CN114425647B - 石墨膜与铜的连接方法 - Google Patents

石墨膜与铜的连接方法 Download PDF

Info

Publication number
CN114425647B
CN114425647B CN202011179000.4A CN202011179000A CN114425647B CN 114425647 B CN114425647 B CN 114425647B CN 202011179000 A CN202011179000 A CN 202011179000A CN 114425647 B CN114425647 B CN 114425647B
Authority
CN
China
Prior art keywords
graphite film
metal
copper
connection
heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011179000.4A
Other languages
English (en)
Other versions
CN114425647A (zh
Inventor
刘多
陈斌
赵可汗
李星仪
宋延宇
宋晓国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Institute of Technology Weihai
Original Assignee
Harbin Institute of Technology Weihai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Institute of Technology Weihai filed Critical Harbin Institute of Technology Weihai
Priority to CN202011179000.4A priority Critical patent/CN114425647B/zh
Publication of CN114425647A publication Critical patent/CN114425647A/zh
Application granted granted Critical
Publication of CN114425647B publication Critical patent/CN114425647B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/001Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating by extrusion or drawing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K20/00Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating
    • B23K20/002Non-electric welding by applying impact or other pressure, with or without the application of heat, e.g. cladding or plating specially adapted for particular articles or work
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Pressure Welding/Diffusion-Bonding (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明涉及石墨膜与金属连接技术领域,具体的说是一种能够实现石墨膜与金属铜的连接且有效减少焊缝宽度、降低接头处应力的固相扩散连接方法,其特征在于,对石墨膜进行表面金属化处理,在石墨膜表面形成金属中间层,金属铜与金属中间层扩散连接获得石墨膜与金属复合体,所述对石墨膜表面金属化处理是指利用磁控溅射技术在石墨膜表面形成纳米级或微米级的金属中间层;本发明将磁控溅射技术与扩散连接方法相结合,成功地将固相扩散连接运用于高导热石墨膜与铜的连接,有效减少焊缝宽度,焊缝中的梯度界面层的存在有效地减少了接头由于两侧母材热膨胀系数差异大而造成的残余应力。

Description

石墨膜与铜的连接方法
技术领域:
本发明涉及石墨膜与金属连接技术领域,具体的说是一种能够实现石墨膜与金属铜的连接且有效减少焊缝宽度、降低接头处应力的固相扩散连接方法。
背景技术:
近年来,随着AI技术的不断发展和5G数据时代的到来,人们对智能电子产品的需求与日俱增并对其智能化程度提出了越来越高的要求。这推动半导体与微电子技术快速发展,微型化、轻量化、高集成化和高频化逐渐成为了微处理器芯片的发展趋势。随着微处理器芯片的高集成化和微型化,这导致了芯片的特征尺寸在不断地减小,其单位面积上的功率不断提高,而电子设备的工作频率持续增加,其发热量持续攀升;并且电子设备中的散热空间不断被压缩,这使得电子设备的散热问题日益凸显,微处理器芯片的散热问题已经成为制约电子产品行业高速发展的桎梏。
石墨膜是一种具有优异导热性能且能连续存在的碳材料,也是近年来备受关注的一种导热散热材料。由于其导热率高到880-2000W/(m·k),柔性好,被用于便携设备如个人电脑和智能手机芯片的散热和均热,取得了良好的效果。但由于石墨膜强度低,容易出现破损,这极大地限制了其应用范围。如果将石墨膜和铜相连接,将得到具有高导热性、轻质化的构件,这将扩大石墨膜的应用范围,解决芯片的散热问题。但石墨膜和铜的焊接存在诸多难点:(1)石墨膜熔点高,不能采用熔化焊;(2)石墨膜和铜热膨胀系数差异过大,易产生裂纹;(3)石墨膜润湿性不好;(4)碳和铜既不能相互固溶,也不能形成金属间化合物。对于石墨膜与铜的连接还未有报道,因此,需要开发一种简单高效的方法来解决上述难题实现石墨膜和铜的连接。
发明内容:
本发明针对现有技术中存在的缺点和不足,提出了一种能够实现石墨膜与金属铜的连接且有效减少焊缝宽度、降低接头处应力的固相扩散连接方法。
本发明通过以下措施达到:
一种石墨膜与铜的连接方法,其特征在于,对石墨膜进行表面金属化处理,在石墨膜表面形成金属中间层,金属铜与金属中间层扩散连接获得石墨膜与金属复合体,所述对石墨膜表面金属化处理是指利用磁控溅射技术在石墨膜表面形成纳米级或微米级的金属中间层;所述金属铜与金属中间层扩散连接具体为:将金属化的石墨膜与待连接金属材料置于真空扩散连接装置内,抽真空,对连接结构加压、加热进行连接,冷却至室温。
本发明所述对石墨膜表面金属化处理是指利用磁控溅射设备,在石墨膜表面依次镀Ti、Ag、Nb三种金属层,形成Ti/Ag/Nb复合中间层。
本发明所述金属铜与金属中间层扩散连接时,扩散连接装置内气压为1.5×10-3Pa~6.5×10-3Pa;对石墨膜和铜的组合件施加的轴向压力为2MPa~5MPa;加热过程为,首先控制升温速率为10℃/min~20℃/min升温至750℃并保温10min,然后控制升温速率为5℃/min~10℃/min升温至800℃~900℃,保温30min~120min,最后再控制5℃/min~10℃/min的冷却速率降温至300℃后随炉冷却。
本发明所述金属铜与金属中间层扩散连接的加热处理优选为:首先控制升温速率为10℃/min升温至750℃保温10min,然后控制升温速率为5℃/min升温至850℃,保温30min,最后再控制5℃/min的冷却速率降温至300℃后随炉冷却。
本发明所述对石墨膜表面金属化处理具体为:将石墨膜放置磁控溅射腔体内,温度控制为室温,抽真空使腔体内部气压小于5×10-3Pa,然后通入3sccm的氩气,使气压维持在2×10-3Pa±0.5Pa,偏压调至400V,利用氩离子轰击石墨膜表面,持续10min,完成离子清洗,然后开始镀金属层,使石墨膜表面金属化,其中功率为100-400W,镀Ti时间为30-90min,镀Ag时间为20-70min,镀Nb时间为20-60min;石墨膜磁控溅射过程均在真空保护状态下。
本发明石墨膜在表面金属化处理前,先进行预处理,预处理为:将石墨膜放入丙酮溶液中超声清洗10min~20min,去除表面油污和杂质;金属铜的预处理为:将金属材料进行机械加工,得到待连接金属材料试样,再将金属材料放入丙酮溶液中超声清洗10min~20min,然后将金属材料的待焊面分别采用400#、800#、1200#、2000#的砂纸逐级打磨并抛光。
本发明与现有技术相比,通过采用磁控溅射对石墨膜表面依次溅射Ti、Ag和Nb使其金属化,利用金属化后的高导热石墨膜与金属材料发生元素扩散、反应和晶界迁移,在界面形成结合层;随后形成的结合层逐渐向体积方向发展从而实现石墨膜与金属的连接。
本发明将磁控溅射技术与扩散连接方法相结合,成功地将固相扩散连接运用于高导热石墨膜与铜的连接,有效减少焊缝宽度,焊缝中的梯度界面层的存在有效地减少了接头由于两侧母材热膨胀系数差异大而造成的残余应力。
附图说明:
附图1是本发明中石墨膜三层金属化层的示意图。
附图2是本发明中石墨膜与金属铜连接界面扫描电镜图。
具体实施方式:
下面结合附图和实施例,对本发明做进一步的说明。
本发明提出了一种石墨膜与铜的连接方法,包括:对石墨膜进行表面金属化处理,在石墨膜表面形成金属中间层,金属铜与金属中间层扩散连接获得石墨膜与金属复合体;
其中如附图1所示,所述对石墨膜表面金属化处理是指利用磁控溅射技术在石墨膜表面形成纳米级或微米级的金属中间层,首先利用氩离子完成对石墨膜表面的离子清洗,然后进行磁控溅射,在石墨膜表面依次镀Ti、Ag、Nb金属层;
所述金属铜与金属中间层扩散连接具体为:将金属化的石墨膜与待连接金属材料置于真空扩散连接装置内,抽真空,对连接结构加压、加热进行连接,冷却至室温。
本发明所述金属铜与金属中间层扩散连接时,扩散连接装置内气压为1.5×10-3Pa~6.5×10-3Pa;对石墨膜和铜的组合件施加的轴向压力为2MPa~5MPa;加热过程为,首先控制升温速率为10℃/min~20℃/min升温至750℃并保温10min,然后控制升温速率为5℃/min~10℃/min升温至800℃~900℃,保温30min~120min,最后再控制5℃/min~10℃/min的冷却速率降温至300℃后随炉冷却。
本发明所述金属铜与金属中间层扩散连接的加热处理优选为:首先控制升温速率为10℃/min升温至750℃保温10min,然后控制升温速率为5℃/min升温至850℃,保温30min,最后再控制5℃/min的冷却速率降温至300℃后随炉冷却。
本发明所述对石墨膜表面金属化处理具体为:将石墨膜放置磁控溅射腔体内,温度控制为室温,抽真空使腔体内部气压小于5×10-3Pa,然后通入3sccm的氩气,使气压维持在2×10-3Pa±0.5Pa,偏压调至400V,利用氩离子轰击石墨膜表面,持续10min,完成离子清洗,然后开始镀金属层,使石墨膜表面金属化,其中功率为100-400W,镀Ti时间为30-90min,镀Ag时间为20-70min,镀Nb时间为20-60min;石墨膜磁控溅射过程均在真空保护状态下。
本发明石墨膜在表面金属化处理前,先进行预处理,预处理为:将石墨膜放入丙酮溶液中超声清洗10min~20min,去除表面油污和杂质;金属铜的预处理为:将金属材料进行机械加工,得到待连接金属材料试样,再将金属材料放入丙酮溶液中超声清洗10min~20min,然后将金属材料的待焊面分别采用400#、800#、1200#、2000#的砂纸逐级打磨并抛光。
实施例1:
本实施例的一种高导热石墨膜与铜扩散连接方法,包括以下步骤:
步骤一、将高导热石墨膜放入丙酮溶液中超声清洗10min~20min,去除表面油污和杂质;
步骤二、将步骤一中得到的石墨膜放置磁控溅射腔体内,温度控制为室温,抽真空使腔体内部气压小于5×10-3Pa,然后通入3sccm的氩气,使气压维持在2×10-3Pa±0.5Pa,偏压调至400V,利用氩离子轰击石墨膜表面,持续10min,此过程为离子清洗,然后开始磁控溅射;镀金属层参数:功率为350W,镀Ti时间为60min,镀Ag时间为20min,镀Nb时间为20min;
步骤三、将金属铜进行机械加工,得到待连接金属材料试样,再将金属铜放入丙酮溶液中超声清洗10min~20min,然后将金属铜的待焊面分别采用400#、800#、1200#、2000#的砂纸逐级打磨并抛光;
步骤四、将步骤二中得到的金属化的高导热石墨膜与步骤三中得到的金属铜按照石墨膜-金属材料的次序装配并置于真空扩散连接装置中,对石墨膜和铜的组合件施加5MPa的轴向压力,待气压达到1.5×10-3Pa时进行加热,首先控制升温速率为10℃/min升温至750℃保温10min,然后控制升温速率为5℃/min升温至850℃,保温150min,最后再控制5℃/min的冷却速率降温至300℃后随炉冷却,即实现高导热石墨膜与金属铜的扩散连接。
运用上述方法将石墨膜与铜搭接连接,搭接面积为10mm*10mm(±0.5mm),将搭接接头进行拉剪实验,测试结果为接头受到10.60N时,接头断裂失效,断裂位置为石墨膜母材,搭接部位完整。
实施例2:
本实施例的一种高导热石墨膜与铜扩散连接方法,包括以下步骤:
步骤一、将高导热石墨膜放入丙酮溶液中超声清洗10min~20min,去除表面油污和杂质;
步骤二、将步骤一中得到的石墨膜放置磁控溅射腔体内,温度控制为室温,抽真空使腔体内部气压小于5×10-3Pa,然后通入3sccm的氩气,使气压维持在2×10-3Pa±0.5Pa,偏压调至400V,利用氩离子轰击石墨膜表面,持续10min,此过程为离子清洗,然后开始磁控溅射;镀金属层参数:功率为400W,镀Ti时间为90min,镀Ag时间为50min,镀Nb时间为60min;
步骤三、将金属铜进行机械加工,得到待连接金属材料试样,再将金属铜放入丙酮溶液中超声清洗10min~20min,然后将金属铜的待焊面分别采用400#、800#、1200#、2000#的砂纸逐级打磨并抛光;
步骤四、将步骤二中得到的金属化的高导热石墨膜与步骤三中得到的金属铜按照石墨膜-金属材料的次序装配并置于真空扩散连接装置中,对石墨膜和铜的组合件施加5MPa的轴向压力,待气压达到1.5×10-3Pa时进行加热,首先控制升温速率为10℃/min升温至750℃保温10min,然后控制升温速率为5℃/min升温至900℃,保温30min,最后再控制5℃/min的冷却速率降温至300℃后随炉冷却,即实现高导热石墨膜与金属铜的扩散连接。
运用上述方法将石墨膜与铜搭接连接,搭接面积为10mm*10mm(±0.5mm),将搭接接头进行拉剪实验,测试结果为接头受到11.67N时,接头断裂失效,断裂位置为石墨膜母材,搭接部位完整。
本发明通过在真空保护状态下对高导热石墨膜表面进行Ar离子轰击;将处理后的石墨膜进行磁控溅射,在材料待焊面依次溅射Ti层、Ag层和Nb层使其金属化;将处理后的材料按照石墨膜与金属材料的次序装配并置于真空扩散连接装置中加压、加热并保温一段时间;利用金属化后的高导热石墨膜与金属材料发生元素扩散、反应和晶界迁移,在界面形成结合层;随后形成的结合层逐渐向体积方向发展从而实现石墨膜与金属的连接;利用磁控溅射技术与扩散连接方法,使石墨膜与金属铜连接,有效减少了焊缝宽度,焊缝中梯度界面层的存在有效地减少了接头由于两侧母材热膨胀系数差异大而造成的残余应力。

Claims (4)

1.一种石墨膜与铜的连接方法,其特征在于,对石墨膜进行表面金属化处理,在石墨膜表面形成金属中间层,金属铜与金属中间层扩散连接获得石墨膜与金属复合体,所述对石墨膜表面金属化处理是指利用磁控溅射技术在石墨膜表面形成纳米级或微米级的金属中间层;所述金属铜与金属中间层扩散连接具体为:将金属化的石墨膜与待连接金属材料置于真空扩散连接装置内,抽真空,对连接结构加压、加热进行连接,冷却至室温;通过采用磁控溅射对石墨膜表面依次溅射Ti、Ag和Nb使其金属化,利用金属化后的高导热石墨膜与金属材料发生元素扩散、反应和晶界迁移,在界面形成结合层,随后形成的结合层逐渐向体积方向发展从而实现石墨膜与金属的连接;
所述对石墨膜表面金属化处理是指利用磁控溅射设备,在石墨膜表面依次镀Ti、Ag、Nb金属层;
所述金属铜与金属中间层扩散连接时,扩散连接装置内气压为1.5×10-3Pa~6.5×10- 3Pa;对石墨膜和铜的组合件施加的轴向压力为2MPa~5MPa;加热过程为,首先控制升温速率为10℃/min~20℃/min升温至750℃并保温10min,然后控制升温速率为5℃/min~10℃/min升温至800℃~900℃,保温30min~120min,最后再控制5℃/min~10℃/min的冷却速率降温至300℃后随炉冷却。
2.根据权利要求1所述的一种石墨膜与铜的连接方法,其特征在于,所述金属铜与金属中间层扩散连接的加热处理为:首先控制升温速率为10℃/min升温至750℃保温10min,然后控制升温速率为5℃/min升温至850℃,保温30min,最后再控制5℃/min的冷却速率降温至300℃后随炉冷却。
3.根据权利要求1所述的一种石墨膜与铜的连接方法,其特征在于,所述对石墨膜表面金属化处理具体为:将石墨膜放置磁控溅射腔体内,温度控制为室温,抽真空使腔体内部气压小于5×10-3Pa,然后通入3sccm的氩气,使气压维持在2×10-3Pa±0.5Pa,偏压调至400V,利用氩离子轰击石墨膜表面,持续10min,完成离子清洗,然后开始镀金属层,使石墨膜表面金属化,其中功率为100-400W,镀Ti时间为30-90min,镀Ag时间为20-70min,镀Nb时间为20-60min;石墨膜磁控溅射过程均在真空保护状态下。
4.根据权利要求1所述的一种石墨膜与铜的连接方法,其特征在于,石墨膜在表面金属化处理前,先进行预处理,预处理为:将石墨膜放入丙酮溶液中超声清洗10min~20min,去除表面油污和杂质;金属铜的预处理为:将金属材料进行机械加工,得到待连接金属材料试样,再将金属材料放入丙酮溶液中超声清洗10min~20min,然后将金属材料的待焊面分别采用400#、800#、1200#、2000#的砂纸逐级打磨并抛光。
CN202011179000.4A 2020-10-29 2020-10-29 石墨膜与铜的连接方法 Active CN114425647B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011179000.4A CN114425647B (zh) 2020-10-29 2020-10-29 石墨膜与铜的连接方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011179000.4A CN114425647B (zh) 2020-10-29 2020-10-29 石墨膜与铜的连接方法

Publications (2)

Publication Number Publication Date
CN114425647A CN114425647A (zh) 2022-05-03
CN114425647B true CN114425647B (zh) 2023-08-18

Family

ID=81309947

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011179000.4A Active CN114425647B (zh) 2020-10-29 2020-10-29 石墨膜与铜的连接方法

Country Status (1)

Country Link
CN (1) CN114425647B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115255606B (zh) * 2022-06-21 2023-07-25 北京科技大学 一种含铝中间层的铜与石墨扩散连接方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1381875A (fr) * 1964-02-06 1964-12-14 Moscovskoje Vysshee Tekhn Utch Procédé de soudage par fusion du cuivre et d'autres métaux avec le graphite
US4645121A (en) * 1985-02-15 1987-02-24 General Electric Company Composite rotary anode for X-ray tube and process for preparing the composite
US5904287A (en) * 1993-08-13 1999-05-18 Nec Corporation Method of bonding graphite to metal
JP2005095944A (ja) * 2003-09-25 2005-04-14 Sentan Zairyo:Kk 金属基板−炭素基金属複合材料構造体および該構造体の製造方法。
CN101403097A (zh) * 2008-11-12 2009-04-08 中国航空工业第一集团公司北京航空材料研究院 一种以薄膜为中间层进行高温合金真空扩散连接的方法
JP2012061519A (ja) * 2010-09-17 2012-03-29 Akane:Kk 金属材料の接合方法
CN103612008A (zh) * 2013-11-30 2014-03-05 西安科技大学 基于瞬间液相扩散连接的镁合金/铜复合板的制备方法
CN104694897A (zh) * 2015-03-31 2015-06-10 中国工程物理研究院材料研究所 一种石墨表面钛金属化方法及其制备的产品
WO2015143907A1 (zh) * 2014-03-26 2015-10-01 苏州格优碳素新材料有限公司 一种高导热石墨膜-铜复合材料的制备方法
CN106392367A (zh) * 2016-11-22 2017-02-15 江苏阳明船舶装备制造技术有限公司 一种紫铜与石墨的钎焊钎料及钎焊方法
CN106695043A (zh) * 2016-12-22 2017-05-24 核工业西南物理研究院 一种碳基材料与铜的钎焊连接方法
CN108165809A (zh) * 2018-01-11 2018-06-15 湖南科技大学 一种具有网络互穿结构的石墨-铜基复合材料及其制备方法
CN109048030A (zh) * 2018-08-20 2018-12-21 合肥工业大学 一种tzm与石墨异种材料的sps扩散焊接方法
CN111349807A (zh) * 2020-03-12 2020-06-30 苏州优越新材料有限公司 一种镀铜石墨膜增强铜基层压块体复合材料及其制备方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1381875A (fr) * 1964-02-06 1964-12-14 Moscovskoje Vysshee Tekhn Utch Procédé de soudage par fusion du cuivre et d'autres métaux avec le graphite
US4645121A (en) * 1985-02-15 1987-02-24 General Electric Company Composite rotary anode for X-ray tube and process for preparing the composite
US5904287A (en) * 1993-08-13 1999-05-18 Nec Corporation Method of bonding graphite to metal
JP2005095944A (ja) * 2003-09-25 2005-04-14 Sentan Zairyo:Kk 金属基板−炭素基金属複合材料構造体および該構造体の製造方法。
CN101403097A (zh) * 2008-11-12 2009-04-08 中国航空工业第一集团公司北京航空材料研究院 一种以薄膜为中间层进行高温合金真空扩散连接的方法
JP2012061519A (ja) * 2010-09-17 2012-03-29 Akane:Kk 金属材料の接合方法
CN103612008A (zh) * 2013-11-30 2014-03-05 西安科技大学 基于瞬间液相扩散连接的镁合金/铜复合板的制备方法
WO2015143907A1 (zh) * 2014-03-26 2015-10-01 苏州格优碳素新材料有限公司 一种高导热石墨膜-铜复合材料的制备方法
CN104694897A (zh) * 2015-03-31 2015-06-10 中国工程物理研究院材料研究所 一种石墨表面钛金属化方法及其制备的产品
CN106392367A (zh) * 2016-11-22 2017-02-15 江苏阳明船舶装备制造技术有限公司 一种紫铜与石墨的钎焊钎料及钎焊方法
CN106695043A (zh) * 2016-12-22 2017-05-24 核工业西南物理研究院 一种碳基材料与铜的钎焊连接方法
CN108165809A (zh) * 2018-01-11 2018-06-15 湖南科技大学 一种具有网络互穿结构的石墨-铜基复合材料及其制备方法
CN109048030A (zh) * 2018-08-20 2018-12-21 合肥工业大学 一种tzm与石墨异种材料的sps扩散焊接方法
CN111349807A (zh) * 2020-03-12 2020-06-30 苏州优越新材料有限公司 一种镀铜石墨膜增强铜基层压块体复合材料及其制备方法

Also Published As

Publication number Publication date
CN114425647A (zh) 2022-05-03

Similar Documents

Publication Publication Date Title
US6075701A (en) Electronic structure having an embedded pyrolytic graphite heat sink material
CN109930125B (zh) 一种金刚石-铝复合材料的磁控溅射镀膜方法
CN1299345C (zh) 静电吸盘组件和冷却系统
US6521108B1 (en) Diffusion bonded sputter target assembly and method of making same
CN108520855B (zh) 一种纳米银浆提高陶瓷覆铜板可靠性的方法
US20090045051A1 (en) Target designs and related methods for coupled target assemblies, methods of production and uses thereof
CN114425647B (zh) 石墨膜与铜的连接方法
EP4019483A1 (en) Copper/ceramic assembly, insulated circuit board, method for producing copper/ceramic assembly, and method for producing insulated circuit board
CN112122763A (zh) 一种超高纯铜系靶材与背板的焊接方法
JP5175978B2 (ja) ガドリニウム製スパッタリングターゲット及び同ターゲットの製造方法
CN110923654A (zh) 一种氮化铝陶瓷金属化基板及其制备方法
CN116751070B (zh) 一种陶瓷覆铝基板的制备方法及其制备的陶瓷覆铝基板
CN111192831A (zh) 用于高导热氮化硅陶瓷基板的表面金属化方法及其封装基板
CN108247190A (zh) 钨靶材扩散焊接结构及钨靶材扩散焊接方法
CN113385893A (zh) 一种铌铜复合件的制备方法
CN114309955A (zh) 一种陶瓷覆铜基板及其激光加工工艺
EP1654395B1 (en) Target/backing plate constructions, and methods of forming them
CN112975032B (zh) 一种碳化硅陶瓷的钎焊方法
CN113828881A (zh) 一种多晶硅靶材与铜背板的钎焊方法
EP1147241B1 (en) Diffusion bonded sputter target assembly and method of making same
KR20180113821A (ko) 동박이 적층된 그라파이트 방열 필름
JPH09234826A (ja) 金属−セラミックス複合基板及びその製造法
TWI762342B (zh) 形成接合結構的方法
CN116695079B (zh) 一种导热绝缘金刚石复合材料基板及其制备方法和应用
CN116695078B (zh) 一种导热金刚石复合材料基板及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant