WO2023119722A1 - 調湿材 - Google Patents

調湿材 Download PDF

Info

Publication number
WO2023119722A1
WO2023119722A1 PCT/JP2022/031025 JP2022031025W WO2023119722A1 WO 2023119722 A1 WO2023119722 A1 WO 2023119722A1 JP 2022031025 W JP2022031025 W JP 2022031025W WO 2023119722 A1 WO2023119722 A1 WO 2023119722A1
Authority
WO
WIPO (PCT)
Prior art keywords
humidity
conditioning
humidity conditioning
moisture
water
Prior art date
Application number
PCT/JP2022/031025
Other languages
English (en)
French (fr)
Inventor
勇佑 清水
豪 鎌田
勝一 香村
奨 越智
哲 本並
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2023119722A1 publication Critical patent/WO2023119722A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds

Definitions

  • the present disclosure relates to humidity control materials.
  • This application claims priority based on Japanese Patent Application No. 2021-208880 filed in Japan on December 23, 2021, the content of which is incorporated herein.
  • a humidity conditioning material has a humidity conditioning structure that absorbs or releases moisture.
  • a humidity conditioning structure that absorbs or releases moisture.
  • Patent Document 1 discloses a humidity conditioner made of a porous material.
  • the humidity control agent is formed by filling and accumulating nanometer-order fine particles without impairing the voids between the particles, thereby creating voids having a broad pore distribution with a pore radius of 1 nm to 10 nm between the fine particles. It has a specific porous structure with pores (Paragraph 0017).
  • the container acts as a resistance that prevents moisture from approaching the humidity control structure, and the responsiveness of the humidity control material to humidity decreases.
  • An object of one aspect of the present disclosure is, for example, to provide a humidity conditioning material that has high responsiveness to humidity and is capable of suppressing a deviation in the regulated humidity over a long period of time.
  • a humidity conditioning material includes a humidity conditioning sheet having a porous body including a first humidity conditioning structure, a second humidity conditioning structure, and a structure, wherein the humidity conditioning The sheet and the structure are in contact with each other and the volume of the second moisture management structure is greater than the volume of the first moisture management structure.
  • FIG. 1 is a cross-sectional view schematically illustrating the humidity conditioning material of the first embodiment
  • FIG. Humidity Conditioning Material of First Embodiment, Humidity Conditioning Sheet and Second Humidity Conditioning Structure Provided in Humidity Conditioning Material, and Prototype of First Humidity Conditioning Structure and Porous Body Provided in Humidity Conditioning Sheet is an image of FIG. 4 is a cross-sectional view schematically explaining the mechanism of moisture absorption performed by the humidity conditioning material of the first embodiment
  • FIG. 4 is a cross-sectional view schematically explaining the mechanism of moisture absorption performed by the humidity conditioning material of the first embodiment
  • FIG. 4 is a cross-sectional view schematically explaining the mechanism of moisture release performed by the humidity conditioning material of the first embodiment
  • FIG. 4 is a cross-sectional view schematically explaining the mechanism of moisture release performed by the humidity conditioning material of the first embodiment;
  • FIG. 4 is a diagram schematically illustrating a first humidity conditioning structure provided in the humidity conditioning material of the first embodiment;
  • FIG. 4 is a diagram schematically illustrating a second humidity conditioning structure provided in the humidity conditioning material of the first embodiment;
  • 4 is an image of a prototype of a humidity conditioning sheet provided in the humidity conditioning material of the first embodiment.
  • FIG. 4 is a diagram schematically illustrating a method for manufacturing the humidity conditioning material of the first embodiment; 4 is an image showing a first example of the shape of each second humidity conditioning structure provided in the humidity conditioning material of the first embodiment.
  • FIG. 4 is an image showing a second example of the shape of each of the second humidity conditioning structures provided in the humidity conditioning material of the first embodiment.
  • FIG. 10 is a perspective view schematically illustrating a third example of the shape of each of the second humidity conditioning structures provided in the humidity conditioning material of the first embodiment;
  • FIG. 10 is a perspective view schematically illustrating a fourth example of the shape of each of the second humidity conditioning structures provided in the humidity conditioning material of the first embodiment;
  • 10 is an image showing a fifth example of the shape of each of the second humidity conditioning structures provided in the humidity conditioning material of the first embodiment;
  • FIG. 10 is a perspective view schematically illustrating a sixth example of the shape of each of the second humidity conditioning structures provided in the humidity conditioning material of the first embodiment;
  • FIG. 10 is a perspective view schematically illustrating a sixth example of the shape of each of the second humidity conditioning structures provided in the humidity conditioning material of the first embodiment;
  • FIG. 11 is a perspective view schematically illustrating a seventh example of the shape of each of the second humidity conditioning structures included in the humidity conditioning material of the first embodiment
  • 10 is an image showing a seventh example of the shape of each of the second humidity conditioning structures included in the humidity conditioning material of the first embodiment
  • FIG. 10 is a perspective view schematically illustrating an eighth example of the shape of each of the second humidity conditioning structures included in the humidity conditioning material of the first embodiment
  • FIG. 4 is a cross-sectional view schematically illustrating a humidity conditioner according to a modification of the first embodiment
  • FIG. 2 is a diagram comparing the appearance, humidity conditioning speed, and humidity conditioning amount of humidity conditioning materials of Comparative Example 2, Comparative Example 1, and Example 1; 5 is a graph showing the change over time of the moisture release amount of the humidity conditioning materials of Comparative Example 2, Comparative Example 1 and Example 1.
  • FIG. FIG. 4 is a cross-sectional view schematically illustrating a humidity conditioner according to a second embodiment;
  • FIG. 10 is a cross-sectional view schematically illustrating a humidity conditioner according to a third embodiment; 10 is an image of a prototype of the humidity conditioning material of the third embodiment.
  • FIG. 10 is a cross-sectional view schematically illustrating a humidity conditioner according to a fourth embodiment; 11 is an image of a prototype of the humidity conditioning material of the fourth embodiment.
  • FIG. 1 is a sectional view schematically illustrating the humidity conditioning material of the first embodiment.
  • FIG. 2 shows the humidity conditioning material of the first embodiment, the humidity conditioning sheet and the second humidity conditioning structure provided in the humidity conditioning material, and the first humidity conditioning structure and the porous structure provided in the humidity conditioning sheet. It is an image of a body prototype.
  • the humidity conditioner 1 can desorb moisture by heating at a relatively low temperature compared to a desiccant typified by A-type silica gel.
  • the humidity conditioner 1 can repeatedly absorb and release moisture. Therefore, in principle, the humidity conditioning material 1 should semipermanently maintain the humidity conditioning ability of absorbing moisture from the air around the humidity conditioning material 1 and releasing moisture to the air around the humidity conditioning material 1. can be done.
  • the equilibrium humidity of the humidity conditioning material 1 can be adjusted by the materials forming the humidity conditioning material 1 .
  • the humidity conditioning material 1 includes a humidity conditioning sheet 11A, a humidity conditioning sheet 11B as a structure, and a second humidity conditioning structure 12. As shown in FIGS. The structure is in contact with the humidity-conditioning sheet 11A and has a structure capable of holding the second humidity-conditioning structure 12 together with the humidity-conditioning sheet 11A.
  • the edges of the humidity-conditioning sheets 11A and 11B are adhered to each other.
  • the humidity-conditioning sheets 11A and 11B are in contact with each other to form a container 21 having a bag-like shape.
  • the housing body 21 houses the second humidity conditioning structure 12 .
  • Humidity-conditioning sheets 11A and 11B sandwich the second humidity-conditioning structure 12 therebetween.
  • the container 21 serving as the outer layer prevents the second humidity conditioning structure 12 arranged inside the outer layer from coming into direct contact with the humidity control object.
  • the containing body 21 can suppress liquid leakage from the humidity conditioning material 1 and improve the ease of handling of the humidity conditioning material 1 .
  • the humidity conditioning sheets 11A and 11B can perform humidity conditioning. Therefore, when the relative humidity of the air around the humidity-conditioning sheets 11A and 11B is high, the humidity-conditioning sheets 11A and 11B absorb moisture from the air around the humidity-conditioning sheets 11A and 11B. When the relative humidity of the air around 11B is low, moisture is released to the air around the humidity conditioning sheets 11A and 11B. Also, the humidity conditioning sheets 11A and 11B are porous bodies. Therefore, the humidity-conditioning sheets 11A and 11B allow the air around the humidity-conditioning sheets 11A and 11B to pass therethrough, and the moisture contained in the air around the humidity-conditioning sheets 11A and 11B to pass therethrough.
  • the second humidity conditioning structure 12 can perform humidity conditioning. Therefore, when the relative humidity of the air around the second humidity conditioning structure 12 is high, the second humidity conditioning structure 12 absorbs moisture from the air around the second humidity conditioning structure 12. , release moisture to the air around the second humidity control structure 12 when the relative humidity of the air around the second humidity control structure 12 is low.
  • the second humidity-conditioning structure 12 is arranged adjacent to the humidity-conditioning sheets 11A and 11B and inside the humidity-conditioning sheets 11A and 11B. This allows the second humidity conditioning structure 12 to absorb moisture released by the humidity conditioning sheets 11A and 11B. Also, since the volume of the second humidity conditioning structure 12 is larger than the volume of the first humidity conditioning structure 31 described below, the second humidity conditioning structure 12 has a large amount of humidity control. Furthermore, the humidity conditioning sheets 11A and 11B are capable of absorbing moisture released by the second humidity conditioning structure 12 .
  • each of the humidity conditioning sheets 11A and 11B includes a first humidity conditioning structure 31 and a porous body 32.
  • the first humidity conditioning structure 31 can perform humidity conditioning. Therefore, when the relative humidity of the air around the first humidity conditioning structure 31 is high, the first humidity conditioning structure 31 absorbs moisture from the air around the first humidity conditioning structure 31. , when the relative humidity of the air around the first humidity control structure 31 is low, the moisture is released to the air around the first humidity control structure 31 .
  • the first humidity control structure 31 is dispersed. This can prevent the first humidity conditioning structure 31 from agglomerating and reducing the area of the interface formed by the first humidity conditioning structure 31 and the surrounding air.
  • the porous body 32 includes the first humidity conditioning structure 31.
  • the particle diameter of the first humidity conditioning structure 31 is relatively smaller than the particle diameter of the second humidity conditioning structure 12 .
  • the average particle size of the first humidity control structure may be several ⁇ m to several mm
  • the average particle size of the second humidity control structure may be several mm to several tens of mm.
  • the first humidity conditioning structure 31 has a large surface area (specific surface area) in terms of unit weight. That is, the interface between the first humidity conditioning structure 31 and its surrounding air has a large area. Therefore, the first humidity conditioning structure 31 has a high humidity conditioning speed and high responsiveness to humidity.
  • the weight of the humidity conditioning component per unit weight becomes small. For this reason, the first humidity conditioning structure 31 has only a small amount of water that can be retained, has only a short humidity conditioning effect exertion time, and cannot suppress deviation in the adjusted humidity over a long period of time.
  • the second humidity-conditioning structure 12 has a particle size larger than that of the first humidity-conditioning structure 31 and a volume larger than that of the first humidity-conditioning structure 31 . This is because, while sacrificing air contactability, by filling the constituent particles without any gaps, a large amount of humidity-conditioning components can be obtained when compared with the same volume, so it has a feature that the amount of water that can be retained is large. As a result, the humidity control effect can be exhibited for a long time, and the shift in humidity control can be suppressed for a long period of time.
  • Each of the second humidity conditioning structures 12 has a larger volume than each of the first humidity conditioning structures 31 .
  • the humidity-conditioning sheets 11A and 11B having the first humidity-conditioning structure 31, which has high responsiveness to humidity but cannot suppress deviation of the regulated humidity over a long period of time, and A second humidity control structure 12 that does not have responsiveness but is capable of suppressing deviations in regulated humidity over a long period of time is combined.
  • the humidity control material 1 is provided which has high responsiveness to humidity and is capable of suppressing deviation in the regulated humidity over a long period of time.
  • FIGS. 3 and 4 are cross-sectional views schematically explaining the mechanism of moisture absorption performed by the humidity conditioning material of the first embodiment.
  • the humidity conditioning sheets 11A and 11B absorb moisture as shown in FIG. Along with this, the moisture in the humidity conditioning sheets 11A and 11B increases, and the equilibrium humidity of the humidity conditioning sheets 11A and 11B increases. As a result, the equilibrium humidity of the humidity conditioning sheets 11A and 11B and the second humidity conditioning structure 12 deviates.
  • moisture moves from the humidity-conditioning sheets 11A and 11B to the second humidity-conditioning structure 12 in order to eliminate the deviation of the equilibrium humidity that has occurred.
  • the moisture in the humidity conditioning sheets 11A and 11B is reduced, the equilibrium humidity of the humidity conditioning sheets 11A and 11B is lowered, and the equilibrium humidity of the humidity conditioning sheets 11A and 11B is restored.
  • the moisture in the second humidity conditioning structure 12 increases, and the equilibrium humidity of the second humidity conditioning structure 12 increases.
  • 5 and 6 are cross-sectional views schematically explaining the mechanism of moisture release performed by the humidity conditioning material of the first embodiment.
  • the humidity conditioning sheets 11A and 11B release moisture as shown in FIG.
  • the moisture in the humidity conditioning sheets 11A and 11B decreases, and the equilibrium humidity of the humidity conditioning sheets 11A and 11B decreases.
  • the equilibrium humidity of the humidity conditioning sheets 11A and 11B and the second humidity conditioning structure 12 deviates.
  • moisture moves from the second humidity-conditioning structure 12 to the humidity-conditioning sheets 11A and 11B in order to eliminate the deviation of the equilibrium humidity that has occurred.
  • the moisture in the humidity conditioning sheets 11A and 11B increases, the equilibrium humidity of the humidity conditioning sheets 11A and 11B rises, and the equilibrium humidity of the humidity conditioning sheets 11A and 11B is restored.
  • the moisture content in the second humidity conditioning structure 12 decreases, and the equilibrium humidity of the second humidity conditioning structure 12 decreases.
  • the humidity conditioning sheets 11A and 11B which are highly responsive to humidity, absorb and release moisture first, and then have a large amount of water that can be retained.
  • the second humidity control structure 12 absorbs and releases moisture.
  • the humidity conditioning sheets 11A and 11B having high responsiveness are brought close to the second humidity conditioning structure 12 having a large amount of water that can be retained, so that the humidity conditioning material 1 has high responsiveness to humidity. Granted.
  • FIG. 7 is a diagram schematically illustrating a first humidity conditioning structure provided in the humidity conditioning material of the first embodiment.
  • each of the first humidity conditioning structures 31 is a single particle and comprises a first water absorber 41 and a first humidity conditioning component 42 .
  • the first water absorber 41 is made of a first water absorber 51 .
  • the first humidity conditioning component 42 is present in the first water absorbing material 51 .
  • the first humidity conditioning component 42 absorbs or releases moisture.
  • the first humidity conditioning component 42 preferably contains a deliquescence component.
  • the first water absorbing material 51 has a diameter of several ⁇ m to several mm, for example.
  • the diameter of the first water absorbing material 51 increases due to the particle size effect. agglomeration becomes less likely to occur. This makes it difficult for the first water absorbent 51 to aggregate and reduce the humidity control speed. This effect is particularly noticeable when the first water absorbing material 51 absorbs moisture.
  • the first water absorbing material 51 can chemically or physically absorb the deliquescence component contained in the first humidity conditioning component 42 . As a result, it is possible to prevent the deliquesced component from detaching from the first water absorbing material 51 and water separation from the first water absorbing material 51 .
  • the first humidity conditioning component 42 is a humidity conditioning liquid
  • the first water absorbent 51 can be impregnated with the humidity conditioning liquid. 100 parts by weight of the first water absorbing material 51 is preferably impregnated with 1 part by weight or more and 1000 parts by weight or less of the humidity control liquid.
  • the interface between the first humidity conditioning component 42 and the surrounding air is reduced compared to the case where the humidity conditioning liquid is used alone. area can be increased. Thereby, the humidity conditioning speed of the first humidity conditioning structure 31 can be increased.
  • Fig. 8 is a diagram schematically illustrating a second humidity conditioning structure provided in the humidity conditioning material of the first embodiment.
  • each of the second humidity conditioning structures 12 is a single particle and comprises a second water absorbent 61 and a second humidity conditioning component 62 .
  • the second water absorber 61 is made of a second water absorber 71 .
  • the second humidity conditioning component 62 is present in the second water absorbing material 71 .
  • the second humidity conditioning component 62 absorbs or releases moisture.
  • the second humidity conditioning component 62 preferably contains a deliquescence component.
  • the second water absorbing material 71 has a diameter of, for example, several millimeters to several tens of millimeters.
  • aggregation of the second water absorbing material 71 occurs due to the particle size effect compared to when the second water absorbing material 71 has a diameter on the order of nanometers. become difficult. This makes it difficult for the second water absorbent 71 to aggregate and reduce the humidity control speed. This effect is particularly noticeable when the second water absorbing material 71 absorbs moisture.
  • the second water absorbing material 71 can chemically or physically absorb the deliquescence component contained in the second humidity conditioning component 62 . As a result, it is possible to prevent the deliquesced component from detaching from the second water absorbing material 71 and water separation from the second water absorbing material 71 .
  • the second humidity conditioning component 62 is a humidity conditioning liquid
  • the second water absorbent 71 can be impregnated with the humidity conditioning liquid. 100 parts by weight of the second water absorbing material 71 is desirably impregnated with 1 part by weight or more and 1000 parts by weight or less of the humidity control liquid.
  • the second humidity conditioning component 62 and the surrounding air are formed as compared with the case where the humidity conditioning liquid is used alone. It is possible to increase the area of the interface. Thereby, the humidity conditioning speed of the second humidity conditioning structure 12 can be increased.
  • Each water absorbing material of the first water absorbing material 51 and the second water absorbing material 71 contains a water absorbing resin.
  • Each water-absorbing material may contain a clay mineral instead of or in addition to the water-absorbing resin.
  • the water absorbent resin may be an ionic resin or a nonionic resin.
  • the ionic resin includes, for example, at least one selected from the group consisting of alkali metal salts of polyacrylic acid and starch-acrylate graft polymers.
  • Alkali metal salts of polyacrylic acid include, for example, sodium polyacrylate.
  • Sodium polyacrylate is preferred because it can absorb a large amount of moisture-conditioning ingredients.
  • the nonionic resin includes, for example, at least one selected from the group consisting of vinyl acetate copolymers, maleic anhydride copolymers, polyvinyl alcohols and polyalkylene oxides.
  • Clay minerals include, for example, at least one selected from the group consisting of silicate minerals and zeolites.
  • Silicate minerals include, for example, at least one selected from the group consisting of sepiolite, attapulgite, kaolinite pearlite and dolomite.
  • the first water absorbent material 51 and the second water absorbent material 71 may have the same composition, or may have different compositions.
  • Each humidity conditioning component of the first humidity conditioning component 42 and the second humidity conditioning component 62 is selected from the group consisting of deliquescent substances that absorb moisture in the air and deliquesce and polyhydric alcohols. at least one
  • Deliquescent substances include salts and water-soluble organic substances.
  • Specific examples of salts include sodium formate, potassium formate, sodium acetate, potassium acetate, lithium acetate, sodium lactate, potassium lactate, sodium benzoate, potassium benzoate, sodium propionate, potassium propionate, calcium chloride, chloride Lithium, magnesium chloride, calcium chloride, lithium chloride, potassium chloride, sodium chloride, zinc chloride, aluminum chloride, lithium bromide, calcium bromide, potassium bromide, sodium hydroxide, sodium pyrrolidonecarboxylate, potassium carbonate, calcium citrate , sodium citrate, potassium citrate, lithium citrate and the like. These salts can absorb or release a large amount of atmospheric moisture when deliquesced.
  • the deliquescent substance may contain only one of these salts, or may contain two or more of them.
  • carboxylates such as sodium formate, potassium formate, sodium acetate and potassium acetate are more preferable because they absorb and desorb a large amount of moisture per weight and rapidly absorb or desorb moisture at a certain humidity.
  • water-soluble organic substances include sugars such as sucrose, pullulan, glucose, xylol, fructose, mannitol and sorbitol, carboxylic acids such as citric acid, and amides such as urea.
  • Polyhydric alcohols include, for example, at least one selected from the group consisting of glycerin, propanediol, butanediol, pentanediol, trimethylolpropane, butanetriol, ethylene glycol, diethylene glycol, triethylene glycol and lactic acid, preferably , including polyhydric alcohols having 3 or more hydroxyl groups.
  • Polyhydric alcohols having 3 or more hydroxyl groups include, for example, glycerin.
  • Polyhydric alcohols may constitute dimers or polymers.
  • the first humidity conditioning component 42 and the second humidity conditioning component 62 may have the same composition or different compositions.
  • the relative humidity at which the first humidity conditioning structure 31 or the second humidity conditioning structure 12 absorbs and releases moisture is adjusted by changing the first humidity conditioning component 42 and the second humidity conditioning component 62, respectively. be able to.
  • the relative humidity at which the first humidity conditioning structure 31 or the second humidity conditioning structure 12 absorbs and releases moisture changes the salts contained in the first humidity conditioning component 42 and the second humidity conditioning component 62. By doing so, each can be adjusted.
  • FIG. 10 is a diagram schematically illustrating a method for manufacturing the humidity conditioning material of the first embodiment.
  • a method of manufacturing a humidity conditioning material having a second humidity conditioning structure inside the humidity conditioning sheet will be described with reference to FIG.
  • the humidity conditioning component and the first humidity conditioning structure are dispersed together with a heat-sealable binder or the like between the non-woven fabric sheets, and then the entire sheet is heat-pressed.
  • the humidity-conditioning sheet is folded and two overlapping edges are bonded by thermocompression.
  • the second humidity-conditioning structure is placed in a bag-shaped humidity-conditioning sheet with one side open, and the second humidity-conditioning structure is thermocompression bonded.
  • a binder that can be thermally bonded such as ethylene vinyl acetate or polyethylene, is sprayed on the bonding part and then thermocompression bonded, or silicone resin, vinyl acetate resin, acrylic resin, etc. may be adhered using an adhesive.
  • FIG. 11 is an image showing a first example of the shape of each of the second humidity conditioning structures provided in the humidity conditioning material of the first embodiment.
  • FIG. 12 is an image showing a second example of the shape of each of the second humidity conditioning structures provided in the humidity conditioning material of the first embodiment.
  • 13 is a perspective view schematically illustrating a third example of the shape of each of the second humidity conditioning structures provided in the humidity conditioning material of the first embodiment;
  • FIG. 14 is a perspective view schematically illustrating a fourth example of the shape of each of the second humidity conditioning structures provided in the humidity conditioning material of the first embodiment.
  • Each of the second humidity conditioning structures 12 is jelly-shaped and solid.
  • the shape of each of the second humidity conditioning structures 12 is arbitrary.
  • each of the second humidity conditioning structures 12 may have a spherical shape as shown in FIG. 11, or a cubic or rectangular parallelepiped shape as shown in FIG. Alternatively, it may have a triangular pyramidal shape as illustrated in FIG. 13, or a conical shape as illustrated in FIG.
  • the second humidity conditioning structure 12 When each of the second humidity conditioning structures 12 has a cubic, triangular pyramidal, or conical shape, the second humidity conditioning structure 12 has a spherical shape compared to the case where each of the second humidity conditioning structures 12 has a spherical shape. 2, the filling rate of the humidity conditioning structure 12 can be increased.
  • FIG. 15 is an image showing a fifth example of the shape of each of the second humidity conditioning structures provided in the humidity conditioning material of the first embodiment.
  • 16 is a perspective view schematically illustrating a sixth example of the shape of each of the second humidity conditioning structures provided in the humidity conditioning material of the first embodiment;
  • Each of the second humidity conditioning structures 12 may have an uneven surface as shown in FIG. 15, or may have a porous structure as shown in FIG. .
  • each of the second humidity conditioning structures 12 has pores 101 formed therein.
  • each of the second humidity conditioning structures 12 When the surface of each of the second humidity conditioning structures 12 has unevenness and when each of the second humidity conditioning structures 12 has a porous structure, each of the second humidity conditioning structures 12 and its The area of the interface with the surrounding air increases. Therefore, the responsiveness of each of the second humidity control structures 12 to humidity is enhanced.
  • FIG. 17 is a perspective view schematically illustrating a seventh example of the shape of each of the second humidity conditioning structures provided in the humidity conditioning material of the first embodiment.
  • FIG. 18 is an image showing a seventh example of the shape of each of the second humidity conditioning structures provided in the humidity conditioning material of the first embodiment.
  • 19 is a perspective view schematically illustrating an eighth example of the shape of each of the second humidity conditioning structures provided in the humidity conditioning material of the first embodiment;
  • Each of the second humidity conditioning structures 12 may be capsule-shaped, as illustrated in FIGS. 17, 18 and 19 .
  • each of the second humidity control structures 12 comprises a core 111 and a shell 112 .
  • the core 111 includes the second humidity conditioning liquid 91 and the second water absorbent material 71 included in each of the second humidity conditioning structures 12 .
  • the second water absorbing material 71 is swollen with the second humidity conditioning liquid 91 .
  • the shell 112 is arranged on the surface of the core 111 .
  • the shell 112 is made of, for example, a material different from that of the core 111 .
  • Shell 112 is made of a material that absorbs or releases moisture. Materials that absorb or release moisture include, for example, polymeric materials.
  • the shell 112 is made of resin, it is also called a resin shell or the like.
  • each of the second humidity conditioning structures 12 is capsule-shaped, leakage of the second humidity conditioning liquid 91 can be suppressed. Also, by adjusting the thickness of the shell 112, the sustained release property can be controlled.
  • Each surface of the second humidity conditioning structure 12, that is, the surface of the shell 112 may have no unevenness, or each surface of the second humidity conditioning structure 12 shown in FIG. 15 has unevenness. You may have unevenness
  • the shell 112 may have a porous structure, as illustrated in FIG. When shell 112 has a porous structure, each second humidity control structure 12 is more responsive to humidity.
  • FIG. 20 is a cross-sectional view schematically illustrating a humidity conditioner according to a modification of the first embodiment.
  • FIG. 20 illustrates a state in which a plurality of containers 21 overlap not only in the vertical direction of the paper surface but also in the direction perpendicular to the paper surface.
  • Each container 21 has a round bar shape with an internal space for containing the second humidity control structure 12 .
  • the number of humidity conditioning sheets 11A and 11B provided in the humidity conditioning material 1M is greater than the number of humidity conditioning sheets 11A and 11B provided in the humidity conditioning material 1M.
  • the amount of the second humidity conditioning structures 12 provided in the humidity conditioning material 1M is greater than the amount of the second humidity conditioning structures 12 provided in the humidity conditioning material 1M. Therefore, the amount of moisture that the humidity conditioning material 1M can absorb or release is greater than the amount of moisture that the humidity conditioning material 1 can absorb or release.
  • the humidity conditioning sheets 11A and 11B of the humidity conditioning sheets 11A and 11B have a larger air contact area than the humidity conditioning material 1 having a larger size, so that the humidity conditioning speed can be increased.
  • FIG. 21 is a diagram comparing the external appearance, humidity conditioning speed, and humidity conditioning amount of the humidity conditioning materials of Comparative Example 2, Comparative Example 1, and Example 1.
  • FIG. 22 is a graph showing temporal changes in the amount of moisture released by the humidity conditioners of Comparative Example 2, Comparative Example 1, and Example 1.
  • the graph in FIG. 22 shows the change in the amount of released moisture over time obtained from the change in the weight of the humidity control material with an equilibrium humidity of 90% RH when it is left in an environment of 23° C. and 45% RH. indicates
  • the humidity conditioning material of Comparative Example 2 is the humidity conditioning sheet 11A or 11B and has a mass of 12 g.
  • the humidity conditioning material of Comparative Example 1 consists of a container, a lid, and a second humidity conditioning structure 12.
  • the edges of the container and lid are thermo-sealed.
  • a second humidity control structure 12 is surrounded by a container and a lid.
  • the mass of the second humidity conditioning structure 12 is 20 g.
  • the humidity conditioning material of Example 1 is the humidity conditioning material 1 of the first embodiment.
  • the mass of the humidity-conditioning sheets 11A and 11B is 12 g.
  • the mass of the second humidity conditioning structure 12 is 20 g.
  • the slope of the line indicating the time change of the moisture release amount indicates the moisture release rate.
  • a high moisture release rate means that the amount of moisture released by the humidity conditioner per unit time is large, and the air around the humidity conditioner can be quickly conditioned.
  • the moisture release rate of the humidity conditioner of Comparative Example 2 is higher than that of the humidity conditioner of Comparative Example 1, and the moisture release rate of the humidity conditioner of Example 1 is higher than that of the humidity conditioner of Comparative Example 2. It can be seen that it is higher than that of wet wood. Therefore, as shown in FIG. 21, the humidity conditioning speed of the humidity conditioning material of Comparative Example 1 is low, the humidity conditioning speed of the humidity conditioning material of Comparative Example 2 is high, and the humidity conditioning speed of the humidity conditioning material of Example 1 is high. Velocity is extremely high.
  • the moisture release amount of the humidity conditioning material of Comparative Example 2 is larger than that of the humidity conditioning material of Comparative Example 1, and the moisture releasing amount of the humidity conditioning material of Example 1 is greater than that of Comparative Example 2. It can be understood that it is larger than that of the humidity control material. Therefore, as shown in FIG. 21, the humidity conditioning amount of the humidity conditioning material of Comparative Example 1 was small, the humidity conditioning amount of the humidity conditioning material of Comparative Example 2 was normal, and the humidity conditioning amount of the humidity conditioning material of Example 1 was normal. The quantity is extremely large.
  • the moisture release rate of the humidity conditioner of Example 1 is higher than the sum of the moisture release rate of the humidity conditioner of Comparative Example 1 and the moisture release rate of the humidity conditioner of Comparative Example 2.
  • the moisture release amount of the humidity conditioner of Example 1 is greater than the sum of the moisture release amount of the humidity conditioner of Comparative Example 1 and the moisture release amount of the humidity conditioner of Comparative Example 2. This is higher when the second humidity-conditioning structure 12 is adjacent to the humidity-conditioning sheets 11A and 11B than when the second humidity-conditioning structure 12 is not adjacent to the humidity-conditioning sheets 11A and 11B. It means that a high humidity conditioning speed and a large amount of humidity conditioning can be obtained.
  • the moisture release rate of the humidity conditioner of Example 1 is maintained high even after 120 to 180 minutes have passed since the moisture release started. .
  • the humidity conditioning material of Example 1 can suppress deviation in adjusted humidity over a long period of time.
  • FIG. 23 is a cross-sectional view schematically illustrating the humidity conditioning material of the second embodiment.
  • Humidity-conditioning sheets 11A and 11B include two humidity-conditioning sheets that sandwich the second humidity-conditioning structure 12 .
  • the number of humidity conditioning sheets 11A and 11B provided in the humidity conditioning material 2 is greater than the number of humidity conditioning sheets 11A and 11B provided in the humidity conditioning material 1. Therefore, the amount of moisture that the humidity conditioner 2 can absorb or release is greater than the amount of moisture that the humidity conditioner 1 can absorb or release.
  • FIG. 24 is a cross-sectional view schematically illustrating the humidity conditioning material of the third embodiment.
  • FIG. 25 is an image of a prototype of the humidity conditioning material of the third embodiment.
  • the container 21 includes a humidity conditioning sheet 11A and a container 121 as a structure.
  • the humidity-conditioning sheet 11A closes the opening of the container 121 .
  • the container 121 is transparent.
  • the container 121 is a polypropylene (PP) container, a blister pack, or the like.
  • the container 121 accommodates the second humidity conditioning structure 12 .
  • the accommodated second humidity conditioning structure 12 is surrounded by the humidity conditioning sheet 11A and the container 121 .
  • the container 121 which is a transparent body, is part of the container 21 that houses the second humidity control structure 12, the size, state, etc. of the second humidity control structure 12 can be seen from the outside of the humidity control material 4. Changes can be easily visually recognized. Thereby, the equilibrium humidity of the second humidity control structure 12 can be estimated.
  • FIG. 26 is a cross-sectional view schematically illustrating the humidity conditioning material of the fourth embodiment.
  • FIG. 27 is an image of a prototype of the humidity conditioning material of the fourth embodiment.
  • the container 21 includes the humidity conditioning sheet 11A and the transparent film 14 as the structure.
  • Transparent film 14 is a moisture impermeable material.
  • the edges of the humidity-conditioning sheet 11A and the transparent film 14 are heat-sealed. As a result, the humidity-conditioning sheet 11A and the transparent film 14 form a container 21 having a bag-like shape.
  • the size, state, etc. of the second humidity control structure 12 can be seen from the outside of the humidity control material 5 . change can be easily visually recognized. Thereby, the equilibrium humidity of the second humidity control structure 12 can be estimated.
  • the present disclosure is not limited to the above embodiments, but has substantially the same configuration, the same effect, or the same purpose as the configuration shown in the above embodiment. can be replaced with

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Drying Of Gases (AREA)

Abstract

調湿材は、第一の調湿構造体を含む多孔質体を備える調湿シートと、第二の調湿構造体と、構造体と、を備え、前記調湿シート及び前記構造体は、互いに接触しており、前記第二の調湿構造体の体積は、前記第一の調湿構造体の体積より大きい。

Description

調湿材
 本開示は、調湿材に関する。本願は、2021年12月23日に、日本に出願された特願2021-208880号に基づく優先権を主張するものであり、その内容をここに援用する。
 調湿材は、水分を吸収又は放出する調湿構造体を備える。容器、不織布等を備える収容体に調湿構造体を収容することにより、調湿材からの液漏れを抑制することができ、調湿材の扱いやすさを向上することができる。
 特許文献1は、多孔質材料からなる調湿剤を開示する。調湿剤は、ナノメートルオーダーの微粒子を、その粒子間の空隙を損なうことなく充填、集積させることにより、該微粒子間に、細孔半径1nmから10nmの範囲にブロードな細孔分布を有する空孔を形成した特定の多孔質構造を持つ(段落0017)。
特開2006-327855号公報
 収容体に調湿構造体が収容された場合は、収容体が調湿構造体への水分の接近を妨げる抵抗となり、湿度に対する調湿材の応答性が低くなる。
 本開示は、この問題に鑑みてなされた。本開示の一態様は、例えば、湿度に対して高い応答性を有し、調整湿度ずれを長時間に渡って抑制することができる調湿材を提供することを目的とする。
 本開示の一態様の調湿材は、第第一の調湿構造体を含む多孔質体を備える調湿シートと、第二の調湿構造体と、構造体と、を備え、前記調湿シート及び前記構造体は、互いに接触しており、前記第二の調湿構造体の体積は、前記第一の調湿構造体の体積より大きい。
第1実施形態の調湿材を模式的に図示する断面図である。 第1実施形態の調湿材、当該調湿材に備えられる調湿シート及び第二の調湿構造体、並びに当該調湿シートに備えられる第一の調湿構造体及び多孔質体の試作品の画像である。 第1実施形態の調湿材により行われる吸湿のメカニズムを模式的に説明する断面図である。 第1実施形態の調湿材により行われる吸湿のメカニズムを模式的に説明する断面図である。 第1実施形態の調湿材により行われる放湿のメカニズムを模式的に説明する断面図である。 第1実施形態の調湿材により行われる放湿のメカニズムを模式的に説明する断面図である。 第1実施形態の調湿材に備えられる第一の調湿構造体を模式的に図示する図である。 第1実施形態の調湿材に備えられる第二の調湿構造体を模式的に図示する図である。 第1実施形態の調湿材に備えられる調湿シートの試作品の画像である。 第1実施形態の調湿材の作製方法を模式的に図示する図である。 第1実施形態の調湿材に備えられる第二の調湿構造体の各々の形状の第1の例を示す画像である。 第1実施形態の調湿材に備えられる第二の調湿構造体の各々の形状の第2の例を示す画像である。 第1実施形態の調湿材に備えられる第二の調湿構造体の各々の形状の第3の例を模式的に図示する斜視図である。 第1実施形態の調湿材に備えられる第二の調湿構造体の各々の形状の第4の例を模式的に図示する斜視図である。 第1実施形態の調湿材に備えられる第二の調湿構造体の各々の形状の第5の例を示す画像である。 第1実施形態の調湿材に備えられる第二の調湿構造体の各々の形状の第6の例を模式的に図示する斜視図である。 第1実施形態の調湿材に含まれる第二の調湿構造体の各々の形状の第7の例を模式的に図示する斜視図である。 第1実施形態の調湿材に含まれる第二の調湿構造体の各々の形状の第7の例を示す画像である。 第1実施形態の調湿材に含まれる第二の調湿構造体の各々の形状の第8の例を模式的に図示する斜視図である。 第1実施形態の変形例の調湿材を模式的に図示する断面図である。 比較例2、比較例1及び実施例1の調湿材の外観、調湿速度及び調湿量を比較する図である。 比較例2、比較例1及び実施例1の調湿材の放湿量の時間変化を示すグラフである。 第2実施形態の調湿材を模式的に図示する断面図である。 第3実施形態の調湿材を模式的に図示する断面図である。 第3実施形態の調湿材の試作品の画像である。 第4実施形態の調湿材を模式的に図示する断面図である。 第4実施形態の調湿材の試作品の画像である。
 以下、本開示の実施形態について、図面を参照しつつ説明する。なお、図面については、同一又は同等の要素には同一の符号を付し、重複する説明は省略する。
 1 第1実施形態
 1.1 調湿材
 図1は、第1実施形態の調湿材を模式的に図示する断面図である。図2は、第1実施形態の調湿材、当該調湿材に備えられる調湿シート及び第二の調湿構造体、並びに当該調湿シートに備えられる第一の調湿構造体及び多孔質体の試作品の画像である。
 図1及び図2に図示される第1実施形態の調湿材1は、調湿材1の周辺の空気の相対湿度が調湿材1の平衡湿度より高い場合は、調湿材1の周辺の空気から水分を吸収し、調湿材1の周辺の空気の相対湿度が調湿材1の平衡湿度より低い場合は、調湿材1の周辺の空気へ水分を放出する。調湿材1は、A型シリカゲルに代表される乾燥剤と比較して、比較的に低い温度による加熱により水分を脱着させることができる。また、調湿材1は、繰り返し吸放湿を行うことができる。このため、調湿材1は、原理的には、調湿材1の周辺の空気から水分を吸収し調湿材1の周辺の空気へ水分を放出する調湿能力を半永久的に維持することができる。調湿材1の平衡湿度は、調湿材1を構成する材料により調整することができる。
 図1及び図2に図示されるように、調湿材1は、調湿シート11A、構造体である調湿シート11B、及び第二の調湿構造体12を備える。構造体は、調湿シート11Aに接触し、調湿シート11Aとともに第二の調湿構造体12を保持することができる構造を有する物である。
 調湿シート11A及び11Bの縁部は、互いに接着される。これにより、調湿シート11A及び11Bは、互いに接触し、袋状の形状を有する収容体21を構成する。収容体21は、第2の調湿構造体12を収容する。調湿シート11A及び11Bは、第二の調湿構造体12を挟む。外層となる収容体21は、外層の内側に配置される第二の調湿構造体12が調湿対象物と直接的に接触することを抑制する。収容体21により、調湿材1からの液漏れを抑制することができ、調湿材1の扱いやすさを向上することができる。
 調湿シート11A及び11Bは、調湿を行うことができる。このため、調湿シート11A及び11Bは、調湿シート11A及び11Bの周辺の空気の相対湿度が高い場合は、調湿シート11A及び11Bの周辺の空気から水分を吸収し、調湿シート11A及び11Bの周辺の空気の相対湿度が低い場合は、調湿シート11A及び11Bの周辺の空気へ水分を放出する。また、調湿シート11A及び11Bは、多孔質体である。このため、調湿シート11A及び11Bは、調湿シート11A及び11Bの周辺の空気を透過させ、調湿シート11A及び11Bの周辺の空気に含まれる水分を透過させる。
 第二の調湿構造体12は、調湿を行うことができる。このため、第二の調湿構造体12は、第二の調湿構造体12の周辺の空気の相対湿度が高い場合は、第二の調湿構造体12の周辺の空気から水分を吸収し、第二の調湿構造体12の周辺の空気の相対湿度が低い場合は、第二の調湿構造体12の周辺の空気へ水分を放出する。
 第二の調湿構造体12は、調湿シート11A及び11Bに隣接し、調湿シート11A及び11Bの内部に配置される。これにより、第二の調湿構造体12は、調湿シート11A及び11Bにより放出された水分を吸収することができる。また、第二の調湿構造体12の体積は、下述する第一の調湿構造体31の体積より多いいため、第二の調湿構造体12は、大きな調湿量を有する。さらに、調湿シート11A及び11Bは、第二の調湿構造体12により放出された水分を吸収することができる。
 図1及び図2に図示されるように、調湿シート11A及び11Bの各々は、第一の調湿構造体31及び多孔質体32を備える。
 第一の調湿構造体31は、調湿を行うことができる。このため、第一の調湿構造体31は、第一の調湿構造体31の周辺の空気の相対湿度が高い場合は、第一の調湿構造体31の周辺の空気から水分を吸収し、第一の調湿構造体31の周辺の空気の相対湿度が低い場合は、第一の調湿構造体31の周辺の空気へ水分を放出する。第一の調湿構造体31は、分散される。これにより、第一の調湿構造体31が凝集して第一の調湿構造体31及びその周辺の空気が形成する界面の面積が小さくなることを抑制することができる。
 多孔質体32は、第一の調湿構造体31を含む。
 第一の調湿構造体31の粒径は、第二の調湿構造体12の粒径に対し、相対的に小さいことがより好ましい。例えば、平均粒径として、それぞれ第一の調湿構造体は、数μm~数mm、第二の調湿構造体は数mm~数十mmの粒径であってもよい。第一の調湿構造体31は、単位重量あたりで考えると、大きな表面積(比表面積)を有する。すなわち、第一の調湿構造体31及びその周辺の空気の界面は、大きな面積を有する。このため、第一の調湿構造体31は、高い調湿速度を有し、湿度に対して高い応答性を有する。しかし、第一の調湿構造体31は多孔質体に分散させることで、単位重量あたりの調湿成分重量は小さくなる。このため、第一の調湿構造体31は、小さな保持可能水量しか有さず、短い調湿効果発揮時間しか有さず、調整湿度ずれを長時間に渡って抑制することができない。
 第二の調湿構造体12は、第一の調湿構造体31の粒径よりも大きな粒径を有し、第一の調湿構造体31の体積より大きな体積を有する。これは、空気接触性を犠牲にする反面、構成粒子を隙間なく充填させることで同体積比較した際に調湿成分を多くとれるため、保持可能水量が大きいという特徴をもつからである。これにより、長い調湿効果発揮時間を有し、調整湿度ずれを長時間に渡って抑制することができる。
 第二の調湿構造体12の各々は、第一の調湿構造体31の各々の体積より大きな体積を有する。これにより、湿度に対して高い応答性を有するが調整湿度ずれを長時間に渡って抑制することができない第一の調湿構造体31を備える調湿シート11A及び11Bと、湿度に対して高い応答性を有しないが調整湿度ずれを長時間に渡って抑制することができる第二の調湿構造体12と、が組み合わされる。これにより、湿度に対して高い応答性を有し調整湿度ずれを長時間に渡って抑制することができる調湿材1が提供される。
 1.2 吸放湿のメカニズム
 図3及び図4は、第1実施形態の調湿材により行われる吸湿のメカニズムを模式的に説明する断面図である。
 調湿材1が吸湿を行う場合は、まず、図3に図示されるように、調湿シート11A及び11Bが水分を吸収する。これに伴い、調湿シート11A及び11B中の水分が増加し、調湿シート11A及び11Bの平衡湿度が上昇する。これにより、調湿シート11A及び11B並びに第二の調湿構造体12の平衡湿度のずれが発生する。
 続いて、図4に図示されるように、発生した平衡湿度のずれを解消するために、調湿シート11A及び11Bから第二の調湿構造体12へ水分が移動する。これに伴い、調湿シート11A及び11B中の水分が減少し、調湿シート11A及び11Bの平衡湿度が低下して調湿シート11A及び11Bの平衡湿度が再生される。また、第二の調湿構造体12中の水分が増加し、第二の調湿構造体12の平衡湿度が上昇する。
 図5及び図6は、第1実施形態の調湿材により行われる放湿のメカニズムを模式的に説明する断面図である。
 調湿材1が放湿を行う場合は、まず、図5に図示されるように、調湿シート11A及び11Bが水分を放出する。これに伴い、調湿シート11A及び11B中の水分が減少し、調湿シート11A及び11Bの平衡湿度が低下する。これにより、調湿シート11A及び11B並びに第二の調湿構造体12の平衡湿度のずれが発生する。
 続いて、図6に図示されるように、発生した平衡湿度のずれを解消するために、第二の調湿構造体12から調湿シート11A及び11Bへ水分が移動する。これに伴い、調湿シート11A及び11B中の水分が増加し、調湿シート11A及び11Bの平衡湿度が上昇して調湿シート11A及び11Bの平衡湿度が再生される。また、第二の調湿構造体12中の水分が減少し、第二の調湿構造体12の平衡湿度が低下する。
 このように、調湿材1が吸放湿を行う場合は、まず、湿度に対して高い応答性を有する調湿シート11A及び11Bが吸放湿を行い、続いて、大きな保持可能水量を有する第二の調湿構造体12が吸放湿を行う。
 調湿材1においては、高い応答性を有する調湿シート11A及び11Bが大きな保持可能水量を有する第二の調湿構造体12に近づけられることにより、湿度に対する高い応答性が調湿材1に付与される。
 1.3 第一の調湿構造体
 図7は、第1実施形態の調湿材に備えられる第一の調湿構造体を模式的に図示する図である。
 図7に図示されるように、第一の調湿構造体31の各々は、ひとつの粒子であり、第1の吸水体41及び第1の調湿成分42を備える。第1の吸水体41は、第1の吸水材51からなる。第1の調湿成分42は、第1の吸水材51に内在する。第1の調湿成分42は、水分を吸収又は放出する。第1の調湿成分42は、潮解する成分を含むことが好ましい。
 第1の吸水材51は、例えば、数μmから数mmの径を有する。第1の吸水材51がマイクロメートルオーダーからミリメートルオーダーの径を有する場合は、第1の吸水材51がナノメートルオーダーの径を有する場合と比較して、粒径効果による第1の吸水材51の凝集が起こりにくくなる。これにより、第1の吸水材51の凝集による調湿速度の低下が起こりにくくなる。この効果は、第1の吸水材51が吸湿を行う場合に特に顕著に現れる。
 第1の吸水材51は、第1の調湿成分42に含まれる、潮解する成分を化学的又は物理的に吸収することができる。これにより、潮解した成分が第1の吸水材51から離脱して第1の吸水材51からの離水が発生することを抑制することができる。第1の調湿成分42が調湿液である場合は、第1の吸水材51には、調湿液を含侵させることができる。100重量部の第1の吸水材51には、望ましくは、1重量部以上1000重量部以下の調湿液が含侵させられる。調湿液が第1の吸水材51に含侵させられて用いられることにより、調湿液が単独で用いられる場合と比較して、第1の調湿成分42及びその周辺の空気の界面の面積を大きくすることができる。これにより、第一の調湿構造体31の調湿速度を高くすることができる。
 1.4 第二の調湿構造体
 図8は、第1実施形態の調湿材に備えられる第二の調湿構造体を模式的に図示する図である。
 図8に図示されるように、第二の調湿構造体12の各々は、ひとつの粒子であり、第2の吸水体61及び第2の調湿成分62を備える。第2の吸水体61は、第2の吸水材71からなる。第2の調湿成分62は、第2の吸水材71に内在する。第2の調湿成分62は、水分を吸収又は放出する。第2の調湿成分62は、潮解する成分を含むことが好ましい。
 第2の吸水材71は、例えば、数mmから数10mmの径を有する。第2の吸水材71がミリメートルオーダーの径を有する場合は、第2の吸水材71がナノメートルオーダーの径を有する場合と比較して、粒径効果による第2の吸水材71の凝集が起こりにくくなる。これにより、第2の吸水材71の凝集による調湿速度の低下が起こりにくくなる。この効果は、第2の吸水材71が吸湿を行う場合に特に顕著に現れる。
 第2の吸水材71は、第2の調湿成分62に含まれる、潮解する成分を化学的又は物理的に吸収することができる。これにより、潮解した成分が第2の吸水材71から離脱して第2の吸水材71からの離水が発生することを抑制することができる。第2の調湿成分62が調湿液である場合は、第2の吸水材71には、調湿液を含侵させることができる。100重量部の第2の吸水材71には、望ましくは、1重量部以上1000重量部以下の調湿液が含侵させられる。調湿液が第2の吸水材71に含侵させられて用いられることにより、調湿液が単独で用いられる場合と比較して、第2の調湿成分62及びその周辺の空気により形成される界面の面積を大きくすることができる。これにより、第二の調湿構造体12の調湿速度を高くすることができる。
 1.5 吸水材
 第1の吸水材51及び第2の吸水材71の各吸水材は、吸水性樹脂を含む。各吸水材が、吸水性樹脂に代えて、又は吸水性樹脂に加えて粘土鉱物を含んでもよい。
 吸水性樹脂は、イオン性樹脂であってもよいし、非イオン性樹脂であってもよい。
 イオン性樹脂は、例えば、ポリアクリル酸のアルカリ金属塩及びデンプン-アクリル酸塩グラフトポリマーからなる群より選択される少なくとも1種を含む。ポリアクリル酸のアルカリ金属塩は、例えば、ポリアクリル酸ナトリウムを含む。ポリアクリル酸ナトリウムは、大量の調湿成分を吸水することができるため、好ましい。
 非イオン性樹脂は、例えば、酢酸ビニル共重合体、無水マレイン酸共重合体、ポリビニルアルコール及びポリアルキレンオキサイドからなる群より選択される少なくとも1種を含む。
 粘土鉱物は、例えば、珪酸塩鉱物及びゼオライトからなる群より選択される少なくとも1種を含む。珪酸塩鉱物は、例えば、セピオライト、アタパルジャイト、カオリナイトパーライト及びドロマイトからなる群より選択される少なくとも1種を含む。
 第1の吸水材51及び第2の吸水材71は、同じ組成を有してもよいし、互いに異なる組成を有してもよい。
 1.6 調湿成分
 第1の調湿成分42及び第2の調湿成分62の各調湿成分は、空気中の水分を吸収し、潮解する潮解性物質及び多価アルコールからなる群より選択される少なくとも1種を含む。
 潮解性物質としては、塩類と水溶性有機物とが挙げられる。塩類の具体例としては、例えば、ギ酸ナトリウム、ギ酸カリウム、酢酸ナトリウム、酢酸カリウム、酢酸リチウム、乳酸ナトリウム、乳酸カリウム、安息香酸ナトリウム、安息香酸カリウム、プロピオン酸ナトリウム、プロピオン酸カリウム、塩化カルシウム、塩化リチウム、塩化マグネシウム、塩化カルシウム、塩化リチウム、塩化カリウム、塩化ナトリウム、塩化亜鉛、塩化アルミニウム、臭化リチウム、臭化カルシウム、臭化カリウム、水酸化ナトリウム、ピロリドンカルボン酸ナトリウム、炭酸カリウム、クエン酸カルシウム、クエン酸ナトリウム、クエン酸カリウム、クエン酸リチウム等が挙げられる。これら塩類であれば、潮解する時に多量の大気中の水分を吸収又は放出することができる。潮解性物質は、これらの塩類のうち、1種のみを含んでいてもよいし、2種以上を含んでいてもよい。これらの中でも、重量あたりの吸放湿する水分量の多く、ある湿度で急激に吸湿または放湿することから、ギ酸ナトリウム、ギ酸カリウム、酢酸ナトリウム、酢酸カリウム等のカルボン酸塩がさらに好ましい。水溶性有機物の具体例としては、例えば、スクロース、プルラン、グルコース、キシロール、フラクトース、マンニトール、ソルビトール等の糖類、クエン酸等のカルボン酸、尿素などのアミド類が挙げられる。
 多価アルコールは、例えば、グリセリン、プロパンジオール、ブタンジオール、ペンタンジオール、トリメチロールプロパン、ブタントリオール、エチレングリコール、ジエチレングリコール、トリエチレングリコール及び乳酸からなる群より選択される少なくとも1種を含み、望ましくは、3個以上の水酸基を有する多価アルコールを含む。3個以上の水酸基を有する多価アルコールは、例えば、グリセリンを含む。多価アルコールは、二量体又は重合体を構成していてもよい。
 第1の調湿成分42及び第2の調湿成分62は、同じ組成を有してもよいし、互いに異なる組成を有してもよい。
 第一の調湿構造体31又は第二の調湿構造体12が吸放湿を行う相対湿度は、第1の調湿成分42及び第2の調湿成分62を変更することによりそれぞれ調整することができる。例えば、第一の調湿構造体31又は第2の調湿構造体12が吸放湿を行う相対湿度は、第1の調湿成分42及び第2の調湿成分62に含まれる塩を変更することによりそれぞれ調整することができる。
 1.7 調湿シートの内部に第二の調湿構造体を備える調湿材の製造方法
 図10は、第1実施形態の調湿材の作製方法を模式的に図示する図である。
 図10を参照しながら、調湿シートの内部に第二の調湿構造体を備える調湿材の製造方法について説明する。まず調湿シートの製造方法として、例えば、調湿成分と第一の調湿構造体を熱溶着可能なバインダー等と共に不織布シート間に散布した後、全体を熱圧着させることで作製する。次に、調湿シートを折り曲げて重なる端部2辺を熱圧着することで結着する。最後に、1辺が開いた袋状の調湿シートの中に第二の調湿構造体を入れ、熱圧着を行うことで作製できる。
 また、熱圧着可能な不織布シートを選択することが難しい場合、エチレン酢酸ビニルやポリエチレンなどの熱溶着可能なバインダーを接着部に散布した後に熱圧着させる、あるいはシリコーン樹脂、酢酸ビニル樹脂、アクリル樹脂などの接着材を使用して接着させてもよい。
 1.8 第二の調湿構造体の形状の例
 図11は、第1実施形態の調湿材に備えられる第二の調湿構造体の各々の形状の第1の例を示す画像である。図12は、第1実施形態の調湿材に備えられる第二の調湿構造体の各々の形状の第2の例を示す画像である。図13は、第1実施形態の調湿材に備えられる第二の調湿構造体の各々の形状の第3の例を模式的に図示する斜視図である。図14は、第1実施形態の調湿材に備えられる第二の調湿構造体の各々の形状の第4の例を模式的に図示する斜視図である。
 第二の調湿構造体12の各々は、ゼリー型であり、中実体である。第二の調湿構造体12の各々の形状は、任意である。例えば、第二の調湿構造体12の各々は、図11に示されるように、球状の形状を有してもよいし、図12に示されるように、立方体状又は直方体状の形状を有してもよし、図13に図示されるように、三角錐状の形状を有してもよいし、図14に図示されるように、円錐状の形状を有してもよい。
 第二の調湿構造体12の各々が立方体状、三角錐状又は円錐状の形状を有する場合は、第二の調湿構造体12の各々が球状の形状を有する場合と比較して、第2の調湿構造体12の充填率を高くすることができる。
 図15は、第1実施形態の調湿材に備えられる第二の調湿構造体の各々の形状の第5の例を示す画像である。図16は、第1実施形態の調湿材に備えられる第二の調湿構造体の各々の形状の第6の例を模式的に図示する斜視図である。
 第二の調湿構造体12の各々は、図15に図示されるように、凹凸を有する表面を有してもよいし、図16に示されるように、多孔質構造を有してもよい。第二の調湿構造体12の各々が多孔質構造を有する場合は、第二の調湿構造体12の各々に孔101が形成されている。
 第二の調湿構造体12の各々の表面が凹凸を有する場合、及び第二の調湿構造体12の各々が多孔質構造を有する場合は、第二の調湿構造体12の各々及びその周辺の空気の界面の面積が大きくなる。このため、湿度に対する第二の調湿構造体12の各々の応答性が高くなる。
 図17は、第1実施形態の調湿材に備えられる第二の調湿構造体の各々の形状の第7の例を模式的に図示する斜視図である。図18は、第1実施形態の調湿材に備えられる第2の調湿構造体の各々の形状の第7の例を示す画像である。図19は、第1実施形態の調湿材に備えられる第二の調湿構造体の各々の形状の第8の例を模式的に図示する斜視図である。
 第二の調湿構造体12の各々は、図17、図18及び図19に図示されるように、カプセル型であってもよい。第二の調湿構造体12の各々がカプセル型である場合は、第二の調湿構造体12の各々は、コア111及びシェル112を備える。
 コア111は、第二の調湿構造体12の各々に含まれる、第2の調湿液91及び第2の吸水材71を含む。第2の吸水材71は、第2の調湿液91により膨潤させられている。
 シェル112は、コア111の表面上に配置される。シェル112は、例えば、コア111を構成する材料と異なる材料により構成される。シェル112は、水分を吸収又は放出する材料からなる。水分を吸収又は放出する材料は、例えば、高分子材料を含む。シェル112は、樹脂からなる場合は、樹脂殻等とも呼ばれる。
 第二の調湿構造体12の各々がカプセル型であることにより、第2の調湿液91の液漏れを抑制することができる。また、シェル112の厚さを調整することにより、徐放性を制御することができる。
 第二の調湿構造体12の各々の表面すなわちシェル112の表面は、凹凸を有さなくてもよいし、図15に示される第二の調湿構造体12の各々の表面が凹凸を有するのと同様に凹凸を有してもよい。当該表面が凹凸を有する場合は、第二の調湿構造体12の各々及びその周辺の空気の界面の面積が大きくなる。このため、湿度に対する第二の調湿構造体12の各々の応答性が高くなる。
 シェル112は、図19に図示されるように、多孔質構造を有してもよい。シェル112が多孔質構造を有する場合は、湿度に対する第二の調湿構造体12の各々の応答性が高くなる。
 1.9 変形例
 図20は、第1実施形態の変形例の調湿材を模式的に図示する断面図である。
 図1に図示される第1実施形態の調湿材1は、ひとつの収容体21、及びひとつの収容体21に収容される第二の調湿構造体12を備える。これに対して、図20に図示される第1実施形態の変形例の調湿材1Mは、複数の収容体21、及び複数の収容体21の各々に収容される第二の調湿構造体12を備える。図20は、複数の収容体21が、紙面の上下方向だけでなく紙面と垂直をなす方向にも重なっている状態を図示する。各収容体21は、第二の調湿構造体12を収容する内部空間が形成された丸棒状の形状を有する。
 調湿材1Mに備えられる調湿シート11A及び11Bの数は、調湿材1に備えられる調湿シート11A及び11Bの数より多い。また、調湿材1Mに備えられる第二の調湿構造体12の量は、調湿材1に備えられる第二の調湿構造体12の量より多い。このため、調湿材1Mが吸収又は放出することができる水分の量は、調湿材1が吸収又は放出することができる水分の量より多い。また、調湿材1Mは、1つの調湿材1を大きくするものと比較し、調湿シート11A及び11Bの空気接触面積が大きくなるため、調湿速度をより高くすることもできる。
 1.10 比較例と実施例との対比
 図21は、比較例2、比較例1及び実施例1の調湿材の外観、調湿速度及び調湿量を比較する図である。図22は、比較例2、比較例1及び実施例1の調湿材の放湿量の時間変化を示すグラフである。図22のグラフにおいては、放湿が開始されてからの時間が横軸にとられており、放湿量が縦軸にとられている。図22のグラフは、90%RHの平衡湿度を有する調湿材が23℃45%RHの環境に静置された場合の調湿材の重量の時間変化から得られた放湿量の時間変化を示す。
 比較例2の調湿材は、調湿シート11A又は11Bであり、質量は12gである。
 比較例1の調湿材は、容器、蓋及び第二の調湿構造体12からなる。容器及び蓋の縁部は、熱圧着されている。第二の調湿構造体12は、容器及び蓋に囲まれている。第二の調湿構造体12の質量は、20gである。
 実施例1の調湿材は、第1実施形態の調湿材1である。調湿シート11A及び11Bの質量は、12gである。第二の調湿構造体12の質量は、20gである。
 図22のグラフにおいては、放湿量の時間変化を示す線の傾きが、放湿速度を示す。放湿速度が高いことは、単位時間に調湿材が放出する水分の量が多く、調湿材の周辺の空気を早く調湿することができることを意味する。
 図22のグラフからは、比較例2の調湿材の放湿速度が、比較例1の調湿材のそれより高く、実施例1の調湿材の放湿速度が、比較例2の調湿材のそれより高いことを理解することができる。したがって、図21に示されるように、比較例1の調湿材の調湿速度は、低く、比較例2の調湿材の調湿速度は、高く、実施例1の調湿材の調湿速度は、極めて高い。
 また、図22のグラフからは、比較例2の調湿材の放湿量が、比較例1の調湿材のそれより大きく、実施例1の調湿材の放湿量が、比較例2の調湿材のそれより大きいことを解することができる。したがって、図21に示されるように、比較例1の調湿材の調湿量は小さく、比較例2の調湿材の調湿量は普通であり、実施例1の調湿材の調湿量は極めて大きい。
 また、図22のグラフからは、実施例1の調湿材の放湿速度が、比較例1の調湿材の放湿速度及び比較例2の調湿材の放湿速度の和より高いことを理解することができる。また、実施例1の調湿材の放湿量が、比較例1の調湿材の放湿量及び比較例2の調湿材の放湿量の和より大きいことを理解することができる。このことは、第二の調湿構造体12が調湿シート11A及び11Bに隣接する場合は、第二の調湿構造体12が調湿シート11A及び11Bに隣接しない場合と比較して、高い調湿速度及び大きな調湿量を得ることができることを意味する。
 また、図22のグラフからは、実施例1の調湿材の放湿速度は、放湿が開始されてから120~180分が経過しても高く維持されていることを理解することができる。このことは、実施例1の調湿材は、調整湿度ずれを長時間に渡って抑制することができることを意味する。
 2 第2実施形態
 以下では、第2実施形態が第1実施形態と相違する点が説明される。説明されない点については、第1実施形態において採用される構成と同様の構成が第2実施形態においても採用される。
 図23は、第2実施形態の調湿材を模式的に図示する断面図である。
 図23に図示される第2実施形態の調湿材2は、調湿シート11A、構造体であるふたつ以上の調湿シート11B、及び第二の調湿構造体12を備える。ふたつ以上の調湿シート11Bは、互いに重ねられている。調湿シート11A及び11Bは、第二の調湿構造体12を挟むふたつの調湿シートを含む。
 調湿材2に備えられる調湿シート11A及び11Bの数は、調湿材1に備えられる調湿シート11調湿シート11A及び11Bの数より多い。このため、調湿材2が吸収又は放出することができる水分の量は、調湿材1が吸収又は放出することができる水分の量より多い。
 3 第3実施形態
 以下では、第3実施形態が第1実施形態と相違する点が説明される。説明されない点については、第1実施形態において採用される構成と同様の構成が第3実施形態においても採用される。
 図24は、第3実施形態の調湿材を模式的に図示する断面図である。図25は、第3実施形態の調湿材の試作品の画像である。
 図24及び図25に図示される第3実施形態の調湿材4においては、収容体21が、調湿シート11A及び構造体である容器121を備える。調湿シート11Aは、容器121の開口を塞ぐ。容器121は、透明体である。容器121は、ポリプロピレン(PP)容器、ブリスターパック等である。容器121は、第二の調湿構造体12を収容する。収容された第二の調湿構造体12は、調湿シート11A及び容器121に囲まれる。
 第二の調湿構造体12を収容する収容体21の一部が透明体である容器121であることにより、調湿材4の外部から第二の調湿構造体12のサイズ、状態等の変化を容易に視認することができる。これにより、第二の調湿構造体12の平衡湿度を推測することができる。
 4 第4実施形態
 以下では、第4実施形態が第1実施形態と相違する点が説明される。説明されない点については、第1実施形態において採用される構成と同様の構成が第4実施形態においても採用される。
 図26は、第4実施形態の調湿材を模式的に図示する断面図である。図27は、第4実施形態の調湿材の試作品の画像である。
 図26及び図27に図示される第4実施形態の調湿材5においては、収容体21が、調湿シート11A及び構造体である透明フィルム14を備える。透明フィルム14は、不透湿性材料である。
 調湿シート11A及び透明フィルム14の縁部は、ヒートシールにより溶着されている。これにより、調湿シート11A及び透明フィルム14は、袋状の形状を有する収容体21を構成する。
 第二の調湿構造体12を収容する収容体21の一部が透明体である透明フィルム14であることにより、調湿材5の外部から第二の調湿構造体12のサイズ、状態等の変化を容易に視認することができる。これにより、第二の調湿構造体12の平衡湿度を推測することができる。
 本開示は、上記実施の形態に限定されるものではなく、上記実施の形態で示した構成と実質的に同一の構成、同一の作用効果を奏する構成又は同一の目的を達成することができる構成で置き換えてもよい。

Claims (11)

  1.  第一の調湿構造体を含む多孔質体を備える調湿シートと、
     第二の調湿構造体と、
     構造体と、
    を備え、
     前記調湿シート及び前記構造体は、互いに接触しており、
     前記第二の調湿構造体の体積は、前記第一の調湿構造体の体積より大きい
    調湿材。
  2.  前記第一の調湿構造体の表面積は、前記第二の調湿構造体の表面積より大きい
    請求項1に記載の調湿材。
  3.  前記多孔質体は、不織布を含む
    請求項1又は2に記載の調湿材。
  4.  前記構造体は、第一の調湿構造体を含む多孔質体を備える、前記調湿シートとは別の調湿シートである
    請求項1から3までのいずれか一項に記載の調湿材。
  5.  前記構造体は、容器である
    請求項1から4までのいずれか一項に記載の調湿材。
  6.  前記構造体は、不透湿性材料である
    請求項1から5までのいずれか一項に記載の調湿材。
  7.  前記第一の調湿構造体は、第1の吸水材を含む第1の吸水体と、前記第1の吸水材に内在することができ、水分を吸収又は放出する第1の調湿成分と、を備え、
    前記第二の調湿構造体は、第2の吸水材を含む第2の吸水体と、前記第2の吸水材に内在することができ、水分を吸収又は放出する第2の調湿成分を備える
    請求項1から6までのいずれか一項に記載の調湿材。
  8.  前記第1の吸水材は、ポリアクリル酸ナトリウムを含み、
     前記第2の吸水材は、ポリアクリル酸ナトリウムを含む
    請求項7に記載の調湿材。
  9.  前記第1の調湿成分及び前記第2の調湿成分の各調湿成分は、多価アルコール及び潮解性物質からなる群より選択される少なくとも一種を含む
    請求項7又は8に記載の調湿材。
  10.  前記潮解性物質は、塩類である
    請求項9に記載の調湿材。
  11.  前記潮解性物質は、カルボン酸塩である
    請求項9又は10に記載の調湿材。
PCT/JP2022/031025 2021-12-23 2022-08-17 調湿材 WO2023119722A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021208880 2021-12-23
JP2021-208880 2021-12-23

Publications (1)

Publication Number Publication Date
WO2023119722A1 true WO2023119722A1 (ja) 2023-06-29

Family

ID=86901802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/031025 WO2023119722A1 (ja) 2021-12-23 2022-08-17 調湿材

Country Status (1)

Country Link
WO (1) WO2023119722A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63185430A (ja) * 1987-01-26 1988-08-01 Nippon Synthetic Chem Ind Co Ltd:The シ−ト状調湿材
JPH0647277A (ja) * 1992-07-29 1994-02-22 Suzuki Sogyo Co Ltd 脱臭調湿材
JPH09239229A (ja) * 1996-03-07 1997-09-16 Meiji Kuritsukusu:Kk 調湿具
JPH1176737A (ja) * 1997-09-04 1999-03-23 Sumitomo Metal Mining Co Ltd 調湿材収納用の可撓性容器およびそれを用いた調湿方法
JP2005270958A (ja) * 2004-02-27 2005-10-06 Fujio Abe 調湿材とその調湿方法
JP2008157498A (ja) * 2006-12-21 2008-07-10 Nippon Kasei Chem Co Ltd 冷蔵庫又は冷蔵車
JP2017217476A (ja) * 2016-06-03 2017-12-14 宇部マテリアルズ株式会社 消臭除湿シート及びその製造方法並びに消臭除湿方法
WO2021199865A1 (ja) * 2020-03-31 2021-10-07 シャープ株式会社 調湿材及び調湿装置
WO2021229867A1 (ja) * 2020-05-14 2021-11-18 シャープ株式会社 調湿材

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63185430A (ja) * 1987-01-26 1988-08-01 Nippon Synthetic Chem Ind Co Ltd:The シ−ト状調湿材
JPH0647277A (ja) * 1992-07-29 1994-02-22 Suzuki Sogyo Co Ltd 脱臭調湿材
JPH09239229A (ja) * 1996-03-07 1997-09-16 Meiji Kuritsukusu:Kk 調湿具
JPH1176737A (ja) * 1997-09-04 1999-03-23 Sumitomo Metal Mining Co Ltd 調湿材収納用の可撓性容器およびそれを用いた調湿方法
JP2005270958A (ja) * 2004-02-27 2005-10-06 Fujio Abe 調湿材とその調湿方法
JP2008157498A (ja) * 2006-12-21 2008-07-10 Nippon Kasei Chem Co Ltd 冷蔵庫又は冷蔵車
JP2017217476A (ja) * 2016-06-03 2017-12-14 宇部マテリアルズ株式会社 消臭除湿シート及びその製造方法並びに消臭除湿方法
WO2021199865A1 (ja) * 2020-03-31 2021-10-07 シャープ株式会社 調湿材及び調湿装置
WO2021229867A1 (ja) * 2020-05-14 2021-11-18 シャープ株式会社 調湿材

Similar Documents

Publication Publication Date Title
JP5493266B2 (ja) 調湿シート
US20080257151A1 (en) Water retaining dessicating device
US11131063B2 (en) Carbon dioxide sorbents and structures, methods of use, and methods of making thereof
JP6020757B1 (ja) 脱酸素剤及びその製造方法
JP2013523267A (ja) 使い捨て容器における酸素、水蒸気および二酸化炭素の吸収
EP1967799B1 (de) Sorptions-Kühlelement mit Regelorgan und zusätzlicher Wärmequelle
JP6759755B2 (ja) 脱酸素剤及びその製造方法
WO2023119722A1 (ja) 調湿材
DE102007057748A1 (de) Sorptions-Kühlelement mit Regelorgan und zusätzlicher Wärmequelle
TW202208059A (zh) 脫氧劑組成物及其製造方法
JP2008157498A (ja) 冷蔵庫又は冷蔵車
JP2014046587A (ja) 機能性多孔質体を適用した積層フィルム、積層体及び包装体
JP3016801B2 (ja) 除湿用包装袋
JPS60235624A (ja) 調湿用具
JP2019188312A (ja) 脱酸素剤および脱酸素剤包装体、並びに食品包装体
JP2004314311A (ja) 吸放湿性不織布構造体およびこれを用いた調湿剤
JP7459595B2 (ja) 脱酸素剤組成物
JP2008159310A (ja) ランプ
WO2024106258A1 (ja) 調湿部材及び包材付き調湿部材
JP7383229B2 (ja) 脱酸素剤包装体、および食品包装体
JP2021167217A (ja) 脱酸素剤包装体及び食品包装体
WO2023100823A1 (ja) 調湿材
WO2023248995A1 (ja) 洗浄方法及び洗浄装置
WO2023248560A1 (ja) 全熱交換素子及び換気装置
JPH10118488A (ja) 吸着材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22910450

Country of ref document: EP

Kind code of ref document: A1