CN111957975B - 一种石墨烯增强铜基复合材料的制备方法 - Google Patents

一种石墨烯增强铜基复合材料的制备方法 Download PDF

Info

Publication number
CN111957975B
CN111957975B CN201910416511.4A CN201910416511A CN111957975B CN 111957975 B CN111957975 B CN 111957975B CN 201910416511 A CN201910416511 A CN 201910416511A CN 111957975 B CN111957975 B CN 111957975B
Authority
CN
China
Prior art keywords
copper
composite material
carbon film
amorphous carbon
graphene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910416511.4A
Other languages
English (en)
Other versions
CN111957975A (zh
Inventor
杨宇
张福勤
夏莉红
李复懿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN201910416511.4A priority Critical patent/CN111957975B/zh
Publication of CN111957975A publication Critical patent/CN111957975A/zh
Application granted granted Critical
Publication of CN111957975B publication Critical patent/CN111957975B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/02Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers
    • B22F7/04Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite layers with one or more layers not made from powder, e.g. made from solid metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • B22F3/15Hot isostatic pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/18Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces by using pressure rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/52Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbon, e.g. graphite
    • C04B35/522Graphite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62218Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining ceramic films, e.g. by using temporary supports
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0605Carbon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/223Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating specially adapted for coating particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/105Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding
    • B22F2003/1051Sintering only by using electric current other than for infrared radiant energy, laser radiation or plasma ; by ultrasonic bonding by electric discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Composite Materials (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及一种石墨烯增强铜基复合材料的制备技术;属于铜基复合材料制备技术领域。本发明首次尝试了在铜材上设计一层无定形碳膜;然后通过热压烧结或SPS烧结,得到碳具有石墨烯结构的铜基复合材料;通过后续的轧制和退火处理,得到性能优越的铜基复合材料。本发明可设计性强、适用性广、经济实用,所得产品性能优良,便于大规模工业化应用。

Description

一种石墨烯增强铜基复合材料的制备方法
技术领域
本发明涉及一种石墨烯增强铜基复合材料的制备方法;属于铜基复合材料制备技术领域。
背景技术
铜具有优良的导电导热性和抗磁性,延展性好,耐腐蚀、抗蠕变性能高,是使用最早也是应用最广泛的金属之一。但是,传统的铜及其合金强度低、高温性能差等缺点使得铜及铜合金无法满足工业生产的强烈需求,极大得限制了其应用范围。把铜作为基体,将第二相引入基体中制备出的铜基复合材料可以很大程度上解决这些问题。铜基复合材料以优良的导电性和力学性能广泛应用于电子封装、点焊和装焊机的电极、触头材料、电枢和电动工具的转换器等方面,如W/Cu、Mo/Cu已成功应用于大功率器件及集成电路的制作,但由于其密度较高,不适合小型化、轻型化电子产品的封装;此外,其热导率的理论值仍不能满足大功率封装的极限要求。因此,人们提出用C或SiC等非金属相增强铜基体,使其兼具轻质、高强度、高导热等多种优点,在复合材料的体系选择上取得了一些突破,但是无论是金刚石还是SiC颗粒增强铜基体,普遍存在复合材料表面粗糙、成型加工和表面处理困难等问题。
目前,石墨烯增强铜基复合材料的制备主要有如下几种方法:
1.粉末冶金法
将铜粉与石墨烯的混合料在球磨机中进行研磨并混合,然后利用热压烧结设备在高温高压下将混合料烧结成型得到石墨烯增强铜基复合材料。
2.冶金加工法
将石墨烯喷涂在铜箔(片,板)上,然后采用热轧或热挤压的方法将铜箔(片,板)挤压成型,同时实现石墨烯在铜基体中的分散。
3.电泳沉积法
采用电泳沉积工艺,将石墨烯或者氧化石墨烯均匀电镀在铜箔上,然后将附着有石墨烯或氧化石墨烯的铜箔叠层后反复热轧成型,得到石墨烯增强铜基复合材料。
4.化学镀法
对氧化石墨烯采用化学镀铜的处理得到氧化石墨烯/铜前驱体粉末,然后利用等离子放电烧结将前驱体粉末加压烧结成型得到石墨烯增强铜基复合材料。
现有工艺无论哪一种都采用石墨烯或氧化石墨烯作为原材料,而无论是采用物理方法还是电化学方法,石墨烯或者氧化石墨烯作为增强相在引入Cu基体前的分散都是必不可少的,而由于纳米粒子自身极高的表面能,很难将其彻底分散,而一旦分散不均匀,团聚的石墨烯颗粒不但起不到对基体的增强作用,甚至会降低其力学性能。
发明内容
本发明针对现有技术的不足并结合了市场的需要,提出了一种可设计性强,适用性广,经济实用的石墨烯增强铜基复合材料的制备方法。通过该方法,可以大幅提高铜基复合材料的力学性能和导热性能,解决现有铜基复合材料制备工艺复杂,加工性能差,产品性能不稳定等难题。而且该制备方法除了可用于铜基复合材料的制备外,还可用于其他石墨烯增强金属基复合材料的设计与制作,是一种具有很大开发潜力的复合材料制备方法。
本发明一种石墨烯增强铜基复合材料的制备方法,将原料通过热压烧结或放电等离子(SPS)烧结,使得无定形碳膜转化成石墨烯微晶,并得到石墨烯增强铜基复合材料;所述原料中含有带有无定形碳膜的铜材。
作为优选方案,本发明一种石墨烯增强铜基复合材料的制备方法,包括下述步骤:
步骤一无定形碳膜的制备
以表面清洁干净的铜材为原料;在铜材表面先制备一层无定形碳膜;所述铜材包括铜箔、铜板材、铜粉;
步骤二
当所述铜材为铜箔和/或铜板材时,将带有无定形碳膜的铜材进行堆叠,然后在热压烧结或放电等离子(SPS)烧结的条件下,使得无定形碳膜转化成石墨烯微晶,并得到石墨烯增强铜基复合材料;或将带有无定形碳膜的铜材与铜材A进行堆叠然后在热压烧结或放电等离子(SPS)烧结的条件下,使得无定形碳膜转化成石墨烯微晶,并得到石墨烯增强铜基复合材料;
当所述铜材为铜粉时,将带有无定形碳膜的铜粉压制成形后在热压烧结或放电等离子(SPS)烧结的条件下,使得无定形碳膜转化成石墨烯微晶,并得到石墨烯增强铜基复合材料;或将带有无定形碳膜的铜粉与铜粉混合均匀,压制成形后热压烧结或放电等离子(SPS)烧结的条件下,使得无定形碳膜转化成石墨烯微晶,并得到石墨烯增强铜基复合材料;
当所述铜材一部分为铜粉、一部分为铜箔或铜板时;在铜箔或铜板上铺设带有无定形碳膜的铜粉、成形得到样坯1,将样坯1进行堆叠或将样坯1与铜板或铜箔进行堆叠;然后在热压烧结或放电等离子(SPS)烧结的条件下,使得无定形碳膜转化成石墨烯微晶并得到石墨烯增强铜基复合材料;或在带有无定形碳膜的铜箔或铜板上铺设铜粉、成形得到样坯2,将样坯2进行堆叠或将样坯2与铜板或铜箔进行堆叠;然后在热压烧结或放电等离子(SPS)烧结的条件下,使得无定形碳膜转化成石墨烯微晶并得到石墨烯增强铜基复合材料;或将带有无定形碳膜的铜箔或铜板上铺设带有无定形碳膜的铜粉、成形得到样坯3;将样坯3进行堆叠或将样坯3与铜板或铜箔进行堆叠,然后在热压烧结或放电等离子(SPS)烧结的条件下,使得无定形碳膜转化成石墨烯微晶,并得到石墨烯增强铜基复合材料。
作为优选方案,所述无定形碳膜的厚度为纳米级别。一般为100-500nm。其制备工艺优选为磁控溅射法或化学气相沉积法。
作为优选方案,本发明一种石墨烯增强铜基复合材料的制备方法,铜箔的厚度小于等于0.5mm、优选为0.01-0.4mm、进一步优选为0.02-0.1mm。
为了确保所生成石墨烯结构物质的均匀分布;本发明优选的方案为采用铜箔;且铜箔的厚度与无定形碳膜的厚度比为100:1。在工业上上应用时,为更好的对接后续的冷轧工艺,按1层镀有无定形碳膜的铜箔配置2-4层铜箔。
作为优选方案,本发明一种石墨烯增强铜基复合材料的制备方法,所得石墨烯增强铜基复合材料进行多道次冷轧加工,得到得到轧制好的样品。所述冷轧的总变形量为85-95%;第一道次的变形量为45-55%,其后每道次变形量为5-15%。
作为优选方案,本发明一种石墨烯增强铜基复合材料的制备方法,将轧制好的样品在450~550℃下保温30~60min,消除冷轧过程中材料因变形程度变大位错密度增加导致的加工硬化,得到退火处理的石墨烯增强铜基复合材料。
为了保证整个产品的质量,本发明一种石墨烯增强铜基复合材料的制备方法,包括下述步骤:
1.将小于等于0.1mm、优选为0.05mm厚的铜箔裁剪成需要的尺寸,然后用干净的棉布蘸取无水乙醇后进行擦拭,去除表面残留的油渍和污迹,然后在超声清洗设备中用去离子水清洗2h,再在鼓风干燥箱中100~120℃下烘干2~4h。
2.将清洗烘干的铜箔装夹在磁控溅射设备的基板上,然后溅射室抽真空至(4~5)×10-4Pa之间,采用高纯石墨作为靶材,控制靶距9-12cm、优选为10cm,氩气流量8-12ml/min、优选为10ml/min,在100-140W优选为120W的功率下溅射25-35min、优选为30min,在铜箔表面镀上一层无定形碳膜。
3.将1层镀有碳膜的铜箔与3层纯铜箔交替层叠铺放40层,然后将层铺好的铜箔放入等离子放电烧结(SPS)模具中压实,再将模具放置在上下压头之间,将炉内真空抽至10- 5Pa,然后以80~150℃/min的速度升至750~850℃,然后在15~30MPa的压力下烧结5~15min,然后卸压冷却,脱模后得到成型的铜片。
4.将SPS烧结得到的成型铜片进行多道次冷轧加工,第一道次压下量为50%,其后每道次压下量为复合材料原厚度的10%,一直轧制至样品总压下量为90%。
5.退火处理:将轧制好的铜片在500℃下保温30min,消除冷轧过程中材料因变形程度变大位错密度增加导致的加工硬化,得到退火处理的石墨烯增强铜基复合材料。
原理和优势
本发明将镀有无定形碳膜的铜箔多层叠加后采用SPS工艺烧结成型,同时在高温高压条件下原位反应生成石墨烯微晶,再结合多道次冷轧工艺制备了石墨烯增强铜基复合材料,当无定形碳的含量为0.15wt%时,得到的复合材料抗拉强度相较于纯铜提升了约27%,导热系数提高了约12%。
本发明由于增强相石墨烯微晶是由无定形碳膜在高温高压下(SPS)原位转化生成,相比于常规的石墨烯混合铜粉压制烧结制备工艺,该工艺不涉及纳米粒子的分散处理环节(纳米增强相的分散是复合材料制备工艺的共性难题),工艺流程相对简单,材料的制备成本也更低。
本发明原位生成石墨烯微晶相比常规掺杂石墨烯的分散性更好,可以避免石墨烯因分散不够团聚在铜基体中形成缺陷,反而降低材料性能的问题,同时由于不涉及球磨、电沉积、化学镀等物理、化学分散处理手段,石墨烯微晶的结构与形貌不会被破坏,能够最大限度的发挥出石墨烯增强相的优异性能。
常规的石墨烯掺杂工艺,受分散条件的制约,石墨烯的添加量很难提升到2wt%以上,随着添加量的增加,纳米颗粒团聚几率变大,在烧结的过程中材料很容易开裂,而本工艺通过调节无定形碳膜的厚度来调控石墨烯的含量,最高可实现5wt%石墨烯含量的铜基复合材料制备。
总之,本发明提出了一种新的制备工艺,经优化,采用层状的铜片作为基体,利用磁控溅射镀膜法将一层纳米级的无定形碳膜镀在铜片上,然后堆叠并通过放电等离子烧结(SPS)以及多道次冷轧制备具有层状结构的石墨烯增强铜基复合材料。该工艺条件下,石墨烯增强相的引入是在放电等离子烧结过程中,利用无定形碳高温高压条件下在金属界面溶解、析出的原位反应生成,相比已有报道的石墨烯增强金属基复合材料的制备方法,其石墨烯片层结构在Cu晶粒的界面分布更均匀,其排布取向一致性更好,能够最大程度的发挥出石墨烯在铜基体中的增强作用。
附图说明
附图1为实施例1所得产品的扫描电镜图;
附图2为实施例1所得产品经拉伸实验后所得断口的扫描电镜。
从图1可以看出铜晶粒的界面处有石墨烯微晶生成。
图2结合图1可以看出石墨烯颗粒在晶界的原位生成。
具体实施方式
实施例1
(1)将0.05mm厚的铜箔裁剪成需要的尺寸,然后用干净的棉布蘸取无水乙醇后进行擦拭,去除表面残留的油渍和污迹,然后在超声清洗设备中用去离子水清洗2h,再在鼓风干燥箱中100~120℃下烘干2~4h。
(2)将清洗烘干的铜箔装夹在磁控溅射设备的基板上,然后溅射室抽真空至(4~5)×10-4Pa之间,采用高纯石墨作为靶材,控制靶距10cm,氩气流量10ml/min,在120W的功率下溅射30min,在铜箔表面镀上一层无定形碳膜。
(3)将1层镀有碳膜的铜箔与3层纯铜箔交替层叠铺放40层,然后将层铺好的铜箔放入等离子放电烧结(SPS)模具中压实,再将模具放置在上下压头之间,将炉内真空抽至10-5Pa,然后以100℃/min的速度升至850℃,然后在20MPa的压力下烧结10min,然后卸压冷却,脱模后得到成型的铜片。
(4)将SPS烧结得到的成型铜片进行多道次冷轧加工,第一道次压下量为50%,其后每道次压下量为复合材料原厚度的10%,一直轧制至样品总压下量为90%。
(5)退火处理:将轧制好的铜片在500℃下保温30min,消除冷轧过程中材料因变形程度变大位错密度增加导致的加工硬化,得到退火处理的石墨烯增强铜基复合材料。
所得产品的性能检测值为:抗拉强度505MPa导热系数426W/m·K。
实施例2
(1)将0.02mm厚的铜箔裁剪成需要的尺寸,然后置于1mol/L的盐酸中超声清洗5min,再将铜箔用去离子水冲洗,并于去离子水中超声清洗10min,重复2~3次,氮气吹干;
(2)将清洗烘干的铜箔至于化学气相沉积炉沉积室内,然后抽真空至5~20Pa之间,将沉积室温度逐渐提升到1000摄氏度,保持恒温,然后以50ml/min的流量通入氢气,除去铜箔表面吸附的氧,15min后关闭氢气,再以20ml/min的流量通入甲烷,在铜箔表面沉积一层无定形碳膜,沉积时间为10min。
(3)将1层镀有碳膜的铜箔与3层纯铜箔交替层叠铺放40层,然后将层铺好的铜箔放入等离子放电烧结(SPS)模具中压实,再将模具放置在上下压头之间,将炉内真空抽至10-5Pa,然后以150℃/min的速度升至800℃,然后在30MPa的压力下烧结5min,然后卸压冷却,脱模后得到成型的铜片。
(4)将SPS烧结得到的成型铜片进行多道次冷轧加工,第一道次压下量为50%,其后每道次压下量为复合材料原厚度的10%,一直轧制至样品总压下量为90%。
(5)退火处理:将轧制好的铜片在500℃下保温30min,消除冷轧过程中材料因变形程度变大位错密度增加导致的加工硬化,得到退火处理的石墨烯增强铜基复合材料。
对比例1
(1)将0.05mm厚的铜箔裁剪成需要的尺寸,之后放入丙酮中超声清洗30min,然后在超声清洗设备中用去离子水清洗1h,再在鼓风干燥箱中120℃下烘干2h。
(2)将5~10g的聚乙烯吡咯烷酮表面活性剂溶解于1L去离子水中,然后将0.6~1g的石墨烯粉体加入溶液中,在室温下超声分散2~4h,得到稳定的石墨烯分散液。
(3)将稳定分散的石墨烯溶液用喷壶对清洗干净的铜箔表面进行喷涂,全部喷涂到位后,将铜箔放入真空干燥箱,抽真空同时在100~120℃下烘干1h。将烘干后的铜箔取出,再次进行上述喷涂-烘干操作,循环2~3次,最后得到石墨烯粉体涂覆的铜箔。
(4)将1层涂有石墨烯的铜箔与3层纯铜箔交替层叠铺放40层,然后将层铺好的铜箔放入等离子放电烧结(SPS)模具中压实,再将模具放置在上下压头之间,将炉内真空抽至10-5Pa,然后以150℃/min的速度升至800℃,然后在30MPa的压力下烧结5min,然后卸压冷却,脱模后得到成型的铜片。
(5)将SPS烧结得到的成型铜片进行多道次冷轧加工,第一道次压下量为50%,其后每道次压下量为复合材料原厚度的10%,一直轧制至样品总压下量为90%。
(6)退火处理:将轧制好的铜片在500℃下保温30min,消除冷轧过程中材料因变形程度变大位错密度增加导致的加工硬化,得到退火处理的石墨烯增强铜基复合材料。
所得产品的性能检测值为:抗拉强度435MPa导热系数398W/m·K。

Claims (6)

1.一种石墨烯增强铜基复合材料的制备方法,其特征在于:包括下述步骤:
步骤一 无定形碳膜的制备
以表面清洁干净的铜材为原料;在铜材表面先制备一层无定形碳膜;所述铜材包括铜箔、铜板材、铜粉;所述无定形碳膜的厚度为纳米级别;
步骤二
当所述铜材为铜箔时,将带有无定形碳膜的铜箔进行堆叠,然后在热压烧结或放电等离子烧结的条件下,使得无定形碳膜转化成石墨烯微晶,并得到石墨烯增强铜基复合材料;或将带有无定形碳膜的铜箔与铜材A进行堆叠然后在热压烧结或放电等离子烧结的条件下,使得无定形碳膜转化成石墨烯微晶,并得到石墨烯增强铜基复合材料;铜箔的厚度为0.01-0.4mm;铜箔的厚度与无定形碳膜的厚度比为100:1;
当所述铜材为铜粉时,将带有无定形碳膜的铜粉压制成形后在热压烧结或放电等离子烧结的条件下,使得无定形碳膜转化成石墨烯微晶,并得到石墨烯增强铜基复合材料;或将带有无定形碳膜的铜粉与铜粉混合均匀,压制成形后热压烧结或放电等离子烧结的条件下,使得无定形碳膜转化成石墨烯微晶,并得到石墨烯增强铜基复合材料;
当所述铜材一部分为铜粉、一部分为铜箔或铜板时;在铜箔或铜板上铺设带有无定形碳膜的铜粉、成形得到样坯(1),将样坯(1)进行堆叠或将样坯(1)与铜板或铜箔进行堆叠;然后在热压烧结或放电等离子烧结的条件下,使得无定形碳膜转化成石墨烯微晶并得到石墨烯增强铜基复合材料;或在带有无定形碳膜的铜箔或铜板上铺设铜粉、成形得到样坯(2),将样坯(2)进行堆叠或将样坯(2)与铜板或铜箔进行堆叠;然后在热压烧结或放电等离子烧结的条件下,使得无定形碳膜转化成石墨烯微晶并得到石墨烯增强铜基复合材料;或将带有无定形碳膜的铜箔或铜板上铺设带有无定形碳膜的铜粉、成形得到样坯(3);将样坯(3)进行堆叠或将样坯(3)与铜板或铜箔进行堆叠,然后在热压烧结或放电等离子烧结的条件下,使得无定形碳膜转化成石墨烯微晶,并得到石墨烯增强铜基复合材料;
所得石墨烯增强铜基复合材料进行多道次冷轧加工,得到轧制好的样品;所述冷轧的总变形量为85-95%;第一道次的变形量为45-55%,其后每道次变形量为5-15%;
将轧制好的样品在450~550℃下保温30~60min,消除冷轧过程中材料因变形程度变大位错密度增加导致的加工硬化,得到退火处理的石墨烯增强铜基复合材料。
2.根据权利要求1所述的一种石墨烯增强铜基复合材料的制备方法,其特征在于;所述无定形碳膜的厚度为100-500nm。
3.根据权利要求1所述的一种石墨烯增强铜基复合材料的制备方法,其特征在于;所述无定形碳膜通过磁控溅射法或化学气相沉积法制备。
4.根据权利要求1所述的一种石墨烯增强铜基复合材料的制备方法,其特征在于:铜箔的厚度为0.01-0.4mm。
5.根据权利要求1所述的一种石墨烯增强铜基复合材料的制备方法,其特征在于;铜箔的厚度为0.02-0.1mm。
6.根据权利要求1所述的一种石墨烯增强铜基复合材料的制备方法,其特征在于;包括下述步骤:
(1)将小于等于0.1mm厚的铜箔裁剪成需要的尺寸,然后用干净的棉布蘸取无水乙醇后进行擦拭,去除表面残留的油渍和污迹,然后在超声清洗设备中用去离子水清洗2h,再在鼓风干燥箱中100~120℃下烘干2~4h;
(2)将清洗烘干的铜箔装夹在磁控溅射设备的基板上,然后溅射室抽真空至(4~5)×10-4Pa之间,采用高纯石墨作为靶材,控制靶距9-12cm,氩气流量8-12ml/min,在100-140W的功率下溅射25-35min,在铜箔表面镀上一层无定形碳膜;
(3)将1层镀有碳膜的铜箔与3层纯铜箔交替层叠铺放40层,然后将层铺好的铜箔放入等离子放电烧结模具中压实,再将模具放置在上下压头之间,将炉内真空抽至10-5Pa,然后以80~150℃/min的速度升至750~850℃,然后在15~30MPa的压力下烧结5~15min,然后卸压冷却,脱模后得到成型的铜片;
(4)将SPS烧结得到的成型铜片进行多道次冷轧加工,第一道次压下量为50%,其后每道次压下量为复合材料原厚度的10%,一直轧制至样品总压下量为90%;
(5)退火处理:将轧制好的铜片在500℃下保温30min,消除冷轧过程中材料因变形程度变大位错密度增加导致的加工硬化,得到退火处理的石墨烯增强铜基复合材料。
CN201910416511.4A 2019-05-20 2019-05-20 一种石墨烯增强铜基复合材料的制备方法 Active CN111957975B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910416511.4A CN111957975B (zh) 2019-05-20 2019-05-20 一种石墨烯增强铜基复合材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910416511.4A CN111957975B (zh) 2019-05-20 2019-05-20 一种石墨烯增强铜基复合材料的制备方法

Publications (2)

Publication Number Publication Date
CN111957975A CN111957975A (zh) 2020-11-20
CN111957975B true CN111957975B (zh) 2023-04-18

Family

ID=73358232

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910416511.4A Active CN111957975B (zh) 2019-05-20 2019-05-20 一种石墨烯增强铜基复合材料的制备方法

Country Status (1)

Country Link
CN (1) CN111957975B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112521146B (zh) * 2020-12-24 2022-03-01 广东工业大学 一种超高导热和高韧性器件的加工方法
CN113386405B (zh) * 2021-06-18 2022-11-22 西安稀有金属材料研究院有限公司 一种高强韧层状钛基复合材料的制备方法
CN113716552B (zh) * 2021-09-08 2022-12-27 西北有色金属研究院 一种高定向高导热石墨烯/铜复合材料的制备方法
CN114425622A (zh) * 2022-01-28 2022-05-03 荣成市宏程新材料有限公司 一种粉末冶金复合材料及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4711165B2 (ja) * 2004-06-21 2011-06-29 日立金属株式会社 高熱伝導・低熱膨脹複合体およびその製造方法
CN106584976A (zh) * 2016-08-10 2017-04-26 上海交通大学 一种高导电石墨烯/铜基层状复合材料及其制备方法
CN108193065B (zh) * 2017-12-29 2019-10-25 中南大学 一种石墨烯增强铜基复合材料的制备方法

Also Published As

Publication number Publication date
CN111957975A (zh) 2020-11-20

Similar Documents

Publication Publication Date Title
CN111957975B (zh) 一种石墨烯增强铜基复合材料的制备方法
CN112981159B (zh) 一种石墨烯增强铜基复合材料的制备方法
CN111145960B (zh) 一种高强高导铜基复合材料及其制备方法
CN109554565B (zh) 一种碳纳米管增强铝基复合材料的界面优化方法
CN107022739A (zh) 溅射镀膜用钼旋转靶材的制造方法
WO2015188378A1 (zh) 一种高温高强高导弥散强化铜合金制备工艺
CN112322922B (zh) 一种弥散铜-铜叠层复合材料的粉末冶金制备方法
CN114481053B (zh) 一种镁锌铝镍钒合金靶材及其制造方法
CN113385534A (zh) 一种层状铝合金/铝基复合板材及其制备方法
CN106799496A (zh) 一种石墨和铝硅合金复合电子封装材料及其制备方法
CN113716552A (zh) 一种高定向高导热石墨烯/铜复合材料的制备方法
CN111349807A (zh) 一种镀铜石墨膜增强铜基层压块体复合材料及其制备方法
CN112725817A (zh) 一种熔盐电解制备碳化物陶瓷涂层的方法
CN111606355A (zh) 一种固相反应法制备ws2纳米片的方法
CN114309119A (zh) 石墨烯/铜复合变形铜铬锆合金层状带材及其制备方法
CN1843691A (zh) 铜/钼/铜电子封装复合材料的制备方法
CN111318685B (zh) 一种钛铝合金材料的制备方法和钛铝合金材料及其应用
CN112958785A (zh) 一种3d打印铜铝复合材料及其制备方法
CN109732087B (zh) 一种粉末冶金Ti-Ta二元金属-金属基层状复合材料的制备方法
CN110340344B (zh) 一种提高激光增材制造合金钢粉末利用率的方法
CN102489504A (zh) 钨铜合金箔片的交叉轧制方法
CN114231917B (zh) 一种高纯稀土及合金靶材的制备方法
CN115780798A (zh) 一种纳米碳化硼/铜复合材料及其制备方法
CN114645149A (zh) 一种具有复合界面结构的原位自生石墨烯/铜复合材料的制备方法
CN114605158A (zh) 一种钛合金熔炼用氮化物复合耐火材料及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant