CN111349807A - 一种镀铜石墨膜增强铜基层压块体复合材料及其制备方法 - Google Patents

一种镀铜石墨膜增强铜基层压块体复合材料及其制备方法 Download PDF

Info

Publication number
CN111349807A
CN111349807A CN202010169446.2A CN202010169446A CN111349807A CN 111349807 A CN111349807 A CN 111349807A CN 202010169446 A CN202010169446 A CN 202010169446A CN 111349807 A CN111349807 A CN 111349807A
Authority
CN
China
Prior art keywords
copper
graphite film
composite material
plating
copper foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010169446.2A
Other languages
English (en)
Inventor
欧阳求保
王晓振
曹贺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suzhou Superior New Material Co ltd
Original Assignee
Suzhou Superior New Material Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suzhou Superior New Material Co ltd filed Critical Suzhou Superior New Material Co ltd
Priority to CN202010169446.2A priority Critical patent/CN111349807A/zh
Publication of CN111349807A publication Critical patent/CN111349807A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1005Pretreatment of the non-metallic additives
    • C22C1/1015Pretreatment of the non-metallic additives by preparing or treating a non-metallic additive preform
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/10Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure
    • B32B37/1018Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the pressing technique, e.g. using action of vacuum or fluid pressure using only vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/005Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile
    • B32B9/007Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising one layer of ceramic material, e.g. porcelain, ceramic tile comprising carbon, e.g. graphite, composite carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/041Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/10Alloys containing non-metals
    • C22C1/1005Pretreatment of the non-metallic additives
    • C22C1/101Pretreatment of the non-metallic additives by coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1646Characteristics of the product obtained
    • C23C18/165Multilayered product
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1872Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
    • C23C18/1886Multistep pretreatment
    • C23C18/1893Multistep pretreatment with use of organic or inorganic compounds other than metals, first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • C23C18/40Coating with copper using reducing agents
    • C23C18/405Formaldehyde
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • B32B2255/205Metallic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Ceramic Engineering (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

本发明提供一种镀铜石墨膜增强铜基层压块体复合材料及其制备方法,所述的复合材料是由镀铜石墨膜和铜箔组成的层压块体复合材料。镀铜石墨膜的制备方法是改进的化学镀,可得到结合良好、涂层可控且均匀洁净的涂层;复合材料的制备方法是真空热压烧结,对设备的要求低,操作简单。本发明制备的复合材料的热导率超过1000W/(m·K),热膨胀系数可低于10ppm/K,兼具弯曲强度,集金属材料和石墨材料的优点于一身,是一种很有前景的热管理材料。

Description

一种镀铜石墨膜增强铜基层压块体复合材料及其制备方法
技术领域
本发明涉及金属基复合材料、热管理领域,具体来说,是一种镀铜石墨膜与铜箔叠层构型热压烧结的制备方法,该种材料可用于微型电子元件散热,属于集成电路、电子封装材料领域。
背景技术
随着电子工业的不断发展,电子元器件日益趋向微型化、集成化和高功率化方向发展,工作中形成的高密度热量迅速积累,传统材料的热失配严重影响设备的可靠性、稳定性和使用寿命。因此,电子行业迫切需要一种具备超高导热、低热膨胀和一定机械性能的新型热管理材料,满足应用环境不断提升的要求。
传统的高导热金属材料如铜、银、铝等已经无法满足当前电子工业提出的热管理需求,而金属基复合材料同时具有增强体的高导热、低膨胀及金属基体的易加工、良好的塑韧性等,近年来其以优异的综合性能,在热管理领域得到极大关注。碳材料(如石墨、金刚石、碳纤维、碳纳米管和石墨烯等)因其优异的热性能已被证明是有前途的增强体材料,其中人工合成石墨薄膜的面内热导率可以达到1500W/(m·K)甚至更高,已经实现商业化并成功应用于电脑和手机的散热,是很有潜力的导热材料。以高导热石墨膜作为增强体制备的铜基复合材料也会是一种很有前途的高导热热管理材料。
但是,铜碳复合材料问世以来,铜碳界面就成为关注的焦点。高温下,液态铜与碳的增强体相容性很差,复合材料界面结合强度很低,制备的块体复合材料力学性能较差,无法满足应用需求,是亟待解决的问题。
对比现有技术后发现,申请号为CN201410114471.5的专利“一种高导热石墨膜-铜复合材料的制备方法“通过在高导热石墨膜上化学镀和电镀的方式制备单层石墨膜-铜膜状复合材料,用以提升轴向热导率,但是该种方法得到的膜状材料未形成块体材料,无法有效提升材料的综合性能,应用范围有限。申请号为CN201510052133.8的专利”一种高导热石墨膜金属块体复合材料及其制备方法“利用高导热石墨膜和铝箔交层叠加,热压成型,制备得到石墨膜增强铝基块体复合材料,但是石墨膜和铝箔高温下极易生成Al4C3等有害物质,界面生成物的控制会影响复合材料的界面结合,因而导致制备的块体复合材料的强度不高,无法满足的应用需求。申请号为CN201711019866.7的专利”一种铜/石墨薄膜多层层合块状复合材料的制备方法“利用流延法将铜粉浆料在网状石墨薄膜上铺展开,层层叠加,加压烧结,制备出石墨膜与铜层交替排列的层合块状复合材料,该方法利用铜粉浆料在网状石墨膜的铆钉结构来解决层间结合强度低的问题,却牺牲了石墨膜本身的超高面内导热,得到的块体复合材料的热导率与石墨片、金刚石增强铜基复合材料相比没有性能优势,同时也增加了铜碳之间界面的热失配,无法满足目前的应用需求。
发明内容
为克服现有技术中的缺陷,本发明提供一种镀铜石墨膜增强铜基层压块体复合材料的制备方法,采用化学镀的方法对石墨膜进行表面金属化,有效改善界面结合,然后通过叠层方式,采用真空热压烧结工艺制备高性能的镀铜石墨膜/铜基复合材料。制备得到的石墨膜/铜基复合导热材料的面内导热可达1000W/(m·K)以上,热膨胀系数在1-15ppm/K,弯曲强度最高可达30MPa以上,界面结合良好,不易脱落,同时制备过程简单,生产成本较低,具有良好的应用前景。
为达到上述目的,本发明采用以下技术方案:一种镀铜石墨膜增强铜基层压块体复合材料的制备方法,以石墨膜作为增强相,对石墨膜经过高温处理和表面粗化处理,然后在石墨膜表面用化学镀方法镀覆一层铜;将镀铜的石墨膜单层叠加或与还原气氛清洗的铜箔叠加在模具中,通过真空热压烧结,制备出高导热低膨胀石墨膜增强铜基复合材料。
本发明所述的镀铜石墨膜增强铜基层压块体复合材料的制备方法,其具体步骤为:
S1对石墨膜的表面处理,用丙酮清洗数次后,放在坩埚置于马弗炉中高温处理,去除表面的油污和有机物,干燥后备用;
S2,对所述石墨膜表面进高粗糙度处理,在盐酸的乙醇溶液中进行超声处理,使用去离子水多次清洗,并进行真空干燥后备用;
S3,在已粗化处理后的石墨膜进行表面金属镀覆,处理后的镀铜石墨膜在真空干燥箱干燥,并在自然环境下放置24h,最后放在管式炉中,在还原气氛下清洗2h;镀铜的工艺路线主要为:敏化-活化-化学镀;
敏化液为20ml/L HCl+30g/L SnCl2溶液,室温下浸泡30min(不可搅拌);
活化液为15ml/L HCl+0.25g/L PdCl2溶液,室温下浸泡30min(不可搅拌);
化学镀采用1min先超声处理和浸镀相结合的方式,镀液的组成:五水硫酸铜15g/L、EDTA 14.5g/L、酒石酸钾钠15g/L、36wt%HCHO 10ml/L、OP-10 4ml/L、二联吡啶0.02g/L、亚铁氰化钾0.01g/L、NaOH 20g/L。
镀铜工艺条件:超声镀时间为1-5min、镀液pH值为12-13、镀覆温度为45-55℃、施镀时间为5-20min。
S4,将基体铜箔材料先用丙酮超声清洗用以除去铜箔材料表面的油污,然后放置在管式炉中通入氢气氛围还原氧化铜等杂质,然后去离子水反复冲洗,在真空干燥箱中干燥待用,最后保存在真空环境中。
S5,将S3处理后的石墨膜和S4处理后的基体铜箔材料填充到石墨模具中,一层镀铜石墨膜一层铜箔交替填充成层压结构,在10-2Pa以上的真空环境下热压烧结制成复合材料。
优选地,S1中,所述石墨膜的膜厚在17-25μm。石墨膜的面内热导率与膜厚有负相关关系;高温处理温度控制在400℃,处理时间为30-60min;
优选地,S2中所述盐酸的醇溶液中盐酸的体积分数为10-20%,超声时间为5-10min;
优选地,S3和S4中管式炉的温度为200-300℃,保温时间为2-3h,氢气流速为100-600sccm。对铜箔和镀铜石墨膜表面进行充分清洗,以利于复合材料界面结合。
优选地,S5中,所述复合材料中石墨膜的体积分数为40-90%(如45%、56%或63%);真空热压烧结的热压温度为900-1100℃;所述真空热压压力为30-80MPa;所述真空热压烧结的保温时间为30-180min,所述真空热压烧结的保压时间4-6h,在炉体温度低于200℃时卸压。对复合材料制备的工艺参数如热压温度、热压压力和保压时间的优选措施,可以实现复合材料中铜箔与石墨膜之间的充分扩散进而实现良好的界面结合。
与现有技术相比,本发明具有如下的有益效果:
1.高导热石墨膜具备优异的热性能,但力学性能较差,限制其在热管理领域的应用。本发明制备的块体金属基复合材料兼备石墨膜的热性能和铜基体的力学性能,具有优异的热性能(面内导热超过1000W/(m·K),热膨胀系数低于10ppm/K),同时兼具金属材料的强度和塑性,是一种很有竞争力的新型热管理材料。
2.高温粗化和超声处理有效增加石墨膜表面的粗糙度,为膜材料镀铜提供更多的附着点,镀铜后金属材料与碳材料之间形成锁紧作用,改善增强相与基体之间的界面状态,在保证热学性能的基础之上,有效提高力学性能。
3.石墨膜表面涂覆采用超声处理,同时增加一定表面活性剂,改善镀液在石墨膜表面的润湿性,有效解决镀铜过程中由于渗氢现象导致铜层脱落的问题,本发明可以得到1-10μm的平整光滑的镀铜层,界面结合状态良好。
4.制备工艺采用简单的热压工艺,对设备的要求低,成本低,适用于宏量制备。
5.所制得的金属基复合材料的形状尺寸可以方便调节,同时可以通过控制镀层厚度和铜箔厚度调节复合材料中增强体的体积分数,适用范围广,应用空间大。
附图说明
图1为本发明一实施例镀铜石墨膜增强铜基层压块体复合材料的制备方法流程图;
图2为本发明一实施例石墨膜表面粗糙度:(a)粗化处理前;(b)粗化处理后;(c)镀铜石墨膜微观结构;(d)镀铜石墨膜宏观形貌;
图3为本发明一实施例镀铜石墨膜增强铜基层压块体复合材料的扫描电镜对比图(a)未镀铜;(b)镀铜后;
图4为本发明一实施例镀铜石墨膜增强铜基层压块体复合材料的性能表征:(a)不同体积分数的热导率;(b)不同体积分数的热膨胀系数;(c)体积分数56%的弯曲强度;(d)体积分数63%的弯曲强度。
具体实施方式
以下实例中所述的石墨膜为人工合成高导热石墨膜,金属材料为铜箔,按照图1所示的工艺流程实施,复合材料微观组织界面由扫描电镜(SEM)表征,复合材料热导率由NEZSCH LFA 447测定,热膨胀系数由DIL热膨胀仪测定,弯曲强度由万能试验机测定。
实施例1
本实例涉及一种镀铜石墨膜增强铜基复合材料的制备方法,参照图1所示,包括以下步骤:
石墨膜预处理:将厚度为25μm的石墨膜裁剪备用,用丙酮清洗数次,干燥后,放在坩埚里置于马弗炉中,400℃下高温处理30min,去除有机物质,冷却至室温后,用质量分数10%盐酸的乙醇溶液浸泡,并超声处理10min,最后用去离子水清洗干净后干燥待用。图2(a)(b)表明处理后石墨膜表面的粗糙度提升近3倍,高低差超过20μm,粗化效果明显,用以提供更多铜离子的附着点。
石墨膜敏化处理:将处理好的石墨膜放入20ml/LHCl+30g/LSnCl2溶液中,室温下浸泡30min(不可搅拌),用去离子水清洗至中性。
石墨膜活化处理:敏化后的石墨膜放入15ml/L HCl+0.25g/LPdCl2溶液中,室温下浸泡30min(不可搅拌),用去离子水清洗至中性。
石墨膜化学镀处理:将敏化活化后的石墨膜放入镀铜镀液中,镀液配方为五水硫酸铜15g/L、EDTA 14.5g/L、酒石酸钾钠15g/L、36wt%HCHO 10ml/L、OP-10 4ml/L、二联吡啶0.02g/L、亚铁氰化钾0.01g/L、NaOH 20g/L。先超声镀覆1min,再浸镀10min,镀液pH值为12.5、镀液温度为45℃。镀覆完毕后过滤掉滤液,将镀覆成功的镀铜石墨膜用去离子水清洗至中性,放入真空干燥箱中烘干,得到图2(c)所示表面镀覆1μm铜的石墨膜,超声处理和高粗糙度得到更加干净整洁的界面。
石墨膜后处理:将干燥处理后的镀铜石墨膜在室温环境自然风下放置24h,接着置于管式炉中,通入氢气(气体速率为200sccm),以15℃/min的速率升温至250℃并保温2h。
铜箔预处理:取厚度为20μm的铜箔用丙酮清洗,去除表面油污,干燥后置于管式炉中,通入氢气(气体速率为200sccm),以15℃/min的速率升温至250℃并保温2h,用以去除铜箔表面氧化膜,得到清洁干净的表面。
复合材料制备:将上述镀铜石墨膜和预处理后的铜箔交叉叠层填充于石墨模具中,一层镀铜石墨膜一层铜箔交替填充成层压结构,在900℃、45MPa的压力下保温100min,保压时间为5h,炉体温度低于200℃时卸压,随炉冷却至室温得到复合材料。
对本实例获得的镀铜石墨膜增强铜基复合材料中石墨膜的体积分数为56%,图3为获得的镀铜石墨膜增强铜基层压块体复合材料的扫描电镜图,其中(a)未镀铜;(b)镀铜后,其余实验条件完全一致。通过图3可知石墨膜增强铜基复合材料界面有脱粘现象(a图),本发明制得的镀铜石墨膜增强铜基复合材料界面结合良好(b图),界面有一定扩散作用。石墨膜增强铜基复合材料因其界面结合差,力学性能低无法满足应用需求,本发明通过激光闪射法测得镀铜石墨膜增强铜基复合材料的面内的热导率为1055W/(m·K),通过热膨胀仪测得热膨胀系数为14.2ppm/K,通过三点弯曲法测得的弯曲强度为30.5MPa,如图4所示。本实例在热导率、热膨胀系数和弯曲强度上的优异性能使得其在热管理材料领域极具竞争力,有效提高复合材料的综合性能,具有广泛应用前景。
实施例2
本实例涉及一种镀铜石墨膜增强铜基复合材料的制备方法,参照图1所示,包括以下步骤:
石墨膜预处理:将厚度为17μm的石墨膜裁剪备用,用丙酮清洗数次,干燥后,放在坩埚置于马弗炉中,400℃下高温处理30min,去除有机物质,冷却至室温后,用质量分数10%盐酸的乙醇溶液浸泡,并超声处理10min,最后用去离子水清洗干净后干燥待用。基本如图2显示处理后石墨膜表面的粗糙度提升近3倍,高低差超过20μm,粗化效果明显,用以提供更多铜离子的附着点。
石墨膜敏化处理:将处理好的石墨膜放入20ml/L HCl+30g/L SnCl2溶液中,室温下浸泡30min(不可搅拌),用去离子水清洗至中性。
石墨膜活化处理:敏化后的石墨膜放入15ml/L HCl+0.25g/L PdCl2溶液中,室温下浸泡30min(不可搅拌),用去离子水清洗至中性。
石墨膜化学镀处理:将敏化活化后的石墨膜放入镀铜镀液中,镀液配方为五水硫酸铜15g/L、EDTA 14.5g/L、酒石酸钾钠15g/L、36wt%HCHO 10ml/L、OP-10 4ml/L、二联吡啶0.02g/L、亚铁氰化钾0.01g/L、NaOH 20g/L。先超声镀覆1min,再浸镀10min,镀液pH值为12.5、镀液温度为45℃。镀覆完毕后过滤掉滤液,将镀覆成功的镀铜石墨膜用去离子水清洗至中性,放入真空干燥箱中烘干,得到基本如图2(c)所示表面镀覆1μm铜的石墨膜,超声处理和高粗糙度得到更加干净整洁的界面。
石墨膜后处理:将干燥处理后的镀铜石墨膜在室温环境自然风下放置24h,接着置于管式炉中,通入氢气(气体速率为200sccm),以15℃/min的速率升温至250℃并保温2h。
铜箔预处理:取厚度为10μm的铜箔用丙酮清洗,去除表面油污,干燥后置于管式炉中,通入氢气(气体速率为200sccm),以15℃/min的速率升温至250℃并保温2h,用以去除铜箔表面氧化膜,得到清洁干净的表面。
复合材料制备:将上述镀铜石墨膜和铜箔交叉叠层填充于石墨模具中,一层镀铜石墨膜一层铜箔交替填充成类层压结构,在900℃、45MPa的压力下保温100min,保压时间为5h,炉体温度低于200℃时卸压,随炉冷却至室温得到复合材料。
对本实例获得的镀铜石墨膜增强铜基复合材料中石墨膜的体积分数为63%,基本如图3所示,未镀铜得石墨膜增强铜基复合材料界面有脱粘现象,镀铜制得的镀铜石墨膜增强铜基复合材料界面结合良好,界面有一定扩散作用。石墨膜增强铜基复合材料因其界面结合差,力学性能低无法满足应用需求,通过激光闪射法测得其面内的热导率为1100W/m·K,通过热膨胀仪测得热膨胀系数为9ppm/K,通过三点弯曲法测得的弯曲强度为26.6MPa,可见,本实例在热导率、热膨胀系数和弯曲强度上均明显优于其他铜基复合材料,可以有效提高复合材料的综合性能。本实例也可以进一步拓展至单层的镀铜石墨膜层压制得高体积分数的复合材料。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (8)

1.一种镀铜石墨膜增强铜基层压块体复合材料的制备方法,其特征在于:以石墨膜作为增强相,对石墨膜经过高温处理和表面粗化处理,然后在石墨膜表面用化学镀方法镀覆一层铜;将镀铜的石墨膜单层叠加或与还原气氛清洗的铜箔叠加在模具中,通过真空热压烧结,制备出高导热低膨胀石墨膜增强铜基复合材料。
2.根据权利要求1所述的制备方法,其特征在于:具体包括如下步骤:
S1,对石墨膜的表面处理,用丙酮清洗后,放在坩埚置于马弗炉中高温处理,去除表面的油污和有机物,干燥后备用;
S2,对S1所得石墨膜表面进高粗糙度处理,在盐酸的乙醇溶液中进行超声处理,使用去离子水清洗,真空干燥后备用;
S3,在S2已粗化处理后的石墨膜采用化学镀方法进行表面金属镀覆铜,处理后的镀铜石墨膜在真空干燥箱干燥,并在自然环境下放置,最后放在管式炉中,在还原气氛下清洗还原;镀铜的工艺路线为:敏化-活化-化学镀;化学镀时采用先超声处理、后浸镀相结合的方式;
S4,将基体铜箔材料超声清洗用以除去铜箔材料表面的油污,然后放置在管式炉中通入氢气氛围还原,然后去离子水冲洗,在真空干燥箱中干燥待用,最后保存在真空环境中;
S5,将S3处理后的镀铜石墨膜和S4处理后的基体铜箔材料填充到石墨模具中,一层镀铜石墨膜一层铜箔交替填充成层压结构,真空环境下热压烧结制成复合材料。
3.根据权利要求2所述的制备方法,其特征在于:
所述敏化是指在盐酸和SnCl2水溶液静置浸泡;所述活化是指在盐酸和PdCl2水溶液静置浸泡;
所述化学镀镀液的组成为:五水硫酸铜15g/L、EDTA 14.5g/L、酒石酸钾钠15g/L、36wt%HCHO 10ml/L、OP-10 4ml/L、二联吡啶0.02g/L、亚铁氰化钾0.01g/L、NaOH 20g/L;
化学镀的工艺条件:超声镀时间为1-5min,镀液pH值为12-13、镀覆温度为45-55℃、施镀时间为5-20min。
4.根据权利要求2-3中任一项所述的制备方法,其特征在于:S1中,所述石墨膜的膜厚在17-25μm;高温处理温度控制在400℃,处理时间为30-60min。
5.根据权利要求2-3中任一项所述的制备方法,其特征在于:S2中所述盐酸的醇溶液中盐酸的体积分数为10-20%,超声时间为5-10min。
6.根据权利要求2-3中任一项所述的制备方法,其特征在于:S3和S4中管式炉的温度为200-300℃,保温时间为2-3h,氢气流速为100-600sccm。
7.根据权利要求2-3中任一项所述的制备方法,其特征在于:S5中,所述复合材料中石墨膜的体积分数为40-90%;真空热压烧结的热压温度为900-1100℃;所述真空热压压力为30-80MPa;所述真空热压烧结的保温时间为30-180min,所述真空热压烧结的保压时间4-6h,在炉体温度低于200℃时卸压。
8.根据权利要求7中所述的制备方法,其特征在于:所述复合材料中石墨膜的体积分数为45-63%。
CN202010169446.2A 2020-03-12 2020-03-12 一种镀铜石墨膜增强铜基层压块体复合材料及其制备方法 Pending CN111349807A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010169446.2A CN111349807A (zh) 2020-03-12 2020-03-12 一种镀铜石墨膜增强铜基层压块体复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010169446.2A CN111349807A (zh) 2020-03-12 2020-03-12 一种镀铜石墨膜增强铜基层压块体复合材料及其制备方法

Publications (1)

Publication Number Publication Date
CN111349807A true CN111349807A (zh) 2020-06-30

Family

ID=71190689

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010169446.2A Pending CN111349807A (zh) 2020-03-12 2020-03-12 一种镀铜石墨膜增强铜基层压块体复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN111349807A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113481491A (zh) * 2021-07-09 2021-10-08 合肥工业大学 一种铜/石墨烯复合薄膜材料及其制备方法和应用
CN114055864A (zh) * 2021-11-05 2022-02-18 河北宇天材料科技有限公司 一种复合结构导热板及其制备方法和应用
CN114425647A (zh) * 2020-10-29 2022-05-03 哈尔滨工业大学(威海) 石墨膜与铜的连接方法
CN115354296A (zh) * 2022-08-24 2022-11-18 哈尔滨工业大学 一种提高石墨膜铝复合材料热导率的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103695978A (zh) * 2013-12-16 2014-04-02 天诺光电材料股份有限公司 一种镀镍石墨及其制备方法
US20180023904A1 (en) * 2014-12-18 2018-01-25 Kaneka Corporation Graphite laminates, processes for producing graphite laminates, structural object for heat transport, and rod-shaped heat-transporting object
CN110744875A (zh) * 2019-10-25 2020-02-04 北京中石伟业科技无锡有限公司 一种高导热复合石墨散热片及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103695978A (zh) * 2013-12-16 2014-04-02 天诺光电材料股份有限公司 一种镀镍石墨及其制备方法
US20180023904A1 (en) * 2014-12-18 2018-01-25 Kaneka Corporation Graphite laminates, processes for producing graphite laminates, structural object for heat transport, and rod-shaped heat-transporting object
CN110744875A (zh) * 2019-10-25 2020-02-04 北京中石伟业科技无锡有限公司 一种高导热复合石墨散热片及其制备方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114425647A (zh) * 2020-10-29 2022-05-03 哈尔滨工业大学(威海) 石墨膜与铜的连接方法
CN114425647B (zh) * 2020-10-29 2023-08-18 哈尔滨工业大学(威海) 石墨膜与铜的连接方法
CN113481491A (zh) * 2021-07-09 2021-10-08 合肥工业大学 一种铜/石墨烯复合薄膜材料及其制备方法和应用
CN113481491B (zh) * 2021-07-09 2022-05-31 合肥工业大学 一种铜/石墨烯复合薄膜材料及其制备方法和应用
CN114055864A (zh) * 2021-11-05 2022-02-18 河北宇天材料科技有限公司 一种复合结构导热板及其制备方法和应用
CN115354296A (zh) * 2022-08-24 2022-11-18 哈尔滨工业大学 一种提高石墨膜铝复合材料热导率的方法

Similar Documents

Publication Publication Date Title
CN111349807A (zh) 一种镀铜石墨膜增强铜基层压块体复合材料及其制备方法
CN108520855B (zh) 一种纳米银浆提高陶瓷覆铜板可靠性的方法
CN110241325B (zh) 一种钛金属化石墨片增强铝基复合材料及其制备方法和应用
CN109175354B (zh) 一种金刚石/W-Cu复合材料的制备方法
CN111957975B (zh) 一种石墨烯增强铜基复合材料的制备方法
CN113088836B (zh) 一种电弧喷涂制备碳纤维增强铝基复合材料的方法
CN111408869B (zh) 用于低温键合的微纳米铜颗粒焊膏及其制备方法和应用
CN102943225B (zh) 一种碳纤维布/铝合金复合材料及其制备方法
CN110322987B (zh) 一种碳纳米管增强多层铝基复合材料及其制备方法和应用
CN110872692B (zh) 一种钼银层状复合材料、其制备方法及应用
CN113421866B (zh) 用于半导体组件中具有三维结构超高垂直方向热传导系数的石墨烯散热片及其制作方法
CN114309119A (zh) 石墨烯/铜复合变形铜铬锆合金层状带材及其制备方法
CN107809885B (zh) 一种高结合力的石墨膜金属复合材料的制备方法
EP4148165B1 (en) Method for preparing heat dissipation component with high flexibility made of graphite or graphene material
CN114752868B (zh) 一种镀铜玄武岩纤维增强铜基复合材料及其制备方法与应用
CN114715884B (zh) Z轴导热增强的石墨烯导热膜的构建方法、石墨烯导热膜及其应用
CN115448300A (zh) 一种柔性石墨烯高导热膜及其制备方法
CN114032411B (zh) 一种C/Cu复合材料受电弓滑板及其制备方法
Wang et al. Thermal conducting property of SiCp-reinforced copper matrix composites by hot pressing
CN114875260A (zh) 一种金刚石复合材料的制备方法
CN115491639B (zh) 表面改性金刚石膜片及其制备方法
CN108588461B (zh) 一种聚酰亚胺基石墨-金属复合材料及其制备方法
CN116003152B (zh) 抗高温水蒸气氧化的碳化硅陶瓷连接件及其制法与应用
CN114197014B (zh) 一种实现复杂形状纯钛零件表面纳米化的方法
CN110144485B (zh) 一种Cu-Ta合金及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200630

RJ01 Rejection of invention patent application after publication