WO2023103289A1 - 无铅焊料合金及其制备方法、用途 - Google Patents

无铅焊料合金及其制备方法、用途 Download PDF

Info

Publication number
WO2023103289A1
WO2023103289A1 PCT/CN2022/093343 CN2022093343W WO2023103289A1 WO 2023103289 A1 WO2023103289 A1 WO 2023103289A1 CN 2022093343 W CN2022093343 W CN 2022093343W WO 2023103289 A1 WO2023103289 A1 WO 2023103289A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
lead
solder alloy
free solder
preparation
Prior art date
Application number
PCT/CN2022/093343
Other languages
English (en)
French (fr)
Inventor
张富文
周嘉诚
徐蕾
李志刚
王志刚
胡强
贺会军
Original Assignee
北京康普锡威科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京康普锡威科技有限公司 filed Critical 北京康普锡威科技有限公司
Publication of WO2023103289A1 publication Critical patent/WO2023103289A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/262Sn as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/40Making wire or rods for soldering or welding

Definitions

  • the invention relates to the technical field of lead-free solder alloys, in particular to a lead-free solder alloy and its preparation method and application.
  • the electronic equipment near the engine withstands a high temperature of over 125°C when the engine is working, and reaches the external ambient temperature after the engine is turned off, and can reach a low temperature of -40°C under extreme conditions; in deep space exploration, there is no thermal protection Advanced electronic components must be in an extreme temperature environment with a large temperature difference between day and night, such as the lunar surface temperature environment of -183°C-127°C, and some also exist in an irradiation environment.
  • high-reliability lead-free solders mainly include: Sn-Ag-Cu-Bi-Sb-Ni alloy developed by Alpha in the United States and CN107848078B published by Harima Chemical Group, etc., all of which contain more Bi elements, and Bi is added according to its When the temperature is high, it can be dissolved in the Sn matrix to achieve the effect of solid solution strengthening, and when the temperature is low, the Bi phase is precipitated. Due to the inherent brittleness of Bi element, a large amount of Bi atoms are precipitated at low temperature to form a brittle phase, and Bi atoms are deposited on the Cu 6 Sn 5 interface, causing a large number of dislocations to accumulate around the intermetallic compound layer. Once the shear stress reaches a critical value, the dislocations deposited on the Cu 6 Sn 5 interface will merge, which will easily lead to the risk of brittle fracture and reduce the reliability of the solder joint interface.
  • the main purpose of the present invention is to provide a lead-free solder alloy and its preparation method , purposes, the lead-free solder alloy can effectively improve the strength of the solder, reduce the precipitation of brittle phases of the solder at low temperatures, and at the same time improve the soldering interface, making it have excellent resistance to high and low temperature cycles and impact performance, especially suitable for electronics in harsh environments device.
  • a lead-free solder alloy is provided.
  • the lead-free solder alloy includes Ag, Cu, Sb, In, Co, B and Sn elements, and their respective contents are calculated by weight percentage: Ag 1.0-4.0%, Cu 0.2-0.8%, Sb 1.0-5.0%, In 1.0-3.0%, Co 0.01-0.5%, B 0.001-0.05%, the rest are Sn and unavoidable impurities.
  • the content of Ag, Cu, Sb, In, Co and B elements in the solder alloy is calculated by weight percentage: Ag 2.8-3.8%, Cu 0.3-0.6%, Sb 3.0-4.5%, In 2.0- 2.5%, Co 0.05-0.3%, B 0.005-0.03%, and the rest are Sn and unavoidable impurities.
  • solder alloy further includes Ga or Ge element.
  • solder alloy contains Ga or Ge elements, their respective contents in weight percentage are: Ga 0.001-0.1%, Ge 0.001-0.1%.
  • a method for preparing a lead-free solder alloy is provided.
  • the preparation method of above-mentioned lead-free solder alloy comprises the following steps:
  • the metal element or alloy of each element is smelted and mixed, and then poured to obtain the lead-free solder alloy;
  • Sn element is introduced in the form of simple metal
  • Cu and Sb elements are introduced in the form of Sn-Cu alloy and Sn-Sb alloy respectively
  • Ag and In elements are introduced in the form of Sn-Ag-In alloy
  • Co and B elements are introduced in the form of The introduction of Sn-Co-B alloy
  • the Ga element is introduced as a single metal.
  • Ge element is introduced in the form of Sn-Ge alloy.
  • the alloy is prepared by vacuum smelting; wherein, the smelting furnace is vacuumed to 4 ⁇ 10 -3 Pa ⁇ 6 ⁇ 10 -3 Pa.
  • the melting temperature of the metal element or alloy of each element is 400-500° C., and the temperature is kept and stirred for 15-20 minutes, and the melting temperature is lowered to 300° C.; the surface is covered with anti-oxidation flux during the melting process.
  • solder alloy prepared by the above preparation method is used as solder for electronic devices under extreme conditions.
  • Sb element is added to improve the high and low temperature cycle resistance and impact resistance of the alloy through the solid solution strengthening effect; by controlling the addition of Sb element, it can also Sn-Sb intermetallic compounds with fine and dispersed distribution are formed, the formation of Sn-Sb intermetallic compounds reduces the activity of Sn atoms and reduces the formation rate of Cu-Sn intermetallic compounds, and the Sn-Sb intermetallic compound particles provide Heterogeneous nucleation sites, so the grains in the solder joints are finer and more uniform, and the growth rate of Cu-Sn intermetallic grains is retarded due to the addition of Sb.
  • adding Sb to solder can suppress the growth rate and reduce the size of Cu-Sn intermetallic compound grains.
  • Sb element content exceeds 5%, a large Sn-Sb intermetallic compound will be formed, which will weaken the mechanical properties of the solder joint, thereby reducing its thermal fatigue life.
  • In element can dissolve the Sn sublattice in the Cu-Sn intermetallic compound to form Cu 6 (Sn,In) 5 .
  • the addition of In elements hinders the dissolution of Cu into the liquid solder, thus also reducing the thickness of the Cu-Sn intermetallic compound layer.
  • the addition of In element to the solder will also change the composition and appearance of the Ag 3 Sn intermetallic compound formed inside the solder matrix.
  • the In element dissolves again into the Sn sublattice in the intermetallic compound to form Ag 3 (Sn, In), and can also change the morphology of the Ag-Sn intermetallic compound to reduce crack propagation at high temperature.
  • Au/Ni/Cu pads are often used, and the addition of In elements promotes the slow transformation of the Au-Sn phase into a finer Au-Sn-In phase, making the solder joints inside Produce more fine and dispersed second phases, play a role of dispersion strengthening, and play a significant role in hindering the diffusion of atoms.
  • the solder contains a small amount of Co element, which will change the fan-shaped morphology of Cu 6 Sn 5 into a more planar one.
  • Co element also refines the grain structure of the Cu 6 Sn 5 layer after reflow soldering, and in the subsequent The grain growth of Cu 6 Sn 5 is hindered after reflow soldering.
  • the addition of Co element and B element to prepare an intermediate alloy is beneficial to the introduction of the refractory element B. As shown in Figure 2, the addition of B element causes ⁇ -Sn to undergo non-uniform nucleation and refines the solder structure.
  • nanometer-sized B elements segregated at the IMC grain boundaries, making the interface morphology tend to be thin and flat and refining the IMC grains to improve the interface strength.
  • the Co-B element is added in combination to form a Co-B phase, which has the effect of dispersion strengthening on the solder joint.
  • a certain amount of modifying elements such as Ga or Ge is added to the Sn-Ag-Cu-Sb-In-Co-B series solder alloy.
  • Ga element forms Cu 2 Ga phase around the joint interface, which will reduce the growth rate of IMC layer at the interface; the addition of Ge element can improve the oxidation resistance of the solder alloy.
  • the oxidation of the alloy can be prevented and the component segregation can be avoided by adjusting the sequence of the master alloy added.
  • the formation of the Ag 3 (Sn,In) structure is beneficial, and the Ag 3 Sn intermetallic compound is stabilized by the In element.
  • the method of adopting the intermediate alloy in the present invention can effectively reduce the smelting temperature of the final solder alloy, can preferentially form beneficial alloy phases, and avoid dissolution during subsequent smelting and use.
  • the solder alloy prepared by the method of the present invention has excellent resistance to high and low temperature cycles and impact performance, and can effectively avoid component segregation and microstructure coarsening of the multi-element alloy. It is used in electronic devices under extreme environmental conditions to improve the soldering interface. Reliability, thereby effectively solving the technical problems of multi-element alloy composition segregation and element segregation, temperature cycle resistance and external impact resistance existing in lead-free solder in the prior art.
  • Fig. 1 is a simple shear solder joint schematic diagram in the experimental method of the present invention
  • Fig. 2 is the projection electron microscope morphology of the solder alloy prepared in Example 9 provided by the present invention.
  • Fig. 3 shows the shear strength of the solder spot of the welding sample in the embodiment provided by the present invention after high temperature aging and heat cycle.
  • the invention provides a lead-free solder alloy, which includes Ag, Cu, Sb, In, Co, B and Sn elements, and their respective contents are: Ag 1.0-4.0%, Cu 0.2 ⁇ 0.8%, Sb 1.0 ⁇ 5.0%, In 1.0 ⁇ 3.0%, Co 0.01 ⁇ 0.5%, B 0.001 ⁇ 0.05%, the rest is Sn and unavoidable impurities.
  • the lead-free solder alloy further includes Ga or Ge element.
  • Ga element When Ga element is contained, its content is: Ga 0.001-0.1% by weight; when Ge element is contained, its content is Ge 0.001-0.1% by weight.
  • the lead-free solder alloy in the present invention can be used as solder for electronic devices in extreme environments, and electronic circuits and electronic circuit devices with high reliability can be obtained by using the solder alloy for soldering.
  • solder joints or welds formed by the above-mentioned lead-free solder alloys can be fused with the substrate to be soldered by welding methods such as solder paste reflow, wave soldering, or thermal melting.
  • the above-mentioned lead-free solder alloys Forms include solder preforms, solder ribbons, solder wires, solder balls and solder powders.
  • the above-mentioned substrates to be soldered can be bare Cu, Cu-OSP treatment, tin coating, Ni coating, Ni-Ag coating or Ni-Au coating treatment sheet.
  • the present invention also provides a kind of preparation method of lead-free solder alloy, and this preparation method specifically comprises the following steps:
  • Master alloys Sn-Cu, Sn-Sb, Sn-Ag-In and Sn-Co-B were respectively prepared by vacuum melting method.
  • the vacuum smelting method is as follows: the elemental metals Sn, Ag and In, Sn and Cu, Sn and Sb, Sn, Co and B are added to the intermediate frequency induction melting furnace according to the required alloy ratio to melt, and the vacuum is pumped to 4 ⁇ 10 -3 Pa ⁇ 6 ⁇ 10 -3 Pa to prevent alloy oxidation, cast in the mold to prepare the master alloy Sn-20Ag-xIn (x can be adjusted to 1-60 according to the design alloy composition), Sn-10Cu, Sn -50Sb, Sn-10Co-1B.
  • step (2) Prepare the master alloy and elemental metal Sn prepared in step (1), according to the required alloy ratio, according to elemental metal Sn, master alloy Sn-10Cu, Sn-50Sb, Sn-10Co-1B, and Sn- Add 20Ag-xIn to the melting furnace in order to melt.
  • the surface is covered with anti-oxidation flux, heated to the melting temperature of 400-500°C, properly kept warm and stirred for 15-20min, the surface oxidation slag is removed, the temperature is lowered to 300°C, and poured The Sn-Ag-Cu-Sb-In-Co-B solder alloy ingot is prepared in the mold.
  • step (1) when the above-mentioned solder alloy contains Ge element, step (1) also includes preparing an intermediate alloy Sn—Ge. Specifically: add the elemental metal Sn and Ge into the intermediate frequency induction melting furnace according to the required alloy ratio to melt, vacuumize to 4 ⁇ 10 -3 Pa ⁇ 6 ⁇ 10 -3 Pa during melting to prevent the alloy from oxidation, and pour it into the mold
  • the master alloy Sn-1Ge was prepared.
  • step (2) the master alloys Sn-20Ag-xIn, Sn-10Cu, Sn-50Sb, Sn-10Co-1B and elemental metal Sn are mixed according to the required alloy ratio, according to elemental metal Sn, masteralloy Sn-10Cu , Sn-50Sb, Sn-10Co-1B, Sn-20Ag-xIn and Sn-1Ge are sequentially added to the melting furnace and melted.
  • the surface is covered with anti-oxidation flux, heated to the melting temperature of 400-500 ° C, properly kept and Stir for 15-20 minutes, remove surface oxide slag, cool down to 300° C., pour into a mold to prepare a Sn-Ag-Cu-Sb-In-Co-B-Ge solder alloy ingot.
  • the intermediate alloy Sn-20Ag-xIn, Sn-10Cu, Sn-50Sb, Sn-10Co-1B and elemental metal Ga and Sn are mixed in step (2), According to the required alloy ratio, the elemental metal Sn, the intermediate alloy Sn-10Cu, Sn-50Sb, Sn-10Co-1B, Sn-20Ag-xIn and the elemental metal Ga are added to the melting furnace for melting, and the surface is covered during the melting process.
  • Anti-oxidation flux heated to the melting temperature of 400-500 °C, properly kept warm and stirred for 15-20 minutes, removed the surface oxidation residue, cooled to 300 °C, and poured into the mold to prepare Sn-Ag-Cu-Sb-In-Co- B-Ga solder alloy ingot.
  • a lead-free solder alloy the weight percentage of its composition is: Ag 1.0%, Cu 0.2%, Sb 1%, In 1%, Co 0.01%, B 0.001%, the balance is Sn and unavoidable impurities; the The preparation method of lead-free solder alloy comprises the following steps:
  • the alloy proportions of the master alloy Sn-20Ag-20In, Sn-10Cu, Sn-50Sb, Sn-10Co-1B and the elemental metal Sn are different;
  • Embodiment 9 is a diagrammatic representation of Embodiment 9:
  • a lead-free solder alloy the composition of which is composed by weight percentage: Ag 1.0%, Cu 0.5%, Sb 3%, In 1.2%, Co 0.1%, B 0.02, Ge 0.01%, the balance is Sn and unavoidable Impurities; the preparation method of this lead-free solder alloy comprises the following steps:
  • step (1) of embodiment 12 the alloy proportion of intermediate alloy Sn-20Ag-10In, Sn-10Cu, Sn-50Sb, Sn-10Co-1B is different in step (2), step ( In 2), elemental metal Ga is also added according to the alloy design ratio, and the order of addition is in the order of elemental metal Sn, master alloy Sn-10Cu, Sn-50Sb, Sn-10Co-1B, Sn-20Ag-10In and elemental metal Ga Melting in a smelting furnace to prepare a Sn-Ag-Cu-Sb-In-Co-B-Ga solder alloy ingot;
  • step (1) of Example 13 Sn-20Ag-60In is prepared, and the alloy proportions of the intermediate alloys Sn-20Ag-60In, Sn-10Cu, Sn-50Sb, and Sn-10Co-1B are different in step (2), and are also in accordance with Elemental metal Ga is added to the alloy design ratio;
  • step (1) of Example 14 Sn-20Ag-60In is prepared, and the alloy ratios of the intermediate alloys Sn-20Ag-60In, Sn-10Cu, Sn-50Sb, and Sn-10Co-1B are different in step (2), and are also according to Alloy design ratio added elemental metal Ga.
  • the present invention also performs characterization and performance tests on the solder alloys prepared in Examples 1-14, so as to analyze their beneficial technical effects.
  • Examples 1-14 are used as the experimental group, and the traditional solder alloy Sn-3.8Ag-0.7Cu-3.0Bi-1.4Sb-0.15Ni and Sn-3.0Ag-0.5Cu are respectively used as comparative example 1 and comparative example 2 of the control group .
  • the melting point was measured by STA409PC differential thermal scanning calorimeter (TAInstrument) under the condition that the heating rate was 10°C/min.
  • the sample mass was 30mg.
  • the numerical processing was automatically calculated by the software, and the peak temperature of the DSC curve was recorded as the melting point of the solder. .
  • GB/T228-2002 it is measured on the AG-50KNE universal material testing machine, the tensile rate is 2mm/min, and the average value of three samples is tested for each data point.
  • solder paste For each experiment, weigh 0.2 ⁇ 0.01g of solder alloy sample, and add standard flux to prepare solder paste. Prepare simple shear solder joints, and the structure of the solder joints is shown in Figure 1. According to JIS-K-8034 and JIS-K-8180, select degreasing agent and pickling solution to clean the welding surface. During the welding process, clamps are used to prevent deformation of the base metal, and the joint gap is 200 ⁇ m. Heat the sample to 280°C on the open hearth, take out the sample after the soldering is completed, and clean up the overflowing solder.
  • Table 1 shows the solder alloy composition and melting point temperature measurement results of Examples 1-14. Meanwhile, the two solder alloys of Comparative Example 1 and Comparative Example 2 are also listed in Table 1, and their melting points were measured under the same conditions.
  • the lead-free solder alloy prepared by the present invention has a uniform structure, fine grains, no segregation of multi-element alloy components and element segregation, and the addition of B element precipitates at the soldering interface to strengthen the reliability of the interface .
  • the melting temperature of the lead-free solder alloy prepared by the invention is between 198.4 and 231.0 DEG C, no low-temperature melting phenomenon below 175 DEG C is found, has good wettability, and is suitable for the technical field of soldering.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

一种无铅焊料合金,包括Ag、Cu、Sb、In、Co、B和Sn元素,且其各自的含量以重量百分比计为:Ag 1.0~4.0%、Cu 0.2~0.8%、Sb 1.0~5.0%、In 1.0~3.0%、Co 0.01~0.5%、B 0.001~0.05%,其余为Sn及不可避免杂质。该无铅焊料合金能够有效提升焊料强度,减少焊料低温下脆性相的析出,同时能够改善焊接界面,使其具有优异的抗高低温循环和冲击性能,特别适用于严苛环境的电子器件中。还涉及一种无铅焊料的制备方法、用途。

Description

无铅焊料合金及其制备方法、用途 技术领域
本发明涉及无铅焊料合金技术领域,具体涉及一种无铅焊料合金及其制备方法、用途。
背景技术
随着电子工业的飞速发展,及电子设备的工作环境更加严苛,焊点所需承受的热载荷和机械载荷超过了焊点承受极限。传统的锡铅焊料已不能满足电子工业的要求,需要开发高性能的无铅焊料。特别是欧盟正式公报有害物质实施限制(European Union Implemented Restrictions on Hazardous Substances,RoHS)法规以来,加快了无铅化的进程。Sn-Ag-Cu是使用最广泛的无铅焊料合金,但是,在恶劣条件下Sn-Ag-Cu合金焊料可靠性难以满足要求。例如,车载电子设备中,发动机附近的电子设备在发动机工作时承受125℃以上的高温,熄火后达到外部环境温度,极端条件下可达-40℃的低温;在深空探测中,没有热防护的电子组件必须处于昼夜温差较大的极端温度环境中,如月球表面温度环境-183℃—127℃,并且有些还存在于辐照环境。
在电子产品的使用过程中,环境温度的周期性变化和电路的周期性切换将使焊点受到高低温循环的影响及在使用过程中设备的启动和关闭将导致焊点承受高低温的冲击。在热循环或热冲击的作用 下,因元件和基板材料的线膨胀系数不同,导致焊点出现交变应力和应变,同时承受循环的剪切应力,从而产生微裂纹。另外,随着在高温阶段,焊料内金属间化合物Ag 3Sn、Cu 6Sn 5长大,裂纹易沿着金属件化合物边缘附件扩展,最终造成断裂。
近年来高可靠性无铅焊料主要有:美国Alpha开发的Sn-Ag-Cu-Bi-Sb-Ni合金和哈利玛化成集团公布的CN107848078B等,这些都含有较多Bi元素,Bi根据其添加量,在温度较高时可以固溶于Sn基体中起到固溶强化的效果,在较低温度时Bi相析出。Bi元素由于其固有的脆性,导致低温时大量析出Bi原子形成脆性相,Bi原子沉积在Cu 6Sn 5界面,使得金属间化合物层的周围也积累了大量的位错。一旦剪切应力达到临界值,沉积在Cu 6Sn 5界面上的位错将发生合并,易导致脆性断裂风险,降低焊点界面可靠性。
发明内容
为了解决现有技术中无铅焊料存在的多元合金成分偏析和元素偏聚、抗温度循环及耐外力冲击能力弱的技术问题,本发明的主要目的在于提供一种无铅焊料合金及其制备方法、用途,该无铅焊料合金能够有效提升焊料强度,减少焊料低温下脆性相的析出,同时能够改善焊接界面,使其具有优异的抗高低温循环和冲击性能,特别适用于严苛环境的电子器件中。
为了实现上述目的,根据本发明的第一方面,提供了一种无铅焊料合金。
该无铅焊料合金包括Ag、Cu、Sb、In、Co、B和Sn元素,且其各自的含量以重量百分比计为:Ag 1.0~4.0%、Cu 0.2~0.8%、Sb 1.0~5.0%、In 1.0~3.0%、Co 0.01~0.5%、B 0.001~0.05%,其余为Sn及不可避免杂质。
进一步的,所述的焊料合金中Ag、Cu、Sb、In、Co和B元素的含量以重量百分比计为:Ag 2.8~3.8%、Cu 0.3~0.6%、Sb 3.0~4.5%、In 2.0~2.5%、Co 0.05~0.3%、B 0.005~0.03%,其余为Sn和不可避免的杂质。
进一步的,所述的焊料合金还包括Ga或Ge元素。
进一步的,当所述的焊料合金中含有Ga或Ge元素时,其各自的含量以重量百分比计分别为:Ga 0.001~0.1%、Ge 0.001~0.1%。
为了实现上述目的,根据本发明的第二方面,提供了一种无铅焊料合金的制备方法。
上述的无铅焊料合金的制备方法包括以下步骤:
按照一定的合金配比,将各元素的金属单质或合金熔炼混合后浇注得到所述的无铅焊料合金;其中,
熔炼时Sn元素以金属单质的方式引入;Cu、Sb元素分别以Sn-Cu合金、Sn-Sb合金的方式引入;Ag、In元素以Sn-Ag-In合金的方式引入;Co、B元素以Sn-Co-B合金的方式引入;
熔炼时按照Sn单质金属、Sn-Cu合金、Sn-Sb合金、Sn-Co-B合金和Sn-Ag-In合金的顺序依次加入。
进一步的,熔炼时,Ga元素以金属单质的方式引入。
进一步的,熔炼时,Ge元素以Sn-Ge合金的方式引入。
进一步的,所述的合金是采用真空熔炼法制备得到的;其中,熔炼炉中抽真空至4×10 -3Pa~6×10 -3Pa。
进一步的,将各元素的金属单质或合金熔炼混合的熔化温度为400~500℃,且保温搅拌15~20min,降至300℃;熔炼过程中表面覆盖防氧化熔剂。
为了实现上述目的,根据本发明的第三方面,提供了一种无铅焊料合金的应用。
上述的制备方法制备得到的无铅焊料合金作为极端条件下电子器件用焊料的用途。
本发明中的Sn-Ag-Cu-Sb-In-Co-B合金,添加Sb元素,通过固溶强化效果,提高了合金的耐高低温循环和冲击性;通过控制Sb元素的加入量还可以形成细小弥散分布的Sn-Sb金属间化合物,Sn-Sb金属间化合物化合物的形成降低了Sn原子的活性并降低了Cu-Sn金属间化合物的形成速率,并且Sn-Sb金属间化合物颗粒提供了异质形核位置,因此焊点中的晶粒更细、更均匀,并且由于Sb的加入,Cu-Sn金属间化合物晶粒的生长速度被延迟。所以,在焊料中添加Sb可以抑制Cu-Sn金属间化合物晶粒的生长速率并减小其尺寸。但当Sb元素含量超过5%时,会形成较大的Sn-Sb金属间化合物,削弱焊点的机械性能,从而降低其热疲劳寿命。
In元素可以溶解Cu-Sn金属间化合物中的Sn亚晶格,形成 Cu 6(Sn,In) 5。In元素的添加阻碍了Cu向液态焊料的溶解,因此也降低了Cu-Sn金属间化合物层的厚度。在焊料中添加In元素也会改变焊料基体内部形成的Ag 3Sn金属间化合物的成分和外观。In元素在该金属间化合物中再次溶解到Sn亚晶格中形成Ag 3(Sn,In),并且还可以改变Ag-Sn金属间化合物的形貌,在高温阶段减少裂纹的扩展。在对可靠性要求更高的电子器件中,多采用Au/Ni/Cu焊盘,含有In元素的加入促使Au-Sn相缓慢转变为更为细小的Au-Sn-In相,使焊点内部产生更多细小弥散的第二相,起到弥散强化的效果,并对原子的扩散起到显著的阻碍作用。
焊料中含有微量的Co元素,Co元素会将Cu 6Sn 5的扇形形貌改变为更平面的形貌,Co元素还细化了回流焊后Cu 6Sn 5层的晶粒结构,并在后续回流焊后阻碍了Cu 6Sn 5的晶粒生长。Co元素与B元素制备成中间合金添加,有利于引入难混熔元素B,如图2所示,B元素的添加使β-Sn发生非均匀形核,细化焊料组织,在界面反应过程中,纳米尺寸的B元素偏聚在IMC晶界处,使界面形态趋向于薄而平坦并细化IMC晶粒以提高界面强度。并且,Co-B元素复合添加,形成Co-B相,对焊点起到弥散强化的效果。
本发明在Sn-Ag-Cu-Sb-In-Co-B系焊料合金中加入一定量的Ga或Ge等改性元素。Ga元素在接头界面周围形成Cu 2Ga相,这会降低界面IMC层的生长速率;Ge元素的添加可以提高焊料合金的抗氧化性。
本发明中通过调整加入的中间合金顺序可以防止合金氧化,避 免成分偏析。通过先制备Sn-Ag-In中间合金,有利于Ag 3(Sn,In)结构的形成,通过In元素稳定Ag 3Sn金属间化合物。
本发明采用中间合金的方式可有效降低最终焊料合金的熔炼温度,并能够优先形成有益合金相,并避免其后续熔炼和使用过程中发生溶解。
采用本发明中的方法制备的焊料合金耐高低温循环及冲击性能优异,且能有效避免多元合金的成分偏析和组织粗大化,将其用于极端环境条件下的电子器件中提升了焊接界面的可靠性,从而有效解决了现有技术中无铅焊料存在的多元合金成分偏析和元素偏聚、抗温度循环及耐外力冲击能力弱的技术问题。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本发明的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本发明的实验方法中简单剪切焊点示意图;
图2为本发明提供的实施例9中制备得到的焊料合金投射电镜形貌;
图3为本发明提供的实施例中焊接试样焊点经过高温老化和热循环后剪切强度。
具体实施方式
下面将参照附图更详细地描述本公开的示例性实施方式。虽然附图中显示了本公开的示例性实施方式,然而应当理解,可以以各种形式实现本公开而不应被这里阐述的实施方式所限制。相反,提供这些实施方式是为了能够更透彻地理解本公开,并且能够将本公开的范围完整的传达给本领域的技术人员。
本发明提供了一种无铅焊料合金,该无铅焊料合金包括Ag、Cu、Sb、In、Co、B和Sn元素,且其各自的含量以重量百分比计为:Ag 1.0~4.0%、Cu 0.2~0.8%、Sb 1.0~5.0%、In 1.0~3.0%、Co 0.01~0.5%、B 0.001~0.05%,其余为Sn及不可避免杂质。
在本发明的实施例中,该无铅焊料合金还包括Ga或Ge元素。当含有Ga元素时,其含量以重量百分比计为:Ga 0.001~0.1%;当含有Ge元素时,其含量以重量百分比计为:Ge 0.001~0.1%。
本发明中的无铅焊料合金可以作为极端环境下电子器件用焊料,采用该焊料合金进行焊接能够得到可靠性高的电子电路和电子电路装置。
在具体应用中,上述的无铅焊料合金所形成的焊点或焊缝,可以采用焊膏回流、波峰焊接或者热熔化等焊接方式与被焊基材融合而成,上述的无铅焊料合金的形态包括预成形焊片、焊带、焊丝、焊球和焊粉,上述的被焊基材可以为裸Cu、Cu-OSP处理、锡镀层、Ni镀层、Ni-Ag镀层或Ni-Au镀层处理板材。
本发明还提供了一种无铅焊料合金的制备方法,该制备方法具 体包括以下步骤:
(1)中间合金的制备:采用真空熔炼法分别制备中间合金Sn-Cu、Sn-Sb、Sn-Ag-In和Sn-Co-B。该真空熔炼法具体为:将单质金属Sn、Ag和In,Sn和Cu,Sn和Sb,Sn、Co和B,分别按照所需合金配比加入中频感应熔炼炉中熔化,熔炼时抽真空至4×10 -3Pa~6×10 -3Pa以防止合金氧化,浇注于模具中制备得到中间合金Sn-20Ag-xIn(x根据设计合金成分可调整为1~60)、Sn-10Cu、Sn-50Sb、Sn-10Co-1B。
(2)将步骤(1)中制备得到的中间合金以及单质金属Sn,按照所需合金配比,按照单质金属Sn、中间合金Sn-10Cu、Sn-50Sb、Sn-10Co-1B、和Sn-20Ag-xIn的顺序依次加入熔炼炉中熔化,熔炼过程中表面覆盖防氧化熔剂,加热至熔化温度400~500℃,适当保温且搅拌15~20min,除掉表面氧化渣,降温至300℃,浇注于模具中制备得到Sn-Ag-Cu-Sb-In-Co-B焊料合金锭坯。
在本发明中,当上述的焊料合金中含有Ge元素时,步骤(1)中还包括制备中间合金Sn-Ge。具体为:将单质金属Sn和Ge按照所需合金配比加入中频感应熔炼炉中熔化,熔炼时抽真空至4×10 -3Pa~6×10 -3Pa以防止合金氧化,浇注于模具中制备得到中间合金Sn-1Ge。
步骤(2)中,将中间合金Sn-20Ag-xIn、Sn-10Cu、Sn-50Sb、Sn-10Co-1B以及单质金属Sn,按照所需合金配比,按照单质金属Sn、中间合金Sn-10Cu、Sn-50Sb、Sn-10Co-1B、Sn-20Ag-xIn和Sn-1Ge 的顺序依次加入熔炼炉中熔化,熔炼过程中表面覆盖防氧化熔剂,加热至熔化温度400~500℃,适当保温且搅拌15~20min,除掉表面氧化渣,降温至300℃,浇注于模具中制备得到Sn-Ag-Cu-Sb-In-Co-B-Ge焊料合金锭坯。
在本发明中,当上述的焊料合金中含有Ga元素时,步骤(2)中将中间合金Sn-20Ag-xIn、Sn-10Cu、Sn-50Sb、Sn-10Co-1B以及单质金属Ga和Sn,按照所需合金配比,按照单质金属Sn、中间合金Sn-10Cu、Sn-50Sb、Sn-10Co-1B、Sn-20Ag-xIn和单质金属Ga的顺序加入熔炼炉中熔化,熔炼过程中表面覆盖防氧化熔剂,加热至熔化温度400~500℃,适当保温且搅拌15~20min,除掉表面氧化渣,降温至300℃,浇注于模具中制备得到Sn-Ag-Cu-Sb-In-Co-B-Ga焊料合金锭坯。
以下将通过具体实施例对本发明中无铅焊料合金的制备方法进行详细说明。
实施例1:
一种无铅焊料合金,其成分组成的重量百分比为:Ag 1.0%,Cu 0.2%,Sb 1%,In 1%,Co 0.01%,B 0.001%,余量为Sn及不可避免的杂质;该无铅焊料合金的制备方法包括以下步骤:
(1)中间合金的制备:将纯度为99.99%的单质金属Sn、Ag和In,Sn和Cu,Sn和Sb,Sn、Co和B分别按照所需合金配比加入中频感应熔炼炉中熔化,熔炼时抽真空至4×10 -3Pa~6×10 -3Pa以防止合金氧化,浇注于模具中制备得到Sn-20Ag-20In、Sn-10Cu、Sn-50Sb、 Sn-10Co-1B中间合金。
(2)制备Sn-Ag-Cu-Sb-In-Co焊料合金锭坯:将步骤(1)中得到的中间合金Sn-20Ag-20In、Sn-10Cu、Sn-50Sb、Sn-10Co-1B和单质金属Sn,按照所需合金配比,按照单质金属Sn、中间合金Sn-10Cu、Sn-50Sb、Sn-10Co-1B、和Sn-20Ag-20In的顺序加入熔炼炉中熔化,熔炼过程中表面覆盖松香,加热至400℃,保温并搅拌20min,之后除掉表面覆盖物及氧化渣,降温至300℃,浇注于模具中制备得到Sn-Ag-Cu-Sb-In-Co-B焊料合金锭坯。
实施例2~8中无铅焊料合金的制备方法同实施例1,所不同的是:
实施例2~4的步骤(1)中制备中间合金Sn-20Ag-15In,步骤(2)中中间合金Sn-20Ag-15In、Sn-10Cu、Sn-50Sb、Sn-10Co-1B和单质金属Sn的合金配比不同;
实施例5的步骤(1)中制备Sn-20Ag-14In,步骤(2)中中间合金Sn-20Ag-14In、Sn-10Cu、Sn-50Sb、Sn-10Co-1B和单质金属Sn的合金配比不同;
实施例6的步骤(1)中制备Sn-20Ag-13.2In,步骤(2)中中间合金Sn-20Ag-13.2In、Sn-10Cu、Sn-50Sb、Sn-10Co-1B和单质金属Sn的合金配比不同;
实施例7的步骤(2)中中间合金Sn-20Ag-20In、Sn-10Cu、Sn-50Sb、Sn-10Co-1B和单质金属Sn的合金配比不同;
实施例8的步骤(1)中制备Sn-20Ag-14In,步骤(2)中中间 合金Sn-20Ag-14In、Sn-10Cu、Sn-50Sb、Sn-10Co-1B和单质金属Sn的合金配比不同。
实施例9:
一种无铅焊料合金,其成分组成的重量百分比为:Ag 1.0%,Cu 0.5%,Sb 3%,In 1.2%,Co 0.1%,B 0.02,Ge 0.01%,余量为Sn及不可避免的杂质;该无铅焊料合金的制备方法包括以下步骤:
(1)中间合金的制备:将纯度为99.99%的单质金属Sn、Ag和In,Sn和Cu,Sn和Sb,Sn、Co和B,Sn和Ge分别按照所需合金配比加入中频感应熔炼炉中熔化,熔炼时抽真空以防止合金氧化,浇注于模具中制备得到中间合金Sn-20Ag-6In、Sn-10Cu、Sn-50Sb、Sn-10Co-1B、Sn-1Ge。
(2)制备Sn-Ag-Cu-Sb-In-Co-B-Ge焊料合金锭坯:将步骤(1)中得到的中间合金Sn-20Ag-6In、Sn-10Cu、Sn-50Sb、Sn-10Co-1B、Sn-1Ge和单质金属Sn,按照所需合金配比,按照单质金属Sn、中间合金Sn-10Cu、Sn-50Sb、Sn-10Co-1B、Sn-20Ag-6In和Sn-1Ge的顺序加入熔炼炉中熔化,熔炼过程中表面覆盖松香,加热至400℃,保温并搅拌20min,之后除掉表面覆盖物及氧化渣,降温至300℃,浇注于模具中制备得到Sn-Ag-Cu-Sb-In-Co-B-Ge焊料合金锭坯。
实施例10~11中无铅焊料合金的制备方法同上述实施例9,不同的是:
实施例10的步骤(1)中制备Sn-20Ag-10In,步骤(2)中中间合金Sn-20Ag-10In、Sn-10Cu、Sn-50Sb、Sn-10Co-1B、Sn-1Ge和单 质金属Sn的合金配比不同;
实施例11的步骤(1)中制备Sn-20Ag-17.6In,步骤(2)中中间合金Sn-20Ag-17.6In、Sn-10Cu、Sn-50Sb、Sn-10Co-1B、Sn-1Ge和单质金属Sn的合金配比不同。
实施例12~14中无铅焊料合金的制备方法同实施例1,所不同的是:
实施例12的步骤(1)中制备Sn-20Ag-10In,步骤(2)中中间合金Sn-20Ag-10In、Sn-10Cu、Sn-50Sb、Sn-10Co-1B的合金配比不同,步骤(2)中还按照合金设计配比添加了单质金属Ga,添加顺序按照单质金属Sn、中间合金Sn-10Cu、Sn-50Sb、Sn-10Co-1B、Sn-20Ag-10In和单质金属Ga的顺序加入熔炼炉中熔化,制备得到Sn-Ag-Cu-Sb-In-Co-B-Ga焊料合金锭坯;
实施例13的步骤(1)中制备Sn-20Ag-60In,步骤(2)中中间合金Sn-20Ag-60In、Sn-10Cu、Sn-50Sb、Sn-10Co-1B的合金配比不同,还按照合金设计配比添加了单质金属Ga;
实施例14的步骤(1)中制备Sn-20Ag-60In,步骤(2)中中间合金Sn-20Ag-60In、Sn-10Cu、Sn-50Sb、Sn-10Co-1B的合金配比不同,还按照合金设计配比添加了单质金属Ga。
本发明还对实施例1~14中制备得到的焊料合金进行了表征和性能测试,以此分析其有益技术效果。
一.实验对象
将实施例1~14作为实验组,将传统焊料合金 Sn-3.8Ag-0.7Cu-3.0Bi-1.4Sb-0.15Ni和Sn-3.0Ag-0.5Cu分别作为对照组的对比例1和对比例2。
二.实验方法
1.熔点测量
在升温速率均为10℃/min条件下采用STA409PC差热扫描量热仪(TAInstrument)测量熔点,样品质量为30mg,数值处理为软件自动计算得出,并以DSC曲线峰值温度记为焊料熔点值。
2.强度及强度衰减率测试
1)试样准备
按照日本工业标准JISZ3198制备拉伸样及铜焊接试样。
2)剪切强度测试
依照GB/T228-2002的方法,采用AG-50KNE型万能材料实验机上测定,拉伸速率2mm/min,每个数据点测试三个试样取平均值。
3)可靠性评估方法
每次实验均称0.2士0.01g的焊料合金样品,加标准助焊剂制备焊膏。制备简单剪切焊点,焊点结构如图1所示。依据JIS-K-8034和JIS-K-8180选择脱脂剂和酸洗液清洁焊接面。在焊接过程中采用夹具固定防止母材变形,接头间隙200μm。在平炉上对样品加热至280℃,待焊接完成后取出试样,并溢出的焊料进行清理。
根据IPC-9701A标准,将焊接后样品放入温度循环试验箱内,设置试验温度为-55~125℃,端点温度保温10min,升温速率每分钟20℃,循环3000次。
三.实验结果
将实验组和对照组的实验结果进行统计汇总。
实施例1~14的焊料合金成分以及熔点温度测量结果如表1所示。同时,表1中还列出了对比例1和对比例2两种焊料合金,并在同等条件下进行了熔点测量。
实施例1~14中的焊料合金焊后120℃高温时效后强度以及-55~125℃热循环3000次循环后强度进行了测试,其结果如表2所示;同时,表2中还列出了对比例1和对比例2两种焊料合金在同等条件下的测试结果。
表1 实验组与对照组中各焊料合金的合金成分及熔点温度测量结果汇总
Figure PCTCN2022093343-appb-000001
注:表1中焊料合金中各成分以质量百分比计。
结合表1和图2可以得出,本发明制备得到的无铅焊料合金组织均匀、晶粒细小,无多元合金成分偏析和元素偏聚现象,加入B元素,在焊接界面析出,强化界面可靠性。
本发明制备得到的无铅焊料合金熔化温度在198.4~231.0℃之间,未发现有175℃以下的低温熔化现象,具有较好的润湿性,适用于软钎焊技术领域。
表2 实验组与对照组中各焊料合金强度性能汇总
Figure PCTCN2022093343-appb-000002
结合表2和图3可以看出,本发明中Sn-Ag-Cu-Sb-In-Co-B系焊料合金120℃高温恒温时效1000h后仍具有良好的结合强度,强度在48.5~62.43Mpa,明显优于对比例2中的45.24Mpa,且除了实施例1外均优于对比例1中的50.12Mpa;尤其是经过-55~125℃的3000次热循环后仍具有较高的结合强度,强度在16.89~28.44Mpa,明显优于对比例1中的12.78Mpa,说明本发明中制备得到的焊料合金具有良好的抗高温能力和抗温度循环可靠性。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (10)

  1. 一种无铅焊料合金,其特征在于,所述的焊料合金包括Ag、Cu、Sb、In、Co、B和Sn元素,且其各自的含量以重量百分比计为:Ag 1.0~4.0%、Cu 0.2~0.8%、Sb 1.0~5.0%、In 1.0~3.0%、Co 0.01~0.5%、B 0.001~0.05%,其余为Sn及不可避免杂质。
  2. 根据权利要求1所述的无铅焊料合金,其特征在于,所述的焊料合金中Ag、Cu、Sb、In、Co和B元素的含量以重量百分比计为:Ag 2.8~3.8%、Cu 0.3~0.6%、Sb 3.0~4.5%、In 2.0~2.5%、Co 0.05~0.3%、B 0.005~0.03%,其余为Sn和不可避免的杂质。
  3. 根据权利要求1或2所述的无铅焊料合金,其特征在于,所述的焊料合金还包括Ga或Ge元素。
  4. 根据权利要求3所述的无铅焊料合金,其特征在于,当所述的焊料合金中含有Ga或Ge元素时,其各自的含量以重量百分比计分别为:Ga 0.001~0.1%、Ge 0.001~0.1%。
  5. 权利要求1-4任一项所述的无铅焊料合金的制备方法,其特征在于,包括以下步骤:
    按照一定的合金配比,将各元素的金属单质或合金熔炼混合后浇注得到所述的无铅焊料合金;其中,
    熔炼时Sn元素以金属单质的方式引入;Cu、Sb元素分别以Sn-Cu合金、Sn-Sb合金的方式引入;Ag、In元素以Sn-Ag-In合金的方式引入;Co、B元素以Sn-Co-B合金的方式引入;
    熔炼时按照Sn单质金属、Sn-Cu合金、Sn-Sb合金、Sn-Co-B合金和Sn-Ag-In合金的顺序依次加入。
  6. 根据权利要求5所述的无铅焊料合金的制备方法,其特征在于,熔炼时,Ga元素以金属单质的方式引入。
  7. 根据权利要求5所述的无铅焊料合金的制备方法,其特征在于,熔炼时,Ge元素以Sn-Ge合金的方式引入。
  8. 根据权利要求5或7所述的无铅焊料合金的制备方法,其特征在于,所述的合金是采用真空熔炼法制备得到的;其中,熔炼炉中抽真空至4×10 -3Pa~6×10 -3Pa。
  9. 根据权利要求5所述的无铅焊料合金的制备方法,其特征在于,将各元素的金属单质或合金熔炼混合的熔化温度为400~500℃,且保温搅拌15~20min,降至300℃;熔炼过程中表面覆盖防氧化熔剂。
  10. 权利要求5-9任一项所述的制备方法制备得到的无铅焊料合金作为极端条件下电子器件用焊料的用途。
PCT/CN2022/093343 2021-12-10 2022-05-17 无铅焊料合金及其制备方法、用途 WO2023103289A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111508561.9 2021-12-10
CN202111508561.9A CN114227057B (zh) 2021-12-10 2021-12-10 无铅焊料合金及其制备方法、用途

Publications (1)

Publication Number Publication Date
WO2023103289A1 true WO2023103289A1 (zh) 2023-06-15

Family

ID=80754648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/093343 WO2023103289A1 (zh) 2021-12-10 2022-05-17 无铅焊料合金及其制备方法、用途

Country Status (2)

Country Link
CN (1) CN114227057B (zh)
WO (1) WO2023103289A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114227057B (zh) * 2021-12-10 2023-05-26 北京康普锡威科技有限公司 无铅焊料合金及其制备方法、用途

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1369351A (zh) * 2001-02-09 2002-09-18 大丰工业株式会社 无铅焊料和钎焊接头
US20030230361A1 (en) * 2002-06-17 2003-12-18 Kabushiki Kaisha Toshiba Lead-free solder alloy and lead-free solder paste using the same
US20060263234A1 (en) * 2005-05-11 2006-11-23 American Iron & Metal Company, Inc. Tin alloy solder compositions
CN101801589A (zh) * 2007-07-18 2010-08-11 千住金属工业株式会社 车载电子电路用In掺入无铅焊料
CN101831574A (zh) * 2010-05-26 2010-09-15 南京达迈科技实业有限公司 低银SnAgCuSb系无铅焊锡合金及其制备方法
CN103624415A (zh) * 2012-08-22 2014-03-12 北京有色金属研究总院 一种含硼锡基无铅焊料及其制备方法
CN109396687A (zh) * 2017-08-17 2019-03-01 现代自动车株式会社 无铅焊料组合物
KR20200082107A (ko) * 2018-12-28 2020-07-08 현대자동차주식회사 고온 환경에 적합한 무연 솔더 합금 조성물 및 이의 용도
CN114227057A (zh) * 2021-12-10 2022-03-25 北京康普锡威科技有限公司 无铅焊料合金及其制备方法、用途

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012127642A1 (ja) * 2011-03-23 2012-09-27 千住金属工業株式会社 鉛フリーはんだ合金
JP5723056B1 (ja) * 2014-12-15 2015-05-27 ハリマ化成株式会社 はんだ合金、ソルダペーストおよび電子回路基板
EP3838473A1 (en) * 2015-05-05 2021-06-23 Indium Corporation High reliability lead-free solder alloys for harsh environment electronics applications
CN106392366B (zh) * 2016-12-02 2019-07-19 北京康普锡威科技有限公司 一种BiSbAg系高温无铅焊料及其制备方法
JP6230737B1 (ja) * 2017-03-10 2017-11-15 株式会社タムラ製作所 鉛フリーはんだ合金、ソルダペースト及び電子回路基板
CN109434317B (zh) * 2018-11-16 2021-02-02 北京康普锡威科技有限公司 一种无铅环保焊料及其制备方法和用途

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1369351A (zh) * 2001-02-09 2002-09-18 大丰工业株式会社 无铅焊料和钎焊接头
US20030230361A1 (en) * 2002-06-17 2003-12-18 Kabushiki Kaisha Toshiba Lead-free solder alloy and lead-free solder paste using the same
US20060263234A1 (en) * 2005-05-11 2006-11-23 American Iron & Metal Company, Inc. Tin alloy solder compositions
CN101801589A (zh) * 2007-07-18 2010-08-11 千住金属工业株式会社 车载电子电路用In掺入无铅焊料
CN101831574A (zh) * 2010-05-26 2010-09-15 南京达迈科技实业有限公司 低银SnAgCuSb系无铅焊锡合金及其制备方法
CN103624415A (zh) * 2012-08-22 2014-03-12 北京有色金属研究总院 一种含硼锡基无铅焊料及其制备方法
CN109396687A (zh) * 2017-08-17 2019-03-01 现代自动车株式会社 无铅焊料组合物
KR20200082107A (ko) * 2018-12-28 2020-07-08 현대자동차주식회사 고온 환경에 적합한 무연 솔더 합금 조성물 및 이의 용도
CN114227057A (zh) * 2021-12-10 2022-03-25 北京康普锡威科技有限公司 无铅焊料合金及其制备方法、用途

Also Published As

Publication number Publication date
CN114227057B (zh) 2023-05-26
CN114227057A (zh) 2022-03-25

Similar Documents

Publication Publication Date Title
Feng et al. Reliability studies of Cu/Al joints brazed with Zn–Al–Ce filler metals
JP2019527145A (ja) SnBiSb系低温鉛フリーはんだ
JP5206779B2 (ja) Znを主成分とするPbフリーはんだ合金
JPWO2005102594A1 (ja) はんだ及びそれを使用した実装品
JP2018079480A (ja) 低温用のBi−In−Sn系はんだ合金、それを用いた電子部品実装基板及びその実装基板を搭載した装置
WO2023103289A1 (zh) 无铅焊料合金及其制备方法、用途
JP2016026884A (ja) 中低温用のBi−Sn−Al系はんだ合金及びはんだペースト
CN109926750B (zh) 一种低温无铅焊料合金及其真空铸造方法
WO2007082459A1 (fr) Soudure exempte de plomb et son procédé de préparation
EP3707285B1 (en) Low-silver tin based alternative solder alloy to standard sac alloys for high reliability applications
JP5699897B2 (ja) Znを主成分とするPbフリーはんだ合金
Xu et al. Effect of Ca element on oxygen content, wetting and spreading properties of Au–Ga filler metal
CN1325679C (zh) Sn-Zn-Bi-Cr合金无铅焊料的制备方法
TW202146673A (zh) 無鉛焊料及其製造方法
JP2016026883A (ja) 中低温用のBi−Sn−Zn系はんだ合金及びはんだペースト
JP2017035708A (ja) Pbを含まないSb−Cu系はんだ合金
CN1325680C (zh) Sn-Ag-Cu-Cr合金无铅焊料的制备方法
CN111542625A (zh) 用于极端环境中的电子应用的高可靠性无铅焊料合金
JP5652001B2 (ja) Znを主成分とするPbフリーはんだ合金
JP2001179483A (ja) 電子部品の実装構造体およびその製造方法
JP5861526B2 (ja) Pbを含まないGe−Al系はんだ合金
JP2011235314A (ja) Znを主成分とするPbフリーはんだ合金
JP5699898B2 (ja) Znを主成分とするPbフリーはんだ合金
CN111511494B (zh) 用于电子应用的具有成本效益的无铅焊料合金
SU1461609A1 (ru) Припой дл пайки чугуна

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22902727

Country of ref document: EP

Kind code of ref document: A1