WO2023108749A1 - 一种Cu掺杂的Sb-Te体系相变材料、相变存储器及制备方法 - Google Patents

一种Cu掺杂的Sb-Te体系相变材料、相变存储器及制备方法 Download PDF

Info

Publication number
WO2023108749A1
WO2023108749A1 PCT/CN2021/140394 CN2021140394W WO2023108749A1 WO 2023108749 A1 WO2023108749 A1 WO 2023108749A1 CN 2021140394 W CN2021140394 W CN 2021140394W WO 2023108749 A1 WO2023108749 A1 WO 2023108749A1
Authority
WO
WIPO (PCT)
Prior art keywords
doped
phase change
change material
phase
target
Prior art date
Application number
PCT/CN2021/140394
Other languages
English (en)
French (fr)
Inventor
程晓敏
曾运韬
缪向水
Original Assignee
华中科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华中科技大学 filed Critical 华中科技大学
Priority to US17/928,932 priority Critical patent/US11807798B2/en
Publication of WO2023108749A1 publication Critical patent/WO2023108749A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • C09K5/063Materials absorbing or liberating heat during crystallisation; Heat storage materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/04Coating on selected surface areas, e.g. using masks
    • C23C14/046Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B63/00Resistance change memory devices, e.g. resistive RAM [ReRAM] devices
    • H10B63/10Phase change RAM [PCRAM, PRAM] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of switching materials, e.g. deposition of layers
    • H10N70/026Formation of switching materials, e.g. deposition of layers by physical vapor deposition, e.g. sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/041Modification of switching materials after formation, e.g. doping
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8828Tellurides, e.g. GeSbTe
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C13/00Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00
    • G11C13/0002Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements
    • G11C13/0004Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00, or G11C25/00 using resistive RAM [RRAM] elements comprising amorphous/crystalline phase transition cells

Definitions

  • the invention belongs to the technical field of micro-nano electronics, and more specifically relates to a Cu-doped Sb-Te system phase-change material, a phase-change memory and a preparation method.
  • phase change memory PCM is considered by the International Semiconductor Industry Association to be the most likely to replace flash memory and dynamic storage and become the mainstream storage in the future.
  • phase-change memory cell uses an electric pulse signal to act on the device unit, so that the phase-change material undergoes a reversible phase transition between the amorphous state and the polycrystalline state to realize the storage of "0" and "1".
  • Phase change materials are mainly chalcogenide compounds, among which compounds composed of Ge, Sb, and Te are the most common.
  • the Sb-Te system is a phase-change material that has received extensive attention in recent years. Its crystallization temperature is low and it has a growth-dominated crystallization process, and the crystallization speed is fast. Therefore, the phase-change memory device based on the Sb-Te system has a fast SET speed. specialty. However, its amorphous stability is poor, and the data retention stability of the device needs to be further improved.
  • Optimizing the performance of phase change materials is the key to improving the performance of phase change memory, and the microstructure of phase change materials determines its macroscopic characteristics.
  • the main performance optimization method for Sb-Te system phase change materials is doping. Especially doping with group IV elements. After the fourth main group element is mixed into the Sb-Te system, it can form a tetrahedral structure with itself as the center. In the amorphous state, the strongly bonded tetrahedral clusters are quite different from the structure (octahedron) of the Sb-Te crystal, which hinders the spontaneous crystallization of the phase change material, thereby improving its amorphous stability and data retention ability.
  • the above-mentioned doping improves the amorphous stability of the Sb-Te phase change material, it inevitably reduces its crystallization ability and thus reduces the crystallization speed of the system material.
  • the object of the present invention is to provide a Cu-doped Sb-Te system phase change material, a phase change memory and a preparation method thereof.
  • the Sb-Te system phase change material is doped with Cu elements to form and simultaneously have Materials with tetrahedral and octahedral structures can enhance the amorphous stability of Sb-Te system phase change materials while increasing their crystallization speed, and can achieve compatibility between erasing and writing speeds and amorphous stability, aiming to solve the problem of Sb in the prior art.
  • the incompatibility between SET speed and amorphous stability of Te-based phase change memory are examples of Te-based phase change memory.
  • the present invention provides a Cu-doped Sb-Te system phase change material
  • Cu is inhomogeneously doped in the Sb-Te system material in an atomic state to form a local Cu-rich region
  • Cu 3 Te 2 bonds are formed in
  • Cu 3 Te 2 bonds refer to the combination of Cu atoms and Te atoms to form bonds and form substances with tetrahedral and octahedral lattice arrangements.
  • the Sb-Te system material includes one or more of SbTe, Sb 2 Te, Sb 4 Te and Sb 2 Te 3 .
  • the Sb-Te system material is Sb 2 Te 3
  • the atomic percentage of the Cu element in the entire Cu-doped Sb 2 Te 3 phase change material is 20%.
  • Cu-doped Sb 2 Te 3 phase change material in an amorphous state, Cu atoms combine with Te atoms to form Cu 3 Te 2 with both tetrahedral and octahedral structures.
  • the Cu-doped Sb 2 Te 3 phase change material is in the form of a film, and the thickness of the film is 5 nm to 300 nm.
  • the bond angles formed by Cu atoms and Te atoms are 90° and 109°.
  • phase-change memory comprising the above-mentioned Cu-doped Sb-Te system phase-change material, which includes sequentially stacked bottom electrodes, isolation layers, phase-change layers and top electrode.
  • magnetron sputtering is Sb target, Te target and Cu target co-sputtering, Sb 2 Te 3 target and Cu target co-sputtering or Cu-doped Sb 2 Te 3 alloy target sputtering.
  • the Sb 2 Te 3 target and the Cu target are co-sputtered to obtain, and the doping amount of Cu element is controlled by controlling the sputtering power of single substance Cu to control the belonging phase change material
  • the number of tetrahedral structure and octahedral structure in the amorphous state can regulate its crystallization temperature and crystallization speed.
  • the process of the method of the invention is simple and feasible, and is suitable for popularization and application in engineering practice.
  • Fig. 1 is a schematic diagram of Cu 3 Te 2 having tetrahedral and octahedral structures after doping Cu in the present invention.
  • Fig. 2 is a schematic diagram showing the variation of the crystallization temperature of the Cu-Sb 2 Te 3 phase-change memory material thin film according to the embodiment of the present invention with the doping concentration.
  • the crystallization temperature is determined by the real-time variation curve of the square resistance of the in-situ film with the annealing temperature, and the heating rate is 12°C/min.
  • Fig. 3 (a) is the distribution of bonding angles of Cu atoms in the amorphous model of Cu-Sb 2 Te 3 phase-change memory thin film materials with Cu element doping atomic concentrations of 5%, 10% and 20% respectively according to the embodiment of the present invention Graph.
  • Fig. 3 (b) is the tetrahedron and pseudo-octahedron in the amorphous model of Cu-Sb 2 Te 3 phase-change memory thin film materials with Cu element doping atomic concentration of 5%, 10% and 20% respectively according to the embodiment of the present invention Quantitative statistics graph.
  • Fig. 4 is a test diagram of speed performance of Cu-Sb 2 Te 3 phase change memory set with different doping ratios in the embodiment of the present invention.
  • Fig. 5 is a test diagram of the set speed performance of the pure Sb 2 Te 3 phase change memory.
  • the present invention provides and designs a Cu-doped Sb-Te system rapid and high-stable phase change material.
  • a tetrahedron and octahedron are simultaneously formed.
  • the strongly bonded tetrahedral structure can improve the amorphous stability and data retention ability of Sb-Te phase change materials, and the crystal configuration octahedral structure can increase the crystallization speed of Sb-Te phase change materials. Realizing the simultaneous improvement of the contradictory properties of amorphous stability and crystallization speed is conducive to the commercial application of phase change memory based on this material.
  • the value of x can be regulated.
  • the thickness of the Cu-doped Sb 2 Te 3 fast and high-stable phase-change memory film material is 5 nm to 300 nm.
  • the thickness of the Cu-doped Sb 2 Te 3 fast and highly stable phase-change storage film material measured by the in-situ film square resistance versus annealing temperature real-time change curve is 100 nm.
  • the phase-change memory cell sequentially includes a bottom electrode, an isolation layer, a phase-change layer, and a top electrode.
  • the material of the phase-change layer is the Cu-doped Sb 2 Te 3 fast and high-stable phase-change memory film material described in the present invention, which is filled in small holes with a diameter of 250 nm and a depth of 100 nm.
  • the material of the bottom electrode is Pt.
  • the material of the isolation layer is SiO 2 .
  • the material of the top electrode is metal Pt.
  • the invention provides a method for preparing a Cu-doped Sb-Te fast and highly stable phase-change memory thin film material used in a phase-change memory.
  • the preparation method includes magnetron sputtering, chemical vapor deposition, atomic layer deposition, and electroplating. , electron beam evaporation, etc.
  • the magnetron sputtering method is the most flexible. It can use Sb target, Te target and Cu target for co-sputtering, Sb-Te target and Cu target for co-sputtering, or Cu-Sb-Te alloy target for sputtering. shoot. These methods can prepare the Cu-doped Sb-Te fast and high-stable phase-change storage thin film material and device of the present invention according to the proportion of the general chemical formula.
  • the Cu-doped Sb-Te fast and high-stable phase-change memory thin film material and the device preparation process of the present invention are mature, and are easy to realize compatibility with the existing microelectronic process technology.
  • the unique coexistence structure of tetrahedron and octahedron can improve the stability and operation speed of materials and devices at the same time.
  • the speed of the Cu-doped Sb 2 Te 3 fast and high-stable phase change memory device of the present invention is increased by about 4 times, which is 14ns, and the crystallization temperature is increased to above 400°C, and the amorphous state is stable Sex is greatly improved.
  • phase change material the phase change memory and the preparation method of the present invention will be further described in detail below in conjunction with specific examples.
  • the general chemical formula of the Cu-doped Sb 2 Te 3 rapid and high-stable phase-change memory film material for phase-change memory devices prepared in this example is Cu x (ST) 1-x , where ST represents Sb 2 Te 3 , x The value of is adjusted by the Cu target sputtering power.
  • the Cu-Sb 2 Te 3 phase-change memory thin film material is prepared by magnetron sputtering; during the preparation, high-purity argon is introduced as the sputtering gas, and the sputtering pressure is 0.5 Pa.
  • the Sb 2 Te 3 target adopts an AC power supply. It is 60W. Concrete preparation process comprises the following steps:
  • acetone-treated substrate was vibrated with 40W ultrasonic power for 10 minutes in an ethanol solution, rinsed with deionized water, and dried with high-purity N 2 gas on the surface and back to obtain a substrate to be sputtered.
  • the baffle After the pre-sputtering is completed, open the baffle, and sputter Cu—Sb 2 Te 3 phase change memory thin film materials with different thicknesses according to the predetermined sputtering time.
  • the sputtering time is 7min
  • the thickness of the prepared film is about 100nm, which is used to measure the real-time change curve of the in-situ film reflectivity with annealing temperature.
  • the Sb 2 Te 3 phase-change memory thin film material is prepared by magnetron sputtering. During preparation, high-purity argon gas was introduced as the sputtering gas, the sputtering pressure was 0.5Pa, and the Sb 2 Te 3 target was powered by an AC power supply with a power of 60W. Concrete preparation process comprises the following steps:
  • acetone-treated substrate was vibrated with 40W ultrasonic power for 10 minutes in an ethanol solution, rinsed with deionized water, and dried with high-purity N 2 gas on the surface and back to obtain a substrate to be sputtered.
  • the baffle After the pre-sputtering is completed, open the baffle, and sputter the Sb 2 Te 3 phase-change memory thin film materials with different thicknesses according to the predetermined sputtering time.
  • the sputtering time is 7min
  • the thickness of the prepared film is about 100nm, which is used to measure the real-time change curve of the in-situ film reflectivity with annealing temperature.
  • Fig. 2 is a schematic diagram showing the variation of the crystallization temperature of Cu-Sb 2 Te 3 and Sb 2 Te 3 phase-change storage material thin films according to the embodiment of the present invention with doping concentration.
  • the crystallization temperature is determined by the real-time variation curve of the square resistance of the in-situ film with the annealing temperature, and the heating rate is 12°C/min.
  • the phase transition temperature of Cu x (ST) 1-x phase change memory material thin film gradually increases, and the stability of amorphous is obviously improved.
  • the Materials Studio software is used to model the Sb 2 Te 3 phase-change memory thin film materials with Cu element doping concentrations of 5%, 10% and 20%, respectively, and the three models are randomized and The simulation of the melting and quenching process obtained the amorphous models of the CuST phase-change memory thin film materials with Cu element doping concentrations of 5%, 10% and 20%, respectively, and analyzed the bonding angles of Cu atoms in each model and the tetrahedron, pseudo The number of octahedrons was counted, and the results are shown in Figure 3.
  • Figure 3(a) is the statistical result of the bonding angle of Cu atoms in different models. It can be found that the bonding angle is between 109° of tetrahedron and 90° of octahedron, which is consistent with the introduction of tetrahedron and octahedron by adding Cu atoms. facet expectations.
  • Figure 3(b) is a rough statistical result of the number of tetrahedrons and pseudo-octahedrons formed by Cu atoms in different models. Taking the coordination number of Cu atoms as the corresponding index, the tetrahedral structure with a coordination number of 4, and the pseudo-octahedral structure with a coordination number of 3, 5 and 6. It can be found that as the doping concentration of Cu element increases, the number of tetrahedral structure and pseudo-octahedral structure in the material system increases, which is conducive to improving the amorphous stability and crystallization speed of the material at the same time.
  • a Cu-doped Sb 2 Te 3 fast and high-stable phase-change storage film material is used as the phase-change layer material to prepare a storage device, wherein the Cu-doped Sb 2 Te 3 fast and high-stable phase-change storage film material layer adopts magnetron sputtering Made by shooting.
  • high-purity argon gas was introduced as the sputtering gas, the sputtering pressure was 0.5Pa, and the Sb 2 Te 3 target was powered by an AC power supply with a power of 60W.
  • the Cu target uses a DC power supply, and the power is 5W, 10W and 20W in turn.
  • Concrete preparation process comprises the following steps:
  • acetone-treated substrate was vibrated with 40W ultrasonic power for 10 minutes in an ethanol solution, rinsed with deionized water, and dried with high-purity N 2 gas on the surface and back to obtain a substrate to be sputtered.
  • step 2 3. Deposit a 100nm SiO 2 insulating layer on the Pt bottom electrode in step 2 by chemical vapor deposition.
  • step 6 Fill the through hole formed in step 4 with Cu—Sb 2 Te 3 phase change memory thin film material by AC power sputtering method.
  • the baffle After the pre-sputtering is completed, open the baffle, and sputter Cu—Sb 2 Te 3 phase change memory thin film materials with different thicknesses according to the predetermined sputtering time.
  • the sputtering time is 7min
  • the thickness of the prepared phase change layer is about 100nm.
  • a 100nm Pt upper electrode was prepared by a DC power sputtering method to obtain a complete Cu-doped Sb 2 Te 3 phase-change memory device array with a fast and highly stable phase-change memory layer.
  • a pure Sb 2 Te 3 storage device was prepared using a pure Sb 2 Te 3 phase-change memory film material as a phase-change layer.
  • step 2 3. Deposit a 100nm SiO 2 insulating layer on the Pt bottom electrode in step 2 by chemical vapor deposition.
  • step 4 Fill the through hole formed in step 4 with Sb 2 Te 3 phase change memory thin film material by AC power sputtering method
  • a 100nm Pt upper electrode was prepared by a DC power sputtering method to obtain a complete array of phase-change memory devices based on the Sb 2 Te 3 phase-change layer.
  • Fig. 4 is a speed performance test diagram of Cu-Sb 2 Te 3 phase change memory set with different doping ratios in the embodiment of the present invention. It can be seen from the figure that as the doping concentration of Cu element increases from 9.21% to 16.06% and 20.22%, The critical pulse width of the device under the fixed amplitude of 1.4V pulse operation is increased from 22ns to 20ns and 14ns, that is, the set speed is accelerated.
  • Figure 5 is the set speed performance test chart of pure Sb 2 Te 3 phase change memory.
  • the set speed of pure Sb 2 Te 3 phase change memory is used as a comparison example.
  • the set operation is realized under the pulse. It can be seen that doping Cu element to introduce octahedral structure can accelerate the crystallization of Sb 2 Te 3 material system, thereby improving the device set speed performance.
  • the value of x can be regulated.
  • the larger the sputtering power of single Cu the higher the value of x.
  • the thickness of the Cu-doped Sb-Te fast and highly stable phase-change memory thin film material is 5nm-300nm, and the thickness can be adjusted by controlling the sputtering time. The longer the sputtering time, the thicker it is.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Combustion & Propulsion (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Semiconductor Memories (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

本发明提供了一种Cu掺杂的Sb2Te3体系相变材料、相变存储器及制备方法装置,属于微纳米电子技术领域。其中,Sb-Te体系相变材料通过Cu元素掺杂,在局部富Cu的情况下形成同时具备四面体以及八面体结构的Cu3Te2键合。强键合的四面体结构提高Sb-Te体系相变材料的非晶稳定性及数据保持能力,晶体构型八面体结构提高Sb-Te体系相变材料的结晶速度。本发明还提供了包含该相变材料的相变存储器以及相变材料的制备方法。本发明的相变材料能同时改善器件的速度和非晶稳定性,提升相变存储器的综合性能。

Description

一种Cu掺杂的Sb-Te体系相变材料、相变存储器及制备方法 【技术领域】
本发明属于微纳米电子技术领域,更具体地,涉及一种Cu掺杂的Sb-Te体系相变材料、相变存储器及制备方法。
【背景技术】
在当今电子技术以及信息产业飞速发展的时代,随着数据的爆炸式增长,人们对非易失性存储器的需求也越来越高。相变存储器(PCM)凭借其集成性高、响应速度快、循环寿命长和低功耗等优点被国际半导体工业协会认为最有可能取代闪存和动态储存而成为未来主流储存器。
相变存储单元的基本原理是用电脉冲信号作用于器件单元上,使相变材料在非晶态与多晶态之间发生可逆相变来实现“0”和“1”的储存。在单元上施加一个窄脉宽、高幅值的电脉冲对其进行RESET操作,晶态相变储存材料融化快冷转变为非晶无序态,从而实现从低阻态“0”到高阻态“1”的快速阻变。反之,在相变单元上施加一个宽脉宽、低幅值的电脉冲对其进行SET操作,非晶态相变储存材料经历一个类退火过程结晶,返回低阻态,实现“1”擦写回“0”。
相变材料主要为硫系化合物材料,其中又以Ge、Sb、Te三种元素组成的化合物最为常见。Sb-Te体系是近年来受到广泛关注的相变材料,其晶化温度低且具有生长主导型晶化过程,晶化速度快,因此,基于Sb-Te体系的相变存储器件具有SET速度快的特点。但是,其非晶稳定性较差,器件的数据保持稳定性需要进一步提升。
相变材料性能的优化是提升相变存储器性能的关键,而相变材料的微观结构决定着其宏观特性。目前,对Sb-Te体系相变材料的主要性能优化手段是掺杂。尤其是第四主族元素掺杂。第四主族元素掺入Sb-Te体系后可以以 自身为中心形成四面体结构。非晶状态下,强键合的四面体团簇与Sb-Te晶体的结构(八面体)差异较大,阻碍相变材料的自发结晶,从而提高其非晶稳定性及数据保持能力。然而,上述掺杂提高Sb-Te相变材料非晶稳定性的同时,必然降低其结晶能力从而降低该体系材料的结晶速度。
因此,需要开发一种新型的改性Sb-Te材料体系的方法,以实现增强Sb-Te体系相变材料非晶稳定性能的同时提高其结晶速度,做到速度和稳定性的兼容,从而使其能作为商业化的相变存储材料应用。
【发明内容】
针对现有技术的缺陷,本发明的目的在于提供一种Cu掺杂的Sb-Te体系相变材料、相变存储器及制备方法,Sb-Te体系相变材料通过Cu元素掺杂,形成同时具有四面体以及八面体结构的物质,能增强Sb-Te体系相变材料非晶稳定性的同时提高其结晶速度,能实现擦写速度和非晶稳定性的兼容,旨在解决现有技术中Sb-Te系相变存储器SET速度和非晶稳定性不能兼容的问题。
为实现上述目的,本发明提供了一种Cu掺杂的Sb-Te体系相变材料,Cu以原子态不均匀掺杂于Sb-Te体系材料中,形成局部富Cu区域,在局部富Cu区域中形成Cu 3Te 2键合,Cu 3Te 2键合是指Cu原子和Te原子结合成键并形成具备四面体以及八面体点阵布置的物质。
进一步的,其化学式和成分组成分别为:Cu x(Sb-Te) 1-x,其中,x代表Cu元素的原子百分比,5%<x<40%。
进一步的,Sb-Te体系材料包括SbTe、Sb 2Te、Sb 4Te和Sb 2Te 3的一种或者多种。
进一步的,Sb-Te体系材料为Sb 2Te 3,Cu元素的在整个Cu掺杂的Sb 2Te 3相变材料原子百分比为20%。
进一步的,Cu掺杂Sb 2Te 3相变材料中,在非晶状态下,Cu原子与Te原 子结合形成同时具备四面体和八面体结构的Cu 3Te 2
进一步的,Cu掺杂Sb 2Te 3相变材料为薄膜状,薄膜的厚度为5nm~300nm。
进一步的,Cu 3Te 2键合中,Cu原子和Te原子形成的键角为90°和109°。
按照本发明的第二个方面,还提供一种包含如上所述的Cu掺杂的Sb-Te体系相变材料的相变存储器,其包括依次层叠的底电极、隔离层、相变层和顶电极。
进一步的,采用磁控溅射法、化学气相沉积法、原子层沉积法、电镀法或电子束蒸发法制备获得,当采用磁控溅射获得时,磁控溅射为Sb靶、Te靶和Cu靶共溅射、Sb 2Te 3靶和Cu靶共溅射或者Cu掺杂后的Sb 2Te 3合金靶溅射。
进一步的,制备Cu-Sb 2Te 3相变层时,将Sb 2Te 3靶和Cu靶共溅射获得,通过控制单质Cu溅射的功率控制Cu元素的掺入量来控制所属相变材料非晶状态下四面体结构以及八面体结构的数量,从而调控其晶化温度和结晶速度。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,具有以下有益效果:
本发明中,与传统提升单一性能的掺杂不同,Cu元素掺入Sb-Te体系相变材料后,在局部富Cu的情况下,形成同时具备四面体以及八面体结构的Cu 3Te 2,强键合的四面体结构可以提高Sb-Te相变材料的非晶稳定性及数据保持能力,晶体构型八面体结构可以提高Sb-Te相变材料的结晶速度,实现非晶稳定性和结晶速度这一对相互矛盾的性能的同时提升,实现速度和稳定性的兼容,有利于基于此材料的相变存储器的商业化应用。此外,本发明方法工艺简单可行,适合在工程实际中推广应用。
【附图说明】
图1是本发明中掺杂Cu后同时具备四面体以及八面体结构的Cu 3Te 2示意图。
图2是本发明实施例Cu-Sb 2Te 3相变存储材料薄膜晶化温度随掺杂浓度变化的示意图。晶化温度由原位薄膜方阻随退火温度实时变化曲线确定,其中,升温速率为12℃/min。
图3(a)是本发明实施例对Cu元素掺入原子浓度分别为5%、10%和20%的Cu-Sb 2Te 3相变存储薄膜材料的非晶模型中Cu原子成键角度分布曲线图。
图3(b)是本发明实施例对Cu元素掺入原子浓度分别为5%、10%和20%的Cu-Sb 2Te 3相变存储薄膜材料的非晶模型中四面体、伪八面体数量统计结果图。
图4是本发明实施例中不同掺杂比例的Cu-Sb 2Te 3相变存储器set速度性能测试图。
图5是纯Sb 2Te 3相变存储器set速度性能测试图。
【具体实施方式】
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明提供并设计了一种Cu掺杂Sb-Te体系的快速高稳定相变材料,Cu元素掺入Sb-Te相变材料后,在局部富Cu的情况下,形成同时具备四面体以及八面体结构的Cu 3Te 2,如图1所示。具体地,强键合的四面体结构可以提高Sb-Te相变材料的非晶稳定性及数据保持能力,晶体构型八面体结构可以提高Sb-Te相变材料的结晶速度。实现非晶稳定性和结晶速度这一对相互矛盾的性能的同时提升,有利于基于此材料的相变存储器的商业化应用。
更具体的,本发明的快速高稳定相变材料是将Cu元素引入Sb 2Te 3相变存储材料中得到的,其化学组成通式为Cu x(Sb 2Te 3) 1-x,其中x代表Cu元素的原子百分比,较佳的x取值范围为5<x<40%,更优选的10%<x<30%,进一步优选为x=20%。通过调整制备时的对应功率,可以调控x的取值。优选的,Cu 掺杂Sb 2Te 3快速高稳定相变存储薄膜材料厚度为5nm~300nm。
本发明中,采用原位薄膜方阻随退火温度实时变化曲线测量的所述Cu掺杂Sb 2Te 3快速高稳定相变存储薄膜材料厚度为100nm。
本发明一个实施例中相变存储单元依次包括底电极、隔离层、相变层、顶电极。所述相变层材质为本发明所述Cu掺杂Sb 2Te 3快速高稳定相变存储薄膜材料,其被填充在直径为250nm、深度为100nm的小孔中。所述底电极材质为Pt。所述隔离层材质为SiO 2。所述顶电极材质为金属Pt。
本发明提供了一种用于相变存储器的Cu掺杂Sb-Te快速高稳定相变存储薄膜材料的制备方法,制备方法包括磁控溅射法、化学气相沉积、原子层沉积法、电镀法、电子束蒸发法等。其中,磁控溅射法制备最为灵活,可以采用Sb靶、Te靶和Cu靶共溅射,还可以采用Sb-Te靶和Cu靶共溅射,也可以采用Cu-Sb-Te合金靶溅射。这些方法都能按照化学通式的配比制备本发明的Cu掺杂Sb-Te快速高稳定相变存储薄膜材料及器件。
本发明的Cu掺杂Sb-Te快速高稳定相变存储薄膜材料以及器件制备工艺成熟,易于实现与现有微电子工艺技术的兼容。独特的四面体和八面体共存结构可以同时提高材料以及器件的稳定性与操作速度。本发明的Cu掺杂Sb 2Te 3快速高稳定相变存储器件相较于纯Sb 2Te 3相变存储器件速度提升4倍左右,为14ns,晶化温度提高到400℃以上,非晶稳定性大大提高。
下面结合具体的实施例进一步详细说明本发明相变材料、相变存储器以及制备方法。
实施例1
本实施例中制备的用于相变存储器件的Cu掺杂Sb 2Te 3快速高稳定相变存储薄膜材料化学通式为Cu x(ST) 1-x,其中ST代表Sb 2Te 3,x的值由Cu靶溅射功率进行调节。
Cu-Sb 2Te 3相变存储薄膜材料采用磁控溅射法制得;制备时通入高纯氩气 作为溅射气体,溅射气压为0.5Pa,Sb 2Te 3靶采用交流电源,电源功率为60W。具体制备工艺包括以下步骤:
1.选取尺寸为1cm×1cm的SiO 2/Si(100)基片,清洗表面、背面,去除灰尘颗粒、有机和无机杂质。
a)将SiO 2/Si(100)基片放置在丙酮溶液中用40W功率的超声振动10分钟,去离子水冲洗。
b)将丙酮处理后的基片在乙醇溶液中用40W功率的超声振动10分钟,去离子水冲洗,高纯N 2气吹干表面和背面,得到待溅射基片。
2.采用交流电源溅射方法制备Cu-Sb 2Te 3相变存储薄膜材料
a.放置好Sb 2Te 3合金靶材,其纯度达到99.99%(原子百分比),将其本底真空抽至10 -5Pa。
b.使用高纯Ar气作为溅射气体,将溅射气压调节至0.5Pa,靶材和基片距离为120mm。
c.设定Sb 2Te 3靶材功率为60W,调节Cu靶材溅射功率制备Cu元素掺杂浓度依次为12.15%、19.03%、20.39%和35.28%的Cu-Sb 2Te 3相变存储薄膜材料。
d.对靶材进行10min预溅射,清洁靶材表面。
e.预溅射完成后,开启挡板,依照预定的溅射时间,溅射不同厚度的Cu-Sb 2Te 3相变存储薄膜材料。溅射时间为7min时,制备的薄膜厚度为100nm左右,用于原位薄膜反射率随退火温度实时变化曲线测量。
对比例1
Sb 2Te 3相变存储薄膜材料采用磁控溅射法制得。制备时通入高纯氩气作为溅射气体,溅射气压为0.5Pa,Sb 2Te 3靶采用交流电源,电源功率为60W。具体制备工艺包括以下步骤:
1.选取尺寸为1cm×1cm的SiO 2/Si(100)基片,清洗表面、背面,去除 灰尘颗粒、有机和无机杂质。
a)将SiO 2/Si(100)基片放置在丙酮溶液中用40W功率的超声振动10分钟,去离子水冲洗。
b)将丙酮处理后的基片在乙醇溶液中用40W功率的超声振动10分钟,去离子水冲洗,高纯N 2气吹干表面和背面,得到待溅射基片。
2.采用交流电源溅射方法制备Sb 2Te 3相变存储薄膜材料
a.放置好Sb 2Te 3合金靶材,其纯度达到99.99%(原子百分比),将其本底真空抽至10 -5Pa。
b.使用高纯Ar气作为溅射气体,将溅射气压调节至0.5Pa,靶材和基片距离为120mm。
c.设定Sb 2Te 3靶材功率为60W。
d.对靶材进行10min预溅射,清洁靶材表面。
e.预溅射完成后,开启挡板,依照预定的溅射时间,溅射不同厚度的Sb 2Te 3相变存储薄膜材料。溅射时间为7min时,制备的薄膜厚度为100nm左右,用于原位薄膜反射率随退火温度实时变化曲线测量。
将上述实施例1和对比例1中的一系列Cu-Sb 2Te 3和Sb 2Te 3相变存储薄膜材料进行测试。图2是本发明实施例Cu-Sb 2Te 3和Sb 2Te 3相变存储材料薄膜晶化温度随掺杂浓度变化的示意图。晶化温度由原位薄膜方阻随退火温度实时变化曲线确定,其中,升温速率为12℃/min。如图2可知,随着Cu元素掺入浓度的提高,Cu x(ST) 1-x相变存储材料薄膜相变温度逐渐提高,非晶稳定性得到明显改善。
实施例2
本实施例利用Materials Studio软件对Cu元素掺入浓度分别为5%、10%和20%的Sb 2Te 3相变存储薄膜材料进行建模,利用第一性原理对三个模型进行随机化、熔化、淬火过程的模拟仿真得到Cu元素掺入浓度分别为5%、10% 和20%的CuST相变存储薄膜材料的非晶模型,并对各个模型中Cu原子成键角度以及四面体、伪八面体数量进行统计,结果如图3所示。
图3(a)是对不同模型中Cu原子成键角度的统计结果,可以发现其成键角度介于四面体109°和八面体90°之间,符合我们掺入Cu原子引入四面体和八面体的预期。
图3(b)是不同模型中Cu原子形成四面体、伪八面体数量的粗略统计结果。以Cu原子的配位数为相应指标,配位数为4的为四面体结构,配位数为3、5和6的为伪八面体结构。可以发现,随着Cu元素掺杂浓度的增加,材料体系中四面体结构和伪八面体结构数量都随之增加,有利于同时提高材料的非晶稳定性以及结晶速度。
实施例3
本实施例中采用Cu掺杂Sb 2Te 3快速高稳定相变存储薄膜材料作为相变层材料制备存储器件,其中Cu掺杂Sb 2Te 3快速高稳定相变存储薄膜材料层采用磁控溅射法制得。制备时通入高纯氩气作为溅射气体,溅射气压为0.5Pa,Sb 2Te 3靶采用交流电源,电源功率为60W。Cu靶采用直流电源,功率依次为5W、10W和20W。具体制备工艺包括以下步骤:
1.选取尺寸为1cm×1cm的SiO 2/Si(100)基片,清洗表面、背面,去除灰尘颗粒、有机和无机杂质。
a)将SiO 2/Si(100)基片放置在丙酮溶液中用40W功率的超声振动10分钟,去离子水冲洗。
b)将丙酮处理后的基片在乙醇溶液中用40W功率的超声振动10分钟,去离子水冲洗,高纯N 2气吹干表面和背面,得到待溅射基片。
2.采用直流电源溅射方法制备100nm Pt下电极。
3.采用化学气相沉积法在步骤2中的Pt下电极上沉积100nm SiO 2绝缘层。
4.通过电子束光刻刻蚀等工艺在步骤3中的SiO 2绝缘层形成深度为100nm、直径为250nm的通孔。
5.通过光刻工艺形成存储器阵列。
6.采用交流电源溅射方法在步骤4中形成的通孔内填充Cu-Sb 2Te 3相变存储薄膜材料。
a.放置好Sb 2Te 3合金靶材,其纯度达到99.99%(原子百分比),将其本底真空抽至10 -5Pa。
b.使用高纯Ar气作为溅射气体,将溅射气压调节至0.5Pa,靶材和基片距离为120mm。
c.设定Sb 2Te 3靶材功率为60W,调节Cu靶材溅射功率制备Cu元素掺杂浓度依次为9.21%、16.06%和20.22%的Cu-Sb 2Te 3相变存储薄膜材料。
d.对靶材进行10min预溅射,清洁靶材表面。
e.预溅射完成后,开启挡板,依照预定的溅射时间,溅射不同厚度的Cu-Sb 2Te 3相变存储薄膜材料。溅射时间为7min时,制备的相变层厚度为100nm左右。
7.采用直流电源溅射方法制备100nm Pt上电极,得到完整的Cu掺杂Sb 2Te 3快速高稳定相变存储层的相变存储器件阵列。
对比例3
本对比例中使用纯Sb 2Te 3相变存储薄膜材料作为相变层制备纯Sb 2Te 3存储器件。
1.选取尺寸为1cm×1cm的SiO 2/Si(100)基片,清洗表面、背面,去除灰尘颗粒、有机和无机杂质。
a.将SiO 2/Si(100)基片放置在丙酮溶液中用40W功率的超声振动10分钟,去离子水冲洗。
b.将丙酮处理后的基片在乙醇溶液中用40W功率的超声振动10分钟, 去离子水冲洗,高纯N 2气吹干表面和背面,得到待溅射基片。
2.采用直流电源溅射方法制备100nm Pt下电极。
3.采用化学气相沉积法在步骤2中的Pt下电极上沉积100nm SiO 2绝缘层。
4.通过电子束光刻刻蚀等工艺在步骤3中的SiO 2绝缘层形成深度为100nm、直径为250nm的通孔。
5.通过光刻工艺形成存储器阵列。
6.采用交流电源溅射方法在步骤4中形成的通孔内填充Sb 2Te 3相变存储薄膜材料
7.采用直流电源溅射方法制备100nm Pt上电极,得到完整的基于Sb 2Te 3相变层的相变存储器件阵列。
将上述实施例3的分别基于不同Cu掺杂比例Sb 2Te 3快速高稳定相变存储器和对比例3中的纯Sb 2Te 3相变存储器件进行电学特性测试,测试结果分别如图4和图5。
图4是本发明实施例中不同掺杂比例的Cu-Sb 2Te 3相变存储器set速度性能测试图,由图可知,随着Cu元素掺入浓度从9.21%增加到16.06%、20.22%,器件在固定幅值为1.4V脉冲操作下的临界脉冲宽度从22ns提升到20ns、14ns,即set速度加快。
图5是纯Sb 2Te 3相变存储器set速度性能测试图,纯Sb 2Te 3相变存储器set速度作为对比例,对比例纯Sb 2Te 3器件最快也只能在脉冲宽度为50ns的脉冲下实现set操作。可知,掺入Cu元素引入八面体结构可以加速Sb 2Te 3材料体系的结晶,从而提升器件set速度性能。
本发明中,Cu x(Sb 2Te 3) 1-x中x代表Cu元素的原子百分比,较佳的x取值范围为5<x<40%,更优选的10%<x<20%,进一步优选为x=20%。通过调整制备时的对应功率,可以调控x的取值。一般情况下,单质Cu的溅射功率越大, x值越高。Cu掺杂Sb-Te快速高稳定相变存储薄膜材料厚度为5nm~300nm,厚度可以通过控制溅射时间调控,溅射时间越长,厚度增加。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种Cu掺杂的Sb-Te体系相变材料,其特征在于,Cu以原子态不均匀掺杂于Sb-Te体系材料中,形成局部富Cu区域,在局部富Cu区域中形成Cu 3Te 2键合,Cu 3Te 2键合是指Cu原子和Te原子结合成键并形成具备四面体以及八面体点阵布置的物质。
  2. 如权利要求1所述的一种Cu掺杂的Sb-Te体系相变材料,其特征在于,其化学式和成分组成分别为:Cu x(Sb-Te) 1-x,其中,x代表Cu元素的原子百分比,5%<x<40%。
  3. 如权利要求2所述的一种Cu掺杂的Sb-Te体系相变材料,其特征在于,Sb-Te体系材料包括SbTe、Sb 2Te、Sb 4Te和Sb 2Te 3的一种或者多种。
  4. 如权利要求3所述的一种Cu掺杂的Sb-Te体系相变材料,其特征在于,Sb-Te体系材料为Sb 2Te 3,Cu元素的在整个Cu掺杂的Sb 2Te 3相变材料原子百分比为20%。
  5. 如权利要求3所述的一种Cu掺杂的Sb-Te体系相变材料,其特征在于,Cu掺杂Sb 2Te 3相变材料中,在非晶状态下,Cu原子与Te原子结合形成同时具备四面体和八面体结构的Cu 3Te 2
  6. 如权利要求4或5任一所述的一种Cu掺杂的Sb-Te体系相变材料,其特征在于,Cu掺杂Sb 2Te 3相变材料为薄膜状,薄膜的厚度为5nm~300nm。
  7. 如权利要求6所述的一种Cu掺杂的Sb-Te体系相变材料,其特征在于,Cu 3Te 2键合中,Cu原子和Te原子形成的键角为90°和109°。
  8. 包含如权利要求4-7任一所述的Cu掺杂的Sb-Te体系相变材料的相变存储器,其特征在于,其包括依次层叠的底电极、隔离层、相变存储材料薄膜层和顶电极。
  9. 制备如权利要求1-7任一所述的Cu掺杂的Sb-Te体系相变材料的方 法,其特征在于,采用磁控溅射法、化学气相沉积法、原子层沉积法、电镀法或电子束蒸发法制备获得,
    当采用磁控溅射获得时,磁控溅射为Sb靶、Te靶和Cu靶共溅射、Sb 2Te 3靶和Cu靶共溅射或者Cu掺杂后的Sb 2Te 3合金靶溅射。
  10. 如权利要求9所述的Cu掺杂的Sb-Te体系相变材料的方法,其特征在于,制备Cu-Sb 2Te 3相变储存材料时,将Sb 2Te 3靶和Cu靶共溅射获得,通过控制单质Cu溅射的功率控制Cu元素的掺入量来控制所属相变材料非晶状态下四面体结构以及八面体结构的数量,从而调控其晶化温度和结晶速度。
PCT/CN2021/140394 2021-12-15 2021-12-22 一种Cu掺杂的Sb-Te体系相变材料、相变存储器及制备方法 WO2023108749A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/928,932 US11807798B2 (en) 2021-12-15 2021-12-22 Cu-doped Sb-Te system phase change material, phase change memory and preparation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111535353.8 2021-12-15
CN202111535353.8A CN114361335A (zh) 2021-12-15 2021-12-15 一种Cu掺杂的Sb-Te体系相变材料、相变存储器及制备方法

Publications (1)

Publication Number Publication Date
WO2023108749A1 true WO2023108749A1 (zh) 2023-06-22

Family

ID=81098563

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/140394 WO2023108749A1 (zh) 2021-12-15 2021-12-22 一种Cu掺杂的Sb-Te体系相变材料、相变存储器及制备方法

Country Status (3)

Country Link
US (1) US11807798B2 (zh)
CN (1) CN114361335A (zh)
WO (1) WO2023108749A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070001160A1 (en) * 2005-06-29 2007-01-04 Korea Institute Of Science And Technology Phase change material for high density non-volatile memory
CN101488558A (zh) * 2009-02-25 2009-07-22 中国科学院上海微系统与信息技术研究所 用于相变存储器的M-Sb-Se相变薄膜材料
CN102361063A (zh) * 2011-10-11 2012-02-22 中国科学院上海微系统与信息技术研究所 用于相变存储器的薄膜材料及其制备方法
US20150144865A1 (en) * 2013-11-26 2015-05-28 National Institute Of Advanced Industrial Science And Technology Phase-change memory and semiconductor recording/reproducing device
CN105393375A (zh) * 2014-06-26 2016-03-09 华为技术有限公司 一种金属掺杂的Ge-Sb-Te基多值存储相变材料及相变存储器
CN110729400A (zh) * 2019-09-03 2020-01-24 华中科技大学 Ti-Ga-Sb相变材料、相变存储器及Ti-Ga-Sb相变材料的制备方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1810334B1 (en) * 2004-11-11 2011-12-28 Semiconductor Energy Laboratory Co., Ltd. Method for Manufacturing a Semiconductor Device
US7745231B2 (en) * 2007-04-17 2010-06-29 Micron Technology, Inc. Resistive memory cell fabrication methods and devices
KR20090006468A (ko) * 2007-07-11 2009-01-15 삼성전자주식회사 상변화 물질, 상기 상변화 물질을 포함하는 스퍼터 타겟,상기 스퍼터 타겟을 이용한 상변화층의 형성방법 및 상기방법으로 형성된 상변화층을 포함하는 상변화 메모리소자의 제조방법
US8338812B2 (en) * 2008-01-16 2012-12-25 Micron Technology, Inc. Vertical spacer electrodes for variable-resistance material memories and vertical spacer variable-resistance material memory cells
US8198124B2 (en) * 2010-01-05 2012-06-12 Micron Technology, Inc. Methods of self-aligned growth of chalcogenide memory access device
US9573809B2 (en) * 2012-03-30 2017-02-21 Micron Technology, Inc. Method of forming a metal chalcogenide material and methods of forming memory cells including same
CN103247757B (zh) * 2013-04-18 2015-11-18 宁波大学 一种用于相变存储器的Zn-Sb-Te相变存储薄膜材料及其制备方法
JP6086097B2 (ja) * 2014-06-17 2017-03-01 国立大学法人東北大学 多段相変化材料および多値記録相変化メモリ素子
US10418552B1 (en) * 2018-08-21 2019-09-17 Micron Technology, Inc. Transition metal doped germanium-antimony-tellurium (GST) memory device components and composition
KR102030341B1 (ko) * 2018-12-19 2019-10-10 한양대학교 산학협력단 선택 소자 및 이를 이용한 메모리 소자
CN110061131B (zh) * 2019-04-23 2022-09-09 中国科学院上海微系统与信息技术研究所 一种相变材料、相变存储单元及其制备方法
CN110635033A (zh) * 2019-10-11 2019-12-31 东华大学 一种B-Sb-Te相变材料、相变存储单元及其制备方法
CN110760805B (zh) * 2019-11-29 2022-02-08 成都先锋材料有限公司 一种薄膜、镀层、化合物靶材及其制作方法、应用
CN112713242B (zh) * 2020-12-25 2022-08-30 华中科技大学 一种基于纳米电流通道的相变存储器的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070001160A1 (en) * 2005-06-29 2007-01-04 Korea Institute Of Science And Technology Phase change material for high density non-volatile memory
CN101488558A (zh) * 2009-02-25 2009-07-22 中国科学院上海微系统与信息技术研究所 用于相变存储器的M-Sb-Se相变薄膜材料
CN102361063A (zh) * 2011-10-11 2012-02-22 中国科学院上海微系统与信息技术研究所 用于相变存储器的薄膜材料及其制备方法
US20150144865A1 (en) * 2013-11-26 2015-05-28 National Institute Of Advanced Industrial Science And Technology Phase-change memory and semiconductor recording/reproducing device
CN105393375A (zh) * 2014-06-26 2016-03-09 华为技术有限公司 一种金属掺杂的Ge-Sb-Te基多值存储相变材料及相变存储器
CN110729400A (zh) * 2019-09-03 2020-01-24 华中科技大学 Ti-Ga-Sb相变材料、相变存储器及Ti-Ga-Sb相变材料的制备方法

Also Published As

Publication number Publication date
US20230287253A1 (en) 2023-09-14
CN114361335A (zh) 2022-04-15
US11807798B2 (en) 2023-11-07

Similar Documents

Publication Publication Date Title
CN108539013B (zh) 一种用于高速低功耗相变存储器的Ge/Sb类超晶格相变薄膜材料
CN108258114B (zh) 用于高速相变存储器的GeTe/Sb类超晶格相变薄膜材料的制备方法
WO2021082808A1 (zh) 一种掺杂的Ge-Sb相变材料、相变存储器及其制备方法
CN105762277B (zh) 一种类超晶格锡硒/锑纳米相变薄膜及其制备与应用
CN108346739B (zh) 一种Ge-Sb-C相变存储材料、其制备方法和应用
US8920684B2 (en) Al-Sb-Te phase change material used for phase change memory and fabrication method thereof
CN108075039A (zh) 一种纳米复合ZnO-ZnSb相变存储薄膜材料及其制备方法
CN101976725A (zh) 一种结晶温度可调的SiO2/Sb80Te20纳米复合多层相变薄膜材料及其制备方法
CN112687359B (zh) 纳米电流通道层中绝缘绝热材料与纳米晶粒金属材料的筛选与匹配方法
CN104868053B (zh) 一种用于相变存储器的Ge‑Sb‑Te‑Se薄膜材料及其制备方法
WO2023108749A1 (zh) 一种Cu掺杂的Sb-Te体系相变材料、相变存储器及制备方法
CN102487119B (zh) 用于相变存储器的Sb2Tex-SiO2纳米复合相变材料及制备方法
CN113072915B (zh) 基于氧掺杂的Sb2Te3相变材料、相变存储器及制备方法
WO2023184668A1 (zh) 基于晶格匹配的化合物掺杂Ge-Sb-Te相变材料和相变存储器
CN102569644B (zh) 用于相变存储器的Sb2Tey-Si3N4复合相变材料及制备方法
CN105742489A (zh) 一种用于相变存储器的Zr掺杂Ge2Sb2Te5薄膜材料及其制备方法
WO2023184667A1 (zh) 四面体结构化合物掺杂的Sb-Te相变材料、相变存储器
CN112614936B (zh) 一种Ti/Sb多层纳米复合相变存储薄膜材料及其制备方法和应用
CN110729400B (zh) Ti-Ga-Sb相变材料、相变存储器及Ti-Ga-Sb相变材料的制备方法
CN104810475B (zh) 一种纳米复合TiO2‑Sb2Te相变存储薄膜材料及其制备方法
CN106229408A (zh) 一种高速的伪纳米复合Mg‑Sb‑Te可逆相变薄膜及其制备方法
CN106960907B (zh) 一种稀土Er掺杂Ge2Sb2Te5相变存储薄膜材料及其制备方法
CN110729401B (zh) Ga-Sb-O相变材料及其应用与制备方法
CN110137349A (zh) 一种易失性至非易失性存储调控的二氧化钒-富Sb相变薄膜材料及其制备方法
CN107546325B (zh) 一种复合薄膜相变材料