WO2023116715A1 - 一种孪晶铜材料和混合键合结构 - Google Patents

一种孪晶铜材料和混合键合结构 Download PDF

Info

Publication number
WO2023116715A1
WO2023116715A1 PCT/CN2022/140433 CN2022140433W WO2023116715A1 WO 2023116715 A1 WO2023116715 A1 WO 2023116715A1 CN 2022140433 W CN2022140433 W CN 2022140433W WO 2023116715 A1 WO2023116715 A1 WO 2023116715A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
bonding
copper material
twinned
substrate
Prior art date
Application number
PCT/CN2022/140433
Other languages
English (en)
French (fr)
Inventor
刘志权
李哲
李晓
高丽茵
孙蓉
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111574709.9A external-priority patent/CN114086224B/zh
Priority claimed from CN202111574515.9A external-priority patent/CN114220783A/zh
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Publication of WO2023116715A1 publication Critical patent/WO2023116715A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25CPROCESSES FOR THE ELECTROLYTIC PRODUCTION, RECOVERY OR REFINING OF METALS; APPARATUS THEREFOR
    • C25C1/00Electrolytic production, recovery or refining of metals by electrolysis of solutions
    • C25C1/12Electrolytic production, recovery or refining of metals by electrolysis of solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D3/00Electroplating: Baths therefor
    • C25D3/02Electroplating: Baths therefor from solutions
    • C25D3/38Electroplating: Baths therefor from solutions of copper
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/48After-treatment of electroplated surfaces
    • C25D5/50After-treatment of electroplated surfaces by heat-treatment
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/12Semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/60Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/60Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation
    • H01L21/603Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation involving the application of pressure, e.g. thermo-compression bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern

Definitions

  • the invention belongs to the technical field of high-performance metal materials and electronic interconnection electroplating production, and relates to a twinned copper material and a mixed bonding structure.
  • Electroplated copper is the basic interconnection material of electronic circuits, responsible for signal and power transmission.
  • the strength of traditional copper-based structural materials is mainly improved through solid solution strengthening, fine-grain strengthening, and processing strengthening, but the introduction of a large number of impurities or defects often leads to a sharp decrease in the ductility and electrical conductivity of the material.
  • Twin boundary is a special kind of subgrain boundary. Lu Ke, Institute of Metal Research, Chinese Academy of Sciences, etc. found that the introduction of a high proportion of nano-twin boundaries can hinder dislocation movement just like ordinary grain boundaries, but it is an order of magnitude smaller than the latter's ability to scatter electrons.
  • Pulse or DC electroplating nano-twinned copper process refers to the direct preparation of nano-twinned layer structure with a typical high proportion perpendicular to the growth direction by electrodeposition, that is, the so-called growth twins.
  • the formation of a high proportion of nano-twin boundaries depends on the electroplating process and the choice of additives.
  • the formation mechanism can be summarized as transient alternating changes such as electric field application and pause (pulse electroplating) or additive adsorption and desorption (DC electroplating), which will cause electrocrystallization.
  • the repeated stress is temporarily accumulated and released through the nucleation of twin boundaries, that is, the formation of so-called growth twins.
  • the twin boundaries grow oriented parallel to the (111) crystal plane.
  • nano-twin boundaries have lower energy and are more stable.
  • a high proportion of nano-twin boundaries can inhibit grain boundary migration and grain growth during heat treatment or self-annealing and recrystallization, thereby making nano-twins
  • the structure shows thermal stability better than that of general copper structures such as nano-crystal, micro-grain and coarse-grain. It can be seen from the above that the material exhibits a highly preferred orientation of (111) crystal planes. Due to the introduction of high-density nano-twin boundaries, the material is endowed with ultra-high strength without compromising its ductility and conductivity, so it has been widely reported. .
  • twinned copper materials copper materials with a high proportion of twin boundaries
  • the structure is annealed at 250°C for 10 minutes and obvious recrystallization occurs, the grain grows obviously, and the twinned wafer layer disappears. Therefore, the so-called micron twinned copper material is due to the thermal stability of the structure Poorness is only shown as a counter-example.
  • the purpose of the present invention is to provide a twinned copper material and its preparation method and use.
  • the twinned copper material has a preferred orientation of (110) crystal planes, the twinned copper material includes a twinned structure, and the twinned structure includes a twinned crystal layer, and the twinned crystal layer is mainly along the angle between the crystal grain growth direction 45° distribution; the grains with the twinned crystal layer account for more than 50% of the total grains of the twinned copper material, and/or the volume of the twinned crystal structure accounts for the total of the twinned copper material The volume ratio is ⁇ 50%.
  • twinned sheet layer is mainly distributed along the included angle 45° with grain growth direction " refers to more than 50% (such as 52%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 92%, 95%, 96%, 98%, 99% or 100%) of twinned lamellar layers.
  • the “included angle” refers to the acute angle between the twinned layer and the grain growth direction.
  • the proportion of crystal grains having the twinned crystal layer in the total number of crystal grains of the twinned copper material can be, for example, 50%, 55%, 60%, 65%, 70%, 75%, 80% %, 85%, 90%, 95%, 97%, 98% or 99%, etc.
  • the ratio of the volume of the twinned structure to the total volume of the twinned copper material can be, for example, 50%, 52%, 55%, 60%, 63%, 65%, 70%, 75%, 80% %, 85%, 88%, 90%, 95%, 97%, 98% or 99%, etc.
  • the twinned copper material provided by the present invention is a kind of (110) crystal plane preferred orientation annealed twinned copper, in which a high proportion of twin grain boundaries exists stably, compared with the (110) crystal plane highly preferred orientation electroplated micron twinned copper, has More excellent structural thermal stability, no abnormal growth of grains in the common heat treatment temperature range of electronic materials (such as 200°C-400°C), and exhibits the unique property that the proportion of twin crystal layers does not decrease but increases.
  • the twinned copper material of the present invention can be applied to the electroplating copper-related fields represented by the manufacturing and packaging of integrated circuits and circuit boards, and optimize the stability of the heat-treated structure of the electroplated copper material, that is, by introducing heat treatment to generate and stabilize the twin crystal structure, and inhibit the crystal structure.
  • XRD diffraction analysis is performed on the twinned copper material, and the (220)/(111) diffraction peak intensity ratio is greater than 2.
  • intensity ratio 3 4, 5, 6, 7, 8, 9 or 10°, it means that more grains grow along the (110) crystal plane, and the growth orientation of the twin layer and the grain growth direction 45° is higher. powerful.
  • twinned copper material is obtained by heat-treating the pre-electroplated copper material with a preferred orientation of (111) crystal plane, and the temperature of the heat treatment is ⁇ 200°C.
  • the temperature of the heat treatment may be 200°C, 220°C, 240°C, 260°C, 300°C, 350°C, 400°C or 450°C.
  • pre-electroplated copper material refers to: electroplated copper material without annealing treatment.
  • the preferred orientation of the (111) crystal plane can be transformed into the preferred orientation of the (110) crystal plane, accompanied by the formation of a high proportion of annealing twins, and the twin crystal layer is mainly sandwiched with the grain growth direction. Angle distribution of 45°, the resulting twinned copper material exhibits excellent thermal stability.
  • the heat treatment is annealing. See Figure 6 for a schematic diagram of product structure changes before and after annealing.
  • An object of the present invention is to provide a preparation method of twinned copper material.
  • the preparation method of this twinned copper material comprises the following steps:
  • the plating solution contains copper ions, sulfuric acid, chloride ions, additives and water, the additives include inhibitors and auxiliary agents, and the auxiliary agents are selected from at least one of organic sulfonates.
  • the anode and the cathode as the conductive base are immersed in the plating solution, and electroplated to obtain a pre-electroplated copper material.
  • the heat treatment temperature is ⁇ 200°C, such as 200°C, 225°C, 260°C, 280°C, 300°C, 320°C, 350°C, 370°C, 400°C, 450°C, 500°C, 550°C, 600°C , 650°C, 700°C or 750°C.
  • the invention opens up a preparation method of a novel (110) crystal plane highly preferred orientation and annealing twin type twinned copper material.
  • the formation of annealing twins specifically includes two steps of pre-electroplating copper and annealing treatment. Specifically, using the chemical regulation of the pre-plating additive combination, the pre-electroplating copper material is expressed as A certain (111) crystal plane preferred orientation and no high proportion of growth twins perpendicular to the growth direction are formed.
  • twinned lamellar layers are mainly distributed along an angle of 45° with the grain growth direction. There is no abnormal grain growth in the common heat treatment temperature range, thus showing excellent thermal stability.
  • the additive combination of pre-plating has important influence on the structure of pre-plating material: by adding inhibitor in plating solution, can reduce deposition rate, avoid crystallization coarse and not dense; By adding auxiliary agent in plating solution, It can increase the deposition rate, realize the dynamic and controllable desorption of the electric double layer inhibitor through the competition between the auxiliary agent and the inhibitor, and introduce the necessary concentration of electric crystallization defects for incubating the annealing twin boundary.
  • the method of the present invention directly obtains growth twins by replacing conventional electroplating with annealing twins, which can ensure the stable existence of a high proportion of twin boundaries in the heat treatment process, and opens up a new path for the preparation and application of (110) crystal plane highly preferred orientation twinned copper materials. new ideas.
  • the organic sulfonate includes at least one of polystyrene sulfonate, polyethylene sulfonate, alkyl sulfonate and alkylbenzene sulfonate.
  • the molecular weights of the polystyrene sulfonate and the polyethylene sulfonate are independently 1000-100000, such as 1000, 3000, 5000, 8000, 10000, 12500, 15000, 17000, 20000, 25000, 35000 , 40000, 50000, X0000, 7000, 8000 or 10000.
  • the number of carbon atoms of the alkylsulfonate and alkylbenzenesulfonate is ⁇ 12.
  • the number of carbon atoms may be 12, 13, 14, 15, 16, 17 or 20. It should be noted that the number of carbon atoms of the alkylsulfonate and the alkylbenzenesulfonate may be the same or different.
  • the concentration of the auxiliary agent in the plating solution is 10-500ppm.
  • the concentration of the auxiliary agent in the plating solution is 10ppm, 20ppm, 30ppm, 40ppm, 50ppm, 60ppm, 70ppm, 80ppm, 100ppm, 150ppm, 200ppm, 230ppm, 260ppm, 300ppm, 350ppm, 400ppm or 500ppm.
  • the inhibitor is gelatin
  • the coagulation value of the gelatin is 10-300 bloom.
  • the coagulation value of the gelatin is 10bloom, 20bloom, 30bloom, 50bloom, 70bloom, 80bloom, 100bloom, 125bloom, 150bloom, 180bloom, 200bloom, 225bloom, 240bloom, 260bloom or 300bloom.
  • the concentration of the inhibitor in the plating solution is 5-200ppm.
  • the concentration of the inhibitor in the plating solution is 5ppm, 10ppm, 20ppm, 30ppm, 40ppm, 50ppm, 60ppm, 70ppm, 80ppm, 100ppm, 120ppm, 150ppm, 180ppm or 200ppm.
  • the concentration of copper ions in the plating solution is 20-70g/L.
  • the concentration of copper ions in the plating solution is 20g/L, 30g/L, 40g/L, 50g/L, 60g/L, or 70g/L.
  • copper ions can be derived from copper salts, for example, copper sulfate pentahydrate ((CuS0 4 ⁇ 5H 2 O) can be selected to obtain.
  • the concentration of sulfuric acid in the plating solution is 20-200g/L.
  • the concentration of sulfuric acid in the plating solution is 20g/L, 25g/L, 30g/L, 35g/L, 40g/L, 50g/L, 60g/L, 70g/L, 80g/L, 100g /L, 120g/L, 150g/L, 160g/L, 180g/L or 200g/L.
  • sulfuric acid can be derived from concentrated sulfuric acid, for example, it can be obtained by diluting 96-98wt% concentrated sulfuric acid (H 2 S0 4 ).
  • the concentration of chloride ions in the plating solution is 20-80ppm.
  • the concentration of chloride ions in the plating solution is 20ppm, 30ppm, 40ppm, 45ppm, 50ppm, 60ppm, 70ppm or 80ppm.
  • chloride ions can be derived from hydrochloric acid.
  • the anode is selected from phosphor copper anode, and the phosphorus content in the phosphor copper anode is 0.03-0.075wt%.
  • the phosphorus content in the phosphor copper anode is 0.03wt%, 0.04wt%, 0.05wt%, 0.06wt% or 0.07wt%.
  • the phosphorus copper anode is subjected to electrolytic activation treatment.
  • the conditions of the electrolytic activation treatment are not specifically limited in the present invention.
  • a plating solution containing only copper ions, sulfuric acid and chloride ions it can be selected to 2Constant current electrolysis for 30 minutes, or other electrolytic activation parameters commonly used in this field, but it is necessary to ensure that a uniform black phosphide film is formed on the surface of the material.
  • the temperature of the electroplating is 20°C-50°C.
  • the electroplating temperature is 20°C, 23°C, 25°C, 28°C, 30°C, 35°C, 40°C, 45°C or 50°C.
  • step (2) the electroplating is carried out under constant temperature conditions.
  • the current density of the electroplating is 0.5-25A/dm 2 .
  • the current density of the electroplating is 0.5A/dm 2 , 1A/dm 2 , 1.5A/dm 2 , 2A/dm 2 , 3A/dm 2 , 4A/dm 2 , 5A/dm 2 , 6A/dm 2 dm 2 , 7A/dm 2 , 8A/dm 2 , 8.5A/dm 2 , 9A/dm 2 , 10A/dm 2 , 11A/dm 2 , 12A/dm 2 , 15A/dm 2 , 18A/dm 2 , 20A /dm 2 , 21A/dm 2 , 22A/dm 2 , 23A/dm 2 or 25A/dm 2 .
  • the electroplating time is 20-1800min.
  • the electroplating time is 20min, 30min, 40min, 60min, 80min, 90min, 120min, 150min, 180min, 200min, 240min, 280min, 300min, 350min, 450min, 500min, 550min, 600min, 700min, 800min, 850min, 900min, 1000min, 11000min, 1200min, 1250min, 1300min, 1400min, 1500min, 1600min, 1700min or 1750min.
  • agitation is also applied to the electroplating solution, and the agitation includes at least one of circulating jet flow, air agitation, magnetic agitation and mechanical agitation.
  • the heat treatment in step (3) includes annealing treatment, including: the temperature of the pre-electroplated copper material is raised from room temperature to the temperature of heat treatment in an inert atmosphere, kept for a certain period of time, and finally returns to room temperature, the temperature of the heat treatment is 200-750 °C, the heating rate is 1-50 °C/min, and the holding time is 20-1200 min.
  • room temperature refers to 20-25°C.
  • the heat treatment temperature is 200°C, 225°C, 260°C, 280°C, 300°C, 320°C, 350°C, 370°C, 400°C, 450°C, 500°C, 550°C, 600°C, 650°C °C, 700°C or 750°C.
  • the temperature of the heat treatment is 200-400°C.
  • the incubation time is 20min, 30min, 40min, 60min, 80min, 90min, 120min, 150min, 180min, 200min, 240min, 280min, 300min, 350min, 450min, 500min, 550min, 600min, 700min, 800min, 850min, 900min, 1000min, 11000min or 1200min.
  • the gas in the inert atmosphere includes but not limited to at least one of nitrogen, helium, hydrogen and hydrogen.
  • the kind of conductive substrate is not specifically limited in the present invention, for example can select metal copper, titanium, uranium, gold, tungsten, cobalt, nickel and the alloy that forms at least two in above-mentioned several metals, also can be described Alloy boards, films, printed circuit boards, wafer seed layers and other materials.
  • the preparation method of the conductive substrate is not limited in the present invention, for example, electroplating, electroless plating, sputtering, casting and other methods can be selected for preparation.
  • the conductive substrate can be pre-treated before use.
  • a substrate with oil stains and oxides on the surface it can be fully degreased, pickled and washed before the substrate is used, so as to completely remove the surface oil and oxides. oxides, thereby exposing a fresh and clean substrate surface.
  • the degreasing process can choose 10wt% sodium hydroxide (NaOH) solution immersion and agitation or other degreasing methods commonly used in this field.
  • NaOH sodium hydroxide
  • 5wt% sulfuric acid (H 2 S0 4 ) solution soaking and agitation can be selected, or other methods commonly used in the field to remove oxides.
  • One object of the present invention is to provide a method for preparing twinned copper materials.
  • the preparation method of this twinned copper material comprises the following steps:
  • a plating solution which contains copper ions 20-70g/L, sulfuric acid 20-200g/L, chloride ions 20-80ppm, inhibitor 5-200ppm, auxiliary agent 10-500ppm and the balance of water, the inhibitor includes gelatin, and the auxiliary agent is selected from at least one of organic sulfonates;
  • One object of the present invention is to provide a use of the twinned copper material as described in any one of the above, the twinned copper material is used in electronic circuit interconnection scenarios, and the electronic circuit interconnection scenarios include integrated circuit packaging or printing Circuit board manufacturing.
  • the hybrid bonding structure includes a first substrate and a second substrate oppositely arranged, the first substrate is provided with a first bonding layer, and the second substrate is provided with a second bonding layer, The first bonding layer is bonded to the second bonding layer to form a bonding interface;
  • Copper bonding points are provided in the first bonding layer and/or the second bonding layer, and the copper bonding points are the twinned copper material according to claim 1 .
  • Copper bonding points are provided in the first bonding layer and/or the second bonding layer, the copper bonding points have a (110) crystal plane preferred orientation, and the twinned copper material includes a twin structure, so The twinned crystal structure includes a twinned crystal layer, and the twinned crystal layer is mainly distributed at an angle of 45° along the grain growth direction; the proportion of crystal grains with the twinned crystal layer in the total number of crystal grains of the twinned copper material ⁇ 50%, and/or the ratio of the volume of the twin structure to the total volume of the twin copper material is ⁇ 50%.
  • the hybrid bonding structure provided by the present invention can effectively improve the bonding force between chips, and at the same time ensure better electrical connection, and the copper bonding point has excellent tissue thermal stability and mechanical properties (especially high-temperature mechanical properties), and its It has high mechanical strength and toughness, which improves service reliability.
  • the use of the copper bonding point of the specific composition of the present invention avoids recrystallization of the copper bonding point during the thermocompression bonding process and subsequent processes such as reflow soldering or heat treatment, thereby solving the resulting insufficient mechanical strength and reliable service gender issues.
  • the height of the copper bonding point is 0.5-500 microns.
  • the height of the copper bonding point is 0.5 micron, 0.8 micron, 1 micron, 2 micron, 3 micron, 5 micron, 8 micron, 10 micron, 15 micron, 20 micron, 25 micron, 30 micron, 35 micron , 40 microns, 45 microns, 50 microns, 55 microns, 60 microns, 65 microns, 70 microns, 80 microns, 90 microns, 100 microns, 115 microns, 130 microns, 140 microns, 150 microns, 160 microns, 180 microns, 200 Micron, 220 micron, 240 micron, 265 micron, 280 micron, 300 micron, 320 micron, 340 micron, 350 micron, 375 micron, 385 micron, 400 micron, 405 micron, 420 micron, 450 micron, 470 micron, 480 micron or 490 microns, etc.
  • the present invention does not specifically limit the materials of the first substrate and the second substrate, and the materials of the first substrate and the second substrate independently include silicon, compound, ceramics or glass.
  • the first bonding layer includes a dielectric layer and copper bonding points arranged at intervals in the dielectric layer, and the surface of the first bonding layer exposes the copper bonding points for bonding.
  • the second bonding layer includes a dielectric layer and copper bonding points arranged at intervals in the dielectric layer, and the copper on the surface of the second bonding layer exposes the bumps for bonding.
  • materials of the dielectric layer in the first bonding layer and the dielectric layer in the second bonding layer are independently selected from at least one of organic polymers or oxides.
  • An object of the present invention is to provide a method for preparing a hybrid bonded structure.
  • the preparation method of this hybrid bonding structure comprises the following steps:
  • a first substrate and a second substrate are provided, a first bonding layer is formed on the first substrate, a second bonding layer is formed on the second substrate, and the first bonding layer is formed on the second substrate.
  • Copper bumps are provided in the layer and/or the second bonding layer, and the copper bumps are pre-electroplated copper materials.
  • the first substrate and the second substrate are arranged oppositely, bonded by thermocompression, the first bonding layer is bonded to the second bonding layer to form a bonding interface, and the mixed bonded structure.
  • thermocompression bonding is ⁇ 200°C.
  • the first substrate and the second substrate are arranged oppositely, which means that the first bonding layer on the first substrate and the second bonding layer on the second substrate are arranged oppositely.
  • the copper bumps in the first bonding layer correspond to and are in contact with the copper bumps in the second bonding layer.
  • thermocompression bonding temperature is 200°C, 220°C, 240°C, 260°C, 300°C, 350°C, 400°C or 450°C.
  • Performing thermocompression bonding at this temperature is equivalent to performing annealing treatment, and the annealing twin structure (that is, twin structure) can be continuously formed during the annealing treatment under this temperature condition.
  • the set copper bump has a certain (111) crystal plane preferred orientation and a growth twin boundary parallel to the deposition direction, after thermocompression bonding (for example, the temperature of thermocompression bonding is 200°C
  • An annealing twin structure can be formed to obtain copper bonding points.
  • the copper bonding points have a preferred orientation of (110) crystal planes, wherein the twin crystal layers are distributed at an angle of 45° along the grain growth direction, and the crystal grains with the twin crystal layers are in the The proportion of the total number of crystal grains of the copper bonding points is ⁇ 50%, and/or the ratio of the volume of the twin structure to the total volume of the copper bonding points is ⁇ 50%.
  • thermocompression bonding treatment through thermocompression bonding treatment, a certain (111) crystal plane preferred orientation is transformed into a copper bonding point with a (110) crystal plane preferred orientation, which has excellent thermal stability of the structure and is used in microelectronic interaction.
  • a certain (111) crystal plane preferred orientation is transformed into a copper bonding point with a (110) crystal plane preferred orientation, which has excellent thermal stability of the structure and is used in microelectronic interaction.
  • Even within the commonly used heat treatment temperature range about 200 to 400 ° C
  • the increase of annealing temperature no abnormal growth of grains is seen, the proportion of annealing twins in grains increases, and the strength and toughness of copper bumps are enhanced. Therefore, it is different from the "annealing softening and toughening" microcrystalline structure and the growth twin structure bump, showing a unique "annealing strengthening and toughening" characteristic.
  • the method of the invention improves the structural thermal stability and high-temperature mechanical properties of the bonded copper bumps (that is, the copper bonding points), so that the service reliability of the hybrid bonding structure is increased.
  • the first substrate and/or the second substrate are prepared according to the following method, and the method includes the following steps:
  • Patterning is carried out on the surface of the conductive layer of the substrate by a photolithography process, a pattern of photoresist is formed on the conductive layer, and the conductive layer is exposed at the part where the photoresist is not provided;
  • V Depositing a dielectric layer, and performing chemical mechanical polishing (CMP) on the surface of the wafer to expose the copper bumps.
  • CMP chemical mechanical polishing
  • the substrate in step (I) is the first substrate or the second substrate.
  • the photolithography process described in step (II) uses the photoresist to form a pattern through exposure.
  • the pattern refers to the area covered by the photoresist, and the area not covered by the photoresist is subsequently used for filling to form copper bumps
  • a pre-electroplated copper material having a preferred orientation of the (111) crystal plane can be formed by electroplating as a copper bump.
  • step (V) carrying out CMP treatment on the wafer surface is to grind away the redundant dielectric layer to expose the surface of copper bumps (such as copper pillars), and another important function is to make the bonding surface completely coherent. surface while meeting the roughness requirements required for bonding.
  • the conductive layer in step (I) can be an adhesion layer and a seed layer obtained by vapor deposition; it can also be the top of a through-silicon (TSV) filled with conductive metal.
  • TSV through-silicon
  • the material of the adhesion layer may be at least one of tantalum, titanium or their nitrides.
  • the material of the seed layer is copper.
  • the conductive metal is copper.
  • the TSV is circular in shape with a diameter of 15-100 microns, such as 15 microns, 20 microns, 30 microns, 40 microns, 50 microns, 60 microns, 70 microns, 80 microns, 90 microns or 100 microns etc.
  • each substrate contains one or more independent TSV structures, and the TSV structures are arranged in a certain order on the substrate.
  • the photoresist formed in step (II) has a thickness of 1-500 microns.
  • the thickness of the photoresist formed in step (II) is 1 micron, 3 microns, 5 microns, 8 microns, 10 microns, 15 microns, 20 microns, 25 microns, 30 microns, 35 microns, 40 microns, 45 microns Micron, 50 micron, 60 micron, 80 micron, 100 micron, 120 micron, 130 micron, 140 micron, 150 micron, 165 micron, 180 micron, 200 micron, 220 micron, 240 micron, 260 micron, 280 micron, 300 micron, 325 microns, 350 microns, 375 microns, 400 microns, 430 microns, 460 microns or 500 microns.
  • the present invention does not specifically limit the method for depositing the dielectric layer in step (V), for example, the material of the dielectric layer is benzocyclobutene (Benzocyclobutene, BCB), SU-8, polyimide (Polyimide, PI) etc., the deposition method is spin coating; as another example, the dielectric layer is Si0 2 , and the deposition method is physical vapor deposition.
  • the material of the dielectric layer is benzocyclobutene (Benzocyclobutene, BCB), SU-8, polyimide (Polyimide, PI) etc.
  • the deposition method is spin coating; as another example, the dielectric layer is Si0 2 , and the deposition method is physical vapor deposition.
  • the thickness of the dielectric layer should be slightly higher than the copper bumps (such as copper pillars).
  • step (V) after the CMP treatment, the wafer is subjected to plasma cleaning treatment.
  • plasma cleaning treatment the residues produced by CMP can be eliminated, and at the same time, the bonding surface can be activated to reduce the difficulty of bonding.
  • the parameters of plasma cleaning are: hydrogen gas 70-100 sccm, oxygen gas 10-50 sccm, power 500-800W, time 60-600s.
  • the flow rate of hydrogen is 70 sccm, 80 sccm, 85 sccm, 90 sccm or 100 sccm.
  • the flow rate of oxygen is 10 sccm, 20 sccm, 30 sccm, 40 sccm or 50 sccm.
  • the power is 500W, 550W, 600W, 650W, 700W or 800W.
  • the duration is 60s, 80s, 100s, 125s, 150s, 160s, 180s, 200s, 220s, 260s, 300s, 320s, 350s, 400s, 425s, 450s, 480s, 500s, 550s or 600s.
  • the first substrate and/or the second substrate are prepared according to the following method, and the method includes the following steps:
  • the silicon substrate in step (II) is the first substrate or the second substrate.
  • step (II) of the present invention it is a prior art to use a photolithography process to open a window, and those skilled in the art can refer to the content disclosed in the prior art to open a window by photolithography.
  • step (IV) carries out CMP treatment on the surface of the wafer, which can make the copper bumps and the dielectric layer coplanar and achieve lower roughness.
  • the TSV in the silicon substrate with a TSV structure provided in step (II), is circular in shape and has a diameter of 15-100 microns, such as 15 microns, 20 microns, 30 microns, 40 microns , 50 microns, 60 microns, 70 microns, 80 microns, 90 microns or 100 microns.
  • each substrate contains one or more independent TSV structures, and the TSV structures are arranged in a certain order on the substrate.
  • the conductive metal is copper.
  • DC electroplating technology is used to fill the copper bumps, and the pre-electroplated copper material in step (1) is prepared by electroplating, and the electroplating method includes the preparation of the twinned copper material described in any one of the above In the method, step (1) prepares plating solution and step (2) direct current electroplating.
  • the heating rate to the temperature of the thermocompression bonding is 0.5-20° C./min.
  • the heating rate to the temperature of the thermocompression bonding is 0.5°C/min, 1°C/min, 2°C/min, 3°C/min, 5°C/min, 8°C/min, 10°C /min, 12°C/min, 15°C/min, 17°C/min or 20°C/min.
  • the applied pressure is 0.5-3 MPa.
  • the applied pressure is 0.5MPa, 1MPa, 1.5MPa, 2MPa, 2.5MPa or 3MPa.
  • thermocompression bonding atmosphere is an inert atmosphere or a vacuum.
  • gas in the inert atmosphere may be a mixture of one or more of nitrogen, helium, and hydrogen.
  • thermocompression bonding time is 1-2 hours.
  • thermocompression bonding time is 1 hour, 1.2 hours, 1.5 hours, 1.7 hours or 2 hours.
  • the present invention has following beneficial effect:
  • the twinned copper material provided by the present invention is a kind of (110) crystal plane preferential orientation annealed twinned copper, in which a high proportion of twin grain boundaries exists stably, compared with (110) crystal plane highly preferred orientation electroplating micron twins Copper has more excellent thermal stability of the structure.
  • the common heat treatment temperature range for example, 200°C-400°C
  • there is no abnormal grain growth there is no abnormal grain growth, and it shows the unique property that the proportion of twinned crystal layers does not decrease but increases.
  • the preparation method of the present invention is based on the electroplating copper process and heat treatment technology.
  • the preferred orientation of the electroplated copper crystal plane can be changed and a high proportion of annealing twins can be produced. It has the advantages of easy operation, low cost, strong practicability, and suitable for industrialization promotion. It can be applied to the electroplating copper-related fields represented by the manufacturing and packaging of integrated circuits and circuit boards, and optimize the stability of the heat-treated tissue structure of electroplated copper materials.
  • the copper bonding point has a high proportion of annealing twins and exhibits the characteristics of "annealing strengthening", that is, the strength and toughness of the interconnection material increase with the increase of the annealing temperature.
  • the increase is different from the "annealing softening" of the general microcrystalline structure of electroplated copper bumps, which improves the overall mechanical properties of the bonded interconnection structure.
  • the annealed twin layer also has the characteristics of high thermal stability. In the temperature range of heat treatment commonly used in microelectronic interconnection (about 200°C-400°C), the proportion of annealed twin grain boundaries does not decrease but increases, and the grains are not abnormally long. big. Therefore, the technical solution of the present invention can reduce the risk of failure of the bonding point during the bonding process or after multiple reflow and heat treatment processes, thereby enhancing the service reliability of the interconnection structure and devices.
  • the preparation method of the hybrid bonded structure of the present invention is based on copper bump electroplating filling and thermocompression bonding technology, and the mechanical properties of the copper bump interconnection structure are enhanced only through the microscopic tissue engineering of the electroplated copper material, which has the advantages of easy operation and low cost.
  • the advantages of low cost and process compatibility are suitable for industrial promotion in the field of microelectronic packaging.
  • Fig. 1 is embodiment 1 annealed twin crystal coating material cross section focused ion beam micrograph
  • Fig. 2 is the surface X-ray diffraction spectrogram before and after annealing of embodiment 1 annealing twin crystal coating material;
  • Fig. 3 is embodiment 2 annealed twin crystal coating material cross section focused ion beam micrograph
  • Fig. 4 is the micrograph of the focused ion beam microscopic appearance of the cross-section of the growth twin coating material of Comparative Example 1;
  • Fig. 5 is the X-ray diffraction spectrogram of the coating surface when the growth twin coating material of Comparative Example 1 is not annealed;
  • Fig. 6 is a schematic diagram of product structure changes before and after annealing in one embodiment of the present invention.
  • Figure 7 is a flow chart of preparing a hybrid bonded structure in one embodiment of the present invention.
  • Figure 8 is a flow chart of preparing a hybrid bonded structure in another embodiment of the present invention.
  • the present embodiment provides a kind of twinned copper material, is prepared by following method, and described method comprises the following steps:
  • the auxiliary agent is sodium polystyrene sulfonate with a molecular weight of 40,000.
  • the high-purity titanium plate is used as the cathode, and it undergoes the processes of alkali washing, pickling, and water washing in sequence.
  • Coating post-treatment The coating is taken out from the plating solution and separated from the substrate (titanium plate), the coating is repeatedly rinsed with pure water to remove the residual plating solution, and finally the surface of the coating is dried with compressed air.
  • the coating in a tube furnace pass in a nitrogen protective atmosphere, set the temperature in the furnace to rise from room temperature to 350 °C at 10 °C/min and keep it warm for 1 hour, then cool naturally, take out the coating, and obtain twinned copper material, and then Called the annealing twin coating material.
  • Figure 1 and Figure 2 show the obtained coating cross-section focused ion beam microscopic topography and surface X-ray diffraction spectrum.
  • the thickness of the coating is 310 ⁇ m, mainly columnar grains parallel to the growth direction, and no abnormally grown grains are observed.
  • the nano-twinned layer is at an angle of 45° to the growth direction of the coating, and the crystal grains with the nano-twinned layer account for more than 90% of the total number of coating grains.
  • the coating has a preferred orientation of the (220) crystal plane (ie (110) crystal plane), and the (220)/(111) diffraction peak intensity ratio is >9.
  • the present embodiment provides a kind of twinned copper material, is prepared by following method, and described method comprises the following steps:
  • the auxiliary agent is sodium octadecylsulfonate.
  • the high-purity titanium plate is used as the cathode, and it undergoes the processes of alkali washing, pickling, and water washing in sequence.
  • Coating post-treatment The coating is taken out from the plating solution and separated from the substrate (titanium plate), the coating is repeatedly rinsed with pure water to remove the residual plating solution, and finally the surface of the coating is dried with compressed air.
  • the coating in a tube furnace pass it into a nitrogen protective atmosphere, set the temperature in the furnace to rise from room temperature to 2000 °C at 10 °C/min and keep it warm for 1 hour, then cool naturally, take out the coating, that is, obtain a twinned copper material, and Called the annealing twin coating material.
  • Figure 3 shows the focused ion beam microscopic topography of the obtained coating cross-section.
  • the thickness of the coating was 15 ⁇ m, mainly columnar grains parallel to the growth direction, and no abnormally grown grains were observed.
  • the nano-twinned layer is at an angle of 45° to the growth direction of the coating, and the crystal grains with the nano-twinned layer account for more than 50% of the total number of coating grains.
  • step (3) the temperature in the furnace is set to rise from room temperature to 400° C. at 10° C./min and the temperature is maintained for 1 hour.
  • the high-purity titanium plate is used as the cathode, and it undergoes the processes of alkali washing, pickling, and water washing in sequence.
  • Coating post-treatment The coating is taken out from the plating solution and separated from the substrate, the coating is rinsed repeatedly with pure water to remove the residual plating solution, and finally the surface of the coating is dried with compressed air to obtain a growth twin coating.
  • Example 2 The difference between this comparative example and Example 2 is that there is no auxiliary agent in the plating solution, and no annealing treatment is performed.
  • Figure 4 and Figure 5 show the obtained coating section focused ion beam microscopic topography and surface X-ray diffraction spectrum.
  • the thickness of the coating is 18 ⁇ m, mainly columnar grains parallel to the growth direction.
  • the high-density growth twinned layer is perpendicular to the growth direction of the coating, and the grains with the high-density nano-twinned layer account for more than 70% of the total number of coating grains.
  • the twinned copper material provided by the present invention is an annealed twinned copper with preferred orientation of (110) crystal plane, in which a high proportion of twin grain boundaries exists stably. Copper has better structural thermal stability, no abnormal grain growth in the common heat treatment temperature range, and shows the unique property that the proportion of twinned lamellar layers does not decrease but increases.
  • the method of the present invention has the advantages of easy operation, low cost, strong practicability, and suitability for industrialization promotion, and can be applied to the electroplating copper-related field represented by the manufacture and packaging of integrated circuits and circuit boards, and optimizes the stability of the heat treatment tissue structure of electroplated copper materials sex.
  • 2.5D or 3D packaging technology can stack two or more chips or wafers through bump bonding to realize the three-dimensional arrangement of chips, thereby significantly reducing the signal transmission distance and realizing High speed transmission and low power consumption.
  • bonding technology is fundamental to ensure reliable electrical connection and mechanical support between chips.
  • the micro-nano structure and thermal stability of electroplated copper are important factors affecting the mechanical properties of materials at room temperature and high temperature. Since the manufacturing process involves multiple high-temperature processes such as resin curing and solder welding, electroplated copper inevitably undergoes grain boundary migration and grain growth under the action of recrystallization, which usually leads to a decrease in material strength.
  • the hybrid bonding is that while copper and copper are bonded, the gaps between the bumps are filled with a dielectric layer and bonded to each other.
  • hybrid bonding effectively improves the bonding force between chips, and at the same time ensures better electrical connection, so it has a better application prospect.
  • copper bumps are prone to recrystallization during thermocompression bonding and subsequent processes such as reflow soldering or heat treatment, which reduces the mechanical strength of copper bumps and increases the risk of device failure.
  • the present invention also provides a hybrid bonding structure and a preparation method thereof.
  • the present embodiment provides a kind of hybrid bonding structure and preparation method thereof, as shown in Figure 7, described preparation method comprises the following steps:
  • S1 Deposit an adhesion layer of titanium and a seed layer of copper on the upper surface of the first substrate O1 to form a composite layer 02 of the adhesion layer and the seed layer.
  • the thicknesses of the adhesion layer and the seed layer are 100nm and 400nm respectively.
  • S2 Spin-coat a layer of photoresist 03 with a thickness of 15 microns on the upper surface of the composite layer 02 of the adhesion layer and the seed layer, perform exposure and development, and pattern at a specific position on the first substrate O1 to expose the adhesion Composite layer 02 of layer and seed layer.
  • the DC electroplating process includes:
  • S5 Cover the upper surface of the first substrate O1 with a polyimide dielectric layer 05 by spin coating, the thickness of the polyimide dielectric layer 05 is 20 microns, and then apply the polyimide dielectric layer 05 Semi-cured treatment.
  • S6 Use CMP to grind the upper surface of the polyimide dielectric layer 05 until the upper surface of the first copper bump 04 is exposed. Continue grinding to make the first copper bump 04 and the polyimide dielectric layer 05 coplanar and achieve a lower roughness. After the CMP is completed, plasma cleaning is performed on the upper surface of the first copper bump 04 and the polyimide dielectric layer 05, in order to clean and activate the bonding surface.
  • the parameters of the plasma cleaning are hydrogen 70 sccm, oxygen 20 sccm, power 500W, and time 360s.
  • the bonding parameters are: a heating temperature of 300° C., an applied pressure of 1 MPa, and a heating time of 1 hour.
  • the bonding process is also a process of annealing the first copper bump 04 , so an annealing twin structure is formed in the first copper bump 04 after the bonding is completed.
  • the bonding point was tested for shear strength and temperature cycle.
  • the results showed that the bonding point prepared according to this embodiment had a shear strength of 38 MPa, and the contact resistance increase rate was ⁇ 10% after 1000 cycles from -55°C to 70°C.
  • the present embodiment provides a kind of hybrid bonding structure and preparation method thereof, as shown in Figure 8, described preparation method comprises the following steps:
  • S1 Prepare a first silicon substrate 07 with a TSV structure, the TSV has a diameter of 60 microns and a depth of 300 microns.
  • the TSV is filled with conductive metal 08, and the material is copper.
  • S2 Spin-coat a layer of benzocyclobutene dielectric layer 09 on one side of the first silicon substrate 07, and the thickness of the benzocyclobutene dielectric layer 09 is 60 microns. Use photolithography to open a window at the position with the TSV structure, exposing the surface of the conductive metal 08 .
  • the electroplating process includes:
  • S6 repeat steps S1-S4 respectively to the second silicon substrate 11 and the second silicon substrate 12, then first silicon substrate 07, the corresponding bonding position of the second silicon substrate 11 and the second silicon substrate 12 Alignment is performed, and bonding is performed in a nitrogen atmosphere.
  • the bonding parameters are: the heating temperature is 200° C., the applied pressure is 2 MPa, and the heating time is 2 hours.
  • the shear strength test and temperature cycle test are carried out on the bonding point.
  • the results show that the bonding point prepared according to this example has a shear strength of 45MPa, and the contact resistance increase rate after 1000 cycles from -55°C to 70°C is ⁇ 10%. .
  • the difference between this embodiment and embodiment 4 is that the heating temperature in the bonding parameters is 400°C.
  • the proportion of annealing twins increases and the grains do not grow significantly, and the strength and toughness of the bumps are improved.
  • the shear strength test and temperature cycle test are carried out on the bonding point.
  • the results show that the bonding point prepared according to this example has a shear strength of 50 MPa, and the contact resistance increase rate is ⁇ 10% after 1000 cycles from -55°C to 70°C. .
  • the DC electroplating process in S3 includes:
  • the bonding point does not form an annealing twin structure.
  • the shear strength test and temperature cycle test were carried out on the bonding point.
  • the results showed that the bonding point prepared according to this comparative example had a shear strength of 22MPa, and the contact resistance increased by 10-20 after 1000 cycles from -55°C to 70°C. %.
  • the hybrid bonding structure provided by the present invention can effectively improve the bonding force between chips, while ensuring better electrical connection, and the copper bonding point has excellent tissue thermal stability and mechanical properties (especially high-temperature mechanical properties ), which has high mechanical strength and toughness, which improves service reliability.
  • the use of the specific composition of the copper bonding points of the present invention avoids recrystallization of the copper bonding points during the thermocompression bonding process and subsequent processes such as reflow soldering or heat treatment, thereby solving the resulting insufficient mechanical strength , Poor service reliability and other issues.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

本发明属于高性能金属材料及先进电子互连电镀技术领域,提供了一种孪晶铜材料和混合键合结构。所述孪晶铜材料具有(110)晶面择优取向,所述孪晶铜材料包括孪晶组织,所述孪晶组织包括孪晶片层,所述孪晶片层主要沿与晶粒生长方向夹角45°分布;具有所述孪晶片层的晶粒在所述孪晶铜材料的晶粒总数中的占比≥50%,和/或所述孪晶组织的体积占所述孪晶铜材料总体积的比值≥50%。本发明提供的孪晶铜材料是一种(110)晶面择优取向退火孪晶铜,其中高比例的孪晶界稳定存在,相比(110)晶面高度择优取向电镀微米孪晶铜,具有更优异的组织热稳定性,在电子材料领域常见热处理温度范围(例如200℃-400℃)晶粒无异常长大,并且表现出孪晶片层比例不降反升的独特性质。

Description

一种孪晶铜材料和混合键合结构 技术领域
本发明属于高性能金属材料及电子互连电镀生产技术领域,涉及一种孪晶铜材料和混合键合结构。
背景技术
电镀铜是电子电路的基本互连材料,承担信号和电力传输作用。传统铜基结构材料的强度主要通过固溶强化、细晶强化、加工强化等方式提升,但大量杂质或缺陷的引入往往导致材料延展性和导电性的急剧降低。孪晶界是一种特殊亚晶界,中科院金属研究所卢柯等发现,引入高比例纳米孪晶界与普通晶界一样能够阻碍位错运动,但相比后者对电子散射能力小一个数量级,从而赋予铜材超高强度,以及不退化的延展性和导电性等一系列优势特性(16-25um厚度铜箔,抗拉强度>1000MPa,延伸率>13%)。由于纳米孪晶是关于纯铜自身微纳组织结构的控制,因此在高性能电子电路领域具有重要应用潜力。
脉冲或直流电镀纳米孪晶铜工艺,是指电沉积直接制备具有典型高比例垂直于生长方向的纳米孪晶片层结构,即所谓生长孪晶。高比例纳米孪晶界的产生依赖电镀工艺及添加剂的选择,其形成机理可概括为电场施加与暂停(脉冲电镀)或添加剂吸附与脱附(直流电镀)等瞬态交替变化,会引起电结晶过程中反复的应力短暂积累并通过孪晶界形核释放,即形成所谓的生长孪晶。由于铜沉积趋于沿低表面能(111)晶面生长且层错能低,孪晶界平行于(111)晶面定向生长。而纳米孪晶界相比普通晶界能量更低、更为稳定,高比例的纳米孪晶界在热处理或自退火再结晶过程中可抑制晶界迁移和晶粒长大,从而使纳米孪晶组织表现出优于纳米晶、微米晶及粗晶等一般铜材组织的热稳定性。由上可知,该材料表现为(111)晶面高度择优取向,由于高密度纳米孪晶界的引入,赋予材料超高的强度的同时并不妥协其延展性和导电性,因此被广泛研究报道。
如今关于具有高比例孪晶界的铜材料(简称孪晶铜材料)的研究主要仍围绕(111)晶面择优取向和电镀生长孪晶开展,未见报道具有实用性的其他如(110)低指数晶面择优取向孪晶铜材料的制备方法。中国台湾交通大学Chin Chen团队报道了一种电镀所谓(110)晶面高度择优取向微米孪晶铜的电镀方法((Materials 2020,13,1211),与(111)晶面高度择优取向、晶粒尺寸小(0.8μm)、孪晶片层间距小(35nm)的电镀纳米孪晶铜形成对比,该材料也具有一定比例孪晶片层,但不同的是晶粒尺寸较大(4.4μm)、孪晶片层间距较宽(387nm)且平行于生长方 向。该组织250℃退火10分钟即发生明显的再结晶,晶粒长大明显,孪晶片层消失,因此所谓微米孪晶铜材料由于组织热稳定性较差仅作为反例展示。
综上,未见报道具有实用性的其他如(110)低指数晶面择优取向孪晶铜材料及其制备方法,对其进行研究以获得实用性的孪晶铜材料具有重要意义。
发明内容
针对现有技术中存在的上述问题,本发明的目的在于提供一种孪晶铜材料及制备方法和用途。
为达上述目的,本发明采用以下技术方案:
所述孪晶铜材料具有(110)晶面择优取向,所述孪晶铜材料包括孪晶组织,所述孪晶组织包括孪晶片层,所述孪晶片层主要沿与晶粒生长方向夹角45°分布;具有所述孪晶片层的晶粒在所述孪晶铜材料的晶粒总数中的占比≥50%,和/或所述孪晶组织的体积占所述孪晶铜材料总体积的比值≥50%。
本发明中,“所述孪晶片层主要沿与晶粒生长方向夹角45。分布”中的“主要”指的50%以上(例如52%,55%,60%,65%,70%,75%,80%,85%,90%,92%,95%,96%,98%,99%或100%)的孪晶片层。其中的“夹角”指的是孪晶片层与晶粒生长方向的锐角夹角。
本发明中,具有所述孪晶片层的晶粒在所述孪晶铜材料的晶粒总数中的占比例如可以是50%,55%,60%,65%,70%,75%,80%,85%,90%,95%,97%,98%或99%等。
本发明中,所述孪晶组织的体积占所述孪晶铜材料总体积的比值例如可以是50%、52%、55%、60%、63%、65%、70%、75%、80%、85%、88%、90%、95%、97%、98%或99%等。
本发明提供的孪晶铜材料是一种(110)晶面择优取向退火孪晶铜,其中高比例的孪晶界稳定存在,相比(110)晶面高度择优取向电镀微米孪晶铜,具有更优异的组织热稳定性,在电子材料常见热处理温度范围(例如200℃-400℃)晶粒无异常长大,并且表现出孪晶片层比例不降反升的独特性质。
本发明的孪晶铜材料能够适用于集成电路及线路板的制造封装为代表的电镀铜相关领域,优化电镀铜材料热处理组织结构的稳定性,即通过引入热处理产生并稳定孪晶组织,抑制晶粒在此过程的异常长大和材料强度的衰退。
以下作为本发明优选的技术方案,但不作为对本发明提供的技术方案的限制,通过以下 优选的技术方案,可以更好的达到和实现本发明的技术目的和有益效果。
进一步地,对所述孪晶铜材料进行XRD衍射分析,(220)/(111)衍射峰强度比大于2。例如3,4,5,6,7,8,9或10°强度比越高,代表更多晶粒沿(110)晶面定向生长,孪晶片层与晶粒生长方向45°生长取向性更强。
进一步地,所述孪晶铜材料通过对具有(111)晶面择优取向的预电镀铜材料进行热处理得到,所述热处理的温度≥200℃。示例性地,热处理的温度可以是200℃、220℃、240℃、260℃、300℃、350℃、400℃或450℃。
本发明中,预电镀铜材料指的是:未经退火处理的电镀铜材料。
通过对预电镀铜材料进行热处理,可以使(111)晶面择优取向转变为(110)晶面择优取向,并伴随着高比例退火孪晶的形成,孪晶片层主要沿与晶粒生长方向夹角45°分布,得到的孪晶铜材料表现出优异的热稳定性。
在一个可选的实施方式中,热处理的方式为退火。退火前后的产品结构变化示意图参见图6。
本发明的一个目的是提供一种孪晶铜材料的制备方法。
该孪晶铜材料的制备方法包括以下步骤:
(1)配制镀液
所述镀液包含铜离子、硫酸、氯离子、添加剂和水,所述添加剂包括抑制剂和辅助剂,所述辅助剂选自有机磺酸盐中的至少一种。
(2)直流电镀
将阳极和作为导电基底的阴极浸入镀液中,电镀,得到预电镀铜材料。
(3)对所述的预电镀铜材料进行热处理,所述热处理的温度≥200℃,得到所述的孪晶铜材料。
本发明中,热处理的温度≥200℃,例如200℃、225℃、260℃、280℃、300℃、320℃、350℃、370℃、400℃、450℃、500℃、550℃、600℃、650℃、700℃或750℃。
本发明开辟了一种新型(110)晶面高度择优取向和退火孪晶类型的孪晶铜材料的制备途径。区别于电镀一步形成生长孪晶,本发明的方法中,退火孪晶的形成具体包括预电镀铜及退火处理两个步骤,具体地,利用预电镀添加剂组合的化学调控,预电镀铜材料表现为一定(111)晶面择优取向且不形成高比例垂直于生长方向的生长孪晶,经过≥200℃热处理(例如退火1小时)后再转变为(110)晶面择优取向,并伴随高比例退火孪晶的形成,孪晶片层主要沿与晶粒生长方向夹角45°分布。在常见热处理温度范围晶粒无异常长大,从而表现出优异的 热稳定性。
本发明的方法中,预电镀的添加剂组合对于预电镀材料的结构有重要影响:通过在镀液中添加抑制剂,能够降低沉积速率,避免结晶粗大不致密;通过在镀液中添加辅助剂,能提升沉积速率,通过辅助剂与抑制剂的竞争作用,实现双电层抑制剂的动态可控脱附,引入孵化退火孪晶界所必要的电结晶缺陷浓度。
本发明的方法通过退火孪晶取代常规的电镀直接得到生长孪晶,可以保证热处理过程中高比例孪晶界的稳定存在,为(110)晶面高度择优取向孪晶铜材料的制备和应用开辟了新思路。
进一步地,步骤(1)中,所述有机磺酸盐包括聚苯乙烯磺酸盐、聚乙烯磺酸盐、烷基磺酸盐和烷基苯磺酸盐中的至少一种。
进一步地,所述聚苯乙烯磺酸盐和所述聚乙烯磺酸盐的分子量独立地为1000-100000,例如1000、3000、5000、8000、10000、12500、15000、17000、20000、25000、35000、40000、50000、X0000、7000、8000或10000。
进一步地,所述烷基磺酸盐和烷基苯磺酸盐的碳原子数≥12。示例性地,碳原子数可以是12、13、14、15、16、17或20。需要说明的是,烷基磺酸盐和烷基苯磺酸盐的碳原子数可以相同,也可以不同。
进一步地,步骤(1)中,所述镀液中辅助剂的浓度为10-500ppm。示例性地,所述镀液中辅助剂的浓度为lOppm、20ppm、30ppm、40ppm、50ppm、60ppm、70ppm、80ppm、100ppm、150ppm、200ppm、230ppm、260ppm、300ppm、350ppm、400ppm或500ppm。
进一步地,步骤(1)中,所述抑制剂为明胶,所述明胶的凝结值为10-300bloom。示例性地,所述明胶的凝结值为lObloom、20bloom、30bloom、50bloom、70bloom、80bloom、100bloom、125bloom、150bloom、180bloom、200bloom、225bloom、240bloom、260bloom或300bloom。
进一步地,步骤(1)中,所述镀液中抑制剂的浓度为5-200ppm。示例性地,所述镀液中抑制剂的浓度为5ppm、lOppm、20ppm、30ppm、40ppm、50ppm、60ppm、70ppm、80ppm、100ppm、120ppm、150ppm、180ppm或200ppm。
进一步地,步骤(1)中,所述镀液中铜离子的浓度为20-70g/L。示例性地,所述镀液中铜离子的浓度为20g/L、30g/L、40g/L、50g/L、60g/L、或70g/L。
在实际制备过程中,铜离子可来源于铜盐,例如可以选择五水硫酸铜((CuS0 4·5H 2O)必获得。
进一步地,步骤(1)中,所述镀液中硫酸的浓度为20-200g/L。示例性地,所述镀液中硫 酸的浓度为20g/L、25g/L、30g/L、35g/L、40g/L、50g/L、60g/L、70g/L、80g/L、100g/L、120g/L、150g/L、160g/L、180g/L或200g/L。
在实际制备过程中,硫酸可来源于浓硫酸,例如可以选择稀释96-98wt%浓硫酸(H 2S0 4)获得。
进一步地,步骤(1)中,所述镀液中氯离子的浓度为20-80ppm。示例性地,所述镀液中氯离子的浓度为20ppm、30ppm、40ppm、45ppm、50ppm、60ppm、70ppm或80ppm。
在实际制备过程中,氯离子可以来源于盐酸。
进一步地,步骤(2)中,所述阳极选自磷铜阳极,所述磷铜阳极中的磷含量为0.03-0.075wt%。示例性地,所述磷铜阳极中的磷含量为0.03wt%、0.04wt%、0.05wt%、0.06wt%或0.07wt%。
在一个可选的实施方式中,磷铜阳极经电解活化处理,本发明对电解活化处理的条件不作具体限定,可以选择如在仅含铜离子、硫酸及氯离子的镀液中以lA/dm 2恒电流电解30min,或采用其他本领域常用的电解活化参数,但需保证材料表面形成均匀的黑色磷化物膜。
进一步地,步骤(2)中,所述电镀的温度为20℃-50℃。示例性地,步骤(2)中,所述电镀的温度为20℃、23℃、25℃、28℃、30℃、35℃、40℃、45℃或50℃。
进一步地,步骤(2)中,所述电镀在恒温条件下进行。
进一步地,步骤(2)中,所述电镀的电流密度为0.5-25A/dm 2。示例性地,所述电镀的电流密度为0.5A/dm 2、lA/dm 2、1.5A/dm 2、2A/dm 2、3A/dm 2、4A/dm 2、5A/dm 2、6A/dm 2、7A/dm 2、8A/dm 2、8.5A/dm 2、9A/dm 2、10A/dm 2、11A/dm 2、12A/dm 2、15A/dm 2、18A/dm 2、20A/dm 2、21A/dm 2、22A/dm 2、23A/dm 2或25A/dm 2
进一步地,步骤(2)中,所述电镀的时间为20-1800min。可选地,所述电镀的时间为20min、30min、40min、60min、80min、90min、120min、150min、180min、200min、240min、280min、300min、350min、450min、500min、550min、600min、700min、800min、850min、900min、1000min、11000min、1200min,1250min、1300min、1400min、1500min、1600min、1700min或1750min。
步骤(2)所述电镀过程中还对电镀液施加搅拌,所述搅拌包括循环喷流、空气搅拌、磁力搅拌和机械搅拌中的至少一种。
步骤(3)所述热处理包括退火处理,包括:将所述的预电镀铜材料在惰性气氛中从室温升温至热处理的温度,保温一定时间,最后回复室温,所述热处理的温度为200-750℃,所述升温的速率为1-50℃/min,所述保温的时间为20-1200min。
本发明中,室温指20-25℃。
可选地,所述热处理的温度为200℃、225℃、260℃、280℃、300℃、320℃、350℃、370℃、400℃、450℃、500℃、550℃、600℃、650℃、700℃或750℃。可选地,所述热处理的温度为200-400℃。
可选地,所述保温的时间为20min、30min、40min、60min、80min、90min、120min、150min、180min、200min、240min、280min、300min、350min、450min、500min、550min、600min、700min、800min、850min、900min、1000min、11000min或1200min。
本发明中,惰性气氛中的气体包括但不限于氮气、氦气、氢气和氢气中的至少一种。
本发明中对导电基底的种类不作具体限定,例如可以选择金属铜、钛、担、金、钨、钻、镍及其上述几种金属中的至少两种形成的合金,也可以是所述的合金制成的板面、薄膜、印制线路板、晶圆籽晶层等材料。
本发明中对导电基底的制备方法不作限定,例如可以选择电镀、化学镀、溅射、熔铸等方法制备。
本发明中,导电基底在使用前可以经过前处理,例如,对于表面有油污和氧化物的基底,可以在基底使用前先经过充分除油、酸洗和水洗过程,以完全移除表面油污及氧化物,从而暴露出新鲜且清洁的基底表面。
除油过程可以选择10wt%氢氧化钠(NaOH)溶液浸泡搅动或其他本领域常用的除油方式。
酸洗过程可以选择5wt%硫酸(H 2S0 4)溶液浸泡搅动或其他本领域常用的去除氧化物的方式。
本发明的一个目的是提供孪晶铜材料的制备方法。
该孪晶铜材料的制备方法包括以下步骤:
(1)配制镀液
将铜盐、硫酸、氯化物、抑制剂和辅助剂溶于水中,并充分分散均匀,得到镀液,所述镀液中包含铜离子20-70g/L、硫酸20-200g/L,氯离子20-80ppm、抑制剂5-200ppm、辅助剂10-500ppm和余量水,所述抑制剂包括明胶,所述辅助剂选自有机磺酸盐中的至少一种;
(2)直流电镀
将阳极和作为导电基底的阴极浸入镀液中,在20-50℃的温度下,以恒电流施镀,电流密度为0.5-25A/dm 2,施镀的时间为20-1800min,得到预电镀铜材料;
(3)将预镀铜材料加热升温至≥200℃并保持20-1200min,得到所述的孪晶铜材料。
本发明的一个目的提供一种如上任意一项所述的孪晶铜材料的用途,所述孪晶铜材料用 于电子电路互连场景,所述电子电路互连场景包括集成电路封装或印制线路板制造。
本发明的一个目的是提供一种混合键合结构。
所述混合键合结构包括相对设置的第一衬底和第二衬底,所述第一衬底上设置有第一键合层,所述第二衬底上设置有第二键合层,所述第一键合层与所述第二键合层键合形成键合界面;
所述第一键合层和/或所述第二键合层中设置有铜键合点,所述铜键合点为权利要求1所述的孪晶铜材料。
所述第一键合层和/或所述第二键合层中设置有铜键合点,所述铜键合点具有(110)晶面择优取向,所述孪晶铜材料包括孪晶组织,所述孪晶组织包括孪晶片层,所述孪晶片层主要沿晶粒生长方向夹角45°分布;具有所述孪晶片层的晶粒在所述孪晶铜材料的晶粒总数中的占比≥50%,和/或所述孪晶组织的体积占所述孪晶铜材料总体积的比值≥50%。
本发明提供的混合键合结构能够有效地提高芯片间的结合力,同时能保证较好的电气连接,而且铜键合点具有优异的组织热稳定性和力学性能(尤其是高温力学性能),其具有高的机械强度和韧性,提升了服役可靠性。
本发明的特定组成的铜键合点的使用,避免了铜键合点在热压键合过程中以及后续制程如回流焊或热处理时发生再结晶,从而解决了由此导致的机械强度不足、服役可靠性差等问题。
以下作为本发明优选的技术方案,但不作为对本发明提供的技术方案的限制,通过以下优选的技术方案,可以更好的达到和实现本发明的技术目的和有益效果。
进一步地,所述铜键合点的高度为0.5-500微米。可选地,所述铜键合点的高度为0.5微米、0.8微米、1微米、2微米、3微米、5微米、8微米、10微米、15微米、20微米、25微米、30微米、35微米、40微米、45微米、50微米、55微米、60微米、65微米、70微米、80微米、90微米、100微米、115微米、130微米、140微米、150微米、160微米、180微米、200微米、220微米、240微米、265微米、280微米、300微米、320微米、340微米、350微米、375微米、385微米、400微米、405微米、420微米、450微米、470微米、480微米或490微米等,优选为30-300微米,在此窗口内电结晶微观组织均匀稳定,保障高比例退火孪晶产生。
本发明对第一衬底和第二衬底的材质不作具体限定,所述第一衬底和第二衬底的材质独立地包括硅、化合物、陶瓷或者玻璃。
可选地,所述第一键合层包括介电层和间隔设置于所述介电层内的铜键合点,所述第一 键合层的表面露出所述铜键合点用于键合。
可选地,所述第二键合层包括介电层和间隔设置于所述介电层内的铜键合点,所述第二键合层的表面铜露出所述凸点用于键合。
可选地,所述第一键合层中的介电层和所述第二键合层中的介电层的材质独立地选自有机聚合物或氧化物中的至少一种。
本发明的一个目的是提供一种混合键合结构的制备方法。
该混合键合结构的制备方法包括以下步骤:
(1)提供第一衬底和第二衬底,在所述第一衬底上形成第一键合层,在所述第二衬底上形成第二键合层,所述第一键合层和/或所述第二键合层中设置铜凸点,所述铜凸点为预电镀铜材料。
(2)将所述第一衬底和所述第二衬底相对设置,热压键合,第一键合层与所述第二键合层键合形成键合界面,得到所述的混合键合结构。
其中,所述热压键合的温度≥200℃。
本发明的方法中,第一衬底和第二衬底相对设置,指的是第一衬底上的第一键合层和第二衬底上的第二键合层相对设置。
在一个可选的实施方式中,第一键合层中的铜凸点与第二键合层中的铜凸点一一对应并接触。
可选地,热压键合的温度为200℃、220℃、240℃,260℃、300℃、350℃、400℃或450℃。在此温度下进行热压键合相当于进行退火处理,在该温度条件下退火处理的过程中可持续形成退火孪晶结构(也即孪晶组织)。
本发明的方法中,设置的铜凸点具有一定(111)晶面择优取向和平行于沉积方向的生长孪晶界,在经过热压键合(例如热压键合的温度为200℃)后可形成退火孪晶结构,得到铜键合点,铜键合点具有(110)晶面择优取向,其中的孪晶片层沿晶粒生长方向夹角45°分布,具有所述孪晶片层的晶粒在所述铜键合点的晶粒总数中的占比≥50%,和/或所述孪晶组织的体积占所述铜键合点总体积的比值≥50%。
本发明的方法中,经过热压键合处理,具有一定(111)晶面择优取向转变为具有(110)晶面择优取向的铜键合点,其具有优异的组织热稳定性,在微电子互连常用热处理温度范围内(约200到400℃),随着退火温度的提升,未见晶粒异常长大,晶粒内退火孪晶的比例增加,铜凸点的强度和韧性均有增强,从而区别于“退火软化韧化”的微米晶组织和生长孪晶组织凸点,表现出独特的“退火强化韧化”特性。
本发明的方法提高了键合后的铜凸点(也即铜键合点)的组织热稳定性和高温力学性能,使得混合键合结构的服役可靠性增加。
作为本发明所述方法的一个优选技术方案,步骤(1)中,按照下述方法制备第一衬底和/或第二衬底,所述方法包括以下步骤:
(Ⅰ)制备具有导电层的衬底;
(Ⅱ)在衬底的导电层的表面利用光刻工艺进行图形化处理,导电层上形成光刻胶的图形,未设置光刻胶的部分暴露出导电层;
(Ⅲ)在未设置光刻胶的部分填充形成铜凸点;
(Ⅳ)去除多余的光刻胶和导电层;
(Ⅴ)沉积介电层,并对晶圆表面进行化学机械抛光(CMP)处理,暴露出铜凸点。
其中,步骤(Ⅰ)中的衬底为第一衬底或第二衬底。
本发明中,步骤(Ⅱ)所述光刻工艺是使用光刻胶通过曝光而形成图形,图形指的是覆盖光刻胶的区域,未覆盖光刻胶的区域后续用于填充形成铜凸点,例如可以通过电镀的方式形成具有(111)晶面择优取向的预电镀铜材料,作为铜凸点。
本发明中,步骤(Ⅴ)对晶圆表面进行CMP处理的目的,一是研磨掉多余的介质层,露出铜凸点(例如铜柱)表面,另一个重要的作用是使键合表面完全共面,同时达到键合所需的粗糙度要求。
在一个可选的实施方式中,步骤(Ⅰ)中的导电层可以为通过气相沉积得到的粘附层以及种子层;也可以为充满导电金属的通孔硅(TSV)顶部。示例性地,粘附层的材质可以为钽、钛或其氮化物中的至少一种。所述种子层的材质为铜。所述导电金属为铜。
在一个可选的实施方式中,TSV的形状为圆形,直径为15-100微米,例如15微米、20微米、30微米、40微米、50微米、60微米、70微米、80微米、90微米或100微米等。
在一个可选的实施方式中,每个衬底上含有1个及以上的独立TSV结构,所述TSV结构在衬底上以一定的顺序排列。
可选地,步骤(Ⅱ)形成的光刻胶的厚度为1-500微米。可选地,步骤(Ⅱ)形成的光刻胶的厚度为1微米、3微米、5微米、8微米、10微米、15微米、20微米、25微米、30微米、35微米、40微米、45微米、50微米、60微米、80微米、100微米、120微米、130微米、140微米、150微米、165微米、180微米、200微米、220微米、240微米、260微米、280微米、300微米、325微米、350微米、375微米、400微米、430微米、460微米或500微米。
本发明对步骤(Ⅴ)沉积介电层的方法不作具体限定,例如,所述介电层材质为苯并环丁 烯(Benzocyclobutene,BCB),SU-8,聚酞亚胺(Polyimide,PI)等,沉积方法为旋涂;又如,所述介电层为Si0 2,沉积方法为物理气相沉积。
可选地,所述介电层的厚度应略高于铜凸点(例如铜柱)。
在一个可选的实施方式中,步骤(Ⅴ)中,在CMP处理后,对晶圆进行等离子清洗处理。通过等离子清洗处理,可以消除CMP产生的遗留物,同时可以活化键合表面,降低键合难度。
在一个可选的实施方式中,等离子清洗的参数为:氢气70-100sccm,氧气10-50sccm,功率500-800W,时间60-600s。可选地,氢气的流速为70sccm、80sccm、85sccm、90sccm或100sccm。可选地,氧气的流速为lOsccm、20sccm、30sccm、40sccm或50sccm。可选地,功率为500W、550W、600W、650W、700W或800W。可选地,时长为60s、80s、100s、125s、150s、160s、180s、200s、220s、260s、300s、320s、350s、400s、425s、450s、480s、500s、550s或600s。
作为本发明所述方法的一个优选技术方案,步骤(1)中,按照下述方法制备第一衬底和/或第二衬底,所述方法包括以下步骤:
(Ⅰ)提供具有TSV结构的硅衬底,TSV中填充导电金属;
(Ⅱ)在硅衬底的一面涂覆介电层,使用光刻工艺在具有TSV结构的位置进行开窗,暴露出导电金属;
(Ⅲ)在暴露导电金属的位置填充形成铜凸点;
(Ⅳ)对晶圆表面进行CMP处理;
其中,步骤(Ⅱ)中的硅衬底为第一衬底或第二衬底。
本发明步骤(Ⅱ)中,使用光刻工艺进行开窗是现有技术,本领域技术人员可参照现有技术公开的内容进行光刻开窗。
本发明中,步骤(Ⅳ)对晶圆表面进行CMP处理,可以使铜凸点和介电层共面,并达到较低的粗糙度。
在一个可选的实施方式中,步骤(Ⅱ)提供的具有TSV结构的硅衬底中,TSV的形状为圆形,直径为15-100微米,例如15微米、20微米、30微米、40微米、50微米、60微米、70微米、80微米、90微米或100微米。
在一个可选的实施方式中,每个衬底上含有1个及以上的独立TSV结构,所述TSV结构在衬底上以一定的顺序排列。
在一个可选的实施方式中,导电金属为铜。
可选地,采用直流电镀技术进行铜凸点的填充,步骤(1)所述预电镀铜材料通过电镀制备 得到,所述电镀的方法包括以上任一项所述的该孪晶铜材料的制备方法中的步骤(1)配制镀液和步骤(2)直流电镀。
可选地,升温至所述热压键合的温度的升温速率为0.5-20℃/min。可选地,升温至所述热压键合的温度的升温速率为0.5℃/min、1℃/min、2℃/min、3℃/min、5℃/min、8℃/min、10℃/min、12℃/min、15℃/min、17℃/min或20℃/min。
可选地,所述热压键合的过程中,施加的压强为0.5-3MPa。可选地,所述热压键合的过程中,施加的压强为0.5MPa、1MPa、1.5MPa、2MPa、2.5MPa或3MPa。
可选地,所述热压键合的气氛为惰性气氛或真空。可选地,所述惰性气氛中的气体可以是氮气、氦气、氢气中的一种或多种的混合气。
可选地,所述热压键合时间为1-2小时。可选地,所述热压键合时间为1小时、1.2小时、1.5小时、1.7小时或2小时。
与己有技术相比,本发明具有如下有益效果:
(1)本发明提供的孪晶铜材料是一种(110)晶面择优取向退火孪晶铜,其中高比例的孪晶界稳定存在,相比(110)晶面高度择优取向电镀微米孪晶铜,具有更优异的组织热稳定性,在电子材料领域常见热处理温度范围(例如200℃-400℃)晶粒无异常长大,并且表现出孪晶片层比例不降反升的独特性质。
(2)本发明的制备方法基于电镀铜工艺及热处理技术,通过对电镀液添加剂组合调控并对镀层施加热处理等简便手段,即可改变电镀铜晶面择优取向并产生高比例退火孪晶组织,具有操作容易、成本低廉、实用性强和适合产业化推广等优点,能够适用于集成电路及线路板的制造封装为代表的电镀铜相关领域,优化电镀铜材料热处理组织结构的稳定性。
(3)本发明提供的混合键合结构中,铜键合点具有高比例具有高比例退火孪晶而表现出“退火强化”特性,即互连材料的强度和韧性均随退火温度的升高而增大,与“退火软化”的一般微米晶组织的电镀铜凸点不同,提升了键合互连结构整体力学性能。同时,该退火孪晶片层还具有较高热稳定性的特点,在微电子互连常用热处理温度范围内(大约200℃-400℃),退火孪晶界比例不降反增,晶粒无异常长大。因此,本发明的技术方案可以降低键合点在键合过程中或多次回流及热处理工艺后的失效风险,从而增强互连结构和器件的服役可靠性。
(4)本发明的混合键合结构的制备方法基于铜凸点电镀填充和热压键合技术,仅通过电镀铜材料的微观组织工程增强铜凸点互连结构力学性能,具有操作容易、成本低廉、工艺兼容等优点,适用于在微电子封装领域产业化推广。
附图说明
图1为实施例1退火孪晶镀层材料截面聚焦离子束显微形貌图;
图2为实施例1退火孪晶镀层材料退火前后表面X射线衍射谱图;
图3为实施例2退火孪晶镀层材料截面聚焦离子束显微形貌图;
图4为对比例1生长孪晶镀层材料截面聚焦离子束显微形貌图;
图5为对比例1生长孪晶镀层材料未退火时镀层表面X射线衍射谱图;
图6为本发明一个实施方式中退火前后的产品结构变化示意图;
图7是本发明一个实施例中制备混合键合结构的流程图;
图8是本发明另一个实施例中制备混合键合结构的流程图;
其中,O1-第一衬底,02-粘附层和种子层的复合层,03-光刻胶,04-第一铜凸点 05-聚酞亚胺介电层,06-第二衬底,07-第一硅衬底,08-导电金属,09-苯并环丁烯介电层 10-第二铜凸点,11-第二硅衬底,12-第二硅衬底。
具体实施方式
为了使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明,但不能理解为对本发明的可实施范围的限定。
实施例1
本实施例提供一种孪晶铜材料,通过下述方法制备得到,所述方法包括以下步骤:
(1)镀液配制
采用如下组分比例配制电镀液并分散均匀:铜离子30g/L,硫酸30g/L,氯离子30ppm,抑制剂80ppm,辅助剂300ppm,纯水250mL;其中,抑制剂为凝结值100bloom的明胶,辅助剂为分子量40000的聚苯乙烯磺酸钠。
(2)直流电镀
a.阴极前处理。采用高纯钛板为阴极,依次经过碱洗、酸洗、水洗过程。
b.直流电镀。在镀液中浸入钛板阴极、磷铜阳极(磷含量0.05wt%),施加300rpm磁力搅拌,控制镀液25℃恒温。然后接入整流器,以3A/dm 2电流密度施镀120min。
c.镀层后处理。将镀层自镀液取出并与基底(钛板)分离,用纯水反复冲洗镀层,移除残余镀液,最后用压缩空气吹干镀层表面。
(3)退火处理。
将镀层置于管式炉,通入氮气保护气氛,设置炉内以10℃/min从室温升至350℃并保温1小时,然后自然冷却,取出镀层,也即得到孪晶铜材料,又称为退火孪晶镀层材料。
所得镀层截面聚焦离子束显微形貌图及表面X射线衍射谱图如图1和图2所示。镀层厚度为310μm,主要为平行于生长方向的柱状晶粒,未观察到异常长大晶粒。纳米孪晶片层与镀层生长方向呈45°角,具有纳米孪晶片层的晶粒在镀层晶粒总数占比>90%。镀层为(220)晶面(即(110)晶面)择优取向,(220)/(111)衍射峰强度比>9。
实施例2
本实施例提供一种孪晶铜材料,通过下述方法制备得到,所述方法包括以下步骤:
(1)镀液配制
采用如下组分比例配制电镀液并分散均匀:铜离子40g/L,硫酸40g/L,氯离子40ppm,抑制剂100ppm,辅助剂500ppm,纯水250mL;其中,抑制剂为凝结值100bloom的明胶,辅助剂为十八烷基磺酸钠。
(2)直流电镀
a.阴极前处理。采用高纯钛板为阴极,依次经过碱洗、酸洗、水洗过程。
b.直流电镀。在镀液中浸入钛板阴极、磷铜阳极(磷含量0.05wt%),施加300rpm磁力搅拌,控制镀液30℃恒温。然后接入整流器,以3A/dm 2电流密度施镀20min。
c.镀层后处理。将镀层自镀液取出并与基底(钛板)分离,用纯水反复冲洗镀层,移除残余镀液,最后用压缩空气吹干镀层表面。
(3)退火处理。
将镀层置于管式炉,通入氮气保护气氛,设置炉内以10℃/min从室温升至2000℃并保温1小时,然后自然冷却,取出镀层,也即得到孪晶铜材料,又称为退火孪晶镀层材料。
所得镀层截面聚焦离子束显微形貌图如图3所示。镀层厚度为15μm,主要为平行于生长方向的柱状晶粒,未观察到异常长大晶粒。纳米孪晶片层与镀层生长方向呈45°角,具有纳米孪晶片层的晶粒在镀层晶粒总数占比>50%。
实施例3
本实施例与实施例2的区别在于,步骤(3)设置炉内以10℃/min从室温升至400℃并保温1小时。
经测试,随着退火温度升高至400℃,择优取向增强,孪晶比例相应提升,且未见晶粒异常长大,从而表现出优异的热稳定性。
对比例1
(1)镀液配制
采用如下组分比例配制电镀液并分散均匀:铜离子40g/L,硫酸40g/L,氯离子40ppm,抑制剂100ppm,纯水250mL,无辅助剂;其中,抑制剂为凝结值100bloom的明胶。
(2)直流电镀
a.阴极前处理。采用高纯钛板为阴极,依次经过碱洗、酸洗、水洗过程。
b.直流电镀。在镀液中浸入钛板阴极、磷铜阳极(磷含量0.05wt%),施加300rpm磁力搅拌,控制镀液30℃恒温。然后接入整流器,以3A/dm 2电流密度施镀30min。
c.镀层后处理。将镀层自镀液取出并与基底分离,用纯水反复冲洗镀层,移除残余镀液,最后用压缩空气吹干镀层表面,得到生长孪晶镀层。
本对比例与实施例2的区别在于,镀液中无辅助剂,且未进行退火处理。
所得镀层截面聚焦离子束显微形貌图及表面X射线衍射谱图如图4和图5所示。镀层厚度为18μm,主要为平行于生长方向的柱状晶粒。高密度生长孪晶片层垂直于镀层生长方向,具有高密度纳米孪晶片层的晶粒在镀层晶粒总数占比>70%。
综上,本发明提供的孪晶铜材料是一种(110)晶面择优取向退火孪晶铜,其中高比例的孪晶界稳定存在,相比(110)晶面高度择优取向电镀微米孪晶铜,具有更优异的组织热稳定性,在常见热处理温度范围晶粒无异常长大,并且表现出孪晶片层比例不降反升的独特性质。
本发明的方法具有操作容易、成本低廉、实用性强和适合产业化推广等优点,能够适用于集成电路及线路板的制造封装为代表的电镀铜相关领域,优化电镀铜材料热处理组织结构的稳定性。
微电子封装领域2.5D或3D封装技术可以将两个或多个芯片或晶圆通过凸点键合的方式堆叠起来,实现了芯片的立体排布,从而显著减小了信号传输距离,实现了高速传输和低功耗。作为其中关键技术之一的键合技术,是保证芯片间具有可靠电气连接和机械支撑的根本。电镀铜微纳组织结构及其热稳定性是影响材料常温和高温力学性能的重要因素。由于制造流程涉及树脂固化、钎料焊接等多道高温处理工序,电镀铜不可避免地在再结晶作用下发生晶界迁移和晶粒长大,通常引发材料强度的下降。常用的键合方法有氧化物键合、钎料键合、铜铜键合、有机聚合物键合以及混合键合。其中混合键合是在铜铜键合的同时,在凸点间的空隙由介电层进行填充并相互键合。相比于其他方法,混合键合有效地提高了芯片间的结合力,同时能保证较好的电气连接,因此具有较好的应用前景。但是,铜凸点在热压键合过程中以及后续制程如回流焊或热处理时容易发生再结晶,使得铜凸点的机械强度下降,从而增加了器件的失效风险。为了解决上述问题,本发明还提供了一种混合键合结构及其制备方法。
实施例4
本实施例提供了一种混合键合结构及其制备方法,如图7所示,所述制备方法包括以下步骤:
S1:在第一衬底O1的上表面沉积粘附层钛和种子层铜,形成粘附层和种子层的复合层02,粘附层和种子层的厚度分别为100nm和400nm。
S2:在粘附层和种子层的复合层02的上表面旋涂一层厚度为15微米的光刻胶03,进行曝光显影在第一衬底O1的特定位置进行图形化,暴露出粘附层和种子层的复合层02。
S3:使用直流电镀工艺进行第一铜凸点04的填充,第一铜凸点04的镀层高度为15微米;
其中,直流电镀工艺包括:
(a)镀液配制
采用如下组分比例配制电镀液并分散均匀:铜离子30g/L,硫酸50g/L,氯离子30ppm,明胶100ppm(凝结值为200bloom),聚乙烯磺酸钠(分子量50000)100ppm以及水。
(b)直流电镀
在镀液中浸入钛板阴极、高纯磷铜阳极(磷含量0.04wt%),控制镀液25℃恒温。然后接入整流器,以3A/dm 2电流密度施镀。
S4:使用去胶液将光刻胶03去除,并使用湿法刻蚀的方法将粘附层和种子层的复合层02去除。
S5:使用旋涂的方法在第一衬底O1的上表面覆盖一层聚酞亚胺介电层05,聚酞亚胺介电层05的厚度20微米,然后对聚酞亚胺介电层05进行半固化处理。
S6:使用CMP对聚酞亚胺介电层05上表面进行研磨,直至暴露出第一铜凸点04的上表面。继续研磨使得第一铜凸点04和聚酞亚胺介电层05共面并达到较低的粗糙度。CMP完毕后对第一铜凸点04和聚酞亚胺介电层05上表面进行等离子清洗,目的是清洁并活化键合表面。等离子清洗的参数为氢气70sccm,氧气20sccm,功率500W,时间360s。
S7:在第二衬底06的上表面重复上述步骤,然后将第二衬底06与第一衬底O1相应键合位置对准,在氮气气氛中进行铜凸点间的键合和介电层间的粘附。键合参数为:加热温度300℃,施加的压强1MPa,加热时间为1小时。键合的过程也是对第一铜凸点04进行退火的过程,因此在键合完毕后第一铜凸点04内形成退火孪晶组织。
工艺实施完毕后对键合点进行剪切强度测试以及温循测试,结果显示依据本实施例制备的键合点剪切强度为38MPa,-550C至70℃循环1000次后接触电阻增加率<10%。
实施例5
本实施例提供了一种混合键合结构及其制备方法,如图8所示,所述制备方法包括以下步骤:
S1:准备一个具有TSV结构的第一硅衬底07,TSV的直径为60微米,深度300微米。TSV中填充了导电金属08,材质为铜。
S2:在第一硅衬底07的一面旋涂一层苯并环丁烯介电层09,苯并环丁烯介电层09的厚度60微米。使用光刻技术在具有TSV结构的位置进行开窗,暴露出导电金属08的表面。
S3:在导电金属08的表面电镀第二铜凸点10,使得第二铜凸点10的镀层高度为60微米;
其中,电镀的工艺包括:
(a)镀液配制
采用如下组分比例配制电镀液并分散均匀:铜离子50g/L,硫酸1508/L,氯离子70ppm,明胶20ppm(凝结值为100bloom),聚苯乙烯磺酸钠(分子量40000)300ppm以及水。
(b)直流电镀
在镀液中浸入钛板阴极、高纯磷铜阳极(磷含量0.07wt%),控制镀液25℃恒温。然后接入整流器,以6A/dm 2电流密度施镀。
S4:由于第一硅衬底07表面没有多余的光刻胶和导电层,因此直接对第二铜凸点10和苯并环丁烯介电层09上表面进行CMP处理,使得第二铜凸点10和苯并环丁烯介电层09共面并达到较低的粗糙度。CMP完毕后对第二铜凸点10和苯并环丁烯介电层09上表面进行等离子清洗,参数为氢气60sccm,氧气30sccm,功率700W,时间180s。
S5:对第一硅衬底07的另一个表面重复进行上述步骤,得到上下对称的结构。
S6:对第二硅衬底11和第二硅衬底12分别重复步骤S1-S4,然后将第一硅衬底07,第二硅衬底11和第二硅衬底12的相应键合位置进行对准,在氮气气氛中进行键合。键合参数为:加热温度为200℃,施加的压强为2MPa,加热时间为2小时。
工艺实施完毕后对键合点进行剪切强度测试以及温循测试,结果显示依据本实施例制备的键合点剪切强度为45MPa,-55℃至70℃循环1000次后接触电阻增加率<10%。
实施例6
本实施例与实施例4的区别在于,键合参数中的加热温度为400℃。
随着退火温度的提升,退火孪晶比例提升且晶粒未见明显长大,凸点的强度和韧性均有所提升。
工艺实施完毕后对键合点进行剪切强度测试以及温循测试,结果显示依据本实施例制备的键合点剪切强度为50MPa,-55℃至70℃循环1000次后接触电阻增加率<10%。
对比例2
本对比例与实施例4的S1-S2和S4-S7步骤一致,区别在于:
1.S3中直流电镀工艺包括:
(a)镀液配制
采用如下组分比例配制电镀液并分散均匀:铜离子50g/L,硫酸100g/L,氯离子50ppm,二硫二丙烷磺酸钠lOppm,聚乙二醇200ppm,健那绿20ppm以及水。
(b)直流电镀
在镀液中浸入钛板阴极、高纯磷铜阳极(磷含量0.04wt%),控制镀液25℃恒温。
然后接入整流器,以3A/dm 2电流密度施镀。
2.在S7中键合点并不会形成退火孪晶组织。
工艺实施完毕后对键合点进行剪切强度测试以及温循测试,结果显示依据本对比例制备的键合点剪切强度为22MPa,-55℃至70℃循环1000次后接触电阻增加了10-20%。
综上,本发明提供的混合键合结构能够有效地提高芯片间的结合力,同时能保证较好的电气连接,而且铜键合点具有优异的组织热稳定性和力学性能(尤其是高温力学性能),其具有高的机械强度和韧性,提升了服役可靠性。
本发明的本发明的特定组成的铜键合点的使用,避免了铜键合点在热压键合过程中以及后续制程如回流焊或热处理时发生再结晶,从而解决了由此导致的机械强度不足、服役可靠性差等问题。

Claims (10)

  1. 一种孪晶铜材料,其特征在于,所述孪晶铜材料具有(110)晶面择优取向,所述孪晶铜材料包括孪晶组织,所述孪晶组织包括孪晶片层,所述孪晶片层主要沿与晶粒生长方向夹角45°分布;具有所述孪晶片层的晶粒在所述孪晶铜材料的晶粒总数中的占比≥50%,和/或所述孪晶组织的体积占所述孪晶铜材料总体积的比值≥50%。
  2. 根据权利要求1所述的孪晶铜材料,其特征在于,对所述孪晶铜材料进行XRD衍射分析,(220)/(111)衍射峰强度比大于2。
  3. 根据权利要求1所述的孪晶铜材料,其特征在于,所述孪晶铜材料通过对具有(111)晶面择优取向的预电镀铜材料进行热处理得到,所述热处理的温度≥200℃。
  4. 如权利要求1-3任一项所述的孪晶铜材料的制备方法,其特征在于,包括以下步骤:
    (1)配制镀液
    所述镀液包含铜离子、硫酸、氯离子、添加剂和水,所述添加剂包括抑制剂和辅助剂,所述辅助剂选自有机磺酸盐中的至少一种;
    (2)直流电镀
    将阳极和作为导电基底的阴极浸入镀液中,电镀,得到预电镀铜材料;
    (3)对所述的预电镀铜材料进行热处理,所述热处理的温度≥200℃,得到所述的孪晶铜材料。
  5. 如权利要求4所述的孪晶铜材料的制备方法,其特征在于,其特征在于,
    步骤(1)中,所述有机磺酸盐包括聚苯乙烯磺酸盐、聚乙烯磺酸盐、烷基磺酸盐和烷基苯磺酸盐中的至少一种,所述聚苯乙烯磺酸盐和所述聚乙烯磺酸盐的分子量独立地为1000-100000,所述烷基磺酸盐和烷基苯磺酸盐的碳原子数≥12;
    步骤(1)中,所述镀液中辅助剂的浓度为10-500ppm;
    步骤(1)中,所述抑制剂为明胶,所述明胶的凝结值为10-300bloom;
    步骤(1)中,所述镀液中抑制剂的浓度为5-200ppm;
    步骤(1)中,所述镀液中铜离子的浓度为20-70g/L;
    步骤(1)中,所述镀液中硫酸的浓度为20-2008/L;
    步骤(1)中,所述镀液中氯离子的浓度为20-80ppm;
    步骤(2)中,所述阳极选自磷铜阳极,所述磷铜阳极中的磷含量为0.03-0.075wt%;
    步骤(2)中,所述电镀的温度为20-50℃;
    步骤(2)中,所述电镀在恒温条件下进行;
    步骤(2)中,所述电镀的电流密度为0.5-25A/dm 2
    步骤(2)中,所述电镀的时间为20-1800min;
    步骤(2)所述电镀过程中还对电镀液施加搅拌,所述搅拌包括循环喷流、空气搅拌、磁力搅拌和机械搅拌中的至少一种;
    步骤(3)所述热处理包括退火处理,包括:将所述的预电镀铜材料在惰性气氛中从室温升温至热处理的温度200-750℃,保温20-1200min,最后恢复室温,所述升温的速率为1-50℃/min。
  6. 如权利要求5所述的孪晶铜材料的制备方法,其特征在于,所述方法包括以下步骤:
    (1)配制镀液
    将铜盐、硫酸、氯化物、抑制剂和辅助剂溶于水中,并充分分散均匀,得到镀液,所述镀液中包含铜离子20-70g/L、硫酸20-2008/L,氯离子20-80ppm、抑制剂5-200ppm、辅助剂10-500ppm和余量水,所述抑制剂包括明胶,所述辅助剂选自有机磺酸盐中的至少一种;
    (2)直流电镀
    将阳极和作为导电基底的阴极浸入镀液中,在20-50℃的温度下,以恒电流施镀,电流密度为0.5-25A/dm 2,施镀的时间为20-1800min,得到预电镀铜材料;
    (3)将预镀铜材料加热升温至≥200℃并保持20-1200min,得到所述的孪晶铜材料。
  7. 如权利要求1-3任一项所述的所述的孪晶铜材料的用途,其特征在于,所述孪晶铜材料用于电子电路互连场景,所述电子电路互连场景包括集成电路封装或印制线路板制造。
  8. 一种混合键合结构,其特征在于,所述混合键合结构包括相对设置的第一衬底和第二衬底,所述第一衬底上设置有第一键合层,所述第二衬底上设置有第二键合层,所述第一键合层与所述第二键合层键合形成键合界面;
    所述第一键合层和/或所述第二键合层中设置有铜键合点,所述铜键合点为权利要求1所述的孪晶铜材料。
  9. 如权利要求8所述的混合键合结构,其特征在于,
    所述铜键合点的高度为0.5-500微米;
    所述第一衬底和第二衬底的材质独立地包括硅、化合物、陶瓷或者玻璃;
    所述第一键合层包括介电层和间隔设置于所述介电层内的铜键合点,所述第一键合层的表面露出所述铜键合点用于键合;
    所述第二键合层包括介电层和间隔设置于所述介电层内的铜键合点,所述第二键合层的表面铜露出所述凸点用于键合;
    所述第一键合层中的介电层和所述第二键合层中的介电层的材质独立地选自有机聚合物 或氧化物中的至少一种。
  10. 如权利要求8所述的混合键合结构的制备方法,其特征在于,所述方法包括以下步骤:
    (1)提供第一衬底和第二衬底,在所述第一衬底上形成第一键合层,在所述第二衬底上形成第二键合层,所述第一键合层和/或所述第二键合层中设置铜凸点,所述铜凸点为权利要求3所述的预电镀铜材料;
    (2)将所述第一衬底和所述第二衬底相对设置,热压键合,所述第一键合层与所述第二键合层键合形成键合界面,得到所述的混合键合结构;
    其中,所述热压键合的温度≥200℃,升温至所述热压键合的温度的升温速率为0.5-20℃/min,所述热压键合的过程中,施加的压强为0.5-3MPa,所述热压键合的气氛为惰性气氛或真空,所述热压键合时间为1-2小时。
PCT/CN2022/140433 2021-12-21 2022-12-20 一种孪晶铜材料和混合键合结构 WO2023116715A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111574709.9A CN114086224B (zh) 2021-12-21 2021-12-21 一种孪晶铜材料及制备方法和用途
CN202111574709.9 2021-12-21
CN202111574515.9A CN114220783A (zh) 2021-12-21 2021-12-21 一种混合键合结构及其制备方法
CN202111574515.9 2021-12-21

Publications (1)

Publication Number Publication Date
WO2023116715A1 true WO2023116715A1 (zh) 2023-06-29

Family

ID=86901267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/140433 WO2023116715A1 (zh) 2021-12-21 2022-12-20 一种孪晶铜材料和混合键合结构

Country Status (1)

Country Link
WO (1) WO2023116715A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1357157A (zh) * 1999-06-22 2002-07-03 日本电气株式会社 铜互连
CN110607550A (zh) * 2019-07-30 2019-12-24 财团法人交大思源基金会 准单晶薄膜及其制造方法
CN110724981A (zh) * 2019-10-10 2020-01-24 深圳先进电子材料国际创新研究院 一种全纳米孪晶组织结构的铜薄膜材料的制备方法
US20210020599A1 (en) * 2019-07-19 2021-01-21 National Chiao Tung University Electrical connecting structure having nano-twins copper and method of forming the same
CN114086224A (zh) * 2021-12-21 2022-02-25 中国科学院深圳先进技术研究院 一种孪晶铜材料及制备方法和用途
CN114220783A (zh) * 2021-12-21 2022-03-22 中国科学院深圳先进技术研究院 一种混合键合结构及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1357157A (zh) * 1999-06-22 2002-07-03 日本电气株式会社 铜互连
US20210020599A1 (en) * 2019-07-19 2021-01-21 National Chiao Tung University Electrical connecting structure having nano-twins copper and method of forming the same
CN110607550A (zh) * 2019-07-30 2019-12-24 财团法人交大思源基金会 准单晶薄膜及其制造方法
CN110724981A (zh) * 2019-10-10 2020-01-24 深圳先进电子材料国际创新研究院 一种全纳米孪晶组织结构的铜薄膜材料的制备方法
CN114086224A (zh) * 2021-12-21 2022-02-25 中国科学院深圳先进技术研究院 一种孪晶铜材料及制备方法和用途
CN114220783A (zh) * 2021-12-21 2022-03-22 中国科学院深圳先进技术研究院 一种混合键合结构及其制备方法

Similar Documents

Publication Publication Date Title
CN114086224B (zh) 一种孪晶铜材料及制备方法和用途
Walsh et al. A review of developments in the electrodeposition of tin
CN112779572B (zh) 一种纳米孪晶铜薄膜材料及其制备方法和用途
TWI359212B (zh)
WO2023116634A1 (zh) 一种混合键合结构及其制备方法
CN1993501B (zh) 复合铜箔及其制造方法
JP4477098B2 (ja) 金属被覆ポリイミド複合体、同複合体の製造方法及び同複合体の製造装置
US6605369B1 (en) Surface-treated copper foil and method for producing the same
TWI645755B (zh) Surface-treated copper foil, copper foil with carrier, substrate, resin substrate, printed wiring board, copper-clad laminate, and printed wiring board manufacturing method
CN110724981B (zh) 一种全纳米孪晶组织结构的铜薄膜材料的制备方法
US6649274B1 (en) Electrolytic copper foil with carrier foil and copper-clad laminate using the electrolytic copper foil with carrier foil
JP5441945B2 (ja) ベリーロープロファイル銅箔を担体とした極く薄い銅箔及びその製法。
CN113622008A (zh) 一种导电膜及其制备方法
TW201340796A (zh) 具有承載箔之銅箔、具有承載箔之銅箔的製造方法及使用該具有承載箔之銅箔而得之雷射開孔加工用之貼銅積層板
JP5875350B2 (ja) 電解銅合金箔及びキャリア箔付電解銅合金箔
WO2023116715A1 (zh) 一种孪晶铜材料和混合键合结构
WO2023116705A1 (zh) 铜箔电解液和电解铜箔
TW202236514A (zh) 摻雜金屬元素的奈米雙晶銅金屬層、包含其之基板及其製備方法
CN110872692A (zh) 一种钼银层状复合材料、其制备方法及应用
CN105856792B (zh) 单面薄型金属基板的制造方法
CN114875461B (zh) 一种纳米孪晶铜电镀液、电镀方法、纳米孪晶铜材料及应用
WO2023093011A1 (zh) 铜合金薄膜、基于铜合金薄膜服役后的保护层和制备方法
US6342308B1 (en) Copper foil bonding treatment with improved bond strength and resistance to undercutting
CN110158122A (zh) 耐高温高导电率镀锡铜包钢线生产方法
JP2013093360A (ja) 半導体チップ搭載用基板及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22910027

Country of ref document: EP

Kind code of ref document: A1