WO2023123580A1 - 一种氧化石墨烯改性苯丙皮克林乳液以及一种复合乳液及其制备方法和应用 - Google Patents

一种氧化石墨烯改性苯丙皮克林乳液以及一种复合乳液及其制备方法和应用 Download PDF

Info

Publication number
WO2023123580A1
WO2023123580A1 PCT/CN2022/072648 CN2022072648W WO2023123580A1 WO 2023123580 A1 WO2023123580 A1 WO 2023123580A1 CN 2022072648 W CN2022072648 W CN 2022072648W WO 2023123580 A1 WO2023123580 A1 WO 2023123580A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphene oxide
emulsion
styrene
acrylic
preparation
Prior art date
Application number
PCT/CN2022/072648
Other languages
English (en)
French (fr)
Inventor
侯东帅
吴聪
尹兵
李绍纯
王鑫鹏
王攀
Original Assignee
青岛理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛理工大学 filed Critical 青岛理工大学
Priority to JP2023536388A priority Critical patent/JP2024504563A/ja
Publication of WO2023123580A1 publication Critical patent/WO2023123580A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/0028Aspects relating to the mixing step of the mortar preparation
    • C04B40/0039Premixtures of ingredients
    • C04B40/0046Premixtures of ingredients characterised by their processing, e.g. sequence of mixing the ingredients when preparing the premixtures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/44Polymerisation in the presence of compounding ingredients, e.g. plasticisers, dyestuffs, fillers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1802C2-(meth)acrylate, e.g. ethyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/16Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
    • C08F220/18Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
    • C08F220/1804C4-(meth)acrylate, e.g. butyl (meth)acrylate, isobutyl (meth)acrylate or tert-butyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/042Graphene or derivatives, e.g. graphene oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D151/00Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
    • C09D151/003Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/08Anti-corrosive paints
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic

Definitions

  • the invention relates to the technical field of protective coatings, in particular to a graphene oxide modified phenylpropanoid Pickering emulsion, a composite emulsion and a preparation method and application thereof.
  • Concrete is the most widely used cement-based engineering building material, and the durability of cement-based materials directly determines the safety and reliability of concrete structures.
  • the erosion of the cement matrix by chloride ions is the main reason for the deterioration of the performance of concrete structures.
  • Styrene-acrylic (styrene-acrylate) and silane are the two most commonly used polymeric anti-corrosion coatings.
  • Styrene-acrylic coatings have good chemical corrosion resistance and high weather resistance, and can form a stable waterproof and anti-erosion protective layer on the surface of cement-based materials; silane coatings have excellent hydrophobicity, good leveling, and strong permeability. types of cement-based materials.
  • Styrene-acrylic and silane are prepared into a composite anti-corrosion emulsion with a core-shell structure, which can give full play to the protective performance of the styrene-acrylic component and the hydrophobic effect of the siloxane component, and make up for the weak bonding performance of the styrene-acrylic coating and the anti-aging performance of the silane coating. poor defect.
  • Graphene oxide as a two-dimensional carbon nanomaterial with rich active oxygen-containing functional groups on the surface, can be covalently bonded to various polymer molecules to play a role in chemical modification and performance regulation of polymer coatings.
  • Graphene oxide can construct an ideal molecular configuration for polymer molecules through in-situ polymerization, sol-gel, physical blending, intercalation, etc., and enhance the coordination between the components in the composite coating. performance.
  • the graphene oxide sheets are mostly in a disordered and disordered spatial state, which does not have a good modification effect on the polymer components, and the graphene oxide The sheets are very easy to aggregate, which will adversely affect the stability and film-forming properties of the composite coating.
  • the present invention provides a graphene oxide modified phenylpropanoid Pickering emulsion and a composite emulsion as well as its preparation method and application.
  • graphene oxide modified phenylpropanoid Pickering emulsion provided by the present invention, graphene oxide is distributed in an orderly manner and is not easy to agglomerate, and the composite emulsion with core-shell structure prepared by it has excellent stability, film-forming property and water resistance , corrosion resistance, ion penetration resistance, aging resistance and mechanical properties, the composite emulsion of the present invention is used for surface treatment of the cement matrix, which can significantly improve the durability of the concrete structure.
  • a kind of preparation method of graphene oxide modified phenylpropanoid Pickering emulsion comprises the following steps:
  • the graphene oxide buffer solution is mixed with the styrene-acrylic monomer mixture for the first ultrasonic dispersion, and the obtained emulsion is mixed with the silane coupling agent for the second ultrasonic dispersion to obtain a graphene oxide modified styrene-acrylic Pickering emulsion;
  • the components of the graphene oxide buffer include graphene oxide, water and a pH value buffer; the components of the styrene-acrylic monomer mixture include water, an initiator, styrene and an acrylate monomer.
  • the mass fraction of the initiator in the styrene-acrylic monomer mixture is 0.3%-0.7%, the mass fraction of styrene is 10%-30%, and the mass fraction of the acrylate monomer is 60%-90%.
  • the initiator in the styrene-acrylic monomer mixture includes one or more of persulfate and azo initiators.
  • the mass of graphene oxide in the graphene oxide buffer is 1% to 10% of the mass of the styrene-acrylic monomer mixture, and the mass of water in the graphene oxide buffer is 1% to 10% of the mass of the styrene-acrylic monomer mixture. 60% to 150% of mass;
  • the pH value of the graphene oxide buffer solution is 7-8.5.
  • the pH buffer includes one or more of sodium bicarbonate, sodium carbonate, sodium hydrogen phosphate, barbiturate buffer, tris and glycerol phosphate buffer.
  • the temperature of the first ultrasonic dispersion is 30-60°C, and the time is 1-3h;
  • the temperature of the second ultrasonic dispersion is 55-75° C., and the time is 0.5-2 hours.
  • the present invention also provides the graphene oxide-modified phenylpropanoid Pickering emulsion prepared by the preparation method described in the above scheme, which has a graphene oxide-modified phenylpropanoid Pickering structure, including a styrene-acrylic core and wrapped on the outside of the styrene-acrylic core. Graphene oxide at the interface, and the graphene oxide is coupled together by a coupling agent.
  • the present invention also provides a preparation method of graphene oxide modified styrene-acrylic-siloxane Pickering composite emulsion, comprising the following steps:
  • the shell phase emulsion, the graphene oxide modified phenylpropanoid Pickering emulsion described in the above scheme and the initiator aqueous solution are mixed and polymerized to obtain a graphene oxide modified phenylpropanoid-siloxane Pickering composite emulsion;
  • the components of the shell phase emulsion include silane monomers, acrylate functional monomers, emulsifiers and water.
  • the mass fraction of the silane monomer in the shell phase emulsion is 20% to 50%; the mass of the acrylate functional monomer is 10% to 50% of the mass of the silane monomer, and the mass of the emulsifier is 2%-5% of the total mass of silane monomers and acrylate functional monomers.
  • the preparation method of the shell phase emulsion comprises: mixing silane monomers, acrylate functional monomers, emulsifiers and water for low-temperature high-speed stirring to obtain shell phase emulsions; the temperature of the low-temperature high-speed stirring is 30-50 °C, the speed is 800 ⁇ 1200r/min.
  • the silane monomer is a long-chain hydrocarbyl silane, and the number of carbon atoms in the hydrocarbyl group in the long-chain hydrocarbyl silane is 4-18.
  • the long-chain hydrocarbyl silane is n-butyltriethoxysilane, n-octyltrimethoxysilane, n-octyltriethoxysilane, dodecyltrimethoxysilane and dodecyltrimethoxysilane One or more of ethoxysilanes.
  • the acrylate functional monomer is hydroxyethyl acrylate and/or hydroxypropyl acrylate.
  • the emulsifier is one or more of OP-10, Span 80, sodium lauryl sulfate, sodium dodecylsulfonate and sodium dodecylbenzenesulfonate.
  • the mass ratio of the graphene oxide modified phenylpropanoid Pickering emulsion to the shell phase emulsion is 1:(1-5).
  • the mass of the initiator in the aqueous initiator solution is 0.2% to 0.5% of the mass of the shell phase emulsion.
  • the polymerization reaction is carried out under high-temperature and low-speed stirring conditions; the temperature of the high-temperature and low-speed stirring is 80-85° C., the rotation speed is 100-300 r/min, and the time is 1-3 hours.
  • the polymerization reaction after the polymerization reaction, it also includes repeatedly performing low-speed stirring and ultrasonic dispersion on the obtained emulsion, one low-speed stirring and one ultrasonic dispersion is recorded as one repetition, and the number of repetitions is 3 to 6 times.
  • the present invention also provides the graphene oxide modified styrene-acrylic-siloxane Pickering composite emulsion prepared by the preparation method described in the above scheme, the composite emulsion has a core-shell structure, including a shell structure, a core structure and a connecting shell structure and an intermediate transition layer with a core structure, wherein the shell structure is a siloxane polymer, the core structure is a graphene oxide modified phenylpropanoid Pickering structure, and the intermediate transition layer is a polymer formed from an acrylate functional monomer.
  • the present invention also provides the application of the graphene oxide modified styrene-acrylic-siloxane Pickering composite emulsion described in the above scheme in the anticorrosion of cement-based materials.
  • the invention provides a method for preparing a graphene oxide modified styrene-acrylic Pickering emulsion, comprising the following steps: mixing the graphene oxide buffer solution and the styrene-acrylic monomer mixture for the first ultrasonic dispersion, and mixing the obtained emulsion with silane
  • the coupling agent is mixed and carried out the second ultrasonic dispersion to obtain graphene oxide modified phenylpropanoid Pickering emulsion
  • the components of the graphene oxide buffer include graphene oxide, water and pH buffering agent
  • the components of the liquid mixture include water, initiator, styrene and acrylate monomers.
  • the graphene oxide buffer solution and the styrene-acrylic monomer mixture are mixed for the first ultrasonic dispersion.
  • the styrene-acrylic monomer is polymerized to form a styrene-acrylic nucleus, and graphene oxide is attached to the styrene-acrylic monomer at the same time. core interface, and then add a silane coupling agent for the second ultrasonic dispersion, in the second ultrasonic dispersion process, the graphene oxide is coupled together under the action of the silane coupling agent, so that the graphene oxide is formed at the styrene-acrylic core interface.
  • the graphene oxide modified benzene of the present invention can be modified by adding shell phase emulsion.
  • the propylene pickerine emulsion was further prepared into a composite emulsion with a core-shell structure, and the graphene oxide at the styrene-acrylic core interface could maintain a good dispersion state no matter in the subsequent composite emulsion synthesis process or after the composite emulsion film formation .
  • the present invention also provides a preparation method of graphene oxide modified styrene-acrylic-siloxane Pickering composite emulsion, comprising the following steps: shell phase emulsion, graphene oxide-modified styrene-acrylic Pickering described in the above scheme Lin emulsion and initiator aqueous solution are mixed to carry out polymerization reaction, obtain graphene oxide modified styrene-acrylic-siloxane Pickering composite emulsion;
  • the components of the shell phase emulsion include silane monomer, acrylate functional monomer, emulsifier and water.
  • the shell phase emulsion is added to the graphene oxide modified phenylpropanoid Pickering emulsion for polymerization reaction to form a composite emulsion with a core-shell structure.
  • the graphene oxide modified phenylpropanoid Pickering emulsion The styrene-acrylic core part that is not completely wrapped by graphene oxide sheets will be grafted with the shell phase, and the cross-linking between the core phase and the shell phase will further enhance the steric stability of graphene oxide, while the presence of graphene oxide It can also fully connect the styrene-acrylic core structure and the siloxane shell structure, improve the molecular configuration of the siloxane component, and enhance the ability to regulate the chemical activity of the siloxane molecule.
  • the graphene oxide modified styrene-acrylic-siloxane Pickering composite emulsion prepared by the present invention has excellent film-forming properties, and the principle is as follows: the graphene oxide sheet contains both hydrophilic groups and hydrophobic groups, which can effectively replace The emulsifier molecules in the composite emulsion become a stable transition layer between styrene-acrylic molecular micelles and solvent water molecules, thereby reducing the adverse effects of residual emulsifier components on the film-forming process.
  • graphene oxide enhances the bonding performance and synergistic performance between the styrene-acrylic component and the siloxane component, which is beneficial to the homogeneity and stability of the coating system during the film formation process.
  • the graphene oxide modified styrene-acrylic-siloxane Pickering composite emulsion prepared by the present invention has excellent hydrophobicity and water-repellent performance, and the principle is as follows: graphene oxide can improve the molecular configuration of siloxane in the shell structure, making silicon oxide The alkane molecules are orderly and tightly grafted on the core phase of the composite emulsion, and the hydrophobic alkane chains in the siloxane molecules are fully extended and regularly arranged, and the dispersion and stability of the styrene-acrylic core structure can also be enhanced.
  • the water resistance of the styrene-acrylic component and the hydrophobic property of the siloxane component are fully improved, and the hydrophobicity and stability of the film are improved.
  • graphene oxide sheets can not only deposit on the surface of the cement matrix to form an orderly distributed rough surface, but also promote the secondary hydration reaction between siloxane molecules and concrete hydration products, inhibiting the external Moisture enters the cracks and capillary channels inside the concrete.
  • the graphene oxide modified styrene-acrylic-siloxane Pickering composite emulsion coating prepared by the present invention has excellent corrosion resistance to chloride salts and sulfates, and the principle is as follows: graphene oxide can improve the crosslinking degree of silane emulsion, weaken Diffusion and transmission of chloride and sulfate ions on the concrete surface and inside capillary channels. The presence of graphene oxide reinforcement enhances the cross-linking and bonding between styrene-acrylic micelles and siloxane components, and improves the shielding performance of the composite coating against aggressive ions. Graphene oxide also has anti-erosion properties. The blocking effect of type ions can hinder and prolong the transmission path of eroding ions. In addition, graphene oxide can further improve the electrochemical performance of the emulsion and enhance the chemical corrosion resistance of the coating.
  • the graphene oxide modified styrene-acrylic-siloxane Pickering composite emulsion coating prepared by the present invention has excellent anti-aging performance. , graphene oxide will continue to deposit and adhere to the surface of the substrate to form a complete heat-resistant and radiation-resistant reflective layer. At the same time, graphene oxide will promote the formation of strong cross-linking and bonding between styrene-acrylic molecules and siloxane molecules, and significantly increase the cross-linking density of the transition layer in the Pickering composite emulsion, which is beneficial to the composite coating’s external protection. Energy absorption and dissipation, thereby improving the aging resistance of the coating.
  • Fig. 1 is the apparent form optical photograph of embodiment 1 ⁇ 4 and comparative example 1 ⁇ 3 gained composite emulsion
  • Fig. 2 is the metallographic microscope scanning figure of embodiment 1 ⁇ 4 and comparative example 1 ⁇ 3 gained composite emulsion;
  • Fig. 3 is the test diagram of the static contact angle of the coating formed on the surface of the cement test piece by the composite emulsion obtained in Examples 1-4 and Comparative Examples 1-3.
  • Fig. 4 is the static capillary water absorption curve diagram of the concrete specimen after surface treatment by adopting the composite emulsion obtained in Examples 1 to 4 and Comparative Examples 1 to 3;
  • Fig. 5 is the calculation fitting diagram of the concrete chloride ion erosion rate after surface treatment by adopting the composite emulsion obtained in Examples 1 to 4 and Comparative Examples 1 to 3;
  • Fig. 6 is the calculation fitting diagram of the concrete sulfate ion erosion rate after surface treatment by adopting the composite emulsion obtained in Examples 1 to 4 and Comparative Examples 1 to 3;
  • Fig. 7 is the SEM scanning electron microscope test figure of the latex film that embodiment 1 ⁇ 2 gained composite emulsion forms
  • Fig. 8 is the SEM scanning electron microscope test figure of the latex film that embodiment 3 ⁇ 4 gained composite emulsion forms
  • Fig. 9 is the SEM scanning electron microscope test figure of the emulsion film that comparative example 1 ⁇ 2 gained emulsion forms;
  • Fig. 10 is the SEM scanning electron microscope test figure of the emulsion film that comparative example 3 gained emulsion forms
  • Fig. 11 is the AFM atomic force microscope test figure of the latex film that embodiment 1 ⁇ 2 gained composite emulsion forms;
  • Fig. 12 is the AFM atomic force microscope test figure of the latex film that embodiment 3 ⁇ 4 gained composite emulsion forms;
  • Fig. 13 is the AFM atomic force microscope test figure of the latex film that the obtained emulsion of comparative examples 1 ⁇ 2 forms;
  • the invention provides a kind of preparation method of graphene oxide modified phenylpropanoid Pickering emulsion, comprising the following steps:
  • the graphene oxide buffer solution is mixed with the styrene-acrylic monomer mixture for the first ultrasonic dispersion, and the obtained emulsion is mixed with the silane coupling agent for the second ultrasonic dispersion to obtain a graphene oxide modified styrene-acrylic Pickering emulsion;
  • the components of the graphene oxide buffer include graphene oxide, water and a pH value buffer; the components of the styrene-acrylic monomer mixture include water, an initiator, styrene and an acrylate monomer.
  • the mass fraction of the initiator in the styrene-acrylic monomer mixture is preferably 0.3% to 0.7%, more preferably 0.4% to 0.6%, and the mass fraction of styrene is preferably 10% to 30%, more preferably It is preferably 15% to 25%, and the mass fraction of acrylate monomer is preferably 60% to 90%;
  • Graphene sheets have high steric stability.
  • the initiator preferably includes one or more of persulfate and azo initiators;
  • the persulfate preferably includes one of sodium persulfate, ammonium persulfate and potassium persulfate or several;
  • the azo initiator preferably includes azobisisobutyronitrile and/or dimethyl azobisisobutyrate;
  • the acrylate monomer preferably includes methyl acrylate, methyl methacrylate, One or more of ethyl acrylate, butyl acrylate, butyl methacrylate, acrylic acid and methacrylic acid;
  • the water is preferably deionized water.
  • the initiator it is preferred to first add the initiator to deionized water to obtain an initiator solution, then mix styrene and acrylate monomers to obtain a mixed monomer, and then add the mixed monomer to the initiator In the aqueous solution, a mixture of styrene-acrylic monomers was obtained.
  • the graphene oxide buffer solution is preferably prepared by the following method: adding graphene oxide into deionized water for ultrasonic dispersion to obtain a graphene oxide aqueous solution, and then adding a pH buffer to the graphene oxide aqueous solution agent to obtain a graphene oxide buffer solution; the time for the ultrasonic dispersion is preferably 1 to 4 hours.
  • the pH buffer preferably includes one or more of sodium bicarbonate, sodium carbonate, sodium hydrogen phosphate, barbiturate buffer, tris and glycerol phosphate buffer.
  • the quality of graphene oxide in the graphene oxide buffer is preferably 1% to 10% of the mass of the styrene-acrylic monomer mixture, more preferably 3% to 8%.
  • the quality of water in the liquid is preferably 60% to 150% of the mass of the styrene-acrylic monomer mixture, more preferably 80% to 120%;
  • the pH value of the graphene oxide buffer is preferably 7 to 8.5, and the pH value
  • the amount of the buffering agent is based on adjusting the pH value of the graphene oxide buffer solution to the above-mentioned range.
  • the initiator will reduce the pH value of the system when generating free radicals.
  • the present invention uses a pH buffer to adjust the graphene oxide buffer to weak alkalinity, which can make the subsequent addition polymerization reaction process The medium emulsion can remain neutral, which is beneficial to the reaction.
  • the present invention mixes the graphene oxide buffer solution and the styrene-acrylic monomer mixed solution for the first ultrasonic dispersion, and mixes the obtained dispersion with a silane coupling agent for The second ultrasonic dispersion is to obtain the graphene oxide modified phenylpropanoid Pickering emulsion.
  • the styrene-acrylic monomer mixture is slowly added to the graphene oxide buffer, and then the first ultrasonic dispersion is performed; the temperature of the first ultrasonic dispersion is preferably 30-60°C, and the time is preferably 1-60°C.
  • styrene and acrylate monomers are polymerized to form styrene-acrylic polymers (ie, styrene-acrylic cores), while graphene oxide is attached to the surface of the styrene-acrylic cores.
  • the silane coupling agent is preferably added dropwise to the obtained emulsion, and then the second ultrasonic dispersion is performed.
  • the silane coupling agent is preferably one or more of KH-550, KH-560 and KH-570; the quality of the silane coupling agent is preferably oxidized in the emulsion obtained by the first ultrasonic dispersion 2% ⁇ 20% of graphene mass; the temperature of the second ultrasonic dispersion is preferably 55 ⁇ 75°C, more preferably 60 ⁇ 70°C, the time of the second ultrasonic dispersion is preferably 0.5 ⁇ 2h, more preferably 1 ⁇ 1.5h.
  • the graphene oxide is coupled together under the action of the silane coupling agent, so that the graphene oxide is "stitched" at the interface of the styrene-acrylic nucleus, thus giving the graphene oxide a better dispersion effect.
  • the present invention also provides the graphene oxide modified phenylpropanoid Pickering emulsion prepared by the preparation method described in the above scheme, and the graphene oxide modified phenylpropyl Pickering emulsion has graphene oxide modified phenylpropanoid Pickering emulsion
  • the structure includes a styrene-acrylic core and graphene oxide wrapped at the outer interface of the styrene-acrylic core, and the graphene oxide is coupled together by a coupling agent.
  • graphene oxide has good dispersion and is not easy to agglomerate, and can be used to prepare a composite emulsion with a core-shell structure, no matter in the subsequent composite emulsion synthesis process, or After the composite emulsion film was formed, the graphene oxide at the styrene-acrylic core interface could maintain a good dispersion state.
  • the present invention also provides a preparation method of graphene oxide modified styrene-acrylic-siloxane Pickering composite emulsion, comprising the following steps:
  • the shell phase emulsion, the graphene oxide modified phenylpropanoid Pickering emulsion described in the above scheme and the initiator aqueous solution are mixed and polymerized to obtain a graphene oxide modified phenylpropanoid-siloxane Pickering composite emulsion;
  • the components of the shell phase emulsion include silane monomers, acrylate functional monomers, emulsifiers and water.
  • the silane monomer is preferably a long-chain hydrocarbyl silane, and the number of carbon atoms in the hydrocarbyl group in the long-chain hydrocarbyl silane is preferably 4 to 18.
  • the long-chain hydrocarbyl silane is preferably n-butyl tri One or more of ethoxysilane, n-octyltrimethoxysilane, n-octyltriethoxysilane, dodecyltrimethoxysilane and dodecyltriethoxysilane;
  • the The acrylate functional monomer is preferably hydroxyethyl acrylate and/or hydroxypropyl acrylate; in the present invention, the acrylate functional monomer is used to provide crosslinking points, promote the polymerization reaction between silane molecules and properly increase the emulsion The viscosity;
  • the emulsifier is preferably one or more of OP-10, Span 80, sodium lauryl sulf
  • the mass fraction of the silane monomer in the shell phase emulsion is preferably 20% to 50%; the mass of the acrylate functional monomer is preferably 10% to 50% of the mass of the silane monomer, more preferably 15%-40%; the amount of the emulsifier is preferably 2%-5% of the total mass of the silane monomer and the acrylate functional monomer, more preferably 3%-4%.
  • the preparation method of the shell phase emulsion is preferably: mixing silane monomers, acrylate functional monomers, emulsifiers and water and stirring at low temperature and high speed to obtain shell phase emulsions; in specific embodiments of the present invention , preferably adding the emulsifier into water first to obtain an aqueous emulsifier solution, and then adding silane monomers and acrylate functional monomers into the aqueous emulsifier solution for low-temperature and high-speed stirring.
  • the temperature of the low-temperature high-speed stirring is preferably 30-50°C, more preferably 35-45°C, and the rotation speed of the low-temperature high-speed stirring is preferably 800-1200r/min, more preferably 900-1000r/min .
  • the invention prepares the shell phase emulsion under the condition of low temperature and high speed stirring, which can pre-polymerize the siloxane molecules to form a molecular network structure with low molecular weight, which is beneficial to the crosslinking effect of the siloxane molecular layer on the styrene-acrylic core structure and the surface hydrophobic layer improved chemical stability.
  • the present invention mixes the shell phase emulsion, the graphene oxide modified phenylpropanoid Pickering emulsion and the aqueous initiator solution to carry out a polymerization reaction to obtain the graphene oxide modified phenylpropanoid-siloxane Pickering Complex emulsion.
  • the mass ratio of the graphene oxide modified phenylpropanoid Pickering emulsion and the shell phase emulsion is preferably 1:(1 ⁇ 5), more preferably 1:(2 ⁇ 4); the initiator
  • the quality of the initiator in the aqueous solution is preferably 0.2% to 0.5% of the quality of the shell phase emulsion, more preferably 0.3% to 0.4%; the type of the initiator in the aqueous solution of the initiator is consistent with the above-mentioned scheme, and will not be repeated here;
  • the polymerization reaction is preferably carried out under high temperature and low speed stirring conditions; the temperature of the high temperature and low speed stirring is preferably 80 to 85°C, more preferably 82 to 83°C, and the rotation speed of the high temperature and low speed stirring is preferably 100 to 300r/min, more preferably It is preferably 150-250 r/min, and the time for the low-temperature high-speed stirring is preferably 1-3 hours, more preferably 1.5-2.5 hours.
  • the polymerization reaction is preferably carried out under high temperature and low speed conditions, which can avoid agglomeration, gel, etc. during the polymerization process.
  • the present invention preferably keeps the obtained reaction liquid for 2 hours to ensure complete reaction, and then slowly cools down to 30°C to obtain a graphene oxide-modified styrene-acrylic-siloxane Pickering composite emulsion.
  • the silane monomer and the acrylate functional monomer polymerize to form a shell, which is coated on the surface of the phenylpropanoid Pickering structure, while the phenylpropanoid Pickering structure is not completely covered by graphene oxide sheets Parts of the shell structure are grafted together to enhance the stability of the composite emulsion.
  • the present invention preferably also includes repeatedly performing low-speed stirring and ultrasonic dispersion on the obtained emulsion, and performing one low-speed stirring and one ultrasonic dispersion is recorded as one repetition, and the number of repetitions is preferably 3 to 6 times, more preferably 4 to 5 times; the rotation speed of the low-speed stirring is preferably 100-200r/min, more preferably 130-150r/min, the time of each low-speed stirring is preferably 5-60min, and the time of each ultrasonic dispersion is preferably 20-60min , more preferably 30 to 50 minutes.
  • the invention can further improve the dispersibility of the composite emulsion through repeated low-speed stirring and ultrasonic dispersion, and further increase the graft crosslinking ratio between the shell structure and the graphene oxide sheet in the composite emulsion.
  • the present invention also provides the graphene oxide modified styrene-acrylic-siloxane Pickering composite emulsion prepared by the preparation method described in the above scheme, the composite emulsion has a core-shell structure, including a shell structure, a core structure and a connecting shell structure and an intermediate transition layer with a core structure, wherein the shell structure is a siloxane polymer, the core structure is a graphene oxide modified phenylpropanoid Pickering structure, and the intermediate transition layer is a polymer formed from an acrylate functional monomer.
  • the graphene oxide in the composite emulsion provided by the invention has good dispersibility and is not easy to agglomerate, and the obtained composite emulsion has excellent stability, film-forming property, water resistance, corrosion resistance, ion permeability resistance, aging resistance and mechanical properties.
  • the present invention also provides the application of the graphene oxide modified styrene-acrylic-siloxane Pickering composite emulsion described in the above scheme in the anticorrosion of cement-based materials.
  • the cement-based material is preferably a concrete building structure; the present invention has no special requirements for the specific method of the application, and it can be applied by a method well known to those skilled in the art.
  • the composite emulsion of the present invention can be used Coated on the surface of the cement matrix to form an anti-corrosion coating to improve the durability of the cement-based material; in a specific embodiment of the present invention, the amount of the composite emulsion is preferably 300-1000g/m 2 , more preferably 400- 600g/m 2 .
  • step 7 Repeat low-speed stirring and ultrasonic dispersion for 3 times to the emulsion obtained in step 7), wherein the rotating speed of low-speed stirring is 100r/min, the time of each low-speed stirring is 1h, and the time of each ultrasonic dispersion is 40min to obtain graphene oxide
  • the styrene-acrylic-siloxane Pickering composite emulsion with a content of 2%, the content of the graphene oxide is calculated by the mass fraction of the graphene oxide in the styrene-acrylic monomer mixture in step 4).
  • step 7 Repeat low-speed stirring and ultrasonic dispersion for 3 times to the emulsion obtained in step 7), wherein the rotating speed of low-speed stirring is 100r/min, the time of each low-speed stirring is 1h, and the time of each ultrasonic dispersion is 40min to obtain graphene oxide
  • the styrene-acrylic-siloxane Pickering composite emulsion with a content of 4%, the content of the graphene oxide is calculated by the mass fraction of the graphene oxide in the styrene-acrylic monomer mixture in step 4).
  • step 7 Repeat low-speed stirring and ultrasonic dispersion for 3 times on the emulsion prepared in step 7), wherein the rotating speed of low-speed stirring is 100r/min, the time of each low-speed stirring is 1h, and the time of each ultrasonic dispersion is 40min, and the oxidation
  • step 7 Repeat low-speed stirring and ultrasonic dispersion for 3 times on the emulsion prepared in step 7), wherein the rotating speed of low-speed stirring is 100r/min, the time of each low-speed stirring is 1h, and the time of each ultrasonic dispersion is 40min, and the oxidation
  • Step (8) is omitted.
  • Example 2 The remaining conditions are the same as in Example 1, and finally a styrene-acrylic-siloxane composite core-shell emulsion is obtained.
  • This comparative example adopts a method similar to that of Example 1 to prepare graphene oxide modified copolymer emulsion, the difference is that step 4) and step 5) are omitted;
  • Example 2 Because the final emulsion obtained in Comparative Example 2 has no core-shell structure, the emulsion prepared according to step 6) of Example 1 is recorded as a silicone pre-emulsion;
  • Step 7) is changed to: mix graphene oxide buffer solution, styrene-acrylic monomer mixed solution and siloxane pre-emulsion (the consumption and embodiment of graphene oxide buffer solution, styrene-acrylic monomer mixed solution and siloxane pre-emulsion 1) together, add 5g of initiator aqueous solution, stir at 100r/min for 2h at 83°C and keep warm for 2h, then slowly lower the temperature to 30°C;
  • Example 2 a modified styrene-acrylic-siloxane copolymer emulsion with a graphene oxide content of 2% was obtained.
  • This comparative example adopts a method similar to comparative example 2 to prepare graphene oxide modified styrene-acrylic-siloxane copolymer emulsion, the difference is that the graphene oxide content is 8%, that is, in step 7) the content of graphene oxide The dosage is 8% of the mass of the styrene-acrylic monomer mixture, and finally a modified styrene-acrylic-siloxane copolymer emulsion with a graphene oxide content of 8% is obtained.
  • Fig. 1 is the optical photograph of the appearance of the composite emulsion obtained in Examples 1-4 and Comparative Examples 1-3. According to Figure 1, it can be seen that the graphene oxide modified styrene-acrylic-siloxane Pickering composite emulsion prepared in Examples 1-4 has good homogeneity and stability, and the emulsion does not appear flocculation, delamination or After segregation, the graphene oxide sheets on the outer surface of the Pickering structure did not agglomerate, while the color of the composite emulsion prepared in Comparative Examples 1-3 was not uniform, and there was a slight agglomeration phenomenon.
  • Fig. 2 is a metallographic microscope scanning picture of the composite emulsion obtained in Examples 1-4 and Comparative Examples 1-3. According to Figure 2, it can be seen that the latex particle size of the composite emulsion obtained in Examples 1 to 4 is smaller than that of the core-shell emulsion and the copolymer emulsion in Comparative Examples 1 to 3, and the particle size of the composite emulsion obtained in Examples 1 to 4 The particle size distribution of latex particles in the latex particles obtained in Comparative Examples 1 to 3 is relatively dispersed. The smaller the particle size of the emulsion, the larger the specific surface area of the latex particles, and the higher the content of graphene oxide sheets wrapped and adsorbed in the Pickering structure. Therefore, the method for preparing the Pickering emulsion proposed by the present invention can significantly improve the utilization of graphene oxide. rate and dispersion.
  • the surface drying time and actual drying time of the composite emulsion coating are determined by the finger touch method. Put the emulsion into a weighing bottle, dry it in an oven at 105°C for 3 hours, then cool it to room temperature in a desiccator, weigh the mass of the emulsion before and after drying, and record them as m 1 and m 2 respectively. Filter the emulsion with a 200-mesh copper mesh, collect all the gels and wash them with deionized water, dry the gels in the same way, and record the mass of the dried gels as m 3 .
  • m non is the mass of non-volatile matter (that is, the total mass of other raw materials except solvent water)
  • m M is the mass of all organic monomers in raw materials
  • p SE is the mass fraction of silane monomer raw materials in the composite emulsion.
  • Example 1 Example 2
  • Example 3 Example 4 Comparative example 1 Comparative example 2 Comparative example 3
  • Surface dry time 6 hours 6 hours 6 hours 8 hours 6 hours 6 hours 8 hours hard work time 12 hours 12 hours 14h 16h 12 hours 14h 14h Solid content 42.8% 45.7% 47.9% 47.6 49.7% 43.3% 44.1%
  • Gel rate 1.1% 1.0% 0.7% 0.9% 1.4% 1.6% 1.5% monomer conversion 90.3% 89.1% 88.3% 84.2% 86.7% 86.7% 87.2% Grafting rate 87.8% 88.5% 89.6% 89.7% 86.6% 84.3% 85.8%
  • the surface dry time and hard drying time of the composite emulsions obtained in Examples 1-4 are not significantly different from those of the emulsions in Comparative Examples 1-3.
  • the graphene oxide modified styrene-acrylic-siloxane Pickering composite emulsion prepared by the present invention has higher solid content and lower gel ratio.
  • the emulsions of Examples 1 to 4 have higher monomer conversion rate and grafting rate, indicating that the graphene oxide modified Pickering structure proposed by the present invention can significantly promote the styrene-acrylic core structure and the interior of the siloxane shell structure. The polymerization reaction, and enhance the cross-linking and bonding between the styrene-acrylic component, the graphene oxide interface and the siloxane component.
  • the composite emulsion prepared in Examples 1-4 and Comparative Examples 1-3 was used as the test object, and the following test was carried out: using deionized water as a solvent, the emulsion was diluted to a concentration of 2%, and the dilution stability of the emulsion was observed;
  • the emulsion was left standing at 0°C for 18 hours, and the low-temperature stability of the emulsion was observed.
  • Example 1 Example 2
  • Example 3 Example 4 Comparative example 1 Comparative example 2 Comparative example 3 centrifugal stability better very good very good better better poor poor dilution stability very good very good very good very good very good better better Ca 2+ stability very good very good very good better very good poor Difference low temperature stability better better better better poor Difference Difference high temperature stability very good very good very good very good very good very good better poor
  • the average particle diameters of the composite emulsions obtained in Examples 1 to 4 are all less than 250nm, but are larger than the average particle diameters of the core-shell emulsions and copolymer emulsions in Comparative Examples 1 to 3, which meet the basic requirements of permeable protective emulsions. Require.
  • the PDI homogeneity index of the composite emulsion obtained in Examples 1 to 4 is all less than 0.35, but still higher than that of Comparative Examples 1 to 3, which also reflects that the molecular weight distribution of the composite emulsion obtained in the present invention has a higher discreteness, which is also the result of oxidation.
  • the absolute value of the Zeta potential of the composite emulsion obtained in Examples 1 to 4 is significantly higher than that of Comparative Examples 1 to 3, indicating that the Pickering structure prepared by the present invention has superior dispersibility, and the absolute value of the Zeta potential in Example 4 is the largest, indicating that The increase of the interfacial graphene oxide content in the Pickering structure is beneficial to the improvement of the stability of the Pickering emulsion.
  • the graphene oxide modified styrene-acrylic-siloxane Pickering composite emulsion prepared in Examples 1 to 4 and the emulsion prepared in Comparative Examples 1 to 3 were divided into two times according to the amount of 600g/ m2 .
  • the surface of the cement paste test piece should be tested for static water contact angle after drying at intervals of no less than 6 hours.
  • Static water contact angle test use the surface contact angle measuring instrument to measure the static water contact angle on the surface of the cement paste specimens of each experimental group, the test chart of the obtained static contact angle is shown in Figure 3, and the specific data of the contact angle See Table 4.
  • Example 1 Example 2
  • Example 3 Example 4 Comparative example 1 Comparative example 2 Comparative example 3
  • the films formed by the emulsions prepared in Examples 1-4 have larger surface contact angles and exhibit higher hydrophobicity. It shows that the hydrophobic property of the coating formed by the composite emulsion prepared by the present invention is better than that of the core-shell emulsion and the graphene oxide modified copolymer emulsion, indicating that the emulsification substitution and interface modification of graphene oxide in the Pickering emulsion can significantly improve the coating. Hydrophobic properties of the layer.
  • Static water absorption test take a non-poured surface of the dry concrete specimen as the coating surface, and apply the emulsion on the surface of the cement paste specimen in two times according to the dosage of 600g/ m2 , with an interval of not less than 6h between the two times. Seal with curing glue. Put the concrete specimen in distilled water, with the coated side down about 0.5cm from the water surface, and measure the variation of the static capillary water absorption of the concrete specimen with the penetration time. The results are shown in Figure 4 and Table 5, and Figure 4 shows the experimental groups Table 5 shows the static capillary water absorption data of each experimental group for 24 hours.
  • the preparation method proposed by the present invention can maximize the interface modification performance of graphene oxide to styrene-acrylic-siloxane core-shell structure, improve the film-forming performance and protective performance of Pickering emulsion on the surface of cement-based materials, and inhibit Diffusion and transport of water molecules in concrete.
  • the latex film was prepared by using the emulsion prepared by each experimental group.
  • the specific preparation method is: pour the emulsion into a polytetrafluoroethylene strip mold, dry it at 40°C for 48 hours, and demould to form a latex film sample.
  • the sample size It is 15mm ⁇ 50mm ⁇ 3mm.
  • Example 1 Example 2
  • Example 3 Comparative example 1 Comparative example 2 Comparative example 3 acid corrosion 38% 36% 32% 29% 42% 47% 40% Alkali corrosion 19% 17% 17% 16% twenty four% twenty two% 18%
  • the mass loss rate of the latex film of Examples 1 to 4 under acid and alkali corrosion is less than that of Comparative Examples 1 to 3, and the coating formed by the composite emulsion synthesized by the preparation method of the present invention has more superior resistance to acid and alkali corrosion performance.
  • the mass loss rate of the latex film in Example 4 is the smallest, indicating that a higher interfacial graphene oxide content is beneficial to the improvement of the acid and alkali corrosion resistance of the Pickering emulsion coating.
  • Example 7 It can be seen from Table 7 that compared with the core-shell emulsion and graphene oxide modified copolymer emulsion in the comparative example, the composite emulsion prepared in Examples 1-4 under acid-base corrosion has a higher relationship with cement-based materials. surface bond strength. Under acid-base corrosion, the pencil hardness of the latex film in the comparative example is relatively low, while the pencil hardness of the coatings in Examples 1-4 is improved to varying degrees. Among them, Example 4 has the highest surface bonding adhesion strength and the highest pencil hardness, showing superior acid and alkali corrosion resistance.
  • the latex film was prepared by using the emulsion prepared by each experimental group (the preparation method is the same as the mass loss rate test), and the obtained latex film was placed under the artificial ultraviolet light with an irradiance of 50w/m 2 and a wavelength of 254nm for 72h, and the surface gloss loss was measured. Rate and crosslink density loss rate, the results are shown in Table 8.
  • the latex films prepared by each experimental group were placed in a xenon lamp aging test box, aged at 70°C for 144 hours, and the loss rate of tensile strength and elongation at break was measured. The results are shown in Table 9.
  • Example 1 Example 2
  • Example 3 Example 4 Comparative example 1 Comparative example 2 Comparative example 3
  • the crosslinking density loss rate of the composite emulsion coatings of Examples 1-4 is significantly lower than that of Comparative Examples 1-3, showing superior anti-ultraviolet aging performance.
  • the tensile strength and loss rate of elongation at break of the coatings obtained in Examples 1-4 are also significantly lower than those of Comparative Examples 1-3, especially the elongation at break of the latex film after aging has been significantly improved.
  • the crosslink density loss rate, the tensile strength loss rate and the elongation loss rate at break of Example 4 are the lowest, showing that the increase of the interface graphene oxide content is beneficial to the anti-ultraviolet aging performance and the resistance of the Pickering emulsion coating. Improved heat aging resistance.
  • Fig. 7 ⁇ Fig. 10 is the SEM scanning electron microscope test figure of the emulsion film that embodiment 1 ⁇ 4 and comparative example 1 ⁇ 3 gained emulsion form;
  • Figures 11 to 14 are the AFM atomic force microscope test images of the latex films formed from the emulsions obtained in Examples 1 to 4 and Comparative Examples 1 to 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Graft Or Block Polymers (AREA)
  • Polymerisation Methods In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

涉及防护涂层技术领域,提供了一种氧化石墨烯改性苯丙皮克林乳液以及一种复合乳液及其制备方法和应用。在苯丙单体聚合过程中加入氧化石墨烯,在形成苯丙核同时使氧化石墨烯附着在苯丙核界面,然后利用硅烷偶联剂使氧化石墨烯在苯丙核界面处"缝合",从而赋予氧化石墨烯更好的分散效果。加入壳相乳液后,未完全被氧化石墨烯片层包裹的苯丙核部分会与壳相接枝在一起,核相与壳相间的交联作用进一步增强氧化石墨烯的空间稳定性,氧化石墨烯的存在又能充分连接苯丙核与硅氧烷壳,改善硅氧烷组分的分子构型。制备的复合乳液中氧化石墨烯的分散性好,不易团聚,所得复合乳液性能优异,能显著提高水泥基材料的耐久性。

Description

一种氧化石墨烯改性苯丙皮克林乳液以及一种复合乳液及其制备方法和应用
本申请要求于2021年12月28日提交中国专利局、申请号为202111624818.7、发明名称为“一种氧化石墨烯改性苯丙皮克林乳液以及一种复合乳液及其制备方法和应用”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本本发明涉及防护涂层技术领域,尤其涉及一种氧化石墨烯改性苯丙皮克林乳液以及一种复合乳液及其制备方法和应用。
背景技术
混凝土是一种应用最广泛的水泥基工程建筑材料,水泥基材料的耐久性直接决定了混凝土结构的安全性与可靠性。在氯离子含量较高的滨海环境中,氯离子对水泥基体的侵蚀是造成混凝土结构性能劣化的主要原因。
利用复合聚合物涂料对水泥基体进行表面处理,能够提高混凝土结构的耐腐蚀性,是一种高效、便捷且低成本的防护措施。苯丙涂料(苯乙烯-丙烯酸酯)与硅烷是两种最为常用的聚合物防腐涂料。苯丙涂料耐化学侵蚀性好、耐候性高,可以在水泥基材料表面形成稳定的防水抗侵蚀的保护层;硅烷涂料具有优越的疏水性,且流平性好、渗透性强,适用于多种类型的水泥基材料。将苯丙和硅烷制备成具有核壳结构的复合防腐乳液,可以充分发挥苯丙组分的防护性能以及硅氧烷组分的疏水效果,弥补苯丙涂料粘结性能弱以及硅烷涂料抗老化性能差的缺陷。
传统的核壳乳液通过乳化剂制备得到,其中核相部分与壳相部分难以形成有序稳定的接枝层与组装结构,这极大地限制了核壳乳液的进一步发展。氧化石墨烯作为一种表面富含活性含氧官能团的二维碳纳米材料,可以与各种聚合物分子进行共价结合,起到对聚合物涂料化学改性与性能调控的作用。氧化石墨烯可以通过原位聚合法、溶胶-凝胶法、物理共混法、插层法等方式,为聚合物分子构建出理想的分子构型,增强复合涂料中各组分间的协调工作性能。但是,这些传统方法制备的氧化石墨烯改性聚合物涂料中,氧化石墨烯片层多为一种无序、杂乱的空间状态,对聚合物组 分的改性效果不好,且氧化石墨烯片层极易发生聚集,对复合涂料的稳定性、成膜性等造成不利的影响。
发明内容
有鉴于此,本发明提供了一种氧化石墨烯改性苯丙皮克林乳液以及一种复合乳液及其制备方法和应用。本发明提供的氧化石墨烯改性苯丙皮克林乳液中,氧化石墨烯有序分布,不易团聚,利用其制备成的核壳结构的复合乳液具有优异的稳定性、成膜性、防水性、抗腐蚀性、抗离子渗透性、耐老化性以及力学性能,将本发明的复合乳液对水泥基体进行表面处理,能够显著提高混凝土结构的耐久性。
为了实现上述发明目的,本发明提供以下技术方案:
一种氧化石墨烯改性苯丙皮克林乳液的制备方法,包括以下步骤:
将氧化石墨烯缓冲液和苯丙单体混合液混合进行第一超声分散,将所得乳液和硅烷偶联剂混合进行第二超声分散,得到氧化石墨烯改性苯丙皮克林乳液;所述氧化石墨烯缓冲液的组分包括氧化石墨烯、水和pH值缓冲剂;所述苯丙单体混合液的组分包括水、引发剂、苯乙烯和丙烯酸酯单体。
优选的,所述苯丙单体混合液中引发剂的质量分数为0.3%~0.7%,苯乙烯的质量分数为10%~30%,丙烯酸酯单体的质量分数为60%~90%。
优选的,所述苯丙单体混合液中的引发剂包括过硫酸盐和偶氮类引发剂中的一种或几种。
优选的,所述氧化石墨烯缓冲液中的氧化石墨烯的质量为苯丙单体混合液质量的1%~10%,所述氧化石墨烯缓冲液中水的质量为苯丙单体混合液质量的60%~150%;
所述氧化石墨烯缓冲液的pH值为7~8.5。
优选的,所述pH缓冲剂包括碳酸氢钠、碳酸钠、磷酸氢钠、巴比妥缓冲液、三羟甲基氨基甲烷和甘油磷酸缓冲液中的一种或几种。
优选的,所述第一超声分散的温度为30~60℃,时间为1~3h;
优选的,所述第二超声分散的温度为55~75℃,时间为0.5~2h。
本发明还提供了上述方案所述制备方法制备的氧化石墨烯改性苯丙皮克林乳液,具有氧化石墨烯改性的苯丙皮克林结构,包括苯丙核和包裹 于苯丙核外侧界面处的氧化石墨烯,且所述氧化石墨烯通过偶联剂偶联在一起。
本发明还提供了一种氧化石墨烯改性苯丙-硅氧烷皮克林复合乳液的制备方法,包括以下步骤:
将壳相乳液、上述方案所述的氧化石墨烯改性苯丙皮克林乳液和引发剂水溶液混合进行聚合反应,得到氧化石墨烯改性苯丙-硅氧烷皮克林复合乳液;所述壳相乳液的组分包括硅烷单体、丙烯酸酯功能单体、乳化剂和水。
优选的,所述壳相乳液中硅烷单体的质量分数为20%~50%;所述丙烯酸酯功能单体的质量为硅烷单体质量的10%~50%,所述乳化剂的质量为硅烷单体和丙烯酸酯功能单体总质量的2%~5%。
优选的,所述壳相乳液的制备方法包括:将硅烷单体、丙烯酸酯功能单体、乳化剂和水混合进行低温高速搅拌,得到壳相乳液;所述低温高速搅拌的温度为30~50℃,转速为800~1200r/min。
优选的,所述硅烷单体为长链烃基硅烷,所述长链烃基硅烷中烃基的碳原子数为4~18。
优选的,所述长链烃基硅烷为正丁基三乙氧基硅烷、正辛基三甲氧基硅烷、正辛基三乙氧基硅烷、十二烷基三甲氧基硅烷和十二烷基三乙氧基硅烷中的一种或几种。
优选的,所述丙烯酸酯功能单体丙烯酸羟乙酯和/或丙烯酸羟丙酯。
优选的,所述乳化剂为OP-10、司班80、十二烷基硫酸钠、十二烷基磺酸钠和十二烷基苯磺酸钠中的一种或几种。
优选的,所述氧化石墨烯改性苯丙皮克林乳液和壳相乳液的质量比为1:(1~5)。
优选的,所述引发剂水溶液中引发剂的质量为壳相乳液质量的0.2%~0.5%。
优选的,所述聚合反应在高温低速搅拌条件下进行;所述高温低速搅拌的温度为80~85℃,转速为100~300r/min,时间为1~3h。
优选的,所述聚合反应后,还包括将所得乳液反复进行低速搅拌和超声分散,将进行一次低速搅拌和一次超声分散记为反复一次,所述反复的 次数为3~6次。
本发明还提供了上述方案所述制备方法制备得到的氧化石墨烯改性苯丙-硅氧烷皮克林复合乳液,所述复合乳液具有核壳结构,包括壳结构、核结构以及连接壳结构和核结构的中间过渡层,其中壳结构为硅氧烷聚合物,核结构为氧化石墨烯改性的苯丙皮克林结构,所述中间过渡层为丙烯酸酯功能单体形成的聚合物。
本发明还提供了上述方案所述氧化石墨烯改性苯丙-硅氧烷皮克林复合乳液在水泥基材料防腐中的应用。
本发明提供了一种氧化石墨烯改性苯丙皮克林乳液的制备方法,包括以下步骤:将氧化石墨烯缓冲液和苯丙单体混合液混合进行第一超声分散,将所得乳液和硅烷偶联剂混合进行第二超声分散,得到氧化石墨烯改性苯丙皮克林乳液;所述氧化石墨烯缓冲液的组分包括氧化石墨烯、水和pH值缓冲剂;所述苯丙单体混合液的组分包括水、引发剂、苯乙烯和丙烯酸酯单体。
本发明将氧化石墨烯缓冲液和苯丙单体混合液混合进行第一超声分散,在第一超声分散过程中,苯丙单体发生聚合,形成苯丙核,同时氧化石墨烯附着在苯丙核界面,然后加入硅烷偶联剂进行第二超声分散,在第二超声分散过程中,氧化石墨烯在硅烷偶联剂的作用下偶联在一起,使氧化石墨烯在苯丙核界面处进行“缝合”,从而使氧化石墨烯呈现有序分散,赋予氧化石墨烯更好的分散效果,并增强其性能调控与改性效果,通过加入壳相乳液可以将本发明的氧化石墨烯改性苯丙皮克林乳液进一步制备成具有核壳结构的复合乳液,无论在后续的复合乳液合成过程中,还是在复合乳液成膜之后,苯丙核界面处的氧化石墨烯均能保持良好的分散状态。
本发明还提供了一种氧化石墨烯改性苯丙-硅氧烷皮克林复合乳液的制备方法,包括以下步骤:将壳相乳液、上述方案所述的氧化石墨烯改性苯丙皮克林乳液和引发剂水溶液混合进行聚合反应,得到氧化石墨烯改性苯丙-硅氧烷皮克林复合乳液;所述壳相乳液的组分包括硅烷单体、丙烯酸酯功能单体、乳化剂和水。本发明向氧化石墨烯改性苯丙皮克林乳液中加入壳相乳液进行聚合反应,形成具有核壳结构的复合乳液,加入壳相乳 液后,氧化石墨烯改性苯丙皮克林乳液中未完全被氧化石墨烯片层包裹的苯丙核部分会与壳相接枝在一起,核相与壳相间的交联作用也会进一步增强氧化石墨烯的空间稳定性,同时氧化石墨烯的存在又能充分地连接苯丙核结构与硅氧烷壳结构,改善硅氧烷组分的分子构型,增强对硅氧烷分子化学活性的调控能力。
本发明制备的氧化石墨烯改性苯丙-硅氧烷皮克林复合乳液具有优异的成膜性,原理如下:氧化石墨烯片层上同时含有亲水基团与疏水基团,能够有效替代复合乳液中的乳化剂分子,成为苯丙分子胶团与溶剂水分子间的稳定过渡层,从而减小了残留的乳化剂组分对成膜过程的不利影响。此外,氧化石墨烯增强了苯丙组分与硅氧烷组分间的结合性能与协同工作性能,有利于成膜过程中涂层体系的均质性与稳定性。
本发明制备的氧化石墨烯改性苯丙-硅氧烷皮克林复合乳液具有优异的疏水与防水性能,原理如下:氧化石墨烯能够改善壳结构中硅氧烷的分子构型,使硅氧烷分子有序并紧密地接枝在复合乳液内部的核相上,并且使硅氧烷分子中的疏水的烷烃链充分伸展并规整排列,还能增强苯丙核结构的分散性与稳定性,从而充分提高苯丙组分的耐水性能与硅氧烷组分的疏水性质,提高成膜后的疏水性和稳定性。此外,乳液成膜时,氧化石墨烯片层不仅可以在水泥基体表面沉积形成有序分布的粗糙表面,还能促进硅氧烷分子与混凝土水化产物之间发生二次水化反应,抑制外部水分进入混凝土内部的裂隙以及毛细孔道。
本发明制备的氧化石墨烯改性苯丙-硅氧烷皮克林复合乳液涂层具有优良的抗氯盐与硫酸盐侵蚀能力,原理如下:氧化石墨烯能够提高硅烷乳液的交联程度,削弱氯离子与硫酸根离子在混凝土表面及毛细孔道内部的扩散与传输。氧化石墨烯增强的存在增强了苯丙胶团与硅氧烷组分之间的交联性与键合性,提高了复合涂层对侵蚀性离子的屏蔽隔绝性能,氧化石墨烯还具有对侵蚀型离子的阻挡作用,能够阻碍并延长侵蚀离子的传输路径。此外,氧化石墨烯可以进一步改善乳液的电化学性能,增强涂层的抗化学侵蚀性能。
本发明制备的氧化石墨烯改性苯丙-硅氧烷皮克林复合乳液涂层具有优良的抗老化性能,原理如下:随着成膜过程中自由水的蒸发以及小粒径 乳胶颗粒的渗透,氧化石墨烯会不断沉积并附着在基体表面,形成完整的耐热与耐辐射的反射层。同时,氧化石墨烯会促进苯丙分子与硅氧烷分子之间形成较强的交联与键合作用,显著提高皮克林复合乳液中过渡层的交联密度,有利于复合涂层对外界能量的吸收与耗散,从而提高涂层的耐老化性。
附图说明
图1为实施例1~4和对比例1~3所得复合乳液的表观形态光学照片;
图2为实施例1~4和对比例1~3所得复合乳液的金相显微镜扫描图;
图3为实施例1~4和对比例1~3所得复合乳液在水泥试件表面形成的涂层的静态接触角的测试图。
图4为采用实施例1~4和对比例1~3所得复合乳液进行表面处理后的混凝土试件的静态毛细吸水曲线图;
图5是采用实施例1~4和对比例1~3所得复合乳液进行表面处理后的混凝土氯离子侵蚀速率的计算拟合图;
图6是采用实施例1~4和对比例1~3所得复合乳液进行表面处理后的混凝土硫酸根离子侵蚀速率的计算拟合图;
图7为实施例1~2所得复合乳液形成的乳胶膜的SEM扫描电镜测试图;
图8为实施例3~4所得复合乳液形成的乳胶膜的SEM扫描电镜测试图;
图9为对比例1~2所得乳液形成的乳胶膜的SEM扫描电镜测试图;
图10为对比例3所得乳液形成的乳胶膜的SEM扫描电镜测试图;
图11为实施例1~2所得复合乳液形成的乳胶膜的AFM原子力显微镜测试图;
图12为实施例3~4所得复合乳液形成的乳胶膜的AFM原子力显微镜测试图;
图13为对比例1~2所得乳液形成的乳胶膜的AFM原子力显微镜测试图;
图14为对比例3所得乳液形成的乳胶膜的AFM原子力显微镜测试图。
具体实施方式
本发明提供了一种氧化石墨烯改性苯丙皮克林乳液的制备方法,包括以下步骤:
将氧化石墨烯缓冲液和苯丙单体混合液混合进行第一超声分散,将所得乳液和硅烷偶联剂混合进行第二超声分散,得到氧化石墨烯改性苯丙皮克林乳液;所述氧化石墨烯缓冲液的组分包括氧化石墨烯、水和pH值缓冲剂;所述苯丙单体混合液的组分包括水、引发剂、苯乙烯和丙烯酸酯单体。
在本发明中,所述苯丙单体混合液中引发剂的质量分数优选为0.3%~0.7%,更优选为0.4%~0.6%,苯乙烯的质量分数优选为10%~30%,更优选为15%~25%,丙烯酸酯单体的质量分数优选为60%~90%;在本发明中,采用上述配比得到的苯丙核结构具有较高的玻璃化转变温度,能够保证氧化石墨烯片层具有较高的空间稳定性。
在本发明中,所述引发剂优选包括过硫酸盐和偶氮类引发剂中的一种或几种;所述过硫酸盐优选包括过硫酸钠、过硫酸铵和过硫酸钾中的一种或几种;所述偶氮类引发剂优选包括偶氮二异丁腈和/或偶氮二异丁酸二甲酯;所述丙烯酸酯单体优选包括丙烯酸甲酯、甲基丙烯酸甲酯、丙烯酸乙酯、丙烯酸丁酯、甲基丙烯酸丁酯、丙烯酸和甲基丙烯酸中的一种或几种;所述水优选为去离子水。
在本发明的具体实施例中,优选先将引发剂加入去离子水中,得到引发剂溶液,然后将苯乙烯和丙烯酸酯单体混合,得到混合单体,再将所述混合单体加入引发剂水溶液中,得到苯丙单体混合液。
在本发明中,所述氧化石墨烯缓冲液优选由以下方法制备得到:将氧化石墨烯加入去离子水中进行超声分散,得到氧化石墨烯水溶液,然后向所述氧化石墨烯水溶液中加入pH值缓冲剂,得到氧化石墨烯缓冲液;所述超声分散的时间优选为1~4h。
在本发明中,所述pH缓冲剂优选包括碳酸氢钠、碳酸钠、磷酸氢钠、巴比妥缓冲液、三羟甲基氨基甲烷和甘油磷酸缓冲液中的一种或几种。
在本发明中,所述氧化石墨烯缓冲液中的氧化石墨烯的质量优选为苯丙单体混合液质量的1%~10%,更优选为3%~8%,所述氧化石墨烯缓冲 液中水的质量优选为苯丙单体混合液质量的60%~150%,更优选为80%~120%;所述氧化石墨烯缓冲液的pH值优选为7~8.5,所述pH值缓冲剂的用量以将所述氧化石墨烯缓冲液的pH值调节至上述范围为准。在后续的聚合反应过程中,引发剂在引发生成自由基时会使体系的pH值降低,本发明采用pH缓冲剂将氧化石墨烯缓冲液调节至弱碱性,能够使后续加成聚合反应过程中乳液能够保持为中性,有利于反应的进行。
得到氧化石墨烯缓冲液和苯丙单体混合液后,本发明将所述氧化石墨烯缓冲液和苯丙单体混合液混合进行第一超声分散,将所得分散液和硅烷偶联剂混合进行第二超声分散,得到氧化石墨烯改性苯丙皮克林乳液。本发明优选将所述苯丙单体混合液缓慢加入所述氧化石墨烯缓冲液中,然后进行第一超声分散;所述第一超声分散的温度优选为30~60℃,时间优选为1~3h,更优选为1.5~2.5h;在本发明的具体实施例中,优选在将所述氧化石墨烯缓冲液和苯丙单体混合液混合后,先在30~60℃下搅拌30min,然后再进行第一超声分散。在第一超声分散过程中,苯乙烯和丙烯酸酯单体发生聚合,形成苯丙聚合物(即苯丙核),同时氧化石墨烯附着在苯丙核的表面。
第一超声分散完成后,本发明优选向所得乳液中滴加硅烷偶联剂,然后进行第二超声分散。在本发明中,所述硅烷偶联剂优选为KH-550、KH-560和KH-570中的一种或几种;所述硅烷偶联剂的质量优选为第一超声分散所得乳液中氧化石墨烯质量的2%~20%;所述第二超声分散的温度优选为55~75℃,更优选为60~70℃,所述第二超声分散的时间优选为0.5~2h,更优选为1~1.5h。在本发明的具体实施例中,优选在将第一超声分散所得乳液和硅烷偶联剂混合后,先在55~75℃下搅拌20min,然后再进行第二超声分散。在第二超声分散过程中,氧化石墨烯在硅烷偶联剂的作用下偶联在一起,使氧化石墨烯在苯丙核界面处进行“缝合”,从而赋予氧化石墨烯更好的分散效果。
本发明还提供了上述方案所述制备方法制备的氧化石墨烯改性苯丙皮克林乳液,所述氧化石墨烯改性苯丙皮克林乳液具有氧化石墨烯改性的苯丙皮克林结构,包括苯丙核和包裹于苯丙核外侧界面处的氧化石墨烯,且所述氧化石墨烯通过偶联剂偶联在一起。本发明提供的氧化石墨烯改性 苯丙皮克林乳液中,氧化石墨烯的分散性好,不易团聚,可用于制备具有核壳结构的复合乳液,无论在后续的复合乳液合成过程中,还是在复合乳液成膜之后,苯丙核界面处的氧化石墨烯均能保持良好的分散状态。
本发明还提供了一种氧化石墨烯改性苯丙-硅氧烷皮克林复合乳液的制备方法,包括以下步骤:
将壳相乳液、上述方案所述的氧化石墨烯改性苯丙皮克林乳液和引发剂水溶液混合进行聚合反应,得到氧化石墨烯改性苯丙-硅氧烷皮克林复合乳液;所述壳相乳液的组分包括硅烷单体、丙烯酸酯功能单体、乳化剂和水。
在本发明中,所述硅烷单体优选为长链烃基硅烷,所述长链烃基硅烷中烃基的碳原子数优选为4~18,具体的,所述长链烃基硅烷优选为正丁基三乙氧基硅烷、正辛基三甲氧基硅烷、正辛基三乙氧基硅烷、十二烷基三甲氧基硅烷和十二烷基三乙氧基硅烷中的一种或几种;所述丙烯酸酯功能单体优选为丙烯酸羟乙酯和/或丙烯酸羟丙酯;在本发明中,所述丙烯酸酯功能单体用于提供交联点,促进硅烷分子之间的聚合反应并适当增加乳液的粘稠度;所述乳化剂优选为OP-10、司班80、十二烷基硫酸钠、十二烷基磺酸钠和十二烷基苯磺酸钠中的一种或几种;所述水优选为去离子水。
在本发明中,所述壳相乳液中硅烷单体的质量分数优选为20%~50%;所述丙烯酸酯功能单体质量优选为所述硅烷单体质量的10%~50%,更优选为15%~40%;所述乳化剂用量优选为硅烷单体与丙烯酸酯功能单体总质量的2%~5%,更优选为3%~4%。
在本发明中,所述壳相乳液的制备方法优选为:将硅烷单体、丙烯酸酯功能单体、乳化剂和水混合进行低温高速搅拌,得到壳相乳液;在本发明的具体实施例中,优选先将乳化剂加入水中,得到乳化剂水溶液,然后再将硅烷单体和丙烯酸酯功能单体加入到所述乳化剂水溶液中进行低温高速搅拌。在本发明中,所述低温高速搅拌的温度优选为30~50℃,更优选为35~45℃,所述低温高速搅拌的转速优选为800~1200r/min,更优选为900~1000r/min。本发明在低温高速搅拌条件下制备壳相乳液,能够使硅氧烷分子预聚合形成低分子量的分子网络结构,有利于硅氧烷分子层在 苯丙核结构上的交联作用以及表面疏水层的化学稳定性的提高。
得到壳相乳液后,本发明将所述壳相乳液、氧化石墨烯改性苯丙皮克林乳液和引发剂水溶液混合进行聚合反应,得到氧化石墨烯改性苯丙-硅氧烷皮克林复合乳液。在本发明中,所述氧化石墨烯改性苯丙皮克林乳液和壳相乳液的质量比优选为1:(1~5),更优选为1:(2~4);所述引发剂水溶液中引发剂的质量优选为壳相乳液质量的0.2%~0.5%,更优选为0.3%~0.4%;所述引发剂水溶液中引发剂的种类和上述方案一致,在此不再赘述;所述聚合反应优选在高温低速搅拌条件下进行;所述高温低速搅拌的温度优选为80~85℃,更优选为82~83℃,所述高温低速搅拌的转速优选为100~300r/min,更优选为150~250r/min,所述低温高速搅拌的时间优选为1~3h,更优选为1.5~2.5h。本发明优选在高温低速条件下进行聚合反应,能够避免聚合过程中出现团聚、凝胶等情况。低温高速搅拌完成后,本发明优选将所得反应液保温2h,以确保反应完全,之后缓慢降温至30℃,得到氧化石墨烯改性苯丙-硅氧烷皮克林复合乳液。在聚合反应过程中,所述硅烷单体和丙烯酸酯功能单体聚合形成壳层,包覆在苯丙皮克林结构表面,同时苯丙皮克林结构中未完全被氧化石墨烯片层包裹的部分与壳结构接枝在一起,增强复合乳液的稳定性。
聚合反应完成后,本发明优选还包括将所得乳液反复进行低速搅拌和超声分散,将进行一次低速搅拌和一次超声分散记为反复一次,所述反复的次数优选为3~6次,更优选为4~5次;所述低速搅拌的转速优选100~200r/min,更优选为130~150r/min,每次低速搅拌的时间优选为5~60min,每次超声分散的时间优选为20~60min,更优选为30~50min。本发明通过反复的低速搅拌和超声分散,能够进一步提高复合乳液的分散性,并进一步提高复合乳液中壳结构与氧化石墨烯片层间的接枝交联比例。
本发明还提供了上述方案所述制备方法制备得到的氧化石墨烯改性苯丙-硅氧烷皮克林复合乳液,所述复合乳液具有核壳结构,包括壳结构、核结构以及连接壳结构和核结构的中间过渡层,其中壳结构为硅氧烷聚合物,核结构为氧化石墨烯改性的苯丙皮克林结构,所述中间过渡层为丙烯酸酯功能单体形成的聚合物。本发明提供的复合乳液中氧化石墨烯的分散性好,不易团聚,所得复合乳液具有优异的稳定性、成膜性、防水性、抗 腐蚀性、抗离子渗透性、耐老化性以及力学性能。
本发明还提供了上述方案所述氧化石墨烯改性苯丙-硅氧烷皮克林复合乳液在水泥基材料防腐中的应用。在本发明中,所述水泥基材料优选为混凝土建筑结构;本发明对所述应用的具体方法没有特殊要求,采用本领域技术人员熟知的方法进行应用即可,具体可以将本发明的复合乳液涂覆在水泥基体表面,形成防腐涂层,以提高水泥基材料的耐久性;在本发明的具体实施例中,所述复合乳液的用量优选为300~1000g/m 2,更优选为400~600g/m 2
下面将结合本发明中的实施例,对本发明中的技术方案进行清楚、完整地描述。
实施例1
1)向10g去离子水中加入280mg过硫酸铵,制得引发剂水溶液;
2)将6g苯乙烯、6g甲基丙烯酸甲酯、8g丙烯酸丁酯、4g丙烯酸混合在一起,再加入5g引发剂水溶液,制得苯丙单体混合液;
3)将480mg氧化石墨烯粉末加入到20g去离子水中,超声分散2h,再加入1g碳酸氢钠,制得氧化石墨烯缓冲液;
4)向21.48g氧化石墨烯缓冲液中缓慢加入苯丙单体混合液24g,80℃条件下以150r/min的转速搅拌30min,然后超声分散3h,制得苯丙皮克林乳液;
5)向苯丙皮克林乳液中滴加50mg的KH-570硅烷偶联剂,60℃条件下以150r/min的转速搅拌20min,再在60℃下超声分散2h,制得氧化石墨烯改性苯丙皮克林乳液;
6)将0.5g OP-10、0.3g司班80与0.3g十二烷基硫酸钠加入到25g去离子水中,缓慢加入5g乙烯基三乙氧基硅烷、20g辛基三乙氧基硅烷与3g丙烯酸羟乙酯的混合液,40℃条件下以1000r/min的转速搅拌2h,制得壳相乳液;
7)按照1:1的质量比(核壳比),将壳相乳液缓慢加入到氧化石墨烯改性苯丙皮克林乳液中,并补加5g引发剂水溶液,83℃条件下以100r/min的转速搅拌2h并保温2h,然后缓慢降低温度至30℃;
8)对步骤7)所得乳液反复进行3次低速搅拌与超声分散,其中低 速搅拌的转速为100r/min,每次低速搅拌的时间为1h,每次超声分散的时间为40min,得到氧化石墨烯含量为2%的苯丙-硅氧烷皮克林复合乳液,所述氧化石墨烯的含量以步骤4)中氧化石墨烯占苯丙单体混合液的质量分数计。
实施例2
1)向10g去离子水中加入280mg过硫酸铵,制得引发剂水溶液;
2)将6g苯乙烯、7g丙烯酸甲酯、7g甲基丙烯酸丁酯、4g甲基丙烯酸混合在一起,再加入5g引发剂水溶液,制得苯丙单体混合液;
3)将960mg氧化石墨烯粉末加入到20g去离子水中,超声分散2h,再加入1g碳酸钠,制得氧化石墨烯缓冲液;
4)向21.96g氧化石墨烯缓冲液中缓慢加入苯丙单体混合液24g,80℃条件下以150r/min的转速搅拌30min,然后超声分散3h,制得苯丙皮克林乳液;
5)向苯丙皮克林乳液中滴加100mg的KH-560硅烷偶联剂,60℃条件下以150r/min的转速搅拌20min,再超声分散2h,制得氧化石墨烯改性的苯丙皮克林乳液;
6)将0.6g OP-10、0.3g吐温80与0.2g十二烷基磺酸钠加入到25g去离子水中,缓慢加入5g乙烯基三乙氧基硅烷、20g辛基三甲氧基硅烷与3g丙烯酸羟丙酯的混合液,40℃条件下以1000r/min的转速搅拌2h,制得壳相乳液;
7)按照1:1的质量比,将壳相乳液缓慢加入到氧化石墨烯改性苯丙皮克林乳液中,补加5g引发剂水溶液,83℃条件下以100r/min的转速搅拌2h并保温2h,然后缓慢降低温度至30℃;
8)对步骤7)所得乳液反复进行3次低速搅拌与超声分散,其中低速搅拌的转速为100r/min,每次低速搅拌的时间为1h,每次超声分散的时间为40min,得到氧化石墨烯含量为4%的苯丙-硅氧烷皮克林复合乳液,所述氧化石墨烯的含量以步骤4)中氧化石墨烯占苯丙单体混合液的质量分数计。
实施例3
1)向10g去离子水中加入280mg过硫酸铵,制得引发剂水溶液;
2)将5g苯乙烯、5g甲基丙烯酸甲酯、9g丙烯酸乙酯、5g丙烯酸混合在一起,再加入5g引发剂水溶液,制得苯丙单体混合液;
3)将1.44g氧化石墨烯粉末加入到20g去离子水中,超声分散2h,再加入1g磷酸氢钠,制得氧化石墨烯缓冲液;
4)向22.44g氧化石墨烯缓冲液中缓慢加入苯丙单体混合液24g,80℃条件下以150r/min的转速搅拌30min,然后超声分散3h,制得苯丙皮克林乳液;
5)向苯丙皮克林乳液中滴加150mg的KH-550硅烷偶联剂,60℃条件下以150r/min的转速搅拌20min,再超声分散2h,制得氧化石墨烯改性苯丙皮克林乳液;
6)将0.5g OP-10、0.4g司班60与0.4g十二烷基磺酸钠加入到25g去离子水中,缓慢加入5g乙烯基三乙氧基硅烷、20g十二烷基三乙氧基硅烷与3g甲基丙烯酸羟乙酯的混合液,40℃条件下以1000r/min的转速搅拌2h,制得壳相乳液;
7)按照1:1的质量比,将壳相乳液缓慢加入到苯丙皮克林乳液中,补加5g引发剂水溶液,83℃条件下以100r/min的转速搅拌2h并保温2h,然后缓慢降低温度至30℃;
8)对步骤7)制得的乳液反复进行3次低速搅拌与超声分散,其中低速搅拌的转速为100r/min,每次低速搅拌的时间为1h,每次超声分散的时间为40min,得到氧化石墨烯含量为6%的苯丙-硅氧烷皮克林复合乳液,所述氧化石墨烯的含量以步骤4)中氧化石墨烯占苯丙单体混合液的质量分数计。
实施例4
1)向10g去离子水中加入280mg过硫酸铵,制得引发剂水溶液;
2)将4g苯乙烯、8g丙烯酸甲酯、8g丙烯酸丁酯、4g甲基丙烯酸混合在一起,再加入5g引发剂水溶液,制得苯丙单体混合液;
3)将1.92g氧化石墨烯粉末加入到20g去离子水中,超声分散2h,再加入1g碳酸氢钠,制得氧化石墨烯缓冲液;
4)向22.92g氧化石墨烯缓冲液中缓慢加入苯丙单体混合液24g,80℃条件下以150r/min的转速搅拌30min,然后超声分散3h,制得苯丙皮克 林乳液;
5)向苯丙皮克林乳液中滴加200mg的KH-570硅烷偶联剂,60℃条件下以150r/min的转速搅拌20min,再超声分散2h,制得氧化石墨烯改性的苯丙皮克林乳液;
6)将0.5g OP-10、0.25g吐温60与0.35g十二烷基苯磺酸钠加入到25g去离子水中,缓慢加入5g乙烯基三乙氧基硅烷、25g辛基三甲氧基硅烷与3g甲基丙烯酸羟丙酯的混合液,40℃条件下以1000r/min的转速搅拌2h,制得壳相乳液;
7)按照1:1的质量比,将壳相乳液缓慢加入到苯丙皮克林乳液中,补加5g引发剂水溶液,83℃条件下以100r/min的转速搅拌2h并保温2h,然后缓慢降低温度至30℃;
8)对步骤7)制得的乳液反复进行3次低速搅拌与超声分散,其中低速搅拌的转速为100r/min,每次低速搅拌的时间为1h,每次超声分散的时间为40min,得到氧化石墨烯含量为8%的苯丙-硅氧烷皮克林复合乳液,所述氧化石墨烯的含量以步骤4)中氧化石墨烯占苯丙单体混合液的质量分数计。
对比例1
本对比例的采用与实施例1类似的方法制备核壳乳液,不同之处在于,省去步骤3)与步骤5),并将步骤4)改为:
将苯丙单体混合液加入到pH缓冲水溶液(具体为氢氧化钠溶液,浓度为5wt%)中,在83℃下搅拌3h,制得苯丙核相乳液;并采用该苯丙核相乳液替换步骤7)中的苯丙皮克林乳液;
省去步骤(8)。
其余条件和实施例1相同,最后制得苯丙-硅氧烷复合核壳乳液。
对比例2
本对比例的采用与实施例1类似的方法制备氧化石墨烯改性共聚乳液,不同之处在于,省去步骤4)和步骤5);
因对比例2最终所得乳液没有核壳结构,将按照实施例1步骤6)制备的乳液记为硅氧烷预乳液;
步骤7)改为:将氧化石墨烯缓冲液、苯丙单体混合液与硅氧烷预乳 液混合(氧化石墨烯缓冲液、苯丙单体混合液与硅氧烷预乳液的用量和实施例1相同)在一起,补加5g引发剂水溶液,83℃条件下以100r/min的转速搅拌2h并保温2h,然后缓慢降低温度至30℃;
其他条件均和实施例1一致,最后制得氧化石墨烯含量为2%的改性苯丙-硅氧烷共聚乳液。
对比例3
本对比例的采用与对比例2类似的方法制备氧化石墨烯改性苯丙-硅氧烷共聚乳液,不同之处在于,氧化石墨烯含量为8%,即在步骤7)中氧化石墨烯的用量为苯丙单体混合液质量的8%,最后制得氧化石墨烯含量为8%的改性苯丙-硅氧烷共聚乳液。
性能测试:
(1)外观以及显微镜测试
图1为实施例1~4以及对比例1~3所得复合乳液的表观光学照片。根据图1可以看出,实施例1~4所制备的氧化石墨烯改性苯丙-硅氧烷皮克林复合乳液具有较好的均质性与稳定性,乳液未出现絮凝、分层或离析,皮克林结构外表面的氧化石墨烯片层未发生团聚,而对比例1~3制备的复合乳液色泽并不均匀,有轻微的团聚现象。
图2为实施例1~4以及对比例1~3所得复合乳液的金相显微镜扫描图。根据图2可以看出可以看出,实施例1~4制得的复合乳液的乳胶颗粒粒径小于对比例1~3中核壳乳液与共聚乳液,并且实施例1~4中所得复合乳液的粒径较为均匀,而对比例1~3所得乳液的乳胶颗粒的粒径分布较为分散。乳液粒径越小,乳胶粒的比表面积越大,皮克林结构中包裹吸附的氧化石墨烯片层含量越高,因而本发明提出的皮克林乳液制备方法能够显著提高氧化石墨烯的利用率与分散性。
(2)乳液基本性质测试
根据GB/T1728-2020《漆膜、腻子膜干燥时间测定法》,通过指触法来确定复合乳液涂层的表面干燥时间与实际干燥时间。将乳化液放入称量瓶中,在105℃烘箱中干燥3h,然后在干燥器中冷却至室温,干燥前后称量乳化液质量,分别记为m 1和m 2。用200目铜网过滤乳状液,收集所有凝胶并用去离子水清洗,用同样的方法干燥凝胶,记录干燥凝胶的质量为 m 3。此外,用乙醇将乳液破乳,将所得沉淀固体用去离子水冲洗几次,在80℃下干燥6h。根据GB/T 23530-2009标准对沉淀固体进行提取,测量提取之前和之后的重量,分别记为m 4、m 5。固含量、凝胶率、单体转化率与接枝率计算公式如下:
固含量=m 2/m 1
凝胶率=m 3/m 1
单体转化率=(m 2-m non)/m M
Figure PCTCN2022072648-appb-000001
其中,m non是非挥发物的质量(即除溶剂水外其他原料的总质量),m M是原料中全部有机单体的质量,p SE为复合乳液中硅烷单体原料的质量分数。
所得结果见表1:
表1 实施例1~4和对比例1~3所得复合乳液的基本性能参数
  实施例1 实施例2 实施例3 实施例4 对比例1 对比例2 对比例3
表干时间 6h 6h 6h 8h 6h 6h 8h
实干时间 12h 12h 14h 16h 12h 14h 14h
固含量 42.8% 45.7% 47.9% 47.6 49.7% 43.3% 44.1%
凝胶率 1.1% 1.0% 0.7% 0.9% 1.4% 1.6% 1.5%
单体转化率 90.3% 89.1% 88.3% 84.2% 86.7% 86.7% 87.2%
接枝率 87.8% 88.5% 89.6% 89.7% 86.6% 84.3% 85.8%
从表1可以看出,实施例1~4所得复合乳液的表干时间与实干时间与对比例1~3中的乳液并无明显差别。与对比例1~3相比,本发明制得的氧化石墨烯改性苯丙-硅氧烷皮克林复合乳液具有较高的固含量以及较低的凝胶率。此外,实施例1~4的乳液具有更高的单体转化率与接枝率,表明本发明提出的氧化石墨烯改性皮克林结构能够显著促进苯丙核结构与硅氧烷壳结构内部的聚合反应,并增强苯丙组分、氧化石墨烯界面与硅氧烷组分之间的交联与键合作用。
(3)乳液稳定性测试
以实施例1~4以及对比例1~3制备的复合乳液为待测物,进行如下测试:使用去离子水为溶剂,将乳液稀释至2%浓度,观察乳液的 稀释稳定性;
以2000r/min的转速,将乳液离心5min,观察乳液的离心稳定性;
用5%浓度的CaCl 2溶液将乳液稀释至10%浓度,观察Ca 2+稳定性;
将乳液在60℃下静置24h,观察乳液的高温稳定性
将乳液在0℃下静置18h,观察乳液的低温稳定性。
所得结果见表2:
表2 各实验组的复合乳液稳定性
  实施例1 实施例2 实施例3 实施例4 对比例1 对比例2 对比例3
离心稳定性 较好 很好 很好 较好 较好 较差 较差
稀释稳定性 很好 很好 很好 很好 很好 较好 较好
Ca 2+稳定性 很好 很好 很好 较好 很好 较差
低温稳定性 较好 较好 较好 较好 较差
高温稳定性 很好 很好 很好 很好 很好 较好 较差
表2中:很好是指复合乳液在静置14天以后仍可以保持很好地稳定性,乳液的形态基本不发生任何变化;较好是指复合乳液开始具有较高的稳定性,然而在静置了14天之后,乳液出现了轻微的团聚、凝胶、分层、离析等现象;较差是指复合乳液开始就出现了轻微了团聚、凝胶、分层或离析,而在静置了14天之后,乳液的稳定性进一步降低,出现了较为严重的凝聚或分层现象;差是指复合乳液一开始就表现出了较为严重的凝聚或分层现象。
(4)乳液的粒径分布和分散性
实施例1~4以及对比例1~3所得乳液的粒径分布及Zeta电位如表3所示:
表3 实施例1~4及对比例1~3所得复合乳液的粒径分布和Zeta电位
Figure PCTCN2022072648-appb-000002
由表3中的数据可知,实施例1~4所得复合乳液的平均粒径均小于250nm,但均大于对比例1~3中核壳乳液与共聚乳液的平均粒径,满足渗透型防护乳液的基本要求。实施例1~4所得复合乳液的PDI均质性指数 均小于0.35,但仍高于对比例1~3,也反映出本发明制得复合乳液的分子量分布具有较高的离散性,这也是氧化石墨烯改性皮克林乳液的显著特征之一。实施例1~4所得复合乳液的Zeta电位绝对值显著高于对比例1~3,表明本发明制得的皮克林结构具有优越的分散性,其中实施例4的Zeta电位绝对值最大,表明皮克林结构中界面氧化石墨烯含量的增大有利于皮克林乳液稳定性的提高。
(4)乳液的疏水与防水性能
将实施例1~4制备的氧化石墨烯改性苯丙-硅氧烷皮克林复合乳液以及对比例1~3中制备的乳液,按照600g/m 2的用量分两次将乳液涂覆在水泥净浆试件表面,两次间隔不少于6h,干燥后进行静态水接触角测试。
静态水接触角测试:利用表面接触角测量仪,对各实验组的水泥净浆试件表面的静态水接触角进行测量,所得静态接触角的测试图如图3所示,接触角的具体数据见表4。
表4 各实验组的水泥试件表面静态接触角
  实施例1 实施例2 实施例3 实施例4 对比例1 对比例2 对比例3
接触角/° 124.85 133.16 136.02 127.56 123.93 104.22 110.40
从图3与表4可以看出,与对比例1~3相比,实施例1~4制备的乳液形成的膜具有更大的表面接触角,表现出较高的疏水性能。说明本发明制备的复合乳液形成的涂层的疏水性能优于核壳乳液与氧化石墨烯改性共聚乳液,表明皮克林乳液中氧化石墨烯的乳化替代作用与界面改性作用能够显著提升涂层的疏水性能。
静态吸水实验:将干燥混凝土试件的一个非浇筑面作为涂覆面,按照600g/m 2的用量,分两次将乳液涂覆在水泥净浆试件表面,两次间隔不少于6h,侧面用固化胶密封。将混凝土试件置于蒸馏水中,涂覆面朝下距水面约0.5cm,测量混凝土试件的静态毛细吸水量随渗透时间的变化规律,所得结果见图4和表5,图4为各实验组的混凝土试件的静态毛细吸水曲线图,表5为各实验组24h的混凝土静态毛细吸水率数据。
表5 各实验组24h的混凝土静态毛细吸水率(g·m -2h -0.5)
  实施例1 实施例2 实施例3 实施例4 对比例1 对比例2 对比例3
毛细吸水率 12.4 9.7 10.3 11.4 15.4 17.2 15.9
从图4与表5可以看出,与涂覆对比例1~3的普通核壳乳液与氧化石墨烯改性共聚乳液的混凝土试件相比,经过本发明制得的氧化石墨烯改性皮克林复合乳液处理后的混凝土试件的静态毛细吸水率有大幅度的降低。相较于对比例1中的毛细吸水率,实施例1~4分别降低了19.5%、37.0%、33.1%与25.9%,其中实施例2的静态毛细吸水率降低程度最大。说明本发明提出的制备方法能够最大限度地发挥氧化石墨烯对苯丙-硅氧烷核壳结构的界面改性性能,改善皮克林乳液在水泥基材料表面的成膜性能与防护性能,抑制水分子在混凝土内部的扩散与传输。
(5)抗氯盐与硫酸盐侵蚀性能
采用和静态吸水实验相同的方法,将干燥混凝土试件的一个非浇筑面作为涂覆面,侧面用固化胶密封,然后将试件分别浸泡在浓度为10%的NaCl和Na 2SO 4溶液中,测试混凝土试件中氯离子和硫酸根离子的渗透情况。所得结果如图5~6所示,图5是各实验组的混凝土氯离子侵蚀速率的计算拟合图,图6是各实验组的混凝土硫酸根离子侵蚀速率的计算拟合图。
从图5与图6可以看出,相较于对比例1~3,实施例1~4中经氧化石墨烯改性苯丙-硅氧烷皮克林复合乳液处理过的混凝土试件的氯离子与硫酸根离子的侵蚀速率有了不同程度的降低,表明通过构建具有氧化石墨烯界面的皮克林结构能够显著提高苯丙组份与硅氧烷组分的耐离子渗透性能。在整个侵蚀过程中,氯离子与硫酸根离子的侵蚀速率相对稳定,表明由界面氧化石墨烯连接的苯丙-硅氧烷皮克林乳液可以有效地抑制侵蚀离子在混凝土毛细孔道中的扩散与传输,阻断侵蚀离子的传输路径,降低毛细孔道内离子的渗透压强。
(6)乳胶膜耐酸碱性能
采用各实验组制得的乳液制备乳胶膜,具体制备方法为:将乳液倒入聚四氟乙烯的条状模具中,在40℃下烘干48h,脱模形成乳胶膜试样,试样尺寸为15mm×50mm×3mm。将所得乳胶膜分别放置在pH=3的稀盐酸溶液以及pH=12的氢氧化钠溶液中,浸泡72h,测量其质量损失率,所得结果见表6。
表6 酸碱腐蚀下各实验组的乳胶膜质量损失率
  实施例1 实施例2 实施例3 实施例4 对比例1 对比例2 对比例3
酸腐蚀 38% 36% 32% 29% 42% 47% 40%
碱腐蚀 19% 17% 17% 16% 24% 22% 18%
由表6可以看出,酸碱腐蚀下实施例1~4的乳胶膜质量损失率小于对比例1~3,采用本发明的制备方法合成的复合乳液形成的涂层具有更加优越的抵抗酸碱腐蚀的性能。其中,实施例4的乳胶膜质量损失率最小,表明较高的界面氧化石墨烯含量有利于皮克林乳液涂层的耐酸碱腐蚀性能的提高。
按照静态吸水实验相同的方法制备水泥试件,然后采用与如上质量损失率相同的实验方法对水泥试件表面的涂层进行腐蚀,利用粘结强度检测仪与铅笔硬度计,测量酸碱腐蚀72h后水泥试件表面复合涂层的表面粘结附着强度以及铅笔硬度,所得结果如表7所示:
表7 酸碱腐蚀下各实验组的水泥试件表面涂层粘结附着强度与铅笔硬度
Figure PCTCN2022072648-appb-000003
由表7可以看出,相较于对比例中的核壳乳液与氧化石墨烯改性共聚乳液,酸碱腐蚀下实施例1~4中制得的复合乳液与水泥基材料之间具有更高的表面粘结附着强度。酸碱腐蚀下对比例中乳胶膜的铅笔硬度较低,而实施例1~4中涂层的铅笔硬度则有不同程度的提升。其中,实施例4的表面粘结附着强度最高,其铅笔硬度也最高,表现出优越的耐酸碱腐蚀性能。
(7)乳胶膜抗老化性能
采用各实验组制得乳液制备乳胶膜(制备方法和质量损失率测试中相同),将所得乳胶膜放置在辐射度50w/m 2、波长254nm的人工紫外线下持续照射72h,测量其表面失光率与交联密度损失率,所得结果见表8。
另外,将各实验组制得的乳胶膜放置在氙灯老化试验箱中,在70℃条件下老化处理144h,测量其拉伸强度和断裂伸长率的损失率,所得结 果见表9。
表8 各实验组的乳胶膜交联密度损失率/%
Figure PCTCN2022072648-appb-000004
表9 各实验组的乳胶膜拉伸强度与断裂伸长率损失率/%
  实施例1 实施例2 实施例3 实施例4 对比例1 对比例2 对比例3
拉伸强度 21.8 19.7 17.5 16.4 22.7 33.5 29.9
断裂伸长率 22.2 24.2 20.4 20.8 28.7 42.5 38.8
从表8中可以看出,实施例1~4的复合乳液涂层的交联密度损失率显著低于于对比例1~3,表现出优越的抗紫外线老化性能。此外,实施例1~4所得涂层的拉伸强度与断裂伸长的损失率也显著低于对比例1~3,尤其是老化后乳胶膜的断裂伸长率有了明显的改善。其中,实施例4的交联密度损失率、拉伸强度损失率与断裂伸长率损失率均为最低,表明界面氧化石墨烯含量的增加有利于皮克林乳液涂层的抗紫外老化性能与耐热老化性能的提高。
(8)乳胶膜SEM与AFM观察
图7~图10为实施例1~4和对比例1~3所得乳液形成的乳胶膜的SEM扫描电镜测试图;
图11~图14为实施例1~4和对比例1~3所得乳液形成的乳胶膜的AFM原子力显微镜测试图。
由图7~图14可以看出,实施例1~4形成的乳胶膜的表面粗糙度明显高于对比例中普通核壳乳液涂层与共聚乳液涂层的乳胶膜。实施例1~4所得乳液形成的乳胶膜含有更少的表面孔隙并且具有典型的鳞片状表面形态,表明采用本发明的制备方法能够显著增强复合涂层的表面粗糙度与结构密实性,进而有利于提高复合防腐涂层的防水性能与抗离子侵蚀性能。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (21)

  1. 一种氧化石墨烯改性苯丙皮克林乳液的制备方法,包括以下步骤:
    将氧化石墨烯缓冲液和苯丙单体混合液混合进行第一超声分散,将所得乳液和硅烷偶联剂混合进行第二超声分散,得到氧化石墨烯改性苯丙皮克林乳液;所述氧化石墨烯缓冲液的组分包括氧化石墨烯、水和pH值缓冲剂;所述苯丙单体混合液的组分包括水、引发剂、苯乙烯和丙烯酸酯单体。
  2. 根据权利要求1所述的制备方法,其特征在于,所述苯丙单体混合液中引发剂的质量分数为0.3%~0.7%,苯乙烯的质量分数为10%~30%,丙烯酸酯单体的质量分数为60%~90%。
  3. 根据权利要求1或2所述的制备方法,其特征在于,所述苯丙单体混合液中的引发剂包括过硫酸盐和偶氮类引发剂中的一种或几种。
  4. 根据权利要求1所述的制备方法,其特征在于,所述氧化石墨烯缓冲液中的氧化石墨烯的质量为苯丙单体混合液质量的1%~10%,所述氧化石墨烯缓冲液中水的质量为苯丙单体混合液质量的60%~150%;所述氧化石墨烯缓冲液的pH值为7~8.5。
  5. 根据权利要求1所述的制备方法,其特征在于,所述pH缓冲剂包括碳酸氢钠、碳酸钠、磷酸氢钠、巴比妥缓冲液、三羟甲基氨基甲烷和甘油磷酸缓冲液中的一种或几种。
  6. 根据权利要求1所述的制备方法,其特征在于,所述第一超声分散的温度为30~60℃,时间为1~3h。
  7. 根据权利要求1所述的制备方法,其特征在于,所述第二超声分散的温度为55~75℃,时间为0.5~2h。
  8. 权利要求1~7任意一项所述制备方法制备的氧化石墨烯改性苯丙皮克林乳液,具有氧化石墨烯改性的苯丙皮克林结构,包括苯丙核和包裹于苯丙核外侧界面处的氧化石墨烯,且所述氧化石墨烯通过偶联剂偶联在一起。
  9. 一种氧化石墨烯改性苯丙-硅氧烷皮克林复合乳液的制备方法,包括以下步骤:
    将壳相乳液、权利要求8所述的氧化石墨烯改性苯丙皮克林乳液和引 发剂水溶液混合进行聚合反应,得到氧化石墨烯改性苯丙-硅氧烷皮克林复合乳液;所述壳相乳液的组分包括硅烷单体、丙烯酸酯功能单体、乳化剂和水。
  10. 根据权利要求9所述的制备方法,其特征在于,所述壳相乳液中硅烷单体的质量分数为20%~50%;所述丙烯酸酯功能单体的质量为硅烷单体质量的10%~50%,所述乳化剂的质量为硅烷单体和丙烯酸酯功能单体总质量的2%~5%。
  11. 根据权利要求9所述的制备方法,其特征在于,所述壳相乳液的制备方法包括:将硅烷单体、丙烯酸酯功能单体、乳化剂和水混合进行低温高速搅拌,得到壳相乳液;所述低温高速搅拌的温度为30~50℃,转速为800~1200r/min。
  12. 根据权利要求9、10或11所述的制备方法,其特征在于,所述硅烷单体为长链烃基硅烷,所述长链烃基硅烷中烃基的碳原子数为4~18。
  13. 根据权利要求12所述的制备方法,其特征在于,所述长链烃基硅烷为正丁基三乙氧基硅烷、正辛基三甲氧基硅烷、正辛基三乙氧基硅烷、十二烷基三甲氧基硅烷和十二烷基三乙氧基硅烷中的一种或几种。
  14. 根据权利要求9、10或11所述的制备方法,其特征在于,所述丙烯酸酯功能单体丙烯酸羟乙酯和/或丙烯酸羟丙酯。
  15. 根据权利要求9、10或11所述的制备方法,其特征在于,所述乳化剂为OP-10、司班80、十二烷基硫酸钠、十二烷基磺酸钠和十二烷基苯磺酸钠中的一种或几种。
  16. 根据权利要求9所述的制备方法,其特征在于,所述氧化石墨烯改性苯丙皮克林乳液和壳相乳液的质量比为1:(1~5)。
  17. 根据权利要求9或16所述的制备方法,其特征在于,所述引发剂水溶液中引发剂的质量为壳相乳液质量的0.2%~0.5%。
  18. 根据权利要求9所述的制备方法,其特征在于,所述聚合反应在高温低速搅拌条件下进行;所述高温低速搅拌的温度为80~85℃,转速为100~300r/min,时间为1~3h。
  19. 根据权利要求9所述的制备方法,其特征在于,所述聚合反应后,还包括将所得乳液反复进行低速搅拌和超声分散,将进行一次低速搅拌和 一次超声分散记为反复一次,所述反复的次数为3~6次。
  20. 权利要求9~19任意一项所述制备方法制备得到的氧化石墨烯改性苯丙-硅氧烷皮克林复合乳液,其特征在于,所述复合乳液具有核壳结构,包括壳结构、核结构以及连接壳结构和核结构的中间过渡层,其中壳结构为硅氧烷聚合物,核结构为氧化石墨烯改性的苯丙皮克林结构,所述中间过渡层为丙烯酸酯功能单体形成的聚合物。
  21. 权利要求20所述氧化石墨烯改性苯丙-硅氧烷皮克林复合乳液在水泥基材料防腐中的应用。
PCT/CN2022/072648 2021-12-28 2022-01-19 一种氧化石墨烯改性苯丙皮克林乳液以及一种复合乳液及其制备方法和应用 WO2023123580A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023536388A JP2024504563A (ja) 2021-12-28 2022-01-19 酸化グラフェン変性スチレンアクリルピッカリングエマルション及び複合エマルションの調製方法並びにセメント系材料の防食方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111624818.7 2021-12-28
CN202111624818.7A CN114230723B (zh) 2021-12-28 2021-12-28 一种氧化石墨烯改性苯丙皮克林乳液以及一种复合乳液及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2023123580A1 true WO2023123580A1 (zh) 2023-07-06

Family

ID=80764002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/072648 WO2023123580A1 (zh) 2021-12-28 2022-01-19 一种氧化石墨烯改性苯丙皮克林乳液以及一种复合乳液及其制备方法和应用

Country Status (3)

Country Link
JP (1) JP2024504563A (zh)
CN (1) CN114230723B (zh)
WO (1) WO2023123580A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117285847A (zh) * 2023-09-08 2023-12-26 浙江永通新材料股份有限公司 一种水性聚丙烯薄膜涂覆用涂层及其制备方法
CN117866470A (zh) * 2024-03-04 2024-04-12 成都虹润制漆有限公司 一种用于铁路桥梁钢结构的改性复合涂层及其制备方法
CN117866470B (zh) * 2024-03-04 2024-05-24 成都虹润制漆有限公司 一种用于铁路桥梁钢结构的改性复合涂层及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116023833B (zh) * 2023-02-10 2023-11-24 青岛理工大学 一种苯丙-硅氧烷互穿聚合物网络复合乳液的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1827668A (zh) * 2005-03-04 2006-09-06 华东理工大学 核壳型聚硅氧烷复合粒子的制备方法
CN102532554A (zh) * 2011-12-30 2012-07-04 山东省产品质量监督检验研究院 一种有机硅改性丙烯酸酯核壳材料的制备方法
WO2019135094A1 (en) * 2018-01-08 2019-07-11 The University Of Sussex Pickering emulsions
CN113402200A (zh) * 2021-06-28 2021-09-17 青岛理工大学 氧化石墨烯/丙烯酸丁酯/硅烷复合乳液作为抗收缩剂的应用

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103408786A (zh) * 2013-07-26 2013-11-27 复旦大学 一种石墨烯-聚合物多孔复合材料的制备方法
CN111068362A (zh) * 2018-10-22 2020-04-28 中国石油化工股份有限公司 一种疏水亲油的多孔材料的制备方法
CN109385254B (zh) * 2018-11-26 2021-03-26 同济大学 一种石墨烯弹性聚合物相变复合材料及其制备方法
CN110698616B (zh) * 2019-11-01 2022-01-25 河北科技大学 一种石墨烯/丙烯酸复合乳液、防腐水性涂料及其制备方法
CN115485882A (zh) * 2020-05-04 2022-12-16 西北大学 用于电极材料的保形皮克林乳液石墨烯涂层、形成方法及其应用
CN111518450A (zh) * 2020-06-11 2020-08-11 金陵科技学院 一种氧化石墨烯/丙烯酸酯-环氧树脂复合防腐涂料的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1827668A (zh) * 2005-03-04 2006-09-06 华东理工大学 核壳型聚硅氧烷复合粒子的制备方法
CN102532554A (zh) * 2011-12-30 2012-07-04 山东省产品质量监督检验研究院 一种有机硅改性丙烯酸酯核壳材料的制备方法
WO2019135094A1 (en) * 2018-01-08 2019-07-11 The University Of Sussex Pickering emulsions
CN113402200A (zh) * 2021-06-28 2021-09-17 青岛理工大学 氧化石墨烯/丙烯酸丁酯/硅烷复合乳液作为抗收缩剂的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NI, WEINAN ET AL.: "Preparation and Properties of Modified Graphene/Polyacrylate Composite Pickering Emulsion Film", JOURNAL OF FUDAN UNIVERSITY (NATURAL SCIENCE), vol. 57, no. 6, 13 December 2018 (2018-12-13), XP009547001 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117285847A (zh) * 2023-09-08 2023-12-26 浙江永通新材料股份有限公司 一种水性聚丙烯薄膜涂覆用涂层及其制备方法
CN117866470A (zh) * 2024-03-04 2024-04-12 成都虹润制漆有限公司 一种用于铁路桥梁钢结构的改性复合涂层及其制备方法
CN117866470B (zh) * 2024-03-04 2024-05-24 成都虹润制漆有限公司 一种用于铁路桥梁钢结构的改性复合涂层及其制备方法

Also Published As

Publication number Publication date
CN114230723A (zh) 2022-03-25
CN114230723B (zh) 2023-02-28
JP2024504563A (ja) 2024-02-01

Similar Documents

Publication Publication Date Title
WO2023123580A1 (zh) 一种氧化石墨烯改性苯丙皮克林乳液以及一种复合乳液及其制备方法和应用
CN104530302B (zh) 一种高硅含量的硅溶胶/聚丙烯酸酯乳液及其制备方法
CN105061700B (zh) 纳米二氧化硅/聚丙烯酸酯有机无机杂化水分散性树脂及其制备方法
CN107118650B (zh) 硅溶胶/含羟基聚丙烯酸酯乳液-氨基树脂烤漆及其制备方法
CN103554346B (zh) 氧化石墨烯改性聚丙烯酸酯制备涂料印花粘合剂的方法
CN102898578B (zh) 一种自交联硅丙聚合物乳液及其制备方法
TWI484005B (zh) 塗膜組成物及反射防止膜
CN101831230A (zh) 反应性乳化剂制备聚丙烯酸酯/纳米SiO2复合涂饰剂的方法
WO2017114375A1 (zh) 一种水泥基材料增强剂及其制备方法和应用
CN108517024B (zh) Pickering细乳液聚合法制备聚丙烯酸酯/纳米ZnO复合皮革涂饰剂及制备方法
WO2013078778A1 (zh) 双原位法制备酪素基纳米二氧化硅复合皮革涂饰剂的方法
CN112062918B (zh) 无硫无皂原位raft乳液共聚合成聚合物/颜料杂化乳胶的方法
WO2023123579A1 (zh) 苯丙-硅氧烷复合核壳乳液及其制备方法和应用
CN103626911A (zh) 一种疏水性有机无机高硅含量丙烯酸酯聚合物乳液及其制备方法与应用
CN102020817A (zh) 纳米二氧化硅改性硅丙无皂乳液的制备方法
CN104262552A (zh) 硅溶胶/硅丙纳米核壳复合乳液及其制备方法
CN105713155A (zh) 用于纸质文物保护的聚合物材料的制备方法及其应用
JPS634883A (ja) コンクリ−ト構造物の仕上材層施工方法
CN103665242B (zh) 一种硅溶胶/丙烯酸酯纳米核壳复合乳液及其制备方法
Arai et al. Colloidal silica bearing thin polyacrylate coat: A facile inorganic modifier of acrylic emulsions for fabricating hybrid films with least aggregation of silica nanoparticles
CN104774287B (zh) 聚丙烯酸酯乳液微凝胶及其制备方法
CN106632791A (zh) 一种抗新鲜水泥泛碱底漆苯丙乳液及其制备方法
CN109651561A (zh) 超耐候超耐沾污超耐水白的丙烯酸酯乳液及其制备方法
CN101215356A (zh) 纳米二氧化硅改性弹性丙烯酸酯共聚乳液
CN106565890A (zh) 一种卓越冻融稳定性纯丙乳液及其制备方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023536388

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22912888

Country of ref document: EP

Kind code of ref document: A1