WO2023116624A1 - 一种检测真空玻璃焊缝漏率的装置和方法 - Google Patents

一种检测真空玻璃焊缝漏率的装置和方法 Download PDF

Info

Publication number
WO2023116624A1
WO2023116624A1 PCT/CN2022/140003 CN2022140003W WO2023116624A1 WO 2023116624 A1 WO2023116624 A1 WO 2023116624A1 CN 2022140003 W CN2022140003 W CN 2022140003W WO 2023116624 A1 WO2023116624 A1 WO 2023116624A1
Authority
WO
WIPO (PCT)
Prior art keywords
vacuum glass
helium
detecting
vacuum
leak rate
Prior art date
Application number
PCT/CN2022/140003
Other languages
English (en)
French (fr)
Inventor
张继全
Original Assignee
维爱吉(厦门)科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维爱吉(厦门)科技有限责任公司 filed Critical 维爱吉(厦门)科技有限责任公司
Publication of WO2023116624A1 publication Critical patent/WO2023116624A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
    • G01M3/202Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material using mass spectrometer detection systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
    • G01M3/202Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material using mass spectrometer detection systems
    • G01M3/205Accessories or associated equipment; Pump constructions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/20Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material
    • G01M3/22Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators
    • G01M3/225Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using special tracer materials, e.g. dye, fluorescent material, radioactive material for pipes, cables or tubes; for pipe joints or seals; for valves; for welds; for containers, e.g. radiators for welds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P40/00Technologies relating to the processing of minerals
    • Y02P40/50Glass production, e.g. reusing waste heat during processing or shaping
    • Y02P40/57Improving the yield, e-g- reduction of reject rates

Definitions

  • the present application relates to the technical field of vacuum glass detection, in particular to a device and method for detecting the leakage rate of vacuum glass welds.
  • the average free path of gas molecules inside the vacuum glass is required to be much larger than the gap between the two pieces of vacuum glass.
  • the deflation control of the constituent materials 2.
  • the leakage control of the vacuum glass edge sealing that is, the welding quality; Later exhaust gas and weld leakage gas are sucked away.
  • the implantation amount of the getter is limited. If the leakage rate of the weld seam is too large, it will be difficult to maintain the required service life of the vacuum glass, so the control of the second influencing factor above is very important.
  • the existing weld inspection technology uses non-destructive testing to detect the quality of the weld, but it cannot directly reflect the leak rate of the weld.
  • the purpose of this application is to provide a device and method for detecting the leak rate of the vacuum glass weld, in order to solve the problem that the leak rate of the weld cannot be reflected intuitively.
  • the present application provides a device for detecting the leak rate of vacuum glass welds, including a detection platform, an air bag, and a helium mass spectrometer with a pumping and detection system;
  • the testing table is used to place the vacuum glass; the air bag is used to fill helium, and the air bag is used to wrap the welding seams around the vacuum glass and seal it with the vacuum glass; one side of the vacuum glass is opened There is a detection hole communicating with the internal space, and the helium mass spectrometer is used to connect the detection hole, vacuumize the inside of the vacuum glass, and measure the comprehensive leak rate of the weld seam around the vacuum glass.
  • a compression frame for compressing the inflatable bag is provided on the detection platform, one side of the inflatable bag is clamped between the vacuum glass and the detection platform, and the other side of the periphery is clamped to the vacuum glass between the compression frame.
  • an isolating air curtain device is also provided on the testing platform, and the isolating air curtain device is blown toward the vacuum glass to form an air curtain, which is used to check the connection between the joint seam of the inflatable bag and the vacuum glass and the detection hole. Gas is blocked.
  • the isolation air curtain device blows air obliquely toward a side away from the detection hole along the peripheral side.
  • the helium mass spectrometer is connected to the detection hole through a vacuum bellows.
  • a seal ring is connected to the end of the vacuum bellows near the detection hole, and the inner diameter of the seal ring is larger than the diameter of the detection hole.
  • annular support is connected to the inner side of the sealing ring, and the annular support is detachably connected to the vacuum bellows.
  • the detection hole is located at the center of the vacuum glass.
  • the application provides a method for detecting the leak rate of vacuum glass welds, comprising the following steps:
  • Step 1 After putting the vacuum glass into the inflatable bag, wrap the periphery of the inflatable bag around the weld seams around the vacuum glass, place the vacuum glass on the inspection table, and press the edge of the inflatable bag on the vacuum glass through the compression frame; The vacuum bellows is aligned with the detection hole, and the exhaust system of the helium mass spectrometer is turned on to vacuumize the inside of the vacuum glass;
  • Step 2 Open the detection system of the helium mass spectrometer, open the isolation air curtain device; discharge the air in the inflatable bag, and fill it with helium;
  • Step 3 Read the result; when the helium leak rate curve displayed by the helium mass spectrometer is stable, read the leak rate value, which is the comprehensive total helium leak rate of the entire piece of vacuum glass, in Pa L/s;
  • Step 4 Data processing; calculate the outer edge area of the glass weld, and divide the measured comprehensive total helium leak rate by the outer edge total area of the weld seam to obtain the helium leak rate per unit sealing area of the vacuum glass, in Pa L /s ⁇ mm2;
  • Step 5 Repeat steps 1 to 4 several times, and take the average value as the final measurement result.
  • the present application includes at least one of the following beneficial effects:
  • the compression frame can reduce the leakage of helium in the inflatable bag
  • isolation air curtain device can prevent the helium flow that may leak from the edge of the inflatable bag to the surrounding of the detection hole, which will affect the measurement results and improve the accuracy of the detection results;
  • Fig. 1 is the overall schematic diagram of the present embodiment
  • Fig. 2 is the local enlargement figure of present embodiment
  • Fig. 3 is an overall top view of this embodiment.
  • the embodiment of the present application discloses a device for detecting the leakage rate of a vacuum glass weld.
  • the device includes a detection table 1, an air bag 2, and a helium mass spectrometer 3 with a pumping and detection system.
  • the detection table 1 is used to place the vacuum glass 4 for easy detection.
  • the inflatable bag 2 has an inflation port 21, which can be filled with helium toward the inside of the inflatable bag 2.
  • the air bag 2 is used to be sleeved on the 4 peripheral sides of the vacuum glass, so that the welding seam 41 on the 4 peripheral side of the vacuum glass is located inside the air bag 2 .
  • a detection hole 42 is opened in the center of the glass layer on one side of the vacuum glass 4 , and the detection hole 42 is connected to the inside of the vacuum glass 4 for detection by the helium mass spectrometer 3 .
  • the diameter of the detection hole 42 is not less than 10mm.
  • the helium mass spectrometer 3 is connected with a vacuum bellows 31 , and a flange interface is installed at the end of the vacuum bellows 31 to completely cover the detection hole 42 .
  • a sealing ring 32 made of rubber is installed on the flange interface, and an annular support 33 is fixedly bonded to the inner wall of the sealing ring 32, and the annular support 33 is detachably connected to the flange interface.
  • the annular support 33 is positioned at the side of the sealing ring 32 away from the vacuum glass 4, and in the whole detection process, the annular support 33 and the vacuum glass 4 keep a certain gap, so that when the helium mass spectrometer 3 pumps the vacuum glass 4 inside,
  • the sealing ring 32 can have a sufficient amount of deformation and press against the surface of the vacuum glass 4 to keep the sealing stable.
  • a compression frame 5 is also installed on the detection platform 1 .
  • the pressing frame 5 can be driven by means of cylinder driving to make it close to or away from the vacuum glass 4 .
  • the lower edge of the inflatable bag 2 is pressed between the detection table 1 and the vacuum glass 4; the upper edge is pressed between the compression frame 5 and the vacuum glass 4 .
  • the distance from the joint seam between the upper side edge of the inflatable bag 2 and the vacuum glass 4 to the detection hole 42 is greater than 100mm.
  • an isolation air curtain device 6 is installed on the testing platform 1 .
  • the isolation air curtain device 6 is disposed outside the detection hole 42 , and the isolation air curtain device 6 is located inside the pressing frame 5 .
  • the isolation air curtain device 6 is blown towards the vacuum glass 4 to form an annular air curtain, so as to prevent the helium flow that may leak from the joint of the air bag 2 and the vacuum glass 4 from passing through the detection hole 42 and affect the detection results.
  • the isolation air curtain device 6 blows air obliquely and downward in a direction away from the detection hole 42 to further improve the isolation effect.
  • the application also discloses a method for detecting the leakage rate of the vacuum glass welding seam. Include the following steps:
  • Step 1 After putting the vacuum glass 4 into the inflatable bag 2, the side of the inflatable bag 2 is wrapped around the weld 41 around the side of the vacuum glass 4, the vacuum glass 4 is placed on the detection table 1, and the inflatable bag 2 is pressed through the compression frame 5. The edge is pressed tightly on the vacuum glass 4; the vacuum bellows 31 is aligned with the detection hole 42, and the exhaust system of the helium mass spectrometer 3 is turned on to vacuumize the inside of the vacuum glass 4;
  • Step 2 Open the detection system of the helium mass spectrometer 3, open the isolation air curtain device 6; discharge the air in the inflatable bag 2, and fill it with helium;
  • Step 3 Read the result; when the helium leak rate curve displayed by the helium mass spectrometer 3 is stable, read the leak rate value, which is the comprehensive total helium leak rate of the entire vacuum glass 4, in Pa L/s;
  • Step 4 data processing; calculate the outer edge area of the glass weld 41, and divide the measured comprehensive total helium leakage rate by the outer edge total area of the weld 41 to obtain the helium leakage rate of the vacuum glass 4 unit sealing area, unit Pa L/s mm2;
  • Step 5 Repeat steps 1 to 4 several times, and take the average value as the final measurement result.
  • the application discloses a device and method for detecting the leakage rate of vacuum glass welds, which relate to the technical field of vacuum glass detection, including a detection platform, an air bag, and a helium mass spectrometer with an air extraction and detection system; for placing the vacuum glass; the air bag is used to fill helium, and the air bag is used to wrap the welding seams around the vacuum glass and seal it with the vacuum glass; one side of the vacuum glass is provided with a The detection hole, the helium mass spectrometer is used to connect the detection hole, vacuumize the inside of the vacuum glass, and measure the comprehensive leak rate of the weld seam around the vacuum glass, which has good industrial applicability.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

一种检测真空玻璃(4)焊缝(41)漏率的装置和方法,涉及真空玻璃(4)检测的技术领域,包括检测台(1)、充气袋(2)、以及具有抽气与检测系统的氦质谱仪(3);检测台(1)用于放置真空玻璃(4);充气袋(2)用于填充氦气,充气袋(2)用于将真空玻璃(4)周侧焊缝(41)包裹在内,并与真空玻璃(4)密封连接;真空玻璃(4)的一侧开设有连通内部空间的检测孔(42),氦质谱仪(3)用于连接检测孔(42),对真空玻璃(4)内部抽真空,并测量真空玻璃(4)周侧焊缝(41)的综合漏率。

Description

一种检测真空玻璃焊缝漏率的装置和方法 技术领域
本申请涉及真空玻璃检测的技术领域,尤其是涉及一种检测真空玻璃焊缝漏率的装置和方法。
背景技术
在真空玻璃的生产和使用过程中,因为要保持住维持隔热性能的真空度,要求真空玻璃内部气体分子的平均自由行程远大于真空玻璃两片玻璃之间的间隙。为达到上述要求,主要从三方面保证:1、构成材料的放气控制;2、真空玻璃封边的泄露控制,即焊接质量;3、内部植入吸气剂,用于将排气不完全后期排出气体及焊缝泄露气体吸走。吸气剂的植入量有限,如果焊缝漏率过大,真空玻璃将难以维持所需的使用寿命,所以以上第2种影响因素的控制至关重要。现焊缝检测技术上有采用无损探伤来检测焊缝质量,但不能直观的反映焊缝的漏率。
发明内容
本申请的目的是提供一种检测真空玻璃焊缝漏率的装置和方法,为了解决不能直观的反应焊缝漏率的问题。
一方面,本申请提供一种检测真空玻璃焊缝漏率的装置,包括检测台、充气袋、以及具有抽气与检测系统的氦质谱仪;
所述检测台用于放置真空玻璃;所述充气袋用于填充氦气,所述充气袋用于将真空玻璃周侧焊缝包裹在内,并与真空玻璃密封连接; 真空玻璃的一侧开设有连通内部空间的检测孔,所述氦质谱仪用于连接检测孔,对真空玻璃内部抽真空,并测量真空玻璃周侧焊缝的综合漏率。
可选的,所述检测台上设置有用于压紧充气袋的压紧框,所述充气袋的一侧周边夹紧于真空玻璃与检测台之间,其另一侧周边夹紧于真空玻璃与压紧框之间。
可选的,所述检测台上还设置有隔离气幕装置,所述隔离气幕装置朝向真空玻璃吹气形成气幕,用于对充气袋和真空玻璃的结合缝与检测孔之间的串气进行阻隔。
可选的,所述隔离气幕装置沿周侧朝向远离检测孔的一侧倾斜吹气。
可选的,所述氦质谱仪通过真空波纹管连接于检测孔。
可选的,所述真空波纹管靠近检测孔的一端连接有密封圈,所述密封圈内径大于检测孔直径。
可选的,所述密封圈内侧连接有环形支架,所述环形支架与真空波纹管可拆卸连接。
可选的,所述环形支架与真空玻璃之间存在间隙。
可选的,所述检测孔位于真空玻璃的中心处。
另一方面,本申请提供一种检测真空玻璃焊缝漏率的方法,包括以下步骤:
步骤一:将真空玻璃装入充气袋后,充气袋周侧包裹于真空玻璃周侧焊缝,将真空玻璃放置于检测台上,通过压紧框将充气袋边沿压 紧于真空玻璃上;将真空波纹管对准于检测孔,开启氦质谱仪的抽气系统对真空玻璃内部进行抽真空处理;
步骤二:打开氦质谱仪的检测系统,打开隔离气幕装置;排出充气袋内的空气后,并充入氦气;
步骤三:读取结果;待氦质谱仪显示的氦漏率曲线稳定时,读取漏率数值,该数值即为整片真空玻璃的综合总氦漏率,单位Pa·L/s;
步骤四:数据处理;计算玻璃焊缝的外沿面积,用测得的综合总氦漏率除以焊缝的外沿总面积,即得真空玻璃单位密封面积的氦漏率,单位Pa·L/s·mm2;
步骤五:重复步骤一至步骤四操作多次,取平均值为最终测量结果。
综上所述,本申请包括以下至少一种有益效果:
1.通过氦质谱仪,直观的检测得到真空玻璃的焊缝综合总漏率,进而计算出真空玻璃焊缝的单位面积漏率,从而得到真空玻璃焊接质量指标,并利用该指标指导产品的焊接工艺的合理性、焊料真空性能及评判真空玻璃寿命的量化指标;
2.压紧框能够减少充气袋内的氦气泄露;
3.采用隔离气幕装置,能够避免从充气袋边沿可能泄露的氦气流串至检测孔周边,影响测量结果,提高检测结果的准确性;
4.环形支撑架与真空玻璃之间存在间隙,以使得抽真空后,密封圈能够发生足够的变形量,并抵紧在真空玻璃表面上,保持真空波纹管与检测孔之间的连接密封状态。
附图说明
图1是本实施例的整体示意图;
图2是本实施例的局部放大图;
图3是本实施例的整体俯视图。
附图标记说明:1、检测台;2、充气袋;21、充气口;3、氦质谱仪;31、真空波纹管;32、密封圈;33、环形支架;4、真空玻璃;41、焊缝;42、检测孔;5、压紧框;6、隔离气幕装置。
具体实施方式
以下结合附图1-3对本申请作进一步详细说明。
本申请实施例公开一种检测真空玻璃焊缝漏率的装置。该装置包括检测台1、充气袋2、以及具有抽气与检测系统的氦质谱仪3。检测台1用于放置真空玻璃4,以便于检测。充气袋2具有充气口21,可朝充气袋2内部填充氦气。充气袋2用于套设在真空玻璃4周侧,以使真空玻璃4周侧的焊缝41位于充气袋2内部。真空玻璃4的一侧玻璃层中心处开设有检测孔42,检测孔42连通于真空玻璃4内部,供氦质谱仪3进行检测。检测孔42的孔径不小于10mm。
氦质谱仪3连接有真空波纹管31,真空波纹管31端部安装有法兰接口以完全覆盖检测孔42。法兰接口出安装有橡胶材质的密封圈32,密封圈32内壁上固定粘接有环形支架33,环形支架33与法兰接口可拆卸连接。并且,环形支架33位于密封圈32远离真空玻璃4的一侧,在整个检测过程中,环形支架33与真空玻璃4保持一定的间隙,以使得氦质谱仪3对真空玻璃4内部抽气时,密封圈32能够发生足够的变 形量,并抵紧在真空玻璃4表面,保持密封稳定。
为了减少氦气从充气袋2边沿泄露。检测台1上还安装有压紧框5。可采用气缸驱动方式对压紧框5进行驱动,使其靠近或远离真空玻璃4。充气袋2套设于真空玻璃4周侧后,充气袋2的下侧边沿压紧于检测台1与真空玻璃4之间;其上侧边沿压紧于压紧框5与真空玻璃4之间。为了增加检测的可靠性。充气袋2上侧边沿与真空玻璃4的结合缝至检测孔42的距离大于100mm。
另外,在检测台1上还安装有隔离气幕装置6。隔离气幕装置6围设于检测孔42外部,且隔离气幕装置6位于压紧框5内侧。隔离气幕装置6朝向真空玻璃4吹气,形成一道环形的气幕,以避免可能从充气袋2与真空玻璃4的结合缝处泄露的氦气流串至检测孔42处,影响检测结果。隔离气幕装置6朝远离检测孔42的方向倾斜向下吹气,进一步提高隔离效果。
本申请还公开一种检测真空玻璃焊缝漏率的方法。包括以下步骤:
步骤一:将真空玻璃4装入充气袋2后,充气袋2周侧包裹于真空玻璃4周侧焊缝41,将真空玻璃4放置于检测台1上,通过压紧框5将充气袋2边沿压紧于真空玻璃4上;将真空波纹管31对准于检测孔42,开启氦质谱仪3的抽气系统对真空玻璃4内部进行抽真空处理;
步骤二:打开氦质谱仪3的检测系统,打开隔离气幕装置6;排出充气袋2内的空气后,并充入氦气;
步骤三:读取结果;待氦质谱仪3显示的氦漏率曲线稳定时,读取漏率数值,该数值即为整片真空玻璃4的综合总氦漏率,单位Pa·L/s;
步骤四:数据处理;计算玻璃焊缝41的外沿面积,用测得的综合总氦漏率除以焊缝41的外沿总面积,即得真空玻璃4单位密封面积的氦漏率,单位Pa·L/s·mm2;
步骤五:重复步骤一至步骤四操作多次,取平均值为最终测量结果。
以上均为本申请的较佳实施例,并非依此限制本申请的保护范围,故:凡依本申请的结构、形状、原理所做的等效变化,均应涵盖于本申请的保护范围之内。
工业实用性
本申请公开了一种检测真空玻璃焊缝漏率的装置和方法,涉及真空玻璃检测的技术领域,包括检测台、充气袋、以及具有抽气与检测系统的氦质谱仪;所述检测台用于放置真空玻璃;所述充气袋用于填充氦气,所述充气袋用于将真空玻璃周侧焊缝包裹在内,并与真空玻璃密封连接;真空玻璃的一侧开设有连通内部空间的检测孔,所述氦质谱仪用于连接检测孔,对真空玻璃内部抽真空,并测量真空玻璃周侧焊缝的综合漏率,具有良好的工业实用性。

Claims (18)

  1. 一种检测真空玻璃焊缝漏率的装置,其特征在于:包括检测台、充气袋、以及具有抽气与检测系统的氦质谱仪;
    所述检测台用于放置真空玻璃;所述充气袋用于填充氦气,所述充气袋用于将真空玻璃周侧焊缝包裹在内,并与真空玻璃密封连接;真空玻璃的一侧开设有连通内部空间的检测孔,所述氦质谱仪用于连接检测孔,对真空玻璃内部抽真空,并测量真空玻璃周侧焊缝的综合漏率。
  2. 根据权利要求1所述的一种检测真空玻璃焊缝漏率的装置,其特征在于:所述检测台上设置有用于压紧充气袋的压紧框,所述充气袋的一侧周边夹紧于真空玻璃与检测台之间,其另一侧周边夹紧于真空玻璃与压紧框之间。
  3. 根据权利要求2所述的一种检测真空玻璃焊缝漏率的装置,其特征在于:所述检测台上还设置有隔离气幕装置,所述隔离气幕装置朝向真空玻璃吹气形成气幕,用于对充气袋和真空玻璃的结合缝与检测孔之间的串气进行阻隔。
  4. 根据权利要求3所述的一种检测真空玻璃焊缝漏率的装置,其特征在于:所述隔离气幕装置沿周侧朝向远离检测孔的一侧倾斜吹气。
  5. 根据权利要求1所述的一种检测真空玻璃焊缝漏率的装置,其特征在于:所述氦质谱仪通过真空波纹管连接于检测孔。
  6. 根据权利要求5所述的一种检测真空玻璃焊缝漏率的装置,其特征在于:所述真空波纹管靠近检测孔的一端连接有密封圈,所述密 封圈内径大于检测孔直径。
  7. 根据权利要求6所述的一种检测真空玻璃焊缝漏率的装置,其特征在于:所述密封圈内侧连接有环形支架,所述环形支架与真空波纹管可拆卸连接。
  8. 根据权利要求7所述的一种检测真空玻璃焊缝漏率的装置,其特征在于:所述环形支架与真空玻璃之间存在间隙。
  9. 根据权利要求1所述的一种检测真空玻璃焊缝漏率的装置,其特征在于:所述检测孔位于真空玻璃的中心处。
  10. 一种检测真空玻璃焊缝漏率的方法,其特征在于:包括以下步骤,
    步骤一:将真空玻璃装入充气袋后,充气袋周侧包裹于真空玻璃周侧焊缝,将真空玻璃放置于检测台上,通过压紧框将充气袋边沿压紧于真空玻璃上;将真空波纹管对准于检测孔,开启氦质谱仪的抽气系统对真空玻璃内部进行抽真空处理;
    步骤二:打开氦质谱仪的检测系统,打开隔离气幕装置;排出充气袋内的空气后,并充入氦气;
    步骤三:读取结果;待氦质谱仪显示的氦漏率曲线稳定时,读取漏率数值,该数值即为整片真空玻璃焊缝的综合总氦漏率,单位Pa·L/s;
    步骤四:数据处理;计算玻璃焊缝的外沿面积,用测得的综合总氦漏率除以焊缝的外沿总面积,即得真空玻璃单位密封面积的氦漏率,单位Pa·L/s·mm2;
    步骤五:重复步骤一至步骤四操作多次,取平均值为最终测量结 果。
  11. 一种检测真空玻璃焊缝漏率的装置,其特征在于:包括充气袋、氦质谱仪;所述充气袋用于填充氦气,所述充气袋用于将真空玻璃周侧焊缝包裹在内,并与真空玻璃密封连接;真空玻璃至少一侧露出充气袋,并设有连通内部空间的检测孔,所述氦质谱仪连接所述检测孔。
  12. 根据权利要求11所述的一种检测真空玻璃焊缝漏率的装置,其特征在于:还包括一压紧框,用于压紧充气袋与真空玻璃的接触面。
  13. 根据权利要求11所述的一种检测真空玻璃焊缝漏率的装置,其特征在于:所述的充气袋在一个面至少有一个开口,或具有二个面上具有开口,为环形。
  14. 根据权利要求1所述的一种检测真空玻璃焊缝漏率的装置,其特征在于:所述检测孔四周还设置有隔离气幕装置,所述隔离气幕装置朝向检测孔的真空玻璃平面平行或倾斜吹气形成气幕。
  15. 根据权利要求1所述的一种检测真空玻璃焊缝漏率的装置,其特征在于:所述氦质谱仪通过真空波纹管连接于检测孔。
  16. 根据权利要求11的一种检测真空玻璃焊缝漏率的方法,其特征在于:包括以下步骤,
    步骤一:将真空玻璃装入充气袋后,充气袋周侧包裹于真空玻璃周侧焊缝,将充气袋口与真空玻璃封密连接;氦质谱仪连接所述检测孔,开启对真空玻璃内部进行抽真空处理;
    步骤二:排出充气袋内的空气后,并充入氦气;
    步骤三:读取结果;待氦质谱仪显示的氦漏率曲线稳定时,读取 漏率数值。
  17. 根据权利要求16的一种检测真空玻璃焊缝漏率的方法,其特征在于:步骤三还包括以下步骤:
    该数值即为整片真空玻璃焊缝的综合总氦漏率,单位Pa·L/s;
    步骤四:数据处理;计算玻璃焊缝的外沿面积,用测得的综合总氦漏率除以焊缝的外沿总面积,即得真空玻璃单位密封面积的氦漏率,单位Pa·L/s·mm2;
    步骤五:重复步骤一至步骤四操作多次,取平均值为最终测量结果。
  18. 根据权利要求16或17的一种检测真空玻璃焊缝漏率的方法,其特征在于在步骤三或步骤二中,打开隔离气幕装置,向检测孔四周吹气。
PCT/CN2022/140003 2021-12-20 2022-12-19 一种检测真空玻璃焊缝漏率的装置和方法 WO2023116624A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111562425.8A CN114563138A (zh) 2021-12-20 2021-12-20 一种检测真空玻璃焊缝漏率的装置和方法
CN202111562425.8 2021-12-20

Publications (1)

Publication Number Publication Date
WO2023116624A1 true WO2023116624A1 (zh) 2023-06-29

Family

ID=81711629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/140003 WO2023116624A1 (zh) 2021-12-20 2022-12-19 一种检测真空玻璃焊缝漏率的装置和方法

Country Status (2)

Country Link
CN (1) CN114563138A (zh)
WO (1) WO2023116624A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114563138A (zh) * 2021-12-20 2022-05-31 维爱吉(厦门)科技有限责任公司 一种检测真空玻璃焊缝漏率的装置和方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4553435A (en) * 1983-07-19 1985-11-19 The United States Of America As Represented By The Secretary Of The Air Force Elevated transient temperature leak test for unstable microelectronic packages
CN103674448A (zh) * 2013-11-08 2014-03-26 北京卫星环境工程研究所 压力控制系统与航天器密封舱连接处漏率检测装置及方法
CN204087821U (zh) * 2014-08-26 2015-01-07 中国科学院等离子体物理研究所 方管焊缝氦气密性检测真空工装
CN104458151A (zh) * 2014-12-25 2015-03-25 中国西电电气股份有限公司 一种避雷器密封试验装置及试验方法
CN204758234U (zh) * 2015-07-01 2015-11-11 西安亨特电力科技有限公司 火力发电机组真空系统设备泄漏检测系统
CN106017818A (zh) * 2016-06-01 2016-10-12 天津博益气动股份有限公司 一种吸入式氮氢检漏仪的吸枪探头
CN106124134A (zh) * 2016-07-27 2016-11-16 中国科学院长春光学精密机械与物理研究所 光学窗口组件漏率检测装置及检测方法
CN107036769A (zh) * 2017-04-18 2017-08-11 中国工程物理研究院材料研究所 一种用于校准不同示漏气体真空漏孔漏率的系统及方法
CN108871693A (zh) * 2018-07-04 2018-11-23 中国原子能科学研究院 一种用于超导回旋加速器真空室的检漏方法
CN110595698A (zh) * 2019-10-21 2019-12-20 哈电集团(秦皇岛)重型装备有限公司 管管对接焊缝氦质谱检漏装置及检漏方法
CN114563138A (zh) * 2021-12-20 2022-05-31 维爱吉(厦门)科技有限责任公司 一种检测真空玻璃焊缝漏率的装置和方法
CN216791544U (zh) * 2021-12-20 2022-06-21 维爱吉(厦门)科技有限责任公司 一种检测真空玻璃焊缝漏率的装置

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4553435A (en) * 1983-07-19 1985-11-19 The United States Of America As Represented By The Secretary Of The Air Force Elevated transient temperature leak test for unstable microelectronic packages
CN103674448A (zh) * 2013-11-08 2014-03-26 北京卫星环境工程研究所 压力控制系统与航天器密封舱连接处漏率检测装置及方法
CN204087821U (zh) * 2014-08-26 2015-01-07 中国科学院等离子体物理研究所 方管焊缝氦气密性检测真空工装
CN104458151A (zh) * 2014-12-25 2015-03-25 中国西电电气股份有限公司 一种避雷器密封试验装置及试验方法
CN204758234U (zh) * 2015-07-01 2015-11-11 西安亨特电力科技有限公司 火力发电机组真空系统设备泄漏检测系统
CN106017818A (zh) * 2016-06-01 2016-10-12 天津博益气动股份有限公司 一种吸入式氮氢检漏仪的吸枪探头
CN106124134A (zh) * 2016-07-27 2016-11-16 中国科学院长春光学精密机械与物理研究所 光学窗口组件漏率检测装置及检测方法
CN107036769A (zh) * 2017-04-18 2017-08-11 中国工程物理研究院材料研究所 一种用于校准不同示漏气体真空漏孔漏率的系统及方法
CN108871693A (zh) * 2018-07-04 2018-11-23 中国原子能科学研究院 一种用于超导回旋加速器真空室的检漏方法
CN110595698A (zh) * 2019-10-21 2019-12-20 哈电集团(秦皇岛)重型装备有限公司 管管对接焊缝氦质谱检漏装置及检漏方法
CN114563138A (zh) * 2021-12-20 2022-05-31 维爱吉(厦门)科技有限责任公司 一种检测真空玻璃焊缝漏率的装置和方法
CN216791544U (zh) * 2021-12-20 2022-06-21 维爱吉(厦门)科技有限责任公司 一种检测真空玻璃焊缝漏率的装置

Also Published As

Publication number Publication date
CN114563138A (zh) 2022-05-31

Similar Documents

Publication Publication Date Title
JP6129870B2 (ja) 非剛体の被試験物の漏れを検出する方法
US5111684A (en) Method and apparatus for leak testing packages
JP4410854B2 (ja) 包装材のシール性の検査
WO2023116624A1 (zh) 一种检测真空玻璃焊缝漏率的装置和方法
CN103471780A (zh) 密封容器端盖焊缝检测系统及检测方法
CN216791544U (zh) 一种检测真空玻璃焊缝漏率的装置
JP4574092B2 (ja) リーク検出装置
JP3348147B2 (ja) 温度式膨張弁の感温制御部の気密検査機
CN213148245U (zh) 电池底壳总成件气密性检查结构
CN103776596B (zh) 一种便携式真空检漏袋
CN206725170U (zh) 一种充气食品包装检测装置
CN209992133U (zh) 一种用于检测塑料袋密封的试验仪
CN114608763A (zh) 抽真空-检漏组件、整体检测容器组件、检漏设备以及检漏方法
CN206488899U (zh) 一种用于检测无压灭火装置密封性的真空箱
CN206038254U (zh) 一种包装罐验漏装置
CN217442795U (zh) 一种新型滑动氦罩检漏盒
CN206818361U (zh) 一种产品密封腔体微泄露的检测设备
CN217878212U (zh) 用于绝缘法兰的检漏装置
CN206095887U (zh) 密封材料气体渗透率检测装置
CN218765891U (zh) 一种瓶体真空检漏装置
CN116105945A (zh) 密封检测机
JP3316571B2 (ja) ドラム缶気密試験用の気体封入装置
CN218524313U (zh) 一种压力容器壳体焊缝局部真空检漏罩及装置
CN220982589U (zh) 一种管道与部件连接处的检漏工装
CN216012627U (zh) 一种自校准式密封腔体泄漏检测自动化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22909936

Country of ref document: EP

Kind code of ref document: A1