WO2023184667A1 - 四面体结构化合物掺杂的Sb-Te相变材料、相变存储器 - Google Patents

四面体结构化合物掺杂的Sb-Te相变材料、相变存储器 Download PDF

Info

Publication number
WO2023184667A1
WO2023184667A1 PCT/CN2022/093087 CN2022093087W WO2023184667A1 WO 2023184667 A1 WO2023184667 A1 WO 2023184667A1 CN 2022093087 W CN2022093087 W CN 2022093087W WO 2023184667 A1 WO2023184667 A1 WO 2023184667A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase change
change material
structure compound
tetrahedral structure
doped
Prior art date
Application number
PCT/CN2022/093087
Other languages
English (en)
French (fr)
Inventor
程晓敏
曾运韬
缪向水
Original Assignee
华中科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华中科技大学 filed Critical 华中科技大学
Publication of WO2023184667A1 publication Critical patent/WO2023184667A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of switching materials, e.g. deposition of layers
    • H10N70/026Formation of switching materials, e.g. deposition of layers by physical vapor deposition, e.g. sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0623Sulfides, selenides or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • C23C14/352Sputtering by application of a magnetic field, e.g. magnetron sputtering using more than one target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/305Sulfides, selenides, or tellurides

Definitions

  • the invention belongs to the field of micro-nano electronic technology, and more specifically, relates to a Sb-Te phase change material doped with a stable tetrahedral structure compound and a phase change memory.
  • PCM Phase change memory
  • the basic principle of the phase change memory unit is to use an electrical pulse signal to act on the device unit, causing the phase change material to undergo a reversible phase change between the amorphous state and the polycrystalline state to achieve the storage of "0" and "1".
  • a narrow pulse width, high amplitude electrical pulse is applied to the unit to perform a RESET operation.
  • the crystalline phase change storage material melts and quickly cools and transforms into an amorphous disordered state, thus achieving a transition from low resistance state "0" to high resistance.
  • a wide pulse width, low amplitude electric pulse is applied to the phase change unit to perform a SET operation.
  • the amorphous phase change storage material undergoes an annealing-like process to crystallize, returns to a low resistance state, and realizes "1" erasing and writing. Return "0".
  • Phase change materials are mainly chalcogenide materials, among which compounds composed of Ge, Sb, and Te are the most common.
  • the Sb-Te system is a phase change material that has received widespread attention in recent years. It has a low crystallization temperature, a growth-dominated crystallization process, and a fast crystallization speed. Therefore, phase change memory devices based on the Sb-Te system have fast SET speeds. specialty. However, its amorphous stability is poor, and the data retention stability of the device needs to be further improved.
  • Optimizing the performance of phase change materials is the key to improving the performance of phase change memory, and the microstructure of phase change materials determines their macroscopic properties.
  • the main optimization method to improve the stability of Sb-Te system phase change materials is to introduce a tetrahedral structure through doping, such as fourth main group element doping.
  • doping such as fourth main group element doping.
  • the strongly bonded tetrahedral clusters are quite different from the structure (octahedron) of the Sb-Te crystal, which hinders the spontaneous crystallization of the phase change material, thus improving its amorphous stability and data retention capabilities.
  • the incorporation of the above single elements will generally combine with a certain element in the base phase change material to form a bond, changing the original composition of the phase change material and destroying the lattice structure of the phase change material. While the device stability is improved, The crystallization speed will be sacrificed to a certain extent, making it difficult to achieve an overall improvement in device performance.
  • the purpose of the present invention is to provide Sb-Te phase change materials and phase change memories doped with stable tetrahedral structure compounds.
  • the Sb-Te system phase change layer is formed.
  • the tetrahedral cluster which is quite different from its octahedral crystal structure, hinders the spontaneous crystallization of the Sb-Te system phase change material, thereby improving its amorphous stability and data retention ability, and does not interact with the elements in the Sb-Te system phase change material.
  • Forming bonds ensures the integrity of the lattice structure of the Sb-Te system phase change material, reduces the grain size, prevents the atomic migration of phase change elements, and ultimately improves the overall performance of the device in an all-round way.
  • a Sb-Te phase change material doped with a tetrahedral structure compound is also provided, the chemical formula of which is MA x (Sb-Te) 1-x , wherein MA is a tetrahedron.
  • Structural compound x represents the percentage of the number of tetrahedral structure compound molecules in the total number of molecules, 0 ⁇ x ⁇ 10%, the tetrahedral structure compound is selected from one or more of SiC, SiN, GeC, GeN, BN, GaN, etc. .
  • the tetrahedral structure compound MA has a stable structure in the phase change layer of the Sb-Te system. It is completely different from the octahedral crystal structure of the Sb-Te system, which can hinder the spontaneous crystallization of the Sb-Te system phase change material, thus improving its Amorphous stability and data retention capabilities.
  • the MA element of the tetrahedral structure compound and the elements in the Sb-Te system phase change material are independent of each other without bonding, substitution or interstitial doping, thus ensuring the integrity of the lattice structure of the Sb-Te system phase change material. , to maintain the performance of rapid crystallization.
  • the tetrahedral structure compound MA is evenly distributed in the amorphous form at the grain boundaries of the crystalline phase change material to reduce the grain size, hinder the atomic migration of phase change elements, and ultimately improve the reliability of the device. .
  • the Sb-Te system phase change material includes SbTe, Sb 2 Te 1 , Sb 2 Te 3 and Sb 4 Te 1 .
  • a phase change memory of Sb-Te system phase change material which includes a bottom electrode, an isolation layer, a phase change memory material film layer and a top electrode stacked in sequence.
  • the storage material thin film layer adopts Sb-Te phase change material doped with the tetrahedral structure compound as mentioned above.
  • the stable tetrahedral structure compound MA forms a stable tetrahedral structure in the Sb-Te system phase change layer, which is consistent with the Sb-Te system octahedral crystal structure.
  • the difference is large and hinders the spontaneous crystallization of the Sb-Te system phase change material, thus improving its amorphous stability and data retention capabilities.
  • the stable tetrahedral structure compound MA has a large chemical bond energy and hardly bonds with the elements in the Sb-Te system material in the thin film material. It only forms M-A, M-M and A-A bonds without substitution or interstitial doping.
  • the stable tetrahedral structure compound MA is easily distributed in the amorphous form at the grain boundaries of crystalline phase change materials, which is used to reduce the grain size, hinder the atomic migration of phase change elements, improve the reliability of the device, and ultimately It can improve the overall performance of the device in all aspects.
  • Figure 1 is a schematic structural diagram of an Sb-Te phase change material doped with a tetrahedral structure compound.
  • Figure 2 is a flow chart for preparing a phase change memory based on the Sb-Te system phase change material doped with a stable face-centered cubic structure compound provided in Embodiment 2 of the present invention.
  • the invention relates to an information memory, and in particular to a new type of high thermal stability Sb-Te system phase change material and phase change memory based on stable tetrahedral structure compound doping.
  • a stable tetrahedral structure compound doping process the compound structure is used to regulate the Sb-Te system phase change material.
  • a stable octahedral crystal structure is formed in the Sb-Te system phase change layer.
  • the tetrahedral clusters with large differences hinder the spontaneous crystallization of the Sb-Te system phase change material, thereby improving its amorphous stability and data retention capabilities.
  • the elements in the stable tetrahedral structure compound hardly bond with the elements in the Sb-Te system phase change material, so no substitution or interstitial doping occurs, ensuring the integrity of the lattice structure of the Sb-Te system phase change material, thereby preventing Affects its performance characteristics of rapid crystallization.
  • the stable tetrahedral structure compound is easily distributed evenly with the amorphous form at the grain boundaries of the crystalline Sb-Te system phase change material, reducing the grain size, preventing the atomic migration of phase change elements, and improving the reliability of the device.
  • the overall performance of the device is improved in an all-round way.
  • Figure 1 is a schematic structural diagram of an Sb-Te phase change material doped with a tetrahedral structure compound. It can be seen from the figure that the doped tetrahedral structure compound exists stably in the matrix material and is quite different from the Sb-Te system crystal octahedral structure.
  • the stable tetrahedral structure can hinder the spontaneous crystallization of Sb-Te system phase change materials, thereby improving its amorphous stability and data retention capabilities.
  • the present invention introduces the stable tetrahedral structure compound MA into the Sb-Te system phase change material to obtain the phase change material.
  • MA x (Sb-Te) 1-x Its general chemical composition formula is MA x (Sb-Te) 1-x , in which MA is a stable tetrahedral structure.
  • x represents the percentage of the number of high-melting-point compound molecules to the total number of molecules.
  • the thickness of the MA x (Sb-Te) 1-x phase change film material is 50 nm to 300 nm.
  • the phase change memory unit sequentially includes a bottom electrode, an isolation layer, a phase change material film layer, and a top electrode.
  • the material of the phase change material film layer is the Sb-Te system phase change material doped based on the stable tetrahedral structure compound as mentioned above, which is filled in a small hole with a diameter of 250nm and a depth of 100nm.
  • the bottom electrode material is TiN
  • the isolation layer material is SiO 2
  • the top electrode material is metal Pt.
  • the invention provides a stable tetrahedral structure compound-doped Sb-Te system phase change material for phase change memory, which includes magnetron sputtering method, chemical vapor deposition, atomic layer deposition method, electroplating method, electronic Beam evaporation method, etc.
  • the magnetron sputtering method is the most flexible, and can use Sb-Te system target and MA target co-sputtering. This method can prepare the stable tetrahedral structure compound-doped Sb of the present invention according to the ratio of the general chemical formula. -Te system phase change materials.
  • the stable tetrahedral structure compound-doped Sb-Te system phase change memory material and device preparation process of the present invention are mature, and are easily compatible with existing microelectronic process technology.
  • SiN-Sb 2 Te 3 system phase change memory thin film material is produced by magnetron sputtering method.
  • high-purity argon gas was introduced as the sputtering gas, and the sputtering pressure was 0.5 Pa.
  • the SiN target used an AC power supply with a power supply of 40W; the Sb 2 Te 3 target used an AC power supply with a power supply of 60 W.
  • the specific preparation process includes the following steps:
  • the baffle is opened.
  • the sputtering time is 8 minutes, the thickness of the prepared film is about 100nm.
  • SiN-doped Sb 2 Te 3 phase change film material is used as the phase change layer material to prepare a memory device, wherein the SiN-doped Sb 2 Te 3 phase change layer is produced by magnetron sputtering.
  • high-purity argon gas was introduced as the sputtering gas, and the sputtering pressure was 0.5 Pa.
  • the SiN target used an AC power supply with a power supply of 40W
  • the Sb 2 Te 3 target used an AC power supply with a power supply of 60 W.
  • Figure 2 is a flow chart for the preparation of a phase change memory based on the Sb-Te system phase change material doped with a stable face-centered cubic structure compound provided in Embodiment 2 of the present invention. As can be seen from the figure, the specific preparation process includes the following steps:
  • the baffle is opened.
  • the sputtering time is 8 minutes, the thickness of the prepared phase change layer is about 100nm.
  • the GeC-Sb 2 Te 3 system phase change memory thin film material is produced by magnetron sputtering. During preparation, high-purity argon was introduced as the sputtering gas, and the sputtering pressure was 0.5 Pa.
  • the GeC target used an AC power supply with a power supply of 30W; the Sb 2 Te 3 target used an AC power supply with a power supply of 60 W.
  • the specific preparation process includes the following steps:
  • the baffle After the pre-sputtering is completed, open the baffle. When the sputtering time is 8 minutes, the thickness of the prepared film is about 100nm.
  • the GeC-doped Sb 2 Te 3 phase change film material is used as the phase change layer material to prepare a memory device, wherein the GeC-doped Sb 2 Te 3 phase change layer is produced by magnetron sputtering.
  • high-purity argon gas was introduced as the sputtering gas, and the sputtering pressure was 0.5 Pa.
  • the GeC target used an AC power supply with a power supply of 30W
  • the Sb 2 Te 3 target used an AC power supply with a power supply of 60 W.
  • the specific preparation process includes the following steps:
  • the baffle After the pre-sputtering is completed, open the baffle.
  • the sputtering time is 8 minutes, the thickness of the phase change layer prepared is about 100nm.
  • GaN-Sb 4 Te 1 system phase change memory thin film material is produced by magnetron sputtering method. During preparation, high-purity argon was introduced as the sputtering gas, and the sputtering pressure was 0.5Pa.
  • the GaN target used an AC power supply with a power supply of 32W; the Sb 4 Te 1 target used an AC power supply with a power supply of 60W.
  • the specific preparation process includes the following steps:
  • the baffle After the pre-sputtering is completed, open the baffle. When the sputtering time is 8 minutes, the thickness of the prepared film is about 100nm.
  • GaN-doped Sb 4 Te 1 phase change film material is used as the phase change layer material to prepare a memory device, wherein the GaN-doped Sb 4 Te 1 phase change layer is produced by magnetron sputtering.
  • high-purity argon was introduced as the sputtering gas, and the sputtering pressure was 0.5Pa.
  • the GaN target used an AC power supply with a power supply of 32W
  • the Sb 4 Te 1 target used an AC power supply with a power supply of 60W.
  • the specific preparation process includes the following steps:
  • the baffle After the pre-sputtering is completed, open the baffle.
  • the sputtering time is 8 minutes, the thickness of the phase change layer prepared is about 100nm.
  • the chemical formula of the Sb-Te phase change material doped with the tetrahedral structure compound of the present invention is MA x (Sb-Te) 1-x .
  • MA can also be selected from one or both of SiC and GeN.
  • the Sb-Te system SbTe, Sb 2 Te 1 and Sb 4 Te 1 can also be used as phase change materials.
  • the value range of x can be determined based on the structure of the Sb-Te system phase change material and the tetrahedral structure compound, 0 ⁇ x ⁇ 10%.
  • the doped stable tetrahedral structure compound is used to regulate the Sb-Te system phase change material.
  • the layer forms a stable tetrahedral cluster that is quite different from its octahedral crystal structure, which hinders the spontaneous crystallization of the Sb-Te system phase change material, thereby improving its amorphous stability and data retention ability;
  • the stable tetrahedral structure compound The elements hardly bond with the elements in the Sb-Te system phase change material, so no substitution or interstitial doping occurs, ensuring the integrity of the lattice structure of the Sb-Te system phase change material, thus not affecting its rapid crystallization performance characteristics;
  • the stable tetrahedral structure compound is easily distributed in the amorphous form at the grain boundaries of the crystalline Sb-Te system phase change material, reducing the grain size, preventing the

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physical Vapour Deposition (AREA)
  • Semiconductor Memories (AREA)

Abstract

本发明提供了一种四面体结构化合物掺杂的Sb-Te相变材料和相变存储器,属于微纳米电子技术领域,Sb-Te相变材料化学式为MA x(Sb-Te) 1-x,MA为四面体结构化合物,x代表四面体结构化合物分子数占总分子数的百分比,0<x<10%,四面体结构化合物选自SiC、SiN、GeC中的一种或者多种。本发明还提供了包括如上所述的Sb-Te相变材料的相变存储器。本发明的四面体结构化合物掺杂的Sb-Te相变材料具有较好的非晶稳定性和数据保持能力,不与Sb-Te体系相变材料中的元素成键,能保证Sb-Te体系相变材料晶格结构完整,还能减小晶粒尺寸,阻止相变元素的原子迁移,最终全方位地实现改善器件的综合性能。

Description

四面体结构化合物掺杂的Sb-Te相变材料、相变存储器 【技术领域】
本发明属于微纳米电子技术领域,更具体地,涉及一种稳定四面体结构化合物掺杂的Sb-Te相变材料、相变存储器。
【背景技术】
在当今电子技术以及信息产业飞速发展的时代,随着数据的爆炸式增长,人们对非易失性存储器的需求也越来越高。相变存储器(PCM)凭借其集成性高、响应速度快、循环寿命长和低功耗等优点被国际半导体工业协会认为最有可能取代闪存和动态储存而成为未来主流储存器。
相变存储单元的基本原理是用电脉冲信号作用于器件单元上,使相变材料在非晶态与多晶态之间发生可逆相变来实现“0”和“1”的储存。在单元上施加一个窄脉宽、高幅值的电脉冲对其进行RESET操作,晶态相变储存材料融化快冷转变为非晶无序态,从而实现从低阻态“0”到高阻态“1”的快速阻变。反之,在相变单元上施加一个宽脉宽、低幅值的电脉冲对其进行SET操作,非晶态相变储存材料经历一个类退火过程结晶,返回低阻态,实现“1”擦写回“0”。
相变材料主要为硫系化合物材料,其中又以Ge、Sb、Te三种元素组成的化合物最为常见。Sb-Te体系是近年来受到广泛关注的相变材料,其晶化温度低且具有生长主导型晶化过程,晶化速度快,因此,基于Sb-Te体系的相变存储器件具有SET速度快的特点。但是,其非晶稳定性较差,器件的数据保持稳定性需要进一步提升。
相变材料性能的优化是提升相变存储器性能的关键,而相变材料的微观结构决定着其宏观特性。目前,提高Sb-Te体系相变材料稳定性的主要优化手段是通过掺杂引入四面体结构,如第四主族元素掺杂。非晶状态下,强键合的 四面体团簇与Sb-Te晶体的结构(八面体)差异较大,阻碍相变材料的自发结晶,从而提高其非晶稳定性及数据保持能力。然而,上述单元素的掺入一般会和基底相变材料中的某一元素结合成键,改变相变材料的原始组分并破坏相变材料的晶格结构,在器件稳定性得到改善的同时会一定程度上牺牲晶化速度,很难实现器件性能的全面提升。
因此,需要开发一种新型的改性Sb-Te材料体系的方法和产品,以实现对其微观结构的精确、灵敏、简单地调控,从而使其能作为商业化的相变存储材料应用。
【发明内容】
针对现有技术的缺陷,本发明的目的在于提供稳定四面体结构化合物掺杂的Sb-Te相变材料、相变存储器,通过稳定四面体结构化合物掺杂,在Sb-Te体系相变层形成与其八面体晶体结构差异较大的四面体团簇,阻碍Sb-Te体系相变材料的自发结晶,从而提高其非晶稳定性及数据保持能力,不与Sb-Te体系相变材料中的元素成键,保证Sb-Te体系相变材料晶格结构完整,还能减小晶粒尺寸,阻止相变元素的原子迁移,最终全方位地实现改善器件的综合性能。
为实现上述目的,按照本发明的一个方面,还提供一种四面体结构化合物掺杂的Sb-Te相变材料,其化学式为MA x(Sb-Te) 1-x,其中,MA为四面体结构化合物,x代表四面体结构化合物分子数占总分子数的百分比,0<x<10%,四面体结构化合物选自SiC、SiN、GeC、GeN、BN、GaN等中的一种或者多种。
进一步的,四面体结构化合物MA在Sb-Te体系相变层,结构稳定,其与Sb-Te体系八面体晶体结构完全不同,从而能阻碍Sb-Te体系相变材料的自发结晶,从而提高其非晶稳定性及数据保持能力。
进一步的,四面体结构化合物MA元素与Sb-Te体系相变材料中的元素 相互独立而无键合,无替位或者间隙掺杂现象,从而能保证Sb-Te体系相变材料晶格结构完整,以保持快速结晶的性能。
进一步的,其中只存在以下几种化学键,包括M-A键、M-M键、A-A键和Sb-Te键。
进一步的,四面体结构化合物MA以非晶形式均匀分布于晶态相变材料的晶界处,以用于减小晶粒尺寸,能阻碍相变元素的原子迁移,最终能提高器件的可靠性。
进一步的,采用磁控溅射法、化学气相沉积法、原子层沉积法、电镀法或电子束蒸发法制备获得。
进一步的,所述Sb-Te体系相变材料包括SbTe、Sb 2Te 1、Sb 2Te 3和Sb 4Te 1
进一步的,采用Sb-Te体系靶和MA靶共溅射获得。
按照本发明的第二个方面,还提供一种Sb-Te体系相变材料的相变存储器,其包括依次层叠的底电极、隔离层、相变存储材料薄膜层和顶电极,所述相变存储材料薄膜层采用如上所述的四面体结构化合物掺杂的Sb-Te相变材料。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,具有以下有益效果:
本发明的基于稳定的四面体结构化合物掺杂的相变材料中,稳定的四面体结构化合物MA在Sb-Te体系相变层形成稳定的四面体结构,其与Sb-Te体系八面体晶体结构差异较大,阻碍Sb-Te体系相变材料的自发结晶,从而提高其非晶稳定性及数据保持能力。此外,稳定的四面体结构化合物MA化学键键能大,在薄膜材料中几乎不与Sb-Te体系材料中的元素成键,只形成M-A、M-M和A-A键,不发生替位或者间隙掺杂,能保证Sb-Te体系相变材料晶格结构完整,从而不影响其快速结晶的性能特点。此外,稳定的四面体结构化合物MA易以非晶形式均匀分布于晶态相变材料的晶界处,用于减小 晶粒尺寸,阻碍相变元素的原子迁移,提高器件的可靠性,最终能全方位地改善器件的综合性能。
【附图说明】
图1是四面体结构化合物掺杂的Sb-Te相变材料的结构示意图。
图2是本发明实施例2提供的基于稳定面心立方结构化合物掺杂的Sb-Te体系相变材料的相变存储器制备流程图。
【具体实施方式】
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明涉及一种信息存储器,特别是涉及一种新型基于稳定四面体结构化合物掺杂的高热稳定性Sb-Te体系相变材料和相变存储器。采用稳定的四面体结构化合物掺杂工艺,利用化合物组织对Sb-Te体系相变材料进行调控,通过稳定四面体结构化合物掺杂,在Sb-Te体系相变层形成稳定的与其八面体晶体结构差异较大的四面体团簇,阻碍Sb-Te体系相变材料的自发结晶,从而提高其非晶稳定性及数据保持能力。稳定的四面体结构化合物中的元素几乎不与Sb-Te体系相变材料中的元素成键,因此不发生替位或者间隙掺杂,保证Sb-Te体系相变材料晶格结构完整,从而不影响其快速结晶的性能特点。此外,稳定的四面体结构化合物易与非晶形式均匀分布于晶态Sb-Te体系相变材料的晶界处,减小晶粒尺寸,阻止相变元素的原子迁移,提高器件的可靠性,最终全方位地实现改善器件的综合性能。
图1是四面体结构化合物掺杂的Sb-Te相变材料的结构示意图,由图可知,掺杂的四面体结构化合物在基体材料中稳定存在,与Sb-Te体系晶体八面体结构差异较大的稳定四面体结构能阻碍Sb-Te体系相变材料的自发结晶, 从而提高其非晶稳定性及数据保持能力。本发明将稳定的四面体结构化合物MA引入Sb-Te体系相变材料中得到的相变材料,其化学组成通式为MA x(Sb-Te) 1-x,其中MA为稳定的四面体结构化合物,x代表高熔点化合物分子数占总分子数的百分比,较佳的x取值范围为0<x<10%,进一步优选为x=5%。通过调整制备时MA的溅射功率,可以调控x的取值。优选的,MA x(Sb-Te) 1-x相变薄膜材料厚度为50nm~300nm。
本发明一个实施例中相变存储单元依次包括底电极、隔离层、相变材料薄膜层、顶电极。所述相变材料薄膜层材质为如上所述的基于稳定的四面体结构化合物掺杂的Sb-Te体系相变材料,其被填充在直径为250nm、深度为100nm的小孔中,底电极材质为TiN,隔离层材质为SiO 2,顶电极材质为金属Pt。
本发明提供了一种用于相变存储器的稳定的四面体结构化合物掺杂的Sb-Te体系相变材料,其包括磁控溅射法、化学气相沉积、原子层沉积法、电镀法、电子束蒸发法等。其中,磁控溅射法制备最为灵活,可以采用Sb-Te体系靶和MA靶共溅射,这种方法能按照化学通式的配比制备本发明的稳定的四面体结构化合物掺杂的Sb-Te体系相变材料。
本发明的稳定的四面体结构化合物掺杂的Sb-Te体系相变存储材料以及器件制备工艺成熟,易于实现与现有微电子工艺技术的兼容。
为了更加详细的阐述本发明方法,下面结合更加具体的实施例进一步详细说明。
实施例1
本实施例中制备的用于相变存储器件的稳定的四面体结构化合物掺杂的Sb-Te体系相变薄膜材料化学通式为MA x(ST) 1-x,其中,MA代表SiN,ST代表Sb 2Te 3,本实施例中x=0.05。
SiN-Sb 2Te 3体系相变存储薄膜材料采用磁控溅射法制得。制备时通入高纯氩气作为溅射气体,溅射气压为0.5Pa,SiN靶采用交流电源,电源功率为40W; Sb 2Te 3靶采用交流电源,电源功率为60W。具体制备工艺包括以下步骤:
1.选取尺寸为1cm×1cm的SiO 2/Si(100)基片,清洗表面、背面,去除灰尘颗粒、有机和无机杂质。
a)将SiO 2/Si(100)基片放置在丙酮溶液中用40W功率的超声振动10分钟,去离子水冲洗。
b)将丙酮处理后的基片在乙醇溶液中用40W功率的超声振动10分钟,去离子水冲洗,高纯N 2气吹干表面和背面,得到待溅射基片。
2.采用直流交流电源共溅射方法制备SiN-Sb 2Te 3相变存储薄膜材料。
放置好SiN靶材和Sb 2Te 3靶材,其纯度均达到99.99%(原子百分比),将其本底真空抽至10 -5Pa。
使用高纯Ar气作为溅射气体,将溅射气压调节至0.5Pa,靶材和基片距离为120mm。
设定SiN靶材交流电源功率为40W,Sb 2Te 3靶材交流电源功率为60W。
对SiN靶材和Sb 2Te 3靶材进行10min预溅射,清洁靶材表面。
预溅射完成后,开启挡板,溅射时间为8min时,制备的薄膜厚度为100nm左右。
实施例2
本实施例中采用SiN掺杂的Sb 2Te 3相变薄膜材料作为相变层材料制备存储器件,其中,SiN掺杂的Sb 2Te 3相变层采用磁控溅射法制得。制备时通入高纯氩气作为溅射气体,溅射气压为0.5Pa,SiN靶采用交流电源,电源功率为40W,Sb 2Te 3靶采用交流电源,电源功率为60W。图2是本发明实施例2提供的基于稳定面心立方结构化合物掺杂的Sb-Te体系相变材料的相变存储器制备流程图,由图可知,具体制备工艺包括以下步骤:
1.选取尺寸为1cm×1cm的SiO 2/Si(100)基片,清洗表面、背面,去除灰尘颗粒、有机和无机杂质。
a)将SiO 2/Si(100)基片放置在丙酮溶液中用40W功率的超声振动10分钟,去离子水冲洗。
b)将丙酮处理后的基片在乙醇溶液中用40W功率的超声振动10分钟,去离子水冲洗,高纯N 2气吹干表面和背面,得到待溅射基片。
2.采用直流电源溅射方法制备100nm TiN底电极。
3.采用化学气相沉积法在TiN底电极上沉积100nm SiO 2绝缘层。
4.通过电子束光刻刻蚀等工艺在SiO 2绝缘层形成深度为100nm、直径为250nm的通孔。
5.通过光刻工艺形成存储阵列。
6.采用交流电源溅射方法在通孔内填充SiN-Sb 2Te 3相变存储薄膜材料
放置好SiN靶材和Sb 2Te 3靶材,其纯度均达到99.99%(原子百分比),将其本底真空抽至10 -5Pa。
使用高纯Ar气作为溅射气体,将溅射气压调节至0.5Pa,靶材和基片距离为120mm。
设定SiN靶材交流电源功率为80W,Sb 2Te 3靶材交流电源功率为60W。
对SiN靶材和Sb 2Te 3靶材进行10min预溅射,清洁靶材表面。
预溅射完成后,开启挡板,溅射时间为8min时,制备的相变层厚度为100nm左右。
7.采用直流电源溅射方法制备100nm Pt顶电极,得到完整的基于SiN-Sb 2Te 3体系相变层的相变存储器件阵列。
实施例3
本实施例中制备的用于相变存储器件的稳定的四面体结构化合物掺杂的Sb-Te体系相变薄膜材料化学通式为MA x(ST) 1-x,其中,MA代表GeC,ST代表Sb 2Te 3,本实施例中x=0.04。
GeC-Sb 2Te 3体系相变存储薄膜材料采用磁控溅射法制得。制备时通入高 纯氩气作为溅射气体,溅射气压为0.5Pa,GeC靶采用交流电源,电源功率为30W;Sb 2Te 3靶采用交流电源,电源功率为60W。具体制备工艺包括以下步骤:
1.选取尺寸为1cm×1cm的SiO 2/Si(100)基片,清洗表面、背面,去除灰尘颗粒、有机和无机杂质。
a)将SiO 2/Si(100)基片放置在丙酮溶液中用40W功率的超声振动10分钟,去离子水冲洗。
b)将丙酮处理后的基片在乙醇溶液中用40W功率的超声振动10分钟,去离子水冲洗,高纯N 2气吹干表面和背面,得到待溅射基片。
2.采用直流交流电源共溅射方法制备GeC-Sb 2Te 3相变存储薄膜材料。
a)放置好GeC靶材和Sb 2Te 3靶材,其纯度均达到99.99%(原子百分比),将其本底真空抽至10 -5Pa。
b)使用高纯Ar气作为溅射气体,将溅射气压调节至0.5Pa,靶材和基片距离为120mm。
c)设定GeC靶材交流电源功率为30W,Sb 2Te 3靶材交流电源功率为60W。
d)对GeC靶材和Sb 2Te 3靶材进行10min预溅射,清洁靶材表面。
e)预溅射完成后,开启挡板,溅射时间为8min时,制备的薄膜厚度为100nm左右。
实施例4
本实施例中采用GeC掺杂的Sb 2Te 3相变薄膜材料作为相变层材料制备存储器件,其中,GeC掺杂的Sb 2Te 3相变层采用磁控溅射法制得。制备时通入高纯氩气作为溅射气体,溅射气压为0.5Pa,GeC靶采用交流电源,电源功率为30W,Sb 2Te 3靶采用交流电源,电源功率为60W。具体制备工艺包括以下步骤:
1.选取尺寸为1cm×1cm的SiO 2/Si(100)基片,清洗表面、背面,去除 灰尘颗粒、有机和无机杂质。
a)将SiO 2/Si(100)基片放置在丙酮溶液中用40W功率的超声振动10分钟,去离子水冲洗。
b)将丙酮处理后的基片在乙醇溶液中用40W功率的超声振动10分钟,去离子水冲洗,高纯N 2气吹干表面和背面,得到待溅射基片。
2.采用直流电源溅射方法制备100nm TiN底电极。
3.采用化学气相沉积法在TiN底电极上沉积100nm SiO 2绝缘层。
4.通过电子束光刻刻蚀等工艺在SiO 2绝缘层形成深度为100nm、直径为250nm的通孔。
5.通过光刻工艺形成存储阵列。
6.采用交流电源溅射方法在通孔内填充GeC-Sb 2Te 3相变存储薄膜材料
a)放置好GeC靶材和Sb 2Te 3靶材,其纯度均达到99.99%(原子百分比),将其本底真空抽至10 -5Pa。
b)使用高纯Ar气作为溅射气体,将溅射气压调节至0.5Pa,靶材和基片距离为120mm。
c)设定GeC靶材交流电源功率为30W,Sb 2Te 3靶材交流电源功率为60W。
d)对GeC靶材和Sb 2Te 3靶材进行10min预溅射,清洁靶材表面。
e)预溅射完成后,开启挡板,溅射时间为8min时,制备的相变层厚度为100nm左右。
7.采用直流电源溅射方法制备100nm Pt顶电极,得到完整的基于GeC-Sb 2Te 3体系相变层的相变存储器件阵列。
实施例5
本实施例中制备的用于相变存储器件的稳定的四面体结构化合物掺杂的Sb-Te体系相变薄膜材料化学通式为MA x(ST) 1-x,其中,MA代表GaN,ST代表Sb 4Te 1,本实施例中x=0.04。
GaN-Sb 4Te 1体系相变存储薄膜材料采用磁控溅射法制得。制备时通入高纯氩气作为溅射气体,溅射气压为0.5Pa,GaN靶采用交流电源,电源功率为32W;Sb 4Te 1靶采用交流电源,电源功率为60W。具体制备工艺包括以下步骤:
1.选取尺寸为1cm×1cm的SiO 2/Si(100)基片,清洗表面、背面,去除灰尘颗粒、有机和无机杂质。
a)将SiO 2/Si(100)基片放置在丙酮溶液中用40W功率的超声振动10分钟,去离子水冲洗。
b)将丙酮处理后的基片在乙醇溶液中用40W功率的超声振动10分钟,去离子水冲洗,高纯N 2气吹干表面和背面,得到待溅射基片。
2.采用直流交流电源共溅射方法制备GaN-Sb 4Te 1相变存储薄膜材料。
a)放置好GaN靶材和Sb 4Te 1靶材,其纯度均达到99.99%(原子百分比),将其本底真空抽至10 -5Pa。
b)使用高纯Ar气作为溅射气体,将溅射气压调节至0.5Pa,靶材和基片距离为120mm。
c)设定GaN靶材交流电源功率为32W,Sb 4Te 1靶材交流电源功率为60W。
d)对GaN靶材和Sb 4Te 1靶材进行10min预溅射,清洁靶材表面。
e)预溅射完成后,开启挡板,溅射时间为8min时,制备的薄膜厚度为100nm左右。
实施例6
本实施例中采用GaN掺杂的Sb 4Te 1相变薄膜材料作为相变层材料制备存储器件,其中,GaN掺杂的Sb 4Te 1相变层采用磁控溅射法制得。制备时通入高纯氩气作为溅射气体,溅射气压为0.5Pa,GaN靶采用交流电源,电源功率为32W,Sb 4Te 1靶采用交流电源,电源功率为60W。具体制备工艺包括以下步骤:
1.选取尺寸为1cm×1cm的SiO 2/Si(100)基片,清洗表面、背面,去除灰尘颗粒、有机和无机杂质。
a)将SiO 2/Si(100)基片放置在丙酮溶液中用40W功率的超声振动10分钟,去离子水冲洗。
b)将丙酮处理后的基片在乙醇溶液中用40W功率的超声振动10分钟,去离子水冲洗,高纯N 2气吹干表面和背面,得到待溅射基片。
2.采用直流电源溅射方法制备100nm TiN底电极。
3.采用化学气相沉积法在TiN底电极上沉积100nm SiO 2绝缘层。
4.通过电子束光刻刻蚀等工艺在SiO 2绝缘层形成深度为100nm、直径为250nm的通孔。
5.通过光刻工艺形成存储阵列。
6.采用交流电源溅射方法在通孔内填充GeC-Sb 2Te 3相变存储薄膜材料
a)放置好GaN靶材和Sb 4Te 1靶材,其纯度均达到99.99%(原子百分比),将其本底真空抽至10 -5Pa。
b)使用高纯Ar气作为溅射气体,将溅射气压调节至0.5Pa,靶材和基片距离为120mm。
c)设定GaN靶材交流电源功率为32W,Sb 4Te 1靶材交流电源功率为60W。
d)对GaN靶材和Sb 4Te 1靶材进行10min预溅射,清洁靶材表面。
e)预溅射完成后,开启挡板,溅射时间为8min时,制备的相变层厚度为100nm左右。
7.采用直流电源溅射方法制备100nm Pt顶电极,得到完整的基于GaN-Sb 4Te 1体系相变层的相变存储器件阵列。
本发明的四面体结构化合物掺杂的Sb-Te相变材料,化学式为MA x(Sb-Te) 1-x,MA还可以选自SiC、GeN中的一种或者两种,Sb-Te体系相变材料还可以选用SbTe、Sb 2Te 1和Sb 4Te 1。可以根据Sb-Te体系相变材料和四面体结 构化合物的结构,决定x的取值范围,0<x<10%。
本发明的基于稳定的四面体结构化合物掺杂的Sb-Te体系相变材料中,利用掺杂的稳定的四面体结构化合物对Sb-Te体系相变材料进行调控,在Sb-Te体系相变层形成稳定的与其八面体晶体结构差异较大的四面体团簇,阻碍Sb-Te体系相变材料的自发结晶,从而提高其非晶稳定性及数据保持能力;稳定的四面体结构化合物中的元素几乎不与Sb-Te体系相变材料中的元素成键,因此不发生替位或者间隙掺杂,保证Sb-Te体系相变材料晶格结构完整,从而不影响其快速结晶的性能特点;此外,稳定的四面体结构化合物易以非晶形式均与分布于晶态Sb-Te体系相变材料的晶界处,减小晶粒尺寸,阻止相变元素的原子迁移,提高器件的可靠性,最终全方位地实现改善器件的综合性能。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种四面体结构化合物掺杂的Sb-Te相变材料,其特征在于,其化学式为MA x(Sb-Te) 1-x,其中,MA为四面体结构化合物,x代表四面体结构化合物分子数占总分子数的百分比,0<x<10%,四面体结构化合物选自SiC、SiN、GeC中的一种或者多种。
  2. 如权利要求1所述的一种四面体结构化合物掺杂的Sb-Te相变材料,其特征在于,四面体结构化合物MA在Sb-Te体系相变层,结构稳定,其与Sb-Te体系八面体晶体结构相异,从而能阻碍Sb-Te体系相变材料的自发结晶,从而提高其非晶稳定性及数据保持能力。
  3. 如权利要求1所述的一种四面体结构化合物掺杂的Sb-Te相变材料,其特征在于,四面体结构化合物MA元素与Sb-Te体系相变材料中的元素相互独立而无键合,无替位或者间隙掺杂现象,从而能保证Sb-Te体系相变材料晶格结构完整,以保持快速结晶的性能。
  4. 如权利要求3所述的一种四面体结构化合物掺杂的Sb-Te相变材料,其特征在于,其中只存在以下几种化学键,包括M-A键、M-M键、A-A键和Sb-Te键。
  5. 如权利要求3所述的一种四面体结构化合物掺杂的Sb-Te相变材料,其特征在于,四面体结构化合物MA以非晶形式均匀分布于晶态相变材料的晶界处,以用于减小晶粒尺寸,能阻碍相变元素的原子迁移,最终能提高器件的可靠性。
  6. 如权利要求3所述的一种四面体结构化合物掺杂的Sb-Te相变材料,其特征在于,采用磁控溅射法、化学气相沉积法、原子层沉积法、电镀法或电子束蒸发法制备获得。
  7. 如权利要求1-6之一所述的一种四面体结构化合物掺杂的Sb-Te相变材料,其特征在于,所述Sb-Te体系相变材料包括SbTe、Sb 2Te 1、Sb 2Te 3和 Sb 4Te 1
  8. 如权利要求7所述的一种四面体结构化合物掺杂的Sb-Te相变材料,其特征在于,采用Sb-Te体系靶和MA靶共溅射获得。
  9. 一种Sb-Te体系相变材料的相变存储器,其特征在于,其包括依次层叠的底电极、隔离层、相变存储材料薄膜层和顶电极,所述相变存储材料薄膜层采用如权利要求1-8之一所述的四面体结构化合物掺杂的Sb-Te相变材料。
PCT/CN2022/093087 2022-03-30 2022-05-16 四面体结构化合物掺杂的Sb-Te相变材料、相变存储器 WO2023184667A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210326791.1 2022-03-30
CN202210326791.1A CN114744109A (zh) 2022-03-30 2022-03-30 四面体结构化合物掺杂的Sb-Te相变材料、相变存储器

Publications (1)

Publication Number Publication Date
WO2023184667A1 true WO2023184667A1 (zh) 2023-10-05

Family

ID=82280007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/093087 WO2023184667A1 (zh) 2022-03-30 2022-05-16 四面体结构化合物掺杂的Sb-Te相变材料、相变存储器

Country Status (2)

Country Link
CN (1) CN114744109A (zh)
WO (1) WO2023184667A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1578848A (zh) * 2001-08-30 2005-02-09 微米技术有限公司 利用掺杂金属后的硫族化物材料的集成电路器件和制造
US20110057161A1 (en) * 2009-09-10 2011-03-10 Gurtej Sandhu Thermally shielded resistive memory element for low programming current
CN102453823A (zh) * 2010-10-21 2012-05-16 中国科学院上海微系统与信息技术研究所 碳化物复合相变存储材料及制备方法
CN106953008A (zh) * 2017-04-19 2017-07-14 中国科学院上海光学精密机械研究所 用于光学性能精细调控的相变薄膜结构
CN110120453A (zh) * 2018-02-05 2019-08-13 中国科学院上海微系统与信息技术研究所 一种C-Ti-Sb-Te相变材料
CN113161480A (zh) * 2021-03-24 2021-07-23 华为技术有限公司 一种相变存储材料及其制备方法和相变存储器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1578848A (zh) * 2001-08-30 2005-02-09 微米技术有限公司 利用掺杂金属后的硫族化物材料的集成电路器件和制造
US20110057161A1 (en) * 2009-09-10 2011-03-10 Gurtej Sandhu Thermally shielded resistive memory element for low programming current
CN102453823A (zh) * 2010-10-21 2012-05-16 中国科学院上海微系统与信息技术研究所 碳化物复合相变存储材料及制备方法
CN106953008A (zh) * 2017-04-19 2017-07-14 中国科学院上海光学精密机械研究所 用于光学性能精细调控的相变薄膜结构
CN110120453A (zh) * 2018-02-05 2019-08-13 中国科学院上海微系统与信息技术研究所 一种C-Ti-Sb-Te相变材料
CN113161480A (zh) * 2021-03-24 2021-07-23 华为技术有限公司 一种相变存储材料及其制备方法和相变存储器

Also Published As

Publication number Publication date
CN114744109A (zh) 2022-07-12

Similar Documents

Publication Publication Date Title
CN108539013B (zh) 一种用于高速低功耗相变存储器的Ge/Sb类超晶格相变薄膜材料
CN108258114B (zh) 用于高速相变存储器的GeTe/Sb类超晶格相变薄膜材料的制备方法
WO2021082808A1 (zh) 一种掺杂的Ge-Sb相变材料、相变存储器及其制备方法
CN101807665B (zh) 一种结晶温度可调的Ga30Sb70/Sb80Te20纳米复合多层相变薄膜材料
CN101714610B (zh) 一种Si/Sb80Te20纳米复合多层相变薄膜及其制备方法
US8920684B2 (en) Al-Sb-Te phase change material used for phase change memory and fabrication method thereof
CN101752497B (zh) 低功耗高稳定性的相变存储单元及制备方法
CN108075039A (zh) 一种纳米复合ZnO-ZnSb相变存储薄膜材料及其制备方法
CN101521260B (zh) 一种纳米复合相变材料及其制备方法
CN112687359B (zh) 纳米电流通道层中绝缘绝热材料与纳米晶粒金属材料的筛选与匹配方法
CN112701221B (zh) 一种基于纳米电流通道的相变存储器
WO2023184667A1 (zh) 四面体结构化合物掺杂的Sb-Te相变材料、相变存储器
CN108823530B (zh) 一种复合相变薄膜材料(Si/Ge2Sb2Te5/Si)n的制备方法
WO2024001426A1 (zh) 一种相变薄膜、薄膜制备方法及相变存储器
WO2023184668A1 (zh) 基于晶格匹配的化合物掺杂Ge-Sb-Te相变材料和相变存储器
CN113072915B (zh) 基于氧掺杂的Sb2Te3相变材料、相变存储器及制备方法
WO2023108749A1 (zh) 一种Cu掺杂的Sb-Te体系相变材料、相变存储器及制备方法
CN110729400B (zh) Ti-Ga-Sb相变材料、相变存储器及Ti-Ga-Sb相变材料的制备方法
CN112614936B (zh) 一种Ti/Sb多层纳米复合相变存储薄膜材料及其制备方法和应用
CN104810475B (zh) 一种纳米复合TiO2‑Sb2Te相变存储薄膜材料及其制备方法
CN111276606A (zh) 类超晶格锡硒-锑碲信息功能存储介质及其制备方法
CN107369760B (zh) 一种用于相变存储器的相变薄膜及其制备方法
CN117956889A (zh) HfN-Ge-Sb-Te相变材料及低功耗相变存储器
CN110718628B (zh) 相变合金材料、相变存储器及相变合金材料的制备方法
CN110729401B (zh) Ga-Sb-O相变材料及其应用与制备方法