WO2022244566A1 - 被覆樹脂粒子及び被覆樹脂粒子を製造する方法 - Google Patents

被覆樹脂粒子及び被覆樹脂粒子を製造する方法 Download PDF

Info

Publication number
WO2022244566A1
WO2022244566A1 PCT/JP2022/017872 JP2022017872W WO2022244566A1 WO 2022244566 A1 WO2022244566 A1 WO 2022244566A1 JP 2022017872 W JP2022017872 W JP 2022017872W WO 2022244566 A1 WO2022244566 A1 WO 2022244566A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin particles
compound
water
mass
parts
Prior art date
Application number
PCT/JP2022/017872
Other languages
English (en)
French (fr)
Inventor
大輝 澤木
朋佳 山本
Original Assignee
住友精化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精化株式会社 filed Critical 住友精化株式会社
Priority to EP22804480.6A priority Critical patent/EP4321558A1/en
Priority to CN202280034603.6A priority patent/CN117355560A/zh
Priority to KR1020237041290A priority patent/KR20240009958A/ko
Priority to JP2023522333A priority patent/JPWO2022244566A1/ja
Publication of WO2022244566A1 publication Critical patent/WO2022244566A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • C08L101/14Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity the macromolecular compounds being water soluble or water swellable, e.g. aqueous gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • C08J3/126Polymer particles coated by polymer, e.g. core shell structures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F13/00Bandages or dressings; Absorbent pads
    • A61F13/15Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators
    • A61F13/53Absorbent pads, e.g. sanitary towels, swabs or tampons for external or internal application to the body; Supporting or fastening means therefor; Tampon applicators characterised by the absorbing medium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/225Mixtures of macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/22Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
    • A61L15/24Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L15/00Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
    • A61L15/16Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
    • A61L15/42Use of materials characterised by their function or physical properties
    • A61L15/60Liquid-swellable gel-forming materials, e.g. super-absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F22/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides or nitriles thereof
    • C08F22/02Acids; Metal salts or ammonium salts thereof, e.g. maleic acid or itaconic acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating

Definitions

  • the present invention relates to coated resin particles and a method for producing coated resin particles.
  • Water-absorbing resin particles are widely used in various fields such as sanitary materials such as disposable diapers, sanitary products, and portable toilets, agricultural and horticultural materials such as water retention agents and soil conditioners, and industrial materials such as water stop agents and anti-condensation agents. ing. It is desirable that the absorber containing water-absorbing resin particles has an excellent absorption rate of body fluids, etc., which are water-absorbing objects.
  • Patent Document 1 discloses an absorbent containing water-absorbing resin powder, in which a diffusion improving material having a liquid permeation speed under load of 15 seconds or less is arranged. An absorbent body is disclosed wherein the region has a layer formed at least in part.
  • water-absorbing resin particles used in the absorbent core of disposable diapers: water-absorbing resin particles with low water-retaining capacity and water-absorbing resin particles with high water-retaining capacity.
  • water-absorbent resin particles with low water-holding capacity When water-absorbent resin particles with low water-holding capacity are used in the absorbent core, the liquid permeates quickly, but the amount of liquid that can be retained after absorption is low, and sufficient dryness may not be obtained. Insufficient dryness may cause so-called backflow, in which the absorbed liquid returns from the absorbent body to the wearer's side of the diaper after the sheet-like absorbent body absorbs liquid in a curved state.
  • An object of the present invention is to provide coated resin particles capable of improving the permeation rate of a liquid while sufficiently suppressing it, and to provide a method for producing the same.
  • One aspect of the present invention includes water-absorbent resin particles and a coating layer covering at least part of the surface of the water-absorbent resin particles, wherein the coating layer comprises compound A and more water-soluble than compound A.
  • Compound B and coated resin particles are provided.
  • Another aspect of the present invention includes a step of coating at least a portion of the water absorbent resin particles with a coating material to form a coating layer on at least a portion of the surface of the water absorbent resin particles, wherein the coating material is a solution
  • the coating material is a solution
  • the amount of backflow after liquid absorption is increased compared to the case of using conventional water-absorbing resin particles alone. It is possible to provide a coated resin particle and a method for producing the same that can improve the permeation rate of a liquid while sufficiently suppressing it for practical use.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of coated resin particles.
  • FIG. 1 is a schematic cross-sectional view showing an embodiment of an absorbent article;
  • FIG. 4 is a photograph showing the analysis results of the coated resin particles of Example 5 by Raman spectroscopy.
  • 10 is a photograph showing the results of analysis by Raman spectroscopy of the coated resin particles of Example 12.
  • coated resin particles have water absorbent resin particles and a coating layer covering at least part of the surface of the water absorbent resin particles.
  • the coating layer may be chemically and/or physically bonded to the surface of the water-absorbing resin particles so that the water-absorbing resin particles do not easily fall off from the water-absorbing resin particles before water absorption.
  • a physical bond is realized by, for example, an anchoring effect caused by the coating layer entering fine recesses present on the surface of the water-absorbing resin particles.
  • FIG. 1 is a schematic cross-sectional view showing one embodiment of coated resin particles.
  • the coated resin particles 1 have water absorbent resin particles 1a and a coating layer 1b covering at least part of the surface of the water absorbent resin particles 1a.
  • the entire surface of the water absorbent resin particles 1 is covered with the coating layer 1b.
  • Coating layer 1b contains compound A and compound B, which is more water-soluble than compound A.
  • the coated resin particles 1 are prevented from contacting the liquid by the coating layer 1b, water absorption is suppressed for a predetermined time after contact with the liquid containing water.
  • the coating layer 1b comes into contact with a liquid containing water, the compound B gradually dissolves and the portion where the compound B exists becomes a channel.
  • the water-absorbing resin particles 1a are swollen by absorbing the liquid that has entered through the water channels while water absorption is suppressed at the portions where the compound A is present.
  • the water-absorbent resin particles 1a with suppressed water absorption as an absorber, the gaps existing between the water-absorbent resin particles are filled with the swollen gel-like water-absorbent resin particles, and the gaps are filled with liquid.
  • the water absorbent resin particles may contain polymer particles.
  • the polymer particles may be crosslinked polymers formed by polymerization of monomers containing ethylenically unsaturated monomers.
  • the polymer particles can have monomeric units derived from ethylenically unsaturated monomers.
  • Polymer particles can be produced, for example, by a method including a step of polymerizing a monomer containing an ethylenically unsaturated monomer. Examples of the polymerization method include a reverse phase suspension polymerization method, an aqueous solution polymerization method, a bulk polymerization method, a precipitation polymerization method, and the like.
  • the ethylenically unsaturated monomer may be a water-soluble ethylenically unsaturated monomer (an ethylenically unsaturated monomer whose solubility in 100 g of water is 1.0 g or more at 25°C).
  • water-soluble ethylenically unsaturated monomers include (meth)acrylic acid and its salts, 2-(meth)acrylamido-2-methylpropanesulfonic acid and its salts, (meth)acrylamide, N,N-dimethyl (Meth)acrylamide, 2-hydroxyethyl (meth)acrylate, N-methylol (meth)acrylamide, polyethylene glycol mono (meth)acrylate, N,N-diethylaminoethyl (meth)acrylate, N,N-diethylaminopropyl (meth) acrylates, and diethylaminopropyl (meth)acrylamide.
  • the amino group may be quaternized.
  • Ethylenically unsaturated monomers may be used alone or in combination of two or more.
  • the acidic group may be neutralized with an alkaline neutralizer before use in the polymerization reaction.
  • the neutralization degree of the ethylenically unsaturated monomer with an alkaline neutralizing agent is, for example, 10 to 100 mol%, 50 to 90 mol%, or 60 to 80 mol of the acidic groups in the ethylenically unsaturated monomer. %.
  • the ethylenically unsaturated monomer is at least one selected from the group consisting of (meth)acrylic acid and its salts, acrylamide, methacrylamide, and N,N-dimethylacrylamide. It may contain a compound of the species.
  • the ethylenically unsaturated monomer may contain at least one compound selected from the group consisting of (meth)acrylic acid and its salts, and acrylamide.
  • a monomer other than the ethylenically unsaturated monomer described above may be used as the monomer for obtaining the water absorbent resin particles.
  • Such monomers can be used, for example, by mixing with an aqueous solution containing the ethylenically unsaturated monomers described above.
  • the amount of ethylenically unsaturated monomer used may be 70 to 100 mol % of the total amount of monomers.
  • the ratio of (meth)acrylic acid and its salt may be 70 to 100 mol % with respect to the total amount of monomers.
  • cross-linking occurs due to self-crosslinking during polymerization
  • cross-linking may be promoted by using an internal cross-linking agent.
  • the use of an internal cross-linking agent facilitates control of the water absorption properties (water retention capacity, etc.) of the water-absorbing resin particles.
  • An internal cross-linking agent is usually added to the reaction solution during the polymerization reaction.
  • At least the polymer in the surface layer portion of the polymer particles may be crosslinked by reaction with a surface crosslinking agent.
  • the surface cross-linking agent may be, for example, a compound having two or more functional groups (reactive functional groups) having reactivity with functional groups derived from ethylenically unsaturated monomers.
  • the polymer particles may contain a certain amount of water in addition to the polymer of ethylenically unsaturated monomers, and may further contain various additional components inside.
  • additional ingredients include gel stabilizers, metal chelating agents.
  • the shape of the water-absorbent resin particles is not particularly limited, and may be, for example, substantially spherical, crushed, or granular, or may be agglomerated primary particles having these shapes.
  • the particle size distribution of the water-absorbent resin particles may be adjusted by performing operations such as particle size adjustment using classification with a sieve as necessary. For example, a fraction that has passed through a sieve with an opening of 850 ⁇ m and has not passed through a sieve with an opening of 250 ⁇ m may be used as the water absorbent resin particles.
  • the coating layer contains compound A and compound B, which is more water-soluble than compound A.
  • Compound A is a less water-soluble compound than compound B.
  • the amount of compound A dissolved in 100 g of water at 25° C. may be 1% by mass or less.
  • the amount of compound A dissolved in 100 g of water at 25° C. may be, for example, 0.5% by mass or less, 0.3% by mass or less, or 0.1% by mass or less, or may be 0% by mass.
  • the soluble amount of Compound A is measured by the method described in Examples below.
  • Compound A may be a homopolymer or copolymer containing substituted or unsubstituted alkenes as structural units (monomer units).
  • Copolymers containing unsubstituted alkenes as structural units may be copolymers containing only two or more unsubstituted alkenes as structural units, and monomer components other than one or two or more unsubstituted alkenes and unsubstituted alkenes. It may be a copolymer containing one type of unsubstituted alkene and a monomer component other than the unsubstituted alkene as a structural unit.
  • Unsubstituted alkenes used in such copolymers include, for example, ethylene, propylene, and butenes.
  • the unsubstituted alkenes used in the copolymers may be ethylene and/or propylene and may be ethylene.
  • Substituted alkenes for use in such copolymers include halogenated alkenes and/or alkenes substituted with substituted or unsubstituted aromatic substituents (eg, phenyl or naphthyl groups).
  • the substituted alkenes used in the copolymers may be halogenated alkenes, vinyl halides (e.g.
  • chloroethylene bromoethylene or fluoroethylene
  • ethylene substituted with substituted or unsubstituted phenyl groups It may be chloroethylene (vinyl chloride) and/or unsubstituted phenyl-substituted ethylene (styrene), and may be vinyl chloride.
  • Water-soluble ethylenically unsaturated monomers may be used as monomer components other than substituted or unsubstituted alkenes used in the copolymer. As the water-soluble ethylenically unsaturated monomer, the compounds listed above can be used.
  • the water-soluble ethylenically unsaturated monomer may be (meth)acrylic acid and/or its salts.
  • the copolymer containing a substituted alkene as a structural unit may be a copolymer containing vinyl chloride and a water-soluble ethylenically unsaturated monomer as a structural unit, vinyl chloride and (meth)acrylic acid and / or It may be a copolymer containing a salt as a structural unit, it may be a copolymer containing vinyl chloride and (meth)acrylic acid as a structural unit, or a copolymer containing vinyl chloride and acrylic acid as a structural unit (acrylic acid-chloride vinyl copolymer).
  • the copolymer containing unsubstituted alkene as a structural unit may be a copolymer containing ethylene and a water-soluble ethylenically unsaturated monomer as a structural unit, and ethylene and (meth) acrylic acid and / or a salt thereof as structural units. It may be a copolymer containing ethylene and an acrylate as structural units, and may be a copolymer containing ethylene and sodium acrylate or potassium acrylate as structural units (ethylene-sodium acrylate copolymer or ethylene-potassium acrylate copolymer) or ethylene-sodium acrylate copolymer.
  • a homopolymer containing a substituted or unsubstituted alkene as a structural unit may be a homopolymer containing a substituted alkene as a structural unit, substituted with a halogenated alkene and/or an aromatic substituent (e.g., a phenyl group or a naphthyl group).
  • the content of compound A is 5 parts by mass or more with respect to 100 parts by mass of the total amount of compound A and compound B, from the viewpoint of further improving the permeation rate and from the viewpoint of further suppressing reversion after liquid absorption. It may be 10 parts by mass or more, 15 parts by mass or more, 35 parts by mass or more, 55 parts by mass or more, 75 parts by mass or more, 85 parts by mass or more, or 95 parts by mass or more.
  • the content of compound A may be less than 100 parts by mass or 95 parts by mass or less with respect to 100 parts by mass of the total amount of compound A and compound B.
  • the content of compound A with respect to the total amount of 100 parts by mass of compound A and compound B can be regarded as the area of the region where compound A is present in the coating layer relative to the total area of the coating layer. can.
  • the content of the compound A is 0.1 parts by mass or more, 1.0 parts by mass or more, 5.0 parts by mass or more, or 10 parts by mass with respect to 100 parts by mass of the water-absorbent resin particles, from the viewpoint of further improving the permeation rate. parts or more, 15 parts by mass or more, 20 parts by mass or more, or 25 parts by mass or more.
  • the content of the compound A is 40 parts by mass or less, 30 parts by mass or less, 20 parts by mass or less, or 15 parts by mass or less with respect to 100 parts by mass of the water-absorbing resin particles, from the viewpoint of further suppressing backflow after liquid absorption. , or 10 parts by mass or less.
  • Compound B is a more water-soluble compound than compound A.
  • the amount of compound B dissolved in 100 g of water at 25°C is 20% by mass or more, 30% by mass or more, 40% by mass or more, 50% by mass or more, 60% by mass or more, 70% by mass or more, or 80% by mass or more. you can The amount of compound B dissolved in 100 g of water at 25° C. may be 100% by mass or less, 95% by mass or less, 90% by mass or less, or 85% by mass or less.
  • the soluble amount of Compound B is measured by the method described in Examples below.
  • the dissolved amount of compound B in 100 g of water at 25°C may be 20% by mass or more higher than the dissolved amount of compound A from the viewpoint of further suppressing reversion after liquid absorption and from the viewpoint of further improving the permeation rate.
  • the difference (BA) between the dissolved amount of compound B and the dissolved amount of compound A is 25% by mass or more and 30% by mass from the viewpoint of further suppressing backflow after liquid absorption and from the viewpoint of further improving the permeation rate. % or more, 35% by mass or more, 40% by mass or more, 45% by mass or more, 50% by mass or more, 55% by mass or more, 60% by mass or more, 65% by mass or more, 70% by mass or more, 75% by mass or more, or 80 % by mass or more.
  • the difference (BA) between the dissolved amount of compound B and the dissolved amount of compound A may be, for example, 100% by mass or less, 95% by mass or less, 90% by mass or less, or 85% by mass or less.
  • Compound B may be at least one compound selected from the group consisting of inorganic salts and organic compounds having a hydrophilic group (hereinafter simply referred to as "hydrophilic group-containing compounds").
  • inorganic salts examples include sodium chloride, potassium chloride, sodium carbonate, sodium hydrogen carbonate, and the like.
  • the hydrophilic group that the hydrophilic group-containing compound may have may be, for example, a hydroxy group, an oxyalkylene group, a carboxyl group, an amino group, or the like.
  • the soluble amount of compound B can be adjusted.
  • hydrophilic group-containing compounds include polymers containing alkylene oxides as structural units, and fructose.
  • the polymer containing an alkylene oxide as a structural unit may be a polyalkylene oxide (homopolymer) containing only one alkylene oxide as a structural unit, or a polyalkylene oxide (copolymer) containing two or more alkylene oxides as a structural unit. ), or a copolymer containing one or more alkylene oxides and monomer components other than alkylene oxides as structural units.
  • a polymer containing an alkylene oxide as a structural unit may be a polyalkylene oxide containing only one type of alkylene oxide as a structural unit.
  • Alkylene oxides include, for example, ethylene oxide and propylene oxide.
  • Alkylene oxide may be ethylene oxide.
  • the polymer containing alkylene oxide as a structural unit is selected from the group consisting of a homopolymer (polyethylene glycol) containing ethylene oxide as a structural unit and an ethylene-propylene copolymer containing ethylene oxide and propylene oxide as structural units. At least one may be used, and may be polyethylene glycol.
  • the number average molecular weight of the polymer containing alkylene oxide as a structural unit may be 100 to 200,000 or 5000 to 20,000.
  • the content of the compound B is 95 parts by mass or less, 85 parts by mass or less, 60 parts by mass or less, from the viewpoint of further suppressing reversion after liquid absorption with respect to the total amount of 100 parts by mass of the compound A and the compound B. It may be 35 parts by mass or less, 10 parts by mass or less, 5 parts by mass or less, or 3 parts by mass or less.
  • the content of compound B is 0.1 parts by mass or more, 0.5 parts by mass or more, and 1.0 parts by mass with respect to the total amount of 100 parts by mass of compound A and compound B, from the viewpoint of further improving the permeation rate. or more, or 2.0 parts by mass or more.
  • the content of compound B may be, for example, 1 to 85 parts by mass.
  • the content of compound B with respect to the total amount of 100 parts by mass of compound A and compound B can be regarded as the area of the region where compound B is present in the coating layer relative to the total area of the coating layer. can.
  • the content of the compound B is 30 parts by mass or less, 25 parts by mass or less, 15 parts by mass or less, or 10 parts by mass or less with respect to 100 parts by mass of the water-absorbent resin particles, from the viewpoint of further suppressing backflow after liquid absorption. , 5 parts by mass or less, or 1 part by mass or less.
  • the content of compound B is 0.01 parts by mass or more, 0.1 parts by mass or more, 0.5 parts by mass or more, and 1.5 parts by mass or more, based on 100 parts by mass of the water-absorbent resin particles, from the viewpoint of further improving the permeation rate. It may be 0 parts by mass or more, 2.0 parts by mass or more, or 2.5 parts by mass or more.
  • the coating layer may have a sea-island structure composed of a sea portion containing one of compound A and compound B and an island portion containing the other compound. The islands may be distributed over the sea.
  • the sea-island structure can be confirmed by an analytical method such as Raman spectroscopy. For example, when forming a coating layer, using a coating material containing compound A in an emulsion state facilitates formation of a sea-island structure.
  • the sea-island structure may consist of a sea portion containing compound A and an island portion containing compound B.
  • the state in which the water-absorbing resin particles are restrained by the compound A constituting the sea portion is maintained to some extent, so that the effect of suppressing the reversion after liquid absorption and the effect of improving the permeation rate are further enhanced. It becomes even better.
  • the coating resin particles having a sea-island structure in the coating layer have localized portions where the compound B is present, which serves as water channels.
  • the larger the starting channel the more rapid water absorption can be initiated after a certain time of water absorption delay. Therefore, when used in an absorbent article, blocking phenomenon and backflow after liquid absorption are less likely to occur, and as a result, the liquid absorption performance (permeation rate and effect of suppressing backflow) is considered to be improved.
  • a region containing compound B extends in the thickness direction of the coating layer.
  • the compound B-containing region is a sea portion or an island portion, and may be an island portion. At least part of the compound B-containing region may constitute 1/2 or more of the thickness of the coating layer including the region, and at least part of the compound B-containing region covers the entire thickness of the coating layer including the region. may be configured.
  • the entire compound B-containing region may constitute 1/2 or more of the thickness of the coating layer containing the region, or may constitute the entire thickness of the coating layer containing the region.
  • the compound B contained in the compound B-containing region is more water-soluble than the compound A
  • a part of the surface of the water-absorbing resin particles corresponding to the compound B-containing region is dissolved by the compound B.
  • the surface of the water-absorbing resin particles corresponding to the region (island portion or sea portion) containing the compound A can contact the liquid earlier than the part thereof. That is, the water-absorbent resin particles are blocked from contact with the liquid by the coating layer, but after a predetermined time has passed since the contact with the liquid, water channels formed by the dissolution of the compound B-containing region (sea portion or island portion) It becomes possible to contact with liquid (water absorption is possible).
  • the coated resin particles according to the present embodiment can control the water absorption inflection point, which is the time until the water absorption speed suddenly increases.
  • the water absorption inflection point is, for example, the total content of the coating layer with respect to 100 parts by mass of the water-absorbing resin particles, the ratio of the sea portion and the island portion, the type of compound used for the sea portion and the island portion (for example, the sea portion is ethylene and ( When a copolymer containing meth)acrylate as a structural unit is contained, it can be adjusted by controlling the degree of neutralization and/or the type of counter ion of the copolymer.
  • the water absorption inflection point of the coated resin particles according to the present embodiment is, for example, 1.5 minutes or more, 2.0 minutes or more, 2.5 minutes or more, 3.5 minutes or more, 4.0 minutes or more, 4.5 minutes or more. minutes or more, 5.0 minutes or more, or 5.5 minutes or more, and may be 15.0 minutes or less, 10.0 minutes or less, 7.0 minutes or less, or 6.5 minutes or less.
  • the water absorption inflection point of the coated resin particles according to the present embodiment is, for example, 1.5 to 15.0 minutes, 1.5 to 10.0 minutes, 1.5 to 7.0 minutes, or 2.0 to 6.0 minutes. May be 5 minutes.
  • the water absorption inflection point of the coated resin particles is measured by the method described in Examples below.
  • the total content of the coating layer is 3 parts by mass or more, 5 parts by mass or more, 10 parts by mass or more, 15 parts by mass or more, 20 parts by mass or more, or 25 parts by mass or more with respect to 100 parts by mass of the water-absorbent resin particles. It's okay.
  • the total content of the coating layer may be 50 parts by mass or less, 45 parts by mass or less, 40 parts by mass or less, or 35 parts by mass or less with respect to 100 parts by mass of the water absorbent resin particles.
  • the total content of the coating layer may be 3 to 50 parts by weight, or 10 to 40 parts by weight with respect to 100 parts by weight of the water absorbent resin particles.
  • the total content of the coating layer referred to here corresponds to the amount of coating material used.
  • the water absorption inflection point tends to extend as the amount of the coating layer with respect to the water absorbent resin particles increases.
  • the content of the island part may be, for example, 20 parts by mass or less, 16 parts by mass or less, or 12 parts by mass or less with respect to 100 parts by mass of the sea part.
  • the content of the island part may be, for example, 1 part by mass or more, 5 parts by mass or more, or 8 parts by mass or more with respect to 100 parts by mass of the sea part.
  • the content of the island part is, for example, 1 part by mass or more and 20 parts by mass or less, 5 parts by mass or more and 16 parts by mass or less, or 8 parts by mass or more and 12 parts by mass or less with respect to 100 parts by mass of the sea part content. good.
  • the water absorption inflection point tends to be extended as the content of the islands relative to the content of the sea is smaller, and the water absorption inflection point tends to be longer as the content of the islands relative to the content of the sea is larger. Dots tend to be shorter.
  • the degree of neutralization of the carboxy groups in the copolymer that constitutes the sea part is the carboxy It may be 70 mol % or more, 75 mol % or more, 80 mol % or more, 85 mol % or more, 90 mol % or more or 95 mol % or more of the groups.
  • the degree of neutralization may be 80 to 100 mol %, or 85 to 100 mol % of the carboxy groups in the (meth)acrylate contained as a structural unit.
  • the water absorption inflection point tends to increase as the degree of neutralization of the copolymer increases.
  • the coated resin particles may be used together with the inorganic particles.
  • inorganic particles include silica particles such as amorphous silica.
  • the amount of inorganic particles may be 0.05% by weight or more, 0.1% by weight or more, 0.15% by weight or more, or 0.2% by weight or more based on the weight of the polymer particles, It may be 5.0% by mass or less, 3.0% by mass or less, 1.0% by mass or less, 0.5% by mass or less, or 0.3% by mass or less.
  • the average particle size of the inorganic particles may be 0.1-50 ⁇ m, 0.5-30 ⁇ m, or 1-20 ⁇ m. The average particle size can be measured by a pore electrical resistance method or a laser diffraction/scattering method, depending on the properties of the particles.
  • coated resin particles of the present embodiment can be used alone, but can be mixed with resin particles having water absorption other than the coated resin particles (hereinafter simply referred to as "other resin particles") to form mixed particles. can also be used.
  • a water absorbent resin composition according to one embodiment includes the above-described coated resin particles and resin particles having water absorption other than the coated resin particles (other resin particles).
  • the water-absorbent resin composition compared with the case of using other resin particles alone, the time to reach a swollen state can be delayed, and as a result, the occurrence of the gel blocking phenomenon can be suppressed. be able to.
  • the type of the coated resin particles, the type of the other resin particles, the mixing ratio of the coated resin particles and the other resin particles, etc. can be changed as appropriate to achieve desired water absorption. behavior can be realized.
  • the content of the coated resin particles may be, for example, 5 parts by mass or more, or 15 parts by mass or more, with respect to the total 100 parts by mass of the coated resin particles and other resin particles. It may be parts by mass or less, 85 parts by mass or less, 60% by mass or less, 40% by mass or less, 30% by mass or less, or 25% by mass or less.
  • the coated resin particles of the present invention Since the occurrence of the gel blocking phenomenon is suppressed by the coated resin particles of the present invention, when mixed particles in which the coated resin particles and other resin particles are mixed in the absorber are used, when the other resin particles are used alone, In contrast, the diffusibility of the liquid in the absorbent body can be improved, that is, the resin particles in the absorbent body can be efficiently used. can be reduced compared to In addition, in the absorbent body, hydrophilic fibers such as pulp are sometimes mixed with other resin particles for the purpose of improving the diffusibility of the liquid, but from the viewpoint of environmental protection, the amount of hydrophilic fibers used is reduced. is required.
  • the ratio of other resin particles increases, so gel blocking tends to occur more easily.
  • the coated resin particles of the present invention are used in combination with other resin particles, the gel blocking phenomenon can be suppressed even if the amount of hydrophilic fiber used is reduced.
  • Other resin particles may have a lower limit of a water retention capacity of 25 g/g or more, 30 g/g or more, or 35 g/g or more with respect to physiological saline (0.9% by mass sodium chloride aqueous solution). you can Moreover, the upper limit of the water retention amount may be 55 g/g or less, 50 g/g or less, or 45 g/g or less. .
  • the water retention capacity is measured by the method described in Examples below.
  • the water-absorbent resin particles (to be coated with the coating layer) constituting the coated resin particles may be the same particles as the other resin particles, or may be particles different from the other resin particles.
  • the water-absorbent resin particles constituting the coated resin particles may be the same particles as the other resin particles.
  • the coated resin particles according to the present embodiment are produced, for example, by a method comprising a step of coating at least a portion of the water absorbent resin particles with a coating material to form a coating layer on at least a portion of the surfaces of the water absorbent resin particles. can do.
  • the coating material contains compound A and compound B, which is more water-soluble than compound A. The details of compound A and compound B are as described above.
  • coated resin particles according to the present embodiment by using conventional water-absorbent resin particles in combination with absorbent articles, compared to the case of using conventional water-absorbent resin particles alone, It is possible to obtain coated resin particles that can improve the liquid permeation rate while sufficiently suppressing an increase in the amount of reversion after liquid absorption in practice.
  • coated resin particles having a controlled water absorption inflection point can be easily obtained.
  • the aspects described for the coated resin particles can be applied without limit.
  • the coating material can be prepared by mixing compound A, compound B, and a liquid medium.
  • Compound A is in solution or emulsion.
  • a coating material containing compound A in a solution state can be obtained by mixing compound A, compound B and a liquid medium.
  • a coating material containing compound A in an emulsion state can be obtained, for example, by mixing compound B with an emulsion in which particles containing compound A are dispersed in a liquid medium.
  • Emulsions can be formed by applying conventional emulsification methods.
  • compound B may be dissolved or dispersed in a liquid medium.
  • Liquid media include, for example, water, ethers (eg, tetrahydrofuran), acetone, methanol, ethanol, and hydrocarbons (hexane, heptane, etc.).
  • the concentration of the compound A and the compound B in the coating material can be appropriately adjusted in consideration of the desired thickness of the coating layer and the amount of the water-absorbing resin particles to be coated.
  • the content of compound A in the coating material may be, for example, 1 to 50% by mass, 3 to 30% by mass, or 5 to 20% by mass based on the total amount of the coating material.
  • the content of compound B in the coating material may be, for example, 0.1 to 30% by mass, 0.5 to 20% by mass, or 1 to 10% by mass based on the total amount of the coating material.
  • the content of compound B in the coating material may be, for example, 1 to 500 parts by mass with respect to 100 parts by mass of compound A.
  • the lower limit of the content of compound B with respect to 100 parts by mass of compound A may be 5 parts by mass or more, or 8 parts by mass or more.
  • the upper limit of the content of compound B with respect to 100 parts by mass of compound A is, for example, 400 parts by mass or less, 300 parts by mass or less, 200 parts by mass or less, 100 parts by mass or less, 50 parts by mass or less, 25 parts by mass or less, Alternatively, it may be 15 parts by mass or less.
  • the coating layer is formed by, for example, (1) a method of adding a coating material to a hydrocarbon dispersion medium in which water-absorbent resin particles are dispersed, (2) a method of adding a coating material and water-absorbent resin particles to a hydrocarbon dispersion medium substantially simultaneously, Alternatively, it can be formed by (3) a method of bringing a coating material into contact with water-absorbing resin particles in a dry state. Each method will be specifically described below.
  • a separable flask equipped with a reflux condenser, a dropping funnel, a nitrogen gas inlet tube, and a stirrer is prepared.
  • a hydrocarbon dispersion medium and water-absorbing resin particles are put into the separable flask and sufficiently stirred while maintaining a high temperature (for example, 60 to 80° C.).
  • the separable flask is immersed in an oil bath set to a high temperature (for example, 100 to 125 ° C.) to azeotrope the hydrocarbon dispersion medium and water.
  • the coating material is put into the eggplant flask, and then the water absorbent resin particles are put.
  • the round-bottomed flask is attached to an evaporator, heated while being rotated, and the liquid medium contained in the coating material is distilled off under reduced pressure.
  • coated resin particles in which the surfaces of the water-absorbing resin particles are coated with the coating material are obtained.
  • the water absorbent resin particles are added to a separable flask equipped with a stirring blade and stirred.
  • a coating material is sprayed onto the water-absorbent resin particles that have been stirred up by stirring with a stirring blade.
  • the coating material can be sprayed using, for example, a two-fluid nozzle. Since uniform coating can be expected, the coating material is desirably sprayed in the form of a mist by an inert gas stream such as nitrogen. Thereafter, the contents of the separable flask are taken out, heated with a hot air dryer, and then cooled to room temperature to obtain coated resin particles.
  • Granulators used for producing coated resin particles include, for example, tumbling granulators, stirring granulators, and fluid bed granulators.
  • an inclined shallow circular container attached to the tumbling granulator is rotated, water-absorbing resin particles are supplied to the circular container, and an appropriate amount of coating material is added.
  • the solvent or dispersion medium contained in the coating material forms a coating layer on the surface of the rolling water-absorbing resin particles while a part of the water-absorbing resin particles agglomerate.
  • the step of adding the water-absorbent resin particles and the coating material may be performed multiple times, if necessary.
  • the water-absorbing resin particles When using an agitating granulator, the water-absorbing resin particles are put into a mixer equipped with the agitating granulator, and mixed by agitation, and the coating material is added. As a result, the liquid medium contained in the coating material forms a coating layer on the surface of the water-absorbing resin particles while a part of the water-absorbing resin particles are agglomerated.
  • the step of adding the water-absorbent resin particles and the coating material may be performed multiple times, if necessary. Excessive agglomeration of the water absorbent resin particles can be suppressed by controlling the shearing force of the mixer.
  • the water-absorbent resin particles are put into a container that is equipped with the fluidized-bed granulator and can send out hot air from the bottom, and the water-absorbent resin particles are fluidized in advance. Thereafter, when the coating material is sprayed from a nozzle provided in the container, the liquid medium contained in the coating material forms a coating layer on the surface of the water-absorbing resin particles while aggregating part of the water-absorbent resin particles during stirring.
  • the coating material may be sprayed multiple times as required. Excessive agglomeration of the water-absorbing resin particles can be suppressed by adjusting the application amount and application frequency of the coating material.
  • a fluidized bed granulator for example, a fluidized bed granulator FBD/SG (manufactured by YENCHEN MACHINERY) can be used.
  • FIG. 2 is a cross-sectional view showing an example of an absorbent article.
  • the absorbent article 100 shown in FIG. 2 includes a sheet-like absorbent body 10, core wraps 20a and 20b, a liquid permeable sheet 30, and a liquid impermeable sheet 40.
  • the liquid impermeable sheet 40, the core wrap 20b, the absorbent body 10, the core wrap 20a, and the liquid permeable sheet 30 are laminated in this order.
  • the absorber 10 has the coated resin particles 10a according to the above-described embodiment and a fiber layer 10b containing fibrous material.
  • the coated resin particles 10a are dispersed in the fiber layer 10b.
  • the core wrap 20a is arranged on one side of the absorbent body 10 (upper side of the absorbent body 10 in FIG. 1) while being in contact with the absorbent body 10.
  • the core wrap 20b is arranged on the other side of the absorbent body 10 (the lower side of the absorbent body 10 in FIG. 1) in contact with the absorbent body 10.
  • the absorbent body 10 is arranged between the core wrap 20a and the core wrap 20b.
  • Examples of the core wraps 20a and 20b include tissue, nonwoven fabric, and the like.
  • the core wrap 20a and the core wrap 20b have, for example, principal surfaces of the same size as the absorber 10. As shown in FIG.
  • the liquid-permeable sheet 30 is arranged on the outermost side on the side into which the liquid to be absorbed enters.
  • the liquid-permeable sheet 30 is arranged on the core wrap 20a while being in contact with the core wrap 20a.
  • Examples of the liquid-permeable sheet 30 include nonwoven fabrics and porous sheets made of synthetic resins such as polyethylene, polypropylene, polyester, and polyamide.
  • the liquid-impermeable sheet 40 is arranged on the outermost side of the absorbent article 100 opposite to the liquid-permeable sheet 30 .
  • the liquid impermeable sheet 40 is arranged under the core wrap 20b while being in contact with the core wrap 20b.
  • liquid-impermeable sheet 40 examples include sheets made of synthetic resins such as polyethylene, polypropylene, and polyvinyl chloride, sheets made of composite materials of these synthetic resins and non-woven fabric, and the like.
  • the liquid permeable sheet 30 and the liquid impermeable sheet 40 have, for example, main surfaces wider than the main surface of the absorbent body 10, and the outer edges of the liquid permeable sheet 30 and the liquid impermeable sheet 40 are It extends around the absorber 10 and the core wraps 20a, 20b.
  • the size relationship of the absorbent body 10, the core wraps 20a and 20b, the liquid permeable sheet 30, and the liquid impermeable sheet 40 is not particularly limited, and is appropriately adjusted according to the use of the absorbent article.
  • the method for retaining the shape of the absorbent body 10 using the core wraps 20a and 20b is not particularly limited, and as shown in FIG. It's okay.
  • the absorbent body 10 may further contain resin particles (other resin particles) having water absorption other than the coated resin particles 10a.
  • the content of the coated resin particles 10a may be, for example, 5 parts by mass or more, or 15 parts by mass or more with respect to a total of 100 parts by mass of the coated resin particles and the other resin particles. , 95 parts by mass or less, or 85 parts by mass or less.
  • hydroxyl ethyl cellulose thickener, Sumitomo Seika Co., Ltd., HEC AW-15F
  • potassium persulfate water-soluble radical polymerization initiator 0.0736 g (0.272 mmol)
  • ethylene glycol diglycidyl ether Internal cross-linking agent 0.0101 g (0.0580 mmol)
  • ion-exchanged water 32.85 g were added and then dissolved to prepare a first-stage monomer aqueous solution.
  • a reaction liquid was obtained by adding the entire amount of the second-stage monomer aqueous solution to the first-stage reaction mixture. While stirring the reaction solution, the inside of the system was sufficiently replaced with nitrogen. Thereafter, the separable flask is immersed in a water bath at 70° C. to raise the temperature of the reaction solution, and the second-stage polymerization is performed for 5 minutes to obtain a second-stage reaction mixture (polymer particles before surface cross-linking). Obtained.
  • the temperature of the second-stage reaction mixture was raised in an oil bath of 125° C., and 254 g of water was added to the system by azeotropic distillation of n-heptane and water while refluxing n-heptane. pulled out. Subsequently, 0.0884 g (0.5075 mmol) of ethylene glycol diglycidyl ether was added as a surface cross-linking agent, and the mixture was maintained at 83° C. for 2 hours to obtain a dispersion of polymer particles after surface cross-linking.
  • the dispersion of the polymer particles after the surface cross-linking was heated in an oil bath at 125°C to evaporate the n-heptane and dry it to obtain a dried product.
  • the dried product was passed through a sieve with an opening of 850 ⁇ m to obtain 233.4 g of uncoated water absorbent resin particles (1) in the form of aggregated spherical particles.
  • the water retention capacity of the water absorbent resin particles (1) and the water absorbent resin particles (2) produced in Comparative Example 1 was 40 g/g.
  • the water retention capacity was measured by the following method. After adding 500 g of physiological saline to a 500 mL polyethylene beaker, 2.00 g of water-absorbing resin particles were added little by little while rotating the stirrer at 600 rpm using a stirrer. After the water-absorbing resin particles were completely added, the mixture was stirred for 30 minutes. Subsequently, the mixture was transferred into a cotton bag (Membrane No. 60, width 100 mm ⁇ length 200 mm), and the top of the cotton bag was closed with a rubber band.
  • Example 1 The operation of Comparative Example 1 up to the addition of Tokusil was repeated, and the collected water absorbent resin particles (1) were classified with a comb having an opening of 250 ⁇ m to obtain 500 g or more of water absorbent resin particles having a particle size of 250 to 850 ⁇ m.
  • Example 2 40.0 g of a 25% water-dispersed emulsion of ethylene-sodium acrylate copolymer as compound A (Sumitomo Seika Co., Ltd., Zaixen N), and polyethylene glycol as compound B (PEG6000, Tokyo Chemical Industry Co., Ltd.) 1. 0 g was diluted with 59.0 g of deionized water to prepare a coating material B. 50.0 g of coated resin particles were obtained in the same manner as in Example 1 except that the coating material B was used instead of the coating material A.
  • Example 3 600.0 g of a 25% water-dispersed emulsion of ethylene-sodium acrylate copolymer (Sumitomo Seika Chemicals Co., Ltd., Zaixen N) as compound A, and polyethylene glycol (PEG6000, Tokyo Chemical Industry Co., Ltd.) as compound B 15. 0 g was diluted with 885.0 g of ion-exchanged water to prepare a coating material C. 50.0 g of coated resin particles were obtained in the same manner as in Example 1 except that the coating material C was used instead of the coating material A.
  • ethylene-sodium acrylate copolymer Suditomo Seika Chemicals Co., Ltd., Zaixen N
  • PEG6000 Polyethylene glycol
  • Example 4 200.0 g of a 25% water-dispersed emulsion of ethylene-sodium acrylate copolymer (Compound A) (Sumitomo Seika Co., Ltd., Zaixen N), and 0.0 g of polyethylene glycol (Tokyo Chemical Industry Co., Ltd., PEG6000) as Compound B.
  • a coating material D was prepared by diluting 5 g with 299.5 g of deionized water. 50.0 g of coated resin particles were obtained in the same manner as in Example 1 except that the coating material D was used instead of the coating material A.
  • Example 5 200.0 g of a 25% aqueous dispersion emulsion of ethylene-sodium acrylate copolymer (Sumitomo Seika Chemicals Co., Ltd., Zaixen N) as compound A, and polyethylene glycol (PEG6000, Tokyo Chemical Industry Co., Ltd.) as compound B5. 0 g was diluted with 295.0 g of ion-exchanged water to prepare a coating material E. 50.0 g of coated resin particles were obtained in the same manner as in Example 1 except that the coating material E was used instead of the coating material A.
  • Example 6 20.0 g of a 25% aqueous dispersion emulsion of ethylene-sodium acrylate copolymer (Sumitomo Seika Chemicals Co., Ltd., Zaixen N) as compound A, and polyethylene glycol (PEG6000, Tokyo Chemical Industry Co., Ltd.) as compound B25. 0 g was diluted with 455.0 g of deionized water to prepare a coating material F. 50.0 g of coated resin particles were obtained in the same manner as in Example 1, except that coating material F was used instead of coating material A.
  • Example 7 20.0 g of a 25% water dispersion emulsion of ethylene-sodium acrylate copolymer (Sumitomo Seika Chemicals Co., Ltd., Zaixen N) as compound A, and 50.0 g of polyethylene glycol (PEG6000, Tokyo Chemical Industry Co., Ltd.) as compound B. 0 g was diluted with 430.0 g of deionized water to prepare a coating material G. 50.0 g of coated resin particles were obtained in the same manner as in Example 1 except that the coating material G was used instead of the coating material A.
  • Example 8 Polymer particles (aqueous solution polymer, median particle diameter: 408 ⁇ m) collected from a diaper commercially available in Japan (manufactured by Kao Corporation, product name: Mary's Pants Sarasara Air Through S size) were used as the object to be coated, and 200.0 g of a 25% aqueous dispersion emulsion of ethylene-sodium acrylate copolymer (Sumitomo Seika Chemicals Co., Ltd., Zaixen N) as compound A, and polyethylene glycol (PEG6000, Tokyo Chemical Industry Co., Ltd.) as compound B5. 0 g was diluted with 295.0 g of deionized water to prepare coating material H. 50.0 g of coated resin particles were obtained in the same manner as in Example 1, except that coating material H was used instead of coating material A. The water retention capacity of the polymer particles collected from the diaper was 31 g/g.
  • Example 9 ⁇ Preparation of compound A> Water and ice were added to a plastic vat having a length of 27 cm, a width of 38 cm, and a depth of 7 cm to prepare an ice bath at 3°C. A 1-liter glass beaker was placed in the ice bath, and 258.3 g of ion-exchanged water was added. An ice bath was placed on top of the magnetic stirrer, and a stirrer tip was added to the beaker and stirred.
  • a round bottom cylindrical separable flask with an inner diameter of 11 cm and an internal volume of 2 L equipped with a reflux condenser, a thermometer, and a stirrer (stirring blades having four inclined paddle blades with a blade diameter of 5 cm) was prepared.
  • 100 g of ethylene-acrylic acid copolymer (SK global chemical: Primacol 5980i) was added to the flask. After that, the entire amount of the aforementioned potassium hydroxide aqueous solution was added. After that, the beaker used for preparing the potassium hydroxide aqueous solution was washed with 50.0 g of ion-exchanged water, and the washing water was added to the separable flask to obtain a reaction liquid.
  • the separable flask was lifted out of the oil bath and allowed to cool at room temperature until the internal temperature reached 35°C. After confirming that the internal temperature was 35° C. or less, the reaction solution was filtered through a nylon mesh with an opening of 108 ⁇ m to obtain 390.3 g of an emulsion of an ethylene-potassium acrylate copolymer, compound A, as a filtrate. .
  • a coating material I was prepared by diluting 200 g of the emulsion containing compound A and 5.0 g of polyethylene glycol (PEG6000, manufactured by Tokyo Kasei Kogyo Co., Ltd.) as compound B with 295.0 g of deionized water. 50.0 g of coated resin particles were obtained in the same manner as in Example 1 except that the coating material I was used instead of the coating material A and the set temperature of the hot air dryer was changed to 100°C.
  • PEG6000 polyethylene glycol
  • Example 10 The potassium hydroxide aqueous solution was changed to an aqueous sodium hydroxide solution prepared from 7.9 g of sodium hydroxide (Fujifilm Wako Pure Chemical Industries, Ltd.) and 259.5 g of ion-exchanged water, and the ethylene-acrylic acid copolymer was changed to ethylene-methacrylic acid.
  • a coating material J was prepared by diluting 200 g of the above emulsion containing compound A and 5.0 g of polyethylene glycol (PEG6000, Tokyo Kasei Kogyo Co., Ltd.) as compound B with 295.0 g of deionized water. 50.0 g of coated resin particles were obtained in the same manner as in Example 1 except that coating material J was used instead of coating material A and the set temperature of the hot air dryer was changed to 100°C.
  • PEG6000 polyethylene glycol
  • Example 11 214.5 g of a 23.3% water-dispersed emulsion of acrylic acid-vinyl chloride copolymer (Nisshin Chemical Industry Co., Ltd., Vinyblan 715) and polyethylene glycol (Tokyo Chemical Industry Co., Ltd., PEG6000) as compound B
  • a coating material K was prepared by diluting 5.0 g with 280.5 g of deionized water. 507.9 g of coated resin particles were obtained in the same manner as in Example 1, except that the coating material K was used instead of the coating material A, and the heating with the hot air dryer was not performed.
  • Example 12 Compound A polyvinyl chloride (Fujifilm Wako Pure Chemical Industries, Ltd.) 25.0 g, compound B polyethylene glycol (Tokyo Chemical Industry Co., Ltd., PEG6000) 2.5 g, and tetrahydrofuran 472.5 g as a solvent are mixed, A coating material L was prepared. Except that the coating material L was used instead of the coating material A, the blast temperature of the fluidized bed granulator during coating was set to 40 ° C., and the heating with the hot air dryer was not performed. It was produced in the same manner as in Example 1 to obtain 506.3 g of coated resin particles.
  • Example 13 Compound A polystyrene (Fuji Film Wako Pure Chemical Industries, Ltd.) 50.0 g, compound B polyethylene glycol (Tokyo Chemical Industry Co., Ltd., PEG6000) 5.0 g, and tetrahydrofuran 945.0 g as a solvent were mixed to obtain a coating material. M was prepared. Except that the coating material M was used instead of the coating material A, the air temperature of the fluidized bed granulator during coating was set to 40 ° C., and the heating with the hot air dryer was not performed. It was produced in the same manner as in Example 1 to obtain 509.3 g of coated resin particles.
  • Example 14 200.0 g of a 25% water-dispersed emulsion of ethylene-sodium acrylate copolymer (Sumitomo Seika Co., Ltd., Zaixen N), which is compound A, and 5.0 g of sodium chloride (Nacalai Tesque Co., Ltd.), which is compound B, are ionized. It was diluted with 295.0 g of exchanged water to prepare a coating material N. 50.0 g of coated resin particles were obtained in the same manner as in Example 1, except that coating material N was used instead of coating material A.
  • Example 15 200.0 g of a 25% water dispersion emulsion of ethylene-sodium acrylate copolymer (Sumitomo Seika Chemicals Co., Ltd., Zaixen N) as compound A, and 5.0 g of D-fructose (Nacalai Tesque Co., Ltd.) as compound B
  • a coating material O was prepared by diluting with 295.0 g of ion-exchanged water. 50.0 g of coated resin particles were obtained in the same manner as in Example 1, except that coating material O was used instead of coating material A.
  • a coating material P was prepared by diluting 200.0 g of a 25% aqueous dispersion emulsion of ethylene-sodium acrylate copolymer (Sumitomo Seika Chemicals Co., Ltd., Zaixen N) with 300.0 g of deionized water. 50.0 g of coated resin particles were obtained in the same manner as in Example 1 except that the coating material P was used instead of the coating material A.
  • a coating material Q was prepared by adding and mixing 25.0 g of polyvinyl chloride (Fuji Film Wako Pure Chemical Industries, Ltd.) as a compound A and 475.0 g of tetrahydrofuran as a solvent. Except that the coating material Q was used instead of the coating material A, the air temperature of the fluidized bed granulator during coating was set to 40 ° C., and the heating with the hot air dryer was not performed. It was produced in the same manner as in Example 1 to obtain 504.6 g of coated resin particles.
  • polyvinyl chloride Fluji Film Wako Pure Chemical Industries, Ltd.
  • a coating material R was prepared by adding and mixing 50.0 g of polystyrene (Fuji Film Wako Pure Chemical Industries, Ltd.) as a compound A and 950.0 g of tetrahydrofuran as a solvent. Except that the coating material R was used instead of the coating material A, the air temperature of the fluidized bed granulator during coating was set to 40 ° C., and the heating with the hot air dryer was not performed. It was produced in the same manner as in Example 1 to obtain 506.6 g of coated resin particles.
  • polystyrene Fluji Film Wako Pure Chemical Industries, Ltd.
  • a coating material S was prepared by diluting 50.0 g of polyethylene glycol (PEG6000, manufactured by Tokyo Kasei Kogyo Co., Ltd.) as compound B with 450.0 g of deionized water. 505.5 g of coated resin particles were obtained in the same manner as in Example 1, except that the coating material S was used instead of the coating material A and the heating was not performed with the hot air dryer.
  • PEG6000 polyethylene glycol
  • deionized water 505.5 g of coated resin particles were obtained in the same manner as in Example 1, except that the coating material S was used instead of the coating material A and the heating was not performed with the hot air dryer.
  • Example 16 200.0 g of a 25% water-dispersed emulsion of ethylene-sodium acrylate copolymer (Sumitomo Seika Chemicals Co., Ltd., Zaixen N) as compound A, and polyethylene glycol (PEG6000, Tokyo Chemical Industry Co., Ltd.) as compound B12.
  • a coating material T was prepared by diluting 5 g with 287.5 g of ion-exchanged water. 50.0 g of coated resin particles were obtained in the same manner as in Example 1 except that the coating material T was used instead of the coating material A.
  • Example 17 Water and ice were added to a plastic vat having a length of 27 cm, a width of 38 cm, and a depth of 7 cm to prepare an ice bath at 3°C. A 1-liter glass beaker was placed in the ice bath, and 261.31 g of ion-exchanged water was added. An ice bath was placed on top of the magnetic stirrer, and a stirrer tip was added to the beaker and stirred.
  • a round bottom cylindrical separable flask with an inner diameter of 11 cm and an internal volume of 2 L equipped with a reflux condenser, a thermometer, and a stirrer (stirring blades having four inclined paddle blades with a blade diameter of 5 cm) was prepared.
  • 100 g of ethylene-acrylic acid copolymer (SK global chemical: Primacol 5980i) was added to the flask. After that, the entire amount of the sodium hydroxide aqueous solution described above was added. After that, the beaker used for preparing the aqueous sodium hydroxide solution was washed with 50.0 g of ion-exchanged water, and the washing water was added to the separable flask to obtain a reaction liquid.
  • the separable flask was lifted out of the oil bath and allowed to cool at room temperature until the internal temperature reached 35°C. After confirming that the internal temperature has reached 35° C. or less, the reaction solution is filtered through a nylon mesh with an opening of 108 ⁇ m, and the filtrate is a 25% water-dispersed emulsion of an ethylene-sodium acrylate copolymer with a degree of neutralization of 85%. got
  • Example 18 In the emulsion preparation process, a glass beaker with an internal volume of 1 L was placed in an ice bath, and 897.41 g of ion-exchanged water was added. An emulsion was prepared in the same manner as in Example 9 except that an aqueous sodium solution was prepared to obtain a 10% water-dispersed emulsion of an ethylene-sodium acrylate copolymer with a degree of neutralization of 95%.
  • a coating step 500.0 g of the 10% water-dispersed emulsion of the ethylene-sodium acrylate copolymer having a degree of neutralization of 95% prepared above as compound A and compound B were added to a polybeaker having an internal volume of 1 L.
  • a coating material V was prepared by mixing 5.0 g of polyethylene glycol. 50.0 g of coated resin particles were obtained in the same manner as in Example 1, except that the coating material V was used instead of the coating material A and that the particles were heated with a hot air dryer set at 100°C.
  • Example 19 Except that in the step of obtaining uncoated water-absorbing resin particles (1), 234 g of water was extracted from the system while refluxing n-heptane by azeotropic distillation of n-heptane and water. Uncoated water absorbent resin particles (3) were produced in the same manner as in Comparative Example 1, and the coating step was performed in the same manner as in Example 5 to obtain 50.0 g of coated resin particles. The water retention capacity of the water absorbent resin particles (3) was 31 g/g.
  • Example 20 In the step of obtaining the uncoated water-absorbent resin particles (1), 0.00534 g (0.0306 mmol) of ethylene glycol diglycidyl ether (internal cross-linking agent) was added during the preparation of the first aqueous monomer solution. ) was prepared in the same manner as in Comparative Example 1 except that the water-absorbent resin particles (4) were not coated, and the coating step was performed in the same manner as in Example 5 to obtain coated resin particles 50. 0 g was obtained. The water retention capacity of the water absorbent resin particles (4) was 48 g/g.
  • An absorbent article was obtained by arranging liquid-impermeable sheets (basis weight: 22 g/m 2 ) and sandwiching the absorbent body.
  • test solution In a container with an internal volume of 10 L, 100.0 g of sodium chloride, 3.0 g of calcium chloride dihydrate, 6.0 g of magnesium chloride hexahydrate, Triton X-100 (polyoxyethylene (10) octylphenyl ether , manufactured by Fuji Film Wako Pure Chemical Industries, Ltd.) and 99.0 g of ion-exchanged water, and 9866.0 g of ion-exchanged water were added, and then each component was completely dissolved. A test solution was then prepared by coloring with a small amount of Blue No. 1.
  • the resulting polymer film was cut with scissors into a 5 mm square to obtain a coating material.
  • the resulting coating material was added to a similar Teflon® coating vat and covered with aluminum foil.
  • the aluminum foil was perforated and completely dried by heating at 80° C. for 2 hours in a hot air dryer (ADVANTEC, FV-320).
  • Compound B Compound B was classified, and using 5 g of compound B remaining on a sieve with an opening of 75 ⁇ m, the dissolved content was measured in the same manner as for compound A (emulsion) (film formation and complete drying were not performed).
  • FIG. 3 is a photograph showing the analysis results of the coated resin particles of Example 5 by Raman spectroscopy.
  • FIG. 4 is a photograph showing the analysis results of the coated resin particles of Example 12 by Raman spectroscopy.
  • a coating layer was formed on at least part of the surface of the water absorbent resin particles.
  • the coated resin particles of Example 5 had a sea-island structure composed of sea portions containing P(E-AANa) and island portions containing PEG. Also, at least a portion of the islands containing PEG constituted the entire thickness of the coating layer.
  • Measurement is started from the time when the entire amount of physiological saline is added, the height Hn of the particle layer is read at intervals of 30 seconds (0.5 minutes), and the amount of change in height per 30 seconds is calculated from the following formula,
  • the time (minutes) of H(n+1) when the amount of change was the largest was defined as the time required for the water absorption rate to rise sharply (water absorption inflection point).
  • P (E-AANa) is ethylene-sodium acrylate copolymer
  • P (E-AAK) is ethylene-potassium acrylate copolymer
  • P (E-MAANa) stands for ethylene-sodium methacrylate copolymer
  • (AA-VC) for acrylic acid-vinyl chloride copolymer
  • PVC for polyvinyl chloride
  • PS for polystyrene
  • Example 2 From a comparison of the results of Example 2 and Example 3, it can be seen that even when the ratio of the sea portion and the island portion is the same, the greater the amount of coating material used, the longer the water absorption inflection point.
  • Example 5 From a comparison of the results of Example 5 and Example 16, it can be seen that the water absorption inflection point becomes shorter as the ratio of the island portion to the sea portion increases.
  • Example 17 shows that the higher the degree of neutralization of the sea part, the longer the water absorption inflection point. The higher the degree of neutralization, the smaller the particles of the emulsion and the denser the coating layer.
  • Example 10 A comparison of the results of Example 5, Example 9, and Example 10 shows that the water absorption inflection point can be controlled even by changing the composition of the sea portion (emulsion resin).
  • the water absorption inflection point can also be changed by changing the counter ion.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Hematology (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Dispersion Chemistry (AREA)
  • Vascular Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Biomedical Technology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Absorbent Articles And Supports Therefor (AREA)

Abstract

吸水性樹脂粒子と、吸水性樹脂粒子の表面の少なくとも一部を被覆するコーティング層と、を有し、コーティング層が、化合物Aと、化合物Aよりも易水溶性の化合物Bと、を含む、被覆樹脂粒子に関する。

Description

被覆樹脂粒子及び被覆樹脂粒子を製造する方法
 本発明は、被覆樹脂粒子及び被覆樹脂粒子を製造する方法に関する。
 吸水性樹脂粒子は、紙おむつ、生理用品、簡易トイレ等の衛生材料、保水剤、土壌改良剤等の農園芸材料、止水剤、結露防止剤等の工業資材などの種々の分野で広く使用されている。吸水性樹脂粒子を含む吸収体は、吸水対象である体液等の吸収速度に優れていることが望ましい。吸水性樹脂粒子を含む吸収体に関して、例えば、特許文献1には、吸水性樹脂粉末を有する吸収体であって、荷重下通液速度が15秒以下である拡散性向上材が配置された拡散領域が、少なくとも一部に形成されている層を有することを特徴とする吸収体が開示されている。
特開2014-46020号公報
 紙おむつの吸収体コアに使用されている吸水性樹脂粒子には、保水能が低い吸水性樹脂粒子と、保水能が高い吸水性樹脂粒子の2種類がある。保水能が低い吸水性樹脂粒子を吸収体コアに使用すると、速やかに液が浸透される一方、吸液後に保持できる液量が劣るため、充分なドライ性が得られない場合がある。ドライ性が充分でないと、シート状の吸収体が湾曲した状態で液を吸収した後、吸収された液が吸収体からおむつの着用者側に戻る、いわゆる逆戻りが生じることがある。保水能が高い吸水性樹脂粒子を使用すると、より多くの液を吸収及び保持することで、ドライ性を高く維持できる一方、液の浸透速度が低下してしまう場合がある。このように、吸収体コアへの液の浸透速度と、ドライ性(逆戻り量)とはトレードオフの関係にあるため、吸液後の逆戻りを抑制しながら、浸透速度を向上させるのは難しい。
 本発明は、吸収性物品に用いる際に従来の吸水性樹脂粒子と併用することで、従来の吸水性樹脂粒子を単独で用いる場合に比して、吸液後の逆戻り量の増加を実用上十分に抑制しながら、液の浸透速度を向上させることができる被覆樹脂粒子及びその製造方法を提供することを目的とする。
 本発明の一側面は、吸水性樹脂粒子と、吸水性樹脂粒子の表面の少なくとも一部を被覆するコーティング層と、を有し、コーティング層が、化合物Aと、化合物Aよりも易水溶性の化合物Bと、を含む、被覆樹脂粒子を提供する。
 本発明の他の一側面は、コーティング材によって吸水性樹脂粒子の少なくとも一部を被覆して、吸水性樹脂粒子の表面の少なくとも一部にコーティング層を形成する工程を備え、コーティング材が、溶液状態又はエマルジョン状態にある化合物Aと、化合物Aよりも易水溶性の化合物Bとを含む、被覆樹脂粒子を製造する方法を提供する。
 本発明によれば、吸収性物品に用いる際に従来の吸水性樹脂粒子と併用することで、従来の吸水性樹脂粒子を単独で用いる場合に比して、吸液後の逆戻り量の増加を実用上十分に抑制しながら、液の浸透速度を向上させることができる被覆樹脂粒子及びその製造方法を提供することができる。
被覆樹脂粒子の一実施形態を示す模式断面図である。 吸収性物品の一実施形態を示す模式断面図である。 実施例5の被覆樹脂粒子のラマン分光法による分析結果を示す写真である。 実施例12の被覆樹脂粒子のラマン分光法による分析結果を示す写真である。
 以下、本発明のいくつかの実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。
 本明細書において、「アクリル」及び「メタクリル」を合わせて「(メタ)アクリル」と表記する。「アクリレート」及び「メタクリレート」も同様に「(メタ)アクリレート」と表記する。本明細書に段階的に記載されている数値範囲において、ある段階の数値範囲の上限値又は下限値は、他の段階の数値範囲の上限値又は下限値と任意に組み合わせることができる。本明細書に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。本明細書に例示する材料は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
[被覆樹脂粒子]
 本実施形態の被覆樹脂粒子は、吸水性樹脂粒子と、該吸水性樹脂粒子の表面の少なくとも一部を被覆するコーティング層とを有する。
 コーティング層は、吸水性樹脂粒子が吸水前の状態にある吸水性樹脂粒子から容易に脱落しないよう、その表面に化学的及び/又は物理的に結合していてよい。物理的な結合は、例えば、吸水性樹脂粒子の表面に存在する微細凹部にコーティング層が入り込むことによって生じるアンカー効果によって実現される。
 図1は、被覆樹脂粒子の一実施形態を示す模式断面図である。図1に示すように、被覆樹脂粒子1は、吸水性樹脂粒子1aと、吸水性樹脂粒子1aの表面の少なくとも一部を被覆するコーティング層1bとを有する。図1では、吸水性樹脂粒子1の表面全体がコーティング層1bによって被覆されている。コーティング層1bは、化合物Aと、化合物Aよりも易水溶性の化合物Bとを含む。
 被覆樹脂粒子1は、コーティング層1bによって液体との接触が遮断されているため、水を含む液体に接触してから所定時間までの吸水が抑制されている。コーティング層1bが水を含む液体に接触すると、化合物Bが徐々に溶解して化合物Bが存在した部分が水路となる。これによって、吸水性樹脂粒子1aが、化合物Aが存在する部分で吸水が抑制されつつ、水路を介して侵入した液を吸水して膨潤する。この吸水が抑制された吸水性樹脂粒子1aを吸収体に用いることによって、吸水性樹脂粒子間に存在していた間隙が膨潤したゲル状の吸水性樹脂粒子によって充填されてしまい、該間隙を液体が通過することが難しくなる現象(いわゆるゲルブロッキング現象)が生じにくくなり、浸透速度が向上すると考えられる。また、吸収が抑制されていても、化合物Bの溶解によって形成された水路により、吸水性樹脂粒子1aは徐々に吸水するため、吸液後の逆戻りも抑制されると考えられる。但し、本発明による効果が得られるメカニズムは上記に限定されない。
(吸水性樹脂粒子)
 吸水性樹脂粒子は、重合体粒子を含んでいてよい。重合体粒子は、エチレン性不飽和単量体を含む単量体の重合により形成された架橋重合体であってよい。重合体粒子は、エチレン性不飽和単量体に由来する単量体単位を有することができる。重合体粒子は、例えば、エチレン性不飽和単量体を含む単量体を重合させる工程を含む方法により、製造することができる。重合方法としては、逆相懸濁重合法、水溶液重合法、バルク重合法、沈殿重合法等が挙げられる。
 エチレン性不飽和単量体は、水溶性エチレン性不飽和単量体(水100gに対する溶解度が25℃で1.0g以上のエチレン性不飽和単量体)であってもよい。水溶性エチレン性不飽和単量体としては、例えば、(メタ)アクリル酸及びその塩、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸及びその塩、(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、2-ヒドロキシエチル(メタ)アクリレート、N-メチロール(メタ)アクリルアミド、ポリエチレングリコールモノ(メタ)アクリレート、N,N-ジエチルアミノエチル(メタ)アクリレート、N,N-ジエチルアミノプロピル(メタ)アクリレート、及びジエチルアミノプロピル(メタ)アクリルアミドが挙げられる。エチレン性不飽和単量体がアミノ基を有する場合、当該アミノ基は4級化されていてもよい。エチレン性不飽和単量体は、単独で用いられてもよく、2種以上を組み合わせて用いられてもよい。
 エチレン性不飽和単量体が酸性基を有する場合、その酸性基をアルカリ性中和剤によって中和してから重合反応に用いてもよい。エチレン性不飽和単量体における、アルカリ性中和剤による中和度は、例えば、エチレン性不飽和単量体中の酸性基の10~100モル%、50~90モル%、又は60~80モル%であってもよい。
 工業的に入手が容易である観点から、エチレン性不飽和単量体は、(メタ)アクリル酸及びその塩、アクリルアミド、メタクリルアミド、並びに、N,N-ジメチルアクリルアミドからなる群より選ばれる少なくとも1種の化合物を含んでいてもよい。エチレン性不飽和単量体が、(メタ)アクリル酸及びその塩、並びに、アクリルアミドからなる群より選ばれる少なくとも1種の化合物を含んでいてもよい。
 吸水性樹脂粒子を得るための単量体としては、上述のエチレン性不飽和単量体以外の単量体が使用されてもよい。このような単量体は、例えば、上述のエチレン性不飽和単量体を含む水溶液に混合して用いることができる。エチレン性不飽和単量体の使用量は、単量体全量に対して70~100モル%であってもよい。(メタ)アクリル酸及びその塩の割合が単量体全量に対して70~100モル%であってもよい。
 重合の際に自己架橋による架橋が生じるが、内部架橋剤を用いることで架橋を促してもよい。内部架橋剤を用いると、吸水性樹脂粒子の吸水特性(保水量等)を制御しやすい。内部架橋剤は、通常、重合反応の際に反応液に添加される。
 重合体粒子のうち少なくとも表層部分の重合体は、表面架橋剤との反応によって架橋されていてよい。表面架橋剤は、例えば、エチレン性不飽和単量体由来の官能基との反応性を有する官能基(反応性官能基)を2個以上有する化合物であってよい。
 重合体粒子は、エチレン性不飽和単量体の重合体に加えて、ある程度の水を含んでいてもよく、その内部に各種の追加の成分を更に含んでいてもよい。追加の成分の例としては、ゲル安定剤、金属キレート剤が挙げられる。
 吸水性樹脂粒子の形状は、特に限定されず、例えば、略球状、破砕状又は顆粒状であってもよく、これらの形状を有する一次粒子が凝集した形状であってもよい。
 吸水性樹脂粒子は、必要に応じて篩による分級を用いた粒度調整等の操作を行うことにより粒度分布を調整されていてよい。例えば、目開き850μmの篩を通過し、かつ、目開き250μmの篩を通過しなかった画分を吸水性樹脂粒子として用いてよい。
(コーティング層)
 コーティング層は、化合物Aと、化合物Aよりも易水溶性の化合物Bと、を含む。化合物Aは、化合物Bよりも難水溶性の化合物である。25℃の水100gに対する化合物Aの溶解分は、1質量%以下であってよい。25℃の水100gに対する化合物Aの溶解分は、例えば、0.5質量%以下、0.3質量%以下、又は0.1質量%以下であってよく、0質量%であってもよい。化合物Aの溶解分は、後述する実施例に記載の方法によって測定される。
 化合物Aは、置換又は無置換のアルケンを構成単位(単量体単位)として含むホモポリマー又はコポリマーであってよい。無置換アルケンを構成単位として含むコポリマーは、2種以上の無置換アルケンのみを構成単位として含むコポリマーであってもよく、1種又は2種以上の無置換アルケンと無置換アルケン以外のモノマー成分を構成単位として含むコポリマーであってもよく、1種の無置換アルケンと無置換アルケン以外のモノマー成分を構成単位として含むコポリマーであってよい。
 当該コポリマーに用いられる無置換アルケンとしては、例えば、エチレン、プロピレン、及びブテンが挙げられる。当該コポリマーに用いられる無置換アルケンは、エチレン及び/又はプロピレンであってよく、エチレンであってよい。
 当該コポリマーに用いられる置換アルケンとしては、ハロゲン化アルケン及び/又は置換若しくは無置換の芳香族置換基(例えば、フェニル基又はナフチル基)で置換されたアルケンが挙げられる。当該コポリマーに用いられる置換アルケンは、ハロゲン化アルケンであってよく、ハロゲン化ビニル(例えば、クロロエチレン、ブロモエチレン又はフルオロエチレン)及び/又は置換若しくは無置換のフェニル基で置換されたエチレンであってよく、クロロエチレン(塩化ビニル)及び/又は無置換のフェニル基で置換されたエチレン(スチレン)であってよく、塩化ビニルであってよい。
 当該コポリマーに用いられる置換又は無置換アルケン以外のモノマー成分としては、水溶性エチレン性不飽和単量体が用いられてよい。水溶性エチレン性不飽和単量体としては、上で列挙した化合物を用いることができる。水溶性エチレン性不飽和単量体は、(メタ)アクリル酸及び/又はその塩であってよい。
 これらを総括すると、置換アルケンを構成単位として含むコポリマーは、塩化ビニルと水溶性エチレン性不飽和単量体を構成単位として含むコポリマーであってよく、塩化ビニルと(メタ)アクリル酸及び/又はその塩とを構成単位として含むコポリマーであってよく、塩化ビニルと(メタ)アクリル酸とを構成単位として含むコポリマーであってよく、塩化ビニルとアクリル酸とを構成単位として含むコポリマー(アクリル酸-塩化ビニル共重合体)であってよい。
 無置換アルケンを構成単位として含むコポリマーは、エチレンと水溶性エチレン性不飽和単量体を構成単位として含むコポリマーであってよく、エチレンと(メタ)アクリル酸及び/又はその塩とを構成単位として含むコポリマーであってよく、エチレンとアクリル酸塩とを構成単位として含むコポリマーであってよく、エチレンとアクリル酸ナトリウム又はアクリル酸カリウムとを構成単位として含むコポリマー(エチレン-アクリル酸ナトリウム共重合体又はエチレン-アクリル酸カリウム共重合体)であってよく、エチレン―アクリル酸ナトリウム共重合体であってよい。
 置換又は無置換のアルケンを構成単位として含むホモポリマーは、置換アルケンを構成単位として含むホモポリマーであってよく、ハロゲン化アルケン及び/又は芳香族置換基(例えば、フェニル基又はナフチル基)で置換されたアルケンを構成単位として含むホモポリマーであってよく、ハロゲン化ビニル(例えば、クロロエチレン、ブロモエチレン又はフルオロエチレン)及び/又はフェニル基で置換されたエチレン(スチレン)を構成単位として含むホモポリマーであってよく、ハロゲン化ビニル(特にクロロエチレン)のホモポリマーであるポリ塩化ビニル又はポリスチレンであってよい。
 化合物Aの含有量は、化合物A及び化合物Bの合計量100質量部に対して、浸透速度が更に向上する観点、及び、吸液後の逆戻りが更に抑制される観点から、5質量部以上、10質量部以上、15質量部以上、35質量部以上、55質量部以上、75質量部以上、85質量部以上、又は95質量部以上であってよい。化合物Aの含有量は、化合物A及び化合物Bの合計量100質量部に対して、100質量部未満、又は95質量部以下であってよい。本実施形態に係る被覆樹脂粒子において、化合物A及び化合物Bの合計量100質量部に対する化合物Aの含有量は、コーティング層の総面積に対するコーティング層における化合物Aが存在する領域の面積とみなすことができる。
 化合物Aの含有量は、吸水性樹脂粒子100質量部に対して、浸透速度が更に向上する観点から、0.1質量部以上、1.0質量部以上、5.0質量部以上、10質量部以上、15質量部以上、20質量部以上、又は25質量部以上であってよい。化合物Aの含有量は、吸水性樹脂粒子100質量部に対して、吸液後の逆戻りが更に抑制される観点から、40質量部以下、30質量部以下、20質量部以下、15質量部以下、又は10質量部以下であってよい。
 化合物Bは、化合物Aよりも易水溶性の化合物である。25℃の水100gに対する化合物Bの溶解分は、20質量%以上、30質量%以上、40質量%以上、50質量%以上、60質量%以上、70質量%以上、又は80質量%以上であってよい。25℃の水100gに対する化合物Bの溶解分は、100質量%以下、95質量%以下、90質量%以下、又は85質量%以下であってよい。化合物Bの溶解分は、後述する実施例に記載の方法によって測定される。
 25℃の水100gに対する化合物Bの溶解分は、吸液後の逆戻りが更に抑制される観点、及び浸透速度が更に向上する観点から、化合物Aの溶解分よりも20質量%以上高くてよい。化合物Bの溶解分と、化合物Aの溶解分の差(B-A)は、吸液後の逆戻りが更に抑制される観点、及び浸透速度が更に向上する観点から、25質量%以上、30質量%以上、35質量%以上、40質量%以上、45質量%以上、50質量%以上、55質量%以上、60質量%以上、65質量%以上、70質量%以上、75質量%以上、又は80質量%以上であってよい。化合物Bの溶解分と、化合物Aの溶解分の差(B-A)は、例えば、100質量%以下、95質量%以下、90質量%以下、又は85質量%以下であってよい。
 化合物Bは、無機塩及び親水基を有する有機化合物(以下、単に「親水基含有化合物」という。)からなる群より選択される少なくとも1種の化合物であってよい。
 無機塩としては、例えば、塩化ナトリウム、塩化カリウム、炭酸ナトリウム、炭酸水素ナトリウム等が挙げられる。
 親水基含有化合物が有し得る親水基は、例えば、ヒドロキシ基、オキシアルキレン基、カルボキシル基、アミノ基等であってよい。親水基の種類及び数を適宜調整することにより、化合物Bの溶解分を調整することができる。
 親水基含有化合物は、例えば、アルキレンオキシドを構成単位として含むポリマー、フルクトースが挙げられる。
 アルキレンオキシドを構成単位として含むポリマーは、1種のアルキレンオキシドのみを構成単位として含むポリアルキレンオキシド(ホモポリマー)であってもよく、2種以上のアルキレンオキシドを構成単位として含むポリアルキレンオキシド(コポリマー)であってもよく、1種又は2種以上のアルキレンオキシドとアルキレンオキシド以外のモノマー成分を構成単位として含むコポリマーであってもよい。アルキレンオキシドを構成単位として含むポリマーは、1種のアルキレンオキシドのみを構成単位として含むポリアルキレンオキシドであってよい。
 アルキレンオキシドとしては、例えば、エチレンオキシド又はプロピレンオキシドが挙げられる。アルキレンオキシドは、エチレンオキシドであってよい。
 これらを総括すると、アルキレンオキシドを構成単位として含むポリマーは、エチレンオキシドを構成単位として含むホモポリマー(ポリエチレングリコール)及びエチレンオキシドとプロピレンオキシドを構成単位として含むエチレン-プロピレン共重合体からなる群から選択される少なくとも1種であってよく、ポリエチレングリコールであってよい。
 アルキレンオキシドを構成単位として含むポリマーの数平均分子量は、100~200,000又は5000~20,000であってよい。
 化合物Bの含有量は、化合物A及び化合物Bの合計量100質量部に対して、吸液後の逆戻りが更に抑制される観点から、95質量部以下、85質量部以下、60質量部以下、35質量部以下、10質量部以下、5質量部以下、又は3質量部以下であってよい。化合物Bの含有量は、化合物A及び化合物Bの合計量100質量部に対して、浸透速度が更に向上する観点から、0.1質量部以上、0.5質量部以上、1.0質量部以上、又は2.0質量部以上であってよい。化合物Bの含有量は、例えば、1~85質量部であってよい。本実施形態に係る被覆樹脂粒子において、化合物A及び化合物Bの合計量100質量部に対する化合物Bの含有量は、コーティング層の総面積に対するコーティング層における化合物Bが存在する領域の面積とみなすことができる。
 化合物Bの含有量は、吸水性樹脂粒子100質量部に対して、吸液後の逆戻りが更に抑制される観点から、30質量部以下、25質量部以下、15質量部以下、10質量部以下、5質量部以下、又は1質量部以下であってよい。化合物Bの含有量は、吸水性樹脂粒子100質量部に対して、浸透速度が更に向上する観点から、0.01質量部以上、0.1質量部以上、0.5質量部以上、1.0質量部以上、2.0質量部以上、又は2.5質量部以上であってよい。
 コーティング層は、化合物A及び化合物Bのうち一方の化合物を含む海部と、他方の化合物を含む島部とで構成される海島構造を有していてよい。島部は、海部に分散されていてよい。海島構造は、ラマン分光法等の分析手法により確認することができる。例えば、コーティング層を形成する際に、エマルジョン状態にある化合物Aを含むコーティング材を用いることによって、海島構造が形成されやすくなる。
 海島構造は、化合物Aを含む海部と、化合物Bを含む島部とで構成されていてよい。この場合、化合物B全てが溶解したとしても海部を構成する化合物Aによって吸水性樹脂粒子が拘束された状態がある程度維持されるため、吸液後の逆戻りの抑制効果及び浸透速度の向上効果がより一層優れたものとなる。
 コーティング層が海島構造を有する被覆樹脂粒子は、水路となる化合物Bが存在する部分が局在化しているため、化合物Bが局在化して島部を形成していない場合と比べて、吸水の起点となる水路がより大きく、一定時間の吸水遅延後により急激な吸水を開始することができる。そのため、吸収性物品に用いた際に、ブロッキング現象、及び吸液後の逆戻りが生じにくくなり、結果として、吸液性能(浸透速度及び逆戻りの抑制効果)が向上すると考えられる。
 化合物Bを含む領域(以下、化合物B含有領域と称する)は、コーティング層の厚み方向に延びている。化合物B含有領域は、海部又は島部であり、島部であってよい。化合物B含有領域の少なくとも一部は、当該領域を含むコーティング層の厚みの1/2以上を構成していてよく、化合物B含有領域の少なくとも一部は、当該領域を含むコーティング層の厚み全体を構成していてよい。化合物B含有領域の全部が、当該領域を含むコーティング層の厚みの1/2以上を構成していてよく、当該領域を含むコーティング層の厚み全体を構成していてよい。化合物B含有領域(海部又は島部)に含まれる化合物Bは化合物Aよりも易水溶性であるため、化合物B含有領域に対応する吸水性樹脂粒子の表面の一部が、化合物Bの溶解により、化合物Aを含む領域(島部又は海部)に対応する吸水性樹脂粒子の表面の一部よりも早く液体と接触可能である。即ち、吸水性樹脂粒子はコーティング層によって液体との接触が遮断されているが、液体と接触してから所定時間経過後は、化合物B含有領域(海部又は島部)の溶解によって形成された水路によって液体と接触可能(吸水可能)となる。
 本実施形態に係る被覆樹脂粒子は、吸水速度が急上昇するまでの時間である吸水変曲点を制御することができる。吸水変曲点は、例えば、吸水性樹脂粒子100質量部に対するコーティング層の総含有量、海部と島部との比率、海部及び島部それぞれに使用する化合物の種類(例えば、海部がエチレンと(メタ)アクリル酸塩を構成単位として含むコポリマーを含有する場合、当該コポリマーの中和度及び/又は対イオンの種類等)を制御することによって、調整することができる。
 本実施形態に係る被覆樹脂粒子の吸水変曲点は、例えば、1.5分以上、2.0分以上、2.5分以上、3.5分以上、4.0分以上、4.5分以上、5.0分以上、又は5.5分以上であってよく、15.0分以下、10.0分以下、7.0分以下、又は6.5分以下であってよい。本実施形態に係る被覆樹脂粒子の吸水変曲点は、例えば、1.5~15.0分、1.5~10.0分、1.5~7.0分又は2.0~6.5分であってよい。被覆樹脂粒子の吸水変曲点は、後述する実施例に記載の方法によって測定される。
 コーティング層の総含有量は、吸水性樹脂粒子100質量部に対して、3質量部以上、5質量部以上、10質量部以上、15質量部以上、20質量部以上、又は25質量部以上であってよい。コーティング層の総含有量は、吸水性樹脂粒子100質量部に対して、50質量部以下、45質量部以下、40質量部以下、又は35質量部以下であってよい。コーティング層の総含有量は、吸水性樹脂粒子100質量部に対して、3~50質量部、又は10~40質量部であってよい。ここでいうコーティング層の総含有量は、コーティング材の使用量に相当する。本実施形態に係る被覆樹脂粒子では、吸水性樹脂粒子に対するコーティング層の量が多いほど、吸水変曲点が伸びる傾向がある。
 島部の含有量は、例えば、海部の含有量100質量部に対して、20質量部以下、16質量部以下、又は12質量部以下であってよい。島部の含有量は、例えば、海部の含有量100質量部に対して、1質量部以上、5質量部以上、又は8質量部以上であってよい。島部の含有量は、例えば、海部の含有量100質量部に対して、1質量部以上20質量部以下、5質量部以上16質量部以下、又は8質量部以上12質量部以下であってよい。本実施形態に係る被覆樹脂粒子では、海部の含有量に対する島部の含有量が小さいほど、吸水変曲点が伸びる傾向があり、海部の含有量に対する島部の含有量が大きいほど吸水変曲点が短くなる傾向がある。
 海部がエチレンと(メタ)アクリル酸塩を構成単位として含むコポリマーを含有する場合、海部を構成するコポリマー中のカルボキシ基の中和度は、構成単位として含まれる(メタ)アクリル酸塩中のカルボキシ基の70モル%以上、75モル%以上、80モル%以上、85モル%以上、90モル%以上又は95モル%以上であってよい。当該中和度は、構成単位として含まれる(メタ)アクリル酸塩中のカルボキシ基の80~100モル%、又は85~100モル%であってよい。本実施形態に係る被覆樹脂粒子では、海部がエチレンと(メタ)アクリル酸塩を構成単位として含むコポリマーを含有する場合当該コポリマーの中和度が高いほど、吸水変曲点が伸びる傾向がある。
 海部としてエチレンと(メタ)アクリル酸塩を構成単位として含むコポリマーを含有する被覆樹脂粒子において、海部の塩(対イオン)がカリウムイオンであるコポリマーを含む場合、海部の塩がナトリウムイオンであるコポリマーを含む場合と比べて、吸水変曲点が伸びる傾向がある。
(無機粒子)
 被覆樹脂粒子は、無機粒子と併用してもよい。無機粒子としては、例えば、非晶質シリカ等のシリカ粒子が挙げられる。無機粒子の量は、重合体粒子の質量を基準として、0.05質量%以上、0.1質量%以上、0.15質量%以上、又は、0.2質量%以上であってもよく、5.0質量%以下、3.0質量%以下、1.0質量%以下、0.5質量%以下、又は0.3質量%以下であってもよい。無機粒子の平均粒子径は、0.1~50μm、0.5~30μm、又は、1~20μmであってよい。平均粒子径は、粒子の特性に応じて、細孔電気抵抗法又はレーザー回折・散乱法によって測定できる。
 本実施形態の被覆樹脂粒子は、それ単独で用いることもできるが、被覆樹脂粒子以外の吸水性を有する樹脂粒子(以下、単に「その他の樹脂粒子」という。)と混合して、混合粒子として用いることもできる。
[吸水性樹脂組成物]
 一実施形態に係る吸水性樹脂組成物は、上述した被覆樹脂粒子と、被覆樹脂粒子以外の吸水性を有する樹脂粒子(その他の樹脂粒子)と、を含む。当該吸水性樹脂組成物を用いることにより、その他の樹脂粒子を単独で用いる場合に比して、膨潤状態に達するまでの時間を遅くすることができ、その結果、ゲルブロッキング現象の発生を抑制することができる。また、本実施形態に係る吸水性樹脂組成物を用いる場合、被覆樹脂粒子の種類、その他の樹脂粒子の種類、被覆樹脂粒子とその他の樹脂粒子の混合比率などを適宜変更することにより任意の吸水挙動を実現し得る。
 吸水性樹脂組成物において、被覆樹脂粒子の含有量は、被覆樹脂粒子及びその他の樹脂粒子の合計100質量部に対して、例えば、5質量部以上、又は15質量部以上であってよく、95質量部以下、85質量部以下、60質量%以下、40質量%以下、30質量%以下、又は25質量%以下であってよい。
 本発明の被覆樹脂粒子によりゲルブロッキング現象の発生が抑制されるため、吸収体内において被覆樹脂粒子とその他の樹脂粒子が混合された混合粒子を用いると、その他の樹脂粒子を単独で用いた場合に比して、吸収体内における液の拡散性の向上、即ち吸収体内の樹脂粒子の効率的な利用ができ、その結果、吸収体内における樹脂粒子の使用量を、その他の樹脂粒子を単独で用いる場合に比して、低減し得る。
 また、吸収体では、液体の拡散性を向上させることも目的に、その他の樹脂粒子にパルプなどの親水性繊維を混合する場合があるが、環境保護の観点から親水性繊維の使用量の低減が求められている。しかし、吸収体における親水性繊維の使用量を低減させると、その他の樹脂粒子の割合が増加するため、ゲルブロッキング現象が発生し易くなる傾向にある。この点、本発明の被覆樹脂粒子をその他の樹脂粒子と併用すれば、親水性繊維の使用量を低減してもゲルブロッキング現象の発生を抑制し得る。
 その他の樹脂粒子は、生理食塩水(0.9質量%塩化ナトリウム水溶液)に対する保水量の下限値が25g/g以上であってよく、30g/g以上であってよく、35g/g以上であってよい。また、その保水量の上限値は55g/g以下であってよく、50g/g以下であってよく、45g/g以下であってよい。。保水量は、後述する実施例に記載の方法によって測定される。
 なお、被覆樹脂粒子を構成する(コーティング層の被覆対象である)吸水性樹脂粒子は、その他の樹脂粒子と同じ粒子であってもよく、その他の樹脂粒子と異なる粒子であってもよい。被覆樹脂粒子を構成する吸水性樹脂粒子は、その他の樹脂粒子と同じ粒子であってよい。
[被覆樹脂粒子の製造方法]
 本実施形態に係る被覆樹脂粒子は、例えば、コーティング材によって吸水性樹脂粒子の少なくとも一部を被覆して、吸水性樹脂粒子の表面の少なくとも一部にコーティング層を形成する工程を備える方法によって製造することができる。コーティング材は、化合物Aと、化合物Aよりも易水溶性の化合物Bとを含む。化合物A及び化合物Bの詳細は、上述したとおりである。本実施形態に係る被覆樹脂粒子の製造方法によれば、吸収性物品に用いる際に従来の吸水性樹脂粒子と併用することで、従来の吸水性樹脂粒子を単独で用いる場合に比して、吸液後の逆戻り量の増加を実用上十分に抑制しながら、液の浸透速度を向上させることができる被覆樹脂粒子が得られる。加えて、本実施形態に係る被覆樹脂粒子の製造方法によれば、吸水変曲点が制御された被覆樹脂粒子を容易に得ることもできる。本実施形態に係る被覆樹脂粒子の製造方法では、上記の被覆樹脂粒子で述べた態様を際限なく適用することができる。
 コーティング材は、化合物Aと、化合物Bと、液状媒体とを混合することによって調製することができる。コーティング材において、化合物Aは溶液状態又はエマルジョン状態にある。化合物Aを溶液状態で含むコーティング材は、化合物A、化合物B及び液状媒体を混合することによって得ることができる。化合物Aをエマルジョン状態で含むコーティング材は、例えば、化合物Aを含む粒子を液状媒体に分散させたエマルジョンと、化合物Bと、を混合することによって得ることができる。エマルジョンは通常の乳化方法を適用して形成させることができる。コーティング材において、化合物Bは液状媒体に溶解又は分散していてよい。
 液状媒体としては、乾燥により除去可能な溶媒が用いられてよい。液状媒体としては、例えば、水、エーテル(例えば、テトラヒドロフラン)、アセトン、メタノール、エタノール、炭化水素(ヘキサン、ヘプタン等)が挙げられる。
 コーティング材中の化合物A及び化合物Bの濃度は、目的とする厚みのコーティング層及び被覆対象である吸水性樹脂粒子の量等を考慮して適宜調整し得る。コーティング材中の化合物Aの含有量は、コーティング材全量を基準として、例えば、1~50質量%、3~30質量%、又は5~20質量%であってもよい。コーティング材中の化合物Bの含有量は、コーティング材全量を基準として、例えば、0.1~30質量%、0.5~20質量%、又は1~10質量%であってもよい。
 コーティング材における、化合物Bの含有量は、化合物Aの含有量100質量部に対して、例えば、1~500質量部であってよい。化合物Aの含有量100質量部に対する化合物Bの含有量の下限は、5質量部以上、又は8質量部以上であってよい。化合物Aの含有量100質量部に対する化合物Bの含有量の上限は、例えば、400質量部以下、300質量部以下、200質量部以下、100質量部以下、50質量部以下、25質量部以下、又は15質量部以下であってよい。
 コーティング層は、例えば、(1)吸水性樹脂粒子が分散した炭化水素分散媒にコーティング材を添加する方法、(2)炭化水素分散媒にコーティング材及び吸水性樹脂粒子を略同時に添加する方法、又は(3)乾燥状態にある吸水性樹脂粒子にコーティング材を接触させる方法、により形成し得る。以下、各方法について具体的に説明する。
 上記(1)の方法の一例について説明する。まず、還流冷却器、滴下ロート、窒素ガス導入管、及び撹拌機を備えたセパラブルフラスコを準備する。続いて、該セパラブルフラスコに、炭化水素分散媒及び吸水性樹脂粒子を投入し、高温(例えば、60~80℃)を維持しつつ十分に撹拌する。コーティング材を上記セパラブルフラスコ内に添加して十分に撹拌した後、高温(例えば、100~125℃)に設定した油浴にセパラブルフラスコを浸漬し、炭化水素分散媒と水との共沸蒸留により、炭化水素分散媒を還流しながら、反応系に含まれ得る水を系外へ抜き出す。その後、炭化水素分散媒を蒸発させることにより、コーティング材が吸水性樹脂粒子の表面に被覆された被覆樹脂粒子が得られる。
 上記(2)の方法の一例について説明する。まず、還流冷却器、滴下ロート、窒素ガス導入管、及び撹拌機を備えたセパラブルフラスコを準備する。続いて、該セパラブルフラスコに、炭化水素分散媒、吸水性樹脂粒子、及びコーティング材を投入し、高温(例えば、60~80℃)を維持しつつ十分に撹拌する。その後、炭化水素分散媒を蒸発させることにより、コーティング材が吸水性樹脂粒子の表面に被覆された被覆樹脂粒子が得られる。
 上記(3)の方法は様々であるが、以下、その代表例として(3-1)ナスフラスコを用いた方法、(3-2)噴霧器を用いた方法、(3-3)各種造粒機を用いた方法について説明する。
(3-1)
 ナスフラスコにコーティング材を投入し、続けて吸水性樹脂粒子を投入する。該ナスフラスコをエバポレーターに取り付け、回転させながら加熱し、減圧条件下でコーティング材に含まれる液状媒体を留去する。これによりコーティング材料が吸水性樹脂粒子の表面に被覆された被覆樹脂粒子が得られる。
(3-2)
 撹拌翼を備えたセパラブルフラスコに、吸水性樹脂粒子を加えて撹拌する。撹拌翼による撹拌で巻き上げられた吸水性樹脂粒子に、コーティング材を噴霧する。コーティング材の噴霧は、例えば、2流体型ノズルを用いて行うことができる。均一な被覆が期待できることから、コーティング材は窒素等の不活性ガスの気流により霧状にして噴霧されることが望ましい。その後、セパラブルフラスコの内容物を取り出し、熱風乾燥機にて加熱した後、室温まで冷却することで被覆樹脂粒子が得られる。
(3-3)
 被覆樹脂粒子の製造に用いられる造粒機としては、例えば、転動造粒機、攪拌造粒機、及び流動層造粒機が挙げられる。
 転動造粒機を用いる場合、転動造粒機に備え付けられた、傾斜した浅い円形容器を回転させておき、該円形容器に吸水性樹脂粒子を供給すると共にコーティング材を適量添加する。そうすると、コーティング材に含まれる溶媒又は分散媒により、転動中の吸水性樹脂粒子の一部が凝集しつつその表面にコーティング層が形成される。なお、吸水性樹脂粒子及びコーティング材の添加工程は必要により複数回行い得る。
 攪拌造粒機を用いる場合、攪拌造粒機に備え付けられたミキサーに吸水性樹脂粒子を投入し、撹拌による混合を行うと共にコーティング材を添加する。そうすると、コーティング材に含まれる液状媒体により、攪拌中の吸水性樹脂粒子の一部が凝集しつつその表面にコーティング層が形成される。吸水性樹脂粒子及びコーティング材の添加工程は必要により複数回行い得る。なお、吸水性樹脂粒子の過度な凝集は、ミキサーの剪断力を制御することによって抑制し得る。
 流動層造粒機を用いる場合、まず、流動層造粒機に備え付けられた、下部から熱風を送り出すことができる容器に吸水性樹脂粒子を投入し、予め吸水性樹脂粒子を流動化しておく。その後、該容器に備え付けられたノズルからコーティング材を散布すると、コーティング材に含まれる液状媒体により、攪拌中の吸水性樹脂粒子の一部が凝集しつつその表面にコーティング層が形成される。コーティング材の散布は必要により複数回行い得る。吸水性樹脂粒子の過度な凝集は、コーティング材の散布量や散布頻度を調整することで抑制し得る。流動層造粒機としては、例えば、流動層造粒機FBD/SG(YENCHEN MACHINERY製)を使用できる。
 被覆樹脂粒子は、例えば、おむつ等の吸収性物品を構成する吸収体を形成するために用いられる。図2は、吸収性物品の一例を示す断面図である。図2に示す吸収性物品100は、シート状の吸収体10と、コアラップ20a,20bと、液体透過性シート30と、液体不透過性シート40と、を備える。吸収性物品100において、液体不透過性シート40、コアラップ20b、吸収体10、コアラップ20a、及び、液体透過性シート30がこの順に積層している。図2において、部材間に間隙があるように図示されている部分があるが、当該間隙が存在することなく部材間が密着していてよい。
 吸収体10は、上述の実施形態に係る被覆樹脂粒子10aと、繊維状物を含む繊維層10bと、を有する。被覆樹脂粒子10aは、繊維層10b内に分散している。
 コアラップ20aは、吸収体10に接した状態で吸収体10の一方面側(図1中、吸収体10の上側)に配置されている。コアラップ20bは、吸収体10に接した状態で吸収体10の他方面側(図1中、吸収体10の下側)に配置されている。吸収体10は、コアラップ20aとコアラップ20bとの間に配置されている。コアラップ20a,20bとしては、ティッシュ、不織布等が挙げられる。コアラップ20a及びコアラップ20bは、例えば、吸収体10と同等の大きさの主面を有している。
 液体透過性シート30は、吸収対象の液が浸入する側の最外部に配置されている。液体透過性シート30は、コアラップ20aに接した状態でコアラップ20a上に配置されている。液体透過性シート30としては、ポリエチレン、ポリプロピレン、ポリエステル、ポリアミド等の合成樹脂からなる不織布、多孔質シートなどが挙げられる。液体不透過性シート40は、吸収性物品100において液体透過性シート30とは反対側の最外部に配置されている。液体不透過性シート40は、コアラップ20bに接した状態でコアラップ20bの下側に配置されている。液体不透過性シート40としては、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等の合成樹脂からなるシート、これらの合成樹脂と不織布との複合材料からなるシートなどが挙げられる。液体透過性シート30及び液体不透過性シート40は、例えば、吸収体10の主面よりも広い主面を有しており、液体透過性シート30及び液体不透過性シート40の外縁部は、吸収体10及びコアラップ20a,20bの周囲に延在している。
 吸収体10、コアラップ20a,20b、液体透過性シート30、及び、液体不透過性シート40の大小関係は、特に限定されず、吸収性物品の用途等に応じて適宜調整される。また、コアラップ20a,20bを用いて吸収体10を保形する方法は、特に限定されず、図2に示すように複数のコアラップにより吸収体を包んでよく、1枚のコアラップにより吸収体を包んでもよい。
 吸収体10は、被覆樹脂粒子10a以外の吸水性を有する樹脂粒子(その他の樹脂粒子)を更に含んでいてもよい。その他の樹脂粒子を含む場合、被覆樹脂粒子10aの含有量は、被覆樹脂粒子及びその他の樹脂粒子の合計100質量部に対して、例えば、5質量部以上、又は15質量部以上であってよく、95質量部以下、又は85質量部以下であってよい。
 以下、実施例を挙げて本発明についてさらに具体的に説明する。ただし、本発明はこれら実施例に限定されるものではない。
1.被覆樹脂粒子の製造
[比較例1]
 還流冷却器、滴下ロート、窒素ガス導入管、及び、撹拌機(翼径5cmの4枚傾斜パドル翼を2段有する撹拌翼)を備えた内径11cm、容積2Lの丸底円筒型セパラブルフラスコを準備した。このセパラブルフラスコに、n-ヘプタン(炭化水素分散媒)293g、及び無水マレイン酸変性エチレン・プロピレン共重合体(高分子系分散剤、三井化学株式会社、ハイワックス1105A)0.736gを添加することにより混合物を得た。この混合物を回転数300rpmで撹拌しつつ80℃まで加温することにより分散剤を溶解させた。その後、混合物を55℃まで冷却した。
 次に、容積500mLの三角フラスコに80.5質量%のアクリル酸水溶液92.0g(アクリル酸:1.03モル)を入れた。続いて、外部より冷却しつつ、30質量%の水酸化ナトリウム水溶液102.2gを滴下することにより75モル%のアクリル酸を中和した。その後、ヒドロキシルエチルセルロース(増粘剤、住友精化株式会社、HEC AW-15F)0.092g、過硫酸カリウム(水溶性ラジカル重合開始剤)0.0736g(0.272ミリモル)、エチレングリコールジグリシジルエーテル(内部架橋剤)0.0101g(0.0580ミリモル)、及びイオン交換水32.85gを加えた後に溶解させることにより第1段目のモノマー水溶液を調製した。
 上述の第1段目のモノマー水溶液を上述のセパラブルフラスコに添加した後、10分間撹拌した。n-ヘプタン6.62gにショ糖ステアリン酸エステル(界面活性剤、三菱化学フーズ株式会社製、リョートーシュガーエステルS-370、HLB:3)0.736gを加熱溶解することにより、界面活性剤溶液を得た。得られた界面活性剤溶液7.356gをセパラブルフラスコに添加することにより反応液を得た。そして、回転数550rpmで反応液を撹拌しながらセパラブルフラスコ系内を窒素で充分に置換した。その後、セパラブルフラスコを70℃の水浴に浸漬して反応液を昇温し、第1段目の重合を10分間行うことにより、第1段目の反応混合物を得た。
 次に、容量500mLの別の三角フラスコに80.5質量%のアクリル酸水溶液128.8g(アクリル酸:1.44モル)を入れた。続いて、外部より冷却しつつ、30質量%の水酸化ナトリウム水溶液143.1gを滴下することにより75モル%のアクリル酸を中和した。その後、過硫酸カリウム0.1030g(0.3810ミリモル)、エチレングリコールジグリシジルエーテル(内部架橋剤)0.0116g(0.0666ミリモル)、及び、イオン交換水0.63gを加えた後に溶解させることにより、第2段目のモノマー水溶液を調製した。
 第1段目の反応混合物を回転数1000rpmで撹拌しつつ25℃に冷却した後、第2段目のモノマー水溶液の全量を第1段目の反応混合物に添加することにより反応液を得た。反応液を撹拌しながら系内を窒素で充分に置換した。その後、セパラブルフラスコを70℃の水浴に浸漬して反応液を昇温し、第2段目の重合を5分間行うことにより第2段目の反応混合物(表面架橋前の重合体粒子)を得た。
 第2段目の重合後、125℃の油浴で第2段目の反応混合物を昇温し、n-ヘプタンと水との共沸蒸留により、n-ヘプタンを還流しながら254gの水を系外へ抜き出した。続いて、表面架橋剤としてエチレングリコールジグリシジルエーテル0.0884g(0.5075ミリモル)を加えた後、83℃で2時間保持することで表面架橋後の重合体粒子の分散液を得た。
 その後、125℃の油浴で上述の表面架橋後の重合体粒子の分散液を昇温し、n-ヘプタンを蒸発させて乾燥させることによって乾燥物を得た。この乾燥物を目開き850μmの篩を通過させることにより、球状粒子が凝集した形態で被覆がなされていない状態の吸水性樹脂粒子(1)を233.4g得た。
 その後、SUS瓶に上述の吸水性樹脂粒子(1)200gと親水性シリカであるトクシール(オリエンタルシリカズコーポレーション、品番:NP-S)0.4gを入れ、クロスロータリー混合機で30分混合させ吸水性樹脂粒子(2)を得た。
 比較例1で作製した吸水性樹脂粒子(1)と吸水性樹脂粒子(2)の保水量は、40g/gであった。保水量は、次に示す方法によって測定した。500mLポリエチレンビーカーに生理食塩水500gを添加した後、スターラーを用いて撹拌子を回転数600rpmで回転させながら吸水性樹脂粒子2.00gを少量ずつ加えた。吸水性樹脂粒子を全量加え終わった後、30分撹拌した。続いて、混合物を綿袋(メンブロード60番、横100mm×縦200mm)内に移し入れた後、綿袋の上部を輪ゴムで閉じた。次に、遠心分離機(株式会社コクサン製、品番:H-122)を用いて1分間遠心分離(167G)を行った後、脱水後の膨潤ゲルを含んだ綿袋の質量WAを測定した。綿袋に吸水性樹脂粒子を入れないで同様の操作を実施し、空の綿袋の質量WBを測定した。そして、下記式より生理食塩水の保水量(25℃)を算出した。
  保水量[g/g]=(WA-WB)/吸水性樹脂粒子の質量(=2.00)
[実施例1]
 トクシールを添加する前までの比較例1の操作を繰り返し、集めた吸水性樹脂粒子(1)を目開き250μmの櫛で分級し、粒径250~850μmの吸水性樹脂粒子を500g以上入手した。
 内容積1Lのポリビーカーに、化合物Aであるエチレン-アクリル酸ナトリウム共重合体の25%水分散エマルジョン(住友精化株式会社、ザイクセンN)10.0g、及び化合物Bであるポリエチレングリコール(東京化成工業株式会社、PEG6000 分子量:7300~9300)0.25gをイオン交換水14.75gで希釈し、コーティング材Aを調製した。
 流動層造粒機のコンテナに、吸水性樹脂粒子500.0gを投入し、コンテナの下部から50℃の温風で送風した。次に、送風で巻き上げられている吸水性樹脂粒子に、25gのコーティング材Aを乾燥させながら噴霧した。コーティング材を噴霧した後、50℃で30分間乾燥した。乾燥後、被覆樹脂粒子を502.3g得た。
 得られた被覆樹脂粒子50.0gを縦26cm、横20cmの金属バットに広げ、アルミホイルで蓋をした。アルミホイルに穿孔し、80℃に設定した熱風乾燥機(ADVANTEC、FV-320)にて被覆樹脂粒子を60分間加熱し、被覆樹脂粒子を50.0g得た。
[実施例2]
化合物Aであるエチレン-アクリル酸ナトリウム共重合体の25%水分散エマルジョン(住友精化株式会社、ザイクセンN)40.0g、及び化合物Bであるポリエチレングリコール(東京化成工業株式会社、PEG6000)1.0gをイオン交換水59.0gで希釈し、コーティング材Bを調製した。コーティング材Aの代わりにコーティング材Bを用いたこと以外は、実施例1と同様に作製し、被覆樹脂粒子50.0gを得た。
 [実施例3]
 化合物Aであるエチレン-アクリル酸ナトリウム共重合体の25%水分散エマルジョン(住友精化株式会社、ザイクセンN)600.0g、及び化合物Bであるポリエチレングリコール(東京化成工業株式会社、PEG6000)15.0gをイオン交換水885.0gで希釈し、コーティング材Cを調製した。コーティング材Aの代わりにコーティング材Cを用いたこと以外は、実施例1と同様に作製し、被覆樹脂粒子50.0gを得た。
[実施例4]
 化合物Aであるエチレン-アクリル酸ナトリウム共重合体の25%水分散エマルジョン(住友精化株式会社、ザイクセンN)200.0g、及び化合物Bであるポリエチレングリコール(東京化成工業株式会社、PEG6000)0.5gをイオン交換水299.5gで希釈し、コーティング材Dを調製した。コーティング材Aの代わりにコーティング材Dを用いたこと以外は、実施例1と同様に作製し、被覆樹脂粒子50.0gを得た。
[実施例5]
 化合物Aであるエチレン-アクリル酸ナトリウム共重合体の25%水分散エマルジョン(住友精化株式会社、ザイクセンN)200.0g、及び化合物Bであるポリエチレングリコール(東京化成工業株式会社、PEG6000)5.0gをイオン交換水295.0gで希釈し、コーティング材Eを調製した。コーティング材Aの代わりにコーティング材Eを用いたこと以外は、実施例1と同様に作製し、被覆樹脂粒子50.0gを得た。
[実施例6]
 化合物Aであるエチレン-アクリル酸ナトリウム共重合体の25%水分散エマルジョン(住友精化株式会社、ザイクセンN)20.0g、及び化合物Bであるポリエチレングリコール(東京化成工業株式会社、PEG6000)25.0gをイオン交換水455.0gで希釈し、コーティング材Fを調製した。コーティング材Aの代わりにコーティング材Fを用いたこと以外は、実施例1と同様に作製し、被覆樹脂粒子50.0gを得た。
[実施例7]
 化合物Aであるエチレン-アクリル酸ナトリウム共重合体の25%水分散エマルジョン(住友精化株式会社、ザイクセンN)20.0g、及び化合物Bであるポリエチレングリコール(東京化成工業株式会社、PEG6000)50.0gをイオン交換水430.0gで希釈し、コーティング材Gを調製した。コーティング材Aの代わりにコーティング材Gを用いたこと以外は、実施例1と同様に作製し、被覆樹脂粒子50.0gを得た。
[実施例8]
 日本販売のおむつ市販品(花王株式会社製、商品名:メリーズ パンツ さらさらエアスルー Sサイズ)から採取した重合体粒子(水溶液重合体、中位粒子径:408μm)を被コーティング体として用いたこと、また化合物Aであるエチレン-アクリル酸ナトリウム共重合体の25%水分散エマルジョン(住友精化株式会社、ザイクセンN)200.0g、及び化合物Bであるポリエチレングリコール(東京化成工業株式会社、PEG6000)5.0gをイオン交換水295.0gで希釈し、コーティング材Hを調製した。コーティング材Aの代わりにコーティング材Hを用いたこと以外は、実施例1と同様に作製し、被覆樹脂粒子50.0gを得た。おむつから採取した重合体粒子の保水量は31g/gであった。
[実施例9]
<化合物Aの作製>
 縦27cm、横38cm、深さ7cmのプラスチックバットに水と氷を加え、3℃の氷浴を作製した。この氷浴内に内容積1Lのガラス製ビーカーを置き、イオン交換水258.3gを加えた。氷浴をマグネチックスターラーの上に設置し、ビーカー内にスターラーチップを加え、攪拌した。
 48%水酸化カリウム溶液(関東化学株式会社)27.6gをビーカー少しずつ加え、水酸化カリウム水溶液を作製した。
 還流冷却器、温度計、及び、撹拌機(翼径5cmの4枚傾斜パドル翼を有する撹拌翼)を備えた内径11cm、内容積2Lの丸底円筒型セパラブルフラスコを準備した。このフラスコに、エチレン-アクリル酸共重合体(SKglobalchemical:プリマコール5980i)を100g加えた。その後、前述の水酸化カリウム水溶液を全量加えた。その後、水酸化カリウム水溶液の作製に使用したビーカーを50.0gのイオン交換水で洗浄し、洗浄水をセパラブルフラスコに加え、反応液を得た。
 撹拌機の回転数500rpmで反応液を攪拌しながら、103℃の油浴に浸漬し、内温を95℃まで上昇させた。その後、内温が95~97℃となるように油浴の温度を適宜調整しながら、4時間保持した。
 その後、セパラブルフラスコを油浴から引き上げ、内温が35℃となるまで室温で放冷した。内温が35℃以下となったことを確認し、反応液を目開き108μmのナイロンメッシュでろ過し、ろ液として化合物Aであるエチレン-アクリル酸カリウム共重合体のエマルジョンを390.3g得た。
<コーティングの工程>
 化合物Aを含む上述のエマルジョン200g、及び化合物Bであるポリエチレングリコール(東京化成工業株式会社、PEG6000)5.0gをイオン交換水295.0gで希釈し、コーティング材Iを調製した。コーティング材Aの代わりにコーティング材Iを用いたこと、また熱風乾燥機の設定温度を100℃に変更したこと以外は、実施例1と同様に作製し、被覆樹脂粒子50.0gを得た。
[実施例10]
 水酸化カリウム水溶液を水酸化ナトリウム(富士フイルム和光純薬株式会社)7.9gとイオン交換水259.5gから調製した水酸化ナトリウム水溶液に変更し、エチレン-アクリル酸共重合体をエチレン-メタクリル酸共重合体(三井・ダウポリケミカル株式会社:ニュクレル2050H)100gに変更したこと以外は、実施例9と同様に行うことにより、化合物Aであるエチレン-メタククリル酸ナトリウム共重合体のエマルジョンを333.1g得た。
 化合物Aを含む上述のエマルジョン200g、及び化合物Bであるポリエチレングリコール(東京化成工業株式会社、PEG6000)5.0gをイオン交換水295.0gで希釈し、コーティング材Jを調製した。コーティング材Aの代わりにコーティング材Jを用いたこと、また熱風乾燥機の設定温度を100℃に変更したこと以外は、実施例1と同様に作製し、被覆樹脂粒子50.0gを得た。
[実施例11]
 化合物Aであるアクリル酸-塩化ビニル共重合体の23.3%水分散エマルジョン(日信化学工業株式会社、ビニブラン715)214.5g及び化合物Bであるポリエチレングリコール(東京化成工業株式会社、PEG6000)5.0gをイオン交換水280.5gで希釈し、コーティング材Kを調製した。コーティング材Aの代わりにコーティング材Kを用いたこと、また、熱風乾燥機での加熱を行わなかったこと以外は、実施例1と同様に作製し、被覆樹脂粒子507.9gを得た。
[実施例12]
 化合物Aであるポリ塩化ビニル(富士フイルム和光純薬株式会社)25.0g、及び化合物Bであるポリエチレングリコール(東京化成工業株式会社、PEG6000)2.5g、溶媒としてテトラヒドロフラン472.5gを混合し、コーティング材Lを調製した。コーティング材Aの代わりにコーティング材Lを用いたこと、また、コーティングの際の流動層造粒機の送風温度を40℃としたこと、熱風乾燥機での加熱を行わなかったこと以外は、実施例1と同様に作製し、被覆樹脂粒子506.3gを得た。
[実施例13]
 化合物Aであるポリスチレン(富士フイルム和光純薬株式会社)50.0g、及び化合物Bであるポリエチレングリコール(東京化成工業株式会社、PEG6000)5.0g、溶媒としてテトラヒドロフラン945.0gを混合し、コーティング材Mを調製した。コーティング材Aの代わりにコーティング材Mを用いたこと、また、コーティングの際の流動層造粒機の送風温度を40℃としたこと、熱風乾燥機での加熱を行わなかったこと以外は、実施例1と同様に作製し、被覆樹脂粒子509.3gを得た。
[実施例14]
 化合物Aであるエチレン-アクリル酸ナトリウム共重合体の25%水分散エマルジョン(住友精化株式会社、ザイクセンN)200.0g、及び化合物Bである塩化ナトリウム(ナカライテスク株式会社)5.0gをイオン交換水295.0gで希釈し、コーティング材Nを調製した。コーティング材Aの代わりにコーティング材Nを用いたこと以外は、実施例1と同様に作製し、被覆樹脂粒子50.0gを得た。
[実施例15]
 化合物Aであるエチレン-アクリル酸ナトリウム共重合体の25%水分散エマルジョン(住友精化株式会社、ザイクセンN)200.0g、及び化合物BであるD-フルクトース(ナカライテスク株式会社)5.0gをイオン交換水295.0gで希釈し、コーティング材Oを調製した。コーティング材Aの代わりにコーティング材Oを用いたこと以外は、実施例1と同様に作製し、被覆樹脂粒子50.0gを得た。
[比較例2]
 化合物Aであるエチレン-アクリル酸ナトリウム共重合体の25%水分散エマルジョン(住友精化株式会社、ザイクセンN)200.0gをイオン交換水300.0gで希釈し、コーティング材Pを調製した。コーティング材Aの代わりにコーティング材Pを用いたこと以外は、実施例1と同様に作製し、被覆樹脂粒子50.0gを得た。
[比較例3]
 化合物Aであるポリ塩化ビニル(富士フイルム和光純薬株式会社)25.0g、及び溶媒としてテトラヒドロフラン475.0gを加えて混合し、コーティング材Qを調製した。コーティング材Aの代わりにコーティング材Qを用いたこと、またコーティングの際の流動層造粒機の送風温度を40℃としたこと、また熱風乾燥機での加熱を行わなかったこと以外は、実施例1と同様に作製し、被覆樹脂粒子504.6gを得た。
[比較例4]
 化合物Aであるポリスチレン(富士フイルム和光純薬株式会社)50.0g、及び溶媒としてテトラヒドロフラン950.0gを加えて混合し、コーティング材Rを調製した。コーティング材Aの代わりにコーティング材Rを用いたこと、またコーティングの際の流動層造粒機の送風温度を40℃としたこと、また熱風乾燥機での加熱を行わなかったこと以外は、実施例1と同様に作製し、被覆樹脂粒子506.6gを得た。
[比較例5]
 化合物Bであるポリエチレングリコール(東京化成工業株式会社、PEG6000)50.0gをイオン交換水450.0gで希釈し、コーティング材Sを調製した。コーティング材Aの代わりにコーティング材Sを用いたこと、また熱風乾燥機での加熱を行わなかったこと以外は、実施例1と同様に作製し、被覆樹脂粒子505.5gを得た。
[実施例16]
 化合物Aであるエチレン-アクリル酸ナトリウム共重合体の25%水分散エマルジョン(住友精化株式会社、ザイクセンN)200.0g、及び化合物Bであるポリエチレングリコール(東京化成工業株式会社、PEG6000)12.5gをイオン交換水287.5gで希釈し、コーティング材Tを調製した。コーティング材Aの代わりにコーティング材Tを用いたこと以外は、実施例1と同様に作製し、被覆樹脂粒子50.0gを得た。
[実施例17]
 縦27cm、横38cm、深さ7cmのプラスチックバットに水と氷を加え、3℃の氷浴を作製した。この氷浴内に内容積1Lのガラス製ビーカーを置き、イオン交換水261.31gを加えた。氷浴をマグネチックスターラーの上に設置し、ビーカー内にスターラーチップを加え、攪拌した。
 水酸化ナトリウム(顆粒)(ナカライテスク株式会社)9.44gをビーカー少しずつ加え、水酸化ナトリウム水溶液を作製した。
 還流冷却器、温度計、及び、撹拌機(翼径5cmの4枚傾斜パドル翼を有する撹拌翼)を備えた内径11cm、内容積2Lの丸底円筒型セパラブルフラスコを準備した。このフラスコに、エチレン-アクリル酸共重合体(SKglobal chemical:プリマコール5980i)を100g加えた。その後、前述の水酸化ナトリウム水溶液を全量加えた。その後、水酸化ナトリウム水溶液の作製に使用したビーカーを50.0gのイオン交換水で洗浄し、洗浄水をセパラブルフラスコに加え、反応液を得た。
 撹拌機の回転数500rpmで反応液を攪拌しながら、103℃の油浴に浸漬し、内温を95℃まで上昇させた。その後、内温が95~97℃となるように油浴の温度を適宜調整しながら、4時間保持した。
 その後、セパラブルフラスコを油浴から引き上げ、内温が35℃となるまで室温で放冷した。内温が35℃以下となったことを確認し、反応液を目開き108μmのナイロンメッシュでろ過し、ろ液として中和度85%のエチレン-アクリル酸ナトリウム共重合体の25%水分散エマルジョンを得た。
 内容積1Lのポリビーカーに化合物Aとして上記で作製した中和度85%のエチレン-アクリル酸ナトリウム共重合体の25%水分散エマルジョン200.0g、及び化合物Bであるポリエチレングリコール5.0gをイオン交換水295.0gで希釈し、コーティング材Uを調製した。コーティング材Aの代わりにコーティング材Uを用いたこと、また、100℃に設定した熱風乾燥機で加熱したこと以外は、実施例1と同様に作製し、被覆樹脂粒子50.0gを得た。
[実施例18]
 エマルジョン作製工程にて、氷浴内に内容積1Lのガラス製ビーカーを置き、イオン交換水897.41gを加えたこと、また、水酸化ナトリウム(顆粒)10.55gをビーカー少しずつ加え、水酸化ナトリウム水溶液を作製したこと、以外は実施例9と同様にしてエマルジョンを作製し、中和度95%のエチレン-アクリル酸ナトリウム共重合体の10%水分散エマルジョンを得た。
 その後、コーティング工程にて、内容積1Lのポリビーカーに化合物Aとして上記で作製した中和度95%のエチレン-アクリル酸ナトリウム共重合体の10%水分散エマルジョン500.0g、及び化合物Bであるポリエチレングリコール5.0gを混合し、コーティング材Vを調製した。コーティング材Aの代わりにコーティング材Vを用いたこと、また、100℃に設定した熱風乾燥機で加熱したこと以外は、実施例1と同様に作製し、被覆樹脂粒子50.0gを得た。
[実施例19]
 被覆がなされていない状態の吸水性樹脂粒子(1)を得る工程において、n-ヘプタンと水との共沸蒸留により、n-ヘプタンを還流しながら234gの水を系外へ抜き出したこと以外は比較例1と同様にして被覆がなされていない状態の吸水性樹脂粒子(3)を作製し、実施例5と同様に被覆の工程を行うことで、被覆樹脂粒子50.0gを得た。吸水性樹脂粒子(3)の保水量は、31g/gであった。
[実施例20]
 被覆がなされていない状態の吸水性樹脂粒子(1)を得る工程において、第1段目のモノマー水溶液を調製の際に、エチレングリコールジグリシジルエーテル(内部架橋剤)0.00534g(0.0306ミリモル)添加したこと以外は比較例1と同様にして被覆がなされていない状態の吸水性樹脂粒子(4)を作製し、実施例5と同様に被覆の工程を行うことで、被覆樹脂粒子50.0gを得た。吸水性樹脂粒子(4)の保水量は、48g/gであった。
2.吸収性物品の評価
 実施例1~14及び比較例1~5の評価用粒子を用いて作製された吸収体について浸透速度及び逆戻りを評価した。
(吸収体に用いる樹脂粒子の準備)
 比較例1で作製した吸水性樹脂粒子(2)を9.6g、実施例1~14及び比較例2~5で作製した被覆樹脂粒子2.4gの計12gを混合した粒子を吸収体で使用した。また比較例1の吸収体のみ比較例1で作製した吸水性樹脂粒子(2)を単独で12g使用した。
(吸収体の作製)
 上述の混合した評価用樹脂粒子12g及び解砕パルプ(Rayonier社製、商品名:Rayfloc)8.0gを空気抄造によって均一混合することにより、40cm×12cmの大きさの吸収体コアを作製した。次に、吸収体コアと同じ大きさの2枚のティッシュッペーパー(坪量:16g/m)で吸収体コアの上下を挟んだ状態で、全体に141kPaの荷重を30秒間加えてプレスすることにより吸収体(粒子含有量:60質量%)を作製した。
(吸収性物品の作製)
 上述の吸収体の上面に、吸収体と同じ大きさで、ポリエチレン製エアスルー型多孔質液体透過性シート(坪量:22g/m)を配置し、下面に吸収体と同じ大きさで、ポリエチレン製液体不透過性シート(坪量:22g/m)を配置して、吸収体を挟みつけることにより吸収性物品を得た。
(試験液の調製)
 内容積10Lの容器に、塩化ナトリウム100.0gと、塩化カルシウム二水和物3.0gと、塩化マグネシウム六水和物6.0gと、トリトンX-100(ポリオキシエチレン(10)オクチルフェニルエーテル、富士フィルム和光純薬株式会社製)1.0g及びイオン交換水99.0gの混合物と、イオン交換水9866.0gと、を入れた後、各成分を完全に溶解させた。次に、少量の青色1号で着色することにより試験液を調製した。
(浸透速度の評価)
 まず、水平の台上に吸収性物品を置いた。吸収性物品の中心部に、内径3cmの開口部を有する液投入用シリンダーを置き、上述の試験液80mLをそのシリンダー内に一度に投入し、吸収速度を測定した。同様の操作を30分間隔で計5回行い、5回の吸収速度の合計を浸透速度[秒]として得た。
(逆戻りの評価)
 上述のとおり試験液を5回投入した後、吸収性物品をそのままの状態で保持した。試験液投入終了から1時間経過後、予め質量(約75g)を測定しておいた10cm四方のろ紙を吸収性物品上の試験液投入位置付近に置いた。そして、重り(底面:10cm×10cm、質量:5.0kg(約0.7psi))をろ紙の上に載せて5分間の荷重後、ろ紙の質量を測定し、ろ紙の質量の増加量を逆戻り量[g]として得た。
(溶解分測定の評価)
化合物A(エマルジョン)
 化合物A100gを底寸法250×185(mm)のテフロン(登録商標)コーティングバットに入れアルミホイルを被せて蓋をした。アルミホイルに穿孔し、熱風乾燥機(ADVANTEC、FV―320)にて80℃で加熱して、製膜した。
 得られたポリマー膜をハサミで5mm角に断裁し、コーティング材料を得た。得られたコーティング材料を同様のテフロン(登録商標)コーティングバットに加え、アルミホイルを被せて蓋をした。アルミホイルに穿孔し、熱風乾燥機(ADVANTEC、FV―320)にて80℃で2時間加熱し、完全乾燥させた。
 200mLビーカーに入れた蒸留水100gを、25℃に調整し、600rpmで攪拌する。完全乾燥させたコーティング材料を分級し、目開き75μmの篩上に残ったコーティング材料5gを該ビーカーに入れ、1時間攪拌した後、34μmステンレス製金網を用いて吸引ろ過する。吸引ろ過して得られた液を、秤量済みの100mLビーカーに60g量りとり、140℃の熱風乾燥機(アドバンテック東洋株式会社、FV―320)で15時間乾燥させ、ろ過固形分質量(Wa)を測定する。以下の式により、溶解分を算出する。
 ろ液100gの場合の析出量(Wb)(g)=(Wa/60)×100
 溶解分(質量%)=(Wb/5)×100
化合物A(溶液)
 化合物Aを10g、テトラヒドロフラン200gを混合し、溶液を調製したこと、その後、40℃の熱風乾燥機で乾燥して製膜し、それ以降は、上述の化合物A(エマルジョン)と同様にして溶解分を測定した。
化合物B
 化合物Bを分級し、目開き75μmの篩上に残った化合物B5gを用いて、上述の化合物A(エマルジョン)と同様にして溶解分を測定した(製膜及び完全乾燥は行わなかった)。
(ラマン分光法による分析)
 図3は、実施例5の被覆樹脂粒子のラマン分光法による分析結果を示す写真である。図4は、実施例12の被覆樹脂粒子のラマン分光法による分析結果を示す写真である。図3~4のとおり、吸水性樹脂粒子の表面の少なくとも一部にコーティング層が形成されていることが確認された。図3に示すとおり、実施例5の被覆樹脂粒子は、P(E-AANa)を含む海部と、PEGを含む島部とから構成される海島構造を有していた。また、PEGを含む島部の少なくとも一部はコーティング層の厚み全体を構成していた。
 ラマン分光法による測定は以下に示す条件で実施した。
使用機器:RAMANtouch(ナノフォトン社製)
励起波長:532nm
測定スペクトル範囲:10-4000cm-1
イメージング:ライン照明
(吸水変曲点の測定)
 評価用粒子0.200gを精秤し、内径2.0cm、深さ8.0cmのアクリルシリンダーの底に層状に敷き詰め、上面が平坦な粒子層を形成した後、粒子層の高さH0を測定した。その後、25℃の生理食塩水20gをアクリルシリンダー上部から注ぎこんだ。生理食塩水を全量入れた時点から測定を開始し、30秒(0.5分)間隔での粒子層の高さHnを読み取り、下記式より30秒当たりの高さの変化量を算出し、最も変化量が大きくなった場合におけるH(n+1)の時間(分)を、吸水速度が急上昇するまでに要する時間(吸水変曲点)と定義した。なお、吸水中の粒子層の上面が平坦とならなかった場合は、最も高い部分の高さをHn又はH(n+1)とした。
  変化量(cm)=H(n+1)-Hn
(上記式において、nは生理食塩水を投入した後の粒子層の高さの測定回数を表す)
(評価結果)
 表1~2中、「P(E-AANa)」はエチレン-アクリル酸ナトリウム共重合体、「P(E-AAK)」はエチレン-アクリル酸カリウム共重合体、「P(E-MAANa)」はエチレン-メタクリル酸ナトリウム共重合体、「(AA-VC)」はアクリル酸-塩化ビニル共重合体、「PVC」はポリ塩化ビニル、「PS」はポリスチレンを示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 実施例の被覆樹脂粒子を吸収性物品に用いた場合に、吸液後の逆戻りが抑制されながら、浸透速度が向上することが示された。
 実施例2の結果と実施例3の結果との比較から、海部と島部との比率が同じ場合でも、コーティング材の使用量が多いほど、吸水変曲点が伸びることがわかる。
 実施例5の結果と実施例16の結果との比較から、海部に対する島部の比率が大きいほど、吸水変曲点が短くなることがわかる。
 実施例17の結果と実施例18の結果との比較から、海部の中和度が高い方が吸水変曲点が伸びることがわかる。中和度が高いほどエマルジョンが小粒子化して密なコーティング層ができるため、海部の中和度が高いことによって吸水変曲点が伸びると推測される。
 実施例5の結果と、実施例9の結果と、実施例10の結果の比較から、海部(エマルジョン樹脂)の組成変更でも、吸水変曲点を制御できることがわかる。特に、実施例5の結果と、実施例9の結果の比較からわかるように、対イオンの変更によっても吸水変曲点を変化させることができる。
 以上の結果から、(1)コーティング材の種類及び/又は使用量、(2)海部と島部との比率、並びに、(3)EAA等のカルボキシ基を含む重合体を海部に用いる場合は、海部の中和度によって吸水変曲点をコントロールできると言える。
 1,10a…被覆樹脂粒子、1a…吸水性樹脂粒子、1b…コーティング層、10…吸収体、10b…繊維層、20a,20b…コアラップ、30…液体透過性シート、40…液体不透過性シート、100…吸収性物品。

 

Claims (8)

  1.  吸水性樹脂粒子と、前記吸水性樹脂粒子の表面の少なくとも一部を被覆するコーティング層と、を有し、
     前記コーティング層が、化合物Aと、前記化合物Aよりも易水溶性の化合物Bと、を含む、被覆樹脂粒子。
  2.  25℃の水100gに対する前記化合物Aの溶解分が1質量%以下であり、
     25℃の水100gに対する前記化合物Bの溶解分が前記化合物Aの溶解分よりも20質量%以上高い、請求項1に記載の被覆樹脂粒子。
  3.  前記化合物Bの含有量が、前記化合物A及び前記化合物Bの合計100質量部に対して、1~85質量部である、請求項1又は2に記載の被覆樹脂粒子。
  4.  前記コーティング層が、前記化合物A及び前記化合物Bのうち一方の化合物を含む海部と、他方の化合物を含む島部とで構成される海島構造を有する、請求項1~3のいずれか一項に記載の被覆樹脂粒子。
  5.  前記海部が前記化合物Aを含み、
     前記島部が前記化合物Bを含む、請求項4に記載の被覆樹脂粒子。
  6.  請求項1~5のいずれか一項に記載の被覆樹脂粒子と、前記被覆樹脂粒子以外の吸水性を有する樹脂粒子と、を含む、吸水性樹脂組成物。
  7.  コーティング材によって吸水性樹脂粒子の少なくとも一部を被覆して、吸水性樹脂粒子の表面の少なくとも一部にコーティング層を形成する工程を備え、
     前記コーティング材が、溶液状態又はエマルジョン状態にある化合物Aと、前記化合物Aよりも易水溶性の化合物Bとを含む、被覆樹脂粒子を製造する方法。
  8.  前記化合物Bの含有量が、前記化合物Aの含有量100質量部に対して、1~500質量部である、請求項7に記載の被覆樹脂粒子を製造する方法。

     
PCT/JP2022/017872 2021-05-18 2022-04-14 被覆樹脂粒子及び被覆樹脂粒子を製造する方法 WO2022244566A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP22804480.6A EP4321558A1 (en) 2021-05-18 2022-04-14 Coated resin particles and method for producing coated resin particles
CN202280034603.6A CN117355560A (zh) 2021-05-18 2022-04-14 包覆树脂粒子及制造包覆树脂粒子的方法
KR1020237041290A KR20240009958A (ko) 2021-05-18 2022-04-14 피복 수지 입자 및 피복 수지 입자를 제조하는 방법
JP2023522333A JPWO2022244566A1 (ja) 2021-05-18 2022-04-14

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021083788 2021-05-18
JP2021-083788 2021-05-18
JP2021205790 2021-12-20
JP2021-205790 2021-12-20

Publications (1)

Publication Number Publication Date
WO2022244566A1 true WO2022244566A1 (ja) 2022-11-24

Family

ID=84141270

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/017872 WO2022244566A1 (ja) 2021-05-18 2022-04-14 被覆樹脂粒子及び被覆樹脂粒子を製造する方法

Country Status (4)

Country Link
EP (1) EP4321558A1 (ja)
JP (1) JPWO2022244566A1 (ja)
KR (1) KR20240009958A (ja)
WO (1) WO2022244566A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56159232A (en) * 1980-05-12 1981-12-08 Kuraray Co Ltd Powdery high water-absorption resin for surface coating
JPS6433149A (en) * 1987-07-29 1989-02-03 Nippon Synthetic Chem Ind Highly water-absorptive resin composition
JPH02242858A (ja) * 1989-03-16 1990-09-27 Sanyo Chem Ind Ltd 吸水剤およびその製造方法
JP2002501088A (ja) * 1998-01-20 2002-01-15 ビーエーエスエフ アクチェンゲゼルシャフト 被膜に包まれたヒドロゲル
JP2007244442A (ja) * 2006-03-14 2007-09-27 Kao Corp 吸収性物品
JP2011511136A (ja) * 2008-01-30 2011-04-07 エボニック ストックハウゼン,インコーポレイティド トリガー組成物を有する高吸収性ポリマー組成物
JP2014046020A (ja) 2012-08-31 2014-03-17 Livedo Corporation 吸収体、および、これを用いた吸収性物品
WO2014119553A1 (ja) * 2013-01-29 2014-08-07 株式会社日本触媒 吸水性樹脂材料及びその製造方法
WO2021117786A1 (ja) * 2019-12-13 2021-06-17 住友精化株式会社 被覆樹脂粒子及び被覆樹脂粒子を製造する方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56159232A (en) * 1980-05-12 1981-12-08 Kuraray Co Ltd Powdery high water-absorption resin for surface coating
JPS6433149A (en) * 1987-07-29 1989-02-03 Nippon Synthetic Chem Ind Highly water-absorptive resin composition
JPH02242858A (ja) * 1989-03-16 1990-09-27 Sanyo Chem Ind Ltd 吸水剤およびその製造方法
JP2002501088A (ja) * 1998-01-20 2002-01-15 ビーエーエスエフ アクチェンゲゼルシャフト 被膜に包まれたヒドロゲル
JP2007244442A (ja) * 2006-03-14 2007-09-27 Kao Corp 吸収性物品
JP2011511136A (ja) * 2008-01-30 2011-04-07 エボニック ストックハウゼン,インコーポレイティド トリガー組成物を有する高吸収性ポリマー組成物
JP2014046020A (ja) 2012-08-31 2014-03-17 Livedo Corporation 吸収体、および、これを用いた吸収性物品
WO2014119553A1 (ja) * 2013-01-29 2014-08-07 株式会社日本触媒 吸水性樹脂材料及びその製造方法
WO2021117786A1 (ja) * 2019-12-13 2021-06-17 住友精化株式会社 被覆樹脂粒子及び被覆樹脂粒子を製造する方法
WO2021117782A1 (ja) * 2019-12-13 2021-06-17 住友精化株式会社 被覆樹脂粒子及び被覆樹脂粒子を製造する方法

Also Published As

Publication number Publication date
EP4321558A1 (en) 2024-02-14
KR20240009958A (ko) 2024-01-23
JPWO2022244566A1 (ja) 2022-11-24

Similar Documents

Publication Publication Date Title
JP7291622B2 (ja) 吸水性樹脂粒子
KR102577371B1 (ko) 수성 액체 흡수성 수지 입자의 제조 방법, 수성 액체 흡수성 수지 입자, 흡수체 및 흡수성 물품
CA2781165C (en) Process for production of water-absorbing resin particles, water-absorbing resin particles, water-stopping material, and absorbent article
CA2843678C (en) Water absorbing resin particles, method for manufacturing water absorbing resin particles, absorption body, absorptive article, and water-sealing material
TWI393726B (zh) 經熱塑性塑料塗佈之超吸收性聚合物組成物
KR101782188B1 (ko) 초박형 유체-흡수성 코어
EP3896096A1 (en) Water absorbent resin particles
CN114787245A (zh) 吸水性树脂粒子及吸收体
WO2022244566A1 (ja) 被覆樹脂粒子及び被覆樹脂粒子を製造する方法
EP3896095A1 (en) Water-absorbent resin particles, absorbent body, and absorbent article
US20220055014A1 (en) Water absorbent resin particles, absorbent, absorbent article and liquid suction power measurement method
JP7120739B2 (ja) 吸収性樹脂組成物粒子及びその製造方法
JP7291686B2 (ja) 吸水性樹脂粒子及びその製造方法
US20220219140A1 (en) Water-absorbent resin particles
JP5067919B2 (ja) 吸収性複合体及びその製造方法
WO2022244567A1 (ja) 吸水性樹脂粒子、吸収体及び吸収性物品
WO2023119798A1 (ja) 被覆樹脂粒子、吸水性樹脂組成物及び吸収体
CN117355560A (zh) 包覆树脂粒子及制造包覆树脂粒子的方法
WO2023100479A1 (ja) 吸水性樹脂粒子及び吸収体
WO2023100478A1 (ja) 被覆樹脂粒子の製造方法及び被覆樹脂粒子
JP2018016750A (ja) 吸水性樹脂粒子及びその製造方法
CN113544162A (zh) 吸收体、吸收性物品及渗透速度的调节方法
WO2023189672A1 (ja) 吸水性樹脂粒子及び吸収性物品
WO2023176644A1 (ja) 吸水性樹脂粒子及び吸収性物品
JP7453918B2 (ja) 吸水性樹脂粒子およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22804480

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023522333

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 2022804480

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2301007490

Country of ref document: TH

ENP Entry into the national phase

Ref document number: 2022804480

Country of ref document: EP

Effective date: 20231109

ENP Entry into the national phase

Ref document number: 20237041290

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE