WO2023119798A1 - 被覆樹脂粒子、吸水性樹脂組成物及び吸収体 - Google Patents

被覆樹脂粒子、吸水性樹脂組成物及び吸収体 Download PDF

Info

Publication number
WO2023119798A1
WO2023119798A1 PCT/JP2022/037874 JP2022037874W WO2023119798A1 WO 2023119798 A1 WO2023119798 A1 WO 2023119798A1 JP 2022037874 W JP2022037874 W JP 2022037874W WO 2023119798 A1 WO2023119798 A1 WO 2023119798A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin particles
water
coated resin
mass
coated
Prior art date
Application number
PCT/JP2022/037874
Other languages
English (en)
French (fr)
Inventor
朋佳 山本
俊平 長谷
Original Assignee
住友精化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精化株式会社 filed Critical 住友精化株式会社
Publication of WO2023119798A1 publication Critical patent/WO2023119798A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating

Definitions

  • the present invention relates to coated resin particles, water absorbent resin compositions, and absorbent bodies.
  • the water-absorbing resin particles used as absorbents in sanitary materials have room for improvement in terms of storage stability.
  • water-absorbent resin particles aggregate due to moisture absorption, which may cause quality concerns.
  • An object of the present invention is to provide coated resin particles that contain water-absorbing resin particles and are less likely to aggregate due to moisture absorption.
  • One aspect of the present invention provides the following [1] to [7].
  • [1] Coated resin particles comprising water absorbent resin particles and a coating layer covering at least part of the surface of the water absorbent resin particles, wherein the coating layer contains a polymer having a carboxy group, and the coating resin Coated resin particles, wherein the pH value A of the liquid after immersing the particles in a physiological saline solution for 5 minutes is 6.20 to 7.50.
  • coated resin particles that contain water-absorbing resin particles and are less likely to aggregate due to moisture absorption.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of coated resin particles.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of an absorbent article;
  • each component in the composition means the total amount of the plurality of substances present in the composition unless otherwise specified when there are multiple substances corresponding to each component in the composition.
  • physiological saline is an aqueous sodium chloride solution with a concentration of 0.9% by mass, and the concentration of 0.9% by mass is the concentration based on the mass of the physiological saline.
  • the coated resin particles according to the present embodiment are resin particles having water absorbent resin particles and a coating layer covering at least part of the surface of the water absorbent resin particles.
  • the coating layer contains a polymer having a carboxy group, and the pH value A of the liquid after immersing the coated resin particles in physiological saline for 5 minutes is 6.20 to 7.50.
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of coated resin particles.
  • the coated resin particles 1 have water absorbent resin particles 1a and a coating layer 1b covering at least part of the surface of the water absorbent resin particles 1a.
  • the entire surface of the water absorbent resin particles 1 is covered with the coating layer 1b.
  • the water absorbent resin particles may contain polymer particles.
  • the polymer particles may be crosslinked polymers formed by polymerization of monomers containing ethylenically unsaturated monomers.
  • the polymer particles can have monomeric units derived from ethylenically unsaturated monomers.
  • Polymer particles can be produced, for example, by a method including a step of polymerizing a monomer containing an ethylenically unsaturated monomer. Examples of the polymerization method include a reverse phase suspension polymerization method, an aqueous solution polymerization method, a bulk polymerization method, a precipitation polymerization method, and the like.
  • the ethylenically unsaturated monomer may be a water-soluble ethylenically unsaturated monomer.
  • the water-soluble ethylenically unsaturated monomer may have a solubility of 1.0 g or more at 25° C. in 100 g of water.
  • water-soluble ethylenically unsaturated monomers include (meth)acrylic acid and its salts, 2-(meth)acrylamido-2-methylpropanesulfonic acid and its salts, (meth)acrylamide, N,N-dimethyl (Meth)acrylamide, 2-hydroxyethyl (meth)acrylate, N-methylol (meth)acrylamide, polyethylene glycol mono (meth)acrylate, N,N-diethylaminoethyl (meth)acrylate, N,N-diethylaminopropyl (meth) Acrylates, as well as diethylaminopropyl (meth)acrylamide.
  • the amino group may be quaternized.
  • Ethylenically unsaturated monomers may be used alone or in combination of two or more.
  • the acidic group may be neutralized with an alkaline neutralizer before use in the polymerization reaction.
  • the neutralization degree of the ethylenically unsaturated monomer with an alkaline neutralizing agent is, for example, 10 to 100 mol%, 50 to 90 mol%, or 60 to 80 mol of the acidic groups in the ethylenically unsaturated monomer. %.
  • the ethylenically unsaturated monomer is at least one selected from the group consisting of (meth)acrylic acid and its salts, acrylamide, methacrylamide, and N,N-dimethylacrylamide. It may contain a compound of the species.
  • the ethylenically unsaturated monomer may contain at least one compound selected from the group consisting of (meth)acrylic acid and its salts, and acrylamide.
  • a monomer other than the ethylenically unsaturated monomer described above may be used as the monomer for obtaining the water absorbent resin particles.
  • Such monomers can be used, for example, by mixing with an aqueous solution containing the ethylenically unsaturated monomers described above.
  • the amount of the ethylenically unsaturated monomer used is 60 to 100 mol%, 70 to 100 mol%, 80 to 100 mol%, 90 to 100 mol%, or 95 to 100 mol% with respect to the total amount of the monomer.
  • the proportion of (meth)acrylic acid and its salt is 60 to 100 mol%, 70 to 100 mol%, 80 to 100 mol%, 90 to 100 mol%, or 95 to 100 mol% with respect to the total amount of monomers There may be.
  • cross-linking occurs due to self-crosslinking during polymerization
  • cross-linking may be promoted by using an internal cross-linking agent.
  • the use of an internal cross-linking agent facilitates control of the water absorption properties (water retention capacity, etc.) of the water-absorbing resin particles.
  • An internal cross-linking agent is usually added to the reaction solution during the polymerization reaction.
  • At least the polymer in the surface layer portion of the polymer particles may be crosslinked by reaction with a surface crosslinking agent.
  • the surface cross-linking agent may be, for example, a compound having two or more functional groups (reactive functional groups) having reactivity with functional groups derived from ethylenically unsaturated monomers.
  • the polymer particles may contain a certain amount of water in addition to the polymer of ethylenically unsaturated monomers, and may further contain various additional components inside.
  • additional ingredients include gel stabilizers, metal chelating agents.
  • the shape of the water-absorbent resin particles is not particularly limited, and may be, for example, substantially spherical, crushed, or granular, or may be agglomerated primary particles having these shapes.
  • the particle size distribution of the water-absorbent resin particles may be adjusted by performing operations such as particle size adjustment using classification with a sieve as necessary. For example, a fraction that has passed through a sieve with an opening of 850 ⁇ m and has not passed through a sieve with an opening of 250 ⁇ m may be used as the water absorbent resin particles.
  • a coating layer contains the polymer which has a carboxy group.
  • a polymer having a carboxy group contains a monomer having a carboxy group as a monomer unit.
  • a monomer having a carboxy group may be, for example, (meth)acrylic acid and/or its salt.
  • (Meth)acrylates include, for example, sodium (meth)acrylate and potassium (meth)acrylate.
  • the carboxy group may be neutralized with an alkaline neutralizing agent.
  • the degree of neutralization by an alkaline neutralizing agent in a polymer having a carboxy group is, for example, 10 mol% or more, 20 mol% or more, 30 mol% or more, 40 mol% or more of the carboxy groups in the carboxy group-containing polymer.
  • the degree of neutralization by the alkaline neutralizing agent may be, for example, 40 to 100 mol %, or 45 to 98 mol % of the carboxy groups in the polymer having carboxy groups.
  • the polymer contained in the coating layer may contain a monomer (another monomer) other than the monomer having a carboxy group as a monomer unit.
  • Other monomers may be, for example, substituted or unsubstituted alkenes.
  • unsubstituted alkenes examples include ethylene, propylene, and butene.
  • the unsubstituted alkene is preferably ethylene and/or propylene, preferably ethylene.
  • Substituted alkenes include vinyl esters and the like.
  • the polymer contained in the coating layer may be a copolymer containing a monomer having a carboxy group and a substituted or unsubstituted alkene as monomer units.
  • the copolymer may be, for example, an ethylene-(meth)acrylate copolymer, which is a copolymer containing (meth)acrylic acid and/or a salt thereof and ethylene as monomer units.
  • the content of the polymer having a carboxy group is 1 part by mass or more, 5 parts by mass or more, 10 parts by mass or more, 15 parts by mass or more, 20 parts by mass or more, or 25 parts by mass with respect to 100 parts by mass of the water-absorbing resin particles. parts or more, and may be 50 parts by mass or less, 45 parts by mass or less, 40 parts by mass or less, or 35 parts by mass or less.
  • the content of the polymer having a carboxyl group may be 5 to 35 parts by mass with respect to 100 parts by mass of the water absorbent resin particles.
  • the coating layer may contain components (other components) other than the polymer having the carboxy group.
  • components other than the polymer having a carboxyl group include polyalkylene glycol and polyvinyl alcohol.
  • Polyalkylene glycols include, for example, polyethylene glycol.
  • the content of other components may be 1 to 30 parts by mass, 5 to 25 parts by mass, or 8 to 20 parts by mass with respect to 100 parts by mass of the polymer having a carboxyl group.
  • the total content of the coating layer is, for example, 1 part by mass or more, 5 parts by mass or more, 8 parts by mass or more, 10 parts by mass or more, 15 parts by mass or more, or 20 parts by mass or more with respect to 100 parts by mass of the water-absorbent resin particles. , 25 parts by mass or more, or 30 parts by mass or more, and may be 50 parts by mass or less, 45 parts by mass or less, 40 parts by mass or less, or 35 parts by mass or less.
  • the total content of the coating layer may be, for example, 1 to 40 parts by mass with respect to 100 parts by mass of the water absorbent resin particles.
  • the pH value A of the liquid after immersing the coated resin particles according to the present embodiment in physiological saline for 5 minutes is 6.20 to 7.50.
  • the lower limit of the pH value A is 6.25 or more, 6.30 or more, 6.35 or more, 6.40 or more, 6.45 or more, 6.50 or more, 6 .55 or greater, 6.60 or greater, 6.65 or greater, 6.70 or greater, 6.75 or greater, 6.80 or greater, 6.85 or greater, 6.90 or greater, 6.95 or greater, 7.00 or greater, or It may be 7.05 or more.
  • the upper limit of the pH value A is 7.45 or less, 7.40 or less, 7.35 or less, 7.30 or less, 7.25 or less, 7.20 or less, 7 .15 or less or 7.10 or less.
  • the pH value A is, for example, 6.25 to 7.20, 6.30 to 7.25, 6.30 to 7.20, 6.30 to 7.15, since aggregation due to moisture absorption is more difficult to occur. or 6.30 to 7.10.
  • the pH value A controls, for example, the degree of neutralization of the carboxyl group in the polymer containing the carboxyl group contained in the coating layer, controls the type and amount of the coating material used to form the coating layer, Alternatively, it can be adjusted within the above range by any combination of these methods.
  • the pH value B of the liquid after immersing the coated resin particles according to the present embodiment in physiological saline for 30 minutes is 6.50 or less, 6.45 or less, 6.40 or less, 6.35 or less, and 6.30. Below, it may be 6.25 or less, 6.20 or less, or 6.15 or less. pH value B is, for example, 4.50 or more, 4.75 or more, 5.00 or more, 5.25 or more, 5.50 or more, 5.75 or more, 6.00 or more, 6.05 or more, 6.10 above, 6.15 or above, or 6.20 or above. The pH value B may be between 4.50 and 6.50. The fact that the pH value B is within the above range means that the coated resin particles are weakly acidic after being swollen. becomes better.
  • the pH value B is controlled, for example, by controlling the degree of neutralization of the carboxyl group in the polymer containing the carboxyl group contained in the coating layer, by controlling the type and amount of the coating material used to form the coating layer, Alternatively, it can be adjusted within the above range by any combination of these methods.
  • the pH value A and pH value B are measured by the method shown below. After adding 100 g of physiological saline to a 100 mL polyethylene beaker, a stirrer is used to stir the mixture at a rotation speed of 750 rpm, and 0.5 g of coated resin particles for evaluation are rapidly added. Using a pH meter, measure the pH of the physiological saline containing the coated resin particles for evaluation while stirring for 30 minutes. The pH after 5 minutes of stirring is defined as pH value A. The pH after 30 minutes of stirring is defined as pH value B.
  • pH value A and pH value B are 0.15 or more because it is superior in both the effect of suppressing aggregation due to moisture absorption and the effect of improving safety for the human body and compatibility with the skin. , or 0.20 or greater.
  • the difference between pH value A and pH value B is, for example, 0.85 or less, 0.75 or less, 0.70 or less, 0.65 or less, 0.60 or less, 0.55 or less, 0.40 or less, or It may be 0.25 or less.
  • the difference between pH value A and pH value B is, for example, 0.15 to 0.85, 0.15 to 0.75, 0.15 to 0.70, 0.15 to 0.65, 0.20 to It may be 0.85, 0.20-0.75, 0.20-0.70 or 0.20-0.65.
  • the coated resin particles according to the present embodiment are less likely to aggregate due to moisture absorption.
  • the blocking rate of the coated resin particles according to the present embodiment may be, for example, 5% or less, 3% or less, 1%, or 0%.
  • the blocking rate of the coated resin particles is measured by the method described in Examples below.
  • the coated resin particles according to the present embodiment have a coating layer containing a polymer having a carboxy group (--COOH), and in the resin surface portion of the coated resin particles, the carboxy groups are carboxylate ions dissociated with protons ( —COO ⁇ ). Therefore, ion repulsion by carboxylate ions can occur on the surface of the coated resin particles.
  • Coated resin particles whose pH value A of the liquid after being immersed in physiological saline for 5 minutes is within a specific range have ion repulsion adjusted to an appropriate range, so aggregation due to moisture absorption is less likely to occur. Conceivable.
  • the mechanism by which the coated resin particles according to the present embodiment make aggregation difficult to occur is not limited to this.
  • coated resin particles of the present embodiment can be used alone, they can be mixed with resin particles having water absorption other than the coated resin particles (hereinafter simply referred to as "other resin particles") to form mixed particles. can also be used.
  • the coated resin particles according to the present embodiment form a coating layer on at least a part of the surface of the water-absorbent resin particles, for example, by contacting the water-absorbent resin particles with a coating material containing a polymer having a carboxyl group. and adjusting the pH value A of the liquid after immersing the coated resin particles in physiological saline for 5 minutes to 6.20 to 7.50.
  • the pH value B of the liquid after immersing the coated resin particles in physiological saline for 30 minutes is adjusted to 4.50 to 6.50. It may further contain:
  • the method for adjusting pH value A and pH value B may be as described above. The above-described embodiments can be applied to specific embodiments of the method for producing coated resin particles.
  • the coating layer can be formed, for example, on at least part of the surface of the water-absorbing resin particles by bringing the water-absorbing resin particles into contact with a coating material in an emulsion or solution state.
  • the coating layer can be formed, for example, by (1) a method using an eggplant flask, (2) a method using a sprayer, or (3) a method using various granulators.
  • an inclined shallow circular container attached to the tumbling granulator is rotated, water-absorbing resin particles are supplied to the circular container, and an appropriate amount of coating material is added.
  • the solvent or dispersion medium contained in the coating material forms a coating layer on the surface of the rolling water-absorbing resin particles while a part of the water-absorbing resin particles agglomerate.
  • the step of adding the water-absorbent resin particles and the coating material may be performed multiple times, if necessary.
  • the water-absorbing resin particles When using an agitating granulator, the water-absorbing resin particles are put into a mixer equipped with the agitating granulator, and mixed by agitation, and the coating material is added. As a result, the liquid medium contained in the coating material forms a coating layer on the surface of the water-absorbing resin particles while a part of the water-absorbing resin particles are agglomerated.
  • the step of adding the water-absorbent resin particles and the coating material may be performed multiple times, if necessary. Excessive agglomeration of the water absorbent resin particles can be suppressed by controlling the shearing force of the mixer.
  • the water-absorbent resin particles are put into a container that is equipped with the fluidized-bed granulator and can send out hot air from the bottom, and the water-absorbent resin particles are fluidized in advance. Thereafter, when the coating material is sprayed from a nozzle provided in the container, the liquid medium contained in the coating material forms a coating layer on the surface of the water-absorbing resin particles while aggregating part of the water-absorbent resin particles during stirring.
  • the coating material can be sprayed multiple times as necessary. Excessive agglomeration of the water-absorbing resin particles can be suppressed by adjusting the application amount and application frequency of the coating material.
  • a fluidized bed granulator for example, a fluidized bed granulator FBD/SG (manufactured by YENCHEN MACHINERY) can be used.
  • a method for suppressing aggregation due to moisture absorption of coated resin particles containing water-absorbent resin particles wherein the water-absorbent resin particles contain a polymer having a carboxy group on at least part of the surface thereof.
  • a method is provided comprising forming a coating layer, and adjusting the pH value A of the liquid after immersing the coated resin particles in a physiological saline solution for 5 minutes to be 6.20 to 7.50. be.
  • the embodiments described above can be applied.
  • the water-absorbent resin composition according to the present embodiment includes the above-described coated resin particles and resin particles having water absorption other than the coated resin particles (other resin particles).
  • the coated resin particles a plurality of types of coated resin particles having different coating layer thicknesses and/or coating layer materials may be mixed and used.
  • the content of the coated resin particles may be, for example, 5 parts by mass or more, or 15 parts by mass or more, with respect to a total of 100 parts by mass of the coated resin particles and other resin particles. It may be no more than 85 parts by mass, no more than 60 parts by mass, no more than 40 parts by mass, no more than 30 parts by mass, or no more than 25 parts by mass.
  • the water-absorbent resin particles that constitute the coated resin particles may be the same particles as the other resin particles, or may be different particles.
  • FIG. 2 is a cross-sectional view showing an example of an absorbent article.
  • the absorbent article 100 shown in FIG. 2 includes a sheet-like absorbent body 10, core wraps 20a and 20b, a liquid permeable sheet 30, and a liquid impermeable sheet 40.
  • the liquid impermeable sheet 40, the core wrap 20b, the absorbent body 10, the core wrap 20a, and the liquid permeable sheet 30 are laminated in this order.
  • the absorber 10 has the coated resin particles 10a according to the above-described embodiment and a fiber layer 10b containing fibrous materials.
  • the coated resin particles 10a are dispersed in the fiber layer 10b.
  • the core wrap 20a is arranged on one side of the absorbent body 10 (upper side of the absorbent body 10 in FIG. 2) while being in contact with the absorbent body 10.
  • the core wrap 20b is arranged on the other side of the absorbent body 10 (lower side of the absorbent body 10 in FIG. 2) while being in contact with the absorbent body 10.
  • the absorbent body 10 is arranged between the core wrap 20a and the core wrap 20b.
  • Examples of the core wraps 20a and 20b include tissue, nonwoven fabric, and the like.
  • the core wrap 20a and the core wrap 20b have, for example, principal surfaces of the same size as the absorber 10. As shown in FIG.
  • the liquid-permeable sheet 30 is arranged on the outermost side on the side into which the liquid to be absorbed enters.
  • the liquid-permeable sheet 30 is arranged on the core wrap 20a while being in contact with the core wrap 20a.
  • Examples of the liquid-permeable sheet 30 include nonwoven fabrics and porous sheets made of synthetic resins such as polyethylene, polypropylene, polyester, and polyamide.
  • the liquid-impermeable sheet 40 is arranged on the outermost side of the absorbent article 100 opposite to the liquid-permeable sheet 30 .
  • the liquid impermeable sheet 40 is arranged under the core wrap 20b while being in contact with the core wrap 20b.
  • liquid-impermeable sheet 40 examples include sheets made of synthetic resins such as polyethylene, polypropylene, and polyvinyl chloride, sheets made of composite materials of these synthetic resins and non-woven fabric, and the like.
  • the liquid permeable sheet 30 and the liquid impermeable sheet 40 have, for example, main surfaces wider than the main surface of the absorbent body 10, and the outer edges of the liquid permeable sheet 30 and the liquid impermeable sheet 40 are It extends around the absorber 10 and the core wraps 20a, 20b.
  • the size relationship of the absorbent body 10, the core wraps 20a and 20b, the liquid permeable sheet 30, and the liquid impermeable sheet 40 is not particularly limited, and is appropriately adjusted according to the use of the absorbent article.
  • the method of retaining the shape of the absorbent body 10 using the core wraps 20a and 20b is not particularly limited, and the absorbent body may be wrapped with a plurality of core wraps as shown in FIG. 2, or the absorbent body may be wrapped with a single core wrap. .
  • the absorbent body 10 may further contain resin particles (other resin particles) having water absorption other than the coated resin particles 10a.
  • the content of the coated resin particles 10a may be, for example, 5 parts by mass or more, or 15 parts by mass or more with respect to a total of 100 parts by mass of the coated resin particles and the other resin particles. , 95 parts by mass or less, or 85 parts by mass or less.
  • hydroxyl ethyl cellulose thickener, Sumitomo Seika Co., Ltd., HEC AW-15F
  • potassium persulfate water-soluble radical polymerization initiator 0.0736 g (0.272 mmol)
  • ethylene glycol diglycidyl ether Internal cross-linking agent
  • ion-exchanged water 34.66 g were added and then dissolved to prepare a first-stage monomer aqueous solution.
  • a reaction liquid was obtained by adding the entire amount of the second-stage monomer aqueous solution to the first-stage reaction mixture. While stirring the reaction solution, the inside of the system was sufficiently replaced with nitrogen. Thereafter, the separable flask is immersed in a water bath at 70° C. to raise the temperature of the reaction solution, and the second-stage polymerization is performed for 5 minutes to obtain a second-stage reaction mixture (polymer particles before surface cross-linking). Obtained.
  • the temperature of the second-stage reaction mixture was raised in an oil bath of 125° C., and 252 g of water was added to the system by azeotropic distillation of n-heptane and water while refluxing n-heptane. pulled out. Subsequently, 0.0884 g (0.5075 mmol) of ethylene glycol diglycidyl ether was added as a surface cross-linking agent, and the mixture was maintained at 83° C. for 2 hours to obtain a dispersion of polymer particles after surface cross-linking.
  • the dispersion of the polymer particles after the surface cross-linking was heated in an oil bath at 125°C to evaporate the n-heptane and dry it to obtain a dried product.
  • the dried product was passed through a sieve with an opening of 850 ⁇ m to obtain 233.4 g of uncoated water absorbent resin particles (1) in the form of aggregated spherical particles.
  • Example 1 (Coating process)
  • the water absorbent resin particles (1) obtained by repeating Comparative Example 1 multiple times were classified with a comb having an opening of 250 ⁇ m to obtain 500 g or more of water absorbent resin particles having a particle size of 250 to 850 ⁇ m.
  • Example 2 In the coating process, 200.0 g of a 25% by mass water-dispersed emulsion of ethylene-sodium acrylate copolymer with a degree of neutralization of 75 mol% (Sumitomo Seika Co., Ltd., Zaixen N) and polyethylene glycol (Tokyo Chemical Industry Co., Ltd., PEG6000 ) was diluted with 295.0 g of ion-exchanged water to obtain 50 g of coated resin particles (3) in the same manner as in Example 1.
  • Example 3 In the coating step, 600.0 g of a 25% by mass aqueous dispersion emulsion of a 75 mol% neutralized ethylene-sodium acrylate copolymer (Sumitomo Seika Co., Ltd., Zaixen N) was diluted with 900.0 g of ion-exchanged water. 50 g of coated resin particles (4) were obtained in the same manner as in Example 1 except that the liquid was used.
  • Example 4 In the coating process, 600.0 g of a 25% by mass water-dispersed emulsion of ethylene-sodium acrylate copolymer with a degree of neutralization of 75 mol% (Sumitomo Seika Co., Ltd., Zaixen N) and polyethylene glycol (Tokyo Chemical Industry Co., Ltd., PEG6000 ) was diluted with 885.0 g of deionized water to obtain 50 g of coated resin particles (5) in the same manner as in Example 1.
  • Example 5 (Emulsion material preparation process) Water and ice were added to a plastic vat having a length of 27 cm, a width of 38 cm, and a depth of 7 cm to prepare an ice bath at 3°C. A 1-liter glass beaker was placed in the ice bath, and 266.3 g of ion-exchanged water was added. An ice bath was placed on top of the magnetic stirrer, and a stirrer tip was added to the beaker and stirred.
  • a round bottom cylindrical separable flask with an inner diameter of 11 cm and an internal volume of 2 L equipped with a reflux condenser, a thermometer, and a stirrer (stirring blades having four inclined paddle blades with a blade diameter of 5 cm) was prepared.
  • 100 g of ethylene-acrylic acid copolymer (SK global chemical: Primacol 5980i) was added to the flask. After that, the entire amount of the sodium hydroxide aqueous solution described above was added. After that, the beaker used for preparing the aqueous sodium hydroxide solution was washed with 50.0 g of ion-exchanged water, and the washing water was added to the separable flask to obtain a reaction liquid.
  • the separable flask was lifted out of the oil bath and allowed to cool at room temperature until the internal temperature reached 35°C. After confirming that the internal temperature has reached 35° C. or less, the reaction solution is filtered through a nylon mesh with an opening of 108 ⁇ m, and the filtrate is a 25% water-dispersed emulsion of an ethylene-sodium acrylate copolymer with a degree of neutralization of 85%. got the wood.
  • Example 6 Example 1 except that in the emulsion material preparation step, 897.41 g of ion-exchanged water and 10.55 g of sodium hydroxide (granules) were put into a glass beaker with an internal volume of 500 mL and dissolved to prepare an aqueous sodium hydroxide solution. Neutralization was carried out in the same manner as in , to obtain a 10% water-dispersed emulsion material of ethylene-sodium acrylate copolymer with a degree of neutralization of 95%.
  • the coating step 500.0 g of the 10% by mass aqueous emulsion of the 95 mol% neutralized ethylene-sodium acrylate copolymer prepared above and 5.0 g of polyethylene glycol (PEG6000, Tokyo Chemical Industry Co., Ltd.) were mixed. 50 g of Coated Resin Particles (7) were obtained in the same manner as in Example 5, except that the coating liquid prepared in this manner was used.
  • Example 7 In the coating step, 1500.0 g of the 10% by mass aqueous emulsion of the 95 mol% neutralized ethylene-sodium acrylate copolymer prepared above and 25.0 g of polyethylene glycol (PEG6000, Tokyo Chemical Industry Co., Ltd.) were mixed. Coated resin particles (8 ) was obtained.
  • a coating solution was prepared by mixing 25 g of polyvinyl alcohol (Kuraray Poval 3-98, Kuraray Co., Ltd.) as a coating material, 332.5 g of ion-exchanged water and 142.5 g of ethanol in a 1 L polyvinyl beaker. Except that the coating liquid was used, the blast temperature of the fluidized bed granulator was 80 ° C., and the heating temperature of the hot air dryer was 140 ° C., the same procedure as in Comparative Example 2 was performed. 50.0 g of resin particles (10) were obtained.
  • a high temperature and humidity bath (Espec Co., Ltd.: LHU-113) is adjusted to 30 ⁇ 0.5° C. and relative humidity of 90 ⁇ 1% RH.
  • the metal petri dish containing the sample is placed in a high-temperature, constant-humidity tank and allowed to stand for 24 hours. After 24 hours, the petri dish is taken out and its weight (W1) is measured.
  • the metal petri dish containing the sample is turned upside down on a 12-mesh sieve to remove moisture-absorbing particles. After removing the hygroscopic sample, the weight (W0) of the empty petri dish is measured.
  • Blocking rate (%) W2/(W1-W0) x 100
  • P(E-AANa) indicates an ethylene-sodium acrylate copolymer
  • raw material indicates the water-absorbent resin particles (1) themselves (resin particles without a coating layer).
  • PVA indicates polyvinyl alcohol.
  • the degree of neutralization indicates the degree of neutralization by an alkaline neutralizer, and the number of moles of neutralized acidic groups in the polymer with respect to the total number of moles of acidic groups in the polymer used for the coating material. The number ratio (moles of neutralized acidic groups/total moles of acidic groups ⁇ 100) is shown.
  • the amount of the main component added in Table 1 is the mass (unit: part by mass) of the main component (P-EAANa or PVA) of the coating material with respect to 100 parts by mass of the water-absorbent resin particles to be coated, and the addition of PEG.
  • the amount is the weight (unit: parts by weight) of polyethylene glycol with respect to 100 parts by weight of the water-absorbing resin particles to be coated.
  • coated resin particles of Examples had a low blocking rate as measured by a moisture absorption test and were less likely to aggregate due to moisture absorption.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Analytical Chemistry (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Absorbent Articles And Supports Therefor (AREA)

Abstract

本発明の一側面は、吸水性樹脂粒子と、該吸水性樹脂粒子の表面の少なくとも一部を被覆するコーティング層と、を含む被覆樹脂粒子であって、コーティング層が、カルボキシ基を有する重合体を含み、被覆樹脂粒子を生理食塩水に5分間浸漬させた後の液体のpH値Aが6.20~7.50である、被覆樹脂粒子に関する。

Description

被覆樹脂粒子、吸水性樹脂組成物及び吸収体
 本発明は、被覆樹脂粒子、吸水性樹脂組成物及び吸収体に関する。
 紙おむつや生理用品等の衛生材料には、高吸水性の樹脂が吸収体の材料として用いられている(例えば、特許文献1及び特許文献2)。
特開平10-101735号公報 特開平2001-258934号公報
 衛生材料において吸収体として用いられる吸水性樹脂粒子は、保存安定性の点で改善の余地があった。例えば、吸水性樹脂粒子が吸湿によって凝集を生じることにより品質面での懸念が生じ得る。
 本発明は、吸水性樹脂粒子を含む、吸湿による凝集の生じ難い被覆樹脂粒子を提供することを目的とする。
 本発明の一側面は、以下の[1]~[7]を提供する。
[1]
 吸水性樹脂粒子と、該吸水性樹脂粒子の表面の少なくとも一部を被覆するコーティング層と、を含む被覆樹脂粒子であって、前記コーティング層が、カルボキシ基を有する重合体を含み、前記被覆樹脂粒子を生理食塩水に5分間浸漬させた後の液体のpH値Aが6.20~7.50である、被覆樹脂粒子。
[2]
 前記被覆樹脂粒子を生理食塩水に30分間浸漬させた後の液体のpH値Bが4.50~6.50である、[1]に記載の被覆樹脂粒子。
[3]
 前記カルボキシ基を有する重合体が、(メタ)アクリル酸及び/又はその塩を単量体単位として含む、[1]又は[2]に記載の被覆樹脂粒子。
[4]
 前記カルボキシ基を有する重合体が、置換又は無置換のアルケンを単量体単位として更に含む、[1]~[3]のいずれかに記載の被覆樹脂粒子。
[5]
 [1]~[4]のいずれかに記載の被覆樹脂粒子と、前記被覆樹脂粒子以外の吸水性を有する樹脂粒子と、を含む、吸水性樹脂組成物。
[6]
 [1]~[4]のいずれかに記載の被覆樹脂粒子を含む、吸収体。
[7]
 [5]に記載の吸水性樹脂組成物を含む、吸収体。
 本発明によれば、吸水性樹脂粒子を含む、吸湿による凝集の生じ難い被覆樹脂粒子を提供することができる。
被覆樹脂粒子の一実施形態を示す模式断面図である。 吸収性物品の一実施形態を示す模式断面図である。
 以下、本発明のいくつかの実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。本明細書において、「アクリル」及び「メタクリル」を合わせて「(メタ)アクリル」と表記する。「アクリレート」及び「メタクリレート」も同様に「(メタ)アクリレート」と表記する。本明細書に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値と任意に組み合わせることができる。本明細書に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。本明細書に例示する材料は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。本明細書において、「生理食塩水」は、濃度0.9質量%の塩化ナトリウム水溶液であり、濃度0.9質量%は生理食塩水の質量を基準とする濃度である。
[被覆樹脂粒子]
 本実施形態に係る被覆樹脂粒子は、吸水性樹脂粒子と、該吸水性樹脂粒子の表面の少なくとも一部を被覆するコーティング層とを有する樹脂粒子である。当該被覆樹脂粒子において、コーティング層は、カルボキシ基を有する重合体を含み、被覆樹脂粒子を生理食塩水に5分間浸漬させた後の液体のpH値Aは6.20~7.50である。
 図1は、被覆樹脂粒子の一実施形態を示す模式断面図である。図1の(a)に示すように、被覆樹脂粒子1は、吸水性樹脂粒子1aと、吸水性樹脂粒子1aの表面の少なくとも一部を被覆するコーティング層1bとを有する。図1の(a)では、吸水性樹脂粒子1の表面全体がコーティング層1bによって被覆されている。
<吸水性樹脂粒子>
 吸水性樹脂粒子は、重合体粒子を含んでいてよい。重合体粒子は、エチレン性不飽和単量体を含む単量体の重合により形成された架橋重合体であってよい。重合体粒子は、エチレン性不飽和単量体に由来する単量体単位を有することができる。重合体粒子は、例えば、エチレン性不飽和単量体を含む単量体を重合させる工程を含む方法により、製造することができる。重合方法としては、逆相懸濁重合法、水溶液重合法、バルク重合法、沈殿重合法等が挙げられる。
 エチレン性不飽和単量体は、水溶性エチレン性不飽和単量体であってもよい。水溶性エチレン性不飽和単量体の水100gに対する溶解度は25℃で1.0g以上であってよい。水溶性エチレン性不飽和単量体としては、例えば、(メタ)アクリル酸及びその塩、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸及びその塩、(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、2-ヒドロキシエチル(メタ)アクリレート、N-メチロール(メタ)アクリルアミド、ポリエチレングリコールモノ(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノプロピル(メタ)アクリレート、並びにジエチルアミノプロピル(メタ)アクリルアミドが挙げられる。エチレン性不飽和単量体がアミノ基を有する場合、当該アミノ基は4級化されていてもよい。エチレン性不飽和単量体は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。
 エチレン性不飽和単量体が酸性基を有する場合、その酸性基をアルカリ性中和剤によって中和してから重合反応に用いてもよい。エチレン性不飽和単量体における、アルカリ性中和剤による中和度は、例えば、エチレン性不飽和単量体中の酸性基の10~100モル%、50~90モル%、又は60~80モル%であってもよい。
 工業的に入手が容易である観点から、エチレン性不飽和単量体は、(メタ)アクリル酸及びその塩、アクリルアミド、メタクリルアミド、並びに、N,N-ジメチルアクリルアミドからなる群より選ばれる少なくとも1種の化合物を含んでいてもよい。エチレン性不飽和単量体が、(メタ)アクリル酸及びその塩、並びに、アクリルアミドからなる群より選ばれる少なくとも1種の化合物を含んでいてもよい。
 吸水性樹脂粒子を得るための単量体としては、上述のエチレン性不飽和単量体以外の単量体が使用されてもよい。このような単量体は、例えば、上述のエチレン性不飽和単量体を含む水溶液に混合して用いることができる。エチレン性不飽和単量体の使用量は、単量体全量に対して、60~100モル%、70~100モル%、80~100モル%、90~100モル%、又は95~100モル%であってもよい。(メタ)アクリル酸及びその塩の割合が単量体全量に対して、60~100モル%、70~100モル%、80~100モル%、90~100モル%、又は95~100モル%であってもよい。
 重合の際に自己架橋による架橋が生じるが、内部架橋剤を用いることで架橋を促してもよい。内部架橋剤を用いると、吸水性樹脂粒子の吸水特性(保水量等)を制御しやすい。内部架橋剤は、通常、重合反応の際に反応液に添加される。
 重合体粒子のうち少なくとも表層部分の重合体は、表面架橋剤との反応によって架橋されていてよい。表面架橋剤は、例えば、エチレン性不飽和単量体由来の官能基との反応性を有する官能基(反応性官能基)を2個以上有する化合物であってよい。
 重合体粒子は、エチレン性不飽和単量体の重合体に加えて、ある程度の水を含んでいてもよく、その内部に各種の追加の成分を更に含んでいてもよい。追加の成分の例としては、ゲル安定剤、金属キレート剤が挙げられる。
 吸水性樹脂粒子の形状は、特に限定されず、例えば、略球状、破砕状又は顆粒状であってもよく、これらの形状を有する一次粒子が凝集した形状であってもよい。
 吸水性樹脂粒子は、必要に応じて篩による分級を用いた粒度調整等の操作を行うことにより粒度分布を調整されていてよい。例えば、目開き850μmの篩を通過し、且つ、目開き250μmの篩を通過しなかった画分を吸水性樹脂粒子として用いてよい。
<コーティング層>
 コーティング層は、カルボキシ基を有する重合体を含む。カルボキシ基を有する重合体は、単量体単位としてカルボキシ基を有する単量体を含む。カルボキシ基を有する単量体は、例えば、(メタ)アクリル酸及び/その塩であってよい。(メタ)アクリル酸塩としては、例えば、(メタ)アクリル酸ナトリウム及び(メタ)アクリル酸カリウム等が挙げられる。
 カルボキシ基を有する重合体において、カルボキシ基はアルカリ性中和剤によって中和されていてよい。カルボキシ基を有する重合体における、アルカリ性中和剤による中和度は、例えば、カルボキシ基を有する重合体中のカルボキシ基の10モル%以上、20モル%以上、30モル%以上、40モル%以上、45モル%以上、50モル%以上、60モル%以上、70モル%以上、80モル%以上、90モル%以上、又は95モル%以上であってよく、100モル%以下、又は98モル%以下であってよい。アルカリ性中和剤による中和度は、例えば、カルボキシ基を有する重合体中のカルボキシ基の40~100モル%、又は45~98モル%であってよい。
 コーティング層に含まれる重合体は、カルボキシ基を有する単量体以外の単量体(他の単量体)を単量体単位として含んでいてよい。他の単量体は、例えば、置換又は無置換のアルケンであってよい。
 無置換アルケンとしては、例えば、エチレン、プロピレン、及びブテンが挙げられる。無置換アルケンは、エチレン及び/又はプロピレンであることが好ましく、エチレンであることが好ましい。置換アルケンとしては、ビニルエステル等が挙げられる。
 コーティング層に含まれる重合体は、カルボキシ基を有する単量体と、置換又は無置換のアルケンとを、単量体単位として含むコポリマーであってよい。当該コポリマーは、例えば、(メタ)アクリル酸及び/又はその塩と、エチレンとを単量体単位として含むコポリマーであるエチレン-(メタ)アクリル酸塩共重合体であってよい。
 カルボキシ基を有する重合体の含有量は、吸水性樹脂粒子100質量部に対して、1質量部以上、5質量部以上、10質量部以上、15質量部以上、20質量部以上、又は25質量部以上であってよく、50質量部以下、45質量部以下、40質量部以下、又は35質量部以下であってよい。カルボキシ基を有する重合体の含有量は、吸水性樹脂粒子100質量部に対して、5~35質量部であってよい。
 コーティング層は、上記カルボキシ基を有する重合体以外の成分(他の成分)を含んでいてもよい。上記カルボキシ基を有する重合体以外の成分としては、例えば、ポリアルキレングリコール、ポリビニルアルコールが挙げられる。ポリアルキレングリコールとしては、例えば、ポリエチレングリコールが挙げられる。他の成分の含有割合は、上記カルボキシ基を有する重合体100質量部に対して、1~30質量部、5~25質量部、又は8~20質量部であってよい。
 コーティング層の総含有量は、吸水性樹脂粒子100質量部に対して、例えば、1質量部以上、5質量部以上、8質量部以上、10質量部以上、15質量部以上、20質量部以上、25質量部以上、又は30質量部以上であってよく、50質量部以下、45質量部以下、40質量部以下、又は35質量部以下であってよい。コーティング層の総含有量は、吸水性樹脂粒子100質量部に対して、例えば、1~40質量部であってよい。
 本実施形態に係る被覆樹脂粒子を生理食塩水に5分間浸漬させた後の液体のpH値Aは、6.20~7.50である。pH値Aの下限は、吸湿による凝集がより一層生じ難くなることから、6.25以上、6.30以上、6.35以上、6.40以上、6.45以上、6.50以上、6.55以上、6.60以上、6.65以上、6.70以上、6.75以上、6.80以上、6.85以上、6.90以上、6.95以上、7.00以上、又は7.05以上であってよい。pH値Aの上限は、吸湿による凝集がより一層生じ難くなることから、7.45以下、7.40以下、7.35以下、7.30以下、7.25以下、7.20以下、7.15以下又は7.10以下であってよい。pH値Aは、吸湿による凝集がより一層生じ難くなることから、例えば、6.25~7.20、6.30~7.25、6.30~7.20、6.30~7.15又は6.30~7.10であってよい。
 pH値Aは、例えば、コーティング層に含まれるカルボキシ基を有する重合体中のカルボキシ基の中和度を制御すること、コーティング層の形成に使用するコーティング材の種類及び使用量を制御すること、又はこれらを任意に組み合わせた方法によって、上記範囲内に調整することができる。
 本実施形態に係る被覆樹脂粒子を生理食塩水に30分間浸漬させた後の液体のpH値Bは、6.50以下、6.45以下、6.40以下、6.35以下、6.30以下、6.25以下、6.20以下、又は6.15以下であってよい。pH値Bは、例えば、4.50以上、4.75以上、5.00以上、5.25以上、5.50以上、5.75以上、6.00以上、6.05以上、6.10以上、6.15以上、又は6.20以上であってよい。pH値Bは、4.50~6.50であってよい。pH値Bが上記範囲内であることは、被覆樹脂粒子が膨潤後に弱酸性であることを意味するため、pH値Bが上記範囲内にある被覆樹脂粒子は、人体の安全性及び肌なじみがより優れたものとなる。
 pH値Bは、例えば、コーティング層に含まれるカルボキシ基を有する重合体中のカルボキシ基の中和度を制御すること、コーティング層の形成に使用するコーティング材の種類及び使用量を制御すること、又はこれらを任意に組み合わせた方法によって、上記範囲内に調整することができる。
 pH値A及びpH値Bは、次に示す方法によって測定される。100mLポリエチレンビーカーに生理食塩水100gを添加した後、スターラーを用いて攪拌子を回転数750rpmで攪拌させ、評価用の被覆樹脂粒子0.5gを迅速に加える。pHメーターを用いて、30分間攪拌しながら、評価用の被覆樹脂粒子を加えた生理食塩水のpH測定をする。攪拌5分経過時のpHをpH値Aとする。攪拌30分経過時のpHをpH値Bとする。
 pH値AとpH値Bとの差(pH値A-pH値B)は、吸湿による凝集の抑制効果と、人体の安全性及び肌なじみの向上効果の両方により優れることから、0.15以上、又は0.20以上であってよい。pH値AとpH値Bとの差は、例えば、0.85以下、0.75以下、0.70以下、0.65以下、0.60以下、0.55以下、0.40以下、又は0.25以下であってよい。pH値AとpH値Bとの差は、例えば、0.15~0.85、0.15~0.75、0.15~0.70、0.15~0.65、0.20~0.85、0.20~0.75、0.20~0.70又は0.20~0.65であってよい。
 本実施形態に係る被覆樹脂粒子は、吸湿による凝集が生じ難くなっている。本実施形態に係る被覆樹脂粒子のブロッキング率は、例えば、5%以下、3%以下、又は1%であってよく、0%であってもよい。被覆樹脂粒子のブロッキング率は、後述する実施例に記載の方法によって測定される。
 本実施形態に係る被覆樹脂粒子は、カルボキシ基(-COOH)を有する重合体を含むコーティング層を有し、当該被覆樹脂粒子の樹脂表面部において、カルボキシ基は、プロトンが解離したカルボキシラートイオン(-COO)として存在し得る。そのため、被覆樹脂粒子の表面部において、カルボキシラートイオンによるイオン反発が生じ得る。生理食塩水に5分間浸漬させた後の液体のpH値Aが特定範囲内である被覆樹脂粒子は、イオン反発が適度な範囲に調整されているため、吸湿による凝集が生じ難くなっていると考えられる。但し、本実施形態に係る被覆樹脂粒子によって凝集が生じ難くなるメカニズムはこれに限定されない。
 本実施形態の被覆樹脂粒子は、それ単独で用いることもできるが、被覆樹脂粒子以外の吸水性を有する樹脂粒子(以下、単に「その他の樹脂粒子」という。)と混合して、混合粒子として用いることもできる。
 本実施形態に係る被覆樹脂粒子は、例えば、吸水性樹脂粒子と、カルボキシ基を有する重合体を含むコーティング材とを接触させることによって、吸水性樹脂粒子の表面の少なくとも一部にコーティング層を形成すること、及び、被覆樹脂粒子を生理食塩水に5分間浸漬させた後の液体のpH値Aが6.20~7.50になるように調整することを含む方法によって製造することができる。本実施形態に係る被覆樹脂粒子を製造する方法は、被覆樹脂粒子を生理食塩水に30分間浸漬させた後の液体のpH値Bが4.50~6.50になるように調整することを更に含んでいてもよい。pH値A及びpH値Bを調整する方法については、上述したとおりであってよい。被覆樹脂粒子を製造する方法の具体的態様は上述した態様を適用することができる。
 コーティング層は、例えば、吸水性樹脂粒子と、エマルジョン状態又は溶液状態にあるコーティング材とを接触させることによって、吸水性樹脂粒子の表面の少なくとも一部に形成することができる。
 コーティング層は、例えば、(1)ナスフラスコを用いた方法、(2)噴霧器を用いた方法、又は(3)各種造粒機を用いた方法によって形成することができる。
(1)ナスフラスコを用いた方法
 ナスフラスコを用いた方法では、まず、ナスフラスコにコーティング材を投入し、続けて吸水性樹脂粒子を投入する。該ナスフラスコをエバポレーターに取り付け、回転させながら加熱し、減圧条件下でコーティング材に含まれる液状媒体を留去する。これによりコーティング材が吸水性樹脂粒子の表面に被覆された被覆樹脂粒子が得られる。
(2)噴霧器を用いた方法
 噴霧器を用いた方法では、まず、撹拌翼を備えたセパラブルフラスコに、吸水性樹脂粒子を加えて撹拌する。撹拌翼による撹拌で巻き上げられた吸水性樹脂粒子に、コーティング材を噴霧する。コーティング材の噴霧は、例えば、2流体型ノズルを用いて行うことができる。均一な被覆が期待できることから、コーティング材は窒素等の不活性ガスの気流により霧状にして噴霧されることが望ましい。その後、セパラブルフラスコの内容物を取り出し、熱風乾燥機にて加熱した後、室温まで冷却することで被覆樹脂粒子が得られる。
(3)各種造粒機を用いた方法
 被覆樹脂粒子の製造に用いられる造粒機としては、例えば、転動造粒機、攪拌造粒機、及び流動層造粒機が挙げられる。
 転動造粒機を用いる場合、転動造粒機に備え付けられた、傾斜した浅い円形容器を回転させておき、該円形容器に吸水性樹脂粒子を供給すると共にコーティング材を適量添加する。そうすると、コーティング材に含まれる溶媒又は分散媒により、転動中の吸水性樹脂粒子の一部が凝集しつつその表面にコーティング層が形成される。なお、吸水性樹脂粒子及びコーティング材の添加工程は必要により複数回行い得る。
 攪拌造粒機を用いる場合、攪拌造粒機に備え付けられたミキサーに吸水性樹脂粒子を投入し、撹拌による混合を行うと共にコーティング材を添加する。そうすると、コーティング材に含まれる液状媒体により、攪拌中の吸水性樹脂粒子の一部が凝集しつつその表面にコーティング層が形成される。吸水性樹脂粒子及びコーティング材の添加工程は必要により複数回行い得る。吸水性樹脂粒子の過度な凝集は、ミキサーの剪断力を制御することによって抑制し得る。
 流動層造粒機を用いる場合、まず、流動層造粒機に備え付けられた、下部から熱風を送り出すことができる容器に吸水性樹脂粒子を投入し、予め吸水性樹脂粒子を流動化しておく。その後、該容器に備え付けられたノズルからコーティング材を散布すると、コーティング材に含まれる液状媒体により、攪拌中の吸水性樹脂粒子の一部が凝集しつつその表面にコーティング層が形成される。コーティング材の散布は必要により複数回行い得る。吸水性樹脂粒子の過度な凝集は、コーティング材の散布量や散布頻度を調整することで抑制し得る。流動層造粒機としては、例えば、流動層造粒機FBD/SG(YENCHEN MACHINERY製)を使用できる。
 本実施形態に係る被覆樹脂粒子は、吸湿による凝集が抑制されている。したがって、本発明の一実施形態として、吸水性樹脂粒子を含む被覆樹脂粒子の吸湿による凝集を抑制する方法であって、吸水性樹脂粒子の表面の少なくとも一部にカルボキシ基を有する重合体を含むコーティング層を形成することと、被覆樹脂粒子を生理食塩水に5分間浸漬させた後の液体のpH値Aが6.20~7.50になるように調整することとを含む方法が提供される。吸水性樹脂粒子を含む被覆樹脂粒子の吸湿による凝集を抑制する方法の具体的態様は、上述した態様を適用することができる。
[吸水性樹脂組成物]
 本実施形態に係る吸水性樹脂組成物は、上述した被覆樹脂粒子と、被覆樹脂粒子以外の吸水性を有する樹脂粒子(その他の樹脂粒子)と、を含む。被覆樹脂粒子は、コーティング層の厚み、及び/又はコーティング層の材料が異なる複数種の被覆樹脂粒子を混合して使用してもよい。
 吸水性樹脂組成物において、被覆樹脂粒子の含有量は、被覆樹脂粒子及びその他の樹脂粒子の合計100質量部に対して、例えば、5質量部以上、又は15質量部以上であってよく、95質量部以下、85質量部以下、60質量部以下、40質量部以下、30質量部以下、又は25質量部以下であってよい。
 被覆樹脂粒子を構成する(コーティング層の被覆対象である)吸水性樹脂粒子は、その他の樹脂粒子と同じ粒子であってもよく、異なる粒子であってもよい。
[吸収性物品]
 被覆樹脂粒子は、例えば、おむつ等の吸収性物品を構成する吸収体を形成するために用いられる。図2は、吸収性物品の一例を示す断面図である。図2に示す吸収性物品100は、シート状の吸収体10と、コアラップ20a,20bと、液体透過性シート30と、液体不透過性シート40と、を備える。吸収性物品100において、液体不透過性シート40、コアラップ20b、吸収体10、コアラップ20a、及び、液体透過性シート30がこの順に積層している。図2において、部材間に間隙があるように図示されている部分があるが、当該間隙が存在することなく部材間が密着していてよい。
 吸収体10は、上述の実施形態に係る被覆樹脂粒子10aと、繊維状物を含む繊維層10bと、を有する。被覆樹脂粒子10aは、繊維層10b内に分散している。
 コアラップ20aは、吸収体10に接した状態で吸収体10の一方面側(図2中、吸収体10の上側)に配置されている。コアラップ20bは、吸収体10に接した状態で吸収体10の他方面側(図2中、吸収体10の下側)に配置されている。吸収体10は、コアラップ20aとコアラップ20bとの間に配置されている。コアラップ20a,20bとしては、ティッシュ、不織布等が挙げられる。コアラップ20a及びコアラップ20bは、例えば、吸収体10と同等の大きさの主面を有している。
 液体透過性シート30は、吸収対象の液が浸入する側の最外部に配置されている。液体透過性シート30は、コアラップ20aに接した状態でコアラップ20a上に配置されている。液体透過性シート30としては、ポリエチレン、ポリプロピレン、ポリエステル、ポリアミド等の合成樹脂からなる不織布、多孔質シートなどが挙げられる。液体不透過性シート40は、吸収性物品100において液体透過性シート30とは反対側の最外部に配置されている。液体不透過性シート40は、コアラップ20bに接した状態でコアラップ20bの下側に配置されている。液体不透過性シート40としては、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等の合成樹脂からなるシート、これらの合成樹脂と不織布との複合材料からなるシートなどが挙げられる。液体透過性シート30及び液体不透過性シート40は、例えば、吸収体10の主面よりも広い主面を有しており、液体透過性シート30及び液体不透過性シート40の外縁部は、吸収体10及びコアラップ20a,20bの周囲に延在している。
 吸収体10、コアラップ20a,20b、液体透過性シート30、及び、液体不透過性シート40の大小関係は、特に限定されず、吸収性物品の用途等に応じて適宜調整される。コアラップ20a,20bを用いて吸収体10を保形する方法は、特に限定されず、図2に示すように複数のコアラップにより吸収体を包んでよく、1枚のコアラップにより吸収体を包んでもよい。
 吸収体10は、被覆樹脂粒子10a以外の吸水性を有する樹脂粒子(その他の樹脂粒子)を更に含んでいてもよい。その他の樹脂粒子を含む場合、被覆樹脂粒子10aの含有量は、被覆樹脂粒子及びその他の樹脂粒子の合計100質量部に対して、例えば、5質量部以上、又は15質量部以上であってよく、95質量部以下、又は85質量部以下であってよい。
 以下、実施例を挙げて本発明についてさらに具体的に説明する。ただし、本発明はこれら実施例に限定されるものではない。
[比較例1]
 還流冷却器、滴下ロート、窒素ガス導入管、及び、撹拌機(翼径5cmの4枚傾斜パドル翼を2段有する撹拌翼)を備えた内径11cm、容積2Lの丸底円筒型セパラブルフラスコを準備した。このセパラブルフラスコに、n-ヘプタン(炭化水素分散媒)293g、及び無水マレイン酸変性エチレン・プロピレン共重合体(高分子系分散剤、三井化学株式会社、ハイワックス1105A)0.736gを添加することにより混合物を得た。この混合物を回転数300rpmで撹拌しつつ80℃まで加温することにより分散剤を溶解させた。その後、混合物を55℃まで冷却した。
 次に、容積500mLの三角フラスコに80.5質量%のアクリル酸水溶液92.0g(アクリル酸:1.03モル)を入れた。続いて、外部より冷却しつつ、30質量%の水酸化ナトリウム水溶液102.2gを滴下することにより75モル%のアクリル酸を中和した。その後、ヒドロキシルエチルセルロース(増粘剤、住友精化株式会社、HEC AW-15F)0.092g、過硫酸カリウム(水溶性ラジカル重合開始剤)0.0736g(0.272ミリモル)、エチレングリコールジグリシジルエーテル(内部架橋剤)0.0101g(0.0580ミリモル)、及びイオン交換水34.66gを加えた後に溶解させることにより第1段目のモノマー水溶液を調製した。
 上述の第1段目のモノマー水溶液を上述のセパラブルフラスコに添加した後、10分間撹拌した。n-ヘプタン6.62gにショ糖ステアリン酸エステル(界面活性剤、三菱化学フーズ株式会社製、リョートーシュガーエステルS-370、HLB:3)0.736gを加熱溶解することにより、界面活性剤溶液を得た。得られた界面活性剤溶液7.356gをセパラブルフラスコに添加することにより反応液を得た。そして、回転数550rpmで反応液を撹拌しながらセパラブルフラスコ系内を窒素で充分に置換した。その後、セパラブルフラスコを70℃の水浴に浸漬して反応液を昇温し、第1段目の重合を10分間行うことにより、第1段目の反応混合物を得た。
 次に、容量500mLの別の三角フラスコに80.5質量%のアクリル酸水溶液128.8g(アクリル酸:1.44モル)を入れた。続いて、外部より冷却しつつ、30質量%の水酸化ナトリウム水溶液143.1gを滴下することにより75モル%のアクリル酸を中和した。その後、過硫酸カリウム0.1030g(0.3810ミリモル)、エチレングリコールジグリシジルエーテル(内部架橋剤)0.0116g(0.0666ミリモル)、及び、イオン交換水3.13gを加えた後に溶解させることにより、第2段目のモノマー水溶液を調製した。
 第1段目の反応混合物を回転数1000rpmで撹拌しつつ25℃に冷却した後、第2段目のモノマー水溶液の全量を第1段目の反応混合物に添加することにより反応液を得た。反応液を撹拌しながら系内を窒素で充分に置換した。その後、セパラブルフラスコを70℃の水浴に浸漬して反応液を昇温し、第2段目の重合を5分間行うことにより第2段目の反応混合物(表面架橋前の重合体粒子)を得た。
 第2段目の重合後、125℃の油浴で第2段目の反応混合物を昇温し、n-ヘプタンと水との共沸蒸留により、n-ヘプタンを還流しながら252gの水を系外へ抜き出した。続いて、表面架橋剤としてエチレングリコールジグリシジルエーテル0.0884g(0.5075ミリモル)を加えた後、83℃で2時間保持することで表面架橋後の重合体粒子の分散液を得た。
 その後、125℃の油浴で上述の表面架橋後の重合体粒子の分散液を昇温し、n-ヘプタンを蒸発させて乾燥させることによって乾燥物を得た。この乾燥物を目開き850μmの篩を通過させることにより、球状粒子が凝集した形態で被覆がなされていない状態の吸水性樹脂粒子(1)を233.4g得た。
[実施例1]
(コーティング工程)
 比較例1を複数回実施して得られた吸水性樹脂粒子(1)を目開き250μmの櫛で分級し、粒径250~850μmの吸水性樹脂粒子を500g以上入手した。
 内容積1Lのポリビーカーに、コーティング材として中和度48モル%エチレン-アクリル酸ナトリウム共重合体の28質量%水分散エマルジョン(住友精化株式会社、ザイクセンNC)178.6g及びポリエチレングリコール(東京化成工業株式会社、PEG6000)5.0gをイオン交換水316.4gで希釈し、コーティング液を調製した。
 流動層造粒機のコンテナに、吸水性樹脂粒子(1)500.0gを投入し、コンテナの下部から50℃の温風で送風した。次に、送風で巻き上げられている吸水性樹脂粒子に、上記で調整したコーティング液500gを乾燥させながら噴霧した。コーティング材を噴霧した後、50℃で30分間乾燥した。乾燥後、被覆樹脂粒子を得た。
 得られた被覆樹脂粒子50.0gを縦26cm、横20cmの金属バットに広げ、アルミホイルで蓋をした。アルミホイルに穿孔し、80℃に設定した熱風乾燥機(ADVANTEC、FV-320)にて被覆樹脂粒子を60分間加熱し、被覆樹脂粒子(2)を50.0g得た。
[実施例2]
 コーティング工程にて、中和度75モル%エチレン-アクリル酸ナトリウム共重合体の25質量%水分散エマルジョン(住友精化株式会社、ザイクセンN)200.0g及びポリエチレングリコール(東京化成工業株式会社、PEG6000)5.0gをイオン交換水295.0gで希釈したコーティング液を使用したこと以外は、実施例1と同様に行い、被覆樹脂粒子(3)を50g得た。
[実施例3]
 コーティング工程にて、中和度75モル%エチレン-アクリル酸ナトリウム共重合体の25質量%水分散エマルジョン(住友精化株式会社、ザイクセンN)600.0gをイオン交換水900.0gで希釈したコーティング液を使用したこと以外は、実施例1と同様に行い、被覆樹脂粒子(4)を50g得た。
[実施例4]
 コーティング工程にて、中和度75モル%エチレン-アクリル酸ナトリウム共重合体の25質量%水分散エマルジョン(住友精化株式会社、ザイクセンN)600.0g及びポリエチレングリコール(東京化成工業株式会社、PEG6000)15.0gをイオン交換水885.0gで希釈したコーティング液を使用したこと以外は、実施例1と同様に行い、被覆樹脂粒子(5)を50g得た。
[実施例5]
(エマルジョン材作製工程)
 縦27cm、横38cm、深さ7cmのプラスチックバットに水と氷を加え、3℃の氷浴を作製した。この氷浴内に内容積1Lのガラス製ビーカーを置き、イオン交換水266.3gを加えた。氷浴をマグネチックスターラーの上に設置し、ビーカー内にスターラーチップを加え、攪拌した。
 水酸化ナトリウム(顆粒)(ナカライテスク株式会社)9.44gをビーカーに少しずつ加え、水酸化ナトリウム水溶液を作製した。
 還流冷却器、温度計、及び、撹拌機(翼径5cmの4枚傾斜パドル翼を有する撹拌翼)を備えた内径11cm、内容積2Lの丸底円筒型セパラブルフラスコを準備した。このフラスコに、エチレン-アクリル酸共重合体(SKglobal chemical:プリマコール5980i)を100g加えた。その後、前述の水酸化ナトリウム水溶液を全量加えた。その後、水酸化ナトリウム水溶液の作製に使用したビーカーを50.0gのイオン交換水で洗浄し、洗浄水をセパラブルフラスコに加え、反応液を得た。
 撹拌機の回転数500rpmで反応液を攪拌しながら、103℃の油浴に浸漬し、内温を95℃まで上昇させた。その後、内温が95~97℃となるように油浴の温度を適宜調整しながら、4時間保持した。
 その後、セパラブルフラスコを油浴から引き上げ、内温が35℃となるまで室温で放冷した。内温が35℃以下となったことを確認し、反応液を目開き108μmのナイロンメッシュでろ過し、ろ液として中和度85%のエチレン-アクリル酸ナトリウム共重合体の25%水分散エマルジョン材を得た。
 コーティング工程にて、上記で作製した中和度85%エチレン-アクリル酸ナトリウム共重合体の25%水分散エマルジョン600.0g及びポリエチレングリコール(東京化成工業株式会社、PEG6000)25.0gをイオン交換水875.0gで希釈したコーティング液を使用したこと、100℃に設定した熱風乾燥機(ADVANTEC、FV-320)にて被覆樹脂粒子を60分間加熱したこと以外は、実施例1と同様に行い、被覆樹脂粒子(6)を50g得た。
[実施例6]
 エマルジョン材作製工程にて、内容積500mLのガラス製ビーカーに、イオン交換水897.41gと水酸化ナトリウム(顆粒)10.55gを入れ溶解させ、水酸化ナトリウム水溶液を作製したこと以外は実施例1と同様に中和を行い、中和度95%のエチレン-アクリル酸ナトリウム共重合体の10%水分散エマルジョン材を得た。
 コーティング工程にて、上記で作製した中和度95モル%エチレン-アクリル酸ナトリウム共重合体の10質量%水分散エマルジョン500.0g及びポリエチレングリコール(東京化成工業株式会社、PEG6000)5.0gを混合したコーティング液を使用したこと以外は、実施例5と同様に行い、被覆樹脂粒子(7)を50g得た。
[実施例7]
 コーティング工程にて、上記で作製した中和度95モル%エチレン-アクリル酸ナトリウム共重合体の10質量%水分散エマルジョン1500.0g及びポリエチレングリコール(東京化成工業株式会社、PEG6000)25.0gを混合したコーティング液を使用したこと、90℃に設定した熱風乾燥機(ADVANTEC、FV-320)にて被覆樹脂粒子を60分間加熱したこと以外は、実施例5と同様に行い、被覆樹脂粒子(8)を50g得た。
[比較例2]
 コーティング工程にて、中和度75モル%エチレン-アクリル酸ナトリウム共重合体の25質量%水分散エマルジョン(住友精化株式会社、ザイクセンN)60.0gをイオン交換水90.0gで希釈したコーティング液を使用したこと以外は、実施例1と同様に行い、被覆樹脂粒子(9)を50g得た。
[比較例3]
 内容積1Lのポリビーカーに、コーティング材としてポリビニルアルコール(株式会社クラレ、クラレポバール3-98)25g、イオン交換水332.5g及びエタノール142.5gを混合し、コーティング液を調製した。該コーティング液を用いたこと、流動層造粒機の送風温度を80℃にしたこと、及び、熱風乾燥機での加熱温度を140℃にしたこと以外は、比較例2と同様に行い、被覆樹脂粒子50.0g(10)を得た。
[pH変化の評価]
 100mLポリエチレンビーカーに生理食塩水100gを添加した後、スターラー(増田理化工業株式会社:マグネチックススターラー SM-15C)を用いて攪拌子(テフロン製 8mmΦ×30mm)を回転数650rpmで攪拌させ、評価用粒子0.5gを迅速に加える。卓上pHメーター(株式会社堀塲製作所:F-24)を用いて、30分間攪拌しながら、溶液のpH測定をする。攪拌5分経過時のpH及び攪拌30分経過時のpHを測定し、それぞれpH値A及びpH値Bとした。pH変化は下記式より算出した。
pH変化=pH(攪拌30分経過時)-pH(攪拌5分経過時)
[ブロッキング率の測定]
 高温恒湿漕(エスペック株式会社:LHU-113)条件を30±0.5℃、相対湿度90±1%RHに調節する。直径5cmの金属シャーレに評価用粒子5.0g±0.1g加え、均一に広げる。上記試料入り金属シャーレを高温恒湿漕に入れ、24時間静置する。24時間経過後、シャーレを取り出し、その重量(W1)を測定する。12メッシュ篩上に試料入り金属シャーレを逆さまにして、吸湿粒子を取り出す。吸湿試料を取り出した後、空のシャーレの重量(W0)を測定する。篩を手で軽く7回振とうさせ、篩から粒子が落ちなくなることを確認する。篩上に残った吸湿粒子の重量(W2)を測定する。下記式より、ブロッキング率を算出する。
 ブロッキング率(%)=W2/(W1-W0)×100
 表1中、「P(E-AANa)」は、エチレン-アクリル酸ナトリウム共重合体を示し、「原体」は、吸水性樹脂粒子(1)そのもの(コーティング層を有しない樹脂粒子)を示し、「PVA」は、ポリビニルアルコールを示す。表1中、中和度は、アルカリ性中和剤による中和度を示し、コーティング材に用いた重合体中の酸性基の総モル数に対する、当該重合体中の中和された酸性基のモル数の比率(中和された酸性基のモル数/酸性基の総モル数×100)を示す。表1中の主成分の添加量は、コーティング対象の吸水性樹脂粒子100質量部に対する、コーティング材の主成分(P-EAANa、又はPVA)の質量(単位:質量部)であり、PEGの添加量は、コーティング対象の吸水性樹脂粒子100質量部に対する、ポリエチレングリコールの質量(単位:質量部)である。
Figure JPOXMLDOC01-appb-T000001
 実施例の被覆樹脂粒子は、吸湿試験により測定されるブロッキング率が低く、吸湿による凝集の生じ難い被覆樹脂粒子であった。
 1,10a…被覆樹脂粒子、1a…吸水性樹脂粒子、1b…コーティング層、10…吸収体、10b…繊維層、20a,20b…コアラップ、30…液体透過性シート、40…液体不透過性シート、100…吸収性物品。

 

Claims (7)

  1.  吸水性樹脂粒子と、該吸水性樹脂粒子の表面の少なくとも一部を被覆するコーティング層と、を含む被覆樹脂粒子であって、
     前記コーティング層が、カルボキシ基を有する重合体を含み、
     前記被覆樹脂粒子を生理食塩水に5分間浸漬させた後の液体のpH値Aが6.20~7.50である、被覆樹脂粒子。
  2.  前記被覆樹脂粒子を生理食塩水に30分間浸漬させた後の液体のpH値Bが4.50~6.50である、請求項1に記載の被覆樹脂粒子。
  3.  前記カルボキシ基を有する重合体が、(メタ)アクリル酸及び/又はその塩を単量体単位として含む、請求項1又は2に記載の被覆樹脂粒子。
  4.  前記カルボキシ基を有する重合体が、置換又は無置換のアルケンを単量体単位として更に含む、請求項1又は2に記載の被覆樹脂粒子。
  5.  請求項1又は2に記載の被覆樹脂粒子と、前記被覆樹脂粒子以外の吸水性を有する樹脂粒子と、を含む、吸水性樹脂組成物。
  6.  請求項1又は2に記載の被覆樹脂粒子を含む、吸収体。
  7.  請求項5に記載の吸水性樹脂組成物を含む、吸収体。

     
PCT/JP2022/037874 2021-12-21 2022-10-11 被覆樹脂粒子、吸水性樹脂組成物及び吸収体 WO2023119798A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021207196 2021-12-21
JP2021-207196 2021-12-21

Publications (1)

Publication Number Publication Date
WO2023119798A1 true WO2023119798A1 (ja) 2023-06-29

Family

ID=86901923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037874 WO2023119798A1 (ja) 2021-12-21 2022-10-11 被覆樹脂粒子、吸水性樹脂組成物及び吸収体

Country Status (2)

Country Link
TW (1) TW202330098A (ja)
WO (1) WO2023119798A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03285918A (ja) * 1990-03-31 1991-12-17 Tokai Rubber Ind Ltd 吸水性樹脂の製法
JPH11347403A (ja) * 1998-04-10 1999-12-21 Sanyo Chem Ind Ltd 吸水剤およびその製法
JP2009519356A (ja) * 2005-12-12 2009-05-14 エボニック ストックハウゼン,インコーポレイティド 熱可塑性物質で被覆された高吸収性ポリマー組成物
JP2010513631A (ja) * 2006-12-22 2010-04-30 ビーエーエスエフ ソシエタス・ヨーロピア 機械的に安定な吸水性ポリマー粒子の製造方法
JP2010533766A (ja) * 2007-07-16 2010-10-28 エボニック ストックハウゼン,インコーポレイティド 色安定性を有する超吸収性ポリマー組成物
WO2021117786A1 (ja) * 2019-12-13 2021-06-17 住友精化株式会社 被覆樹脂粒子及び被覆樹脂粒子を製造する方法
WO2022209536A1 (ja) * 2021-03-30 2022-10-06 住友精化株式会社 吸水性樹脂粒子の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03285918A (ja) * 1990-03-31 1991-12-17 Tokai Rubber Ind Ltd 吸水性樹脂の製法
JPH11347403A (ja) * 1998-04-10 1999-12-21 Sanyo Chem Ind Ltd 吸水剤およびその製法
JP2009519356A (ja) * 2005-12-12 2009-05-14 エボニック ストックハウゼン,インコーポレイティド 熱可塑性物質で被覆された高吸収性ポリマー組成物
JP2010513631A (ja) * 2006-12-22 2010-04-30 ビーエーエスエフ ソシエタス・ヨーロピア 機械的に安定な吸水性ポリマー粒子の製造方法
JP2010533766A (ja) * 2007-07-16 2010-10-28 エボニック ストックハウゼン,インコーポレイティド 色安定性を有する超吸収性ポリマー組成物
WO2021117786A1 (ja) * 2019-12-13 2021-06-17 住友精化株式会社 被覆樹脂粒子及び被覆樹脂粒子を製造する方法
WO2022209536A1 (ja) * 2021-03-30 2022-10-06 住友精化株式会社 吸水性樹脂粒子の製造方法

Also Published As

Publication number Publication date
TW202330098A (zh) 2023-08-01

Similar Documents

Publication Publication Date Title
TWI534158B (zh) 吸水性樹脂粒子、吸水性樹脂粒子的製造方法、吸收體、吸收性物品及止水材
CA2781165C (en) Process for production of water-absorbing resin particles, water-absorbing resin particles, water-stopping material, and absorbent article
JP6360153B2 (ja) ポリアクリル酸(塩)系吸水性樹脂の製造方法
KR102195097B1 (ko) 폴리아크릴산(염)계 흡수성 수지 및 그의 제조 방법
WO2018147317A1 (ja) 吸水性樹脂粒子並びにこれを用いた吸収体及び吸収性物品
JP2008528751A (ja) ポリアミン・コーティングされた高吸水性ポリマー
WO2011090130A1 (ja) 吸水性樹脂の製造方法
WO2012108253A1 (ja) 吸水性樹脂の製造方法
WO2000063295A1 (de) Hydrogel-formende polymermischung
JP6133332B2 (ja) 高い膨潤速度および高い透過率を有する吸水性ポリマー粒子
JPH01292004A (ja) 高吸水性樹脂の製法
WO2023119798A1 (ja) 被覆樹脂粒子、吸水性樹脂組成物及び吸収体
JP6890190B2 (ja) 発熱体組成物用吸水性樹脂粉末、及び発熱体組成物
JP2021521298A (ja) 浸透性超吸収体、及びそれを製造する方法
WO2023100478A1 (ja) 被覆樹脂粒子の製造方法及び被覆樹脂粒子
JP2001247683A (ja) 塩基性吸水性樹脂の製法、吸水剤の製法、ならびにその使用
JP7291686B2 (ja) 吸水性樹脂粒子及びその製造方法
WO2022244566A1 (ja) 被覆樹脂粒子及び被覆樹脂粒子を製造する方法
WO2020067563A1 (ja) 吸水性樹脂粉末の製造方法および吸水性樹脂粉末
WO2023100479A1 (ja) 吸水性樹脂粒子及び吸収体
WO2022244567A1 (ja) 吸水性樹脂粒子、吸収体及び吸収性物品
JP2015178608A (ja) ポリアクリル酸(塩)系吸水性樹脂の製造方法
JPH03285919A (ja) 高吸水性樹脂の製法
WO2024135368A1 (ja) 吸収体及び吸収性物品
JP2019141754A (ja) 吸水性樹脂粒子、これを用いた吸収体及び吸収性物品、並びに吸水性樹脂粒子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22910524

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023569081

Country of ref document: JP