WO2023109596A1 - 铜酞菁聚合物@铜纳米线核壳纳米材料及制备方法与应用 - Google Patents

铜酞菁聚合物@铜纳米线核壳纳米材料及制备方法与应用 Download PDF

Info

Publication number
WO2023109596A1
WO2023109596A1 PCT/CN2022/137041 CN2022137041W WO2023109596A1 WO 2023109596 A1 WO2023109596 A1 WO 2023109596A1 CN 2022137041 W CN2022137041 W CN 2022137041W WO 2023109596 A1 WO2023109596 A1 WO 2023109596A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
shell
phthalocyanine polymer
preparation
nanowire core
Prior art date
Application number
PCT/CN2022/137041
Other languages
English (en)
French (fr)
Inventor
徐延超
刘凤麟
吴天准
Original Assignee
深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳先进技术研究院 filed Critical 深圳先进技术研究院
Publication of WO2023109596A1 publication Critical patent/WO2023109596A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • C25B11/095Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds at least one of the compounds being organic
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • C25B3/20Processes
    • C25B3/25Reduction
    • C25B3/26Reduction of carbon dioxide

Definitions

  • the invention belongs to the technical field of nanomaterials, and specifically relates to the field of electrochemical carbon dioxide reduction, in particular to copper phthalocyanine polymer@copper nanowire core-shell nanomaterials and their preparation methods and applications.
  • Metallophthalocyanines consisting of a macrocyclic ligand framework and a metal center with tunable oxidation states, have attracted researchers due to their low cost, easy availability, well-defined active sites, and tunable structures. widespread attention.
  • MPcs Metallophthalocyanines
  • its own planar macrocyclic conjugated structure makes the phthalocyanine molecules have a strong ⁇ - ⁇ interaction, which leads to its easy aggregation and poor conductivity, which will greatly reduce the specific surface area and electrons of the catalyst. transport capacity, leading to a reduction in its catalytic performance. Therefore, improving the dispersion and conductivity of phthalocyanine molecules is extremely important for enhancing its catalytic performance.
  • Copper nanowires have a high surface area, fast carrier mobility and inherent anisotropy, and are a good conductive carrier. At the same time, copper nanowires can be used as a copper source for copper phthalocyanine. The bit growth on the surface of copper nanowires can effectively prevent the aggregation of phthalocyanine polymers, enhance the conductivity, and then improve its catalytic activity.
  • a copper phthalocyanine polymer@copper nanowire core-shell nanomaterial uses copper nanowires as a copper source and carrier to form a copper nanowire as a core, with The copper phthalocyanine polymer is a core-shell structure of the shell.
  • the copper phthalocyanine polymer@copper nanowire core-shell nanomaterial has a diameter of 100-500 nm and a length of 20-50 ⁇ m;
  • a preparation method of copper phthalocyanine polymer@copper nanowire core-shell nanomaterial the specific steps are: dispersing copper nanowire into an organic solvent, adding tetracyanobenzene and 1,8-diazabicyclo[ 5.4.0] Undec-7-ene, heating reaction 1, that is, copper phthalocyanine polymer@copper nanowire core-shell nanomaterial.
  • the preparation method also includes centrifuging the product obtained after the heating reaction 1, washing with ethanol and acetone, and vacuum drying.
  • the mass ratio of the copper nanowires, tetracyanobenzene and 1,8-diazabicyclo[5.4.0]undec-7-ene is 2.5:1:1;
  • the organic solvent is selected from one or more of pentanol, butanol and hexanol.
  • the temperature of the heating reaction 1 is 160-200 °C;
  • the heating reaction 1 time is 10-60 min.
  • the preparation of copper nanowires also includes the preparation of copper nanowires.
  • the specific steps are: adding the copper salt solution to the sodium hydroxide solution to obtain a mixed solution, adding ethylenediamine and hydrazine hydrate to it in turn to obtain a milky white suspension, and heating for 2 Finally, red precipitates are obtained, which are copper nanowires.
  • the concentration of the sodium hydroxide solution is 0.6-0.8 g/mL
  • the concentration of the copper salt solution is 0.042 g/mL
  • the mass volume ratio of the copper salt to ethylenediamine is 0.42:2.5-3.5 g/mL;
  • the mass volume ratio of the copper salt to hydrazine hydrate is 0.42:0.2-0.4 g/mL;
  • the copper salt is selected from one or more of copper chloride, copper nitrate and copper sulfate;
  • the volume of the ethylenediamine is 2.5-3.5 mL
  • the volume of the hydrazine hydrate is 0.2-0.4 mL
  • the volume of the sodium hydroxide solution is 350-370 mL;
  • the volume of the copper salt solution is 9.5-10.5 mL.
  • the temperature of the heating reaction 2 is 80°C, and the reaction time is 1.5-3 h.
  • the invention discloses a copper phthalocyanine polymer@copper nanowire core-shell nanomaterial, which uses copper nanowire as a copper source and carrier to form a core-shell structure with copper nanowire as the core and copper phthalocyanine polymer as the shell .
  • the present invention proposes for the first time to use copper nanowires as the copper source and carrier for preparing copper phthalocyanine polymers to grow copper phthalocyanine nickel polymers in situ, which can not only increase the dispersion of phthalocyanine polymers, but also solve the problem of easy aggregation of copper phthalocyanine polymers It can also effectively improve and improve the conductivity of phthalocyanine polymers, enhance its charge transport ability, effectively improve its catalytic performance, especially improve the efficiency of electrochemical CO2 reduction.
  • the preparation method disclosed by the invention has simple process, safe and efficient process, and the synthesized core-shell nanomaterial effectively solves the problem of poor activity and conductivity caused by easy aggregation of phthalocyanine polymers.
  • Fig. 1 is the scanning electron micrograph (SEM) of the copper nanowire prepared in embodiment 1;
  • Figure 2 is the X-ray diffraction pattern (XRD) of the copper nanowires prepared in Example 1;
  • Figure 3 is a scanning electron microscope image (SEM) of the copper phthalocyanine polymer@copper nanowire core-shell nanomaterial prepared in Example 1;
  • Figure 4 is the transmission electron microscope dark field phase diagram (HAADF-STEM) and element distribution diagram (mapping) of the copper phthalocyanine polymer@copper nanowire core-shell nanomaterial prepared in Example 1;
  • Fig. 5 is the X-ray diffraction diagram of the copper phthalocyanine polymer@copper nanowire core-shell nanomaterial prepared in Example 1;
  • Fig. 6 is the Raman diagram of the copper phthalocyanine polymer@copper nanowire core-shell nanomaterial prepared in Example 1;
  • Fig. 7 is a diagram of the electrocatalytic CO 2 reduction performance of the copper phthalocyanine polymer@copper nanowire core-shell nanocatalyst prepared in Example 1.
  • a preparation method of copper phthalocyanine polymer@copper nanowire core-shell nanomaterial the steps are as follows:
  • Figure 1 is a scanning electron microscope image (SEM) of the prepared copper nanowires. It can be seen from the figure that the synthesized product is a linear structure with a smooth surface and a diameter of about 100-500 nm, 20-50 ⁇ m in length.
  • Figure 2 is the X-ray diffraction pattern (XRD) of the prepared copper nanowires. It can be seen from the figure that there are three strong diffraction peaks, which are respectively attributed to the (111), (200) and (220) crystal planes of copper.
  • XRD X-ray diffraction pattern
  • Figure 3 is a scanning electron microscope image (SEM) of the copper phthalocyanine polymer@copper nanowire core-shell nanomaterial prepared in Example 1. It can be seen from the figure that the surface of the product is very rough.
  • Figure 4 shows the corresponding transmission electron microscope dark field phase diagram (HAADF-STEM) and element distribution diagram (mapping). It can be seen from the figure that the synthesized material has a core-shell structure, that is, with copper nanowires as the core, copper phthalocyanine Polymer-shell core-shell nanomaterials.
  • Figure 5 is the X-ray diffraction pattern of the product. It can be seen from the figure that the three sharp strong peaks belong to the diffraction peaks of copper nanowires, while the weak peaks at 8.7° and 27.3° are attributed to the diffraction of copper phthalocyanine polymer peak.
  • Figure 6 is the Raman diagram of the synthesized copper phthalocyanine polymer@copper nanowire core-shell nanomaterial.
  • the Raman spectrum shows three typical in-plane vibration modes, namely non-degenerate A 1g , B 1g and B 2g modes , which is a typical vibrational mode of copper phthalocyanine polymers.
  • the peaks at 693 cm -1 , 1141 cm -1 and 1318 cm -1 are attributed to the breathing vibration and deformation of CC bonds in the macrocycle, and the peaks at 751 cm -1 and 1555 cm -1 are attributed to the stretching of CNC bridge bonds vibration.
  • Figure 7 is a graph of the electrocatalytic CO2 reduction performance of this sample. At a potential of -0.4 V, the Faradaic efficiency is as high as 81.4%.
  • Present embodiment is the same as embodiment 1, and the temperature of reaction in step (5) is 160 °C, other steps remain unchanged.
  • Present embodiment is the same as embodiment 1, and the reaction time in step (5) is 200 °C, other steps remain unchanged.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Catalysts (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Abstract

一种铜酞菁聚合物@铜纳米线核壳纳米材料,以铜纳米线作为铜源和载体,形成以铜纳米线为核,以铜酞菁聚合物为壳的核壳结构。首先通过水热法合成铜纳米线,然后将铜纳米线置于微波反应器中,使铜纳米线表面的铜与氰基基团发生配位,以此为模板在铜纳米线表面形成二维交联网络的铜酞菁聚合物,从而形成了铜酞菁聚合物@铜纳米线核壳纳米材料,可以应用于电化学CO 2还原。

Description

铜酞菁聚合物@铜纳米线核壳纳米材料及制备方法与应用 技术领域
本发明属于纳米材料技术领域,具体涉及电化学二氧化碳还原领域,特别是铜酞菁聚合物@铜纳米线核壳纳米材料及制备方法与应用。
背景技术
金属酞菁(MPcs)由一个大环配体框架和一个氧化态可调的金属中心组成,因其成本低廉、易获得、具有明确的活性位点和可调的结构等特性,引起了研究者的广泛关注。但是其本身的平面大环共轭结构,使得酞菁分子间具有很强的π-π相互作用,从而导致其容易聚集,出现导电性差的缺点,这将会极大降低催化剂的比表面积和电子传输能力,导致其催化性能降低。因此,提高酞菁分子的分散性和导电性对于增强其催化性能有极其重要。
技术问题
为了解决现有技术的不足,本发明采用的技术方案如下:
技术解决方案
铜纳米线具有很高的表面积,快速的载流子迁移率和固有各向异性,是一种很好的导电载体,同时铜纳米线可以作为铜酞菁的铜源,将铜酞菁分子原位生长在铜纳米线表面能够有效地阻止酞菁聚合物聚集,增强导电性,进而提高其催化活性。
一种铜酞菁聚合物@铜纳米线核壳纳米材料,所述铜酞菁聚合物@铜纳米线核壳纳米材料以铜纳米线作为铜源和载体,形成以铜纳米线为核,以铜酞菁聚合物为壳的核壳结构。
进一步地,所述铜酞菁聚合物@铜纳米线核壳纳米材料的直径为100-500 nm,长度为20-50 µm;
进一步地,所述铜酞菁聚合物@铜纳米线核壳纳米材料的化学结构式如下:
Figure dest_path_image001
一种铜酞菁聚合物@铜纳米线核壳纳米材料的制备方法,具体步骤为:将铜纳米线分散到有机溶剂中,向其中加入四氰基苯和1,8-二氮杂双环[5.4.0]十一碳-7-烯,加热反应1,即得铜酞菁聚合物@铜纳米线核壳纳米材料。
进一步地,所述制备方法还包括对加热反应1后所得产物离心分离,用乙醇和丙酮清洗后真空干燥。
进一步地,所述铜纳米线、四氰基苯和1,8-二氮杂双环[5.4.0]十一碳-7-烯的质量比为2.5:1:1;
优选地,所述有机溶剂选自戊醇、丁醇、己醇中的一种或几种。
进一步地,所述加热反应1的温度为160-200 ℃;
进一步地,所述加热反应1时间为10-60 min。
进一步地,还包括铜纳米线的制备,具体步骤为:将铜盐溶液加入到氢氧化钠溶液中,得到混合溶液,向其中依次加入乙二胺、水合肼得到乳白色悬浊液,加热反应2后得到红色沉淀,即为铜纳米线。
进一步地,所述氢氧化钠溶液的浓度为0.6-0.8 g/mL;
进一步地,所述铜盐溶液的浓度为0.042 g/mL;
进一步地,所述铜盐与乙二胺的质量体积比为0.42:2.5-3.5 g/mL;
进一步地,所述铜盐与水合肼的质量体积比为0.42:0.2-0.4 g/mL;
进一步地,优选地,所述铜盐选自氯化铜、硝酸铜、硫酸铜中的一种或几种;
进一步地,优选地,所述乙二胺的体积为2.5-3.5 mL;
进一步地,优选地,所述水合肼的体积为0.2-0.4 mL;
进一步地,优选地,所述氢氧化钠溶液的体积为350-370 mL;
进一步地,优选地,所述铜盐溶液的体积为9.5-10.5 mL。
进一步地,加入所述乙二胺后搅拌5-15 min;
进一步地,加入所述水合肼后搅拌30-60 min;
进一步地,所述加热反应2温度为80℃,反应时间为1.5-3 h。
一种铜酞菁聚合物@铜纳米线核壳纳米材料作为催化剂材料的应用;
优选地,一种铜酞菁聚合物@铜纳米线核壳纳米材料在电化学二氧化碳还原中的应用。
有益效果
本发明取得的有益效果为:
本发明公开了一种铜酞菁聚合物@铜纳米线核壳纳米材料,以铜纳米线作为铜源和载体,形成以铜纳米线为核,以铜酞菁聚合物为壳的核壳结构。本发明首次提出利用铜纳米线作为制备铜酞菁聚合物的铜源和载体原位生长铜酞菁镍聚合物,这不仅能增加酞菁聚合物的分散性,解决铜酞菁聚合物容易聚集的问题,还可以有效提升和改善酞菁聚合物的导电性,增强其电荷传输能力,有效地提升其催化性能,尤其是提升了电化学CO 2还原的效率。
本发明所公开的制备方法工艺简单,过程安全高效,所合成的核壳纳米材料有效解决了酞菁聚合物易聚集导致的活性和导电性差的问题。
附图说明
图1为实施例1制备的铜纳米线的扫描电子显微镜图(SEM);
图2为实施例1制备的铜纳米线的X射线衍射图(XRD);
图3为实施例1制备的铜酞菁聚合物@铜纳米线核壳纳米材料的扫描电子显微镜图(SEM);
图4为实施例1制备的铜酞菁聚合物@铜纳米线核壳纳米材料的透射电子显微镜暗场相图(HAADF-STEM)和元素分布图(mapping);
图5为实施例1制备的铜酞菁聚合物@铜纳米线核壳纳米材料的X射线衍射图;
图6为实施例1制备的铜酞菁聚合物@铜纳米线核壳纳米材料的拉曼图;
图7为实施例1制备的铜酞菁聚合物@铜纳米线核壳纳米催化剂的电催化CO 2还原性能图。
本发明的实施方式
为了更清楚地理解本发明,现参照下列实施例及附图进一步描述本发明。实施例仅用于解释而不以任何方式限制本发明。实施例中,各原始试剂材料均可商购获得,未注明具体条件的实验方法为所属领域熟知的常规方法和常规条件,或按照仪器制造商所建议的条件。
实施例1
一种铜酞菁聚合物@铜纳米线核壳纳米材料的制备方法,步骤如下:
(1)将250 g氢氧化钠缓慢溶解到360 mL水中,0.42 g铜盐溶解到10 mL水中,将铜盐溶液逐滴加入到氢氧化钠溶液中,此时混合溶液呈现蓝色。
(2)向蓝色溶液中滴加3 mL乙二胺,搅拌5 min,之后加入0.3 mL水合肼,此时混合溶液出现乳白色悬浮液,搅拌30 min。
(3)将上述混合溶液在80 ℃,反应1.5 h,之后自然冷却到室温。
(4)将所得的红色沉淀用水和乙醇混合溶剂洗3次,然后真空干燥,得到铜纳米线粉末。
(5)将真空干燥的50 mg铜纳米线分散到戊醇中,加入20 mg四氰基苯和20 mg 1,8-二氮杂双环[5.4.0]十一碳-7-烯,超声均匀后,置于微波反应器中,180℃条件下反应30 min。
(6)将所得产物离心分离,用乙醇和丙酮清洗后,真空干燥,得到铜酞菁聚合物@铜纳米线核壳纳米结构。
最后将所制备的铜酞菁聚合物@铜纳米线核壳纳米材料用于电化学CO 2还原。
图1为制备的铜纳米线的扫描电子显微镜图(SEM),从图中可以看出合成的产物为线状结构,表面光滑,直径约为100-500 nm,长度为20-50 µm。
图2为制备的铜纳米线的X射线衍射图(XRD),从图中可以看出三个很强的衍射峰,分别归于铜的(111)、(200)和(220)晶面。
图3为实施例1制备的铜酞菁聚合物@铜纳米线核壳纳米材料的扫描电子显微镜图(SEM),从图中可以看出产物的表面很粗糙。
图4为相应的透射电子显微镜暗场相图(HAADF-STEM)和元素分布图(mapping),从图中可以看出所合成的材料为核壳结构,即以铜纳米线为核,铜酞菁聚合物为壳的核壳纳米材料。
图5为产物的X射线衍射图,从图中可以看出,三个尖锐的强峰归属于铜纳米线的衍射峰,而位于8.7°和27.3°的弱峰归于铜酞菁聚合物的衍射峰。
图6为合成的铜酞菁聚合物@铜纳米线核壳纳米材料的拉曼图,拉曼光谱显示出三种典型的面内振动模式,即非简并A 1g、B 1g和B 2g模式,这是典型的铜酞菁聚合物的振动模式。693 cm -1、1141 cm -1和1318 cm -1处的峰归属于大环中C-C键的呼吸振动和变形,751 cm -1和1555 cm -1处的峰归属于C-N-C桥键的拉伸振动。
图7为这个样品电催化CO 2还原性能图。在电位为-0.4 V时,法拉第效率高达81.4%。
实施例2
本实施例同实施例1,步骤(5)中的反应温度为160 ℃,其他步骤不变。
实施例3
本实施例同实施例1,步骤(5)中的反应时间为200 ℃,其他步骤不变。
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

  1. 一种铜酞菁聚合物@铜纳米线核壳纳米材料,其特征在于,所述铜酞菁聚合物@铜纳米线核壳纳米材料以铜纳米线作为铜源和载体,形成以铜纳米线为核,以铜酞菁聚合物为壳的核壳结构。
  2. 如权利要求1所述的铜酞菁聚合物@铜纳米线核壳纳米材料,其特征在于,所述铜酞菁聚合物@铜纳米线核壳纳米材料的直径为100-500 nm,长度为20-50 µm;
    所述铜酞菁聚合物@铜纳米线核壳纳米材料的化学结构式如下:
    Figure dest_path_image001
  3. 一种铜酞菁聚合物@铜纳米线核壳纳米材料的制备方法,其特征在于,具体步骤为:将铜纳米线分散到有机溶剂中,向其中加入四氰基苯和1,8-二氮杂双环[5.4.0]十一碳-7-烯,加热反应1,即得铜酞菁聚合物@铜纳米线核壳纳米材料。
  4. 如权利要求3所述的制备方法,其特征在于,所述铜纳米线、四氰基苯和1,8-二氮杂双环[5.4.0]十一碳-7-烯的质量比为2.5:1:1;
    优选地,所述有机溶剂选自戊醇、丁醇、己醇中的一种或几种。
  5. 如权利要求3所述的制备方法,其特征在于,所述加热反应1的温度为160-200 ℃;
    所述加热反应1时间为10-60 min。
  6. 如权利要求3所述的制备方法,其特征在于,还包括铜纳米线的制备,具体步骤为:将铜盐溶液加入到氢氧化钠溶液中,得到混合溶液,向其中依次加入乙二胺、水合肼得到乳白色悬浊液,加热反应2后得到红色沉淀,即为铜纳米线。
  7. 如权利要求6所述的制备方法,其特征在于,所述氢氧化钠溶液的浓度为0.6-0.8 g/mL;
    所述铜盐溶液的浓度为0.042 g/mL;
    所述铜盐与乙二胺的质量体积比为0.42:2.5-3.5 g/mL;
    所述铜盐与水合肼的质量体积比为0.42:0.2-0.4 g/mL;
    优选地,所述铜盐选自氯化铜、硝酸铜、硫酸铜中的一种或几种;
    优选地,所述乙二胺的体积为2.5-3.5 mL;
    优选地,所述水合肼的体积为0.2-0.4 mL;
    优选地,所述氢氧化钠溶液的体积为350-370 mL;
    优选地,所述铜盐溶液的体积为9.5-10.5 mL。
  8. 如权利要求6所述的制备方法,其特征在于,加入所述乙二胺后搅拌5-15 min;
    加入所述水合肼后搅拌30-60 min;
    所述加热反应2温度为80℃,反应时间为1.5-3 h。
  9. 如权利要求2所述的制备方法,其特征在于,所述制备方法还包括对加热反应1后所得产物离心分离,用乙醇和丙酮清洗后真空干燥。
  10. 一种铜酞菁聚合物@铜纳米线核壳纳米材料作为催化剂材料的应用;
    优选地,一种铜酞菁聚合物@铜纳米线核壳纳米材料在电化学二氧化碳还原中的应用。
PCT/CN2022/137041 2021-12-13 2022-12-06 铜酞菁聚合物@铜纳米线核壳纳米材料及制备方法与应用 WO2023109596A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111518977.9A CN114427104B (zh) 2021-12-13 2021-12-13 铜酞菁聚合物@铜纳米线核壳纳米材料及制备方法与应用
CN202111518977.9 2021-12-13

Publications (1)

Publication Number Publication Date
WO2023109596A1 true WO2023109596A1 (zh) 2023-06-22

Family

ID=81311379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/137041 WO2023109596A1 (zh) 2021-12-13 2022-12-06 铜酞菁聚合物@铜纳米线核壳纳米材料及制备方法与应用

Country Status (2)

Country Link
CN (1) CN114427104B (zh)
WO (1) WO2023109596A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114427104B (zh) * 2021-12-13 2023-03-21 深圳先进技术研究院 铜酞菁聚合物@铜纳米线核壳纳米材料及制备方法与应用
CN116731294A (zh) * 2022-08-17 2023-09-12 四川大学 一种共轭聚合物生物催化材料及其制备方法和应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009280531A (ja) * 2008-05-23 2009-12-03 Dic Corp 金属フタロシアニンナノワイヤー及びその製造方法
WO2018132937A1 (en) * 2017-01-17 2018-07-26 South University Of Science And Technology Of China Use of metal phthalocyanine/nanocarbon hybrid catalysts for efficient electrochemical reduction of co2
WO2018195045A1 (en) * 2017-04-17 2018-10-25 President And Fellows Of Harvard College Metal-doped catalyst, methods for its production and uses thereof
CN108923050A (zh) * 2018-07-04 2018-11-30 武汉大学 一种高催化性能的核壳碳纳米结构电催化剂及其制备方法
CN110911694A (zh) * 2019-11-27 2020-03-24 南方科技大学 利用金属酞菁分子-纳米碳制备异相单分子电催化剂的方法及其用途
CN111519206A (zh) * 2020-05-13 2020-08-11 中国科学技术大学 一种铜基复合薄膜催化剂、其制备方法及应用
CN114427104A (zh) * 2021-12-13 2022-05-03 深圳先进技术研究院 铜酞菁聚合物@铜纳米线核壳纳米材料及制备方法与应用

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102206863B (zh) * 2011-03-24 2012-07-18 中国科学院苏州纳米技术与纳米仿生研究所 一种金属酞菁纳米线的制备方法
CN106633098B (zh) * 2017-02-14 2019-09-27 吉林大学 一种聚合物基超支化金属酞菁@纳米钛酸钡复合材料及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009280531A (ja) * 2008-05-23 2009-12-03 Dic Corp 金属フタロシアニンナノワイヤー及びその製造方法
WO2018132937A1 (en) * 2017-01-17 2018-07-26 South University Of Science And Technology Of China Use of metal phthalocyanine/nanocarbon hybrid catalysts for efficient electrochemical reduction of co2
WO2018195045A1 (en) * 2017-04-17 2018-10-25 President And Fellows Of Harvard College Metal-doped catalyst, methods for its production and uses thereof
CN108923050A (zh) * 2018-07-04 2018-11-30 武汉大学 一种高催化性能的核壳碳纳米结构电催化剂及其制备方法
CN110911694A (zh) * 2019-11-27 2020-03-24 南方科技大学 利用金属酞菁分子-纳米碳制备异相单分子电催化剂的方法及其用途
CN111519206A (zh) * 2020-05-13 2020-08-11 中国科学技术大学 一种铜基复合薄膜催化剂、其制备方法及应用
CN114427104A (zh) * 2021-12-13 2022-05-03 深圳先进技术研究院 铜酞菁聚合物@铜纳米线核壳纳米材料及制备方法与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIAOHUA BAI, WANG KAILIN, MIAO QIAN: "Preparation of Copper Phthalocyanine Complex and Study on Electrocatalytic Reduction of CO2", TECHNOLOGY & DEVELOPMENT OF CHEMICAL INDUSTRY, vol. 48, no. 3, 31 March 2019 (2019-03-31), pages 16 - 19, XP093071042 *

Also Published As

Publication number Publication date
CN114427104B (zh) 2023-03-21
CN114427104A (zh) 2022-05-03

Similar Documents

Publication Publication Date Title
WO2023109596A1 (zh) 铜酞菁聚合物@铜纳米线核壳纳米材料及制备方法与应用
Cheng et al. Recent development of zeolitic imidazolate frameworks (ZIFs) derived porous carbon based materials as electrocatalysts
Zhang et al. Biomass chitosan derived cobalt/nitrogen doped carbon nanotubes for the electrocatalytic oxygen reduction reaction
JP5080482B2 (ja) 触媒作用のある鋳型ナノ粒子から製造される炭素ナノ構造体
WO2019113993A1 (zh) 一种碳纳米管及其制备方法
CN107399729A (zh) 一种双金属MOFs的含氮石墨化碳材料
CN110961162B (zh) 一种催化剂载体、贵金属催化剂及其制备方法和应用
Wang et al. Metal-organic gel-derived Fe-Fe2O3@ nitrogen-doped-carbon nanoparticles anchored on nitrogen-doped carbon nanotubes as a highly effective catalyst for oxygen reduction reaction
CN109850863B (zh) 一种类齿轮状介孔炭纳米球材料、制备方法及应用
CN104117339B (zh) 用于吸附染料的吸附剂的制备方法及其应用方法
KR101888743B1 (ko) 다공성 그래핀 및 탄소질을 포함하는 복합체
CN108249482B (zh) 磁性Fe2O3纳米颗粒的制备方法及其与纳米碳材料复合的方法
CN111349245B (zh) 一种交叠结构纳米片层材料及其制备方法和应用
Dai et al. Room-temperature synthesis of various allotropes of carbon nanostructures (graphene, graphene polyhedra, carbon nanotubes and nano-onions, n-diamond nanocrystals) with aid of ultrasonic shock using ethanol and potassium hydroxide
CN111233048A (zh) 一种双壳层MnCo2O4中空纳米球材料及其合成方法
CN110451615A (zh) 一种金属-有机框架碳纳米管杂化脱盐电极的制备方法
CN114196987A (zh) 一种二维NiFe-MOF纳米片的碳量子点复合材料的制备方法
KR101735337B1 (ko) 니켈(ii) 착물 유래 3차원 메조기공 그래핀 및 그 제조방법
CN112938964A (zh) 一种采用一锅法制备氮掺杂多孔石墨化碳气凝胶微球的方法
CN111686766B (zh) 一种金属-氟掺杂碳复合材料及其制备方法和在电催化固氮中的应用
CN111822054A (zh) 一种纳米多孔材料阳极催化剂及其制备方法
CN113617331B (zh) 一种双层金属有机骨架材料衍生石墨碳包裹纳米铁的制备方法与应用
CN114031042B (zh) 一种制备小尺寸过渡金属硫族化合物的方法及应用
CN110482529B (zh) 黑磷碳纳米管复合材料及其制备方法
CN109215999B (zh) 一种磁性碳纳米材料的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22906346

Country of ref document: EP

Kind code of ref document: A1