layer and a texture layer arranged in layers.
  • the housing assembly 100 further includes an explosion-proof membrane, and the explosion-proof membrane is disposed on the housing 10 .
  • the casing assembly 100 is protected by setting the explosion-proof membrane, preventing external forces from damaging the casing assembly 100 .
  • the explosion-proof film may include a polyethylene terephthalate layer and a connection layer; the connection layer may be, but not limited to, an optical adhesive layer.
  • the mechanical properties of the explosion-proof membrane can be improved by arranging the polyethylene terephthalate layer, and the arrangement of the explosion-proof membrane on the surface of the casing 10 is facilitated by arranging the optical adhesive layer.
  • FIG. 4 is a schematic structural diagram of a shell assembly provided in another embodiment of the present application.
  • the shell assembly 100 includes a stacked shell 10 , an explosion-proof membrane 40 and a water vapor barrier membrane 20 .
  • FIG. 5 is a schematic structural diagram of a housing assembly provided in another embodiment of the present application.
  • the housing assembly 100 includes a stacked housing 10 , an explosion-proof film 40 , a decorative film 30 and a water vapor barrier film 20 .
  • the housing assembly 100 has rich appearance effects.
  • the decorative film 30 and the water vapor barrier film 20 are formed on the explosion-proof film 40 , they can be pasted on the surface of the housing 10 together.
  • FIG. 6 is a flowchart of a method for preparing a housing assembly provided in an embodiment of the present application, including:
  • S101 Coating polyester resin ink on the surface of the casing, and forming a polyester resin layer after baking.
  • a barrier layer of inorganic materials is often provided on the surface of the shell 10.
  • the forming process of the barrier layer of inorganic materials is complicated, requires high production equipment, low production yield, high production cost, and even needs to be carried out at high temperature, which affects the shell.
  • the water vapor barrier film 20 is formed on the surface of the housing 10 by coating, which is simple and convenient to operate, does not require large-scale equipment, has low production cost, high production yield, and the structural stability of the manufactured housing assembly 100 Well, the water vapor barrier effect is high.
  • the polyester resin layer 21 is formed by coating the surface of the casing 10 with polyester resin ink and baking.
  • coating may be, but not limited to, spray coating, flow coating, printing, and the like.
  • the polyester resin ink is applied by means of atomization and spraying. For example, the polyester resin ink is atomized first, and then the polyester resin ink is sprayed out through a spray gun, so as to facilitate the dispersion and adhesion of the polyester resin ink on the surface of the casing 10 made of different materials.
  • the atomization pressure in the atomization spraying is 240kPa-280kPa
  • the spraying pressure is 300kPa-400kPa
  • the spraying speed is 500mm/s-700mm/s, so as to improve the viscosity of the polyester resin ink on the surface of the housing 10.
  • Uniform dispersion improves the surface smoothness of the polyester resin layer 21 and facilitates rapid subsequent baking.
  • the atomization pressure in the atomization spraying can be but not limited to be 240kPa, 250kPa, 260kPa, 270kPa or 280kPa
  • the spraying pressure can be but not limited to be 300kPa, 320kPa, 350kPa, 370kPa, 390kPa or 400kPa etc.
  • the spraying speed can be but It is not limited to 500mm/s, 550mm/s, 600mm/s, 650mm/s, or 700mm/s.
  • the atomization pressure in atomization spraying is 240kPa-250kPa, the spraying pressure is 350kPa-400kPa, and the spraying speed is 600mm/s-700mm/s.
  • the atomization pressure in atomized spraying is 260kPa-280kPa, the spraying pressure is 300kPa-350kPa, and the spraying speed is 500mm/s-600mm/s.
  • atomization spraying is carried out using spray guns, and the distance between adjacent spray guns is 10mm-20mm, which is beneficial to improve the uniformity of coating thickness of polyester resin ink.
  • the distance between adjacent spray guns is 10mm-13mm, 12mm-15mm, 15mm-18mm or 18mm-20mm, etc.
  • the atomization pressure in atomized spraying is 240kPa-280kPa
  • the spraying pressure is 300kPa-400kPa
  • the spraying speed is 500mm/s-700mm/s
  • the distance between adjacent spray guns is 10mm-20mm.
  • the thickness of the sprayed polyester resin layer 21 is 8 ⁇ m-10 ⁇ m.
  • the polyester resin layer 21 is provided on the surface of the casing 10 by silk screen printing. In one embodiment, the thickness of the silk-screened polyester resin layer 21 is 3 ⁇ m-5 ⁇ m.
  • the polyester resin ink includes a second resin system and a second curing agent system.
  • the second resin system includes 30%-50% polyester resin
  • the second curing agent system includes 80%-90% aliphatic polyisocyanate
  • the polyester resin ink The mass ratio of the second curing agent system to the second resin system is (0.06-0.1):1.
  • the baking includes processing at 70°C-100°C for 15min-25min.
  • the polyester resin ink is cured through the above-mentioned baking to form the polyester resin layer 21 , and the baking temperature is low, which does not affect the performance of the casing 10 .
  • the baking temperature can be but not limited to 70°C, 76°C, 80°C, 83°C, 90°C or 100°C, etc.
  • the baking time can be but not limited to 15min, 17min, 20min, 22min or 25min, etc.
  • the baking includes processing at 70°C-75°C for 15min-25min, so as to obtain the polyester resin layer 21 with good flexibility.
  • the shell assembly 100 is obtained by coating epoxy resin ink on the surface of the polyester resin layer 21 and final baking.
  • coating may be, but not limited to, spray coating, flow coating, printing, and the like.
  • the polyester resin ink is applied by means of atomization and spraying. Specifically, for the process conditions of atomization spraying, refer to the description in S101, which will not be repeated here.
  • the final baking means that the epoxy resin ink is heat-treated to form a film of the epoxy resin ink to form the epoxy resin layer 22 , and at the same time, the entire water vapor barrier film 20 is completely cured.
  • the epoxy resin ink includes a first resin system and a first curing agent system.
  • the first resin system includes 30%-50% of epoxy resin
  • the first curing agent system includes 50%-70% of alicyclic polyamine and 30%-50% % of the silane coupling agent
  • the mass ratio of the first curing agent system and the first resin system in the epoxy resin ink is (0.08-0.12):1.
  • the final baking includes processing at 70°C-100°C for 90min-150min.
  • the epoxy resin ink is cured by final baking to form the epoxy resin layer 22 , and at the same time, the entire water vapor barrier film 20 is completely cured.
  • the final baking temperature can be but not limited to 70°C, 75°C, 80°C, 85°C, 90°C, 95°C or 100°C, etc.
  • the baking time can be but not limited to 90min, 100min, 110min, 120min , 130min, 140min or 150min, etc.
  • the final baking includes treating at 70°C-75°C for 100min-130min, so as to cure the water vapor barrier film 20 completely and have excellent performance.
  • the epoxy resin ink is coated on the surface of the polyester resin layer 21, and the epoxy resin layer 22 is formed after final baking, including coating the first resin ink on the surface of the polyester resin layer 21, after The first resin layer 221 is formed after curing; the second resin ink is coated on the surface of the first resin layer 221 , and the epoxy resin layer 22 is formed after final baking.
  • FIG. 7 is a flowchart of a method for preparing a shell assembly provided in another embodiment of the present application, including:
  • S201 Coating polyester resin ink on the surface of the casing, and forming a polyester resin layer after baking.
  • S203 Coating the second resin ink on the surface of the first resin layer, forming an epoxy resin layer after final baking, and obtaining the housing assembly.
  • the first resin ink is applied first, and then the second resin ink is applied, so as to form the epoxy resin layer 22 .
  • the first resin ink includes a first sub-resin system and a first sub-curing agent system.
  • the first sub-resin system includes 30%-40% epoxy resin
  • the first sub-curing agent system includes 50%-70% alicyclic polyamine and 30% -50% silane coupling agent
  • the mass ratio of the first sub-curing agent system to the first sub-resin system in the first resin ink is (0.08-0.1):1.
  • curing means heat-treating the first resin ink to form a film of the first resin ink to form the first resin layer 221, and final baking means heat-treating the second resin ink to form a film of the second resin ink,
  • the second resin layer 222 is formed while the entire water vapor barrier film 20 is fully cured.
  • curing includes processing at 70°C-100°C for 15min-25min.
  • the first resin ink is cured through the above-mentioned baking to form the first resin layer 221 .
  • the curing temperature can be but not limited to 70°C, 75°C, 80°C, 85°C, 90°C or 100°C, etc.
  • the baking time can be but not limited to 15min, 18min, 20min, 23min or 25min, etc.
  • the curing includes treating at 70°C-75°C for 15min-25min, so as to obtain the first resin layer 221 with good water vapor barrier effect and strong binding force.
  • the second resin ink includes a second sub-resin system and a second sub-curing agent system.
  • the second sub-resin system includes 30%-50% of epoxy resin and 0.1%-10% of silicon dioxide
  • the second sub-curing agent system includes 50%-70% % alicyclic polyamine and 30%-50% silane coupling agent
  • the mass ratio of the second sub-curing agent system and the second sub-resin system in the second resin ink is (0.1-0.12):1.
  • the manufacturing method of the housing assembly 100 further includes disposing a decorative film 30 on the surface of the housing 10 . In the embodiment of the present application, the manufacturing method of the housing assembly 100 further includes disposing an explosion-proof film 40 on the surface of the housing 10 . In the embodiment of the present application, the manufacturing method of the housing assembly 100 further includes pressing, defoaming and machining the housing assembly 100 to improve internal bonding tightness and obtain the housing assembly 100 of a desired shape.
  • the present application also provides an electronic device, including the casing assembly 100 in any one of the above-mentioned implementation manners.
  • the electronic device can be, but not limited to, a mobile phone, a tablet computer, a notebook computer, a watch, MP3, MP4, GPS navigator, a digital camera, etc.
  • the housing assembly 100 can be a back cover, a middle frame, or a battery cover of the electronic device. , dials, key shells, lenses, etc.
  • FIG. 8 is a schematic structural diagram of an electronic device provided in an embodiment of the present application.
  • the electronic device 200 includes a housing assembly 100 and a display device connected to the housing assembly 100 .
  • the electronic device 200 with the housing assembly 100 can prevent water vapor from affecting its internal components and improve its service life.
  • the housing assembly includes a camera resin lens and a water vapor barrier film arranged on the surface of the camera resin lens.
  • the water vapor barrier film includes a laminated polyester resin layer, a first resin layer and a second resin layer, and the polyester resin layer is arranged on the camera resin lens. and between the first resin layer; the thickness of the polyester resin layer is 8 ⁇ m, the thickness of the first resin layer is 8 ⁇ m, and the thickness of the second resin layer is 10 ⁇ m.
  • the polyester resin layer is formed by curing the polyester resin ink
  • the first resin layer is formed by curing the first resin ink
  • the second resin layer is formed by curing the second resin ink.
  • Polyester resin printing ink comprises the second resin system and the second curing agent system, and by mass percentage, the second resin system comprises the polyester resin of 40%, the naphtha of 25%, the second auxiliary agent of 35%, the second
  • the auxiliary agent includes pigment, and the mass proportion of pigment in the second resin system is 25%;
  • the second curing agent system includes 85% aliphatic polyisocyanate and 15% ester solvent;
  • the second curing agent system in polyester resin ink The mass ratio with the second resin system is 0.06:1.
  • the first resin ink includes the first sub-resin system and the first sub-curing agent system, by mass percentage, the first sub-resin system includes 35% epoxy resin, 37% ketone solvent and 28% first auxiliary agent , the first auxiliary agent includes pigments, and the mass proportion of pigments in the first sub-resin system is 20%; the first sub-curing agent system includes 60% alicyclic polyamines and 40% glycidoxytrimethyl Silane; the mass ratio of the first sub-curing agent system and the first sub-resin system in the first resin ink is 0.08:1.
  • the second resin ink includes a second sub-resin system and a second sub-curing agent system, and by mass percentage, the second sub-resin system includes 35% epoxy resin, 37% ketone solvent, and 18% first auxiliary agent and 10% of silicon dioxide, the first additive includes pigment, and the mass proportion of pigment in the first sub-resin system is 12%; the second curing agent system includes 55% of cycloaliphatic polyamine and 45% of epoxy Propoxytrimethylsilane; the mass ratio of the second curing agent system and the second resin system in the second resin ink is 0.1:1.
  • the housing assembly includes a laminated glass shell, an explosion-proof film and a water vapor barrier film, the water vapor barrier film includes a polyester resin layer and an epoxy resin layer, and the polyester resin layer is arranged between the explosion-proof film and the epoxy resin layer; the polyester resin
  • the thickness of the layers was 10 ⁇ m, and the thickness of the epoxy resin layer was 18 ⁇ m.
  • the polyester resin layer is formed by curing the polyester resin ink
  • the epoxy resin layer is formed by curing the epoxy resin ink.
  • Polyester resin printing ink comprises the second resin system and the second curing agent system, and by mass percentage, the second resin system comprises the polyester resin of 40%, the naphtha of 25%, the second auxiliary agent of 35%, the second The auxiliary agent includes pigment, and the mass proportion of pigment in the second resin system is 25%; the second curing agent system includes 85% aliphatic polyisocyanate and 15% ester solvent; the second curing agent system in polyester resin ink The mass ratio with the second resin system is 0.06:1.
  • Epoxy resin ink comprises the first resin system and the first curing agent system, by mass percentage, the first resin system comprises the first auxiliary agent of 45% epoxy resin, 39% ketone solvent and 16%, the first The auxiliary agent includes a pigment, and the mass ratio of the pigment in the first resin system is 8%; the first curing agent system includes 60% of cycloaliphatic polyamine and 40% of glycidoxytrimethylsilane; the epoxy resin The mass ratio of the first curing agent system and the first resin system in the ink is 0.08:1.
  • the shell assembly includes a glass fiber shell, a texture layer and a water vapor barrier film that are laminated, the water vapor barrier film includes a polyester resin layer and an epoxy resin layer, and the polyester resin layer is arranged between the texture layer and the epoxy resin layer; the polyester resin layer is arranged between the texture layer and the epoxy resin layer; The thickness of the resin layer was 8 ⁇ m, and the thickness of the epoxy resin layer was 8 ⁇ m.
  • the polyester resin layer is formed by curing the polyester resin ink
  • the epoxy resin layer is formed by curing the epoxy resin ink.
  • Polyester resin printing ink comprises the second resin system and the second curing agent system, and by mass percentage, the second resin system comprises the polyester resin of 30%, the naphtha of 30%, the second auxiliary agent of 40%;
  • the curing agent system includes 80% aliphatic polyisocyanate and 20% ester solvent; the mass ratio of the second curing agent system and the second resin system in the polyester resin ink is 0.08:1.
  • Epoxy resin printing ink comprises the first resin system and the first curing agent system, and by mass percentage, the first resin system comprises the first auxiliary agent of 30% epoxy resin, 40% ketone solvent and 30%;
  • the curing agent system includes 50% of alicyclic polyamine and 50% of glycidoxytrimethylsilane; the mass ratio of the first curing agent system and the first resin system in the epoxy resin ink is 0.1:1.
  • the shell assembly includes a laminated glass fiber shell, a color layer and a water vapor barrier film, the water vapor barrier film includes a polyester resin layer and an epoxy resin layer, the polyester resin layer is arranged between the color layer and the epoxy resin layer; the polyester resin layer is arranged between the color layer and the epoxy resin layer; The thickness of the resin layer was 9 ⁇ m, and the thickness of the epoxy resin layer was 15 ⁇ m.
  • the polyester resin layer is formed by curing the polyester resin ink
  • the epoxy resin layer is formed by curing the epoxy resin ink.
  • Polyester resin printing ink comprises the second resin system and the second curing agent system, and by mass percentage, the second resin system comprises the polyester resin of 50%, the naphtha of 20%, the second auxiliary agent of 30%;
  • the curing agent system includes 90% aliphatic polyisocyanate and 10% ester solvent; the mass ratio of the second curing agent system and the second resin system in the polyester resin ink is 0.1:1.
  • Epoxy resin printing ink comprises the first resin system and the first curing agent system, and by mass percentage, the first resin system comprises the first auxiliary agent of 50% epoxy resin, 35% ketone solvent and 15%;
  • the curing agent system includes 70% of cycloaliphatic polyamine and 30% of glycidoxytrimethylsilane; the mass ratio of the first curing agent system and the first resin system in the epoxy resin ink is 0.12:1.
  • the housing assembly includes a camera resin lens with a 3D structure and a water vapor barrier film arranged on the surface of the camera resin lens.
  • the water vapor barrier film includes a laminated polyester resin layer, a first resin layer and a second resin layer, and the polyester resin layer is arranged on Between the resin lens of the camera and the first resin layer; the thickness of the polyester resin layer is 9 ⁇ m, the thickness of the first resin layer is 10 ⁇ m, and the thickness of the second resin layer is 12 ⁇ m.
  • the polyester resin layer is formed by curing the polyester resin ink, and the polyester resin ink includes polyester resin and aliphatic polyisocyanate; the first resin layer is formed by curing the first resin ink, and the first resin ink includes epoxy resin, cycloaliphatic Polyamine and silane coupling agent, the second resin layer is formed by curing the second resin ink, and the second resin ink includes epoxy resin, alicyclic polyamine, silane coupling agent and silicon dioxide.
  • Comparative Examples 1-5 correspond to Examples 1-5 respectively, and the difference between Comparative Examples 1-5 and Examples 1-5 is that no polyester resin layer is provided.
  • the water vapor barrier film on the surface of the housing components provided in the examples and comparative examples was tested for adhesion by the Baige method (ASTM D3359 Method B Cross-cut tape test), and it was found that in the housing components provided in Examples 1-5
  • the adhesion of the water vapor barrier film can reach a level of 5B, while the adhesion of the water vapor barrier film in the housing components provided in Comparative Examples 1-5 only reaches a level below 1B. It can be seen that the adhesion performance of the water vapor barrier film can be improved by providing the polyester resin layer.
  • the water absorption test is carried out on the casing components provided in Examples 1-5, wherein the casing components are boiled in 80°C water for 2 hours, the weight of the casing components before and after boiling is measured, and the weight difference of the casing components before and after boiling is measured.
  • the ratio of the value to the weight of the casing assembly before boiling is recorded as the water absorption; it was found that the water absorption of the casing assembly provided by Examples 1-5 is below 0.02%, which has an excellent effect of blocking water vapor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)

Abstract

本申请提供了一种壳体组件(100),包括壳体(10)以及设置在壳体(10)的表面的水汽阻隔膜(20),水汽阻隔膜(20)包括聚酯树脂层(21)和环氧树脂层(22),聚酯树脂层(21)设置在壳体(10)和环氧树脂层(22)之间。水汽阻隔膜(20)中聚酯树脂层(21)的柔性好,可以匹配不同性能的壳体(10),与壳体(10)、环氧树脂层(22)之间的结合力好,保证壳体组件(100)整体结构的稳定性,同时水汽阻隔膜(20)中环氧树脂层(22)具有优异的阻隔水汽的效果,降低水汽对壳体组件(100)性能的影响,对壳体组件(100)起到保护作用。本申请还提供了壳体组件(100)的制备方法和电子设备。

Description

壳体组件及其制备方法和电子设备 技术领域
本申请属于电子产品技术领域,具体涉及壳体组件及其制备方法和电子设备。
背景技术
阻隔空气中的水汽对电子设备的保护有着重要意义。目前常常在电子设备壳体上设置无机阻隔材料,以达到阻隔水汽的效果。然而,无机阻隔材料与壳体的匹配性不佳,容易开裂、脱落,影响隔绝水汽的效果。
发明内容
鉴于此,本申请提供了一种壳体组件及其制备方法和电子设备。
第一方面,本申请提供了一种壳体组件,包括壳体以及设置在所述壳体的表面的水汽阻隔膜,所述水汽阻隔膜包括聚酯树脂层和环氧树脂层,所述聚酯树脂层设置在所述壳体和所述环氧树脂层之间。
第二方面,本申请提供了一种壳体组件的制备方法,包括:
在壳体的表面涂覆聚酯树脂油墨,经烘烤后形成聚酯树脂层;
在所述聚酯树脂层的表面涂覆环氧树脂油墨,经终烘后形成环氧树脂层,得到壳体组件。
第三方面,本申请提供了一种电子设备,包括第一方面所述的壳体组件,或第二方面所述的制备方法制得的壳体组件。
附图说明
为了更清楚地说明本申请实施方式中的技术方案,下面将对本申请实施方式中所需要使用的附图进行说明。
图1为本申请一实施方式提供的壳体组件的结构示意图。
图2为本申请另一实施方式提供的壳体组件的结构示意图。
图3为本申请又一实施方式提供的壳体组件的结构示意图。
图4为本申请又一实施方式提供的壳体组件的结构示意图。
图5为本申请又一实施方式提供的壳体组件的结构示意图。
图6为本申请一实施方式提供的壳体组件的制备方法流程图。
图7为本申请另一实施方式提供的壳体组件的制备方法流程图。
图8为本申请一实施方式提供的电子设备的结构示意图。
具体实施方式
以下是本申请的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本申请 的保护范围。
下文的公开提供了许多不同的实施方式或例子用来实现本申请的不同结构。为了简化本申请的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请。此外,本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论的各种实施方式和/或设置之间的关系。此外,本申请提供了各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
本申请实施例提供了一种壳体组件,包括壳体以及设置在所述壳体的表面的水汽阻隔膜,所述水汽阻隔膜包括聚酯树脂层和环氧树脂层,所述聚酯树脂层设置在所述壳体和所述环氧树脂层之间。
其中,所述环氧树脂层包括第一树脂层和第二树脂层,所述第一树脂层设置在所述聚酯树脂层和所述第二树脂层之间,所述第二树脂层含有二氧化硅,所述第二树脂层中所述二氧化硅的含量小于或等于10%。
其中,所述二氧化硅的粒径为微纳米级。
其中,所述第一树脂层的厚度为8μm-10μm,所述第二树脂层的厚度为10μm-12μm。
其中,所述壳体组件的吸水率小于或等于0.03%。
其中,所述环氧树脂层的原料包括第一树脂体系和第一固化剂体系,所述第一树脂体系包括环氧树脂,所述第一固化剂体系包括脂环族多元胺和硅烷偶联剂。
其中,所述第一树脂体系中所述环氧树脂的质量含量为30%-50%,所述第一固化剂体系中所述脂环族多元胺的质量含量为50%-70%,所述硅烷偶联剂的质量含量为30%-50%。
其中,所述第一固化剂体系和所述第一树脂体系的质量比为(0.08-0.12):1。
其中,所述聚酯树脂层的原料包括第二树脂体系和第二固化剂体系,所述第二树脂体系包括聚酯树脂,所述第二固化剂体系包括脂肪族聚异氰酸酯。
其中,所述第二树脂体系中所述聚酯树脂的质量含量为30%-50%,所述第二固化剂体系中所述脂肪族聚异氰酸酯的质量含量为80%-90%。
其中,所述第二固化剂体系和所述第二树脂体系的质量比为(0.06-0.1):1。
其中,所述环氧树脂层的厚度大于或等于8μm。
其中,所述聚酯树脂层的厚度为3μm-12μm。
其中,所述壳体组件中所述水汽阻隔膜的附着力大于或等于5B。
其中,所述壳体组件还包括装饰膜,所述装饰膜设置在所述壳体与所述水汽阻隔膜之间,所述装饰膜包括颜色层、纹理层、镀膜层和盖底层中的至少一种。
本申请实施例提供了一种壳体组件的制备方法,包括:在壳体的表面涂覆聚酯树脂油墨,经烘烤后形成聚酯树脂层;在所述聚酯树脂层的表面涂覆环氧树脂油墨,经终烘后形成环氧树脂层,得到壳体组件。
其中,所述环氧树脂油墨包括第一树脂体系和第一固化剂体系,按质量百分比计,所述第一树脂体系中包括30%-50%的环氧树脂,所述第一固化剂体系中包括50%-70%的脂环 族多元胺和30%-50%的硅烷偶联剂,所述第一固化剂体系和所述第一树脂体系的质量比为(0.08-0.12):1。
其中,所述聚酯树脂油墨包括第二树脂体系和第二固化剂体系,按质量百分比计,所述第二树脂体系中包括30%-50%的聚酯树脂,所述第二固化剂体系中包括80%-90%的脂肪族聚异氰酸酯,所述第二固化剂体系和所述第二树脂体系的质量比为(0.06-0.1):1。
其中,所述第二树脂体系包括30%-50%的所述聚酯树脂、20%-30%的第二有机溶剂和5%-50%的第二助剂;所述第二固化剂体系包括80%-90%的所述脂肪族聚异氰酸酯和10%-20%的固化溶剂。
其中,在所述聚酯树脂层的表面涂覆环氧树脂油墨,经终烘后形成环氧树脂层,包括:在所述聚酯树脂层的表面涂覆第一树脂油墨,经固化后形成第一树脂层;在所述第一树脂层的表面涂覆第二树脂油墨,经所述终烘后形成所述环氧树脂层。
其中,所述第一树脂油墨包括第一子树脂体系和第一子固化剂体系,按质量百分比计,所述第一子树脂体系中包括30%-40%的环氧树脂,所述第一子固化剂体系中包括50%-70%的脂环族多元胺和30%-50%的硅烷偶联剂,所述第一子固化剂体系和所述第一子树脂体系的质量比为(0.08-0.1):1。
其中,所述第二树脂油墨包括第二子树脂体系和第二子固化剂体系,按质量百分比计,所述第二子树脂体系中包括30%-50%的所述环氧树脂和0.1%-10%的二氧化硅,所述第二子固化剂体系中包括50%-70%的脂环族多元胺和30%-50%的硅烷偶联剂,所述第二子固化剂体系和所述第二子树脂体系的质量比为(0.1-0.12):1。
其中,所述烘烤包括在70℃-100℃下处理15min-25min。
其中,所述终烘包括在70℃-100℃下处理90min-150min。
其中,所述涂覆包括雾化喷涂,所述雾化喷涂中的雾化压力为240kPa-280kPa,喷涂压力为300kPa-400kPa,喷涂速度为500mm/s-700mm/s。
本申请实施例提供了一种电子设备,包括上述的壳体组件,或上述制备方法制得的壳体组件。
请参阅图1,为本申请一实施方式提供的壳体组件的结构示意图,壳体组件100包括壳体10以及设置在壳体10表面的水汽阻隔膜20,水汽阻隔膜20包括聚酯树脂层21和环氧树脂层22,聚酯树脂层21设置在壳体10和环氧树脂层22之间。
相关技术中,常常在壳体10表面设置无机材料阻隔层以达到隔绝水汽的效果;然而由于无机材料硬度大,柔韧性低,设置到不同材质的壳体10的表面上时,无法很好的匹配壳体10的表面性能,无机材料阻隔层在使用过程中会发生开裂甚至脱落,影响水汽阻隔效果,例如无机材料阻隔层设置在较硬的壳体10表面时,界面结合性能差,应力不匹配,无机材料阻隔层容易脱落。本申请提供了具有聚酯树脂层21和环氧树脂层22的水汽阻隔膜20,相较于无机材料阻隔层,本申请提供的水汽阻隔膜20通过有机材料形成,柔韧性好,其中聚酯树脂层21的柔韧性优异,与不同材质的壳体10之间均可以产生强的结合力,可以适用于不同材质的壳体10,同时环氧树脂层22的水汽阻隔效果好,与聚酯树脂层21之间的 结合性能佳,保证了水汽阻隔膜20在壳体10表面长期稳定的存在,延长了水汽阻隔膜20对壳体组件100的保护作用,有利于壳体组件100的使用。
在本申请中,环氧树脂层22的设置保证了水汽阻隔膜20的水汽阻隔效果。在本申请实施方式中,环氧树脂层22的原料包括第一树脂体系和第一固化剂体系,第一树脂体系包括环氧树脂,第一固化剂体系包括脂环族多元胺和硅烷偶联剂。通过设置该第一固化剂体系,既能够提高环氧树脂的交联程度,从而提升环氧树脂层22的水汽阻隔效果,同时第一固化剂体系与环氧树脂反应,对环氧树脂进行改性,生成的中间体可以与聚酯树脂层21之间产生化学键合和分子间作用力,提高环氧树脂层22与聚酯树脂层21之间的结合力。在本申请中,环氧树脂层22由环氧树脂油墨经涂覆固化形成;也就是说,环氧树脂层22的原料即为环氧树脂油墨。进一步的,第一树脂体系还包括第一有机溶剂和第一助剂。第一有机溶剂用于溶解环氧树脂,第一助剂有助于提升环氧树脂油墨的性能。在一实施例中,第一有机溶剂包括酮类溶剂、醇类溶剂和酯类溶剂中的至少一种,第一助剂包括消泡剂、流平剂、抗氧化剂和颜料中的至少一种。具体的,第一有机溶剂可以但不限于包括异佛尔酮、丁酮、甲醇、乙醇、乙酸乙酯中的至少一种。在一具体实施例中,第一有机溶剂包括酮类溶剂,第一助剂包括颜料。具体的,酮类溶剂可以但不限于为异佛尔酮,颜料的颜色可以但不限于为蓝色、红色、黄色、白色、绿色等。通过添加颜料,可以改变环氧树脂层22的颜色,改善视觉效果。在本申请中,选用脂环族多元胺有利于提升环氧树脂油墨的光泽度,提高环氧树脂层22的透明性、耐候性和机械性能,同时脂环族多元胺与聚酯树脂层21之间发生化学反应,产生化学键合,提高两层之间的结合力,并且硅烷偶联剂也可以与聚酯树脂层21的表面产生化学键合,有利于进一步提高环氧树脂层22和聚酯树脂层21之间的结合性能。在一实施例中,脂环族多元胺可以但不限于包括异佛尔酮二胺、二氨基二环己基甲烷、1,2-二氨基环己烷中的至少一种。在另一实施例中,硅烷偶联剂包括环氧硅烷偶联剂。环氧硅烷偶联剂与环氧树脂之间相容性保证了环氧树脂油墨的稳定性,更有利于提升环氧树脂层22的稳定性。进一步的,硅烷偶联剂包括环氧丙氧基三甲基硅烷。环氧丙氧基三甲基硅烷能够进一步改善环氧树脂层22的表面性能,提升其与聚酯树脂层21之间的结合力。
在本申请实施方式中,按质量百分比计,第一树脂体系包括30%-50%的环氧树脂。第一树脂体系中含有较多的环氧树脂,有利于提升环氧树脂油墨固化过程中的交联程度,从而提高形成的环氧树脂层22的气密性,有助于提升水汽阻隔膜20的水汽阻隔效果。具体的,按质量百分比计,第一树脂体系可以但不限于包括30%、35%、37%、40%、42%、45%、48%或50%的环氧树脂。在一实施例中,按质量百分比计,第一树脂体系包括30%-40%的环氧树脂。在另一实施例中,按质量百分比计,第一树脂体系包括40%-50%的环氧树脂。进一步的,按质量百分比计,第一树脂体系包括30%-50%的环氧树脂、30%-40%的第一有机溶剂和10%-30%的第一助剂。通过上述含量的环氧树脂、第一有机溶剂和第一助剂之间的配合,既有利于环氧树脂的溶解和分散,同时有利于环氧树脂油墨的涂覆。具体的,按质量百分比计,第一树脂体系可以但不限于包括30%、32%、33%、35%、36%、37%、39% 或40%的第一有机溶剂,第一树脂体系可以但不限于包括10%、15%、18%、20%、24%、25%、27%或30%的第一助剂。在一实施例中,按质量百分比计,第一树脂体系包括30%-40%的环氧树脂、35%-40%的第一有机溶剂和20%-30%的第一助剂。在另一实施例中,按质量百分比计,第一树脂体系包括45%-50%的环氧树脂、30%-35%的第一有机溶剂和15%-20%的第一助剂。
在本申请实施方式中,按质量百分比计,第一固化剂体系包括50%-70%的脂环族多元胺和30%-50%的硅烷偶联剂。采用上述第一固化剂体系能够促进环氧树脂之间的交联反应,提高环氧树脂层22的气密性,并且还有利于环氧树脂油墨与聚酯树脂层21的表面发生化学键合,提高环氧树脂层22与聚酯树脂层21之间的结合力。具体的,按质量百分比计,第一固化剂体系可以但不限于包括50%、53%、55%、57%、60%、62%、65%、68%或70%的脂环族多元胺,以及30%、32%、35%、37%、40%、44%、45%、46%或50%的硅烷偶联剂。在一实施例中,按质量百分比计,第一固化剂体系包括50%-60%的脂环族多元胺和40%-50%的硅烷偶联剂。在另一实施例中,按质量百分比计,第一固化剂体系包括60%-70%的脂环族多元胺和30%-40%的硅烷偶联剂。
在本申请实施方式中,环氧树脂油墨中第一固化剂体系和第一树脂体系的质量比为(0.08-0.12):1,从而使第一树脂体系中的环氧树脂在第一固化剂体系的作用下充分交联,提高环氧树脂层22的气密性,并且还可以使环氧树脂层22与聚酯树脂层21之间产生更多的化学键结合,增强层间附着力。具体的,第一固化剂体系和第一树脂体系的质量比可以但不限于为0.08、0.09、0.1、0.11或0.12等。在一实施例中,环氧树脂油墨中第一固化剂体系和第一树脂体系的质量比为(0.08-0.1):1。在另一实施例中,环氧树脂油墨中第一固化剂体系和第一树脂体系的质量比为(0.1-0.12):1。
在本申请实施方式中,环氧树脂层22含有颜料。也就是说,第一助剂包括颜料,从而改变环氧树脂层22的颜色。在一实施例中,环氧树脂层22中颜料的质量含量小于或等于20%。如此,既能够改善环氧树脂层22的色彩,同时又不影响环氧树脂层22的性能。进一步的,环氧树脂层22中颜料的质量含量为3%-20%。具体的,环氧树脂层22中颜料的质量含量可以但不限于为3%、5%、10%、14%、15%、17%或20%等。在本申请中,颜料可以但不限于为无机颜料,如碳粉、钛白粉、铬黄、铁蓝、镉红、镉黄等。在本申请实施方式中,颜料的粒径为微米级,从而可以在环氧树脂油墨中均匀分散,保证环氧树脂层22均一的色彩。在一实施例中,颜料的粒径为10μm-100μm。进一步的,颜料的粒径为20μm-80μm。更进一步的,颜料的粒径为30μm-50μm。在一具体实施例中,颜料为碳粉,碳粉为400目-600目。
在本申请实施方式中,环氧树脂油墨包括第一树脂体系和第一固化剂体系,按质量百分比计,第一树脂体系中包括30%-50%的环氧树脂,第一固化剂体系中包括50%-70%的脂环族多元胺和30%-50%的硅烷偶联剂(诸如环氧丙氧基三甲基硅烷);环氧树脂油墨中第一固化剂体系和第一树脂体系的质量比为(0.08-0.12):1。如此,有助于进一步提高形成的环氧树脂层22的气密性,提升水汽阻隔膜20的水汽阻隔效果,同时进一步提升环氧树脂层22 与聚酯树脂层21之间的结合力,保证水汽阻隔膜20的结构稳定性。
在本申请实施方式中,环氧树脂层22的厚度大于或等于8μm。设置较厚的环氧树脂层22有利于进一步提升水汽阻隔膜20的水汽阻隔效果。当然,设置厚度小于8μm的环氧树脂层22依然可以使水汽阻隔膜20具有一定的水汽阻隔效果。进一步的,环氧树脂层22的厚度为8μm-22μm,由此既能够保证水汽阻隔膜20的水汽阻隔效果,还避免了过多增加壳体组件100的厚度,更有利于壳体组件100的应用。具体的,环氧树脂层22的厚度可以但不限于为8μm、10μm、11μm、13μm、15μm、16μm、18μm、20μm或22μm等。在一实施例中,环氧树脂层22的厚度为8μm-10μm。在另一实施例中,环氧树脂层22的厚度为18μm-22μm。
请参阅图2,为本申请另一实施方式提供的壳体组件的结构示意图,其中环氧树脂层22包括第一树脂层221和第二树脂层222,第一树脂层221设置在聚酯树脂层21和第二树脂层222之间,第二树脂层222含有二氧化硅。在本申请中,第一树脂层221不含二氧化硅,从而使得第一树脂层221与聚酯树脂层21之间具有强的附着效果,第二树脂层222含有二氧化硅,从而改善第二树脂层222表面的达因值,更有利于第二树脂层222与其他层结构之间的结合,从而进一步丰富壳体组件100的结构。
在本申请实施方式中,第一树脂层221的原料包括第一子树脂体系和第一子固化剂体系,第一子树脂体系包括环氧树脂,第一子固化剂体系包括脂环族多元胺和硅烷偶联剂。第一子固化剂体系能够提高第一树脂层221的交联程度,从而提升第一树脂层221的水汽阻隔效果,同时第一子固化剂体系与环氧树脂反应,对环氧树脂进行改性,生成的中间体可以与聚酯树脂层21之间产生化学键合和分子间作用力,提高第一树脂层221与聚酯树脂层21之间的结合力。在本申请中,第一树脂层221可以由第一树脂油墨经涂覆固化形成;也就是说,第一树脂层221的原料即为第一树脂油墨。进一步的,第一子树脂体系还包括第一有机溶剂和第一助剂。第一有机溶剂用于溶解环氧树脂,第一助剂有助于提升环氧树脂油墨的性能。
在本申请实施方式中,按质量百分比计,第一子树脂体系包括30%-40%的环氧树脂。第一子树脂体系中含有适量的环氧树脂,保证第一树脂油墨固化过程中的交联程度,有助于提升第一树脂层221的柔性以及水汽阻隔效果,形成的第一树脂层221更能够匹配聚酯树脂层21的表面性能,提高两者之间的结合力。具体的,按质量百分比计,第一子树脂体系可以但不限于包括30%、32%、34%、35%、37%、38%或40%的环氧树脂。在一实施例中,按质量百分比计,第一子树脂体系包括30%-35%的环氧树脂。在另一实施例中,按质量百分比计,第一子树脂体系包括35%-40%的环氧树脂。进一步的,按质量百分比计,第一子树脂体系包括30%-40%的环氧树脂、35%-40%的第一有机溶剂和20%-30%的第一助剂,由此既有利于环氧树脂的溶解和分散,同时有利于环氧树脂油墨的涂覆。具体的,按质量百分比计,第一子树脂体系可以但不限于包括35%、36%、37%、38%、39%或40%的第一有机溶剂,第一子树脂体系可以但不限于包括20%、22%、23%、25%、26%、27%、29%或30%的第一助剂。在一实施例中,按质量百分比计,第一子树脂体系包括30%-35%的环 氧树脂、38%-40%的第一有机溶剂和25%-30%的第一助剂。在另一实施例中,按质量百分比计,第一子树脂体系包括38%-40%的环氧树脂、35%-37%的第一有机溶剂和23%-25%的第一助剂。第一树脂油墨中第一有机溶剂和第一助剂材质、含量的选择参考上述环氧树脂油墨中第一有机溶剂和第一助剂的描述,在此不再赘述。
在本申请实施方式中,按质量百分比计,第一子固化剂体系包括50%-70%的脂环族多元胺和30%-50%的硅烷偶联剂。采用上述第一子固化剂体系能够促进环氧树脂之间的交联反应,提高第一树脂层221的气密性,并且还有利于第一树脂油墨与聚酯树脂层21的表面发生化学键合,提高第一树脂层221与聚酯树脂层21之间的结合力。具体的,按质量百分比计,第一子固化剂体系可以但不限于包括50%、53%、55%、57%、60%、62%、65%、68%或70%的脂环族多元胺,以及30%、32%、35%、37%、40%、44%、45%、46%或50%的硅烷偶联剂。在一实施例中,按质量百分比计,第一子固化剂体系包括50%-60%的脂环族多元胺和40%-50%的硅烷偶联剂。在另一实施例中,按质量百分比计,第一子固化剂体系包括60%-70%的脂环族多元胺和30%-40%的硅烷偶联剂。
在本申请实施方式中,第一树脂油墨中第一子固化剂体系和第一子树脂体系的质量比为(0.08-0.1):1,从而使第一子树脂体系中的环氧树脂在第一子固化剂体系的作用下充分交联,提高第一树脂层221的气密性,并且还可以使第一树脂层221与聚酯树脂层21之间产生更多的化学键结合和分子间作用力,增强层间附着力,同时还可以提高形成的第一树脂层221的柔性,进一步提高第一树脂层221与聚酯树脂层21之间的界面性能,提升第一树脂层221和聚酯树脂层21之间的结合力。具体的,第一树脂油墨中第一子固化剂体系和第一子树脂体系的质量比可以但不限于为0.08、0.085、0.09、0.095或0.1等。
在本申请实施方式中,第一树脂油墨包括第一子树脂体系和第一子固化剂体系,按质量百分比计,第一子树脂体系中包括30%-40%的环氧树脂,第一子固化剂体系中包括50%-70%的脂环族多元胺和30%-50%的硅烷偶联剂(诸如环氧丙氧基三甲基硅烷);第一树脂油墨中第一子固化剂体系和第一子树脂体系的质量比为(0.08-0.1):1。如此,有助于进一步提高第一树脂层221的气密性以及第一树脂层221与聚酯树脂层21之间的结合力。进一步的,第一助剂中可以包括颜料,第一子树脂体系中颜料的质量含量小于或等于20%。
在本申请实施方式中,第二树脂层222中二氧化硅的含量小于或等于10%。如此,既能够改善第二树脂层222的表面达因值,同时又不会影响第二树脂层222中环氧树脂与固化剂的含量,保证第二树脂层222的水汽阻隔效果。例如,第二树脂层222的表面达因值大于或等于32;进一步的,第二树脂层222的表面达因值为32-40。具体的,第二树脂层222中二氧化硅的含量可以但不限于为0.1%、0.5%、1%、3%、5%、6%、8%或10%等。在一实施例中,第二树脂层222中二氧化硅的含量为0.1%-3%。在另一实施例中,第二树脂层222中二氧化硅的含量为5%-7%。在又一实施例中,第二树脂层222中二氧化硅的含量为8%-10%。在本申请实施方式中,二氧化硅的粒径为微纳米级。如此,既能够改善第二树脂层222的表面性能,同时又不会影响第二树脂层222的光学性能。具体的,二氧化硅的粒径可以但不限于为50nm、100nm、200nm、500nm、1μm、5μm、10μm或20μm等。 在一实施例中,二氧化硅的粒径为纳米级;具体的,二氧化硅的粒径可以但不限于为50nm-200nm。在另一实施例中,二氧化硅的粒径为微米级;具体的,二氧化硅的粒径可以但不限于为1μm-20μm。
在本申请实施方式中,第二树脂层222的原料包括第二子树脂体系和第二子固化剂体系,第二子树脂体系包括环氧树脂和二氧化硅,第二子固化剂体系包括脂环族多元胺和硅烷偶联剂。通过加入二氧化硅,可以改善第二树脂层222的达因值,从而有利于在第二树脂层222的表面设置其他层结构,丰富壳体组件100的结构组成。在本申请中,第二树脂层222由第二树脂油墨经涂覆固化形成;也就是说,第二树脂层222的原料即为第二树脂油墨。进一步的,第二子树脂体系还包括第一有机溶剂和第一助剂。第一有机溶剂用于溶解环氧树脂,第一助剂有助于提升环氧树脂油墨的性能。
在本申请实施方式中,第二子树脂体系中环氧树脂的质量含量为30%-50%,二氧化硅的质量含量小于或等于10%。环氧树脂的含量保证了第二树脂层222的水汽阻隔效果,二氧化硅改善了第二树脂层222的表面性能。具体的,按质量百分比计,第二子树脂体系可以但不限于包括30%、35%、37%、40%、42%、45%或50%的环氧树脂。在一实施例中,按质量百分比计,第二子树脂体系包括30%-40%的环氧树脂。在另一实施例中,按质量百分比计,第二子树脂体系包括40%-50%的环氧树脂。进一步的,按质量百分比计,第二子树脂体系包括30%-50%的环氧树脂、30%-40%的第一有机溶剂、10%-30%的第一助剂和0.1%-10%的二氧化硅,有利于环氧树脂的溶解和分散,同时有利于第二树脂油墨的涂覆,还可以改善第二树脂层222的性能。具体的,按质量百分比计,第二子树脂体系可以但不限于包括30%、32%、35%、37%、39%或40%的第一有机溶剂,第二子树脂体系可以但不限于包括10%、13%、15%、18%、20%、25%、28%或30%的第一助剂。在一实施例中,按质量百分比计,第二子树脂体系包括40%-49%的环氧树脂、30%-38%的第一有机溶剂、20%-28%的第一助剂和0.1%-10%的二氧化硅。第二树脂油墨中第一有机溶剂和第一助剂材质、含量的选择参考上述环氧树脂油墨中第一有机溶剂和第一助剂的描述,在此不再赘述。在本申请中,第二树脂油墨和第一树脂油墨中第一有机溶剂、第一助剂、第一固化剂体系的材质、含量可以相同,也可以不同。
在本申请实施方式中,按质量百分比计,第二子固化剂体系包括50%-70%的脂环族多元胺和30%-50%的硅烷偶联剂。采用上述第二子固化剂体系能够促进环氧树脂之间的交联反应,提高第二树脂层222的气密性。具体的,按质量百分比计,第二子固化剂体系可以但不限于包括50%、53%、55%、57%、60%、62%、65%、68%或70%的脂环族多元胺,以及30%、32%、35%、37%、40%、44%、45%、46%或50%的硅烷偶联剂。在一实施例中,按质量百分比计,第二子固化剂体系包括50%-60%的脂环族多元胺和40%-50%的硅烷偶联剂。在另一实施例中,按质量百分比计,第二子固化剂体系包括60%-70%的脂环族多元胺和30%-40%的硅烷偶联剂。
在本申请实施方式中,第二树脂油墨中第二子固化剂体系和第二子树脂体系的质量比为(0.1-0.12):1,从而使第二子树脂体系中的环氧树脂在第二子固化剂体系的作用下充分交 联,提高第二树脂层222的交联程度,有利于提高第二树脂层222的气密性,从而进一步提高水汽阻隔膜20的水汽阻隔效果。具体的,第二树脂油墨中第二子固化剂体系和第二子树脂体系的质量比可以但不限于为0.1、0.105、0.11、0.115或0.12等。
在本申请实施方式中,第二树脂油墨包括第二子树脂体系和第二子固化剂体系,按质量百分比计,第二子树脂体系中包括30%-50%的环氧树脂,第二子固化剂体系中包括50%-70%的脂环族多元胺和30%-50%的硅烷偶联剂(诸如环氧丙氧基三甲基硅烷);第二树脂油墨中第二子固化剂体系和第二子树脂体系的质量比为(0.1-0.12):1。如此,有助于进一步提高第二树脂层222的气密性。进一步的,第一助剂中可以包括颜料,第二子树脂体系中颜料的质量含量小于或等于20%。
在本申请实施方式中,第一树脂层221和第二树脂层222的厚度和大于或等于8μm,从而有利于保证水汽阻隔膜20的水汽阻隔效果。在本申请实施例中,第一树脂层221的厚度为8μm-10μm,第二树脂层222的厚度为10μm-12μm。如此,第一树脂层221和第二树脂层222既保证了环氧树脂层22的水汽阻隔效果,同时还提高其与聚酯树脂层21之间的结合性能,同时还改善了环氧树脂层22表面性能,具体的,第一树脂层221的厚度可以但不限于为8μm、8.5μm、8.7μm、9μm、9.2μm、9.5μm、9.8μm或10μm等,第二树脂层222的厚度可以但不限于为10μm、10.5μm、10.8μm、11μm、11.3μm、11.5μm、11.7μm或12μm等。在一实施例中,第一树脂层221的厚度为8μm-9μm,第二树脂层222的厚度为11μm-12μm。在另一实施例中,第一树脂层221的厚度为9μm-10μm,第二树脂层222的厚度为10μm-11μm。
在本申请中,聚酯树脂层21的设置保证了水汽阻隔膜20与壳体10之间的结合性能;由于聚酯树脂层21柔性好,不管设置在较硬的壳体10表面,还是设置在较软的壳体10表面,均可以与壳体10表面形成良好的结合,聚酯树脂层21和壳体10之间的应力匹配性好,从而提高了水汽阻隔膜20在壳体10表面的稳定性。在本申请实施方式中,聚酯树脂层21的原料包括第二树脂体系和第二固化剂体系,第二树脂体系包括聚酯树脂,第二固化剂体系包括脂肪族聚异氰酸酯。通过设置该第二固化剂体系,有利于使聚酯树脂层21兼顾硬度和韧性,保证聚酯树脂层21在壳体10表面的结合性能,同时还提高了聚酯树脂层21的耐候性,并且还有助于与环氧树脂层22之间产生键合,提高两层之间的结合性能。在本申请中,聚酯树脂层21由聚酯树脂油墨经涂覆固化形成;也就是说,聚酯树脂层21的原料即为聚酯树脂油墨。进一步的,第二树脂体系还包括第二有机溶剂和第二助剂。第二有机溶剂用于溶解聚酯树脂,第二助剂有助于提升聚酯树脂油墨的性能。在一实施例中,第二有机溶剂包括石脑油、酮类溶剂、醇类溶剂和酯类溶剂中的至少一种,第二助剂包括消泡剂、流平剂、抗氧化剂和颜料中的至少一种。在一具体实施例中,第二有机溶剂包括石脑油,第二助剂包括颜料。颜料的颜色可以但不限于为蓝色、红色、黄色、白色、绿色等。通过添加颜料,可以改变聚酯树脂层21的颜色,改善视觉效果。
在本申请实施方式中,按质量百分比计,第二树脂体系包括30%-50%的聚酯树脂。具体的,按质量百分比计,第二树脂体系可以但不限于包括30%、33%、35%、37%、40%、45%、47%或50%的聚酯树脂。在一实施例中,按质量百分比计,第二树脂体系包括30%-40% 的聚酯树脂。在另一实施例中,按质量百分比计,第二树脂体系包括40%-50%的聚酯树脂。第二树脂体系中含有较多的聚酯树脂,有利于提升聚酯树脂层21的韧性,提高聚酯树脂层21与壳体10之间的结合力。进一步的,按质量百分比计,第二树脂体系包括30%-50%的聚酯树脂、20%-30%的第二有机溶剂和5%-50%的第二助剂。通过上述含量的聚酯树脂、第二有机溶剂和第二助剂之间的配合,既有利于聚酯树脂的溶解和分散,同时有利于聚酯树脂油墨的涂覆。具体的,按质量百分比计,第二树脂体系可以但不限于包括20%、23%、24%、25%、26%、27%、28%或30%的第二有机溶剂,第二树脂体系可以但不限于包括5%、10%、15%、20%、25%、30%、35%、40%、45%或50%的第二助剂。
在本申请实施方式中,按质量百分比计,第二固化剂体系包括80%-90%的脂肪族聚异氰酸酯。采用上述第二固化剂体系能够促进聚酯树脂的交联反应,提高聚酯树脂层21的柔韧性,并且还可以与环氧树脂层22间产生化学结合,提高水汽阻隔膜20的结构稳定性。具体的,按质量百分比计,第二固化剂体系可以但不限于包括80%、81%、84%、85%、87%、88%或90%的脂肪族聚异氰酸酯。在本申请实施方式中,第二固化剂体系包括脂肪族聚异氰酸酯和固化溶剂。通过固化溶剂分散脂肪族聚异氰酸酯,同时使第二固化体系可以更好地与第二树脂体系混合。在一实施例中,固化溶剂包括酮类溶剂、醇类溶剂和酯类溶剂中的至少一种。具体的,固化溶剂可以但不限于包括丁酮、甲醇、乙醇、乙酸乙酯中的至少一种。在一实施例中,按质量百分比计,第二固化剂体系包括80%-90%的脂肪族聚异氰酸酯和10%-20%的固化溶剂。进一步的,按质量百分比计,第二固化剂体系包括80%-85%的脂肪族聚异氰酸酯和15%-20%的固化溶剂。
在本申请实施方式中,聚酯树脂油墨中第二固化剂体系和第二树脂体系的质量比为(0.06-0.1):1,从而保证聚酯树脂层21的柔韧性,有助于其与壳体10之间的结合,同时还有利于增加聚酯树脂层21与环氧树脂层22之间的化学键以及分子间作用力的提高,从而进一步提升水汽阻隔膜20的结构稳定性。具体的,第二固化剂体系和第二树脂体系的质量比可以但不限于为0.06、0.07、0.08、0.09或0.1等。在一实施例中,聚酯树脂油墨中第二固化剂体系和第二树脂体系的质量比为(0.08-0.1):1。在另一实施例中,聚酯树脂油墨中第二固化剂体系和第二树脂体系的质量比为(0.06-0.08):1。
在本申请实施方式中,聚酯树脂层21含有颜料。也就是说,第二助剂包括颜料,从而改变聚酯树脂层21的颜色。在一实施例中,聚酯树脂层21中颜料的质量含量小于或等于20%。如此,既能够丰富聚酯树脂层21的色彩,同时又不影响聚酯树脂层21的性能。进一步的,聚酯树脂层21中颜料的质量含量为3%-20%。具体的,聚酯树脂层21中颜料的质量含量可以但不限于为3%、5%、10%、14%、15%、17%或20%等。在本申请中,颜料的颜色、粒径如上所述,在此不再赘述。在本申请实施方式中,第一助剂中的颜料和第二助剂中的颜料为同一色系,从而使壳体组件100呈现明显的色彩。
在本申请实施方式中,聚酯树脂油墨包括第二树脂体系和第二固化剂体系,按质量百分比计,第二树脂体系中包括30%-50%的聚酯树脂,第二固化剂体系中包括80%-90%的脂肪族聚异氰酸酯;聚酯树脂油墨中第二固化剂体系和第二树脂体系的质量比为(0.06-0.1):1。 如此,有助于进一步提高形成的聚酯树脂层21的柔韧性,以及聚酯树脂层21与环氧树脂层22之间的结合力。
在本申请实施方式中,聚酯树脂层21的厚度为3μm-12μm。通过设置上述厚度的聚酯树脂层21,既保证了水汽阻隔膜20的水汽阻隔效果,同时制备工艺相对简单,更容易在工业上使用。具体的,聚酯树脂层21的厚度可以但不限于为3μm、4μm、5μm、6μm、7μm、8μm、9μm、10μm、11μm或12μm等。在一实施例中,聚酯树脂层21的厚度为3μm-5μm。在另一实施例中,聚酯树脂层21的厚度为8μm-10μm。在又一实施例中,聚酯树脂层21的厚度为5μm-7μm。
在本申请中,对壳体10的尺寸、材质和形状不作限定,可以根据实际需要进行选择和设计。在本申请实施方式中,壳体10的厚度可以但不限于为0.1mm-1mm,如0.1mm、0.2mm、0.3mm、0.4mm、0.5mm、0.6mm、0.7mm、0.8mm、0.9mm或1mm等,以满足机械性能的要求,并且不至于过厚,符合轻薄化的需求。在本申请实施方式中,壳体10可以为等厚度或不等厚度,从而实现不同的外观效果。在一实施例中,沿壳体10的长度方向上,壳体10呈渐变厚度,从而改善壳体10的触感。
在本申请中,壳体10的材质可以但不限于为任何已知的可以用于电子设备壳体10的材料。在本申请实施方式中,壳体10的材质包括塑胶、玻璃、玻璃纤维、陶瓷和金属中的至少一种。在一实施例中,塑胶可以但不限于包括聚碳酸酯、聚甲基丙烯酸甲酯、聚对苯二甲酸乙二醇酯等。具体的,壳体10可以但不限于聚对苯二甲酸乙二醇酯壳、聚碳酸酯板和聚甲基丙烯酸甲酯板的复合壳、玻璃壳、玻璃纤维壳、陶瓷壳、金属壳等。在本申请实施方式中,壳体10的光学透过率可以大于90%。具体的,壳体10的光学透过率可以但不限于大于92%、93%、94%、95%或96%等。其中,光学透过率为在380nm-780nm波段下光线的透过率。通过设置具有上述光学透过率的壳体10,使位于壳体10内表面的其他结构层的外观效果可以显示出来。可以理解的,若壳体10内表面无其他结构层或无需显示壳体10内表面的外观效果,则不限定壳体10的光学透过率。在本申请实施方式中,壳体10的结构为2D结构、2.5D结构或3D结构,可以适应于不同的场景需要。在一实施例中,壳体10具有曲面。进一步的,壳体10的结构为3D结构,提升了壳体10的立体感以及顺滑的触感。在一具体实施例中,壳体10为曲面透明玻璃壳或曲面透明塑胶壳。上述壳体10既具有高机械强度和高透过率,并且触感更加顺滑,更有利于其使用。在本申请中,当壳体10具有曲面时,具体的可以但不限于为3D结构时,由于水汽阻隔膜20中聚酯树脂层21与壳体10表面具有强的结合力,从而保证在曲面部分的水汽阻隔膜20仍然可以良好的附着在壳体10的曲面上,提高产品可靠性。在本申请中,可以在壳体10的表面丝印图案、文字等,具体的,可以丝印商标图案(Logo)等。
在本申请中,通过设置水汽阻隔膜20降低了水汽对壳体组件100的影响。在本申请中,通过将结构在80℃水中煮2h,测量水煮前后结构的重量,水煮前后结构的重量差与水煮前结构的重量的比值为吸水率,以吸水率来评价水汽阻隔效果。在本申请实施方式中,壳体组件100的吸水率小于或等于0.03%。通过设置上述任一实施方式提供的水汽阻隔膜20, 降低了壳体组件100的吸水率,提高了壳体组件100的结构稳定性。具体的,壳体组件100的吸水率可以但不限于小于0.013%、小于0.015%、小于0.017%、小于0.018%、小于0.02%、小于0.021%、小于0.024%或小于0.028%等。进一步的,壳体组件100的吸水率小于或等于0.021%。在本申请一实施例中,壳体组件100的吸水率为0.012%-0.021%。进一步的,壳体组件100的吸水率为0.012%-0.015%。
在本申请实施方式中,壳体组件100中水汽阻隔膜20的附着力大于或等于5B。在本申请中,通过百格法检测壳体组件100中水汽阻隔膜20的附着力。
在本申请实施方式中,壳体组件100还包括装饰膜30,装饰膜30设置在壳体10上。请参阅图3,为本申请又一实施方式提供的壳体组件的结构示意图,壳体组件100包括层叠设置的壳体10、装饰膜30和水汽阻隔膜20。通过在壳体10和水汽阻隔膜20之间设置装饰膜30,从而使水汽阻隔膜20对装饰膜30起到保护作用,防止水汽对装饰膜30装饰效果的影响,以及防止水汽对装饰膜30附着性能的影响,提高壳体组件100的结构稳定性。在另一实施方式中,壳体组件100包括层叠设置的装饰膜30、壳体10和水汽阻隔膜20。
在本申请实施方式中,装饰膜30包括颜色层、纹理层、镀膜层和盖底层中的至少一层。在本申请中,颜色层赋予壳体组件100颜色外观,颜色层的颜色可以但不限于为黄色、红色、蓝色、绿色、紫色、白色等;也可以为多种颜色拼接,以形成撞色视觉效果,还可以为渐变色层;颜色层可以通过涂覆固化形成。在本申请中,颜色层可以为单层结构,也可以为多层结构,多层颜色层之间的颜色可以相同,也可以不同。在本申请一实施例中,颜色层可以为透明颜色层。也就是说,颜色层的设置不会影响壳体10中其他层结构的外观效果。具体的,透明颜色层的光学透过率大于90%。在本申请另一实施例中,颜色层为实色层。也就是说,颜色层不透明,以使颜色层的颜色更加清楚地呈现出来。在本申请中,纹理层赋予壳体组件100纹理外观,纹理层可以通过转印形成。在本申请实施方式中,纹理层为透明纹理层。具体的,透明纹理层的光学透过率大于90%。在本申请中,纹理层的厚度可以但不限于为9μm-12μm。在本申请中,纹理层可以为单层结构,也可以为多层结构,多层纹理层之间的纹理可以相同,也可以不同。通过设置具有多种纹理效果的纹理层,可以增强壳体10的外观效果。在本申请中,镀膜层包括光学膜层和金属质感层中的至少一种。光学膜层可以改变穿过光学膜层的光线的折射、透过、反射等,使得壳体10呈现一定的光泽变化,金属质感层可以使壳体10具有金属光泽,改善外观效果;镀膜层可以但不限于通过物理气相沉积的方式形成。在一实施例中,光学膜层包括氧化钛层、五氧化三钛层、氧化钽层、氧化锆层、二氧化硅层、氧化铝层和氟化镁层中的至少一层。在另一实施例中,光学膜层由至少两种具有不同折射率的光学薄膜交替层叠形成。进一步的,光学膜层由至少两种具有不同折射率的光学薄膜周期性交替层叠形成。在一具体实施例中,通过电子枪或磁控线方式依次形成氧化锆层、二氧化硅层和五氧化三钛层,得到光学膜层,如此可以提高壳体10的亮度。在又一实施例中,金属质感层为铟层、锡层或铟锡合金层。具体的,金属质感层可以通过不导电电镀工艺制得。在本申请中,盖底层通过涂覆盖底油墨经固化形成,以使壳体10在使用时能够对其一侧的光线进行遮挡。在本申请实施方式中,盖底层 的光学透过率小于1%。具体的,盖底层可以但不限于包括底色层、防火油墨层和灰度层。在本申请中,盖底层的厚度可以但不限于为35μm-45μm。在一实施例中,装饰膜30包括层叠设置的盖底层、镀膜层、纹理层和颜色层。在另一实施例中,装饰膜30包括层叠设置的盖底层、镀膜层、颜色层和纹理层。
在本申请实施方式中,壳体组件100还包括防爆膜,防爆膜设置在壳体10上。通过设置防爆膜对壳体组件100起到保护作用,防止外界作用力破坏壳体组件100。在一实施例中,防爆膜可以包括聚对苯二甲酸乙二醇酯层和连接层;连接层可以但不限于为光学胶层。通过设置聚对苯二甲酸乙二醇酯层可以提高防爆膜的力学性能,通过设置光学胶层有利于防爆膜在壳体10表面的设置。
请参阅图4,为本申请又一实施方式提供的壳体组件的结构示意图,壳体组件100包括层叠设置的壳体10、防爆膜40和水汽阻隔膜20。如此,既能够提高壳体组件100的水汽阻隔效果,又可以提高壳体组件100的力学性能。请参阅图5,为本申请又一实施方式提供的壳体组件的结构示意图,壳体组件100包括层叠设置的壳体10、防爆膜40、装饰膜30和水汽阻隔膜20。如此,既能够提高壳体组件100的水汽阻隔效果,又可以提高壳体组件100的力学性能,同时壳体组件100具有丰富的外观效果。此时,可以在防爆膜40上形成装饰膜30和水汽阻隔膜20后,一同贴附在壳体10表面。
请参阅图6,为本申请一实施方式提供的壳体组件的制备方法流程图,包括:
S101:在壳体的表面涂覆聚酯树脂油墨,经烘烤后形成聚酯树脂层。
S102:在聚酯树脂层的表面涂覆环氧树脂油墨,经终烘后形成环氧树脂层,得到壳体组件。
相关技术中,常常在壳体10表面设置无机材料的阻隔层,无机材料的阻隔层成型工艺复杂,对生产设备要求高,制备良率低,制备成本高,甚至需要在高温中进行,影响壳体10的性能以及壳体10表面其他结构的设置。在本申请中,通过涂覆的方式在壳体10表面形成水汽阻隔膜20,操作简单方便,无需大型设备,生产成本低,制备良率高,同时制得的壳体组件100的结构稳定性好,水汽阻隔效果高。
在S101中,通过在壳体10的表面涂覆聚酯树脂油墨,并烘烤形成聚酯树脂层21。在本申请中,涂覆可以但不限于为喷涂、淋涂、印刷等。在本申请一实施方式中,通过雾化喷涂的方式涂覆聚酯树脂油墨。例如先将聚酯树脂油墨雾化,然后通过喷枪喷出聚酯树脂油墨,从而有利于聚酯树脂油墨在不同材质的壳体10表面的分散和附着。在本申请一实施例中,雾化喷涂中的雾化压力为240kPa-280kPa,喷涂压力为300kPa-400kPa,喷涂速度为500mm/s-700mm/s,提高壳体10表面上聚酯树脂油墨的均匀分散,提升聚酯树脂层21的表面平整性,还有助于后续烘烤的快速进行。具体的,雾化喷涂中的雾化压力可以但不限于为240kPa、250kPa、260kPa、270kPa或280kPa,喷涂压力可以但不限于为300kPa、320kPa、350kPa、370kPa、390kPa或400kPa等,喷涂速度可以但不限于为500mm/s、550mm/s、600mm/s、650mm/s或700mm/s等。在一实施例中,雾化喷涂中的雾化压力为240kPa-250kPa,喷涂压力为350kPa-400kPa,喷涂速度为600mm/s-700mm/s。在另一实施例中,雾化喷涂中的雾 化压力为260kPa-280kPa,喷涂压力为300kPa-350kPa,喷涂速度为500mm/s-600mm/s。在本申请一实施例中,雾化喷涂采用喷枪进行,相邻喷枪之间的间距为10mm-20mm,有利于提高聚酯树脂油墨涂覆厚度的均匀性。具体的,相邻喷枪之间的间距为10mm-13mm、12mm-15mm、15mm-18mm或18mm-20mm等。在一实施例中,雾化喷涂中的雾化压力为240kPa-280kPa,喷涂压力为300kPa-400kPa,喷涂速度为500mm/s-700mm/s,相邻喷枪之间的间距为10mm-20mm。在一实施例中,喷涂的聚酯树脂层21的厚度为8μm-10μm。在本申请另一实施方式中,通过丝印的方式在壳体10表面设置聚酯树脂层21。在一实施例中,丝印的聚酯树脂层21的厚度为3μm-5μm。
在本申请实施方式中,聚酯树脂油墨包括第二树脂体系和第二固化剂体系。可以参见上述任一实施方式中对聚酯树脂油墨、第二树脂体系和第二固化剂体系的描述,在此不再赘述。在一实施例中,按质量百分比计,第二树脂体系中包括30%-50%的聚酯树脂,第二固化剂体系中包括80%-90%的脂肪族聚异氰酸酯,聚酯树脂油墨中第二固化剂体系和第二树脂体系的质量比为(0.06-0.1):1。
在本申请实施方式中,烘烤包括在70℃-100℃下处理15min-25min。通过上述烘烤使聚酯树脂油墨发生固化,形成聚酯树脂层21,同时烘烤温度低,不影响壳体10的性能。具体的,烘烤的温度可以但不限于为70℃、76℃、80℃、83℃、90℃或100℃等,烘烤的时间可以但不限于为15min、17min、20min、22min或25min等。在一实施例中,烘烤包括在70℃-75℃下处理15min-25min,从而获得柔韧性好的聚酯树脂层21。
在S102中,通过在聚酯树脂层21的表面涂覆环氧树脂油墨,经终烘后得到壳体组件100。在本申请中,涂覆可以但不限于为喷涂、淋涂、印刷等。在本申请一实施方式中,通过雾化喷涂的方式涂覆聚酯树脂油墨。具体的,雾化喷涂的工艺条件参见S101中的描述,在此不再赘述。其中,终烘表示对环氧树脂油墨进行热处理,使环氧树脂油墨成膜,形成环氧树脂层22,同时使整个水汽阻隔膜20固化完全。
在本申请实施方式中,环氧树脂油墨包括第一树脂体系和第一固化剂体系。可以参见上述任一实施方式中对环氧树脂油墨、第一树脂体系和第一固化剂体系的描述,在此不再赘述。在一实施例中,按质量百分比计,第一树脂体系中包括30%-50%的环氧树脂,第一固化剂体系中包括50%-70%的脂环族多元胺和30%-50%的硅烷偶联剂,环氧树脂油墨中第一固化剂体系和第一树脂体系的质量比为(0.08-0.12):1。
在本申请实施方式中,终烘包括在70℃-100℃下处理90min-150min。通过终烘使环氧树脂油墨发生固化,形成环氧树脂层22,同时使整个水汽阻隔膜20固化完全。具体的,终烘的温度可以但不限于为70℃、75℃、80℃、85℃、90℃、95℃或100℃等,烘烤的时间可以但不限于为90min、100min、110min、120min、130min、140min或150min等。在一实施例中,终烘包括在70℃-75℃下处理100min-130min,从而固化完全、性能优异的水汽阻隔膜20。
在本申请实施方式中,在聚酯树脂层21的表面涂覆环氧树脂油墨,经终烘后形成环氧树脂层22,包括在聚酯树脂层21的表面涂覆第一树脂油墨,经固化后形成第一树脂层221; 在第一树脂层221的表面涂覆第二树脂油墨,经终烘后形成环氧树脂层22。
请参阅图7,为本申请另一实施方式提供的壳体组件的制备方法流程图,包括:
S201:在壳体的表面涂覆聚酯树脂油墨,经烘烤后形成聚酯树脂层。
S202:在聚酯树脂层的表面涂覆第一树脂油墨,经固化后形成第一树脂层。
S203:在第一树脂层的表面涂覆第二树脂油墨,经终烘后形成环氧树脂层,得到壳体组件。
其中,S201可以参考上述S101的描述,在此不再赘述。
在S202和S203中,先涂覆第一树脂油墨再涂覆第二树脂油墨,从而形成环氧树脂层22。
在本申请实施方式中,第一树脂油墨包括第一子树脂体系和第一子固化剂体系。可以参见上述任一实施方式中对第一树脂油墨、第一子树脂体系和第一子固化剂体系的描述,在此不再赘述。在一实施例中,按质量百分比计,第一子树脂体系中包括30%-40%的环氧树脂,第一子固化剂体系中包括50%-70%的脂环族多元胺和30%-50%的硅烷偶联剂,第一树脂油墨中第一子固化剂体系和第一子树脂体系的质量比为(0.08-0.1):1。
在S202和S203中,固化表示对第一树脂油墨进行热处理,使第一树脂油墨成膜,形成第一树脂层221,终烘表示对第二树脂油墨进行热处理,使第二树脂油墨成膜,形成第二树脂层222,同时使整个水汽阻隔膜20固化完全。在本申请实施方式中,固化包括在70℃-100℃下处理15min-25min。通过上述烘烤使第一树脂油墨发生固化,形成第一树脂层221。具体的,固化的温度可以但不限于为70℃、75℃、80℃、85℃、90℃或100℃等,烘烤的时间可以但不限于为15min、18min、20min、23min或25min等。在一实施例中,固化包括在70℃-75℃下处理15min-25min,从而获得水汽阻隔效果好、结合力强的第一树脂层221。
在本申请实施方式中,第二树脂油墨包括第二子树脂体系和第二子固化剂体系。可以参见上述任一实施方式中对第二树脂油墨、第二子树脂体系和第二子固化剂体系的描述,在此不再赘述。在一实施例中,按质量百分比计,第二子树脂体系中包括30%-50%的环氧树脂和0.1%-10%的二氧化硅,第二子固化剂体系中包括50%-70%的脂环族多元胺和30%-50%的硅烷偶联剂,第二树脂油墨中第二子固化剂体系和第二子树脂体系的质量比为(0.1-0.12):1。
在本申请实施方式中,壳体组件100的制备方法还包括在壳体10表面设置装饰膜30。在本申请实施方式中,壳体组件100的制备方法还包括在壳体10表面设置防爆膜40。在本申请实施方式中,壳体组件100的制备方法还包括对壳体组件100进行压合、除泡以及机械加工,提高内部结合紧密性,获得所需形状的壳体组件100。
本申请还提供了一种电子设备,包括上述任一实施方式的壳体组件100。可以理解的,电子设备可以但不限于为手机、平板电脑、笔记本电脑、手表、MP3、MP4、GPS导航仪、数码相机等,壳体组件100可以为电子设备的后盖、中框、电池盖、表盘、按键壳、镜片等。请参阅图8,为本申请一实施方式提供的电子设备的结构示意图,电子设备200包括 壳体组件100以及和壳体组件100相连的显示装置。具有该壳体组件100的电子设备200能够防止水汽对其内部的器件的影响,提高使用寿命。
以下通过具体实施例,对本申请提供的壳体的性能做进一步的说明。
实施例1
壳体组件包括摄像头树脂镜片和设置在摄像头树脂镜片表面的水汽阻隔膜,水汽阻隔膜包括层叠设置的聚酯树脂层、第一树脂层和第二树脂层,聚酯树脂层设置在摄像头树脂镜片和第一树脂层之间;聚酯树脂层的厚度为8μm,第一树脂层的厚度为8μm,第二树脂层的厚度为10μm。
聚酯树脂层由聚酯树脂油墨固化形成,第一树脂层由第一树脂油墨固化形成,第二树脂层由第二树脂油墨固化形成。聚酯树脂油墨包括第二树脂体系和第二固化剂体系,按质量百分比计,第二树脂体系包括40%的聚酯树脂、25%的石脑油、35%的第二助剂,第二助剂包括颜料,第二树脂体系中颜料的质量占比为25%;第二固化剂体系包括85%的脂肪族聚异氰酸酯和15%的酯类溶剂;聚酯树脂油墨中第二固化剂体系和第二树脂体系的质量比为0.06:1。第一树脂油墨包括第一子树脂体系和第一子固化剂体系,按质量百分比计,第一子树脂体系包括35%的环氧树脂、37%的酮类溶剂和28%的第一助剂,第一助剂包括颜料,第一子树脂体系中颜料的质量占比为20%;第一子固化剂体系包括60%的脂环族多元胺和40%的环氧丙氧基三甲基硅烷;第一树脂油墨中第一子固化剂体系和第一子树脂体系的质量比为0.08:1。第二树脂油墨包括第二子树脂体系和第二子固化剂体系,按质量百分比计,第二子树脂体系包括35%的环氧树脂、37%的酮类溶剂、18%的第一助剂和10%的二氧化硅,第一助剂包括颜料,第一子树脂体系中颜料的质量占比为12%;第二固化剂体系包括55%的脂环族多元胺和45%的环氧丙氧基三甲基硅烷;第二树脂油墨中第二固化剂体系和第二树脂体系的质量比为0.1:1。
实施例2
壳体组件包括层叠设置的玻璃壳、防爆膜和水汽阻隔膜,水汽阻隔膜包括聚酯树脂层和环氧树脂层,聚酯树脂层设置在防爆膜和环氧树脂层之间;聚酯树脂层的厚度为10μm,环氧树脂层的厚度为18μm。
聚酯树脂层由聚酯树脂油墨固化形成,环氧树脂层由环氧树脂油墨固化形成。聚酯树脂油墨包括第二树脂体系和第二固化剂体系,按质量百分比计,第二树脂体系包括40%的聚酯树脂、25%的石脑油、35%的第二助剂,第二助剂包括颜料,第二树脂体系中颜料的质量占比为25%;第二固化剂体系包括85%的脂肪族聚异氰酸酯和15%的酯类溶剂;聚酯树脂油墨中第二固化剂体系和第二树脂体系的质量比为0.06:1。环氧树脂油墨包括第一树脂体系和第一固化剂体系,按质量百分比计,第一树脂体系包括45%的环氧树脂、39%的酮类溶剂和16%的第一助剂,第一助剂包括颜料,第一树脂体系中颜料的质量占比为8%;第一固化剂体系包括60%的脂环族多元胺和40%的环氧丙氧基三甲基硅烷;环氧树脂油墨中第一固化剂体系和第一树脂体系的质量比为0.08:1。
实施例3
壳体组件包括层叠设置的玻璃纤维壳、纹理层和水汽阻隔膜,水汽阻隔膜包括聚酯树脂层和环氧树脂层,聚酯树脂层设置在纹理层和环氧树脂层之间;聚酯树脂层的厚度为8μm,环氧树脂层的厚度为8μm。
聚酯树脂层由聚酯树脂油墨固化形成,环氧树脂层由环氧树脂油墨固化形成。聚酯树脂油墨包括第二树脂体系和第二固化剂体系,按质量百分比计,第二树脂体系包括30%的聚酯树脂、30%的石脑油、40%的第二助剂;第二固化剂体系包括80%的脂肪族聚异氰酸酯和20%的酯类溶剂;聚酯树脂油墨中第二固化剂体系和第二树脂体系的质量比为0.08:1。环氧树脂油墨包括第一树脂体系和第一固化剂体系,按质量百分比计,第一树脂体系包括30%的环氧树脂、40%的酮类溶剂和30%的第一助剂;第一固化剂体系包括50%的脂环族多元胺和50%的环氧丙氧基三甲基硅烷;环氧树脂油墨中第一固化剂体系和第一树脂体系的质量比为0.1:1。
实施例4
壳体组件包括层叠设置的玻璃纤维壳、颜色层和水汽阻隔膜,水汽阻隔膜包括聚酯树脂层和环氧树脂层,聚酯树脂层设置在颜色层和环氧树脂层之间;聚酯树脂层的厚度为9μm,环氧树脂层的厚度为15μm。
聚酯树脂层由聚酯树脂油墨固化形成,环氧树脂层由环氧树脂油墨固化形成。聚酯树脂油墨包括第二树脂体系和第二固化剂体系,按质量百分比计,第二树脂体系包括50%的聚酯树脂、20%的石脑油、30%的第二助剂;第二固化剂体系包括90%的脂肪族聚异氰酸酯和10%的酯类溶剂;聚酯树脂油墨中第二固化剂体系和第二树脂体系的质量比为0.1:1。环氧树脂油墨包括第一树脂体系和第一固化剂体系,按质量百分比计,第一树脂体系包括50%的环氧树脂、35%的酮类溶剂和15%的第一助剂;第一固化剂体系包括70%的脂环族多元胺和30%的环氧丙氧基三甲基硅烷;环氧树脂油墨中第一固化剂体系和第一树脂体系的质量比为0.12:1。
实施例5
壳体组件包括3D结构的摄像头树脂镜片和设置在摄像头树脂镜片表面的水汽阻隔膜,水汽阻隔膜包括层叠设置的聚酯树脂层、第一树脂层和第二树脂层,聚酯树脂层设置在摄像头树脂镜片和第一树脂层之间;聚酯树脂层的厚度为9μm,第一树脂层的厚度为10μm,第二树脂层的厚度为12μm。聚酯树脂层由聚酯树脂油墨固化形成,聚酯树脂油墨包括聚酯树脂和脂肪族聚异氰酸酯;第一树脂层由第一树脂油墨固化形成,第一树脂油墨包括环氧树脂、脂环族多元胺和硅烷偶联剂,第二树脂层由第二树脂油墨固化形成,第二树脂油墨包括环氧树脂、脂环族多元胺、硅烷偶联剂和二氧化硅。
对比例1-5
对比例1-5分别对应于实施例1-5,对比例1-5与实施例1-5相比,不同之处在于不设置聚酯树脂层。
通过百格法(ASTM D3359 Method B Cross-cut tape test)对实施例和对比例提供的壳体组件表面的水汽阻隔膜进行附着力的检测,结果发现实施例1-5提供的壳体组件中水汽阻 隔膜的附着力可以达到5B水平,而对比例1-5提供的壳体组件中水汽阻隔膜的附着力仅达到1B以下水平。可以看出,通过设置聚酯树脂层能够提升水汽阻隔膜的附着性能。
同时,对实施例1-5提供的壳体组件进行吸水率的测试,其中将壳体组件在80℃水中煮2h,测量水煮前后壳体组件的重量,水煮前后壳体组件的重量差值与水煮前壳体组件的重量的比值记为吸水率;结果发现实施例1-5提供的壳体组件的吸水率在0.02%以下,具有优异的阻隔水汽的效果。
以上对本申请实施方式所提供的内容进行了详细介绍,本文对本申请的原理及实施方式进行了阐述与说明,以上说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的一般技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种壳体组件,其特征在于,包括壳体以及设置在所述壳体的表面的水汽阻隔膜,所述水汽阻隔膜包括聚酯树脂层和环氧树脂层,所述聚酯树脂层设置在所述壳体和所述环氧树脂层之间。
  2. 如权利要求1所述的壳体组件,其特征在于,所述环氧树脂层包括第一树脂层和第二树脂层,所述第一树脂层设置在所述聚酯树脂层和所述第二树脂层之间,所述第二树脂层含有二氧化硅,所述第二树脂层中所述二氧化硅的含量小于或等于10%。
  3. 如权利要求2所述的壳体组件,其特征在于,所述二氧化硅的粒径为微纳米级。
  4. 如权利要求2所述的壳体组件,其特征在于,所述第一树脂层的厚度为8μm-10μm,所述第二树脂层的厚度为10μm-12μm。
  5. 如权利要求1所述的壳体组件,其特征在于,所述壳体组件的吸水率小于或等于0.03%。
  6. 如权利要求1所述的壳体组件,其特征在于,所述环氧树脂层的原料包括第一树脂体系和第一固化剂体系,所述第一树脂体系包括环氧树脂,所述第一固化剂体系包括脂环族多元胺和硅烷偶联剂。
  7. 如权利要求6所述的壳体组件,其特征在于,所述第一树脂体系中所述环氧树脂的质量含量为30%-50%,所述第一固化剂体系中所述脂环族多元胺的质量含量为50%-70%,所述硅烷偶联剂的质量含量为30%-50%;
    所述第一固化剂体系和所述第一树脂体系的质量比为(0.08-0.12):1。
  8. 如权利要求1所述的壳体组件,其特征在于,所述聚酯树脂层的原料包括第二树脂体系和第二固化剂体系,所述第二树脂体系包括聚酯树脂,所述第二固化剂体系包括脂肪族聚异氰酸酯。
  9. 如权利要求8所述的壳体组件,其特征在于,所述第二树脂体系中所述聚酯树脂的质量含量为30%-50%,所述第二固化剂体系中所述脂肪族聚异氰酸酯的质量含量为80%-90%;
    所述第二固化剂体系和所述第二树脂体系的质量比为(0.06-0.1):1。
  10. 如权利要求1所述的壳体组件,其特征在于,所述环氧树脂层的厚度大于或等于8μm,所述聚酯树脂层的厚度为3μm-12μm。
  11. 如权利要求1所述的壳体组件,其特征在于,所述壳体组件中所述水汽阻隔膜的附着力大于或等于5B。
  12. 如权利要求1所述的壳体组件,其特征在于,所述壳体组件还包括装饰膜,所述装饰膜设置在所述壳体与所述水汽阻隔膜之间,所述装饰膜包括颜色层、纹理层、镀膜层和盖底层中的至少一种。
  13. 一种壳体组件的制备方法,其特征在于,包括:
    在壳体的表面涂覆聚酯树脂油墨,经烘烤后形成聚酯树脂层;
    在所述聚酯树脂层的表面涂覆环氧树脂油墨,经终烘后形成环氧树脂层,得到壳体组件。
  14. 如权利要求13所述的制备方法,其特征在于,所述环氧树脂油墨包括第一树脂体系和第一固化剂体系,按质量百分比计,所述第一树脂体系中包括30%-50%的环氧树脂,所述第一固化剂体系中包括50%-70%的脂环族多元胺和30%-50%的硅烷偶联剂,所述第一固化剂体系和所述第一树脂体系的质量比为(0.08-0.12):1;
    所述聚酯树脂油墨包括第二树脂体系和第二固化剂体系,按质量百分比计,所述第二树脂体系中包括30%-50%的聚酯树脂,所述第二固化剂体系中包括80%-90%的脂肪族聚异氰酸酯,所述第二固化剂体系和所述第二树脂体系的质量比为(0.06-0.1):1。
  15. 如权利要求14所述的制备方法,其特征在于,所述第二树脂体系包括30%-50%的所述聚酯树脂、20%-30%的第二有机溶剂和5%-50%的第二助剂;所述第二固化剂体系包括80%-90%的所述脂肪族聚异氰酸酯和10%-20%的固化溶剂。
  16. 如权利要求13所述的制备方法,其特征在于,在所述聚酯树脂层的表面涂覆环氧树脂油墨,经终烘后形成环氧树脂层,包括:
    在所述聚酯树脂层的表面涂覆第一树脂油墨,经固化后形成第一树脂层;
    在所述第一树脂层的表面涂覆第二树脂油墨,经所述终烘后形成所述环氧树脂层。
  17. 如权利要求16所述的制备方法,其特征在于,所述第一树脂油墨包括第一子树脂体系和第一子固化剂体系,按质量百分比计,所述第一子树脂体系中包括30%-40%的环氧树脂,所述第一子固化剂体系中包括50%-70%的脂环族多元胺和30%-50%的硅烷偶联剂,所述第一子固化剂体系和所述第一子树脂体系的质量比为(0.08-0.1):1;
    所述第二树脂油墨包括第二子树脂体系和第二子固化剂体系,按质量百分比计,所述第二子树脂体系中包括30%-50%的所述环氧树脂和0.1%-10%的二氧化硅,所述第二子固化剂体系中包括50%-70%的脂环族多元胺和30%-50%的硅烷偶联剂,所述第二子固化剂体系和所述第二子树脂体系的质量比为(0.1-0.12):1。
  18. 如权利要求13所述的制备方法,其特征在于,所述烘烤包括在70℃-100℃下处理15min-25min,所述终烘包括在70℃-100℃下处理90min-150min。
  19. 如权利要求13所述的制备方法,其特征在于,所述涂覆包括雾化喷涂,所述雾化喷涂中的雾化压力为240kPa-280kPa,喷涂压力为300kPa-400kPa,喷涂速度为500mm/s-700mm/s。
  20. 一种电子设备,其特征在于,包括权利要求1-12任一项所述的壳体组件,或权利要求13-19任一项所述的制备方法制得的壳体组件。
PCT/CN2022/130992 2021-12-30 2022-11-10 壳体组件及其制备方法和电子设备 WO2023124563A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111681170.7 2021-12-30
CN202111681170.7A CN114340265B (zh) 2021-12-30 2021-12-30 壳体组件及其制备方法和电子设备

Publications (1)

Publication Number Publication Date
WO2023124563A1 true WO2023124563A1 (zh) 2023-07-06

Family

ID=81022394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/130992 WO2023124563A1 (zh) 2021-12-30 2022-11-10 壳体组件及其制备方法和电子设备

Country Status (2)

Country Link
CN (1) CN114340265B (zh)
WO (1) WO2023124563A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114340265B (zh) * 2021-12-30 2024-04-16 Oppo广东移动通信有限公司 壳体组件及其制备方法和电子设备
CN115284591A (zh) * 2022-08-22 2022-11-04 Oppo广东移动通信有限公司 壳体的制作方法、壳体以及电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6628526B1 (en) * 1999-07-13 2003-09-30 Taiyo Yuden Co., Ltd. Electronic device manufacturing method, electronic device and resin filling method
US20110309728A1 (en) * 2010-06-16 2011-12-22 Incase Designs Corp. Case for Portable Electronic Device
CN104703790A (zh) * 2012-10-02 2015-06-10 住友电木株式会社 物品和层叠体
CN111511858A (zh) * 2017-12-28 2020-08-07 日东电工株式会社 片体、电子部件收纳壳体、片体的透湿性评价方法、透湿度测定方法以及片体的透湿性评价装置
CN113692147A (zh) * 2021-08-03 2021-11-23 Oppo广东移动通信有限公司 壳体组件及其制备方法和电子设备
CN114340265A (zh) * 2021-12-30 2022-04-12 Oppo广东移动通信有限公司 壳体组件及其制备方法和电子设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090176103A1 (en) * 2006-04-13 2009-07-09 Takashi Arai Gas Barrier Film
JP5639930B2 (ja) * 2010-03-02 2014-12-10 三菱樹脂株式会社 太陽電池封止材及びそれを用いて作製された太陽電池モジュール
WO2014103866A1 (ja) * 2012-12-27 2014-07-03 リンテック株式会社 フィルム状封止材、封止シートおよび電子デバイス
JP2015103389A (ja) * 2013-11-25 2015-06-04 次世代化学材料評価技術研究組合 有機el素子
CN105322104B (zh) * 2015-12-08 2017-09-19 昆山工研院新型平板显示技术中心有限公司 Oled显示面板的封装方法
CN107644943A (zh) * 2017-04-17 2018-01-30 宁波安特弗新材料科技有限公司 一种水汽氧气阻隔膜及其制备方法
CN214279629U (zh) * 2020-12-03 2021-09-24 南昌欧菲显示科技有限公司 导电膜及电子装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6628526B1 (en) * 1999-07-13 2003-09-30 Taiyo Yuden Co., Ltd. Electronic device manufacturing method, electronic device and resin filling method
US20110309728A1 (en) * 2010-06-16 2011-12-22 Incase Designs Corp. Case for Portable Electronic Device
CN104703790A (zh) * 2012-10-02 2015-06-10 住友电木株式会社 物品和层叠体
CN111511858A (zh) * 2017-12-28 2020-08-07 日东电工株式会社 片体、电子部件收纳壳体、片体的透湿性评价方法、透湿度测定方法以及片体的透湿性评价装置
CN113692147A (zh) * 2021-08-03 2021-11-23 Oppo广东移动通信有限公司 壳体组件及其制备方法和电子设备
CN114340265A (zh) * 2021-12-30 2022-04-12 Oppo广东移动通信有限公司 壳体组件及其制备方法和电子设备

Also Published As

Publication number Publication date
CN114340265A (zh) 2022-04-12
CN114340265B (zh) 2024-04-16

Similar Documents

Publication Publication Date Title
WO2023124563A1 (zh) 壳体组件及其制备方法和电子设备
CN101877331B (zh) 显示面板用柔性基板及该柔性基板的制造方法
CN104210199B (zh) 用于显示装置的窗口及包括该窗口的显示装置
US11498315B2 (en) Transparent resin substrate
CN110473471B (zh) 一种柔性显示屏盖板
CN107664787A (zh) 光学层叠体
TW200534198A (en) Transparent laminate
CN103547449A (zh) 多层塑料基板及其制备方法
TW201232018A (en) Antistatic hardcoat film, process for producing same, polarizer, and image display device
CN113557279B (zh) 多层膜及包括其的层叠体
CN103958183A (zh) 阻气膜和阻气膜的制造方法
CN103052895A (zh) 光学层叠体、偏振片和图像显示装置
JP2002327024A (ja) 樹脂フィルム、およびその用途
CN112087897B (zh) 壳体组件及其制备方法和电子设备
CN108989526B (zh) 机壳及其制备方法、智能终端
CN108602314A (zh) 阻气膜及阻气膜的制造方法
JP2013205634A (ja) 光学フィルムおよびその製造方法
JP2003297556A (ja) 表示素子用基材、表示パネル、表示装置及び表示素子用基材の製造方法
CN114845870A (zh) 三维成型品装饰用层积膜、其制造方法以及三维装饰方法
TW201237192A (en) Device housing and method for making the device housing
WO2023056815A1 (zh) 壳体组件、其制备方法及终端
CN108594936B (zh) 电子装置及其壳体和壳体的制造方法
CN108638728B (zh) 电子装置及其壳体和壳体的制造方法
JP2003212927A (ja) 光学透明材料およびその用途
CN110491291B (zh) 一种柔性显示屏盖板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913826

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE