WO2023123859A1 - 石墨烯/铜复合变形铜铬锆合金层状带材及其制备方法 - Google Patents

石墨烯/铜复合变形铜铬锆合金层状带材及其制备方法 Download PDF

Info

Publication number
WO2023123859A1
WO2023123859A1 PCT/CN2022/096102 CN2022096102W WO2023123859A1 WO 2023123859 A1 WO2023123859 A1 WO 2023123859A1 CN 2022096102 W CN2022096102 W CN 2022096102W WO 2023123859 A1 WO2023123859 A1 WO 2023123859A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
graphene
chromium
zirconium alloy
composite
Prior art date
Application number
PCT/CN2022/096102
Other languages
English (en)
French (fr)
Inventor
魏伟
姚立波
魏坤霞
杜庆柏
安旭龙
汪丹丹
Original Assignee
常州大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常州大学 filed Critical 常州大学
Publication of WO2023123859A1 publication Critical patent/WO2023123859A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/38Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling sheets of limited length, e.g. folded sheets, superimposed sheets, pack rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/02Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/02Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working in inert or controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D15/00Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal

Definitions

  • the invention belongs to the field of conductor materials and heat conduction materials, and specifically discloses a graphene/copper composite deformed copper-chromium-zirconium alloy layered strip and a preparation method thereof.
  • Copper alloy has excellent electrical conductivity and good mechanical properties, so it is widely used in electronic information, new energy vehicles, aerospace and other fields, and its strip and foil products are widely used in lead frames, integrated circuits, precision electronic components devices etc. With the advent of the 5G era and the rapid development of new energy electric vehicles, high reliability and long service life are the goals of the development of conductor materials. In the future, a large number of reliable and high-efficiency copper alloy strips will be required, and their use conditions will be more severe and their functions will be more complex. This makes the copper alloy strip not only require higher strength and excellent electrical conductivity, but also require suitable plasticity and excellent thermal conductivity.
  • the heat dissipation of traditional electrical devices uses copper as a heat dissipation film, which has excellent mechanical and conductive properties and is suitable for most electrical devices.
  • copper As a heat dissipation film, which has excellent mechanical and conductive properties and is suitable for most electrical devices.
  • heat dissipation problems which will cause the equipment to overheat and affect work efficiency.
  • Copper-chromium-zirconium alloy is a precipitation-strengthened copper alloy.
  • the mechanical properties of the material can be improved through deformation heat treatment, but the overall performance of the alloy is not improved much.
  • it is of great significance to develop composite copper alloy strips.
  • copper alloys with high thermal conductivity and high electrical conductivity have been obtained by depositing copper alloy surfaces.
  • graphene composite copper materials on the surface of copper alloys such as vapor deposition, electrodeposition and powder metallurgy, but most of these methods are to modify the surface of copper alloys. For bulk materials for practical applications, surface modification becomes a drop in the bucket.
  • the purpose of the present invention is to manufacture a layered graphene composite copper-chromium-zirconium deformed strip material, a copper-chromium-zirconium strip material with excellent comprehensive performance, which is applied in lead frames, integrated circuits, precision electronic components and the like.
  • the thickness of the bulk copper-chromium-zirconium alloy is 1-1.2 cm, and the mass percentage of its element content is Cr: 0.5 wt% to 1.0 wt%, Zr: 0.05 wt% to 0.1 wt%, and the balance is Cu;
  • the solid solution temperature is 1000-1050°C, the holding time is 0.5-1h, and quenched with deionized water;
  • the inner angle of the equal-channel extrusion die is 110°, the outer angle is 0°, the extrusion speed is 15mm/min, the lubricant is a mixture of MoS 2 and engine oil (2:1), and the equal-channel extrusion at room temperature is carried out by Ba path for 1 to 4 Passes, low-temperature rolling after extrusion, immersing the alloy in liquid nitrogen for 5-10 minutes before rolling, the deformation is 98 ⁇ 1%, and the single-rolling amount is 10-15%, and finally rolled to the thickness 0.2 ⁇ 0.3mm copper chromium zirconium strip.
  • the graphene/copper composite deposition solution is composed according to the mass concentration: copper sulfate pentahydrate 80-120g/L, graphene 0.5-2g/L, gelatin 5-25mg/L, polyacrylamide 5-15mg/L, Sodium dodecylsulfonate 0.6 ⁇ 1.2g/L, the balance is deionized water;
  • Configuration method Mix copper sulfate pentahydrate with gelatin and polyacrylamide and disperse with mechanical stirring for 30 minutes at a speed of 200r/min; mix graphene with sodium dodecylsulfonate for ultrasonic dispersion for 30 minutes, and then perform high-speed homogenization Disperse for 60 minutes at a speed of 4000r/min; mix the copper sulfate pentahydrate solution with the graphene suspension for mechanical stirring, then use an electric mixer to stir and high-speed homogeneous dispersion to obtain a graphene/copper composite deposition solution;
  • the surface of the deformed copper-chromium-zirconium alloy was polished with 500, 1000 and 1500 mesh sandpaper in sequence, and then activated by pickling.
  • the components of the activation solution were: 30ml hydrochloric acid and 300ml deionized water;
  • the method adopted is direct current electrodeposition method, and the environmental parameters of electrodeposition are electrolyte pH: 1-2.5, electrolyte temperature 20°C-50°C, current density 60-120mA/cm 2 , deposition time 60 ⁇ 120min; the thickness of single-layer graphene composite copper obtained is 0.1 ⁇ 0.4mm;
  • the amount of cold rolling deformation is 65%-95%, and the amount of single rolling is 5-10%, so that the layers are combined through deformation to obtain a layered composite deformed copper-chromium-zirconium alloy strip.
  • the vacuum degree of vacuum aging is 10 -5 Pa
  • the aging temperature is 400-450° C.
  • the aging holding time is 0.5-1 hour
  • the hardness and strength of the material are improved by performing two severe plastic deformations on the bulk copper-chromium-zirconium alloy.
  • the electrodeposition method adopts a direct current electrodeposition method, the method is simple, the deposition layer is uniform and dense, and the deposition layer has good thermal conductivity and plasticity. For the overall material, the thermal conductivity and electrical conductivity of the material are greatly improved.
  • the comprehensive properties of the strip such as electrical conductivity, thermal conductivity, strength and plasticity, are regulated.
  • Fig. 1 is the layered composite tape schematic diagram prepared by the present invention
  • Fig. 2 is a single-layer actual figure of the present invention
  • Fig. 3 is laminated 3 layers and 5 layers actual figure of the present invention.
  • Figure 4 is the actual picture with 7 layers superimposed.
  • the inner angle of the equal-channel extrusion die is 110°, the outer angle is 0°, the extrusion speed is 15mm/min, the lubricant is a mixture of MoS 2 and engine oil (2:1), and the extrusion is carried out in the Ba path, and the material is in liquid nitrogen After soaking for 5-10 minutes, carry out low-temperature rolling.
  • the components of the electrodeposition solution are copper sulfate pentahydrate 80-120g/L, graphene 0.5-2g/L, gelatin 5-25mg/L, polyacrylamide 5-15mg/L, sodium dodecylsulfonate 0.6-1.2 g/L, the balance is deionized water.
  • the electrolyte temperature is 20-50°C.
  • the solid-solution bulk copper-chromium-zirconium alloy has an element content percentage of Cr: 0.5wt%, Zr: 0.05wt%, and the balance is Cu. Then carry out severe plastic deformation, after one pass of equal channel extrusion, low-temperature rolling 98 ⁇ 1%, and the single rolling amount is 15%, and a copper-chromium-zirconium alloy strip with a thickness of 0.2mm is obtained, and then the surface of the strip is Conduct electrodeposition treatment, deposition liquid components, deposition liquid components: copper sulfate pentahydrate 80g/L, graphene 0.5g/L, gelatin 5mg/L, polyacrylamide 5mg/L, sodium dodecylsulfonate 0.6 g/L, the balance is deionized water; the environmental parameters of electrodeposition are electrolyte pH: 1, deposition temperature is 30°C, current density is 60mA/cm 2 , deposition time is 60min; deposition thickness is 0.2mm.
  • the graphene-composite copper-chromium-zirconium alloy strip is cold-rolled, the rolling volume is 66 ⁇ 1%, and the single rolling volume is 10%, and finally a single-layer graphene-composite copper-chromium-zirconium alloy strip with a thickness of 0.2mm is obtained material.
  • the composite strip was subjected to vacuum aging treatment, the aging temperature was 400°C, and the aging time was 0.5h. In this case and under the process conditions, the strength of the layered composite strip obtained is 600 ⁇ 10MPa, the electrical conductivity is 75 ⁇ 1%IACS, and the thermal conductivity is 600W/m ⁇ k. The elongation after breaking was 10%.
  • the graphene/copper composite deposition solution configuration method mix copper sulfate pentahydrate with gelatin and polyacrylamide and disperse it by mechanical stirring for 30min at a speed of 200r/min; mix graphene with sodium dodecylsulfonate Ultrasonic dispersion for 30 minutes, followed by high-speed homogeneous dispersion for 60 minutes at a speed of 4000r/min; mixing copper sulfate pentahydrate solution and graphene suspension for mechanical stirring, and then using an electric mixer for stirring and high-speed homogeneous dispersion to obtain graphene/copper Composite deposition liquid;
  • the surface of the strip is polished with 500, 1000 and 1500 mesh sandpaper in turn, and is activated by pickling.
  • the strip is connected to the cathode, and the titanium plate is connected to the anode.
  • the solid-solution bulk copper-chromium-zirconium alloy has an element content percentage of Cr: 0.75wt%, Zr: 0.1wt%, and the balance being Cu. Then carry out severe plastic deformation, equal-channel extrusion for 2 passes, and then roll at a low temperature of 98 ⁇ 1%, with a single rolling volume of 15%, to obtain a copper-chromium-zirconium alloy strip with a thickness of 0.2mm.
  • deposition liquid components copper sulfate pentahydrate 100g/L, graphene 1g/L, gelatin 15mg/L, polyacrylamide 10mg/L, sodium dodecylsulfonate 0.8g /L, the balance is deionized water; the environmental parameters of electrodeposition are electrolyte pH: 1, deposition temperature is 30°C, current density is 90mA/cm 2 , deposition time is 60min; deposition thickness is 0.4mm.
  • the graphene-composite copper-chromium-zirconium alloy strip is superimposed with 3 layers and then cold-rolled. The rolling volume is 87 ⁇ 1%, and the single rolling volume is 10%.
  • a layered graphene-composite copper strip with a thickness of 0.3mm is obtained.
  • the layered composite strip is subjected to vacuum aging treatment, the aging temperature is 400°C, and the aging time is 1h.
  • the strength of the layered composite strip obtained is 700 ⁇ 10MPa
  • the electrical conductivity is 80 ⁇ 1%IACS
  • the thermal conductivity is 750W/m ⁇ k.
  • the elongation after breaking was 15%.
  • the preparation method of the electrodeposition solution and the surface pretreatment of the strip are the same as in Example 1.
  • the solid-solution bulk copper-chromium-zirconium alloy has an element content percentage of Cr: 1.0 wt%, Zr: 0.1 wt%, and the balance is Cu. Then carry out severe plastic deformation, and after 4 passes of equal channel extrusion, low-temperature rolling is 98 ⁇ 1%, and the single rolling volume is 10%, and a copper-chromium-zirconium alloy strip with a thickness of 0.2mm is obtained.
  • Electrodeposition treatment is then carried out on the surface of the strip, deposition solution components: copper sulfate pentahydrate 120g/L, graphene 2g/L, gelatin 25mg/L, polyacrylamide 15mg/L, sodium dodecylsulfonate 1.2g /L, the balance is deionized water; the environmental parameters of electrodeposition are electrolyte pH: 2, deposition temperature is 30°C, current density is 120mA/cm 2 , deposition time is 120min; deposition thickness is 0.4mm.
  • cold rolling is carried out. The rolling volume is 92 ⁇ 1%, and the single rolling volume is 5%.
  • a layered graphene-composite copper strip with a thickness of 0.5mm is obtained.
  • the layered composite strip is subjected to vacuum aging treatment, the aging temperature is 450°C, and the aging time is 1h.
  • the strength of the layered composite strip obtained is 850 ⁇ 10MPa
  • the electrical conductivity is 85 ⁇ 1%IACS
  • the thermal conductivity is 1200W/m ⁇ k.
  • the elongation after breaking was 20%.
  • the preparation method of the electrodeposition solution and the surface pretreatment of the strip are the same as in Example 1.
  • the solid-solution bulk copper-chromium-zirconium alloy has an element content percentage of Cr: 1.0 wt%, Zr: 0.1 wt%, and the balance is Cu.
  • Electrodeposition treatment is then carried out on the surface of the strip, deposition solution components: copper sulfate pentahydrate 120g/L, graphene 2g/L, gelatin 25mg/L, polyacrylamide 15mg/L, sodium dodecylsulfonate 1.2g /L, the balance is deionized water; the environmental parameters of electrodeposition are electrolyte pH: 2, deposition temperature is 30°C, current density is 120mA/cm 2 , deposition time is 120min; deposition thickness is 0.4mm.
  • cold rolling is carried out. The rolling volume is 92 ⁇ 1%, and the single rolling volume is 5%.
  • a layered graphene-composite copper strip with a thickness of 0.5mm is obtained.
  • the layered composite strip is subjected to vacuum aging treatment, the aging temperature is 450°C, and the aging time is 1h.
  • the strength of the layered composite strip obtained is 700 ⁇ 10MPa
  • the electrical conductivity is 80 ⁇ 1%IACS
  • the thermal conductivity is 1000W/m ⁇ k.
  • the elongation after breaking was 12%.
  • the solid-solution bulk copper-chromium-zirconium alloy has an element content percentage of Cr: 1.0 wt%, Zr: 0.1 wt%, and the balance is Cu. Then carry out severe plastic deformation, and after 4 passes of equal channel extrusion, low-temperature rolling is 98 ⁇ 1%, and the single rolling volume is 10%, and a copper-chromium-zirconium alloy strip with a thickness of 0.2mm is obtained.
  • deposition liquid components copper sulfate pentahydrate 80g/L, graphene 0.5g/L, gelatin 10mg/L, polyacrylamide 10mg/L, sodium dodecylsulfonate 0.6 g/L, the balance is deionized water; the environmental parameters of electrodeposition are electrolyte pH: 2, deposition temperature is 30°C, current density is 120mA/cm 2 , deposition time is 90min; deposition thickness is 0.4mm.
  • the solid-solution bulk copper-chromium-zirconium alloy has an element content percentage of Cr: 1.0 wt%, Zr: 0.1 wt%, and the balance is Cu. Then carry out severe plastic deformation, equal channel extrusion for 4 passes, and then roll 98% at low temperature, with a single rolling volume of 10%, to obtain a copper-chromium-zirconium alloy strip with a thickness of 0.2 mm.
  • Electrodeposition treatment is then carried out on the surface of the strip, deposition solution components: copper sulfate pentahydrate 120g/L, graphene 2g/L, gelatin 25mg/L, polyacrylamide 15mg/L, sodium dodecylsulfonate 1.2g /L, the balance is deionized water; the environmental parameters of electrodeposition are electrolyte pH: 2, deposition temperature is 30°C, current density is 120mA/cm 2 , deposition time is 120min; deposition thickness is 0.4mm.
  • cold rolling is carried out. The rolling volume is 92 ⁇ 1%, and the single rolling volume is 5%.
  • a layered graphene-composite copper strip with a thickness of 0.5mm is obtained.
  • the layered composite strip was subjected to vacuum aging treatment, the aging temperature was 400°C, and the aging time was 0.5h.
  • the strength of the layered composite strip obtained is 800 ⁇ 10MPa
  • the electrical conductivity is 78 ⁇ 1%IACS
  • the thermal conductivity is 800W/m ⁇ k.
  • the elongation after breaking was 15%.
  • the solid-solution bulk copper-chromium-zirconium alloy has an element content percentage of Cr: 1.0 wt%, Zr: 0.1 wt%, and the balance is Cu. Then carry out severe plastic deformation, and low-temperature rolling 98% after 4 passes of equal channel extrusion, and the single rolling amount is 10%, and the copper-chromium-zirconium alloy strip with a thickness of 0.2mm is obtained. Finally, vacuum aging treatment is carried out, the aging temperature is 450° C., and the aging time is 1 h.
  • the copper-chromium-zirconium alloy strip obtained has a strength of 700 ⁇ 10MPa, an electrical conductivity of 75 ⁇ 1%IACS, and a thermal conductivity of 550W/m ⁇ k.
  • the elongation after breaking was 15%.
  • the solid-solution bulk copper-chromium-zirconium alloy has an element content percentage of Cr: 1.0 wt%, Zr: 0.1 wt%, and the balance is Cu. Then wire-cut the bulk copper-chromium-zirconium alloy to produce a plate with a thickness of 1mm, and then polish the plate with 500, 1000, 1500 and 2000 mesh sandpaper to obtain a copper-chromium-zirconium alloy strip with a thickness of 0.2mm.
  • Electrodeposition treatment is then carried out on the surface of the strip, deposition solution components: copper sulfate pentahydrate 120g/L, graphene 2g/L, gelatin 25mg/L, polyacrylamide 15mg/L, sodium dodecylsulfonate 1.2g /L, the balance is deionized water; the environmental parameters of electrodeposition are electrolyte pH: 2, deposition temperature is 30°C, current density is 120mA/cm 2 , deposition time is 60min; deposition thickness is 0.2mm.
  • the final 0.6mm composite strip is then subjected to vacuum aging treatment.
  • the aging temperature is 450°C and the aging time is 1h. It is 85 ⁇ 1%IACS, and the thermal conductivity is 700W/m ⁇ k.
  • the elongation after breaking was 10%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Electroplating And Plating Baths Therefor (AREA)
  • Electroplating Methods And Accessories (AREA)
  • Non-Insulated Conductors (AREA)
  • Conductive Materials (AREA)
  • Laminated Bodies (AREA)

Abstract

一种石墨烯/铜复合变形铜铬锆合金层状带材及其制备方法,首先对固溶后的块状铜铬锆合金进行室温下等通道挤压(ECAP)+低温轧制(CR),再对变形后的铜铬锆合金带材进行石墨烯复合铜电沉积处理,然后对复合带材叠加进行冷轧,获得层状复合带材,最后进行真空时效处理。复合材料的导电率达到75〜85%IACS,抗拉强度达到600〜850MPa,热导率达到600~1200W/m•k,断后延伸率达到10〜20%,满足导电、传热领域的应用。

Description

石墨烯/铜复合变形铜铬锆合金层状带材及其制备方法 技术领域
本发明属于导体材料和热传导材料领域,具体公开了一种石墨烯/铜复合变形铜铬锆合金层状带材及其制备方法。
背景技术
铜合金具有优良的导电性能和较好的力学性能,从而广泛应用于电子信息、新能源汽车、航天航空等领域,并且其带材、箔材产品大量应用于引线框架、集成电路、精密电子元器件等方面。随着5G时代的来临和新能源电动汽车的快速发展,高可靠性和高使用寿命是导体材料发展的目标。未来需要大量的、可靠的、高效的铜合金带材,并且其使用条件更加苛刻、功能更加复杂。这就使得铜合金带材不仅要求具有更高的强度和优良的导电性能,还要求具有适宜的塑性和优良的导热性能。
传统的电气装置散热通过采用铜作为散热膜,其机械和导电性能优良,适用于大多数电气装置。但往往在工作一段时间后会存在散热问题,导致设备会出现过热从而影响工作效率。
铜铬锆合金为沉淀强化型铜合金,通过形变热处理可以提升材料力学性能,但对于合金的综合性能改善不大。为适应未来5G时代对于铜合金的复杂要求,开发复合铜合金带材意义重大。近些年,通过对铜合金表面进行沉积获得高导热高导电铜合金。尤其是石墨烯复合铜材料在铜合金表面的应用,如气相沉积、电沉积和粉末冶金法等,但这些方法大多数是对铜合金表面进行改性。对于实际应用的整体材料而言,表面的改性变得杯水车薪。
发明内容
本发明的目的在于制造一种层状石墨烯复合铜铬锆变形带材,综合性能优良的铜铬锆带材,应用在引线框架、集成电路、精密电子元器件等方面。
本发明的技术解决方案是:
(1)对经过固溶处理的块体铜铬锆合金进行室温等通道挤压和低温轧制。
其中,块体铜铬锆合金厚度为1~1.2cm,其元素含量的质量百分比为Cr:0.5wt%~1.0wt%,Zr:0.05wt%~0.1wt%,余量为Cu;
固溶温度为1000~1050℃,保温时间为0.5~1h,用去离子水进行淬火;
等通道挤压模具内角为110°,外角为0°,挤压速度为15mm/min,润滑剂为MoS 2与机油混合液(2:1),以Ba路径方式室温等通道挤压1~4道次,挤压后进行低温轧制,将合金放置液氮中浸泡5~10min后进行轧制,变形量为98±1%,单次轧制量为10~15%,最终轧制成厚度为0.2~0.3mm的铜铬锆带材。
(2)配置石墨烯/铜复合材料的电沉积溶液,并对带材进行电沉积处理。
其中,石墨烯/铜复合沉积液按照质量浓度的组成为:五水合硫酸铜80~120g/L,石墨烯0.5~2g/L,明胶5~25mg/L,聚丙烯酰胺5~15mg/L,十二烷基磺酸钠0.6~1.2g/L,余量为去离子水;
配置方法:将五水合硫酸铜与明胶和聚丙烯酰胺混合并采用机械搅拌分散30min,速度为200r/min;将石墨烯与十二烷基磺酸钠混合进行超声分散30min,再进行高速匀质分散60min,速度为4000r/min;将五水合硫酸铜溶液与石墨烯悬浮液混合进行机械搅拌后再采用电动搅拌机搅拌及高速匀质分散,得到石墨烯/铜复合沉积液;
电沉积前将变形态铜铬锆合金表面依次用500、1000和1500目的砂纸打磨,并进行酸洗活化,活化液成分为:30ml盐酸与300ml去离子水;
电沉积过程中,所采用的方法为直流电沉积法,电沉积的环境参数为电解 液pH:1~2.5,电解液温度20℃~50℃,电流密度60~120mA/cm 2,沉积时间为60~120min;获得单层石墨烯复合铜厚度为0.1~0.4mm;
(3)将复合带材叠加3~7层,进行冷轧处理。
冷轧变形量为65%~95%,单次轧制量在5~10%,使层与层之间通过变形结合起来,获得层状复合变形铜铬锆合金带材。
(4)将层状复合带材卷压进行真空时效。
其中,真空时效的真空度为10 -5Pa,时效温度为400~450℃,时效保温时间0.5~1h,随炉升温降温。
本发明的有益效果:
(1)通过对块体铜铬锆合金进行两次剧烈塑性变形,提高材料硬度和强度。电沉积方法采用直流电沉积法,方法简单,沉积层均匀且致密,并且沉积层具有良好的导热性能和塑性。对整体材料而言,大大改善材料的导热性能和导电性能。
(2)通过叠加复合带材进行冷轧,增强石墨烯/铜与铜合金带材的结合强度,并且提高石墨烯/铜复合材料的致密度。
(3)层状复合带材经过时效过后,调控带材的综合性能,如导电性能、导热性能、强度和塑性。
附图说明:
图1为本发明制备的层状复合带材示意图;
图2为本发明的单层实际图;
图3为本发明的叠压3层和5层实际图;
图4为叠加7层实际图。
具体实施方式
下面结合实施例对本发明作进一步详述:以下实施例均以块体铜铬锆合金厚度为12mm,其元素含量百分比Cr:0.5wt%~1.0wt%,Zr:0.05wt%~0.1wt%,余量为Cu。在1050℃,保温时间1h下进行固溶处理和水淬。等通道挤压模具内角为110°,外角为0°,挤压速度为15mm/min,润滑剂为MoS 2与机油混合液(2:1),以Ba路径方式挤压,材料在液氮中浸泡5~10min后进行低温轧制。
电沉积溶液组分为五水合硫酸铜80~120g/L,石墨烯0.5~2g/L,明胶5~25mg/L,聚丙烯酰胺5~15mg/L,十二烷基磺酸钠0.6~1.2g/L,余量为去离子水。电解液温度为20~50℃。
实施例1
将固溶后的块体铜铬锆合金其元素含量百分比Cr:0.5wt%,Zr:0.05wt%,余量为Cu。然后进行剧烈塑性变形,等通道挤压1道次后低温轧制98±1%,单次轧制量为15%,制得厚度为0.2mm的铜铬锆合金带材,然后对带材表面进行电沉积处理,沉积液组分,沉积液组分:五水合硫酸铜80g/L,石墨烯0.5g/L,明胶5mg/L,聚丙烯酰胺5mg/L,十二烷基磺酸钠0.6g/L,余量为去离子水;电沉积的环境参数为电解液pH:1,沉积温度为30℃,电流密度60mA/cm 2,沉积时间为60min;沉积厚度为0.2mm。将石墨烯复合铜铬锆合金带材进行冷轧,轧制量为66±1%,单次轧制量为10%,最终制得厚度为0.2mm的单层石墨烯复合铜铬锆合金带材。将复合带材进行真空时效处理,时效温度为400℃,时效时间为0.5h。这种情况以及该工艺条件下所得层状复合带材强度为600±10MPa,导电率为75±1%IACS,导热率600W/m·k。断后延伸率为10%。
其中,石墨烯/铜复合沉积溶液配置方法:将五水合硫酸铜与明胶和聚丙烯酰胺混合并采用机械搅拌分散30min,速度为200r/min;将石墨烯与十二烷基磺酸钠混合进行超声分散30min,再进行高速匀质分散60min,速度为4000r/min; 将五水合硫酸铜溶液与石墨烯悬浮液混合进行机械搅拌后再采用电动搅拌机搅拌及高速匀质分散,得到石墨烯/铜复合沉积液;
带材表面依次用500、1000和1500目的砂纸打磨,并进行酸洗活化,带材接阴极,钛板接阳极。
实施例2
将固溶后的块体铜铬锆合金其元素含量百分比Cr:0.75wt%,Zr:0.1wt%,余量为Cu。然后进行剧烈塑性变形,等通道挤压2道次后低温轧制98±1%,单次轧制量为15%,制得厚度为0.2mm的铜铬锆合金带材。然后对带材表面进行电沉积处理,沉积液组分:五水合硫酸铜100g/L,石墨烯1g/L,明胶15mg/L,聚丙烯酰胺10mg/L,十二烷基磺酸钠0.8g/L,余量为去离子水;电沉积的环境参数为电解液pH:1,沉积温度为30℃,电流密度90mA/cm 2,沉积时间为60min;沉积厚度为0.4mm。将石墨烯复合铜铬锆合金带材叠加3层后进行冷轧,轧制量为87±1%,单次轧制量为10%,最终制得厚度为0.3mm的层状石墨烯复合铜铬锆合金带材。将层状复合带材进行真空时效处理,时效温度400℃,时效时间为1h。这种情况以及该工艺条件下所得层状复合带材强度为700±10MPa,导电率为80±1%IACS,导热率750W/m·k。断后延伸率为15%。
电沉积溶液的配制方法和带材表面预处理同实施例1。
实施例3
将固溶后的块体铜铬锆合金其元素含量百分比Cr:1.0wt%,Zr:0.1wt%,余量为Cu。然后进行剧烈塑性变形,等通道挤压4道次后低温轧制98±1%,单次轧制量为10%,制得厚度为0.2mm的铜铬锆合金带材。然后对带材表面进行电沉积处理,沉积液组分:五水合硫酸铜120g/L,石墨烯2g/L,明胶25mg/L,聚丙烯酰胺15mg/L,十二烷基磺酸钠1.2g/L,余量为去离子水;电沉积的环境参数 为电解液pH:2,沉积温度为30℃,电流密度120mA/cm 2,沉积时间为120min;沉积厚度为0.4mm。将石墨烯复合铜铬锆合金带材叠加7层后进行冷轧,轧制量为92±1%,单次轧制量为5%,最终制得厚度为0.5mm的层状石墨烯复合铜铬锆合金带材。将层状复合带材进行真空时效处理,时效温度为450℃,时效时间为1h。这种情况以及该工艺条件下所得层状复合带材强度为850±10MPa,导电率为85±1%IACS,导热率1200W/m·k。断后延伸率为20%。
电沉积溶液的配制方法和带材表面预处理同实施例1。
实施例4
将固溶后的块体铜铬锆合金其元素含量百分比Cr:1.0wt%,Zr:0.1wt%,余量为Cu。进行低温轧制98±1%,单次轧制量为15%,制得厚度为0.2mm的铜铬锆合金带材。然后对带材表面进行电沉积处理,沉积液组分:五水合硫酸铜120g/L,石墨烯2g/L,明胶25mg/L,聚丙烯酰胺15mg/L,十二烷基磺酸钠1.2g/L,余量为去离子水;电沉积的环境参数为电解液pH:2,沉积温度为30℃,电流密度120mA/cm 2,沉积时间为120min;沉积厚度为0.4mm。将石墨烯复合铜铬锆合金带材叠加7层后进行冷轧,轧制量为92±1%,单次轧制量为5%,最终制得厚度为0.5mm的层状石墨烯复合铜铬锆合金带材。将层状复合带材进行真空时效处理,时效温度为450℃,时效时间为1h。这种情况以及该工艺条件下所得层状复合带材强度为700±10MPa,导电率为80±1%IACS,导热率1000W/m·k。断后延伸率为12%。
实施例5
将固溶后的块体铜铬锆合金其元素含量百分比Cr:1.0wt%,Zr:0.1wt%,余量为Cu。然后进行剧烈塑性变形,等通道挤压4道次后低温轧制98±1%,单次轧制量为10%,制得厚度为0.2mm的铜铬锆合金带材。然后对带材表面进行电沉 积处理,沉积液组分:五水合硫酸铜80g/L,石墨烯0.5g/L,明胶10mg/L,聚丙烯酰胺10mg/L,十二烷基磺酸钠0.6g/L,余量为去离子水;电沉积的环境参数为电解液pH:2,沉积温度为30℃,电流密度120mA/cm 2,沉积时间为90min;沉积厚度为0.4mm。将石墨烯复合铜铬锆合金带材叠加5层后进行冷轧,轧制量为92±1%,单次轧制量为5%,最终制得厚度为0.5mm的层状石墨烯复合铜铬锆合金带材。将层状复合带材进行真空时效处理,时效温度为450℃,时效时间为1h。这种情况以及该工艺条件下所得层状复合带材强度为800±10MPa,导电率为76±1%IACS,导热率680±10W/m·k。断后延伸率为20%。
实施例6
将固溶后的块体铜铬锆合金其元素含量百分比Cr:1.0wt%,Zr:0.1wt%,余量为Cu。然后进行剧烈塑性变形,等通道挤压4道次后低温轧制98%,单次轧制量为10%,制得厚度为0.2mm的铜铬锆合金带材。然后对带材表面进行电沉积处理,沉积液组分:五水合硫酸铜120g/L,石墨烯2g/L,明胶25mg/L,聚丙烯酰胺15mg/L,十二烷基磺酸钠1.2g/L,余量为去离子水;电沉积的环境参数为电解液pH:2,沉积温度为30℃,电流密度120mA/cm 2,沉积时间为120min;沉积厚度为0.4mm。将石墨烯复合铜铬锆合金带材叠加7层后进行冷轧,轧制量为92±1%,单次轧制量为5%,最终制得厚度为0.5mm的层状石墨烯复合铜铬锆合金带材。将层状复合带材进行真空时效处理,时效温度为400℃,时效时间为0.5h。这种情况以及该工艺条件下所得层状复合带材强度为800±10MPa,导电率为78±1%IACS,导热率800W/m·k。断后延伸率为15%。
对比实施例1
将固溶后的块体铜铬锆合金其元素含量百分比Cr:1.0wt%,Zr:0.1wt%,余量为Cu。然后进行剧烈塑性变形,等通道挤压4道次后低温轧制98%,单次轧 制量为10%,制得厚度为0.2mm的铜铬锆合金带材。最后进行真空时效处理,时效温度为450℃,时效时间为1h。这种情况以及该工艺条件下所得铜铬锆合金带材强度为700±10MPa,导电率为75±1%IACS,导热率为550W/m·k。断后延伸率为15%。
对比实施例2
将固溶后的块体铜铬锆合金其元素含量百分比Cr:1.0wt%,Zr:0.1wt%,余量为Cu。然后对块体铜铬锆合金进行线切割,制得厚度为1mm的板材,对板材依次用500、1000、1500和2000目的砂纸打磨制得厚度为0.2mm的铜铬锆合金带材。然后对带材表面进行电沉积处理,沉积液组分:五水合硫酸铜120g/L,石墨烯2g/L,明胶25mg/L,聚丙烯酰胺15mg/L,十二烷基磺酸钠1.2g/L,余量为去离子水;电沉积的环境参数为电解液pH:2,沉积温度为30℃,电流密度120mA/cm 2,沉积时间为60min;沉积厚度为0.2mm。最终制的0.6mm的复合带材,然后进行真空时效处理,时效温度为450℃,时效时间为1h,这种情况以及该工艺条件下所得铜铬锆合金带材强度为350±10MPa,导电率为85±1%IACS,导热率为700W/m·k。断后延伸率为10%。

Claims (9)

  1. 一种石墨烯/铜复合变形铜铬锆合金层状带材的制备方法,其特征在于:所述制备方法步骤如下:
    (1)将块体铜铬锆合金进行固溶处理,对固溶后的合金进行室温等通道挤压和低温轧制;
    (2)配置石墨烯/铜复合沉积液并进行表面电沉积;
    (3)将复合带材堆叠3~7层,然后进行冷轧,轧制变形量为65~95%,单次轧制量为5~10%;
    (4)将复合带材进行真空时效。
  2. 根据权利要求1所述的石墨烯/铜复合变形铜铬锆合金层状带材的制备方法,其特征在于:步骤(1)中块体铜铬锆合金按照质量百分比的元素组成为Cr:0.5wt%~1.0wt%,Zr:0.05wt%~0.1wt%,余量为Cu,厚度为1~1.2cm;固溶温度为1000~1050℃,保温时间为0.5~1h,用去离子水进行淬火。
  3. 根据权利要求1所述的石墨烯/铜复合变形铜铬锆合金层状带材的制备方法,其特征在于:步骤(1)室温等通道挤压1~4道次,低温轧制是合金在液氮浸泡5~10min后进行轧制,变形量为98±1%,单次轧制量为10~15%,最终变形态合金带材厚度为0.2~0.3mm。
  4. 根据权利要求1所述的石墨烯/铜复合变形铜铬锆合金层状带材的制备方法,其特征在于:步骤(2)石墨烯/铜复合沉积液按照质量浓度的组成为:五水合硫酸铜80~120g/L,石墨烯0.5~2g/L,明胶5~25mg/L,聚丙烯酰胺5~15mg/L,十二烷基磺酸钠0.6~1.2g/L,余量为去离子水。
  5. 根据权利要求1所述的石墨烯/铜复合变形铜铬锆合金层状带材的制备方法,其特征在于:步骤(2)石墨烯/铜复合沉积液的配制方法为:将五水合硫酸铜、明胶和聚丙烯酰胺混合并采用机械搅拌分散30min,速度为200r/min; 将石墨烯与十二烷基磺酸钠混合进行超声分散30min,再进行高速匀质分散60min,速度为4000r/min;将五水合硫酸铜溶液与石墨烯悬浮液混合进行机械搅拌后再采用电动搅拌机搅拌及高速匀质分散,得到石墨烯/铜复合沉积液。
  6. 根据权利要求1所述的石墨烯/铜复合变形铜铬锆合金层状带材的制备方法,其特征在于:步骤(2)沉积前将变形态铜铬锆合金表面依次采用500、1000和1500目的砂纸打磨,并进行酸洗活化,活化液成分为:30ml盐酸与300ml去离子水。
  7. 根据权利要求1所述的石墨烯/铜复合变形铜铬锆合金层状带材的制备方法,其特征在于:步骤(2)采用直流电沉积法沉积,电沉积的参数为电解液pH:1~2.5,电解液温度20℃~50℃,电流密度60~120mA/cm 2,沉积时间为60~120min;获得单层石墨烯复合铜厚度为0.1~0.4mm。
  8. 根据权利要求1所述的石墨烯/铜复合变形铜铬锆合金层状带材的制备方法,其特征在于:步骤(4)中真空时效参数为真空度为10 -5Pa,时效温度为400~450℃,时效保温时间0.5~1h,随炉升温降温。
  9. 一种根据权利要求1-8任一项所述方法制备的石墨烯/铜复合变形铜铬锆合金层状带材。
PCT/CN2022/096102 2021-12-29 2022-05-31 石墨烯/铜复合变形铜铬锆合金层状带材及其制备方法 WO2023123859A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111640722.X 2021-12-29
CN202111640722.XA CN114309119B (zh) 2021-12-29 2021-12-29 石墨烯/铜复合变形铜铬锆合金层状带材及其制备方法

Publications (1)

Publication Number Publication Date
WO2023123859A1 true WO2023123859A1 (zh) 2023-07-06

Family

ID=81017165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/096102 WO2023123859A1 (zh) 2021-12-29 2022-05-31 石墨烯/铜复合变形铜铬锆合金层状带材及其制备方法

Country Status (2)

Country Link
CN (1) CN114309119B (zh)
WO (1) WO2023123859A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116913614A (zh) * 2023-09-13 2023-10-20 深圳特新界面科技有限公司 石墨烯铝合金导电线材及其冷轧制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114309119B (zh) * 2021-12-29 2023-10-20 常州大学 石墨烯/铜复合变形铜铬锆合金层状带材及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103943281A (zh) * 2014-05-09 2014-07-23 浙江大学 一种具有铜-石墨烯复相导电线芯的电线电缆的制备方法
CN105127197A (zh) * 2015-08-31 2015-12-09 东北大学 一种多层金属/石墨烯复合极薄带的制备方法
CN105845942A (zh) * 2016-06-20 2016-08-10 山东建筑大学 一种纳米石墨烯铜箔的制备方法
US20180102197A1 (en) * 2016-10-11 2018-04-12 International Copper Association, Ltd. Graphene-Copper Composite Structure and Manufacturing Method
CN110125181A (zh) * 2018-02-09 2019-08-16 常州第六元素材料科技股份有限公司 累积叠轧工艺制备烯合金的方法及其烯合金
CN110408969A (zh) * 2019-08-09 2019-11-05 常州大学 一种高导热铜基石墨烯复合材料的制备方法
CN110629139A (zh) * 2018-06-25 2019-12-31 南京理工大学 一种Cu-Cr-Zr合金的制备方法
CN114309119A (zh) * 2021-12-29 2022-04-12 常州大学 石墨烯/铜复合变形铜铬锆合金层状带材及其制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4182429B2 (ja) * 2003-11-14 2008-11-19 三菱マテリアル株式会社 Cr−Zr−Al系銅合金線素材の製造方法
EP2276698A1 (en) * 2008-04-14 2011-01-26 Dow Global Technologies Inc. Lithium metal phosphate/carbon nanocomposites as cathode active materials for secondary lithium batteries
CN104099543B (zh) * 2013-04-11 2016-03-30 北京有色金属研究总院 提高铜合金抗应力松弛能力的累积叠轧及热处理方法
CN105568039B (zh) * 2015-12-22 2017-09-05 宁波博威合金板带有限公司 高强度高导电铜铬锆合金及其板带的制备方法
CN108118180A (zh) * 2017-12-25 2018-06-05 浙江力博实业股份有限公司 一种引线框架用铜铬锆合金带材的制备方法
CN109338148B (zh) * 2018-11-19 2020-11-06 西安建筑科技大学 一种石墨烯-铜铬锆合金及其制备方法
CN111349810B (zh) * 2018-12-24 2022-01-07 有研工程技术研究院有限公司 一种石墨烯/铜复合线材及其制备方法
CN110306137B (zh) * 2019-06-28 2021-05-04 南京理工大学 一种层状铜铬锆-纯铜复合板材的制备方法
CN110317970A (zh) * 2019-07-01 2019-10-11 中国第一汽车股份有限公司 一种铜铬锆合金、制备方法及其应用
CN112981170B (zh) * 2021-02-05 2022-04-12 宁波金田铜业(集团)股份有限公司 一种冷镦用铬锆铜合金及其制备方法
CN113637867B (zh) * 2021-08-06 2022-08-23 陕西斯瑞新材料股份有限公司 一种高强高导铜铬锆厚壁管的制备方法
CN113634597A (zh) * 2021-08-19 2021-11-12 安徽工程大学 一种微纳米层状铜/铜合金复合板材及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103943281A (zh) * 2014-05-09 2014-07-23 浙江大学 一种具有铜-石墨烯复相导电线芯的电线电缆的制备方法
CN105127197A (zh) * 2015-08-31 2015-12-09 东北大学 一种多层金属/石墨烯复合极薄带的制备方法
CN105845942A (zh) * 2016-06-20 2016-08-10 山东建筑大学 一种纳米石墨烯铜箔的制备方法
US20180102197A1 (en) * 2016-10-11 2018-04-12 International Copper Association, Ltd. Graphene-Copper Composite Structure and Manufacturing Method
CN110125181A (zh) * 2018-02-09 2019-08-16 常州第六元素材料科技股份有限公司 累积叠轧工艺制备烯合金的方法及其烯合金
CN110629139A (zh) * 2018-06-25 2019-12-31 南京理工大学 一种Cu-Cr-Zr合金的制备方法
CN110408969A (zh) * 2019-08-09 2019-11-05 常州大学 一种高导热铜基石墨烯复合材料的制备方法
CN114309119A (zh) * 2021-12-29 2022-04-12 常州大学 石墨烯/铜复合变形铜铬锆合金层状带材及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116913614A (zh) * 2023-09-13 2023-10-20 深圳特新界面科技有限公司 石墨烯铝合金导电线材及其冷轧制备方法
CN116913614B (zh) * 2023-09-13 2024-01-09 深圳特新界面科技有限公司 石墨烯铝合金导电线材及其冷轧制备方法

Also Published As

Publication number Publication date
CN114309119B (zh) 2023-10-20
CN114309119A (zh) 2022-04-12

Similar Documents

Publication Publication Date Title
WO2023123859A1 (zh) 石墨烯/铜复合变形铜铬锆合金层状带材及其制备方法
WO2021027606A1 (zh) 一种高导热铜基石墨烯复合材料的制备方法
WO2020135582A1 (zh) 气凝胶增强金属基复合材料及其制备方法和应用
CN111145960A (zh) 一种高强高导铜基复合材料及其制备方法
CN109161167B (zh) 一种氮化硼-银/环氧树脂复合材料及其制备方法和应用
CN111957975B (zh) 一种石墨烯增强铜基复合材料的制备方法
CN112490445B (zh) 改善固态电池界面的改性锂复合负极材料制备与应用方法
CN110016708B (zh) 适用于铜及其合金的微弧氧化表面处理方法及制品
JP7302046B2 (ja) 超薄型銅箔とその作製方法
JP2006298718A (ja) 膨張黒鉛シート及びその製造方法
CN115275213A (zh) 一种锂电池负极用复合集流体及其制备方法及应用
CN111806047B (zh) 一种有效控制界面反应的铜铝层状复合材料的制备方法
CN112877562B (zh) 一种硼掺杂石墨烯增强铜基复合材料及其制备方法
CN113977133A (zh) 一种用于铜铝过渡线夹的耐腐蚀复合钎料及其制备方法
CN110340174B (zh) 一种电容器用钽铝复合板带的生产方法
CN102330124A (zh) 一种镀镍铜带的脉冲电化学沉积和组织调整工艺
CN109351976B (zh) 半导体大功率器件用铜-钼铜-铜复合材料及其制备方法
CN111139378A (zh) 一种高强度高电导率集流体用铝箔及其制备方法
CN107313102B (zh) 一种铝基石墨烯、碳纳米管复合散热材料的制备方法
EP4148165B1 (en) Method for preparing heat dissipation component with high flexibility made of graphite or graphene material
CN104282917A (zh) 一种锂离子电池正极集流体
CN115710653A (zh) 银金属氧化物电触头材料的制备方法
JP2012177171A (ja) リチウムイオン電池電極集電体用アルミニウム合金箔およびその製造方法
CN114752800A (zh) 一种石墨烯金属基复合材料及制备方法
CN113299570A (zh) 一种用于半导体封装的固晶材料制备方法及芯片封装方式

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22913150

Country of ref document: EP

Kind code of ref document: A1