WO2023105866A1 - 衝撃吸収装置 - Google Patents

衝撃吸収装置 Download PDF

Info

Publication number
WO2023105866A1
WO2023105866A1 PCT/JP2022/033457 JP2022033457W WO2023105866A1 WO 2023105866 A1 WO2023105866 A1 WO 2023105866A1 JP 2022033457 W JP2022033457 W JP 2022033457W WO 2023105866 A1 WO2023105866 A1 WO 2023105866A1
Authority
WO
WIPO (PCT)
Prior art keywords
impact
state
shock absorbing
absorbing member
shock
Prior art date
Application number
PCT/JP2022/033457
Other languages
English (en)
French (fr)
Inventor
征幸 山▲崎▼
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Priority to EP22903801.3A priority Critical patent/EP4446174A1/en
Priority to CN202280080965.9A priority patent/CN118401413A/zh
Publication of WO2023105866A1 publication Critical patent/WO2023105866A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/06Safety nets, transparent sheets, curtains, or the like, e.g. between occupants and glass
    • B60R21/08Safety nets, transparent sheets, curtains, or the like, e.g. between occupants and glass automatically movable from an inoperative to an operative position, e.g. in a collision
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F7/00Vibration-dampers; Shock-absorbers

Definitions

  • the present disclosure relates to an impact absorbing device that mitigates impact during operation.
  • Patent Literature 1 describes an energy absorbing device that protects a pedestrian or the like who collides with the bumper of a vehicle by mitigating the impact that occurs on the bumper of the vehicle.
  • this energy absorbing device gaps are formed between a plurality of shock absorbing fins connected to a base.
  • the shock absorbing device it is necessary to form an area in which the member that absorbs the shock can bend.
  • the gaps between the fins correspond to the region. Since the shock absorbing device has a bulky structure as a whole when the region is formed, the mounting positions in the vehicle are limited, and the degree of freedom of the arrangement position is reduced.
  • the present disclosure aims to provide a shock absorbing device capable of improving the degree of freedom in placement position.
  • a shock absorbing device that mitigates shock during operation, a flexible shock-absorbing member attached to the base portion so as to be reversibly switchable between a stored state retracted toward the installation surface of the base portion and a projected state projected from the installation surface; Attached to the base portion so as to be reversibly switchable between a stored state retracted to the installation surface side and a projected state projected from the installation surface in synchronization with the stored state and the projected state of the shock absorbing member.
  • a flexible auxiliary member a driving unit that directly or indirectly drives the impact-absorbing member when operating the impact-absorbing member and the auxiliary member, thereby switching the impact-absorbing member from at least the retracted state to the projected state;
  • the shock absorbing member is rotatably attached to the installation surface of the base portion about a first rotation shaft extending in a first direction, and is driven to rotate about the first rotation shaft.
  • the auxiliary member is rotatably mounted on the installation surface about a second rotating shaft extending in a second direction that intersects the first direction, and is driven to rotate about the second rotating shaft.
  • the height of the impact-absorbing member from the base portion in the protruding state is higher than that of the auxiliary member;
  • the impact-absorbing member receives a load having a component in a direction opposite to the installation surface side of the base part. Fitting to the auxiliary member by transforming into Shock absorber.
  • the auxiliary member prevents the impact-absorbing member from rotating about the first rotation shaft and switching to the retracted state when the impact-absorbing member receives the load in the projecting state. good.
  • the impact-absorbing member has a first groove that is formed at a position facing the auxiliary member in the projecting state and can be fitted with a part of the auxiliary member, At least a part of the impact-absorbing member may deform toward the auxiliary member when the impact-absorbing member receives the load, so that the first groove fits a part of the auxiliary member.
  • the auxiliary member has a protruding portion formed at a position facing the first groove in the protruding state and protruding in the second direction, When the auxiliary member receives the load, the auxiliary member may be deformed in the first direction, so that the protruding portion fits into the first groove.
  • a portion of the shock absorbing member deforms convexly in the second direction when receiving the load;
  • the auxiliary member may have a second groove capable of fitting with the shock absorbing member by deforming so as to sandwich the convexly deformed portion of the shock absorbing member when receiving the load. good.
  • the shock absorbing member may have a deformation support portion formed along the first direction so as to preferentially deform in the second direction when receiving the load.
  • the shock absorbing member may be more flexible than the auxiliary member.
  • the shock absorbing members are arranged in a plurality of rows at intervals in a direction perpendicular to the first direction,
  • Each of the multiple rows of shock absorbing members includes: Maintained in a lying posture along the installation surface in the stored state, When switching from the housed state to the protruding state, it is rotated in a predetermined starting direction around the first rotating shaft, thereby switching from the lying posture to a standing posture standing from the installation surface.
  • the protruding state is switched to the retracted state
  • the upright posture is switched to the reclined posture by being rotationally driven in the lying direction opposite to the starting direction about the first rotary shaft.
  • the auxiliary member arranged between each row of the plurality of rows of shock absorbing members, In the stored state, a portion of the shock absorbing members in adjacent rows is maintained in a laid down posture along the installation surface so as to cover at least a portion of the auxiliary member from above;
  • the protruding state When switching from the housed state to the protruding state, it is switched from the lying posture to the standing posture by being rotationally driven in a predetermined starting direction about the second rotating shaft,
  • the protruding state is switched to the retracted state, it is rotated in the falling direction opposite to the activating direction about the second rotating shaft, thereby changing from the standing posture to the lying posture. may be switched.
  • the auxiliary member may face the shock absorbing members in adjacent rows on both sides.
  • the above shock absorbing device is further comprising one or more driving force transmission members connected to the auxiliary member and at least partially flexible and driven by the drive unit;
  • the driving force transmission member is driven to switch the auxiliary member from the lying posture to the standing posture, and the shock absorption is accompanied by the auxiliary member.
  • the absorbent member may be switched from the lying posture to the standing posture.
  • the above shock absorbing device is a plurality of said auxiliary members; a single driving force transmission member; with A plurality of the auxiliary members may be connected to the driving force transmission member.
  • the driving force transmission member may have a plate-like portion, and the plate-like portion may be driven by the drive portion while maintaining a state parallel to the installation surface.
  • the first direction and the second direction may be orthogonal to each other.
  • FIG. 1 is an external perspective view (Part 1) schematically showing an impact absorbing device according to Embodiment 1.
  • FIG. 2 is an external perspective view (part 2) schematically showing the impact absorbing device according to Embodiment 1.
  • FIG. 1 is a plan view (part 1) schematically showing the impact absorbing device according to Embodiment 1.
  • FIG. 2 is a plan view (part 2) schematically showing the impact absorbing device according to Embodiment 1;
  • 3 is an external perspective view (No. 3) schematically showing the impact absorbing device according to Embodiment 1.
  • FIG. 4 is an external perspective view (part 4) schematically showing the impact absorbing device according to Embodiment 1.
  • FIG. 3 is a plan view (No. 3) schematically showing the impact absorbing device according to Embodiment 1.
  • FIG. 3 is a plan view (No. 3) schematically showing the impact absorbing device according to Embodiment 1.
  • FIG. 3 is a plan view (No. 3) schematically showing the impact absorbing device according to Em
  • FIG. 4 is a plan view (part 4) schematically showing the impact absorbing device according to Embodiment 1.
  • FIG. 5 is an external perspective view (No. 5) schematically showing the impact absorbing device according to Embodiment 1.
  • FIG. 6 is an external perspective view (No. 6) schematically showing the impact absorbing device according to Embodiment 1.
  • FIG. 5 is a plan view (No. 5) schematically showing the impact absorbing device according to Embodiment 1.
  • FIG. 6 is a plan view (No. 6) schematically showing the impact absorbing device according to Embodiment 1.
  • FIG. FIG. 4 is a schematic diagram (part 1) showing an example of an impact absorbing member and fins of an impact absorbing device according to a modification of Embodiment 1;
  • FIG. 2 is a schematic diagram (No.
  • FIG. 2 is a schematic diagram (No. 3) showing an example of a shock absorbing member and fins of a shock absorbing device according to a modification of Embodiment 1.
  • FIG. 4 is a schematic diagram (part 4) showing an example of a shock absorbing member and fins of a shock absorbing device according to a modification of Embodiment 1.
  • FIG. 5 is a schematic diagram (No. 5) showing an example of a shock absorbing member and fins of a shock absorbing device according to a modification of Embodiment 1;
  • FIG. 6 is a schematic diagram (No.
  • FIG. 6 is a block diagram of an impact absorbing device according to Embodiment 1.
  • FIG. 4 is a flowchart relating to processing executed by a control unit of the impact absorbing device according to Embodiment 1.
  • FIG. 4 is a flowchart relating to processing executed by a control unit of the impact absorbing device according to Embodiment 1.
  • shock absorbing device according to an embodiment of the present disclosure will be described below with reference to the drawings.
  • each configuration and combination thereof in each embodiment is an example, and addition, omission, replacement, and other changes of configuration are possible as appropriate without departing from the gist of the present disclosure.
  • This disclosure is not limited by the embodiments, but only by the claims.
  • the impact absorbing device according to this embodiment is mounted on a vehicle such as an automobile, and is exemplified as a device for protecting an occupant on board the vehicle.
  • the impact absorbing device is attached to an object to be attached that constitutes the vehicle, and protects the occupant during operation.
  • objects to be attached that make up the vehicle include structures that make up the vehicle body, such as pillars and ceilings, and objects that are fixed to structures that make up the vehicle body, such as dashboards and steering wheels.
  • the impact absorbing device is fixed to the vehicle by being attached to such an attachment target.
  • the base portion itself may be the mounting object itself, and the impact absorbing portion 12 or the like, which will be described later, may be directly provided on the mounting object.
  • FIGS. 1A to 2B are perspective views schematically showing the appearance of an impact absorbing device 10 according to this embodiment.
  • 2A and 2B are plan views schematically showing the appearance of the impact absorbing device 10 according to this embodiment.
  • the impact absorbing device 10 includes a base portion 11 attached to an object to be attached to a vehicle, and an impact absorbing portion 12 attached to the surface (an example of the “installation surface”) side of the base portion 11 .
  • the base portion 11 has a rectangular plate-like shape, the impact absorbing portion 12 is arranged on the surface side, and the back surface side is attached to the object to be attached.
  • the direction along the long side of the base portion 11 is defined as the X axis
  • the direction along the short side of the base portion 11 is defined as the Y axis
  • either the X axis or the Y axis is defined.
  • the direction orthogonal to the is defined as the Z-axis.
  • the impact absorbing device 10 is a device for protecting an occupant to be protected located in the Z-axis direction.
  • the direction along the X-axis is the "row" of the matrix
  • the direction along the Y-axis is the "column" of the matrix.
  • the impact absorbing part 12 has flexibility as a whole, and when an accident or the like occurs in the vehicle and an inertial force is generated on the occupant and the occupant collides with the occupant, the impact absorbing part 12 is deformed, and the impact is applied to the occupant. Absorbs force (load). As a result, the impact absorbing portion 12 reduces the impact on the occupant and protects the occupant.
  • the impact absorbing portion 12 is configured to protrude toward the passenger compartment side. More specifically, the shock absorbing portion 12 is configured to be reversibly switchable between a stored state in which it is retracted from the vehicle compartment toward the base portion 11 side and a projecting state in which it projects from the base portion 11 toward the vehicle compartment side. ing. In the state shown in FIGS. 1A to 2B, the impact absorbing portion 12 is in the retracted state.
  • the shock absorbing portion 12 includes a shock absorbing member 20, fins 21 (an example of an "auxiliary member"), and a top plate portion 22 (an example of a “driving force transmission member”).
  • a shock absorbing member 20 includes a shock absorbing member 20, fins 21 (an example of an "auxiliary member"), and a top plate portion 22 (an example of a “driving force transmission member”).
  • fins 21 an example of an "auxiliary member”
  • top plate portion 22 an example of a “driving force transmission member”
  • the shock absorbing member 20 is made of rubber or the like, and has flexibility such as expansion and contraction.
  • the shock absorbing member 20 has a shape whose longitudinal direction is along the X-axis direction (a shape extending integrally in the X-axis direction), and three shock-absorbing members 20 are arranged in three rows in the Y-axis direction. .
  • the impact-absorbing member 20 is rotated with respect to a rotation shaft 20A (an example of a “first rotation shaft”) extending in a direction (an example of a “first direction”) along the X-axis with respect to the surface of the base portion 11. It is attached to the surface side of the base portion 11 so as to be rotatable. 1A and 2A, the rotation shaft 20A is indicated by a dashed line.
  • the rotation shafts 20A of the three shock absorbing members 20 are spaced apart in a direction along the Y axis (an example of the "second direction") so that the shock absorbing members 20 can operate without interfering with each other. is set.
  • the impact-absorbing members arranged in three rows may be referred to as multiple-row impact-absorbing members 20 .
  • the impact absorbing portion 12 includes multiple rows of impact absorbing members 20 .
  • Each of the plurality of rows of shock absorbing members 20 is maintained in a collapsed posture along the surface of the base portion 11 in the stored state, as shown in FIG. 1A.
  • Each of the plurality of rows of shock absorbing members 20 is driven to rotate about the rotation shaft 20A in the starting direction when switched from the retracted state to the protruding state. Can be switched from lying down to stance.
  • the activation direction of the shock absorbing member 20 is clockwise when viewed in the positive direction of the X-axis.
  • each of the plurality of rows of shock absorbing members 20 is switched from the protruding state to the retracted state, it is driven to rotate about the rotation shaft 20A in the lying down direction opposite to the starting direction, so that the standing posture is achieved.
  • each of the plurality of rows of shock absorbing members 20 is configured to be reversibly switchable between the retracted state and the projected state.
  • the fins 21 are made of rubber or the like and have flexibility such as expansion and contraction.
  • the fins 21 transmit the power from the drive section to the shock absorbing member 20 to erect the shock absorbing member 20. - ⁇
  • the driving section can indirectly drive the shock absorbing member 20 by driving the fins 21 .
  • four fins 21 are arranged for one shock absorbing member 20 . That is, the fins 21 are arranged in four rows in the direction along the X-axis and three columns in the direction along the Y-axis, for a total of 12 fins 21 .
  • the plurality of fins 21 are attached to the surface of the base portion 11 around a rotating shaft 21A (an example of a "second rotating shaft") that intersects with the rotating shaft 20A.
  • a rotating shaft 21A an example of a "second rotating shaft
  • the rotation shaft 21A of the fin 21 on the second row and first column is indicated by a dashed line. Note that the rotation shafts 21A of the respective fins are parallel to each other.
  • the plurality of fins 21 are rotatable around a rotation shaft 21A.
  • Each of the plurality of fins 21 is maintained in a collapsed posture along the surface of the base portion 11 so that a portion of the shock absorbing member 20 to be raised covers at least a portion of the fins 21 from above in the stored state. It is In addition, each of the plurality of fins 21 raises the shock absorbing members 20 arranged in the same row.
  • each of the plurality of fins 21 is switched from the housed state to the protruded state, it is driven to rotate about the rotation shaft 21A in the activation direction, thereby being switched from the lying posture to the standing posture.
  • the activation direction of the fins 21 is counterclockwise when viewed in the positive direction of the Y axis.
  • each of the fins 21 is rotated from the standing posture to the lying posture by rotating in the lying direction opposite to the starting direction about the rotating shaft 21A.
  • Posture can be switched.
  • the lodging direction of the fins 21 is clockwise when viewed in the positive direction of the Y-axis.
  • the shock absorbing member 20 can be rotated in the starting direction of the rotating shaft 20A. It is preferable that the angle formed by the rotation axis 20A of the shock absorbing member 20 and the rotation axis 21A of the fin 21 is not a right angle but an acute angle.
  • the fins 21 can be reversibly switched between the retracted state and the protruded state in synchronization with the retracted state and the protruded state of the shock absorbing member 20 .
  • the top plate portion 22 shown in FIGS. 1B and 2B is made of rubber or the like and has flexibility.
  • the top plate portion 22 is provided to transmit power from the driving portion to each fin 21 by being driven by the driving portion.
  • the top plate portion 22 has connecting portions 22A to 22C that connect the fins 21 in the same row, that is, the fins 21 having the same shock absorbing member 20 to be erected.
  • Each connecting portion 22A to 22C has a shape whose longitudinal direction is the direction along the X-axis.
  • the connecting portion 22A is connected to each fin 21 in the first row.
  • the connecting portion 22B is connected to each fin 21 in the second row.
  • the connecting portion 22C is connected to each fin 21 in the third row. Thereby, the top plate portion 22 is connected to all the fins 21 .
  • the top plate portion 22 has a pair of connection portions 22D that connect and integrally connect the connection portions 22A to 22C.
  • Each connecting portion 22D connects each connecting portion 22A to 22C at both ends in the direction along the X-axis.
  • the top plate part 22 can transmit the power of the drive part to all the fins 21 .
  • the impact absorbing portion 12 includes a single top plate portion 22 in which the connecting portions 22A, 22B, 22C and the connecting portion 22D are integrally formed.
  • the shock absorbing device 10 When the drive section of the shock absorbing device 10 operates the shock absorbing section 12, the top plate section 22 is driven so that each fin 21 is switched from the lying posture to the standing posture, and an impact is applied to each fin 21.
  • the absorption member 20 is switched from the lying posture to the standing posture.
  • the shock absorbing device 10 according to the present embodiment can switch the shock absorbing portion 12 from the retracted state to the projecting state when the shock absorbing portion 12 is operated by the driving portion.
  • FIGS. 3A to 6B show a state in which the shock absorbing portion 12 is being switched from the housed state to the projecting state.
  • 3A and 3B are perspective views schematically showing the appearance of the shock absorbing device 10
  • FIGS. 4A and 4B are plan views schematically showing the appearance of the shock absorbing device 10.
  • FIG. 5A to 6B show a state in which the shock absorbing portion 12 has been completely switched from the housed state to the projected state.
  • 5A and 5B are perspective views schematically showing the appearance of the shock absorbing device 10
  • FIGS. 6A and 6B are plan views schematically showing the appearance of the shock absorbing device 10.
  • FIG. 3A, FIG. 4A, FIG. 5A, and FIG. 6A illustration of the top plate portion 22 is omitted for explanation.
  • the top plate portion 22 has moved in the negative direction of the X axis from the stored state.
  • This moving operation of the top plate 22 is caused by driving the top plate 22 in the negative direction of the X-axis by the drive unit.
  • the drive unit For example, a solenoid, a motor, an electromagnet, or the like is used for the driving section, and the driving section is connected to the connecting portion 22D on the negative side of the X axis of the top plate section 22 via a string or rod.
  • the drive unit pulls the string or rod in the negative direction of the X-axis, thereby moving the top plate portion 22 in the negative direction of the X-axis.
  • each fin 21 is rotationally driven in the starting direction by the movement of the top plate portion 22 .
  • the impact absorbing member 20 to be erected is pushed up, and the impact absorbing member 20 rotates in the starting direction of the rotation shaft 20A.
  • the impact absorbing member 20 and the fins 21 are in the upright posture, thereby switching the impact absorbing portion 12 to the projecting state.
  • the impact absorbing portion 12 is formed such that the impact absorbing member 20 is higher than the fins 21 in height (the length in the Z-axis direction) from the base portion 11 in the projected state.
  • the impact absorbing device 10 restricts rotation in the starting direction about the rotating shaft 20A when the impact absorbing member 20 is switched from the lying posture to the standing posture. It includes a regulating portion 13 for controlling.
  • one shock absorbing member 20 has five pivot shafts (not shown), and the restricting portion 13 is provided for each position of the pivot shafts. .
  • the restricting portion 13 prevents the shock absorbing member 20 in the upright posture from further rotating in the starting direction.
  • the fin 21 has a contact portion 21B (an example of a “first contact portion”) that contacts the shock absorbing member 20 to be raised when switched to the standing posture.
  • a contact portion 21B an example of a “first contact portion” that contacts the shock absorbing member 20 to be raised when switched to the standing posture.
  • reference numerals are given to the contact portions 21B of the fins 21 on the second row and first column, but all the fins 21 have the contact portions 21B.
  • the contact portion 21B restricts the impact absorbing member 20 in the upright posture from rotating in the lying down direction.
  • the fins 21 are contact portions that, when switched to the standing posture, come into contact with the shock absorbing members 20 in the other row adjacent to the shock absorbing member 20 to be raised. 21C.
  • the abutment portions 21C of the fins 21 in the second row and first column are denoted by reference numerals, but at least the fins 21 in the second and third columns have the abutment portions 21C.
  • the impact absorbing member 20 has groove portions 20B that suppress interference with the contact portions 21C of the fins 21 during the process of switching the fins 21 from the lying posture to the standing posture.
  • the groove portions 20B are formed on the side surfaces of the shock absorbing member 20 corresponding to the contact portions 21C.
  • the groove portion 20B is formed along the locus of movement of the contact portion 21C when the fin 21 moves.
  • the fins 21 in the second and third rows are arranged between the impact-absorbing member 20 to be raised and the impact-absorbing member 20 in another row adjacent to the impact-absorbing member 20.
  • intermediate fin 210 When the intermediate fins 210 are in the standing posture, the contact portions 21B of the impact-absorbing members 20 to be raised and the intermediate fins 210 are in contact with each other, and the contact portions 21C of the impact-absorbing members 20 in the other row and the intermediate fins 210 are in contact. abut. Thereby, the intermediate fins 210 can support the impact-absorbing member 20 to be raised and the impact-absorbing members 20 in the other row adjacent to the impact-absorbing member 20 in the standing posture.
  • the top plate portion 22 has a plate-like portion 22E formed substantially flat.
  • the plate-like portion 22E is a portion arranged on the surface side of the top plate portion 22 so as to face the occupant.
  • the top plate portion 22 is driven by the driving portion while the plate-like portion 22 ⁇ /b>E is maintained parallel to the base portion 11 .
  • the plate-like portion 22E functions as a surface that receives the occupant's body. By having the plate-like portion 22E, the possibility of injury to the occupant can be reduced. It should be noted that at least the plate-like portion 22E of the top plate portion 22 should be flexible in order to reduce the possibility of injury to the occupant.
  • the shock absorbing portion 12 can be switched between the retracted state and the projecting state. It can be placed in a vehicle compartment or the like. Therefore, the impact absorbing device 10 according to this embodiment has an improved degree of freedom in arrangement. Further, in the shock absorbing device 10, since the shock absorbing portion 12 has flexibility, the top plate portion 22 can return to its original shape after receiving the occupant. Since it is possible to switch between states, it can be used repeatedly.
  • the shock absorbing device 10 when the drive section operates the shock absorbing section 12, the shock absorbing section 12 is switched from the retracted state to the protruding state, and the driving for switching the shock absorbing section 12 from the protruding state to the retracted state is manually performed by the passenger. may be performed in Alternatively, the driving section may perform driving for switching the impact absorbing section 12 from the projecting state to the retracted state.
  • the drive section includes an elastic member that biases the top plate portion 22 in the positive direction of the X axis, and when switching from the protruded state to the retracted state, the drive portion is attached to the top plate portion 22 (not shown).
  • the top plate portion 22 may be moved in the positive direction of the X axis, and the shock absorbing portion 12 may be switched to the retracted state. Further, a driving section for driving the shock absorbing member 20 and the fins 21 separately may be used, or a single driving section may drive the shock absorbing member 20 and the fins 21 together.
  • the shock absorbing device 10 according to this modification has a configuration (structure) for preventing the shock absorbing member 20 from falling toward the retracted state when a load is applied to the shock absorbing member 20 in the projecting state. I have.
  • FIG. 7 is a schematic diagram of the impact absorbing device 10 according to this modified example viewed from the negative side to the positive side of the X axis.
  • the shock absorbing member 20 and the fins 21 face each other, and the shock absorbing member 20 has a component in the direction opposite to the surface side of the base portion 11 (the negative direction of the Z axis). It fits into the fins 21 by deforming when subjected to a load.
  • the fin 21 is formed at a position facing the shock absorbing member 20 in the projected state, and has a projecting portion 211 projecting in either the positive or negative direction of the Y-axis. In the example shown in FIG.
  • the protrusions 211 are formed on both sides of the fins 21 .
  • the fins 21 are the intermediate fins 210 shown in FIG. 6, the fins 21 face the shock absorbing members 20 in adjacent rows on both sides in the protruding state, and a pair of protruding portions 211 formed on both sides. are opposed to the shock-absorbing members 20 of the adjacent rows on both sides.
  • the fin 21 only needs to have at least the projecting portion 211 on the negative side of the Y axis.
  • the shock absorbing member 20 and the fins 21 can be set at a right angle or an angle close to it with respect to the base portion 11 in the protruded state.
  • the direction in which the rotation axis of the shock absorbing member 20 extends (first direction) and the direction in which the rotation axis of the fin extends (second direction) are orthogonal to each other.
  • the impact-absorbing member 20 first deforms when receiving an impact the impact-absorbing member 20 has higher flexibility than the fins 21 in terms of impact mitigation upon contact with the impact-absorbing member 20.
  • FIGS. 8(A) and 8(B) are schematic diagrams extracting and showing a part of the shock absorbing member 20 facing one fin 21.
  • FIG. FIG. 8A shows a part of the shock absorbing member 20 with no load applied.
  • the shock absorbing member 20 has a groove 200 (an example of a “first groove”) that is formed at a position facing the fin 21 in the projected state and that can be fitted with a part of the fin 21 .
  • the groove 200 is formed, for example, in a rectangular shape whose longitudinal direction is along the Z-axis, and is formed through the shock absorbing member 20 .
  • the groove 200 is formed so that its center is arranged in the Z-axis direction of the shock absorbing member 20.
  • the grooves 200 may be formed so as not to penetrate the shock absorbing member 20 as long as they can be fitted with the fins 21 .
  • FIG. 8(B) is a schematic diagram showing a state in which the impact-absorbing member 20 is fitted to the projecting portion 211 of the fin 21 when a load is applied to the impact-absorbing member 20 .
  • FIG. 8B only the projecting portion 211 is extracted from the fin 21, and the projecting portion 211 is schematically shown in a rectangular plate shape.
  • the height of the shock absorbing member 20 from the installation surface of the base portion 11 is higher than that of the fins 21, so when a load in the negative direction of the Z axis is applied to the shock absorbing portion 12, the shock absorbing member 20 receives a load and deforms. As shown in FIG.
  • FIGS. 9A and 9B are schematic diagrams showing another example of the groove 200.
  • FIG. 9(A) and 9(B) like FIGS. 8(A) and 8(B), show a portion of the shock absorbing member 20 facing one fin 21. .
  • FIG. 9(A) shows a part of the shock absorbing member 20 with no load applied.
  • the groove 200 is formed with a length reaching the lower portion of the shock absorbing member 20 .
  • the groove 200 is formed in a rectangular shape whose longitudinal direction is along the Z-axis, and extends through the shock absorbing member 20 to the bottom of the shock absorbing member 20 .
  • FIG. 9(B) is a schematic diagram showing a state in which the impact-absorbing member 20 is fitted to the projections 211 of the fins 21 when a load is applied to the impact-absorbing member 20 .
  • FIG. 9B only the projecting portion 211 is extracted from the fin 21, and the projecting portion 211 is schematically shown in a rectangular plate shape.
  • the portion of the shock absorbing member 20 including the grooves 200 deforms toward the fins 21, thereby 200 is fitted with the protrusion 211 of the fin 21 .
  • the groove 200 may be formed at any position as long as it can be fitted with a part of the fin 21 .
  • the groove 200 is not limited to a rectangular shape, and may have an oval shape (track shape), an elliptical shape, or other shape as long as it can be fitted with a part of the fin 21 .
  • the fins 21 prevent the fins 21 from rotating about the rotation shaft 21A (see FIG. 2A, etc.) and switching to the retracted state when the shock absorbing member 20 receives a load in the projecting state. .
  • the shock absorbing device 10 can prevent the shock absorbing member 20 from falling toward the stored state when a load is applied to the shock absorbing member 20 . Note that in the projecting state of the shock absorbing portion 12, the shock absorbing member 20 does not necessarily have to be in contact with the fins 21. It is sufficient if they are compatible.
  • the surface of the shock absorbing member 20 and the side surface of the fin 21 may face each other in the projecting state of the shock absorbing portion 12 .
  • the shock absorbing member 20 and the fins 21 may be driven by separate driving units. Note that the fins 21 are driven in synchronization with the shock absorbing member 20 .
  • FIG. 10 is a schematic diagram showing one fin 21 and a portion of the shock absorbing member 20 that faces the fin 21. As shown in FIG. FIG. 10 shows a state in which a load in the negative direction of the Z-axis is applied to the shock absorbing member 20 and the fins 21 .
  • FIG. 11 is a schematic view of the state shown in FIG. 10 viewed from above. In FIG. 11 , grooves 212 (an example of “second grooves”) are also formed in the fins 21 in addition to the grooves 200 of the shock absorbing member 20 .
  • the impact-absorbing member 20 and the fins 21 receive a load in the negative direction of the Z-axis, in this example, the impact-absorbing member 20 moves in the positive direction of the Y-axis (an example of the “predetermined second direction”).
  • the fin 21 also deforms in the positive direction of the X-axis.
  • the shock absorbing members 20 and fins 21 before deformation are indicated by solid lines
  • the shock absorbing members 20 and fins 21 after deformation are indicated by broken lines
  • the deformed portions are hatched.
  • the fins 21 deform so as to sandwich the convexly deformed portion of the shock absorbing member 20 when subjected to a load in the negative direction of the Z axis, thereby fitting with the shock absorbing member 20 .
  • It has a possible groove 212 .
  • the shock absorbing member 20 deforms convexly in the positive direction of the Y-axis so that a portion of the shock absorbing member 20 sandwiches the fin 21 when a load is applied.
  • the grooves 212 of the fins 21 sandwich the shock absorbing member 20 .
  • the groove 212 is formed within the projecting portion 211 and faces the side surface of the groove 200 within the groove 200 of the shock absorbing member 20 before deformation.
  • the grooves 212 mesh with the side surfaces of the grooves 200 in the shock absorbing member 20 so that the shock absorbing member 20 and the fins 21 support each other. This restricts the shock-absorbing member 20 from switching to the stored state when the shock-absorbing member 20 receives a load.
  • the impact absorbing device 10 can efficiently absorb the impact received by the impact absorbing member 20. - ⁇
  • FIGS. 12(A) and 12(B) are schematic diagrams showing one fin 21 and a part of the shock absorbing member 20 facing the fin 21.
  • FIG. 12(A) and 12(B) show the impact absorbing device 10 viewed from the positive side to the negative side of the X-axis.
  • FIG. 12(A) shows the shock absorbing member 20 in a state where no load is applied.
  • FIG. 12(B) shows a state in which the impact-absorbing member 20 is engaged with the projections 211 of the fins 21 when a load is applied to the impact-absorbing member 20 from the state shown in FIG. 12(A).
  • the impact-absorbing member 20 has a deformation support portion formed on the negative side of the Y-axis of the impact-absorbing member 20 so that it preferentially deforms in the positive direction of the Y-axis when subjected to a load in the negative direction of the Z-axis. 201.
  • the deformation support portion 201 is formed over the entire shock absorbing member 20 along the X-axis direction.
  • the deformation support portion 201 is a thin portion formed on the side surface of the shock absorbing member 20 so as to extend along the X-axis direction.
  • the impact-absorbing member 20 on which the deformation support portion 201 is formed cannot support the input load with the deformation support portion 201 which is a thin portion when a load is applied, so the side opposite to the side on which the deformation support portion 201 is formed.
  • the impact absorbing member 20 is easily deformed in the positive direction of the Y axis.
  • a fin 21 that fits with the shock absorbing member 20 is arranged in the positive direction of the Y axis of the shock absorbing member 20 . Therefore, the impact absorbing member 20 receives a load and always deforms in the same direction, making it easier to fit the fins 21 .
  • FIGS. 13A and 13B are schematic diagrams showing one fin 21 and a portion of the shock absorbing member 20 facing the fin 21.
  • FIG. 13(A) and 13(B) show the impact absorbing device 10 viewed from the positive side to the negative side of the X axis.
  • FIG. 13(A) shows the shock absorbing member 20 in a state where no load is applied.
  • FIG. 13(B) shows a state in which the shock absorbing member 20 is fitted to the projections 211 of the fins 21 when a load is applied to the shock absorbing member 20 from the state shown in FIG. 13(A).
  • the impact-absorbing member 20 is pre-deformed toward the positive side of the Y-axis so that it preferentially deforms in the positive direction of the Y-axis when subjected to a load in the negative direction of the Z-axis. It has a deformation support unit 202 .
  • the deformation support portion 202 is formed over the entire shock absorbing member 20 along the X-axis direction.
  • the deformation support portion 202 is a portion that extends along the X-axis direction on the side surface of the shock absorbing member 20 and is pre-deformed toward the positive side of the Y-axis.
  • the deformation support portion may be formed on the fin 21 .
  • the deformation support portions can be formed so that the fins 21 are deformed in that direction.
  • FIG. 14A is a perspective view of the shock absorbing member 20
  • FIG. 14B is a schematic top view of the shock absorbing member 20 and the fins 21 facing the shock absorbing member 20.
  • a pair of hemispherical projections 203 are formed on the surface of the shock absorbing member 20 facing the fins 21 .
  • the pair of protrusions 203 are arranged with a gap between them so that the fins 21 can be fitted therebetween.
  • the amount of projection 203 protruding from the surface of shock absorbing member 20 is set to such an extent that the fitting with shock absorbing member 20 does not come off when fin 21 is caught between the projections. If the protrusion 203 protrudes unnecessarily, the shock absorbing member 20 becomes bulky when it is stored, so the amount of protrusion of the protrusion 203 is set in consideration of the fitted state and the stored state.
  • the ends of the fins 21 are located between the two projections 203. It is preferable that the fins 21 and the shock absorbing member 20 do not come into contact with each other when the shock absorbing member 20 is in the protruding state in order to secure a deformation allowance for the shock absorbing member 20 to deform when a load in the negative direction of the Z axis of the shock absorbing member 20 is applied.
  • the impact absorbing member 20 and the fins 21 are driven by separate driving units.
  • FIGS. 14(C) and 14(D) show a part of the shock absorbing member 20 after deformation.
  • FIG. 14C is a perspective view of the shock absorbing member 20
  • FIG. 14D is a schematic top view of the shock absorbing member 20 and the fins 21 facing the shock absorbing member 20.
  • FIG. 14C is a perspective view of the shock absorbing member 20
  • FIG. 14D is a schematic top view of the shock absorbing member 20 and the fins 21 facing the shock absorbing member 20.
  • FIGS. 14(C) and 14(D) show a state in which a load in the negative direction of the Z-axis is applied to the shock absorbing member 20 and the shock absorbing member 20 is deformed.
  • the impact-absorbing member 20 which has been separated, comes into contact with the fin 21, and the two projections 203 are deformed so as to sandwich the fin 21 therebetween.
  • the fin 21 also starts to deform while being sandwiched between two projections.
  • the two projections 203 are preferably formed at locations where the amount of deformation is greatest when the shock absorbing member 20 is deformed. is preferred.
  • the protrusion 203 is formed to have a shape elongated in the Z-axis direction, the rigidity of the impact-absorbing member 20 in the Z-axis direction increases, making it difficult for the impact-absorbing member 20 to deform in the Z-axis direction, which is not preferable.
  • a portion of the shock absorbing member 20 is deformed and comes into contact with the fin 21 side.
  • the shock absorbing member 20 and the fins 21 are fitted together by sandwiching the fins 21 between the two projections 203 .
  • the fin 21 may be deformed in a portion other than the portion sandwiched between the two projections 203, or may be shrunk in a portion other than this portion.
  • the shock absorbing member 20 and the fins 21 may be configured to fit together.
  • the fins 21 maintain the standing state of the fins 21 and restrict switching of the shock absorbing member 20 to the retracted state when the impact absorbing member 20 receives a load in the projected state.
  • FIG. 15 is a block diagram including vehicle 100 in which shock absorbing device 10 is arranged.
  • the impact absorbing device 10 is mounted at a plurality of locations in the vehicle.
  • the impact absorbing devices 10 may be arranged for the maximum number of passengers in the vehicle 100, and one unit may be arranged for each passenger.
  • FIG. 15 is a block diagram including vehicle 100 in which shock absorbing device 10 is arranged.
  • the impact absorbing device 10 is mounted at a plurality of locations in the vehicle.
  • the impact absorbing devices 10 may be arranged for the maximum number of passengers in the vehicle 100, and one unit may be arranged for each passenger.
  • the impact absorbing device 10 has a control section 101 .
  • the control unit 101 is configured by, for example, a microcomputer, and causes a CPU (Central Processing Unit) (not shown) to execute a program stored in storage means (ROM (Read Only Memory), etc., not shown). to execute each process.
  • CPU Central Processing Unit
  • ROM Read Only Memory
  • FIG. 15 also shows the sensor 103 mounted on the vehicle 100, the position information acquisition section 104, the travel control section 105, and the travel drive section .
  • the vehicle 100 is capable of autonomous driving in which the vehicle 100 travels on roads in a manner suitable for autonomous driving while sensing its surroundings. Note that the vehicle 100 can of course be manually driven by the passenger.
  • the sensor 103 is means for sensing the surroundings of the vehicle 100 in order to acquire information necessary for autonomous driving of the vehicle 100, and typically includes a stereo camera, laser scanner, LIDAR, various radars, and the like. be.
  • the information acquired by the sensor 103 is transmitted to the travel control unit 105 and used by the travel control unit 105 to recognize obstacles, pedestrians, and lanes existing around the vehicle 100 .
  • sensor 103 may include a visible light camera or an infrared camera for monitoring.
  • the position information acquisition unit 104 is means for acquiring the current position of the vehicle 100, and typically includes a GPS receiver and the like.
  • the information acquired by the position information acquisition unit 104 is also transmitted to the travel control unit 105.
  • the current position of the vehicle 100 is used to calculate the route for the vehicle 100 to reach the destination, and the route to the destination is calculated. It is used for predetermined processing such as calculation of the time required for processing.
  • the travel control unit 105 is a computer that controls the vehicle 100 based on the information acquired from the sensor 103 and the position information acquisition unit 104.
  • the travel control unit 105 is configured by, for example, a microcomputer, and causes a CPU (Central Processing Unit) (not shown) to execute a program stored in storage means (ROM (Read Only Memory), etc., not shown).
  • CPU Central Processing Unit
  • ROM Read Only Memory
  • processing by the travel control unit 105 include processing for generating a travel plan for the vehicle 100, processing for detecting predetermined data around the vehicle 100 necessary for autonomous travel based on data acquired by the sensor 103, travel planning, A process of generating a control command for controlling autonomous traveling based on predetermined data and the position information of the vehicle 100 acquired by the position information acquisition unit 104 can be exemplified.
  • the process of generating a travel plan is a process of determining a travel route for reaching a destination from a departure point.
  • the detection processing of the predetermined data includes, for example, the number and positions of lanes, the number and positions of other vehicles existing around the vehicle 100, obstacles existing around the vehicle 100 (for example, pedestrians, bicycles, and structures).
  • control command is transmitted to the traveling drive unit 106, which will be described later.
  • a known method can be adopted as a method of generating a control command for causing the vehicle 100 to travel autonomously.
  • the travel drive unit 106 is means for causing the vehicle 100 to travel based on the control command generated by the travel control unit 105 .
  • the travel drive unit 106 includes, for example, a motor for driving the wheels, an engine, an inverter, a brake, a steering mechanism, and the like. is realized.
  • FIG. 16 is a flowchart regarding processing performed by the control unit 101 . Note that this process is repeatedly executed by the control unit 101 at predetermined intervals.
  • the control unit 101 acquires various information. Various types of information are transmitted from the traveling control unit 105 .
  • control unit 101 determines whether drive control is necessary. If the control unit 101 determines that the various information acquired in S101 includes information indicating that the vehicle 100 has been rapidly decelerated, it determines that drive control is necessary.
  • the control unit 101 determines in S102 that drive control is necessary, it executes the processing of S103.
  • the control unit 101 executes drive control.
  • the driving section 102 includes a solenoid, a motor, an electromagnet, etc., and drives the top plate section 22 .
  • the impact absorbing device 10 according to the present embodiment can switch the impact absorbing portion 12 from the retracted state to the projecting state. Note that the shock absorbing member 20 and the fins 21 may be driven separately in synchronism.
  • the top plate portion 22 is integrally formed by connecting the connecting portions 22A, 22B, and 22C to each other at the connecting portion 22D.
  • each of the connecting portions 22A, 22B, and 22C may be driven by the driving portion.
  • the impact absorbing device 10 is provided with a plurality of driving force transmission members. Note that the drive section may drive the fins 21 without providing the driving force transmission member.
  • the impact absorbing device 10 can be operated to avoid collision between the occupant and the structure of the vehicle due to sudden braking of the vehicle even when the vehicle does not collide. . Therefore, the impact absorbing device 10 can be activated every time the vehicle is suddenly braked.
  • Any of the impact absorbing devices 10 can be used by being attached to any part of the vehicle.
  • the dashboard lower panel covers the steering column shaft to protect the occupants sitting in the driver's seat, and the seat backs of the front seats to protect the occupants sitting in the rear seats. or inside the seat back to prevent the submarine phenomenon of the passenger seated on the seat.
  • These impact absorbing devices can also be used by being attached to the outside of the vehicle in order to protect the occupants of the vehicle when the vehicle collides with an obstacle on the road or another vehicle.
  • shock absorbing device 10 may be attached to a vehicle other than the vehicle.
  • shock absorbing device 10 may be attached to a robot to protect the robot.
  • the impact absorbing device 10 is attached to the jacket, and may protect the wearer of the jacket when the wearer falls.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vibration Dampers (AREA)

Abstract

配置位置の自由度を向上可能な衝撃吸収装置を提供する。衝撃吸収装置は、衝撃吸収メンバーと、補助メンバーと、を備える。衝撃吸収メンバーは、ベース部の設置面に対して第1方向に延伸する第1回動軸周りに回動自在に取り付けられ、収納状態と突出状態とに可逆的に切り替えられ、補助メンバーは、第2回動軸周りに回動自在に取り付けられ、収納状態と突出状態とに可逆的に切り替えられる。突出状態におけるベース部からの高さは、補助メンバーより衝撃吸収メンバーの方が高く、突出状態において、衝撃吸収メンバーと補助メンバーの少なくとも一部同士が互いに対向し、衝撃吸収メンバーはベース部の設置面の側とは反対方向の成分を有する荷重を受けた場合に変形することで補助メンバーに対して篏合する。

Description

衝撃吸収装置
 本開示は、作動時に衝撃を緩和させる衝撃吸収装置に関する。
 従来、車両に使用され、事故等によって生じる衝撃を緩和させる技術が知られている。例えば、特許文献1には、車両のバンパーに生じる衝撃を緩和させることでバンパーに衝突した歩行者等を保護するエネルギー吸収装置が記載されている。このエネルギー吸収装置では、ベースに接続され衝撃を吸収する複数のフィンの間に間隙が形成されている。
米国特許第10046723号明細書
 衝撃吸収装置では、衝撃を吸収する部材が撓むことが可能な領域を形成する必要がある。例えば、特許文献1に記載されたエネルギー吸収装置では、複数のフィンの間の間隙が当該領域に相当する。衝撃吸収装置は、当該領域を形成すると全体として嵩張った構造となるため、車両においては取り付けられる位置が限られてしまい、配置位置の自由度が低下してしまう。
 本開示では、上記した問題に鑑み、配置位置の自由度を向上可能な衝撃吸収装置を提供することを目的とする。
 上記課題を解決するために、本開示では、以下の構成を採用する。
 作動時に衝撃を緩和させる衝撃吸収装置であって、
 ベース部の設置面の側に退避した収納状態と、前記設置面から突出した突出状態とを可逆的に切り替え可能に該ベース部に取り付けられた可撓性を有する衝撃吸収メンバーと、
 前記衝撃吸収メンバーの前記収納状態と前記突出状態に同調して、前記設置面の側に退避した収納状態と、該設置面から突出した突出状態とを可逆的に切り替え可能に前記ベース部に取り付けられた可撓性を有する補助メンバーと、
 前記衝撃吸収メンバーおよび前記補助メンバーを作動させる際に、該衝撃吸収メンバーを直接的または間接的に駆動することで、該衝撃吸収メンバーを少なくとも前記収納状態から前記突出状態に切り替える駆動部と、
 を備え、
 前記衝撃吸収メンバーは、前記ベース部の前記設置面に対して第1方向に延伸する第1回動軸周りに回動自在に取り付けられ、該第1回動軸を中心として回動駆動されることで前記収納状態と前記突出状態とに可逆的に切り替えられ、
 前記補助メンバーは、前記設置面に対して前記第1方向と交差する第2方向に延伸する第2回動軸周りに回動自在に取り付けられ、該第2回動軸を中心として回動駆動されることで前記収納状態と前記突出状態とに可逆的に切り替えられ、
 前記突出状態における前記ベース部からの高さは、前記補助メンバーより前記衝撃吸収メンバーの方が高く、
 前記突出状態において、前記衝撃吸収メンバーと前記補助メンバーの少なくとも一部同士が互いに対向し、該衝撃吸収メンバーは前記ベース部の前記設置面の側とは反対方向の成分を有する荷重を受けた場合に変形することで該補助メンバーに対して篏合する、
 衝撃吸収装置。
 上記の衝撃吸収装置では、
 前記補助メンバーは、前記突出状態において前記衝撃吸収メンバーが前記荷重を受けた場合に、該衝撃吸収メンバーが前記第1回動軸周りに回動して前記収納状態に切り替わることを規制してもよい。
 上記の衝撃吸収装置では、
 前記衝撃吸収メンバーは、前記突出状態において前記補助メンバーに対向する位置に形成され、該補助メンバーの一部と篏合可能な第1溝を有し、
 前記衝撃吸収メンバーが前記荷重を受けた場合に該衝撃吸収メンバーの少なくとも一部が前記補助メンバーに向かって変形することで、前記第1溝が該補助メンバーの一部と篏合してもよい。
 上記の衝撃吸収装置では、
 前記補助メンバーは、前記突出状態において前記第1溝に対向する位置に形成され、前記第2方向に突出する突出部を有し、
 前記補助メンバーが前記荷重を受けた場合に該補助メンバーが前記第1方向に向かって変形することで、前記突出部が前記第1溝と篏合してもよい。
 上記の衝撃吸収装置では、
 前記衝撃吸収メンバーは、前記荷重を受けた場合にその一部が所定の前記第2方向に凸状に変形し、
 前記補助メンバーは、前記荷重を受けた場合に前記衝撃吸収メンバーの前記凸状に変形した部分を挟み込むように変形することで該衝撃吸収メンバーと篏合可能な第2溝を有していてもよい。
 上記の衝撃吸収装置では、
 前記衝撃吸収メンバーは、前記荷重を受けた場合に前記第2方向に優先的に変形するように、前記第1方向に沿って形成された変形支援部を有していてもよい。
 上記の衝撃吸収装置では、
 前記衝撃吸収メンバーは、前記補助メンバーよりも可撓性が高くてもよい。
 上記の衝撃吸収装置では、
 前記衝撃吸収メンバーは、前記第1方向と直交する方向に間隔を設けて複数列に配置されており、
 複数列の衝撃吸収メンバーの各々は、
  前記収納状態において前記設置面に沿った倒伏姿勢に維持され、
  前記収納状態から前記突出状態に切り替えられる際には、前記第1回動軸を中心とした所定の起動方向に回動駆動されることで前記設置面から起立した起立姿勢に前記倒伏姿勢から切り替えられ、
  前記突出状態から前記収納状態に切り替えられる際には、前記第1回動軸を中心とした前記起動方向とは反対の倒伏方向に回動駆動されることで前記起立姿勢から前記倒伏姿勢に切り替えられてもよい。
 上記の衝撃吸収装置では、
 前記補助メンバーは、
  複数列の前記衝撃吸収メンバーの各列の間に配置されており、
  前記収納状態において、隣接する列の前記衝撃吸収メンバーの一部が前記補助メンバーの少なくとも一部に上方から覆い被さるように前記設置面に沿った倒伏姿勢に維持され、
  前記収納状態から前記突出状態に切り替えられる際には、前記第2回動軸を中心とした所定の起動方向に回動駆動されることで前記倒伏姿勢から起立姿勢に切り替えられ、
  前記突出状態から前記収納状態に切り替えられる際には、前記第2回動軸を中心とした前記起動方向とは反対の前記倒伏方向に回動駆動されることで前記起立姿勢から前記倒伏姿勢に切り替えられてもよい。
 上記の衝撃吸収装置では、
 前記補助メンバーは、前記突出状態において、隣接する両側の列の前記衝撃吸収メンバーに対して対向していてもよい。
 上記の衝撃吸収装置は、
 前記補助メンバーに連結されると共に少なくとも一部に可撓性を有し、前記駆動部によって駆動される一又は複数の駆動力伝達メンバーを更に備え、
 前記駆動部が前記衝撃吸収メンバーを作動させる際に、前記駆動力伝達メンバーが駆動されることで前記補助メンバーが前記倒伏姿勢から前記起立姿勢に切り替えられると共に、該補助メンバーに付随して前記衝撃吸収メンバーが前記倒伏姿勢から前記起立姿勢に切り替えられてもよい。
 上記の衝撃吸収装置は、
 複数の前記補助メンバーと、
 単一の前記駆動力伝達メンバーと、
 を備え、
 前記駆動力伝達メンバーに複数の前記補助メンバーが連結されていてもよい。
 上記の衝撃吸収装置では、
 前記駆動力伝達メンバーは、板状部を有し、該板状部が前記設置面と平行な状態を維持しつつ前記駆動部に駆動されてもよい。
 上記の衝撃吸収装置では、
 前記第1方向と前記第2方向とは、互いに直交していてもよい。
 本開示の技術によれば、衝撃吸収装置の配置位置の自由度を向上できる。
実施形態1に係る衝撃吸収装置を模式的に示す外観斜視図(その1)である。 実施形態1に係る衝撃吸収装置を模式的に示す外観斜視図(その2)である。 実施形態1に係る衝撃吸収装置を模式的に示す平面図(その1)である。 実施形態1に係る衝撃吸収装置を模式的に示す平面図(その2)である。 実施形態1に係る衝撃吸収装置を模式的に示す外観斜視図(その3)である。 実施形態1に係る衝撃吸収装置を模式的に示す外観斜視図(その4)である。 実施形態1に係る衝撃吸収装置を模式的に示す平面図(その3)である。 実施形態1に係る衝撃吸収装置を模式的に示す平面図(その4)である。 実施形態1に係る衝撃吸収装置を模式的に示す外観斜視図(その5)である。 実施形態1に係る衝撃吸収装置を模式的に示す外観斜視図(その6)である。 実施形態1に係る衝撃吸収装置を模式的に示す平面図(その5)である。 実施形態1に係る衝撃吸収装置を模式的に示す平面図(その6)である。 実施形態1の変形例に係る衝撃吸収装置の衝撃吸収メンバーおよびフィンの一例を示す概略図(その1)である。 実施形態1の変形例に係る衝撃吸収装置の衝撃吸収メンバーおよびフィンの一例を示す概略図(その2)である。 実施形態1の変形例に係る衝撃吸収装置の衝撃吸収メンバーおよびフィンの一例を示す概略図(その3)である。 実施形態1の変形例に係る衝撃吸収装置の衝撃吸収メンバーおよびフィンの一例を示す概略図(その4)である。 実施形態1の変形例に係る衝撃吸収装置の衝撃吸収メンバーおよびフィンの一例を示す概略図(その5)である。 実施形態1の変形例に係る衝撃吸収装置の衝撃吸収メンバーおよびフィンの一例を示す概略図(その6)である。 実施形態1の変形例に係る衝撃吸収装置の衝撃吸収メンバーおよびフィンの一例を示す概略図(その7)である。 実施形態1の変形例に係る衝撃吸収装置の衝撃吸収メンバーおよびフィンの一例を示す概略図(その8)である。 実施形態1に係る衝撃吸収装置のブロック図である。 実施形態1に係る衝撃吸収装置の制御部が実行する処理に関するフローチャートである。
 以下に、図面を参照して本開示の実施形態に係る衝撃吸収装置について説明する。なお、各実施形態における各構成及びそれらの組み合わせ等は、一例であって、本開示の主旨から逸脱しない範囲内で、適宜、構成の付加、省略、置換、及びその他の変更が可能である。本開示は、実施形態によって限定されることはなく、クレームによってのみ限定される。
<実施形態1>
 実施形態1に係る衝撃吸収装置について説明する。本実施形態に係る衝撃吸収装置は、自動車等の車両に搭載され、当該車両に搭乗している乗員を保護する装置として例示される。衝撃吸収装置は、車両を構成する被取付対象に取り付けられ、作動時に乗員を保護する。なお、車両を構成する被取付対象としては、例えば、ピラーや天井等の車体を構成する構造物や、ダッシュボードやハンドル等の車体を構成する構造物に固定されるものが挙げられる。衝撃吸収装置は、このような被取付対象に取り付けられることによって車両に対して固定される。なお、ベース部自体がこれらの被取付対象自体であってもよく、後述する衝撃吸収部12等が被取付対象に直接的に設けられていてもよい。
 次に、図1A~図2Bに基づいて、本実施形態に係る衝撃吸収装置10について詳細に説明する。図1A、図1Bは、本実施形態に係る衝撃吸収装置10の外観を模式的に示す斜視図である。図2A、図2Bは、本実施形態に係る衝撃吸収装置10の外観を模式的に示す平面図である。衝撃吸収装置10は、車両の被取付対象に取り付けられるベース部11と、ベース部11の表面(「設置面」の一例)側に取り付けられた衝撃吸収部12を備える。ベース部11は、長方形の板状形状を有し、表面側に衝撃吸収部12が配置されており、裏面側が被取付対象に取り付けられている。以降では、図1A~図2Bに示すように、ベース部11の長辺に沿った方向をX軸とし、ベース部11の短辺に沿った方向をY軸とし、X軸およびY軸のいずれにも直交する方向(ベース部の表面および裏面に直交する方向)をZ軸とする。衝撃吸収装置10は、Z軸方向に位置する保護対象である乗員を保護するための装置である。なお、X軸に沿った方向を行列の「行」とし、Y軸に沿った方向を行列の「列」とする。
 衝撃吸収部12は、全体的に可撓性を有しており、車両に事故等が生じて乗員に慣性力が生じて当該乗員が衝突した場合に変形することで、当該乗員に対してかかる力(荷重)を吸収する。これにより、衝撃吸収部12は、乗員に対する衝撃を緩和し、当該乗員を保護する。衝撃吸収部12は、乗員が搭乗する車室側に突出可能に構成されている。より具体的には、衝撃吸収部12は、車室からベース部11の側に退避した収納状態と、ベース部11から車室の側に突出した突出状態とを可逆的に切り替え可能に構成されている。図1A~図2Bに示す状態では、衝撃吸収部12は収納状態である。
 衝撃吸収部12は、衝撃吸収メンバー20と、フィン21(「補助メンバー」の一例)と、天板部22(「駆動力伝達メンバー」の一例)とを含んでいる。なお、図1Aおよび図2Aでは、説明のために天板部22の図示は省略している。
 衝撃吸収メンバー20は、ゴム等で形成され、伸び縮みなど変形可能な可撓性を有している。衝撃吸収メンバー20は、X軸方向に沿った方向が長手方向となる形状(X軸方向に一体になって延在する形状)を有し、Y軸方向に3列で3個配置されている。衝撃吸収メンバー20は、ベース部11の表面に対してX軸に沿った方向(「第1方向」の一例)に延伸する回動軸20A(「第1回動軸」の一例)に対して回動自在となるようにベース部11の表面側に取り付けられている。図1Aおよび図2Aにおいて、回動軸20Aを一点鎖線で表している。3個の衝撃吸収メンバー20の各回動軸20Aは、各衝撃吸収メンバー20が互いに干渉することなく動作可能なようにY軸に沿った方向(「第2方向」の一例)に間隔をおいて設定されている。なお、以降では、3個が3列に配置された衝撃吸収メンバーを複数列の衝撃吸収メンバー20と称する場合がある。このように、衝撃吸収部12は、複数列の衝撃吸収メンバー20を含む。
 複数列の衝撃吸収メンバー20の各々は、図1Aに示すように、収納状態においてベース部11の表面に沿った倒伏姿勢に維持されている。複数列の衝撃吸収メンバー20の各々は、収納状態から突出状態に切り替えられる際には、回動軸20Aを中心とした起動方向に回動駆動されることでベース部11の表面から起立した起立姿勢に倒伏姿勢から切り替えられる。衝撃吸収メンバー20の起動方向は、X軸の正の方向に向かって見た場合に右回りである。また、複数列の衝撃吸収メンバー20の各々は突出状態から収納状態に切り替えられる際には、回動軸20Aを中心とした起動方向とは反対の倒伏方向に回動駆動されることで起立姿勢から倒伏姿勢に切り替えられる。衝撃吸収メンバー20の倒伏方向は、X軸の正の方向に向かって見た場合に左回りである。このように、複数列の衝撃吸収メンバー20の各々は、収納状態と突出状態とに可逆的に切り替え可能に構成されている。
 フィン21は、ゴム等で形成され、伸び縮みなど変形可能な可撓性を有している。フィン21は、駆動部からの動力を衝撃吸収メンバー20に伝えることで衝撃吸収メンバー20を起立させる。駆動部は、フィン21を駆動することで間接的に衝撃吸収メンバー20を駆動することができる。本実施形態では、1個の衝撃吸収メンバー20に対して4個のフィン21が配置されている。すなわち、フィン21は、X軸に沿った方向に4行、Y軸に沿った方向に3列の合計12個配置されている。複数のフィン21は、回動軸20Aに交差する回動軸21A(「第2回動軸」の一例)周りにベース部11の表面に取り付けられている。図2Aにおいて、2行1列目のフィン21の回動軸21Aを一点鎖線で表している。なお、各フィンの回動軸21Aは、互いに平行である。複数のフィン21は、回動軸21A周りに回動自在である。
 複数のフィン21の各々は、収納状態において、起立させる対象となる衝撃吸収メンバー20の一部がフィン21の少なくとも一部に上方から覆い被さるようにベース部11の表面に沿った倒伏姿勢に維持されている。なお、複数のフィン21の各々は、同じ列に配置されている衝撃吸収メンバー20を起立させる。複数のフィン21の各々は、収納状態から突出状態に切り替えられる際には、回動軸21Aを中心とした起動方向に回動駆動されることで倒伏姿勢から起立姿勢に切り替えられる。フィン21の起動方向は、Y軸の正の方向に向かって見た場合に左回りである。また、複数のフィン21の各々は、突出状態から収納状態に切り替えられる際には、回動軸21Aを中心とした起動方向とは反対の倒伏方向に回動駆動されることで起立姿勢から倒伏姿勢に切り替えられる。フィン21の倒伏方向は、Y軸の正の方向に向かって見た場合に右回りである。フィン21が倒伏姿勢から起立姿勢に切り替えられる際に、起立させる対象となる衝撃吸収メンバー20を押し上げることで、衝撃吸収メンバー20を回動軸20Aの起動方向へと回動させることができる。なお、衝撃吸収メンバー20の回動軸20Aとフィン21の回動軸21Aとがなす角度は、直角ではなく、鋭角であることが好ましい。なお、フィン21は、衝撃吸収メンバー20の収納状態と突出状態に同調して、収納状態と突出状態とを可逆的に切り替え可能である。
 図1B及び図2Bに示す天板部22は、ゴム等で形成され、可撓性を有している。天板部22は、駆動部によって駆動されることで当該駆動部からの動力を各フィン21に伝えるために設けられている。天板部22は、同じ列のフィン21同士、すなわち、起立させる対象となる衝撃吸収メンバー20が同じである各フィン21に連結される連結部22A~22Cを有する。各連結部22A~22Cは、X軸に沿った方向が長手方向となる形状を有している。連結部22Aは、第1列目の各フィン21に連結される。連結部22Bは、第2列目の各フィン21に連結される。連結部22Cは、第3列目の各フィン21に連結される。これにより、天板部22は、全てのフィン21に連結される。
 また、天板部22は、各連結部22A~22Cを接続して一体的とする一対の接続部22Dを有する。各接続部22Dは、X軸に沿った方向の両端部で各連結部22A~22Cを接続する。これによって、天板部22は、駆動部の動力を全てのフィン21に伝えることができる。このように、本実施形態においては、衝撃吸収部12は、連結部22A、22B、22Cと接続部22Dが一体的に形成された単一の天板部22を含んでいる。
 衝撃吸収装置10の駆動部が衝撃吸収部12を作動させる際に、天板部22が駆動されることで各フィン21が倒伏姿勢から起立姿勢に切り替えられると共に、各フィン21に付随して衝撃吸収メンバー20が倒伏姿勢から起立姿勢に切り替えられる。これによって、本実施形態に係る衝撃吸収装置10は、駆動部によって、衝撃吸収部12を作動させる際に衝撃吸収部12を収納状態から突出状態に切り替えることができる。
 次に、図3A~図6Bに基づいて、本実施形態に係る衝撃吸収装置10の動作について説明する。図3A~図4Bは、衝撃吸収部12が収納状態から突出状態に切り替わっている途中の状態を示している。図3Aおよび図3Bは、衝撃吸収装置10の外観を模式的に示す斜視図であり、図4Aおよび図4Bは、衝撃吸収装置10の外観を模式的に示す平面図である。また、図5A~図6Bは、衝撃吸収部12が収納状態から突出状態への切り替えが完了した状態を示している。図5Aおよび図5Bは、衝撃吸収装置10の外観を模式的に示す斜視図であり、図6Aおよび図6Bは、衝撃吸収装置10の外観を模式的に示す平面図である。なお、図3A、図4A、図5A、および図6Aでは、説明のために天板部22の図示は省略している。
 図3B、図4Bに示すように、天板部22が収納状態からX軸の負の方向に移動している。この天板部22の移動動作は、駆動部によって天板部22がX軸の負の方向に駆動されることにより生じる。例えば、駆動部にはソレノイドやモータや電磁石等が用いられており、駆動部は紐やロッドを介して天板部22のX軸の負側の接続部22Dに接続されている。駆動部がこの紐やロッドをX軸の負の方向に引っ張ることによって天板部22がX軸の負の方向に移動する。また、天板部22の移動によって各フィン21が起動方向に回動駆動される。フィン21の起動方向への回動駆動によって、起立させる対象となる衝撃吸収メンバー20を押し上げることで、衝撃吸収メンバー20が回動軸20Aの起動方向へ回動する。図5A~図6Bに示すように、衝撃吸収メンバー20およびフィン21が起立姿勢になることによって、衝撃吸収部12が突出状態に切り替えられる。なお、突出状態におけるベース部11からの高さ(Z軸方向の長さ)は、フィン21より衝撃吸収メンバー20の方が高くなるように衝撃吸収部12が形成されている。
 また、図5Aに示すように、本実施形態に係る衝撃吸収装置10は、衝撃吸収メンバー20が倒伏姿勢から起立姿勢に切り替えられた際、回動軸20A周りの起動方向への回動を規制する規制部13を備える。本実施形態では、1個の衝撃吸収メンバー20は、5本の回動軸心(不図示)を有しており、規制部13は、その回動軸心の配置位置毎に設けられている。規制部13は、起立姿勢の衝撃吸収メンバー20が更に起動方向へ回動するのを阻害する。
 また、図6Aに示すように、フィン21は、起立姿勢に切り替えられた際に、起立させる対象となる衝撃吸収メンバー20と当接する当接部21B(「第1当接部」の一例)を有する。図6Aでは、2行1列目のフィン21の当接部21Bに符号が付されているが、全てのフィン21が当接部21Bを有している。当接部21Bは、起立姿勢である衝撃吸収メンバー20が倒伏方向に回動することを規制する。
 また、図4Aおよび図6Aに示すように、フィン21は、起立姿勢に切り替えられた際に、起立させる対象となる衝撃吸収メンバー20に隣接する他列の衝撃吸収メンバー20と当接する当接部21Cを有する。図6Aでは、2行1列目のフィン21の当接部21Cに符号が付されているが、少なくとも2列目と3列目のフィン21が当接部21Cを有している。
 また、図4Aおよび図6Aに示すように、衝撃吸収メンバー20は、フィン21が倒伏姿勢から起立姿勢に切り替えられるまでの過程で、フィン21の当接部21Cと干渉することを抑制する溝部20Bを有する。溝部20Bは、各当接部21Cに対応して衝撃吸収メンバー20の側面に形成されている。溝部20Bは、フィン21の移動時の当接部21Cの移動軌跡に沿って形成されている。これにより、フィン21の当接部21Cによって当該フィン21が起立させる対象の衝撃吸収メンバー20に隣接する他列の衝撃吸収メンバー20が当該当接部21Cによって回動阻害されるのを防ぐことができる。
 また、図6Aに示すように、2列目、3列目のフィン21は、起立対象の衝撃吸収メンバー20と、当該衝撃吸収メンバー20に隣接する他列の衝撃吸収メンバー20の間に配置された中間フィン210である。中間フィン210が起立姿勢の状態で、起立対象の衝撃吸収メンバー20と当該中間フィン210の当接部21Bが当接し、且つ、他列の衝撃吸収メンバー20と中間フィン210の当接部21Cが当接する。これによって、中間フィン210は、起立姿勢において、起立対象の衝撃吸収メンバー20と当該衝撃吸収メンバー20に隣接する他列の衝撃吸収メンバー20とを支えることができる。
 また、図2B、図4B、図6Bに示すように、天板部22は、略平坦に形成された板状部22Eを有する。板状部22Eは、天板部22の表面側であって乗員に対向して配置される部位である。天板部22は、板状部22Eがベース部11と平行な状態を維持しつつ駆動部に駆動される。板状部22Eは、乗員の体を受け止める面として機能する。板状部22Eを有することによって、乗員が負傷する可能性を低減することができる。なお、天板部22は、乗員が負傷する可能性を低減するために少なくとも板状部22Eが可撓性を有していればよい。
 このように、本実施形態に係る衝撃吸収装置10は、衝撃吸収部12が収納状態と突出状態に切り替え可能であるので、非作動時では衝撃吸収部12が収納状態を維持することで、嵩張ることを防ぎ、車室等に配置することができる。このため、本実施形態に係る衝撃吸収装置10は、配置の自由度が向上する。また、衝撃吸収装置10は、衝撃吸収部12が可撓性を有しているため、天板部22が乗員を受け止めた後ももとの形状に戻ることができ、更に、突出状態と収納状態に切り替え可能であるので繰り返し使用可能である。なお、衝撃吸収装置10において、駆動部が衝撃吸収部12を作動させる際に衝撃吸収部12を収納状態から突出状態に切り替え、衝撃吸収部12を突出状態から収納状態に切り替える駆動は乗員により手動で行われてもよい。また、これとは別に、駆動部が衝撃吸収部12を突出状態から収納状態に切り替える駆動を行ってもよい。例えば、駆動部は、天板部22をX軸の正方向に付勢する弾性部材を含んで構成されており、突出状態から収納状態に切り替える際には天板部22に取り付けられた不図示の紐の伸張状態を解除することで、天板部22をX軸の正方向に移動させ、衝撃吸収部12を収納状態に切り替えてもよい。さらには衝撃吸収メンバー20とフィン21を別々に駆動させる駆動部を使用してもよいし、一つの駆動部で衝撃吸収メンバー20とフィン21を一緒に駆動させてもよい。
<変形例>
 次に、本実施形態の変形例に係る衝撃吸収装置10について説明する。本変形例に係る衝撃吸収装置10は、突出状態である衝撃吸収メンバー20に対して荷重がかかった場合に、衝撃吸収メンバー20が収納状態に向けて倒れるのを防ぐための構成(構造)を備えている。
 図7は、本変形例に係る衝撃吸収装置10をX軸の負側から正側に向かって見た場合の概略図である。衝撃吸収部12の突出状態において、衝撃吸収メンバー20とフィン21同士が互いに対向し、衝撃吸収メンバー20はベース部11の表面の側とは反対方向(Z軸の負の方向)の成分を有する荷重を受けた場合に変形することでフィン21に対して篏合する。フィン21は、突出状態において衝撃吸収メンバー20に対向する位置に形成され、Y軸の正または負のいずれかの方向に突出する突出部211を有する。図7に示す例では、突出部211は、フィン21の両側に形成されている。例えば、フィン21が図6に示す中間フィン210である場合には、フィン21は突出状態において隣接する両側の列の衝撃吸収メンバー20に対して対向し、両側に形成された一対の突出部211の各々は、隣接する両側の列の衝撃吸収メンバー20に対して対向する。なお、フィン21は、Y軸の負側に突出部211を少なくとも有していればよい。また、衝撃吸収メンバー20およびフィン21は、突出状態時にはベース部11に対して各々直角およびそれに近い角度に設定することができる。また、本変形例においては、衝撃吸収メンバー20の回動軸が延伸する方向(第1方向)とフィンの回動軸が延伸する方向(第2方向)とは、互いに直交していることが好ましい。また、衝撃を受けたときには最初に衝撃吸収メンバー20が変形することを考慮すると、衝撃吸収メンバー20との接触時の衝撃緩和の点から衝撃吸収メンバー20は、フィン21よりも可撓性が高くてもよい。
 図8(A)および図8(B)は、一つのフィン21に対して対向する衝撃吸収メンバー20の一部を抜き出して示す概略図である。図8(A)は、荷重がかかっていない状態の衝撃吸収メンバー20の一部を抜き出して示している。衝撃吸収メンバー20は、突出状態においてフィン21に対向する位置に形成され、フィン21の一部と篏合可能な溝200(「第1溝」の一例)を有する。溝200は、例えば、長手方向がZ軸に沿った方向となる長方形状に形成されており、衝撃吸収メンバー20を貫通して形成されている。図8(A)に示す例では、溝200は、衝撃吸収メンバー20のZ軸方向にその中心が配置されるように形成されている。なお、溝200は、フィン21と篏合可能であれば衝撃吸収メンバー20に非貫通で形成されていてもよい。
 図8(B)は、衝撃吸収メンバー20に荷重がかかった場合に衝撃吸収メンバー20がフィン21の突出部211に篏合している状態を示す概略図である。図8(B)においては、フィン21から突出部211のみを抜きだし、突出部211を長方形の板状形状で概略的に示している。ベース部11の設置面からの高さは、フィン21よりも衝撃吸収メンバー20の方が高いので、衝撃吸収部12にZ軸の負の方向の荷重がかかった場合には、まず衝撃吸収メンバー20が荷重を受けて変形する。図8(B)に示すように、衝撃吸収メンバー20がZ軸の負の方向の荷重を受けた場合に衝撃吸収メンバー20の溝200を含む部分がフィン21に向かって変形することで、溝200がフィン21の突出部211と篏合する。これにより、突出状態において衝撃吸収メンバー20が荷重を受けた場合に、フィン21が回動軸21A(図2A等参照)周りに回動して収納状態に切り替わることを規制する。そのため荷重がかかっても衝撃吸収メンバー20の起立姿勢が維持される。なお、溝200がフィン21の一部と篏合すればよく、フィン21に突出部211が設けられていなくてもよい。
 図9(A)および図9(B)は、溝200の別の例を示す概略図である。図9(A)および図9(B)は、図8(A)および図8(B)と同様に、一つのフィン21に対して対向する衝撃吸収メンバー20の一部を抜き出して示している。図9(A)は、荷重がかかっていない状態の衝撃吸収メンバー20の一部を抜き出して示している。本例において、溝200は、衝撃吸収メンバー20の下部まで到達する長さで形成されている。溝200は、長手方向がZ軸に沿った方向となる長方形状に形成されており、衝撃吸収メンバー20を貫通して衝撃吸収メンバー20の下部まで形成されている。
 図9(B)は、衝撃吸収メンバー20に荷重がかかった場合の衝撃吸収メンバー20がフィン21の突出部211に篏合している状態を示す概略図である。図9(B)においては、フィン21から突出部211のみを抜きだし、突出部211を長方形の板状形状で概略的に示している。図9(B)に示すように、衝撃吸収メンバー20がZ軸の負の方向の荷重を受けた場合に衝撃吸収メンバー20の溝200を含む部分がフィン21に向かって変形することで、溝200がフィン21の突出部211と篏合する。このように、溝200はフィン21の一部と篏合可能であれば、いずれの位置に形成されていてもよい。なお、溝200は、長方形状に限られず、フィン21の一部と篏合可能であれば長円形状(トラック形状)や楕円形状やその他の形状であってもよい。
 このように、フィン21は、突出状態において衝撃吸収メンバー20が荷重を受けた場合に、フィン21が回動軸21A(図2A等参照)周りに回動して収納状態に切り替わることを規制する。それによって荷重がかかっても衝撃吸収メンバー20の起立姿勢が維持される。本変形例に係る衝撃吸収装置10は、衝撃吸収メンバー20に対して荷重がかかった場合に、衝撃吸収メンバー20が収納状態に向けて倒れるのを防ぐことができる。なお、衝撃吸収部12の突出状態において、衝撃吸収メンバー20は、フィン21と必ずしも接触していなくてもよく、衝撃吸収メンバー20が荷重を受けて変形した後に、衝撃吸収メンバー20がフィン21と篏合可能であればよい。このため、衝撃吸収部12の突出状態において、衝撃吸収メンバー20の表面とフィン21の側面とが対向していればよい。この場合において、例えば、衝撃吸収メンバー20とフィン21とが別々の駆動部によって駆動されてもよい。なお、フィン21は、衝撃吸収メンバー20と同調して駆動される。
 図10は、一つのフィン21と、当該フィン21に対して対向する衝撃吸収メンバー20の一部を抜き出して示す概略図である。図10は、衝撃吸収メンバー20およびフィン21にZ軸の負の方向の荷重がかかっている状態を示している。図11は、図10に示す状態を上から見た場合の概略図である。図11では衝撃吸収メンバー20の溝200に加えてフィン21にも溝212(「第2溝」の一例)が形成されている。衝撃吸収メンバー20およびフィン21がZ軸の負の方向の荷重を受けたときに、本例では、衝撃吸収メンバー20は、Y軸の正の方向(「所定の第2方向」の一例)に変形し、さらにフィン21もX軸の正の方向に変形する。図11では、変形前の衝撃吸収メンバー20およびフィン21は実線で示され、変形後の衝撃吸収メンバー20およびフィン21は、破線で示され、変形した分がハッチングで塗りつぶされている。
 図11に示すように、フィン21は、Z軸の負の方向の荷重を受けた場合に衝撃吸収メンバー20の凸状に変形した部分を挟み込むように変形することで衝撃吸収メンバー20と篏合可能な溝212を有する。衝撃吸収メンバー20は、荷重を受けた場合にその一部がフィン21を挟むようにY軸の正の方向に凸状に変形する。さらにフィン21も変形するとフィン21の溝212で衝撃吸収メンバー20を挟み込む。溝212は、突出部211内に形成されており、変形前では衝撃吸収メンバー20の溝200内で溝200の側面と対向している。衝撃吸収メンバー20およびフィン21が変形した場合に、溝212が衝撃吸収メンバー20内の溝200の側面と篏合することで、衝撃吸収メンバー20とフィン21とが互いに支持し合う。これにより、衝撃吸収メンバー20が荷重を受けた場合に衝撃吸収メンバー20が収納状態に切り替わるのが規制される。衝撃吸収装置10は、衝撃吸収メンバー20で受けた衝撃を効率的に吸収することができる。
 図12(A)および図12(B)は、一つのフィン21と、当該フィン21に対して対向する衝撃吸収メンバー20の一部を抜き出して示す概略図である。図12(A)および図12(B)は、X軸の正側から負側に向かって衝撃吸収装置10を見た状態を示している。図12(A)は、荷重がかかっていない状態の衝撃吸収メンバー20を示している。図12(B)は、図12(A)に示す状態から衝撃吸収メンバー20に荷重がかかった場合に衝撃吸収メンバー20がフィン21の突出部211に篏合している状態を示している。衝撃吸収メンバー20は、Z軸の負の方向の荷重を受けた場合にY軸の正の方向に優先的に変形するように衝撃吸収メンバー20のY軸の負側に形成された変形支援部201を有する。変形支援部201は、X軸方向に沿って衝撃吸収メンバー20の全体に形成されている。
 本例において、変形支援部201は、衝撃吸収メンバー20の側面にX軸方向に沿って延在するように形成された薄肉部である。変形支援部201が形成された衝撃吸収メンバー20は、荷重がかかった時に薄肉部である変形支援部201では入力荷重に対して支持できないため、変形支援部201が形成された側とは反対側であるY軸の正の方向に衝撃吸収メンバー20が変形しやすくなる。衝撃吸収メンバー20のY軸の正の方向には、当該衝撃吸収メンバー20と篏合するフィン21が配置されている。このため、衝撃吸収メンバー20は荷重を受けて常に同じ方向に変形し、フィン21に対して篏合しやすくなる。
 また、変形支援部は、衝撃吸収メンバー20を予め変形させることによって形成されていてもよい。図13(A)および図13(B)は、一つのフィン21と、当該フィン21に対して対向する衝撃吸収メンバー20の一部を抜き出して示す概略図である。図13(A)および図13(B)は、X軸の正側から負側に向かって衝撃吸収装置10を見た状態を示している。図13(A)は、荷重がかかっていない状態の衝撃吸収メンバー20を示している。図13(B)は、図13(A)に示す状態から衝撃吸収メンバー20に荷重がかかった場合に衝撃吸収メンバー20がフィン21の突出部211に篏合している状態を示している。衝撃吸収メンバー20は、Z軸の負の方向の荷重を受けた場合にY軸の正の方向に優先的に変形するように衝撃吸収メンバー20のY軸の正側に向かって予め変形された変形支援部202を有する。変形支援部202は、X軸方向に沿って衝撃吸収メンバー20の全体に形成されている。
 本例において、変形支援部202は、衝撃吸収メンバー20の側面にX軸方向に沿って延在し、Y軸の正側に向かって予め変形された部位である。このような変形支援部202を衝撃吸収メンバー20に形成することで、衝撃吸収メンバー20に荷重がかかった時に常にY軸の正の方向に衝撃吸収メンバーを変形させることができる。なお、変形支援部は、フィン21に形成されていてもよい。例えば、図10、図11に示す例のように、フィン21をX軸の正の方向に変形させたい場合に、フィン21が当該方向に変形するように変形支援部を形成することができる。
 次に、図14を用いて、衝撃吸収メンバー20の別の例について説明する。図14(A)および図14(B)は、変形前の衝撃吸収メンバー20の一部を抜き出して示している。図14(A)は、衝撃吸収メンバー20の斜視図であり、図14(B)は、衝撃吸収メンバー20と当該衝撃吸収メンバー20と対向するフィン21とを上面から視た概略図である。
 本例では、衝撃吸収メンバー20のフィン21と対向する側の面に半球状の一対の突起203が形成されている。一対の突起203は、その間にフィン21が篏合可能な程度に間を設けて配置されている。突起203の衝撃吸収メンバー20の面からの突出量は、フィン21が当該突起の間に挟まった時に衝撃吸収メンバー20との嵌合が外れない程度に設定されている。不必要に突起203を突出させると衝撃吸収メンバー20の収納状態時に嵩張るので、突起203の突出量は嵌合状態と収納状態を考慮して設定する。
 また、図14(B)に示すように、衝撃吸収メンバー20とフィン21が突出状態である場合に、フィン21の端部が2つの突起203の間に位置している。衝撃吸収メンバー20のZ軸の負の方向の荷重がかかった時に衝撃吸収メンバー20が変形する変形代を確保するため、突出状態の時にはフィン21と衝撃吸収メンバー20を接触させないことが好ましい。この場合において、例えば、衝撃吸収メンバー20とフィン21とが別々の駆動部によって駆動される。
 図14(C)および図14(D)は、変形後の衝撃吸収メンバー20の一部を抜き出して示している。図14(C)は、衝撃吸収メンバー20の斜視図であり、図14(D)は、衝撃吸収メンバー20と当該衝撃吸収メンバー20と対向するフィン21とを上面から視た概略図である。
 図14(C)、図14(D)は、衝撃吸収メンバー20にZ軸の負の方向の荷重がかかり、衝撃吸収メンバー20が変形している状態を示す。この状態になると離れていた衝撃吸収メンバー20がフィン21に当接するようになり、2つの突起203がフィン21を挟むよう変形する。なお、図14(C)、図14(D)に示す状態では、2つの突起に挟まった状態でフィン21も変形を開始している。なお、2つの突起203は、衝撃吸収メンバー20が変形したときに最も変形量の大きいところに形成されるのが好ましく、さらには衝撃吸収メンバー20の変形を阻害しないように半球状の突起であることが好ましい。例えば、突起203をZ軸方向に長い形状に形成すると、衝撃吸収メンバー20のZ軸方向における剛性が高くなり、衝撃吸収メンバー20がZ軸方向に変形し難くなるので好ましくない。
 また、図14(D)に示すように、衝撃吸収メンバー20の一部が変形し、フィン21側に接近するようにして当接する。2つの突起203がフィン21を挟むことで衝撃吸収メンバー20とフィン21が篏合する。なお、フィン21は、変形が進むにつれて、2つの突起203で挟まれた部位以外が変形してもよいし、この部位以外が縮んでもよい。
 このように、衝撃吸収メンバー20に溝ではなく突起203を設けることで、衝撃吸収メンバー20とフィン21が篏合可能に構成されていてもよい。本例においても、フィン21は、突出状態において衝撃吸収メンバー20が荷重を受けた場合に、フィン21の起立状態を維持し、衝撃吸収メンバー20が収納状態に切り替わることを規制する。
 次に、図15および図16に基づいて、衝撃吸収装置10の駆動制御について説明する。例えば、衝撃吸収装置10は、車両の急減速又は乗員に慣性力が作用して乗員が動いたことを示す信号がセンサ等によって検出された場合に、衝撃吸収メンバー20が収納状態から突出状態に切り替えられるように駆動される。図15は、衝撃吸収装置10が配置された車両100を含むブロック図である。本実施形態において、衝撃吸収装置10は車両内の複数箇所に搭載されている。例えば、衝撃吸収装置10は、車両100の最大搭乗人数分だけ配置され、各乗員一人に対して1台ずつ配置されていてもよい。図15には4台の衝撃吸収装置10が示されており、そのうちの1台の衝撃吸収装置10について代表的にその機能部を示している。衝撃吸収装置10は、制御部101を有する。制御部101は、例えば、マイクロコンピュータによって構成されており、記憶手段(ROM(Read Only Memory)等であり不図示)に記憶されたプログラムをCPU(Central Processing Unit)(不図示)によって実行させることで各処理を実行する。
 更に、図15には、車両100に搭載されたセンサ103、位置情報取得部104、走行制御部105、走行駆動部106も示されている。先ず、これらの車両100に関連する構成について説明する。車両100は、その周囲をセンシングしながら自律走行として適切な方法で道路上を走行する自動運転が可能である。なお、車両100は、搭乗者による手動運転も勿論可能である。センサ103は、車両100の自律走行に必要な情報を取得するために車両100の周囲のセンシングを行う手段であり、典型的にはステレオカメラ、レーザスキャナ、LIDAR、各種レーダなどを含んで構成される。センサ103が取得した情報は、走行制御部105に送信され、車両100の周囲に存在する障害物や歩行者や走行レーンの認識等のために走行制御部105によって利用される。本実施形態では、センサ103は、監視を行うための可視光カメラや赤外線カメラを含んでもよい。また、位置情報取得部104は、車両100の現在位置を取得する手段であり、典型的にはGPS受信器などを含んで構成される。位置情報取得部104が取得した情報も走行制御部105に送信され、例えば、車両100の現在位置を利用して車両100が目的地に到達するためのルートの算出や、当該目的地への到達に要する所要時間の算出等の所定処理に利用される。
 走行制御部105は、センサ103や位置情報取得部104から取得した情報に基づいて、車両100の制御を行うコンピュータである。走行制御部105は、例えば、マイクロコンピュータによって構成されており、記憶手段(ROM(Read Only Memory)等であり不図示)に記憶されたプログラムをCPU(Central Processing Unit)(不図示)によって実行させることで上記した各種処理を行うための機能が実現される。
 走行制御部105による各種処理の具体例として、車両100の走行計画の生成処理、センサ103が取得したデータに基づいた、自律走行に必要な車両100の周囲の所定データの検出処理、走行計画、所定データ、位置情報取得部104が取得した車両100の位置情報に基づいた、自律的な走行を制御するための制御指令の生成処理等が例示できる。走行計画の生成処理とは、出発地から目的地に到達するための走行経路を決定する処理である。また、所定データの検出処理は、例えば、車線の数や位置、車両100の周囲に存在する他の車両の数や位置、車両100の周囲に存在する障害物(例えば歩行者、自転車、構造物、建築物など)の数や位置、道路の構造、道路標識などを検出する処理である。また、上記制御指令は、後述の走行駆動部106へ送信される。車両100を自律走行させるための制御指令の生成方法については、公知の方法を採用することができる。
 走行駆動部106は、走行制御部105が生成した制御指令に基づいて、車両100を走行させる手段である。走行駆動部106は、例えば、車輪を駆動するためのモータ、エンジンやインバータ、ブレーキ、ステアリング機構等を含んで構成され、制御指令に従ってモータやブレーキ等が駆動されることで、車両100の自律走行が実現される。
 次いで、図16に基づいて、駆動制御の詳細について説明する。図16は、制御部101が行う処理に関するフローチャートである。なお、この処理は、制御部101により所定の間隔で繰り返し実行される。先ず、S101では、制御部101は、各種情報を取得する。各種情報は、走行制御部105から送信される。
 次に、S102では、制御部101は、駆動制御が必要であるか否かを判定する。制御部101は、S101で取得した各種情報に、車両100が急減速されたことを示す情報が含まれていると判定すると、駆動制御が必要であると判定する。
 制御部101は、S102で駆動制御が必要であると判定すると、S103の処理を実行する。S103では、制御部101は駆動制御を実行する。例えば、駆動部102は、ソレノイドやモータや電磁石等を含んで構成され、天板部22を駆動する。これによって、本実施形態に係る衝撃吸収装置10は衝撃吸収部12を収納状態から突出状態に切り替えることができる。なお、衝撃吸収メンバー20とフィン21は同調して別々に駆動されてもよい。
<その他の実施形態>
 以上、本開示の実施形態について説明したが、上述した種々の実施形態は可能な限り組み合わせることができる。
 また、実施形態1において、天板部22は、連結部22A、22B、22Cが接続部22Dで互いに接続されることによって一体的に形成されているが、連結部22A、22B、22Cが互いに接続されておらず連結部22A、22B、22Cの各々が駆動部によって駆動されていてもよい。この場合、衝撃吸収装置10は、複数の駆動力伝達メンバーを備えることになる。なお、駆動力伝達メンバーを設けずに、駆動部がフィン21を駆動してもよい。
 また、実施形態1およびその変形例に係る衝撃吸収装置10は、車輌が衝突に至らない場合でも、車両の急制動による乗員と車両の構造物との衝突を回避するために作動させることができる。このため、衝撃吸収装置10は、車両の急制動の度に作動可能である。なお、衝撃吸収装置10のいずれも車両のあらゆる部位に取り付けて使用することができる。例えば、衝撃吸収装置10は、車内であれば、運転席に座った乗員を保護するためにステアリングコラムシャフトをカバーするダッシュボードロアパネル、後席に座った乗員を保護するために前席のシートバックの背面、あるいはシートに着座した乗員のサブマリン現象防止のためシートバックの内部等に取り付けられる。また、これらの衝撃吸収装置は、車両と道路上の障害物や他の車両との衝突時に当該車両の乗員を保護するために、車両の車外に取り付けて使用することもできる。
 また、衝撃吸収装置10は、車両以外に取り付けられてもよい。例えば、衝撃吸収装置10は、ロボットに取り付けられており、ロボットを保護してもよい。また、衝撃吸収装置10は、ジャケットに取り付けられており、当該ジャケットの着用者の転倒時に、当該着用者を保護してもよい。
 本明細書に開示された各々の態様は、本明細書に開示された他のいかなる特徴とも組み合わせることができる。
10・・衝撃吸収装置
11・・ベース部
12・・衝撃吸収部
13・・規制部
20・・衝撃吸収メンバー
20A、21A・・回動軸
20B・・溝
21・・フィン
21B、21C・・当接部
22・・天板部
100・・車両
101・・制御部
102・・駆動部
103・・センサ
104・・位置情報取得部
105・・走行制御部
106・・走行駆動部
200・・溝
201、202・・変形支援部
203・・突起
210・・中間フィン
211・・突出部
212・・溝
 

Claims (14)

  1.  作動時に衝撃を緩和させる衝撃吸収装置であって、
     ベース部の設置面の側に退避した収納状態と、前記設置面から突出した突出状態とを可逆的に切り替え可能に該ベース部に取り付けられた可撓性を有する衝撃吸収メンバーと、
     前記衝撃吸収メンバーの前記収納状態と前記突出状態に同調して、前記設置面の側に退避した収納状態と、該設置面から突出した突出状態とを可逆的に切り替え可能に前記ベース部に取り付けられた可撓性を有する補助メンバーと、
     前記衝撃吸収メンバーおよび前記補助メンバーを作動させる際に、該衝撃吸収メンバーを直接的または間接的に駆動することで、該衝撃吸収メンバーを少なくとも前記収納状態から前記突出状態に切り替える駆動部と、
     を備え、
     前記衝撃吸収メンバーは、前記ベース部の前記設置面に対して第1方向に延伸する第1回動軸周りに回動自在に取り付けられ、該第1回動軸を中心として回動駆動されることで前記収納状態と前記突出状態とに可逆的に切り替えられ、
     前記補助メンバーは、前記設置面に対して前記第1方向と交差する第2方向に延伸する第2回動軸周りに回動自在に取り付けられ、該第2回動軸を中心として回動駆動されることで前記収納状態と前記突出状態とに可逆的に切り替えられ、
     前記突出状態における前記ベース部からの高さは、前記補助メンバーより前記衝撃吸収メンバーの方が高く、
     前記突出状態において、前記衝撃吸収メンバーと前記補助メンバーの少なくとも一部同士が互いに対向し、該衝撃吸収メンバーは前記ベース部の前記設置面の側とは反対方向の成分を有する荷重を受けた場合に変形することで該補助メンバーに対して篏合する、
     衝撃吸収装置。
  2.  前記補助メンバーは、前記突出状態において前記衝撃吸収メンバーが前記荷重を受けた場合に、該衝撃吸収メンバーが前記第1回動軸周りに回動して前記収納状態に切り替わることを規制する、
     請求項1に記載の衝撃吸収装置。
  3.  前記衝撃吸収メンバーは、前記突出状態において前記補助メンバーに対向する位置に形成され、該補助メンバーの一部と篏合可能な第1溝を有し、
     前記衝撃吸収メンバーが前記荷重を受けた場合に該衝撃吸収メンバーの少なくとも一部が前記補助メンバーに向かって変形することで、前記第1溝が該補助メンバーの一部と篏合する、
     請求項1または2に記載の衝撃吸収装置。
  4.  前記補助メンバーは、前記突出状態において前記第1溝に対向する位置に形成され、前記第2方向に突出する突出部を有し、
     前記補助メンバーが前記荷重を受けた場合に該補助メンバーが前記第1方向に向かって変形することで、前記突出部が前記第1溝と篏合する、
     請求項3に記載の衝撃吸収装置。
  5.  前記衝撃吸収メンバーは、前記荷重を受けた場合にその一部が所定の前記第2方向に凸状に変形し、
     前記補助メンバーは、前記荷重を受けた場合に前記衝撃吸収メンバーの前記凸状に変形した部分を挟み込むように変形することで該衝撃吸収メンバーと篏合可能な第2溝を有する、
     請求項1から4のいずれか一項に記載の衝撃吸収装置。
  6.  前記衝撃吸収メンバーは、前記荷重を受けた場合に前記第2方向に優先的に変形するように、前記第1方向に沿って形成された変形支援部を有する、
     請求項1から5のいずれか1項に記載の衝撃吸収装置。
  7.  前記衝撃吸収メンバーは、前記補助メンバーよりも可撓性が高い、
     請求項1から6のいずれか一項に記載の衝撃吸収装置。
  8.  前記衝撃吸収メンバーは、前記第1方向と直交する方向に間隔を設けて複数列に配置されており、
     複数列の衝撃吸収メンバーの各々は、
      前記収納状態において前記設置面に沿った倒伏姿勢に維持され、
      前記収納状態から前記突出状態に切り替えられる際には、前記第1回動軸を中心とした所定の起動方向に回動駆動されることで前記設置面から起立した起立姿勢に前記倒伏姿勢から切り替えられ、
      前記突出状態から前記収納状態に切り替えられる際には、前記第1回動軸を中心とした前記起動方向とは反対の倒伏方向に回動駆動されることで前記起立姿勢から前記倒伏姿勢に切り替えられる、
     請求項1から7のいずれか一項に記載の衝撃吸収装置。
  9.  前記補助メンバーは、
      複数列の前記衝撃吸収メンバーの各列の間に配置されており、
      前記収納状態において、隣接する列の前記衝撃吸収メンバーの一部が前記補助メンバーの少なくとも一部に上方から覆い被さるように前記設置面に沿った倒伏姿勢に維持され、
      前記収納状態から前記突出状態に切り替えられる際には、前記第2回動軸を中心とした所定の起動方向に回動駆動されることで前記倒伏姿勢から起立姿勢に切り替えられ、
      前記突出状態から前記収納状態に切り替えられる際には、前記第2回動軸を中心とした前記起動方向とは反対の前記倒伏方向に回動駆動されることで前記起立姿勢から前記倒伏姿勢に切り替えられる、
     請求項8に記載の衝撃吸収装置。
  10.  前記補助メンバーは、前記突出状態において、隣接する両側の列の前記衝撃吸収メンバーに対して対向する、
     請求項9に記載の衝撃吸収装置。
  11.  前記補助メンバーに連結されると共に少なくとも一部に可撓性を有し、前記駆動部によって駆動される一又は複数の駆動力伝達メンバーを更に備え、
     前記駆動部が前記衝撃吸収メンバーを作動させる際に、前記駆動力伝達メンバーが駆動されることで前記補助メンバーが前記倒伏姿勢から前記起立姿勢に切り替えられると共に、該補助メンバーに付随して前記衝撃吸収メンバーが前記倒伏姿勢から前記起立姿勢に切り替えられる、
     請求項8から10のいずれか一項に記載の衝撃吸収装置。
  12.  複数の前記補助メンバーと、
     単一の前記駆動力伝達メンバーと、
     を備え、
     前記駆動力伝達メンバーに複数の前記補助メンバーが連結されている、
     請求項11に記載の衝撃吸収装置。
  13.  前記駆動力伝達メンバーは、板状部を有し、該板状部が前記設置面と平行な状態を維持しつつ前記駆動部に駆動される、
     請求項11または請求項12に記載の衝撃吸収装置。
  14.  前記第1方向と前記第2方向とは、互いに直交する、
     請求項1から13のいずれか一項に記載の衝撃吸収装置。
     
PCT/JP2022/033457 2021-12-10 2022-09-06 衝撃吸収装置 WO2023105866A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22903801.3A EP4446174A1 (en) 2021-12-10 2022-09-06 Impact absorption device
CN202280080965.9A CN118401413A (zh) 2021-12-10 2022-09-06 冲击吸收装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-200920 2021-12-10
JP2021200920A JP2023086415A (ja) 2021-12-10 2021-12-10 衝撃吸収装置

Publications (1)

Publication Number Publication Date
WO2023105866A1 true WO2023105866A1 (ja) 2023-06-15

Family

ID=86730145

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/033457 WO2023105866A1 (ja) 2021-12-10 2022-09-06 衝撃吸収装置

Country Status (4)

Country Link
EP (1) EP4446174A1 (ja)
JP (1) JP2023086415A (ja)
CN (1) CN118401413A (ja)
WO (1) WO2023105866A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030030296A1 (en) * 2001-08-10 2003-02-13 Fox David M. Impact absorbing assembly for automobile interior systems
JP2008221923A (ja) * 2007-03-09 2008-09-25 Toyota Central R&D Labs Inc 車両用安全装置
JP2010167950A (ja) * 2009-01-23 2010-08-05 Honda Motor Co Ltd 車両用シート構造
US10046723B1 (en) 2017-03-14 2018-08-14 Ford Global Technologies, Llc Self-adaptive, energy-absorbing bumper
WO2021251058A1 (ja) * 2020-06-10 2021-12-16 株式会社ダイセル 衝撃吸収装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030030296A1 (en) * 2001-08-10 2003-02-13 Fox David M. Impact absorbing assembly for automobile interior systems
JP2008221923A (ja) * 2007-03-09 2008-09-25 Toyota Central R&D Labs Inc 車両用安全装置
JP2010167950A (ja) * 2009-01-23 2010-08-05 Honda Motor Co Ltd 車両用シート構造
US10046723B1 (en) 2017-03-14 2018-08-14 Ford Global Technologies, Llc Self-adaptive, energy-absorbing bumper
WO2021251058A1 (ja) * 2020-06-10 2021-12-16 株式会社ダイセル 衝撃吸収装置

Also Published As

Publication number Publication date
JP2023086415A (ja) 2023-06-22
EP4446174A1 (en) 2024-10-16
CN118401413A (zh) 2024-07-26

Similar Documents

Publication Publication Date Title
WO2021251058A1 (ja) 衝撃吸収装置
US11292418B1 (en) Deployable passenger enclosure
US10183642B2 (en) Secondary impact airbag
US9446795B2 (en) Structure for reinforcing front vehicle body
US10611269B1 (en) Moving seats in a vehicle to enhance occupant protection
US8240725B2 (en) Bumper system for motor vehicles
WO2023105866A1 (ja) 衝撃吸収装置
US20220063509A1 (en) Moving body
CN113306550A (zh) 车辆紧急避险方法及装置、车载设备及存储介质
US20220063656A1 (en) Moving body
WO2021010126A1 (ja) 乗員保護装置
JP2008074301A (ja) 車両用可動バンパ装置
JP7299466B2 (ja) 乗物用シート
JP4784535B2 (ja) 車両用安全装置
WO2022181462A1 (ja) 衝撃吸収装置
JP5026831B2 (ja) 衝撃吸収装置
JP5083031B2 (ja) 展開構造体及び衝撃吸収装置
JP2004314733A (ja) 車体前部の保護装置
US11938871B1 (en) Pedestrian protection system for sensor pod camera impact
JP3564713B2 (ja) 自動車のインストルメントパネル構造
JP2009262839A (ja) 衝撃吸収構造
KR102344508B1 (ko) 차량용 사이드 카메라 시스템
CN115923646A (zh) 用于行人保护的汽车前照灯附接件加载块
JP2009030747A (ja) 展開構造体及び衝撃吸収装置
JP2004324278A (ja) 車両用衝突緩衝装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22903801

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022903801

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022903801

Country of ref document: EP

Effective date: 20240710