WO2023116209A1 - 一种从新鲜茶叶中提取egcg的方法 - Google Patents

一种从新鲜茶叶中提取egcg的方法 Download PDF

Info

Publication number
WO2023116209A1
WO2023116209A1 PCT/CN2022/129111 CN2022129111W WO2023116209A1 WO 2023116209 A1 WO2023116209 A1 WO 2023116209A1 CN 2022129111 W CN2022129111 W CN 2022129111W WO 2023116209 A1 WO2023116209 A1 WO 2023116209A1
Authority
WO
WIPO (PCT)
Prior art keywords
egcg
tea leaves
extracting
crystals
fresh tea
Prior art date
Application number
PCT/CN2022/129111
Other languages
English (en)
French (fr)
Inventor
程勇
邵云东
李若鹏
Original Assignee
浙江天草生物科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江天草生物科技股份有限公司 filed Critical 浙江天草生物科技股份有限公司
Publication of WO2023116209A1 publication Critical patent/WO2023116209A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/04Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
    • C07D311/58Benzo[b]pyrans, not hydrogenated in the carbocyclic ring other than with oxygen or sulphur atoms in position 2 or 4
    • C07D311/60Benzo[b]pyrans, not hydrogenated in the carbocyclic ring other than with oxygen or sulphur atoms in position 2 or 4 with aryl radicals attached in position 2
    • C07D311/62Benzo[b]pyrans, not hydrogenated in the carbocyclic ring other than with oxygen or sulphur atoms in position 2 or 4 with aryl radicals attached in position 2 with oxygen atoms directly attached in position 3, e.g. anthocyanidins

Definitions

  • the invention belongs to the technical field of natural product chemistry, and in particular relates to a method for extracting EGCG from fresh tea leaves.
  • EGCG namely epigallocatechin gallate, with molecular formula C 22 H 18 O 11
  • EGCG is a catechin monomer isolated from tea leaves. It is the main active and water-soluble component of green tea. The component with the highest content of tea elements accounts for 9% to 13% of the gross weight of green tea. Because of its special stereochemical structure, EGCG has very strong antioxidant activity, which is at least 100 times that of vitamin C. 25 times that of E, can protect cells and DNA from damage, which is related to cancer, heart disease and other major diseases.
  • EGCG effects due to their ability to scavenge oxygen free radicals; in addition, EGCG also has antibacterial, anti Viral, anti-oxidant, anti-arteriosclerosis, anti-thrombotic, anti-angiogenic, anti-inflammatory and anti-tumor effects.
  • a common method for separating EGCG generally includes two steps: extraction, separation and purification.
  • extraction, separation and purification When extracting fresh tea leaves, methods such as high temperature, grinding, and enzymatic hydrolysis are usually used to destroy the cell walls of the tea leaves, so that the substances in the tea leaves can fully flow out.
  • the Chinese invention patent application document with the application number CN201210178303.3 discloses a method for preparing high-purity monomeric catechins from tea processing leftovers, including extracting tea polyphenols, separating catechins and performing a purification process. Including: A. The raw materials are taken from fresh tea leaves, pruned tea leaves, and non-fermented tea processing leftovers, which are crushed to 20-80 meshes; B.
  • the ethanol aqueous solution elution procedure is as follows: Elution with 10% ethanol aqueous solution of 1 to 3 times the volume of the resin—elution with 20% aqueous ethanol of 1 to 3 times the volume of the resin—elution with 30% aqueous ethanol of 1 to 3 times the volume of the resin— — Wash the column with 90% to 99.5% ethanol that is 1 to 3 times the volume of the resin; G.
  • the Chinese invention patent application document with the application number CN201410067471.4 discloses a method for extracting monomer EGCG from fresh tea leaves, which includes the following steps: soaking and cooking, centrifugation, primary adsorption, MVR concentration, CF filtration, secondary Adsorption, concentration, rinsing, dehydration, drying, iron removal.
  • the higher temperature of soaking and cooking in this method results in greater loss of the target product and lower yield.
  • the present invention provides a method for extracting EGCG.
  • the invention has the characteristics of simple method, and the purity of EGCG is as high as 98.5%, and the yield is also 94.5%.
  • a method for extracting EGCG from fresh tea leaves comprising the following steps:
  • step S2 Add citric acid to the concentrated solution in step S1 to adjust the pH to 4-5, cool and stand still to obtain EGCG coarse crystals;
  • the substances in fresh tea cells are promoted to flow out and be dissolved in water, and then substances such as EGCG are converted under the weak alkaline environment of citrate solution
  • substances such as EGCG are converted under the weak alkaline environment of citrate solution
  • the pH of the sodium citrate solution is then adjusted to reduce the EGCG and other substances to the original substance, and among them, the solubility of EGCG in the citrate solution is extremely low, and EGCG will precipitate crystals;
  • the osmotic pressure will be increased, which is beneficial to destroy the tea cells and reduce the heating temperature.
  • the trace amount of citric acid produced by hydrolysis will protect EGCG during the production process; the purification of EGCG by this method is simple, and the EGCG The purity is as high as 98.5%, and the yield is also 94.5%.
  • step S1 the concentration of citrate is 2-4 mol/L.
  • the volume-to-mass ratio of the citrate to the tea leaves is (5-15): 1 L/kg.
  • the cooling temperature is 20-30°C.
  • the pulverized particle size of the tea leaves is 50-80 mesh.
  • the filtration temperature is 50-70°C.
  • the pressure of the filtration operation is 0.1-0.3 MPa, and the pore size of the filter membrane is 0.02 ⁇ m.
  • the temperature of the filtering operation is 20-30°C.
  • the pressure of the filtration operation is 0.1-0.3 MPa, and the pore size of the filter membrane is 0.01 ⁇ m.
  • the present invention extracts phenolic substances in tea leaves under the alkaline environment produced by citrate, converts substances such as EGCG into salt, and then acidifies to precipitate EGCG in a high-concentration salt solution, and the obtained EGCG substance has high purity, The yield is also high;
  • the citric acid produced by the hydrolysis of sodium citrate can reduce oxygen to oxidize a small part of the target substance, which improves the yield;
  • Sodium citrate solution is used for soaking and extraction, which reduces the temperature for destroying cell membranes and reduces the oxidation of EGCG and other substances.
  • a method for extracting EGCG from fresh tea leaves comprising the following steps:
  • a method for extracting EGCG from fresh tea leaves comprising the following steps:
  • a method for extracting EGCG from fresh tea leaves comprising the following steps:
  • a method for extracting EGCG from fresh tea leaves comprising the following steps:
  • a method for extracting EGCG from fresh tea leaves comprising the following steps:
  • a method for extracting EGCG from fresh tea leaves comprising the following steps:
  • a method for extracting EGCG from fresh tea leaves comprising the following steps:
  • a method for extracting EGCG from fresh tea leaves comprising the following steps:
  • a method for extracting EGCG from fresh tea leaves comprising the following steps:
  • a method for extracting EGCG from fresh tea leaves comprising the following steps:
  • Example 1 Example 2
  • Example 3 Example 4
  • Example 5 Example 6
  • Example 7 Example 8
  • Example 10 Example 10 purity/% 98.6 98.7 98.5 98.4 98.6 98.3 98.6 98.2 97.9 99.1
  • Example 1 Example 2 Example 3 Example 4 Example 5 Example 6 Example 7 Example 8 Example 9 Example 10 Yield/% 94.3 94.4 94.6 94.4 94.4 94.5 94.6 94.6 94.7 93.9
  • the yield is positively correlated with the concentration and pH of the sodium citrate solution, but the degree of influence is not large, while the yield of the product is inversely proportional to the amount of sodium citrate solution, and the most suitable condition is 10:1L/kg dosage condition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Tea And Coffee (AREA)

Abstract

一种从新鲜茶叶中提取EGCG的方法,包括以下步骤:S1、将新鲜茶叶粉碎,加入柠檬酸盐水溶液,加热至50~70℃,保持1.5~2h,过滤得到提取液,提取液浓缩获得浓缩液;S2、向步骤S1中浓缩液中加入柠檬酸调节pH至4~5,冷却静止得到EGCG粗晶体;S3、将S2中的EGCG粗晶体经过重结晶得到EGCG晶体;本发明通过柠檬酸盐制造的碱性环境下提取茶叶中酚类物质,将EGCG等物质转化为盐,然后再以柠檬酸酸化使EGCG在高浓度的盐溶液中析出,所得的EGCG物质纯度高、收率也还不错。

Description

一种从新鲜茶叶中提取EGCG的方法 技术领域
本发明属于天然产物化学技术领域,具体涉及一种从新鲜茶叶中提取EGCG的方法。
背景技术
EGCG,即表没食子儿茶素没食子酸酯,分子式为C 22 H 18 O 11,是一种从茶叶中分离得到的儿茶素类单体,它是绿茶主要的活性和水溶性成份,是儿茶素中含量最高的组分,占绿茶毛重的9%~13%,因为具有特殊的立体化学结构,EGCG具有非常强的抗氧化活性,抗氧化活性至少是维生素C的100多倍,是维生素E的25倍,能够保护细胞和DNA受损害,这种损害与癌症、心脏疾病和其他重大疾病有关,EGCG的这些功效归结于他们对氧自由基的清除能力;此外,EGCG还具有抗菌、抗病毒、抗氧化、抗动脉硬化、抗血栓形成、抗血管增生、抗炎以及抗肿瘤作用。
常见的分离EGCG的方法一般包括两步:提取、分离纯化。在提取新鲜茶叶的时候,通常采用高温、研磨、酶解等方法来破坏茶叶的细胞壁,实现茶叶中物质的充分流出。
如申请号为CN201210178303.3的中国发明专利申请文件,公布了从茶叶加工下脚料中制备高纯度单体儿茶素的方法,包括提取茶多酚、分离出儿茶素并进行纯化工艺过程,包含:A.原料取自新鲜茶叶、剪枝茶叶、非发酵过的茶叶加工下脚料,粉碎至20~80目;B.加水在酸性条件下加入由纤维素酶、蛋白酶和果胶酶组成的复合酶进行酶解,其中:加水量为茶叶干重的10~20倍,pH=3~6.5,复合酶组成比例为纤维素酶:蛋白酶:果胶酶=0.1~5:0.1~5:0.1~5,复合酶用量为茶叶干重的0.1~1%,温度40~65℃;C.过滤后酶解液用乙酸乙酯萃取,萃取液浓缩和/或干燥,得茶多酚粗品;D.将浓缩或/和干燥物加水成液体,调节pH5.6~6.5,加入CaCl 2和ZnCl 2混合沉淀剂;加水量为粗品干重的10~20倍,CaCl 2和ZnCl 2混合沉淀剂的混合比例=1:0.01~99,Ca 2+和Zn 2+的量之和与溶液中茶多酚的量的比例=0.01~0.05(mol/g);E.滤出的沉淀物以稀盐酸转溶后直接经大孔树脂吸附,水洗后,再乙醇洗脱,浓缩乙醇洗脱液和/或干燥,得茶多酚精品;稀盐酸的浓度为0.1%~10%,水洗的水用量为大孔树脂体积的1~5倍,乙醇浓度为90%~99.5%;F.加水成液体,用大孔树脂吸附,水洗后再用乙醇水溶液洗脱,分别收集含EGCG、GCG、ECG纯度为98%以上的洗脱液;加水量为精品干重的2~5倍,水洗的水为去离子水,其用量为大孔树脂体积的1~5倍,之后乙醇水溶液洗脱的程序为:用1~3倍树脂体积量的10%乙醇水溶液洗脱——用1~3倍树脂体积量的20%乙醇水溶液洗脱——用1~3倍树脂体积量的30%乙醇水溶液洗脱——用1~3倍树脂体积量的90%~99.5%乙醇洗柱;G.加水使各洗脱液的 乙醇浓度为1~10%;H.再分别用与F同型号的大孔树脂吸附,用90~99.5%乙醇洗脱,洗脱液减压浓缩,冷冻干燥得成品。
如申请号为CN201410067471.4的中国发明专利申请文件,公布了一种从新鲜茶叶中提取单体EGCG的方法,它包括以下步骤:浸泡蒸煮、离心、一次吸附、MVR浓缩、CF过滤、二次吸附、浓缩、漂洗、脱水、干燥、除铁。该方法浸泡蒸煮的温度较高对目标产物的损耗大,产率低。
发明内容
为了解决上述技术问题,本发明提供了一种EGCG的提取方法。本发明具有方法简单的特点,且EGCG的纯度高达98.5%,收率也有94.5%。
本发明的具体技术方案如下:
一种从新鲜茶叶中提取EGCG的方法,包括以下步骤:
S1、将新鲜茶叶粉碎,加入柠檬酸盐水溶液,加热至50~70℃,保持1.5~2h,过滤得到提取液,提取液浓缩获得浓缩液;
S2、向步骤S1中浓缩液中加入柠檬酸调节pH至4~5,冷却静止得到EGCG粗晶体;
S3、将S2中的EGCG粗晶体经过重结晶得到EGCG晶体。
在本发明的上述技术方案中,通过高浓度的柠檬酸盐辅以适当的温度促使新鲜茶叶细胞中的物质流出溶于水中,然后EGCG等物质在柠檬酸盐溶液的弱碱性环境下被转化为溶解度更高的盐,随后调节柠檬酸钠溶液的pH使得EGCG等物质还原成原物质,而其中,EGCG在柠檬酸盐溶液中的溶解度极低,EGCG便会析出晶体;柠檬酸盐在提取步骤1中会增大渗透压,有利于破坏茶叶细胞,降低了加热的温度,同时水解产生的微量柠檬酸在生产过程中会起到保护EGCG的作用;通过本方法提纯EGCG,方法简单,EGCG的纯度高达98.5%,收率也有94.5%。
作为本发明上述技术方案的优选,在步骤S1中,柠檬酸盐的浓度为2~4mol/L。
作为本发明上述技术方案的优选,所述柠檬酸盐与所述茶叶的体积质量比例为(5~15):1L/kg。
作为本发明上述技术方案的优选,在S2中,降温的温度在20~30℃。
作为本发明上述技术方案的优选,在S1中,所述茶叶的粉碎粒径为50~80目。
作为本发明上述技术方案的优选,在S1中,过滤的温度为50~70℃。
作为本发明上述技术方案的优选,在S1中,过滤操作的压强为0.1~0.3MPa,滤膜孔径为0.02μm。
作为本发明上述技术方案的优选,在S2中,过滤操作的温度为20~30℃。
作为本发明上述技术方案的优选,在S2中,过滤操作的压强为0.1~0.3MPa,滤膜孔径为0.01μm。
综上所述,本发明的有益效果如下:
1、本发明通过柠檬酸盐制造的碱性环境下提取茶叶中酚类物质,将EGCG等物质转化为盐,然后再酸化使EGCG在高浓度的盐溶液中析出,所得的EGCG物质纯度高、收率也高;
2、柠檬酸钠水解的生成的柠檬酸可以还原氧气对目标物质的小部分氧化,提高了收率;
3、采用柠檬酸钠的溶液进行浸泡提取,降低了破坏细胞膜的温度,减少了EGCG等物质的被氧化情况。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
下面对本发明一种从新鲜茶叶中提取EGCG的方法进行具体说明。
实施例1
一种从新鲜茶叶中提取EGCG的方法,包括以下步骤:
S1、将新鲜茶叶粉碎至50目,加入柠檬酸钠水溶液,柠檬酸钠的浓度为2mol/L,所述柠檬酸钠与所述茶叶的体积质量比例为10:1L/kg;加热至60℃,保持2h,趁热过滤得到提取液,过滤时的压强为0.15MPa,滤膜孔径为0.02μm;
S2、向S1中提取液中加入柠檬酸调节pH至4,降温至室温静置后过滤得到EGCG粗晶体,过滤时的压强为0.15MPa,滤膜孔径为0.01μm;
S3、将S2中的EGCG粗晶体经过重结晶得到EGCG晶体。
实施例2
一种从新鲜茶叶中提取EGCG的方法,包括以下步骤:
S1、将新鲜茶叶粉碎至50目,加入柠檬酸钠水溶液,柠檬酸钠的浓度为3mol/L,所述柠檬酸钠与所述茶叶的体积质量比例为10:1L/kg;加热至60℃,保持2h,趁热过滤得到提取液,过滤时的压强为0.15MPa,滤膜孔径为0.02μm;
S2、向S1中提取液中加入柠檬酸调节pH至4,降温至室温静置后过滤得到EGCG粗晶体,过滤时的压强为0.15MPa,滤膜孔径为0.01μm;
S3、将S2中的EGCG粗晶体经过重结晶得到EGCG晶体。
实施例3
一种从新鲜茶叶中提取EGCG的方法,包括以下步骤:
S1、将新鲜茶叶粉碎至50目,加入柠檬酸钠水溶液,柠檬酸钠的浓度为4mol/L,所述柠檬酸钠与所述茶叶的体积质量比例为10:1L/kg;加热至60℃,保持2h,趁热过滤得到提取液,过滤时的压强为0.15MPa,滤膜孔径为0.02μm;
S2、向S1中提取液中加入柠檬酸调节pH至4,降温至室温静置后过滤得到EGCG粗晶体,过滤时的压强为0.15MPa,滤膜孔径为0.01μm;
S3、将S2中的EGCG粗晶体经过重结晶得到EGCG晶体。
实施例4
一种从新鲜茶叶中提取EGCG的方法,包括以下步骤:
S1、将新鲜茶叶粉碎至50目,加入柠檬酸钠水溶液,柠檬酸钠的浓度为2mol/L,所述柠檬酸钠与所述茶叶的体积质量比例为10:1L/kg;加热至60℃,保持2h,趁热过滤得到提取液,过滤时的压强为0.15MPa,滤膜孔径为0.02μm;
S2、向S1中提取液中加入柠檬酸调节pH至4.2,降温至室温静置后过滤得到EGCG粗晶体,过滤时的压强为0.15MPa,滤膜孔径为0.01μm;
S3、将S2中的EGCG粗晶体经过重结晶得到EGCG晶体。
实施例5
一种从新鲜茶叶中提取EGCG的方法,包括以下步骤:
S1、将新鲜茶叶粉碎至50目,加入柠檬酸钠水溶液,柠檬酸钠的浓度为2mol/L,所述柠檬酸钠与所述茶叶的体积质量比例为10:1L/kg;加热至60℃,保持2h,趁热过滤得到提取液,过滤时的压强为0.15MPa,滤膜孔径为0.02μm;
S2、向S1中提取液中加入柠檬酸调节pH至4.4,降温至室温静置后过滤得到EGCG粗晶体,过滤时的压强为0.15MPa,滤膜孔径为0.01μm;
S3、将S2中的EGCG粗晶体经过重结晶得到EGCG晶体。
实施例6
一种从新鲜茶叶中提取EGCG的方法,包括以下步骤:
S1、将新鲜茶叶粉碎至50目,加入柠檬酸钠水溶液,柠檬酸钠的浓度为2mol/L,所述柠檬酸钠与所述茶叶的体积质量比例为10:1L/kg;加热至60℃,保持2h,趁热过滤得到提取液,过滤时的压强为0.15MPa,滤膜孔径为0.02μm;
S2、向S1中提取液中加入柠檬酸调节pH至4.6,降温至室温静置后过滤得到EGCG粗晶体,过滤时的压强为0.15MPa,滤膜孔径为0.01μm;
S3、将S2中的EGCG粗晶体经过重结晶得到EGCG晶体。
实施例7
一种从新鲜茶叶中提取EGCG的方法,包括以下步骤:
S1、将新鲜茶叶粉碎至50目,加入柠檬酸钠水溶液,柠檬酸钠的浓度为2mol/L,所述柠檬酸钠与所述茶叶的体积质量比例为10:1L/kg;加热至60℃,保持2h,趁热过滤得到提取液,过滤时的压强为0.15MPa,滤膜孔径为0.02μm;
S2、向S1中提取液中加入柠檬酸调节pH至4.8,降温至室温静置后过滤得到EGCG粗晶体,过滤时的压强为0.15MPa,滤膜孔径为0.01μm;
S3、将S2中的EGCG粗晶体经过重结晶得到EGCG晶体。
实施例8
一种从新鲜茶叶中提取EGCG的方法,包括以下步骤:
S1、将新鲜茶叶粉碎至50目,加入柠檬酸钠水溶液,柠檬酸钠的浓度为2mol/L,所述柠檬酸钠与所述茶叶的体积质量比例为10:1L/kg;加热至60℃,保持2h,趁热过滤得到提取液,过滤时的压强为0.15MPa,滤膜孔径为0.02μm;
S2、向S1中提取液中加入柠檬酸调节pH至5,降温至室温静置后过滤得到EGCG粗晶体,过滤时的压强为0.15MPa,滤膜孔径为0.01μm;
S3、将S2中的EGCG粗晶体经过重结晶得到EGCG晶体。
实施例9
一种从新鲜茶叶中提取EGCG的方法,包括以下步骤:
S1、将新鲜茶叶粉碎至50目,加入柠檬酸钠水溶液,柠檬酸钠的浓度为2mol/L,所述柠檬酸钠与所述茶叶的体积质量比例为5:1L/kg;加热至60℃,保持2h,趁热过滤得到提取液,过滤时的压强为0.15MPa,滤膜孔径为0.02μm;
S2、向S1中提取液中加入柠檬酸调节pH至4,降温至室温静置后过滤得到EGCG粗晶体,过滤时的压强为0.15MPa,滤膜孔径为0.01μm;
S3、将S2中的EGCG粗晶体经过重结晶得到EGCG晶体。
实施例10
一种从新鲜茶叶中提取EGCG的方法,包括以下步骤:
S1、将新鲜茶叶粉碎至50目,加入柠檬酸钠水溶液,柠檬酸钠的浓度为2mol/L,所述柠檬酸钠与所述茶叶的体积质量比例为15:1L/kg;加热至60℃,保持2h,趁热过滤得到提取液,过滤时的压强为0.15MPa,滤膜孔径为0.02μm;
S2、向S1中提取液中加入柠檬酸调节pH至4,降温至室温静置后过滤得到EGCG粗晶体,过滤时的压强为0.15MPa,滤膜孔径为0.01μm;
S3、将S2中的EGCG粗晶体经过重结晶得到EGCG晶体。
针对实施例1~10中所得的EGCG,发明人测试了EGCG的纯度和收率:
1、纯度:通过高效液相色谱法测定,测试结果如下:
  实施例1 实施例2 实施例3 实施例4 实施例5 实施例6 实施例7 实施例8 实施例9 实施例10
纯度/% 98.6 98.7 98.5 98.4 98.6 98.3 98.6 98.2 97.9 99.1
由上表不难看出,柠檬酸钠溶液的浓度、pH对EGCG的纯度影响较小,而柠檬酸钠溶液的用量则会影响产品的纯度,两者成反比。
2、收率:取各实施例中S1中的浓缩液进行测量,以此作为总量(残渣中的忽略不计),结果如下:
  实施例1 实施例2 实施例3 实施例4 实施例5 实施例6 实施例7 实施例8 实施例9 实施例10
收率/% 94.3 94.4 94.6 94.4 94.4 94.5 94.6 94.6 94.7 93.9
由上表可以看出,收率与柠檬酸钠溶液的浓度、pH成正相关,但影响的程度并不大,而产品的收率则与柠檬酸钠溶液的用量成反比,最适宜的条件是10:1L/kg的用量条件。

Claims (9)

  1. 一种从新鲜茶叶中提取EGCG的方法,包括以下步骤:
    S1、将新鲜茶叶粉碎,加入柠檬酸盐水溶液,加热至50~70℃,保持1.5~2h,过滤得到提取液,提取液浓缩获得浓缩液;
    S2、将步骤S1中浓缩液中加入柠檬酸调节pH至4~5,冷却静止后过滤得到EGCG粗晶体;
    S3、将S2中的EGCG粗晶体经过重结晶得到EGCG晶体。
  2. 根据权利要求1所述的一种EGCG的提取方法,其特征在于,在步骤S1中,柠檬酸盐的浓度为2~4mol/L。
  3. 根据权利要求2所述的一种EGCG的提取方法,其特征在于,所述柠檬酸盐与所述茶叶的体积质量比例为(5~15):1L/kg。
  4. 根据权利要求1所述的一种EGCG的提取方法,其特征在于,在步骤S2中,降温后的温度为20~30℃。
  5. 根据权利要求1所述的一种EGCG的提取方法,其特征在于,在步骤S1中,所述茶叶的粉碎粒径为50~80目。
  6. 根据权利要求1所述的一种EGCG的提取方法,其特征在于,在步骤S1中,过滤的温度为50~70℃。
  7. 根据权利要求6所述的一种EGCG的提取方法,其特征在于,在步骤S1中,过滤操作的压强为0.1~0.3MPa,滤膜孔径为0.02μm。
  8. 根据权利要求1所述的一种EGCG的提取方法,其特征在于,在步骤S2中,过滤操作的温度为20~30℃。
  9. 根据权利要求8所述的一种EGCG的提取方法,其特征在于,在步骤S2中,过滤操作的压强为0.1~0.3MPa,滤膜孔径为0.01μm。
PCT/CN2022/129111 2021-12-24 2022-11-02 一种从新鲜茶叶中提取egcg的方法 WO2023116209A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111601809.6 2021-12-24
CN202111601809.6A CN114230542A (zh) 2021-12-24 2021-12-24 一种从新鲜茶叶中提取egcg的方法

Publications (1)

Publication Number Publication Date
WO2023116209A1 true WO2023116209A1 (zh) 2023-06-29

Family

ID=80762860

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/129111 WO2023116209A1 (zh) 2021-12-24 2022-11-02 一种从新鲜茶叶中提取egcg的方法

Country Status (2)

Country Link
CN (1) CN114230542A (zh)
WO (1) WO2023116209A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114230542A (zh) * 2021-12-24 2022-03-25 浙江天草生物科技股份有限公司 一种从新鲜茶叶中提取egcg的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101225082A (zh) * 2008-01-31 2008-07-23 浙江工业大学 一种从茶叶中提取茶多酚和分离单体egcg的方法
JP2012055264A (ja) * 2010-09-10 2012-03-22 Kao Corp 精製カテキン類含有茶抽出物の製造方法
CN102964329A (zh) * 2012-11-30 2013-03-13 中华全国供销合作总社杭州茶叶研究所 一种中压高聚物反相色谱分离纯化表没食子儿茶素没食子酸酯的方法
CN104356105A (zh) * 2014-10-22 2015-02-18 北京康育博尔生物科技有限公司 一种高含量egcg的制备方法
CN107721967A (zh) * 2017-11-20 2018-02-23 浙江天草生物科技股份有限公司 一种高egcg含量的绿茶提取物生产工艺
CN108690097A (zh) * 2018-04-23 2018-10-23 浙江师范大学 一种茶多酚的提取方法
CN111601794A (zh) * 2017-12-05 2020-08-28 克里斯托莫菲克斯技术私人有限公司 从绿茶提取物或绿茶粉中分离没食子酸化的表儿茶素(egcg和ecg)的方法
CN114230542A (zh) * 2021-12-24 2022-03-25 浙江天草生物科技股份有限公司 一种从新鲜茶叶中提取egcg的方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101225082A (zh) * 2008-01-31 2008-07-23 浙江工业大学 一种从茶叶中提取茶多酚和分离单体egcg的方法
JP2012055264A (ja) * 2010-09-10 2012-03-22 Kao Corp 精製カテキン類含有茶抽出物の製造方法
CN102964329A (zh) * 2012-11-30 2013-03-13 中华全国供销合作总社杭州茶叶研究所 一种中压高聚物反相色谱分离纯化表没食子儿茶素没食子酸酯的方法
CN104356105A (zh) * 2014-10-22 2015-02-18 北京康育博尔生物科技有限公司 一种高含量egcg的制备方法
CN107721967A (zh) * 2017-11-20 2018-02-23 浙江天草生物科技股份有限公司 一种高egcg含量的绿茶提取物生产工艺
CN111601794A (zh) * 2017-12-05 2020-08-28 克里斯托莫菲克斯技术私人有限公司 从绿茶提取物或绿茶粉中分离没食子酸化的表儿茶素(egcg和ecg)的方法
US20210139446A1 (en) * 2017-12-05 2021-05-13 Crystalmorphix Technologies Pvt. Ltd Process for the separation of gallated epicatechins (egcg & ecg) from green tea extract or green tea dust
CN108690097A (zh) * 2018-04-23 2018-10-23 浙江师范大学 一种茶多酚的提取方法
CN114230542A (zh) * 2021-12-24 2022-03-25 浙江天草生物科技股份有限公司 一种从新鲜茶叶中提取egcg的方法

Also Published As

Publication number Publication date
CN114230542A (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
CN104086425B (zh) 一种同时提取并分离烟草绿原酸、茄尼醇、生物碱、芸香苷的方法
CN102212091A (zh) 一种高纯度栀子苷及其制剂的制备及临床应用
CN112110979B (zh) 一种提取茶皂素的方法
CN106478744A (zh) 一种从茶叶中提取茶多酚的工艺
CN110105458B (zh) 从罗汉果甜苷提取废液中提取多糖和d-甘露醇的方法
WO2020063894A1 (zh) 一种甜叶菊的工业化利用方法及其甜菊糖苷和绿原酸
WO2023116209A1 (zh) 一种从新鲜茶叶中提取egcg的方法
CN109053821B (zh) 从罗汉果叶中提取茶多酚、总氨基酸、黄酮化合物的方法
WO2020073975A1 (zh) 一种工业化提取万寿菊黄酮的方法及其万寿菊黄酮
WO2021129233A1 (zh) 一种以含谷维素的皂脚为原料制备天然阿魏酸的方法
CN111793099A (zh) 从枳实中分离橙皮苷、新橙皮苷、柚皮苷和辛弗林的方法
CN109369733B (zh) 一种从苦荞叶中同时提取多种黄酮类化合物的方法
WO2018113285A1 (zh) 一种七叶皂苷钠的制备方法
US10968470B2 (en) Method for preparing rubusoside
WO2022247097A1 (zh) 一种从罗汉果花中分离出有效成分的方法
CN106831930B (zh) 一种用于熊果酸提取的萃取剂及提取方法
CN101525328A (zh) 从山竹果皮中提取α-倒捻子素的方法
CN109432148B (zh) 一种提取黄蜀葵花浸出物的方法
CN107382943B (zh) 一种亚临界水萃取高粱麸皮中二氢槲皮素的方法
CN111808060B (zh) 一种从红景天中提取总香豆素的方法
CN111018929B (zh) 一种异柚皮苷的提取分离工艺
WO2022156615A9 (zh) 一种富含egc的非酯型茶多酚的制备方法
CN110357928B (zh) 一种从茶叶中提取低咖啡碱、无农残、无酯茶多酚的方法
CN110169472B (zh) 功能性保健茶用天然抗氧剂提取方法
CN114031498A (zh) 膜分离法提取高纯度金银花绿原酸的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22909526

Country of ref document: EP

Kind code of ref document: A1