WO2023120034A1 - 蛍光体、及び、蛍光体の製造方法 - Google Patents

蛍光体、及び、蛍光体の製造方法 Download PDF

Info

Publication number
WO2023120034A1
WO2023120034A1 PCT/JP2022/043596 JP2022043596W WO2023120034A1 WO 2023120034 A1 WO2023120034 A1 WO 2023120034A1 JP 2022043596 W JP2022043596 W JP 2022043596W WO 2023120034 A1 WO2023120034 A1 WO 2023120034A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
chromium
mol
less
content
Prior art date
Application number
PCT/JP2022/043596
Other languages
English (en)
French (fr)
Inventor
良々歌 中嶋
広樹 坂野
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Publication of WO2023120034A1 publication Critical patent/WO2023120034A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead

Definitions

  • the present disclosure relates to phosphors and phosphor manufacturing methods.
  • Light-emitting devices having light-emitting elements such as light-emitting diodes are used for general lighting, backlights for liquid crystal displays, LED displays, and light-emitting devices for quality inspection.
  • An LED display uses, for example, a light-emitting element that emits blue light and a wavelength converter that absorbs primary light from the light-emitting element and emits light of a different wavelength.
  • Various phosphors such as a red phosphor and a green phosphor are used as the wavelength converter.
  • near-infrared light can also be used as a heat source
  • studies are underway on phosphors that emit light in the near-infrared region.
  • a phosphor that emits light in the near-infrared region a phosphor having chromium as a luminescence center is proposed as a candidate.
  • Patent Document 1 in a chemical composition of 1 mol, the molar ratio of the total of Gd and Cr is 1, and the molar ratio of Cr is 0.0085 or more and 0.05 or less, Gd, Cr, and Al and is excited by light having an emission peak wavelength in the range of 380 nm or more and 480 nm or less, and having an emission peak wavelength in the range of 690 nm or more and 790 nm or less.
  • Patent Document 2 discloses a light-emitting device comprising a light-emitting source and a phosphor, wherein the phosphor contains at least a near-infrared light-emitting phosphor that emits near-infrared light when excited. It is
  • a phosphor that emits near-infrared light and has excellent emission intensity is useful.
  • An object of the present disclosure is to provide a phosphor with excellent emission intensity and a method for producing the same.
  • the present disclosure provides the following [1] to [9].
  • the main crystal phase has the same structure as the Li2MgGeO4 crystal phase, Containing tetravalent chromium as an activating element,
  • the integral value of the spectrum with a wavelength of 700 to 900 nm is X
  • the integral value of the spectrum with a wavelength of 1100 to 1300 nm is Y / X value. is 50 or more.
  • the main crystal phase is represented by the general formula: A 2 B(C 1-x Cr x )O 4 (wherein A, B and C represent mutually different metal elements);
  • a in the general formula contains Li
  • the content of Li in A is 90 mol % or more.
  • a composition containing a compound having lithium as a constituent element, a compound having magnesium as a constituent element, a compound having germanium as a constituent element, and a compound having chromium as a constituent element is fired in air to obtain a fired product. process and a step of reducing at least part of chromium in the fired product by heat-treating the fired product at a temperature of 850° C. or less; A method for producing a phosphor, wherein the chromium content is 8 mol % or less with respect to the total amount of germanium and chromium in the composition. [9] The production method according to [8], wherein the heat treatment of the fired product is performed in a reducing atmosphere containing ammonia.
  • the main crystalline phase has the same structure as the Li 2 MgGeO 4 crystalline phase, contains tetravalent chromium as an activating element, and the fluorescence spectrum has a wavelength of 700 to 900 nm.
  • a phosphor in which the value of Y/X is 50 or more, where X is the integrated value of the spectrum with a wavelength of 1100 to 1300 nm and Y is the integrated value.
  • the above-described phosphor can exhibit excellent emission intensity by having the ratio of the integrated intensity of the specific wavelength region in the fluorescence spectrum within a predetermined range.
  • the peak observed in the wavelength range of 700 to 900 nm corresponds to the emission of trivalent chromium
  • the peak observed in the wavelength range of 1100 to 1300 nm. corresponds to the emission of tetravalent chromium
  • the main crystal phase is represented by the general formula: A 2 B(C 1-x Cr x ) O 4 (wherein A, B, and C represent different metal elements), and the Cr content is C and Cr, it may be 8 mol % or less (corresponding to x being 0.08 or less in the above general formula), or 6 mol % or less.
  • a in the above general formula may contain Li, and the content of Li in A may be 90 mol% or more.
  • B in the above general formula may contain Mg, and the content of Mg in B may be 90 mol % or more.
  • C in the above general formula may contain Ge, and the content of Ge in C may be 90 mol % or more.
  • the maximum value of the peak intensity in the region where the diffraction angle (2 ⁇ ) is 17.0 to 19.5 ° is ⁇ , and the diffraction angle is 20.5 to 23.5 °.
  • the value of ⁇ / ⁇ may be 0.047 or less, where ⁇ is the maximum value of the peak intensity in the region.
  • One aspect of the present disclosure is to bake a composition containing a compound having lithium as a constituent element, a compound having magnesium as a constituent element, a compound having germanium as a constituent element, and a compound having chromium as a constituent element in the atmosphere. obtaining a fired product; and heat-treating the fired product at a temperature of 850° C. or less to reduce at least part of chromium in the fired product, wherein germanium and chromium in the composition
  • a method for producing a phosphor wherein the content of chromium is 8 mol % or less with respect to the total amount of
  • a composition having an adjusted chromium content is fired to form a crystal structure, and then reduced under predetermined conditions to remove tetravalent chromium, which serves as a luminescence center. It is possible to increase the proportion. Due to such action, the above-described phosphor can be manufactured by the method for manufacturing the above-described phosphor.
  • the heat treatment of the fired product may be performed in a reducing atmosphere containing ammonia.
  • FIG. 1 is a diagram showing fluorescence spectra obtained when the phosphors prepared in Examples were irradiated with light having a wavelength of 450 nm.
  • FIG. 2 is a diagram showing powder X-ray diffraction spectra of phosphors prepared in Examples.
  • FIG. 3 is a diagram showing the measurement results of the emission intensity of the phosphors prepared in Examples.
  • each component in the composition means the total amount of the multiple substances present in the composition unless otherwise specified when there are multiple substances corresponding to each component in the composition.
  • the “steps” used herein may be independent steps or steps performed simultaneously.
  • One embodiment of the phosphor has the same structure as the Li2MgGeO4 crystal phase in the main crystal phase and contains tetravalent chromium as an activating element.
  • the main crystal phase may be represented by the general formula: A 2 B(C 1-x Cr x )O 4 .
  • A, B, and C represent metal elements different from each other.
  • A, B, and C are mainly intended to represent one type of element, respectively, but may be partially substituted to represent two or more types of elements.
  • A is preferably lithium (Li)
  • B magnesium
  • C germanium
  • some of the respective elements are shown below. and may be substituted by elements that are candidates for and.
  • A may be, for example, lithium (Li), sodium (Na), potassium (K), etc., preferably contains Li, more preferably contains 90 mol% or more of Li, and Li is particularly preferred.
  • B may be, for example, magnesium (Mg), zinc (Zn), and calcium (Ca), preferably containing Mg, more preferably containing 90 mol% or more of Mg, is particularly preferred.
  • C may be, for example, germanium (Ge), silicon (Si), tin (Sn), etc., preferably contains Ge, more preferably contains 90 mol% or more of Ge, and Ge is particularly preferred.
  • the notation (C 1-x Cr x ) in the above general formula means that both C and Cr are included, and that Cr is included in a form substituting part of the C site.
  • chromium (Cr) may be introduced into germanium (Ge) sites.
  • the phosphor may be represented by, for example, the general formula: Li 2 Mg(Ge 1-x Cr x )O 4 , where x is, for example, greater than 0 and 0.1 or less, 0.005 may be ⁇ 0.1, 0.005-0.08, 0.005-0.06, 0.005-0.03, or 0.005-0.02.
  • the main crystal phase has the same crystal structure as the Li2MgGeO4 crystal phase, but its space group may be, for example, Pmn21 .
  • the main crystalline phase means the phase with the largest proportion of the produced phase calculated by the powder X-ray diffraction method.
  • the phosphor may contain, in addition to the main crystal phase, a heterophase within the scope of the present disclosure.
  • Heterogeneous phases include, for example, phases having the same crystal composition but different space groups (for example, a crystal structure whose space group is Pnma), or phases having different crystal compositions (for example, MgCr 2 O 4 and the like).
  • the crystal structure of the phosphor can be confirmed by the powder X-ray diffraction method.
  • the content of lithium (Li), magnesium (Mg), germanium (Ge), and chromium (Cr) in the composition of the phosphor was determined by subjecting the object to be measured to acid decomposition under pressure to prepare a sample solution. can be determined by quantitative analysis using an ICP emission spectrometer.
  • the oxygen (O) content can be estimated based on the charge balance from the elemental content of the ICP. Since the elemental composition in the phosphor corresponds to the ratio of each element charged when the phosphor is produced, the elemental composition of the phosphor can also be estimated from the raw material composition.
  • the content of chromium in the main crystal phase can be adjusted according to the emission characteristics required for the phosphor.
  • the main crystal phase is represented by the general formula: A 2 B(C 1-x Cr x ) O 4 (wherein A, B, and C represent mutually different metal elements)
  • the Cr content is , based on the total amount of C and Cr, for example, 10 mol% or less, 8 mol% or less (corresponding to x being 0.08 or less in the above general formula), 7 mol% or less, 6 mol% or less, 5 mol% or less, It may be 2 mol % or less, or 1.5 mol % or less.
  • a heterophase may occur during the manufacturing process.
  • the Cr content is Based on the total amount, it may be, for example, 0.3 mol % or more, 0.5 mol % or more, or 0.7 mol % or more.
  • tetravalent Cr Cr 4+
  • the lower limit of the chromium content is within the above range.
  • the amount can be improved, and the emission intensity of the obtained phosphor can be improved more fully.
  • the content of chromium in the main crystal phase may be adjusted within the range described above, and the main crystal phase has the general formula: A 2 B(C 1-x Cr x )O 4 (in the general formula, A, B, C represents a metal element different from each other), the content of Cr is, for example, 0.3 to 10 mol%, or 0.5 to 1.5 mol%, based on the total amount of C and Cr. It's okay.
  • X is the integrated value of the spectrum with a wavelength of 700 to 900 nm
  • Y is the integrated value of the spectrum with a wavelength of 1100 to 1300 nm.
  • Y/X value is 50 or more.
  • the lower limit of the value of Y/X may be, for example, 60 or more, 100 or more, 200 or more, 400 or more, or 600 or more.
  • the upper limit of the value of Y/X may be, for example, 1500 or less, 1000 or less, 800 or less, or 700 or less.
  • a large Y/X value means that the ratio of tetravalent chromium is high. The incidence rate of Therefore, by setting the upper limit of the value of Y/X within the above range, it is possible to suppress an increase in the proportion of heterogeneous phases during the manufacturing process, and to obtain a phosphor with better optical properties.
  • the integrated values X and Y of the fluorescence spectrum peaks in this specification mean the values determined from the fluorescence spectrum measured using the fluorescence spectrometer for the above phosphor. Specifically, the fluorescence spectrum is obtained by measuring according to the operation described in the examples of this specification.
  • the fluorescence spectrometer for example, "Fluorolog-3-iHR-NIR" (product name) manufactured by HORIBA, Ltd. can be used.
  • MgCr 2 O 4 is generally black and can absorb the excitation light applied to the phosphor and emitted fluorescence, so it is particularly desirable to reduce it.
  • MgCr 2 O 4 shows a peak in the region where the diffraction angle (2 ⁇ ) is 17.0 to 19.5° in the powder X-ray diffraction pattern, and Li 2 MgGeO 4 shows a diffraction angle has a peak in the region of 20.5 to 23.5°.
  • the maximum value of the peak intensity in the region where the diffraction angle (2 ⁇ ) is 17.0 to 19.5° is ⁇
  • the diffraction angle is 20.5 to 23.5°.
  • the value of ⁇ / ⁇ , where ⁇ is the maximum value of the peak intensity in the 5° region can be adjusted to be low.
  • the upper limit of the ⁇ / ⁇ value may be, for example, 0.047 or less, 0.045 or less, 0.040 or less, or 0.035 or less.
  • the lower limit of the value of ⁇ / ⁇ is not particularly limited, and may be 0 (meaning that MgCr 2 O 4 is not included), for example, 0.020 or more, or 0.020 or more. 030 or more.
  • the value of ⁇ / ⁇ may be adjusted within the above range, and may be, for example, 0.020-0.047, 0.030-0.040, or 0.030-0.035.
  • the maximum values ⁇ and ⁇ of peak intensity in this specification mean values determined by powder X-ray diffraction analysis for the phosphor.
  • the powder X-ray diffraction pattern is specifically measured and determined by the procedure described in the Examples of this specification.
  • the above phosphors may be used alone or in combination with other phosphors. Since the phosphor according to the present disclosure has excellent emission intensity, it can be suitably used for light emitting devices such as LEDs, display devices, and the like.
  • the phosphor may be dispersed in a cured resin and used.
  • the cured resin in this case is not particularly limited, and for example, a resin used as a sealing resin for light emitting devices or the like can be used.
  • An example of a light-emitting device is a light-emitting device that includes a light-emitting element that emits primary light, and a wavelength converter that absorbs part of the primary light and emits secondary light having a longer wavelength than the primary light.
  • the wavelength converting body includes the above phosphor according to the present disclosure.
  • a light-emitting element that emits primary light may be, for example, an InGaN blue LED or the like.
  • the light emitting element and the wavelength converter may be dispersed in a sealing resin or the like.
  • the phosphor described above can be produced, for example, by the following method.
  • One embodiment of the method for producing a phosphor is to prepare a composition containing a compound having lithium as a constituent element, a compound having magnesium as a constituent element, a compound having germanium as a constituent element, and a compound having chromium as a constituent element in the atmosphere.
  • a step of obtaining a fired product by firing at (hereinafter also referred to as a firing step), and a step of reducing at least part of chromium in the fired product by heat-treating the fired product at a temperature of 850 ° C. or less ( hereinafter also referred to as a reduction step).
  • the composition contains a compound that serves as a source of constituent elements of the phosphor, and includes a compound having lithium as a constituent element, a compound having magnesium as a constituent element, a compound having germanium as a constituent element, and chromium as a constituent element. Contains compounds.
  • Compounds containing lithium (Li) as a constituent element may be, for example, carbonates, oxides, fluorides, oxyfluorides, chlorides, nitrides, metals, and the like. Among the above compounds, it is preferable to contain a carbonate from the viewpoint of the stability of the raw material and promotion of the reaction.
  • the compound containing lithium (Li) as a constituent element may be lithium carbonate.
  • Compounds having magnesium (Mg) as a constituent element may be, for example, oxides, fluorides, oxyfluorides, chlorides, nitrides, and metals. Among the above compounds, oxides are preferably contained from the viewpoint of stability of raw materials and reaction promotion.
  • a compound containing magnesium (Mg) as a constituent element may be magnesium oxide.
  • Compounds containing germanium (Ge) as a constituent element may be, for example, oxides, fluorides, oxyfluorides, chlorides, nitrides, and metals. Among the above compounds, oxides are preferably contained from the viewpoint of stability of raw materials and reaction promotion.
  • a compound containing germanium (Ge) as a constituent element may be germanium oxide.
  • Compounds containing chromium (Cr) as a constituent element may be, for example, oxides, fluorides, oxyfluorides, chlorides, nitrides, and metals. Among the above compounds, oxides are preferably contained from the viewpoint of stability of raw materials and reaction promotion.
  • the compound containing chromium (Cr) as a constituent element may be chromium oxide.
  • the content of chromium is 8 mol% or less with respect to the total amount of germanium and chromium in the composition.
  • the upper limit of the chromium content is, for example, 8 mol% or less, 7 mol% or less, 6 mol% or less, 5 mol% or less, 2 mol% or less, or 1.5 mol with respect to the total amount of germanium and chromium in the composition. % or less.
  • the upper limit of the content of chromium is within the above range, it is possible to suppress the generation of heterogeneous phases and improve the optical properties of the resulting phosphor.
  • the lower limit of the chromium content may be, for example, 0.3 mol % or more, 0.5 mol % or more, or 0.7 mol % or more with respect to the total amount of germanium and chromium in the composition.
  • the content of chromium in the composition may be adjusted within the above range, for example, 0.3 to 8 mol%, or 0.5 to 1.5 mol, relative to the total amount of germanium and chromium in the composition. %.
  • the above composition may contain other components in addition to the compound having lithium as a constituent element, the compound having magnesium as a constituent element, the compound having germanium as a constituent element, and the compound having chromium as a constituent element.
  • Other components include, for example, a compound having sodium (Na) as a constituent element, a compound having zinc (Zn) as a constituent element, a compound having calcium (Ca) as a constituent element, and a compound having strontium (Sr) as a constituent element.
  • the above composition can be prepared by weighing and mixing each compound. Dry mixing or wet mixing may be used for mixing.
  • the dry mixing method may be, for example, a method of mixing each component using a V-type mixer or the like.
  • the wet mixing method may be, for example, a method of adding a solvent such as water or a dispersion medium to prepare a solution or slurry, mixing the components, and then removing the solvent or dispersion medium.
  • the lower limit of the heating temperature (firing temperature) in the firing step may be, for example, 800°C or higher, 900°C or higher, 1000°C or higher, or 1100°C or higher. Reaction can be accelerated because the lower limit of the heating temperature is within the above range.
  • the upper limit of the heating temperature in the firing step may be, for example, 1600° C. or less, 1500° C. or less, 1400° C. or less, or 1300° C. or less. When the upper limit of the heating temperature is within the above range, volatilization of the raw material components can be suppressed.
  • the heating temperature in the firing step may be adjusted within the range described above, and may be, for example, 800-1600°C or 1100-1300°C.
  • the lower limit of the heating time (firing time) in the firing step may be, for example, 3 hours or longer, 4 hours or longer, 5 hours or longer, or 6 hours or longer. When the lower limit of the heating time is within the above range, the reaction can be promoted.
  • the upper limit of the heating time in the firing step may be, for example, 11 hours or less, 10 hours or less, 9 hours or less, or 8 hours or less. When the upper limit of the heating time is within the above range, volatilization of raw material components can be suppressed.
  • the heating time in the firing step may be adjusted within the range described above, and may be, for example, 3 to 11 hours, or 6 to 8 hours.
  • the firing time, heating time, and the like in this specification mean the time (holding time) for maintaining the temperature after the temperature of the surrounding environment of the object reaches a predetermined temperature.
  • the rate of temperature increase when the temperature is increased to a predetermined temperature and the rate of temperature decrease when the temperature is decreased to room temperature can be adjusted as appropriate.
  • the rate of temperature increase in the firing step may be, for example, 2 to 15°C/min, 5 to 12°C/min, or 8 to 10°C/min.
  • the temperature drop rate in the firing step may be, for example, 2 to 15°C/min, 5 to 12°C/min, or 8 to 10°C/min.
  • the firing process is carried out in the atmosphere.
  • the number of times of heat treatment in the firing step may be one time, but may be, for example, two times or more, and may be two to five times, or two to four times.
  • the heating temperature, heating time, atmosphere during heating, and pressure during heating in the first firing step are the same as the heating temperature, heating time, and heating time in the above-described heating step. atmosphere and pressure during heating can be applied.
  • the heating temperature, heating time, atmosphere during heating, and pressure during heating in and after the second firing step may be the same as or different from those in the first firing step. However, even if the heating temperature, heating time, atmosphere during heating, and pressure during heating in the second and subsequent firing steps are different from those in the first firing step, within the conditions shown for the above heating step.
  • the fired material prepared in the firing process described above is heat-treated at a temperature of 850°C or less.
  • the reduction treatment at least part of the chromium whose valence increased during the process of obtaining the fired product can be reduced, and the ratio of tetravalent chromium that contributes to light emission can be increased.
  • the reduction step may be performed in a reducing atmosphere, and the reducing atmosphere may contain, for example, ammonia, hydrocarbons, carbon monoxide, hydrogen, and the like. Reduction of chromium can be promoted more by setting the reducing atmosphere as described above. From the viewpoint of suppressing the presence of hexavalent chromium due to insufficient reduction of chromium in the reduction step, the reducing atmosphere may be an atmosphere containing ammonia, preferably an ammonia atmosphere.
  • the flow rate of the atmosphere in the reduction process is, for example, 0.001 to 2.5 mL/min, 0.1 to 2.0 mL/min, 0.5 to 1.5 mL/min when using a furnace core tube with an inner diameter of 70 mm, Or it may be 0.8-1.2 mL/min.
  • the lower limit of the heating temperature in the reduction step may be, for example, 300°C or higher, 400°C or higher, 500°C or higher, 600°C or higher, 650°C or higher, or 700°C or higher.
  • the upper limit of the heating temperature in the reduction step may be, for example, 850° C. or lower, less than 850° C., 820° C. or lower, 800° C. or lower, or 750° C. or lower.
  • the heating temperature in the reduction step may be adjusted within the range described above, and may be, for example, 300-820°C, 600-820°C, 650-800°C, or 650-750°C.
  • the lower limit of the heating time in the reduction step may be 2 hours or longer, 3 hours or longer, 4 hours or longer, or 5 hours or longer.
  • the upper limit of the heating time in the reduction step may be 11 hours or less, 10 hours or less, 9 hours or less, or 8 hours or less.
  • the heating time in the reduction step may be adjusted within the above range, and may be, for example, 2 to 11 hours, or 7 to 8 hours.
  • the rate of temperature increase in the reduction step may be, for example, 2-15°C/min, 5-12°C/min, or 8-10°C/min.
  • the temperature drop rate in the reduction step may be, for example, 2 to 15°C/min, 5 to 12°C/min, or 8 to 10°C/min.
  • the manufacturing method described above may have other steps in addition to the firing step and the reduction step.
  • Other steps include, for example, a pulverization step, a classification step, an acid treatment step, and the like.
  • the pulverization step may be, for example, a step of pulverizing the fired product obtained in the firing step or the heat-treated product obtained in the reduction step.
  • a step of pulverizing the fired product obtained in the firing step or the heat-treated product obtained in the reduction step For example, by pulverizing the fired product obtained in the firing step before sending it to the reduction step to adjust the particle size, the surface area of the fired product can be increased and the efficiency of reduction in the subsequent reduction step can be improved. . Further, by pulverizing the heat-treated material obtained in the reduction step, the particle size of the phosphor can be adjusted according to the application.
  • a general crusher or crusher can be used in the crushing process.
  • a mortar, ball mill, vibration mill, jet mill, and the like can be used.
  • "pulverization” in this specification includes “crushing”.
  • Example 1 ⁇ Manufacturing method of phosphor> Lithium carbonate (Li 2 CO 3 , manufactured by Kojundo Chemical Laboratory Co., Ltd.), magnesium oxide (MgO, manufactured by Kanto Chemical Co., Ltd.), germanium oxide (GeO 2 , manufactured by Kojundo Chemical Laboratory Co., Ltd.), and Chromium oxide (Cr 2 O 3 , manufactured by Kojundo Chemical Laboratory Co., Ltd.) was measured so that the molar ratio of Li: Mg: Ge: Cr was 2: 1: 0.995: 0.005, A composition (raw material powder) was obtained by dry mixing.
  • the heat-treated product was used as the phosphor of Example 1.
  • the obtained phosphor is represented by the general formula: Li 2 Mg(Ge 1-x Cr x )O 4 (x is 0.005), and the main crystal phase has the same structure as the Li 2 MgGeO 4 crystal phase. It was confirmed.
  • Example 2 A phosphor was obtained in the same manner as in Example 1, except that the treatment temperature in the reduction step was changed to 700°C.
  • Example 3 A phosphor was obtained in the same manner as in Example 1, except that the treatment temperature in the reduction step was changed to 800°C.
  • ICP emission spectroscopic analysis method The composition was analyzed using a multi-type ICP emission spectrometer (Agilent's device, model number: 5110VDV type). 10 mg of phosphor was placed in a platinum crucible, 2 g of an alkaline flux was added, and the mixture was melted in an electric furnace. After standing to cool, 20 mL of hydrochloric acid (HCl) was added to the platinum crucible and dissolved by heating in a hot bath to obtain a solution. The resulting solution was then made up to 100 mL. This 100 mL solution was diluted 10-fold with pure water to prepare a test solution, which was set in the above apparatus and analyzed for its composition.
  • HCl hydrochloric acid
  • the fluorescent material to be measured was filled in a quartz cell and attached to the opening of the integrating sphere.
  • a monochromatic light with a wavelength of 450 nm from a xenon lamp as a light emission source was introduced into the integrating sphere as excitation light for the phosphor using an optical fiber.
  • the fluorescent substance to be measured was irradiated with the monochromatic light, which is the excitation light, and the fluorescence spectrum was measured.
  • a spectrophotometer manufactured by HORIBA, trade name: Fluorolog-3-iHR-NIR was used for the measurement.
  • the fluorescent material to be measured was filled in a quartz cell and attached to the opening of the integrating sphere.
  • Monochromatic light with a wavelength of 676 nm from a xenon lamp as a light emission source was introduced into the integrating sphere as excitation light for the phosphor using an optical fiber.
  • the fluorescent substance to be measured was irradiated with the monochromatic light, which is the excitation light, and the fluorescence spectrum was measured.
  • a spectrophotometer (trade name: Fluorolog-3-iHR-NIR, manufactured by HORIBA, Ltd.) was used for the measurement. From the obtained fluorescence spectrum data, the intensity ratio when the emission intensity of Example 1 was set to 1.0 was determined.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

本開示の一側面は、主結晶相がLiMgGeO結晶相と同一の構造を有し、4価のクロムを賦活元素として含み、波長450nmの光を照射した際に得られる蛍光スペクトルにおいて、波長700~900nmであるスペクトルの積分値をXとし、波長1100~1300nmであるスペクトルの積分値をYとしたときのY/Xの値が50以上である、蛍光体を提供する。

Description

蛍光体、及び、蛍光体の製造方法
 本開示は、蛍光体、及び、蛍光体の製造方法に関する。
 発光ダイオード等の発光素子を有する発光装置は、一般照明、液晶ディスプレイ用のバックライト、LEDディスプレイ、及び品質検査用途発光装置等に使用されている。LEDディスプレイでは、例えば、青色に発光する発光素子と、発光素子からの一次光を吸収して、波長の異なる光とを発する波長変換体とを有する発光素子が用いられる。そして、波長変換体として、赤色蛍光体、及び緑色蛍光体等の各種蛍光体が用いられる。
 近赤外光は熱源としての利用も考えられるため、近赤外領域で発光する蛍光体の検討が進められている。そして、近赤外領域で発光する蛍光体としてクロムを発光中心とするような蛍光体が候補として挙げられている。例えば、特許文献1には、化学組成1モルにおいて、GdとCrの合計のモル比を1として、Crのモル比が0.0085以上0.05以下である、Gdと、Crと、Alとを含む酸化物を含み、380nm以上480nm以下の範囲内に発光ピーク波長を有する光によって励起され、690nm以上790nm以下の範囲内に発光ピーク波長を有する近赤外発光蛍光体が開示されている。
 また特許文献2には、発光光源と蛍光体とを備える発光装置であって、上記蛍光体は、少なくとも励起されて近赤外光を発する近赤外発光蛍光体を含有する、発光装置が開示されている。
特開2020-041135号公報 特開2020-188044号公報
 近赤外光を発光する蛍光体であって、発光強度に優れるものがあれば有用である。
 本開示は、発光強度に優れる蛍光体及びその製造方法を提供することを目的とする。
 本開示は、以下の[1]~[9]を提供する。
[1] 主結晶相がLiMgGeO結晶相と同一の構造を有し、
 4価のクロムを賦活元素として含み、
 波長450nmの光を照射した際に得られる蛍光スペクトルにおいて、波長700~900nmであるスペクトルの積分値をXとし、波長1100~1300nmであるスペクトルの積分値をYとしたときのY/Xの値が50以上である、蛍光体。
[2] 前記主結晶相が一般式:AB(C1-xCr)O(一般式中、A,B,Cは互いに異なる金属元素を示す)で表され、
 Crの含有量が、C及びCrの合計量を基準として、8mol%以下である、[1]に記載の蛍光体。
[3] 前記Crの含有量が6mol%以下である、[2]に記載の蛍光体。
[4] 前記一般式におけるAがLiを含み、AにおけるLiの含有量が90mol%以上である、[2]又は[3]に記載の蛍光体。
[5] 前記一般式におけるBがMgを含み、BにおけるMgの含有量が90mol%以上である、[2]~[4]のいずれかに記載の蛍光体。
[6] 前記一般式におけるCがGeを含み、CにおけるGeの含有量が90mol%以上である、[2]~[5]のいずれかに記載の蛍光体。
[7] 粉末X線回折パターンにおいて、回折角(2θ)が17.0~19.5°である領域におけるピーク強度の最大値をαとし、回折角が20.5~23.5°である領域におけるピーク強度の最大値をβとしたときのα/βの値が0.047以下である、[1]~[6]のいずれかに記載の蛍光体。
[8] リチウムを構成元素として有する化合物、マグネシウムを構成元素として有する化合物、ゲルマニウムを構成元素として有する化合物、及びクロムを構成元素として有する化合物を含む組成物を大気下で焼成して焼成物を得る工程と、
 前記焼成物を850℃以下の温度で加熱処理することによって、前記焼成物中のクロムの少なくとも一部を還元する工程と、を有し、
 前記組成物におけるゲルマニウム及びクロムの合計量に対する前記クロムの含有量が8mol%以下である、蛍光体の製造方法。
[9] 前記焼成物の加熱処理が、アンモニアを含む還元性雰囲気下で行われる、[8]に記載の製造方法。
 本開示の一側面は、主結晶相がLiMgGeO結晶相と同一の構造を有し、4価のクロムを賦活元素として含み、蛍光スペクトルにおいて、波長700~900nmであるスペクトルの積分値をXとし、波長1100~1300nmであるスペクトルの積分値をYとしたときのY/Xの値が50以上である、蛍光体を提供する。
 上記蛍光体は、蛍光スペクトルにおける特定波長域の積分強度の比が所定範囲内となっていることによって、優れた発光強度を発揮し得る。なお、波長450nmの光を照射した際に得られる蛍光スペクトルにおける、700~900nmの波長域に観測されるピークは3価のクロムの発光に対応し、1100~1300nmの波長域に観測されるピークは4価のクロムの発光に対応しており、上記Y/Xの値が所定値以上であることで、蛍光体中の4価のクロムの割合が高いことを意味する。
 上記主結晶相が一般式:AB(C1-xCr)O(一般式中、A,B,Cは互いに異なる金属元素を示す)で表され、Crの含有量が、C及びCrの合計量を基準として、8mol%以下(上記一般式においてxが0.08以下であることに相当)であってよく、6mol%以下であってもよい。
 上記一般式におけるAがLiを含み、AにおけるLiの含有量が90mol%以上であってよい。また上記一般式におけるBがMgを含み、BにおけるMgの含有量が90mol%以上であってよい。また上記一般式におけるCがGeを含み、CにおけるGeの含有量が90mol%以上であってよい。
 上記蛍光体は、粉末X線回折パターンにおいて、回折角(2θ)が17.0~19.5°である領域におけるピーク強度の最大値をαとし、回折角が20.5~23.5°である領域におけるピーク強度の最大値をβとしたときのα/βの値が0.047以下であってよい。
 本開示の一側面は、リチウムを構成元素として有する化合物、マグネシウムを構成元素として有する化合物、ゲルマニウムを構成元素として有する化合物、及びクロムを構成元素として有する化合物を含む組成物を大気下で焼成して焼成物を得る工程と、上記焼成物を850℃以下の温度で加熱処理することによって、上記焼成物中のクロムの少なくとも一部を還元する工程と、を有し、上記組成物におけるゲルマニウム及びクロムの合計量に対する上記クロムの含有量が8mol%以下である、蛍光体の製造方法を提供する。
 上記蛍光体の製造方法は、クロムの含有量が調整された組成物を焼成することによって結晶構造を形成した後に、所定の条件下で還元を行うことによって、発光中心となる4価のクロムの割合を増大させることが可能となっている。このような作用によって、上記蛍光体の製造方法によって、上述の蛍光体を製造することができる。
 上記焼成物の加熱処理は、アンモニアを含む還元性雰囲気下で行われてよい。
 本開示によれば、発光強度に優れる蛍光体及びその製造方法を提供できる。
図1は、実施例において調製した蛍光体の波長450nmの光を照射した際に得られる蛍光スペクトルを示す図である。 図2は、実施例において調製した蛍光体の粉末X線回折スペクトルを示す図である。 図3は、実施例において調製した蛍光体の発光強度の測定結果を示す図である。
 以下、本開示の実施形態を説明する。ただし、以下の実施形態は、本開示を説明するための例示であり、本開示を以下の内容に限定する趣旨ではない。
 本明細書において例示する材料は特に断らない限り、1種を単独で又は2種以上を組み合わせて用いることができる。組成物中の各成分の含有量は、組成物中の各成分に該当する物質が複数存在する場合には、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。本明細書における「工程」とは、互いに独立した工程であってもよく、同時に行われる工程であってもよい。
 蛍光体の一実施形態は、主結晶相がLiMgGeO結晶相と同一の構造を有し、4価のクロムを賦活元素として含む。上記主結晶相は、一般式:AB(C1-xCr)Oで表されてよい。上記一般式において、A,B,及びCは互いに異なる金属元素を示す。上記一般式において、A、B、及びCは、主としてそれぞれ一種の元素であることを意図するものであるが、一部が置換され、二種以上の元素を示すものであってもよい。上記一般式において、好ましくは、Aがリチウム(Li)であり、Bがマグネシウム(Mg)であり、及びCがゲルマニウム(Ge)であるが、それぞれの元素の一部が以下に示すA,B及びの候補となる元素によって置換されていてもよい。
 上記一般式において、Aは、例えば、リチウム(Li)、ナトリウム(Na)、及びカリウム(K)等であってよく、Liを含むことが好ましく、Liを90mol%以上含むことが更に好ましく、Liであることが特に好ましい。上記一般式において、Bは、例えば、マグネシウム(Mg)、亜鉛(Zn)、及びカルシウム(Ca)等であってよく、Mgを含むことが好ましく、Mgを90mol%以上含むことが更に好ましく、Mgであることが特に好ましい。上記一般式において、Cは、例えば、ゲルマニウム(Ge)、ケイ素(Si)、及びスズ(Sn)等であってよく、Geを含むことが好ましく、Geを90mol%以上含むことが更に好ましく、Geであることが特に好ましい。上記一般式において(C1-xCr)との表記は、C及びCrの両方を含むことを意味し、CrがCのサイトの一部を置換する形で含まれることを意味する。当該蛍光体において、より具体的には、CがGeの場合、クロム(Cr)はゲルマニウム(Ge)サイトに導入されていてよい。この場合、蛍光体は例えば、一般式:LiMg(Ge1-xCr)Oで示されてよく、上記一般式中、xは、例えば、0超0.1以下、0.005~0.1、0.005~0.08、0.005~0.06、0.005~0.03、又は0.005~0.02であってよい。上記蛍光体において、主結晶相はLiMgGeO結晶相と同一の結晶構造を有するが、その空間群は、例えば、Pmn2であってよい。
 本明細書において、主結晶相とは、粉末X線回折法によって算出された生成相割合が最も多い相であることを意味する。上記蛍光体は、上記主結晶相に加えて、本開示の趣旨を損ねない範囲で異相を含んでもよい。異相としては、例えば、結晶組成は同一であって空間群の異なる相(例えば、空間群がPnmaである結晶構造)、又は結晶組成の異なる相(例えば、MgCr等)が挙げられる。
 蛍光体の結晶構造は粉末X線回折法によって確認することができる。また、蛍光体の組成におけるリチウム(Li)、マグネシウム(Mg)、ゲルマニウム(Ge)、及びクロム(Cr)の含有量は、測定対象を加圧酸分解して試料溶液を調製し、これに対して、ICP発光分光分析装置を用いた定量分析によって決定することができる。酸素(O)の含有量は、ICPの元素の含有量からチャージバランスに基づいて推定することができる。なお、蛍光体における元素組成は、蛍光体を製造する際の各元素の仕込みの割合に対応することから、原料組成から蛍光体の元素組成を推定することもできる。
 上記主結晶相におけるクロムの含有量は、蛍光体に求める発光特性等に応じて、調整することができる。上記主結晶相が一般式:AB(C1-xCr)O(一般式中、A,B,Cは互いに異なる金属元素を示す)で表される場合、Crの含有量は、C及びCrの合計量を基準として、例えば、10mol%以下、8mol%以下(上記一般式においてxが0.08以下であることに相当)、7mol%以下、6mol%以下、5mol%以下、2mol%以下、又は1.5mol%以下であってよい。クロムの含有量を増加させる場合、製造過程における異相の発生を招き得ることから、クロムの含有量の上限値が上記範囲内であることで、異相の割合が低減され、得られる蛍光体の光学特性が向上し得る。上記主結晶相が一般式AB(C1-xCr)O(A,B,Cは互いに異なる金属元素を示す)で表される場合、Crの含有量は、C及びCrの合計量を基準として、例えば、0.3mol%以上、0.5mol%以上、又は0.7mol%以上であってよい。主結晶相中に固溶するクロムのうち、4価のCr(Cr4+)は発光中心となる元素であり、クロムの含有量の下限値が上記範囲内であることで4価のクロムの存在量を向上することができ、得られる蛍光体の発光強度をより十分に向上することができる。上記主結晶相におけるクロムの含有量は上述の範囲内で調整してよく、上記主結晶相が一般式:AB(C1-xCr)O(一般式中、A,B,Cは互いに異なる金属元素を示す)で表される場合、Crの含有量は、C及びCrの合計量を基準として、例えば、0.3~10mol%、又は0.5~1.5mol%であってよい。
 上記蛍光体は、波長450nmの光を照射した際に得られる蛍光スペクトルにおいて、波長700~900nmであるスペクトルの積分値をXとし、波長1100~1300nmであるスペクトルの積分値をYとしたときのY/Xの値が50以上である。
 上記Y/Xの値の下限値は、例えば、60以上、100以上、200以上、400以上、又は600以上であってよい。上記Y/Xの値の下限値が上記範囲内であることによって、4価のクロム(Cr4+)の割合がより高く、発光強度をより向上させることができる。上記Y/Xの値の上限値は、例えば、1500以下、1000以下、800以下、又は700以下であってよい。上記Y/Xの値が大きいことは、すなわち4価のクロムの割合が高いことを意味するが、4価のクロムの割合を上げるために、製造時にクロムの配合割合を増大することで、異相の発生割合が増加する傾向にある。したがって、上記Y/Xの値の上限値を上記範囲内とすることによって、製造過程における異相の割合の増大を抑制し、光学特性により優れた蛍光体とすることができる。
 本明細書における蛍光スペクトルのピークの積分値X及びYは、上記蛍光体に対する蛍光分光測定装置を用い測定される蛍光スペクトルから決定される値を意味する。蛍光スペクトルは、具体的には本明細書の実施例に記載の操作によって測定して求める。蛍光分光測定装置としては、例えば、株式会社堀場製作所(HORIBA社)製の「Fluorolog-3-iHR-NIR」(製品名)等を使用することができる。
 上記蛍光体における異相の含有量は低いことが望ましい。異相のうちMgCrは一般に黒色であり、蛍光体に照射される励起光及び発せられる蛍光を吸収し得るため、特に低減されることが望ましい。MgCrは、粉末X線回折パターンにおいて、回折角(2θ)が17.0~19.5°である領域にピークを示し、LiMgGeOは、粉末X線回折パターンにおいて、回折角が20.5~23.5°である領域にピークを有する。そこで、上記蛍光体は、粉末X線回折パターンにおいて、回折角(2θ)が17.0~19.5°である領域におけるピーク強度の最大値をαとし、回折角が20.5~23.5°である領域におけるピーク強度の最大値をβとしたときのα/βの値を低く調整することができる。上記α/βの値の上限値は、例えば、0.047以下、0.045以下、0.040以下、又は0.035以下であってよい。上記α/βの値の上限値が上記範囲内であることで、上記蛍光体の発光強度をより向上させることができる。上記α/βの値の下限値は、特に制限されるものでなく、0(MgCrを含まないことを意味する)であってもよいが、例えば、0.020以上、又は0.030以上であってよい。上記α/β値の下限値が上記範囲内であることで、より優れた発光強度を期待できる。上記α/βの値は上述の範囲内で調整してよく、例えば、0.020~0.047、0.030~0.040、又は0.030~0.035であってよい。
 本明細書におけるピーク強度の上記最大値α及びβは、上記蛍光体に対する粉末X線回折解析によって決定される値を意味する。粉末X線回折パターンは、具体的には本明細書の実施例に記載の操作によって測定して求める。
 上述の蛍光体は、単独で用いてもよく、その他の蛍光体と組み合わせて用いることもできる。本開示に係る蛍光体は発光強度に優れることから、例えば、LED等の発光装置、及び表示装置等に好適に使用できる。例えば、上記蛍光体を硬化樹脂中に分散させて使用してもよい。この場合の硬化樹脂は、特に制限されず、例えば、発光装置等の封止樹脂として使用される樹脂等を用いることができる。
 発光装置の一例は、一次光を発する発光素子と、上記一次光の一部を吸収して、一次光の波長よりも長い波長を有する二次光を発する波長変換体と、を備える発光装置である。上記波長変換体が、本開示に係る上述の蛍光体を含む。一次光を発する発光素子は、例えば、InGaN青色LED等であってよい。上記発光素子及び波長変換体は、封止樹脂等に分散されていてもよい。
 上述の蛍光体は、例えば、以下のような方法で製造することができる。蛍光体の製造方法の一実施形態は、リチウムを構成元素として有する化合物、マグネシウムを構成元素として有する化合物、ゲルマニウムを構成元素として有する化合物、及びクロムを構成元素として有する化合物を含む組成物を大気下で焼成して焼成物を得る工程(以下、焼成工程ともいう)と、上記焼成物を850℃以下の温度で加熱処理することによって、上記焼成物中のクロムの少なくとも一部を還元する工程(以下、還元工程ともいう)と、を有する。
 上記組成物は、蛍光体の構成元素の供給源となる化合物を含み、リチウムを構成元素として有する化合物、マグネシウムを構成元素として有する化合物、ゲルマニウムを構成元素として有する化合物、及びクロムを構成元素として有する化合物を含む。
 リチウム(Li)を構成元素として有する化合物は、例えば、炭酸塩、酸化物、フッ化物、酸フッ化物、塩化物、窒化物、及び金属等であってよい。上記化合物の中でも、原料の安定性及び反応促進の観点から、炭酸塩を含むことが好ましい。リチウム(Li)を構成元素として有する化合物は、炭酸リチウムであってよい。
 マグネシウム(Mg)を構成元素として有する化合物は、例えば、酸化物、フッ化物、酸フッ化物、塩化物、窒化物、及び金属等であってよい。上記化合物の中でも、原料の安定性及び反応促進の観点から、酸化物を含むことが好ましい。マグネシウム(Mg)を構成元素として有する化合物は、酸化マグネシウムであってよい。
 ゲルマニウム(Ge)を構成元素として有する化合物は、例えば、酸化物、フッ化物、酸フッ化物、塩化物、窒化物、及び金属等であってよい。上記化合物の中でも、原料の安定性及び反応促進の観点から、酸化物を含むことが好ましい。ゲルマニウム(Ge)を構成元素として有する化合物は、酸化ゲルマニウムであってよい。
 クロム(Cr)を構成元素として有する化合物は、例えば、酸化物、フッ化物、酸フッ化物、塩化物、窒化物、及び金属等であってよい。上記化合物の中でも、原料の安定性及び反応促進の観点から、酸化物を含むことが好ましい。クロム(Cr)を構成元素として有する化合物は、酸化クロムであってよい。
 上記組成物におけるゲルマニウム及びクロムの合計量に対する上記クロムの含有量は8mol%以下である。上記クロムの含有量の上限値は、上記組成物におけるゲルマニウム及びクロムの合計量に対して、例えば、8mol%以下、7mol%以下、6mol%以下、5mol%以下、2mol%以下、又は1.5mol%以下であってよい。クロムの含有量の上限値が上記範囲内であることで、異相の発生を抑制し、得られる蛍光体の光学特性を向上し得る。上記クロムの含有量の下限値は、上記組成物におけるゲルマニウム及びクロムの合計量に対して、例えば、0.3mol%以上、0.5mol%以上、又は0.7mol%以上であってよい。クロムの含有量の下限値が上記範囲内であることで4価のクロムの存在量を向上させることができ、得られる蛍光体の発光強度をより十分に向上することができる。上記組成物におけるクロムの含有量は上述の範囲内で調整してよく、上記組成物におけるゲルマニウム及びクロムの合計量に対して、例えば、0.3~8mol%、又は0.5~1.5mol%であってよい。
 上記組成物は、リチウムを構成元素として有する化合物、マグネシウムを構成元素として有する化合物、ゲルマニウムを構成元素として有する化合物、及びクロムを構成元素として有する化合物に加えて、その他の成分を含んでもよい。その他の成分としては、例えば、ナトリウム(Na)を構成元素として有する化合物、亜鉛(Zn)を構成元素として有する化合物、カルシウム(Ca)を構成元素として有する化合物、ストロンチウム(Sr)を構成元素として有する化合物、及びケイ素(Si)を構成元素として有する化合物等が挙げられる。
 上記組成物は、各化合物を秤量し、混合することによって調製できる。混合には、乾式混合法又は湿式混合法を用いてもよい。乾式混合法は、例えば、V型混合機等を用いて各成分を混合する方法であってよい。湿式混合法は、例えば、水等の溶媒又は分散媒を加えて溶液又はスラリーを調製し各成分を混合して、その後、溶媒又は分散媒を除去する方法であってよい。
 焼成工程における加熱温度(焼成温度)の下限値は、例えば、800℃以上、900℃以上、1000℃以上、又は1100℃以上であってよい。上記加熱温度の下限値が上記範囲内であることで、反応を促進できる。焼成工程における加熱温度の上限値は、例えば、1600℃以下、1500℃以下、1400℃以下、又は1300℃以下であってよい。上記加熱温度の上限値が上記範囲内であることで、原料成分の揮発を抑制できる。焼成工程における加熱温度は上述の範囲内で調整してよく、例えば、800~1600℃、又は1100~1300℃であってよい。
 焼成工程における加熱時間(焼成時間)の下限値は、例えば、3時間以上、4時間以上、5時間以上、又は6時間以上であってよい。上記加熱時間の下限値が上記範囲内であることで、反応を促進できる。焼成工程における加熱時間の上限値は、例えば、11時間以下、10時間以下、9時間以下、又は8時間以下であってよい。上記加熱時間の上限値が上記範囲内であることで、原料成分の揮発を抑制できる。焼成工程における加熱時間は上述の範囲内で調整してよく、例えば、3~11時間、又は6~8時間であってよい。
 なお、本明細書における焼成時間、加熱時間等は、対象物の周囲環境の温度が所定の温度に到達してから当該温度で維持する時間(保持時間)を意味する。所定の温度にまで昇温する際の昇温速度及び室温に低下させる際の降温速度は適宜調整することができる。焼成工程における上記昇温速度は、例えば、2~15℃/分、5~12℃/分、又は8~10℃/分であってよい。焼成工程における上記降温速度は、例えば、2~15℃/分、5~12℃/分、又は8~10℃/分であってよい。
 焼成工程は、大気下で行う。
 焼成工程における加熱処理の回数は、1回であってもよいが、例えば、2回以上であってよく、2~5回、又は2~4回であってよい。
 焼成工程において、複数回の加熱処理を行う場合、順次、第一加熱処理、第二加熱処理等といい、各加熱処理を行う工程を、順次、第一焼成工程、第二焼成工程等といってよい。焼成工程が2以上の加熱処理を行う場合、第一焼成工程の加熱温度、加熱時間、加熱の際の雰囲気、及び加熱の際の圧力は上述の加熱工程における加熱温度、加熱時間、加熱の際の雰囲気、及び加熱の際の圧力をそれぞれ適用できる。そして、第二焼成工程以降の加熱温度、加熱時間、加熱際の雰囲気、及び加熱の際の圧力は、第一焼成工程と同じであってよく、異なってもよい。ただし、第二焼成工程以降における加熱温度、加熱時間、加熱際の雰囲気、及び加熱の際の圧力が第一焼成工程と異なる場合であっても、上述の加熱工程に関して示した条件の範囲内であるものとする。
 還元工程では、上述の焼成工程で調整された焼成物を、850℃以下の温度で加熱処理する。還元処理を施すことによって、焼成物を得る過程で価数の上昇したクロムの少なくとも一部を還元し、発光に寄与する4価のクロムの割合を向上させることができる。
 還元工程は還元性雰囲気下で行ってもよく、還元雰囲気は、例えば、アンモニア、炭化水素、一酸化炭素、及び水素等を含有してよい。還元雰囲気が上述のような雰囲気であることによって、クロムの還元をより促進することができる。還元工程におけるクロムの還元が不十分であることにより6価のクロムが存在するといったことを抑制する観点から、上記還元性雰囲気は、アンモニアを含む雰囲気であってよく、好ましくはアンモニア雰囲気である。
 還元工程における雰囲気の流量は、例えば、内径70mmの炉心管を用いた場合、0.001~2.5mL/分、0.1~2.0mL/分、0.5~1.5mL/分、又は0.8~1.2mL/分であってよい。
 還元工程における加熱温度の下限値は、例えば、300℃以上、400℃以上、500℃以上、600℃以上、650℃以上、又は700℃以上であってよい。上記加熱温度の下限値が上記範囲内であることで、5価のクロム、及び6価のクロムの割合を低減させることができる。還元工程における加熱温度の上限値は、例えば、850℃以下、850℃未満、820℃以下、800℃以下、又は750℃以下であってよい。上記加熱温度の上限値が上記範囲内であることで、3価のクロムの割合を低減させることができる。還元工程における加熱温度は上述の範囲内で調整してよく、例えば、300~820℃、600~820℃、650~800℃、又は650~750℃であってよい。
 還元工程における加熱時間の下限値は、2時間以上、3時間以上、4時間以上、又は5時間以上であってよい。上記加熱時間の下限値が上記範囲内であることで、5価のクロム、及び6価のクロムの割合を低減させることができる。還元工程における加熱時間の上限値は、11時間以下、10時間以下、9時間以下、又は8時間以下であってよい。上記加熱時間の上限値が上記範囲内であることで、3価のクロムの割合を低減させることができる。還元工程における加熱時間は上述の範囲内で調整してよく、例えば、2~11時間、又は7~8時間であってよい。
 還元工程における上記昇温速度は、例えば、2~15℃/分、5~12℃/分、又は8~10℃/分であってよい。還元工程における上記降温速度は、例えば、2~15℃/分、5~12℃/分、又は8~10℃/分であってよい。
 上述の製造方法は、焼成工程及び還元工程に加えて、その他の工程を有していてよい。その他の工程としては、例えば、粉砕工程、分級工程、及び酸処理工程等が挙げられる。
 粉砕工程は、例えば、上記焼成工程で得られた焼成物、又は還元工程で得られた加熱処理物を粉砕する工程であってよい。例えば、上記焼成工程で得られた焼成物を還元工程に送る前に粉砕を行って粒度を調整することによって、焼成物の表面積を増加させ、続く還元工程における還元の効率を向上させることができる。また、上記還元工程で得られた加熱処理物を粉砕することで、蛍光体を用途に応じて粒度に調製することができる。
 粉砕工程においては、一般的な粉砕機又は解砕機を用いることができる。例えば、乳鉢、ボールミル、振動ミル、及びジェットミル等を用いることができる。なお、本明細書における「粉砕」には「解砕」も含むものとする。
 以上、幾つかの実施形態について説明したが、本開示は上記実施形態に何ら限定されるものではない。また、上述した実施形態についての説明内容は、互いに適用することができる。
 以下、実施例及び比較例を参照して本開示の内容をより詳細に説明する。ただし、本開示は、下記の実施例に限定されるものではない。
(実施例1)
<蛍光体の製造方法>
 容器に、炭酸リチウム(LiCO、株式会社高純度化学研究所製)、酸化マグネシウム(MgO、関東化学株式会社製)、酸化ゲルマニウム(GeO、株式会社高純度化学研究所製)、及び酸化クロム(Cr、株式会社高純度化学研究所製)を、Li:Mg:Ge:Crがモル比で2:1:0.995:0.005となるように、それぞれ図り取り、乾式混合することによって組成物(原料粉末)を得た。
 上記組成物6.0gをアルミナボードに測り取り、縦型炉内に静置した。次に、大気下で、室温から10℃/分の昇温速度で、縦型炉内の温度が1200℃になるまで昇温し、1200℃に到達してからその温度に7時間維持することで加熱処理を行った(焼成工程)。その後加熱を終了し、室温まで冷却させた。室温まで冷却した後、容器から塊状物を回収した。回収した塊状物を、アルミナ乳鉢によって解砕、粉砕し、さらに目開き150μmのふるいにかけることで、通篩品として、粉末状の焼成物を得た。
 次に、上述の粉末状の焼成物2.5gをアルミナボードに測り取り、管状炉内に静置した。次に、アンモニア雰囲気下で、室温から10℃/分の昇温速度で、管状炉内の温度が600℃になるまで昇温し、600℃に到達してからその温度で6時間維持することで加熱処理を行った(還元工程)。その後加熱を終了し、室温まで冷却させた。室温まで冷却した後、容器から塊状物を回収した。回収した塊状物を、アルミナ乳鉢によって解砕、粉砕し、さらに目開き150μmのふるいにかけることで、通篩品として、粉末状の加熱処理物を得た。当該加熱処理物を実施例1の蛍光体とした。得られた蛍光体は、一般式:LiMg(Ge1-xCr)O(xが0.005)で示され、主結晶相がLiMgGeO結晶相と同一の構造を有することが確認された。
(実施例2)
 還元工程での処理温度を700℃に変更したこと以外は、実施例1と同様にして、蛍光体を得た。
(実施例3)
 還元工程での処理温度を800℃に変更したこと以外は、実施例1と同様にして、蛍光体を得た。
(比較例1)
 還元工程での処理温度を900℃に変更したこと以外は、実施例1と同様にして、蛍光体を得た。
<蛍光体中のCr含有量の測定>
 実施例1~3及び比較例1で得られた蛍光体について、後述する方法に従って、ICP発光分光分析装置による定量分析を行い、Ge及びCrの合計量を基準とする、Cr含有量を決定した。結果を表1に示す。
[ICP発光分光分析方法]
 マルチ型ICP発光分光分析装置(Agilent社の装置、型番:5110VDV型)を用いて組成を分析した。蛍光体10mgを白金るつぼに入れ、アルカリ性融剤2gを加え、電気炉で融解した。放冷後、白金るつぼに塩酸(HCl)20mLを加え、温浴中で加温溶解して溶液を得た。その後、得られた溶液を100mLに定容した。この100mLの溶液を純水で10倍に希釈し試験液として、上記装置にセットし、組成を分析した。
<蛍光体の拡散吸収スペクトルの測定>
 実施例1~3及び比較例1で得られた蛍光体について、後述する方法に沿って、蛍光スペクトル測定を行った。当該測定によって得られた、波長700~900nmであるスペクトルの積分値X、及び波長1100~1300nmであるスペクトルの積分値Yを用いて、Y/Xの値を決定した。結果を表1及び図1に示す。
[蛍光スペクトル測定方法]
 まず、測定対象である蛍光体を、石英セルに充填し、積分球の開口部に取り付けた。発光光源であるキセノンランプから450nmの波長に分光した単色光を、光ファイバーを用いて蛍光体の励起光として上記積分球内に導入した。この励起光である単色光を測定対象である蛍光体に照射し、蛍光スペクトルを測定した。測定には、分光光度計(HORIBA製、商品名:Fluorolog-3-iHR-NIR)を用いた。
<蛍光体の粉末X線回折スペクトルの測定>
 実施例1~3で得られた蛍光体については、後述する方法に沿って、さらに粉末X線回折測定を行った。当該測定により得られた、回折角(2θ)が17.0~19.5°である領域におけるピーク強度の最大値α、及び回折角が20.5~23.5°である領域におけるピーク強度の最大値βを用いて、α/βの値を決定した。結果を表1及び図2に示す。
[粉末X線回折の測定]
 X線回折装置(株式会社リガク製、製品名:UltimaIV)を用いて、試料のX線回折パターンを取得した。測定には、CuKα線(特性X線)を用いた。
<蛍光体の評価>
 実施例1~3及び比較例1で得られた蛍光体について、後述する方法に沿って、発光強度の測定を行った。結果を表1及び図3に示す。なお、発光強度は、実施例1の蛍光体の発光強度を基準とした相対値で評価した。
[発光強度の測定]
 まず、測定対象である蛍光体を、石英セルに充填し、積分球の開口部に取り付けた。発光光源であるキセノンランプから676nmの波長に分光した単色光を、光ファイバーを用いて蛍光体の励起光として上記積分球内に導入した。この励起光である単色光を測定対象である蛍光体に照射し、蛍光スペクトルを測定した。測定には、分光光度計(株式会社堀場製作所(HORIBA社)製、商品名:Fluorolog-3-iHR-NIR)を用いた。得られた蛍光スペクトルデータから、実施例1の発光強度を1.0とした時の強度比を決定した。
Figure JPOXMLDOC01-appb-T000001
 本開示によれば、発光強度に優れる蛍光体及びその製造方法を提供できる。

Claims (9)

  1.  主結晶相がLiMgGeO結晶相と同一の構造を有し、
     4価のクロムを賦活元素として含み、
     波長450nmの光を照射した際に得られる蛍光スペクトルにおいて、波長700~900nmであるスペクトルの積分値をXとし、波長1100~1300nmであるスペクトルの積分値をYとしたときのY/Xの値が50以上である、蛍光体。
  2.  前記主結晶相が一般式:AB(C1-xCr)O(一般式中、A,B,Cは互いに異なる金属元素を示す)で表され、
     Crの含有量が、C及びCrの合計量を基準として、8mol%以下である、請求項1に記載の蛍光体。
  3.  前記Crの含有量が6mol%以下である、請求項2に記載の蛍光体。
  4.  前記一般式におけるAがLiを含み、AにおけるLiの含有量が90mol%以上である、請求項2又は3に記載の蛍光体。
  5.  前記一般式におけるBがMgを含み、BにおけるMgの含有量が90mol%以上である、請求項2又は3に記載の蛍光体。
  6.  前記一般式におけるCがGeを含み、CにおけるGeの含有量が90mol%以上である、請求項2又は3に記載の蛍光体。
  7.  粉末X線回折パターンにおいて、回折角(2θ)が17.0~19.5°である領域におけるピーク強度の最大値をαとし、回折角が20.5~23.5°である領域におけるピーク強度の最大値をβとしたときのα/βの値が0.047以下である、請求項1又は2に記載の蛍光体。
  8.  リチウムを構成元素として有する化合物、マグネシウムを構成元素として有する化合物、ゲルマニウムを構成元素として有する化合物、及びクロムを構成元素として有する化合物を含む組成物を大気下で焼成して焼成物を得る工程と、
     前記焼成物を850℃以下の温度で加熱処理することによって、前記焼成物中のクロムの少なくとも一部を還元する工程と、を有し、
     前記組成物におけるゲルマニウム及びクロムの合計量に対する前記クロムの含有量が8mol%以下である、蛍光体の製造方法。
  9.  前記焼成物の加熱処理が、アンモニアを含む還元性雰囲気下で行われる、請求項8に記載の製造方法。
PCT/JP2022/043596 2021-12-21 2022-11-25 蛍光体、及び、蛍光体の製造方法 WO2023120034A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-207011 2021-12-21
JP2021207011 2021-12-21

Publications (1)

Publication Number Publication Date
WO2023120034A1 true WO2023120034A1 (ja) 2023-06-29

Family

ID=86902053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/043596 WO2023120034A1 (ja) 2021-12-21 2022-11-25 蛍光体、及び、蛍光体の製造方法

Country Status (2)

Country Link
TW (1) TW202338063A (ja)
WO (1) WO2023120034A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020188044A (ja) * 2019-05-10 2020-11-19 国立研究開発法人物質・材料研究機構 発光装置
WO2020262200A1 (ja) * 2019-06-26 2020-12-30 デンカ株式会社 蛍光体、蛍光体の製造方法、発光素子、発光装置および画像表示装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020188044A (ja) * 2019-05-10 2020-11-19 国立研究開発法人物質・材料研究機構 発光装置
WO2020262200A1 (ja) * 2019-06-26 2020-12-30 デンカ株式会社 蛍光体、蛍光体の製造方法、発光素子、発光装置および画像表示装置

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JOUSSEAUME C., VIVIEN D., KAHN-HARARI A., DEROUET J., RIBOT F., VILLAIN F.: "Spectroscopic characterization of chromium (IV, V, VI) in Cr:Li2MSiO4 (M=Mg,Zn)", JOURNAL OF APPLIED PHYSICS, vol. 93, no. 10, 15 May 2003 (2003-05-15), 2 Huntington Quadrangle, Melville, NY 11747, pages 6006 - 6015, XP012057780, ISSN: 0021-8979, DOI: 10.1063/1.1568152 *
JOUSSEAUME, C. VIVIEN, D. KAHN-HARARI, A. MALKIN, B.Z.: "Long-lifetime fluorescence and crystal field calculation in Cr^4^+-doped Li"2MSiO"4, M=Mg, Zn", OPTICAL MATERIALS, vol. 24, no. 1-2, 1 October 2003 (2003-10-01), NL , pages 143 - 150, XP004463629, ISSN: 0925-3467, DOI: 10.1016/S0925-3467(03)00118-6 *
VIVIEN, D. ANINO, C. THERY, J.: "New Cr^4^+ activated compounds in tetrahedral sites for tunable laser applications", OPTICAL MATERIALS, vol. 8, no. 1-2, 1 July 1997 (1997-07-01), NL , pages 121 - 128, XP004115013, ISSN: 0925-3467, DOI: 10.1016/S0925-3467(97)00039-6 *
ZHUANG YIXI, TANABE SETSUHISA, QIU JIANRONG: "Wavelength Tailorability of Broadband Near-Infrared Luminescence in Cr 4+ -Activated Transparent Glass-Ceramics", JOURNAL OF THE AMERICAN CERAMIC SOCIETY, vol. 97, no. 11, 1 November 2014 (2014-11-01), US , pages 3519 - 3523, XP093073769, ISSN: 0002-7820, DOI: 10.1111/jace.13128 *

Also Published As

Publication number Publication date
TW202338063A (zh) 2023-10-01

Similar Documents

Publication Publication Date Title
Bedyal et al. A near-UV-converted LiMgBO3: Dy3+ nanophosphor: surface and spectral investigations
WO2016186057A1 (ja) 蛍光体、その製造方法、照明器具および画像表示装置
JP6789969B2 (ja) 蛍光体および蛍光体変換led
JP5140061B2 (ja) 蛍光体およびその製造方法、並びに光源
KR20120023495A (ko) 표면 개질된 실리케이트 발광체
WO2005087896A1 (ja) 蛍光体とその製造方法、照明器具、および画像表示装置
JP7498171B2 (ja) 表面被覆蛍光体粒子、及び発光装置
WO2022080265A1 (ja) 蛍光体、及び発光装置
WO2022080262A1 (ja) 蛍光体、及び発光装置
WO2022080263A1 (ja) 蛍光体、蛍光体の製造方法、及び発光装置
JP2016216711A (ja) 蛍光体、その製造方法、照明器具および画像表示装置
TWI424046B (zh) 綠色螢光體
WO2021015004A1 (ja) 蛍光体粒子の製造方法
JPWO2016186058A1 (ja) 発光器具および画像表示装置
TWI829912B (zh) 表面被覆螢光體粒子、表面被覆螢光體粒子之製造方法以及發光裝置
WO2020209148A1 (ja) 表面被覆蛍光体粒子、表面被覆蛍光体粒子の製造方法および発光装置
WO2010119800A1 (ja) 赤色蛍光体及びその製造方法
JP2013127061A (ja) 窒化物蛍光体とその製造方法
WO2023120034A1 (ja) 蛍光体、及び、蛍光体の製造方法
WO2023120038A1 (ja) 蛍光体
CN107722972B (zh) 一种绿色长余辉发光材料及其制备方法
US8734680B2 (en) Silicate-based phosphor and manufacturing method of silicate-based phosphor
JP2014523952A (ja) 蛍光体前駆体組成物
CN109233826B (zh) 一种铕离子激活的钛铝酸盐荧光粉及其制备方法与应用
JP5735014B2 (ja) 蛍光体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22910752

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023569202

Country of ref document: JP

Kind code of ref document: A