WO2023102937A1 - 全极性霍尔传感器件及其控制方法、电子设备 - Google Patents

全极性霍尔传感器件及其控制方法、电子设备 Download PDF

Info

Publication number
WO2023102937A1
WO2023102937A1 PCT/CN2021/137252 CN2021137252W WO2023102937A1 WO 2023102937 A1 WO2023102937 A1 WO 2023102937A1 CN 2021137252 W CN2021137252 W CN 2021137252W WO 2023102937 A1 WO2023102937 A1 WO 2023102937A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
control
signal
hall
output
Prior art date
Application number
PCT/CN2021/137252
Other languages
English (en)
French (fr)
Inventor
邹晓磊
张志红
皮永祥
Original Assignee
上海艾为电子技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海艾为电子技术股份有限公司 filed Critical 上海艾为电子技术股份有限公司
Priority to PCT/CN2021/137252 priority Critical patent/WO2023102937A1/zh
Priority to CN202111551125.XA priority patent/CN114280512A/zh
Priority to CN202111551156.5A priority patent/CN114285399A/zh
Publication of WO2023102937A1 publication Critical patent/WO2023102937A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/07Hall effect devices
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/945Proximity switches
    • H03K17/95Proximity switches using a magnetic detector
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/003Modifications for increasing the reliability for protection
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/02Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components
    • H03K19/18Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits using specified components using galvano-magnetic devices, e.g. Hall-effect devices

Definitions

  • the present application relates to the technical field of Hall sensing, in particular to an omnipolar Hall sensing device, a control method thereof, and an electronic device.
  • the Hall device is a magnetic sensor based on the principle of the Hall effect.
  • the Hall effect is a type of electromagnetic effect. When the current passes through the conductor perpendicular to the external magnetic field, an additional electric field will be generated in the conductor perpendicular to the direction of the current and the magnetic field. , so that a potential difference is generated at both ends of the conductor. This phenomenon is the Hall effect, and this potential difference is called the Hall potential difference.
  • the Hall sensor device integrates the Hall device.
  • This type of sensor device has the characteristics of low power consumption, high sensitivity, and high input-output isolation. It has been widely used in the fields of industry, communication, and instrument manufacturing.
  • Hall sensor switch is an important application of Hall sensor devices, please refer to Figure 1a, which is a functional diagram of a unipolar (south pole) Hall switch. When the south pole of the magnet is close to the surface of the Hall sensor chip, and when the magnetic field intensity sensed by the chip is greater than the magnetic field threshold BOP, the output of the Hall sensor changes from high level to low level.
  • the magnets required in consumer products are very small in size. Because the magnets for unipolar Hall sensor devices need to distinguish between north and south poles during assembly, it brings great inconvenience to the assembly of the magnets, thus Increase the cost of assembly.
  • omnipolar Hall sensor devices are more suitable for consumer products. No matter whether the south pole or the north pole of the magnet is close, the output signal of the Hall sensor device will be reversed.
  • most of the existing omnipolar Hall sensor devices use two Hall sensor elements, which are respectively used to sense the south magnetic field and the north magnetic field. Please refer to Figure 1b.
  • the south pole or north pole of the magnet is close to the surface of the omnipolar Hall sensor switch chip, and the magnetic field strength is greater than the south pole magnetic field threshold BOPS or the north magnetic field BOPN, the output of the Hall sensor device will change from high to low. level.
  • the present application provides an omnipolar Hall sensor device, its control method, and electronic equipment, so as to reduce the power consumption and volume of the omnipolar Hall sensor device.
  • the application provides an omnipolar Hall sensor device, including: a Hall sensor module, including a Hall element, the Hall element has two pairs of signal terminals, wherein a pair of signal terminals are used as two control terminals, connected to The control voltage terminal is used to input the control voltage, and the other pair of signal terminals are used as two output terminals, and the two output terminals are used to output the sensing signals related to the external magnetic field;
  • the comparison module is used to receive the sensing signals , and output a corresponding control signal according to the sensing signal, when the external magnetic field reaches the magnetic field threshold, the control signal is reversed;
  • the threshold control module is used to switch the control terminal and output of the Hall element according to the first cycle terminal, and input threshold control currents to each signal terminal sequentially according to the second period, so that when the control signal is reversed, the external magnetic field corresponds to any one of the two magnetic field thresholds in opposite directions.
  • the first period is the same as the second period.
  • the comparison module includes a first amplifier and a comparator connected to the output terminal of the first amplifier; wherein, the two input terminals of the first amplifier are respectively connected to two of the Hall elements.
  • the output terminal is used to amplify the sensing voltage between the two output terminals of the Hall element and output it to the comparator as a differential input signal of the comparator; The magnitude of the input signal, and output the corresponding control signal; a capacitor is connected in series between the positive output terminal of the first amplifier and the negative input terminal of the comparator, and a capacitor is connected in series between the negative input terminal and the output terminal of the comparator. switch, the negative input terminal of the first amplifier is connected to the positive input terminal of the comparator.
  • the threshold control module includes: a control current supply unit and a current switching unit, the control current supply unit is used to provide a threshold control current, and the current switch unit is used to switch the control current supply unit according to the second cycle. The on-off state between the current output terminal of the unit and each signal terminal of the Hall element.
  • control current supply unit includes: a current limiting resistor connected in series between the power supply voltage and a fixed potential terminal, and the fixed potential terminal has a fixed potential.
  • control current supply unit further includes: a clamp amplifier, the positive input terminal of the clamp amplifier is connected to the control voltage terminal, the negative input terminal is connected to the fixed potential terminal, and the clamp amplifier The output of the amplifier is connected to the negative input of the clamp amplifier.
  • a switch element is further connected between the fixed potential end and the current switching unit, and the output end of the clamp amplifier is connected to the control end of the switch element.
  • the current switching unit includes: a current path connected between the current output terminal and each signal terminal, each of the current paths is provided with a switch to control the on-off state of each of the current paths .
  • the current limiting resistor is consistent with the resistor type of the Hall element.
  • the threshold control module further includes a control voltage switching unit, the control voltage switching unit is connected between the control voltage terminal and the Hall element, and is used to switch the control voltage terminal and the Hall element according to the first cycle.
  • the on-off state between the two pairs of signal ends of the Hall element is used to switch the control end and the output end of the Hall element.
  • control voltage switching unit includes two switches, which are respectively connected to two adjacent signal terminals of the Hall element; the other two signal terminals of the Hall element are grounded.
  • a logic module is also included, connected to the output end of the comparison module, and used to perform logic operations on the control signal output by the comparison module.
  • the logic module is used to perform an exclusive OR operation on control signals output in different periods, and output a switching signal.
  • the Hall element is a square Hall plate, and the two pairs of signal terminals are respectively two sets of opposite corners.
  • the present application also provides a control method for an omnipolar Hall sensor device, including: providing an omnipolar Hall sensor device as described in any one of the above; switching the control terminal and the Hall element according to the first cycle output terminals, and input threshold control currents to each signal terminal of the Hall element sequentially according to the second period.
  • the first period is the same as the second period.
  • the present application also provides an electronic device, including: the omnipolar Hall sensor device described in any one of the above.
  • the above-mentioned omnipolar Hall sensor device switches the control terminal and output terminal of the Hall element according to the first period, and sequentially inputs the threshold control current to each signal terminal according to the second period, so that the output control signal corresponds to two magnetic field thresholds , respectively corresponding to the south pole and north pole magnetic field, when the external magnetic field reaches any one of the magnetic field thresholds, the output control signal will be reversed.
  • the above-mentioned omnipolar Hall sensor device only needs one Hall element to realize omnipolar sensing, which reduces the volume and power consumption of the omnipolar Hall sensor device.
  • the input of the above-mentioned threshold control current can also eliminate the influence of the temperature sensitivity of the Hall element on the omnipolar Hall sensor device, and improve the sensing accuracy of the Hall sensor device.
  • Figure 1a is a functional diagram of a unipolar Hall switch
  • Figure 1b is a functional diagram of the omnipolar Hall switch
  • Figure 2a is a schematic structural diagram of an omnipolar Hall sensor device according to an embodiment of the present application.
  • Fig. 2b is a schematic structural diagram of a Hall element of an omnipolar Hall sensor device according to an embodiment of the present application
  • Fig. 2c is an equivalent schematic diagram of a Hall element according to an embodiment of the present application.
  • FIG. 3 is a schematic structural view of an omnipolar Hall sensor device according to an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a local circuit of an omnipolar Hall sensor device according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a threshold control signal implemented in the present application.
  • Fig. 6a is a circuit schematic diagram during period 1 during the working process of the omnipolar Hall sensor device of the present application
  • Fig. 6b is a schematic circuit diagram of cycle 2 during the working process of the omnipolar Hall sensor device of the present application;
  • Fig. 6c is a schematic circuit diagram of period 3 during the working process of the omnipolar Hall sensor device of the present application.
  • Fig. 6d is a schematic circuit diagram of cycle 4 in the working process of the omnipolar Hall sensor device of the present application.
  • the invention proposes a new omnipolar Hall sensor circuit, which reduces the power consumption and volume of the omnipolar Hall sensor.
  • FIG. 2 a is a schematic structural diagram of an omnipolar Hall sensor device according to an embodiment of the present invention.
  • the omnipolar Hall sensing device includes a Hall sensing module 110 , a comparison module 120 and a threshold control module 130 .
  • the Hall sensing module 110 includes: a Hall element, configured to generate a corresponding Hall voltage according to a change of an applied magnetic field.
  • the Hall element is a Hall plate (please refer to FIG. 2 b ), the Hall element is a square Hall plate, and the two pairs of signal terminals are at two opposite corners.
  • There are two pairs of signal terminals one pair of signal terminals is H1 and H3, and the other pair of signal terminals is H2 and H4.
  • One pair of signal terminals is used as two control terminals, which are connected to the control voltage terminal for inputting control voltage, and the other pair of signal terminals are used as two output terminals, and the two output terminals are used to output sensors related to the external magnetic field Signal.
  • the two control terminals and the two output terminals are respectively located at two opposite corners of the square Hall plate, and the direction of the control current between the control terminals and the phase difference of the induced current between the output terminals are 90°.
  • the comparison module 120 is configured to receive the sensing signal and output a corresponding control signal VO1 according to the sensing signal.
  • the control signal is reversed.
  • the control signal is 0 (low level) or 1 (high level), and the inversion of the control signal includes inversion from 0 to 1, or inversion from 1 to 0.
  • the threshold control module 130 is configured to switch the control terminal and the output terminal of the Hall element according to the first cycle according to the threshold control signal, and sequentially input a fixed threshold control current to each signal terminal according to the second cycle, so that the When the control signal is reversed, the external magnetic field corresponds to any one of the two magnetic field thresholds with opposite directions.
  • the Hall sensor is equivalent to a resistor, for example, a square Hall plate is equivalent to a Wheatstone bridge, the resistance of each bridge arm is R H , and the equivalent resistance of the entire Hall plate is R H .
  • the threshold control current is input at one end, the size of the output sensing signal can be adjusted.
  • the sensing signal output between the two output ends is the threshold voltage generated by the Hall voltage V H superimposing the threshold control current. for V'. Therefore, by adjusting the magnitude of the threshold control current, the magnitude of the output sensing signal can be adjusted.
  • the current is controlled by inputting thresholds in different directions to generate two threshold voltages with opposite phases, namely V' and -V', then the sensing signals output between the two output terminals are V H + V', and V H - V'.
  • the magnitude of the sensing signal output between the two output terminals can be adjusted by controlling the current through the input threshold, and the magnitudes of the sensing signals output from the two output terminals are respectively used as differential signals input by the comparison module 120 .
  • FIG. 3 is a schematic structural diagram of an omnipolar Hall sensor device according to an embodiment of the present invention.
  • the Hall sensing module 110 further includes a control voltage terminal A, a first resistor R0 is connected in series between the control voltage terminal A and the power supply voltage VDD, and the first resistor R0 limits the flow through the Hall The control current of the component.
  • the threshold control module 130 includes a control voltage switching unit 133, the control voltage switching unit 133 is connected between the control voltage terminal A and the Hall element, and is used to switch the control voltage terminal A and the Hall element according to the first cycle.
  • the on-off state between the two pairs of signal ends of the Hall element is used to switch the control end and the output end of the Hall element.
  • control voltage switching unit 133 includes a switch S1a and a switch S2a, respectively connected to two adjacent signal terminals H1 and H4 of the Hall element; the other two signal terminals of the Hall element H2 and H3 are grounded through switch S2e and switch S1e respectively.
  • Periodic switching of the control terminal and the output terminal can be realized by periodically controlling the on-off states of the switches S1a, S2a, S1e and S2e, and the switching period is the first period.
  • the threshold control module 130 of the Hall sensor further includes a control current supply unit 131 and a current switching unit 132 .
  • the control current supply unit 131 is used to provide a fixed threshold control current I1
  • the current switching unit 132 is used to periodically switch between the current output terminal of the control current supply unit 131 and each signal terminal of the Hall element. The on-off state between them, so that the threshold control current is sequentially input to each signal terminal according to the second cycle.
  • the control current supply unit 131 includes a current limiting resistor R1 connected in series between the power supply voltage VDD and a fixed potential terminal B, the fixed potential terminal B has a fixed potential V B , and the fixed potential terminal B is the control current
  • the current output terminal of the unit 131 is provided.
  • the threshold controls the current
  • the fixed potential terminal B can be connected to a constant voltage power supply or a clamping circuit, so that the fixed potential terminal B has a fixed potential.
  • the control current supply unit further includes: a clamp amplifier AP2, the positive input terminal of the clamp amplifier AP2 is connected to the control voltage terminal A, and the negative input terminal is connected to the fixed potential terminal B, and the output terminal of the clamp amplifier AP2 is connected to the negative input terminal of the clamp amplifier AP2.
  • the clamping amplifier AP2 clamps the potential VB of the negative input terminal, that is, the fixed potential terminal B, to the potential V A of the control voltage terminal A, namely
  • a switch element is connected between the fixed potential terminal B and the output end of the clamp amplifier AP2, and the output end of the clamp amplifier AP2 is connected to the control of the switch element.
  • the switch element is only turned on when the clamp amplifier AP2 is in a normal working state, so that the fixed potential terminal B is connected to the Hall element.
  • the switch element is a PMOS transistor M0
  • the output terminal of the clamp amplifier AP2 is connected to the gate of the PMOS transistor M0
  • the source of the PMOS transistor M0 is connected to the clamp amplifier AP2
  • the drain of the PMOS transistor M0 is connected to the current switching unit 132 .
  • the switch element may not be provided, and the fixed potential terminal B may be directly connected to the input terminal of the current switching unit 132 .
  • clamping circuits can also be used to limit the potential of the fixed potential terminal B to a fixed potential value.
  • the specific structure of the clamping circuit is not limited here, and those skilled in the art can Make sensible choices.
  • the current switching unit 132 includes a current path connected between the current output terminal B and each signal end, each current path is provided with a switch to control the on-off state of each current path. Specifically, switches S3a and S2b are connected in series between the current output terminal and the signal terminal H1, switches S4a and S2c are connected in series between the signal terminal H2, S3a and S1c are connected in series between the signal terminal H3, and connected to the signal terminal H4 Switches S3a and S1b are connected in series therebetween.
  • the current switching unit 132 may also include a switch connected to the connection path between the Hall element and the comparison module 120, for connecting the switched output end to the Compare module 120 .
  • a switch S2d is connected in series between the signal terminal H1 and the positive input terminal of the first amplifier AP1
  • a switch S1d is connected in series between the signal terminal H4 and the positive input terminal of the first amplifier AP1
  • a switch S1f is connected in series with the negative input terminal of the first amplifier AP1
  • a switch S2f is connected in series between the signal terminal H3 and the negative input terminal of the first amplifier AP1.
  • the on-off state of each switch in the control voltage switching unit 133 and the current switching unit 132 can be controlled by a preset threshold control signal to periodically control the on-off state of each switch, thereby switching the Hall element according to the first cycle
  • the input terminal and the control terminal of the Hall element, and the threshold control current I1 is sequentially input to each signal terminal of the Hall element according to the second cycle.
  • the comparison module 120 includes a first amplifier AP1 and a comparator COMP connected to the output terminal of the first amplifier AP1; the two input terminals of the first amplifier AP1 are respectively connected to the Hall The two output ends of the element are used to amplify the sensing signal between the two output ends and output it to the comparator COMP as a differential input signal of the comparator COMP; The magnitude of the differential input signal outputs the corresponding control signal VO1.
  • the two output terminals of the first amplifier AP1 are respectively connected to the two input terminals of the comparator COMP, and a capacitor C0 is connected between one output of the first amplifier AP1 and the negative input terminal of the comparator COMP , a switch S2g is connected between the negative input terminal of the comparator COMP and the output terminal of COMP.
  • the first amplifier AP1 amplifies the mixed signal of the Hall voltage and the threshold voltage, and stores the amplified signal in the capacitor C0, and then the comparator COMP judges whether the current magnetic field has reached the set threshold.
  • the omnipolar Hall sensor device further includes a logic module 140 .
  • the logic module 140 is configured to perform logic operations on the control signal output by the comparison module 120 .
  • the logic module 140 is configured to perform an exclusive OR operation on two control signals output at different times.
  • the logic module 140 includes four flip-flops and NOR gates, namely flip-flop 1 , flip-flop 2 , flip-flop 3 and flip-flop 4 .
  • the input terminal D1 of flip-flop 1 is connected to the output terminal of the comparator COMP, the output terminal D2 of flip-flop 2 is connected to the output terminal Q1 of flip-flop 1, the clock terminal C1 of flip-flop 1 and the clock terminal C2 of flip-flop 2 are connected to the first clock signal CK1; the input terminal D3 of the flip-flop 3 is connected to the output terminal Q1 of the flip-flop 1, the input terminal D4 of the flip-flop 4 is connected to the output terminal Q2 of the flip-flop 2, and the clock of the flip-flop 3
  • the terminal C3 and the clock terminal C4 of the flip-flop 4 are both connected to the second clock signal CK2; the output terminal Q3 of the flip-flop 3 and the output terminal Q4 of the flip-flop 4 are connected to the two input terminals of the NOR gate, the The NOR gate outputs the switching signal VO2.
  • the function of the logic module 140 is to NOR logic output the comparison result of the south pole and the comparison result of the north pole, so that the Hall sensor device realizes the function of a Hall sensor switch.
  • the logic module 140 is also connected to the output module 150 for inverting and amplifying the switch signal VO2 to output VOUT.
  • the output module 150 includes: a transistor M and a resistor R2.
  • the transistor M is an NMOS transistor. One end of the resistor R2 is connected to the power supply voltage VDD, and the other end is connected to the drain of the transistor M, the gate of the transistor M is connected to the output terminal of the latch logic module 140, and the source is grounded to the The drain of the transistor M is used as an output terminal for outputting the control signal VOUT.
  • Q3 is at high level
  • transistor M is turned on, and VOUT is at low level; when Q3 is at low level, transistor M is turned off, and VOUT is at high level.
  • the function diagram of the omnipolar Hall switch shown in FIG. 1b can be obtained by driving the output circuit 150 with the switching signal Vo2.
  • the logic module 140 can also be used to perform other logic operations to realize other functions, such as realizing a latching Hall sensing function and the like.
  • FIG. 4 is a schematic structural diagram of the first amplifier AP1 according to an embodiment of the present invention.
  • the first amplifier AP1 includes a third amplifier AP3 and a fourth amplifier AP4; the positive input terminal of the third amplifier AP3 is connected to an output terminal of the Hall element, the input voltage V1, the negative input terminal of the third amplifier AP3 and A resistor R4 is connected in series between the positive input terminals of the fourth amplifier AP4, the negative input terminal of the fourth amplifier AP4 is connected to the other output terminal of the Hall element, and the input voltage V2 is input; the output terminal of the third amplifier AP3 outputs a voltage V3, and A resistor R3 is connected in series between the output terminal and its negative input terminal; the output terminal of the fourth amplifier AP4 outputs a voltage V4, and the output terminal is connected to its negative input terminal.
  • V 4 V 2 ;
  • the first amplifier AP1 can amplify the differential signals V1 and V2 into differential signals V3 and V4, and A1 is the amplification factor of the third amplifier AP3.
  • V 3 >>V 4 , relative to V3, V4 can be regarded as a DC signal.
  • the first amplifier AP1 may also adopt other circuit structures capable of differentially amplifying input signals.
  • An embodiment of the present application also provides a control method for an omnipolar Hall sensor device, including: switching the control terminal and the output terminal of the Hall element according to the first period, and sequentially switching the control terminal and the output terminal of the Hall element according to the second period.
  • Each signal terminal inputs a threshold value to control the current.
  • the first period is the same as the second period.
  • the above switching process is realized by controlling the on-off state of each switch in the omnipolar Hall sensor device.
  • FIG. 5 is a schematic diagram of threshold control signals controlling each switch in the voltage switching unit 133 and the current switching unit 132 according to an embodiment of the present invention.
  • the high level of each control signal corresponds to the turn-on of the switch, and the low level corresponds to the turn-off of the switch.
  • the switch S3a is turned on, the switch S4a is turned off, the switches S2a ⁇ S2g are turned on, and the switches S1a ⁇ S1f are turned off.
  • the control voltage terminal A is connected to the signal terminal H4, H2 is grounded, and the signal terminals H4 and H2 are used as control terminals; the signal terminals H1 and H3 are used as output terminals, respectively connected to the positive input terminal and the negative input terminal of the first amplifier AP1, to the said
  • the comparison module 120 outputs the sensing signal Vin.
  • the threshold control current I1 of the control current supply unit 131 flows to the signal terminal H1.
  • switch S3a is turned on, switch S4a is turned off, switches S1a ⁇ S1f are turned on, switches S2a ⁇ S2g are turned off, and the voltage V A is applied to both ends of H1 and H3 of the Hall device.
  • H1 and H3 are control terminals, H2 and H4 are output terminals connected to the two input terminals of the first amplifier AP1.
  • the switches S1a ⁇ S1f are turned on, and the switches S2a ⁇ S2f are turned off, the voltage VA is applied to both ends of H1 and H3 of the Hall device, and the Hall voltage generated by the Hall device at period 4 is VH;
  • V C4 -V C3 0, the control signal output by the comparator
  • the omnipolar Hall sensor device of the present invention has two turning points: a south pole turning point (BOPS) and a north pole turning point (BOPN).
  • the above-mentioned omnipolar Hall sensor periodically switches the control terminal and output terminal of the Hall element, and sequentially inputs the threshold control current to each signal terminal, so that the output control signal corresponds to two magnetic field thresholds, corresponding to the south pole and the north pole respectively. magnetic field. Only one Hall element is needed to realize omnipolar sensing, which reduces the size and power consumption of the omnipolar Hall sensor.
  • the Hall element is equivalent to a Wheatstone bridge (please refer to Figure 2c), the resistance of each bridge arm is R H , and the Hall voltage V H is generated between the two output terminals due to the magnetic field B,
  • the current limiting resistor R1 is a square resistor
  • q is the charge constant
  • n is the electron concentration
  • u n is the electron mobility
  • w is the width of the resistor
  • L is the length of the resistor
  • d is the thickness of the resistor.
  • the sensitivity of the Hall element can be expressed as:
  • u n is the electron mobility of the Hall element, which is the same as the mobility of the current limiting resistor R1 .
  • v is the moving velocity of electric charges
  • W' is the width of the Hall element 110
  • L' is the length of the Hall element 110 . Since R 1 is inversely proportional to u n , and K H is directly proportional to u n , the multiplication of R 1 and K H just cancels the influence of u n .
  • the threshold value of the magnetic field at the flip point of the comparator COMP can be obtained: as well as
  • the temperature-related parameter of the magnetic field B at the flipping point is only the resistance value of the first resistor R0, and has nothing to do with the temperature coefficient of the Hall element. Even with temperature changes, the electron mobility of the Hall element changes and the sensitivity of the Hall element changes, but the magnitude of the flipping point magnetic field B s and B N will not change with the sensitivity of the Hall element, so that it can be The detection accuracy of the omnipolar Hall sensor device is improved.
  • the first resistor R0 can use a resistance type with a small temperature coefficient, such as a low-temperature drift resistor, including: foil resistors, thin film resistors, foil resistors, metal film resistors, and molded resistors, etc.
  • a low-temperature drift resistor including: foil resistors, thin film resistors, foil resistors, metal film resistors, and molded resistors, etc.
  • the magnitude of the magnetic field at the inversion point of the comparator COMP changes little with the temperature, and a stable magnetic field inversion point can be obtained, thereby improving the stability of the Hall sensor device.
  • an electronic device comprising: the omnipolar Hall sensor device as described in any one of the above embodiments. Since the omnipolar Hall sensor device of the present invention has small volume and low power consumption, the integration degree of electronic equipment can be further improved and power consumption can be reduced.

Abstract

本申请公开一种全极性霍尔传感器件、控制方法和一种电子设备,所述全极性霍尔传感器件包括:霍尔传感模块,包括霍尔元件,具有两对信号端,其中一对信号端作为两个控制端,连接至控制电压端,另一对信号端作为两个输出端,用于输出与外部磁场相关的传感信号;比较模块,用于接收传感信号,并输出相应的控制信号,在外部磁场达到磁场阈值时,所述控制信号发生翻转;阈值控制模块,用于按照第一周期切换所述霍尔元件的控制端和输出端,且按照第二周期依次向各个信号端输入阈值控制电流,使得所述控制信号发生翻转时,外部磁场对应有两个方向相反的磁场阈值中的任意一个。上述全极性霍尔传感器件的体积较小,功耗较低。

Description

全极性霍尔传感器件及其控制方法、电子设备 技术领域
本申请涉及霍尔传感技术领域,具体涉及一种全极性霍尔传感器件及其控制方法、一种电子设备。
背景技术
霍尔器件是一种基于霍尔效应原理制作的磁性传感器,霍尔效应是电磁效应的一种,当电流垂直于外磁场通过导体时,导体内垂直于电流和磁场的方向会产生一附加电场,从而在导体的两端产生电势差,这一现象就是霍尔效应,这个电势差被称为霍尔电势差。
霍尔传感器件内部集成了霍尔器件,此类传感器件具有功耗小、灵敏度高、输入输出隔离度高等特点,已经被广泛应用于工业、通信和仪器制造等领域。霍尔传感器开关是霍尔传感器件的一个重要应用,请参考图1a,为单极(南极)性霍尔开关功能图。当磁铁的南极靠近霍尔传感器件芯片表面,当芯片感应到的磁场强度大于磁场阈值BOP时,霍尔传感器件的输出由高电平变成低电平。
通常在消费级产品中所需要的磁铁体积都很小,由于单极性的霍尔传感器件所配套的磁铁在装配的时候需要区分南北极,从而给磁铁的装配带来很大的不便,从而增加装配的成本。
所以,全极性的霍尔传感器件更适合应用于消费级产品中,无论磁铁的南极还是北极靠近,都会使得霍尔传感器件输出信号发生翻转。例如,现有的全极性霍尔传感器件大多采用两个霍尔传感元件,分别用于感应南极磁场和北极磁场。请参考图1b,磁铁的南极或北极靠近全极性的霍尔传感器开关芯片表面,且磁场强度大于南极磁场阈值BOPS或北极磁场BOPN时,霍尔传感器件的输出都会由高电平变成低电平。
但是由于具有两个霍尔传感元件,导致全极性霍尔传感器件的功耗和芯片面积都较大。
发明内容
鉴于此,本申请提供一种全极性霍尔传感器件及其控制方法、电子设备,以降低全极性霍尔传感器件的功耗及体积。
本申请提供一种全极性霍尔传感器件,包括:霍尔传感模块,包括霍尔元件,所述霍尔元件具有两对信号端,其中一对信号端作为两个控制端,连接至控制电压端,用于输入控制电压,另一对信号端作为两个输出端,所述两个输出端用于输出与外部磁场相关的传感信号;比较模块,用于接收所述传感信号,并根据所述传感信号输出相应的控制信号,在外部磁场达到磁场阈值时,所述控制信号发生翻转;阈值控制模块,用于按照第一周期切换所述霍尔元件的控制端和输出端,且按照第二周期依次向各个信号端输入阈值控制电流,使得所述控制信号发生翻转时,外部磁场对应于两个方向相反的磁场阈值中的任意一个。
可选,所述第一周期与所述第二周期相同。
可选的,所述比较模块包括第一放大器和与所述第一放大器的输出端连接的比较器;其中,所述第一放大器的两个输入端分别连接至所述霍尔元件的两个输出端,用于将所述霍尔元件的两个输出端之间的传感电压放大后输出至所述比较器,以作为所述比较器的差分输入信号;所述比较器根据输入的差分输入信号大小,输出相应的控制信号;所述第一放大器的正输出端与所述比较器的负输入端之间串联一电容,且所述比较器的负输入端与输出端之间串联一开关,所述第一放大器的负输入端连接至所述比较器的正输入端。
可选的,所述阈值控制模块包括:控制电流提供单元和电流切换单元,所述控制电流提供单元用于提供阈值控制电流,所述电流切换单元用于按照第二周期切换所述控制电流提供单元的电流输出端与所述霍尔元件的各个信号端之间的通断状态。
可选的,所述控制电流提供单元包括:串联于电源电压与固定电位端之间的限流电阻,所述固定电位端具有固定电位。
可选的,所述控制电流提供单元还包括:钳位放大器,所述钳位放 大器的正输入端连接至所述控制电压端,负输入端连接至所述固定电位端,且所述钳位放大器的输出端连接至所述钳位放大器的负输入端。
可选的,所述固定电位端与所述电流切换单元之间还连接有开关元件,所述钳位放大器的输出端连接至所述开关元件的控制端。
可选的,所述电流切换单元包括:连接在所述电流输出端与各信号端之间的电流通路,各个所述电流通路上均设置有开关,以控制各个所述电流通路的通断状态。
可选的,所述限流电阻与所述霍尔元件的电阻类型一致。
可选的,所述阈值控制模块还包括控制电压切换单元,所述控制电压切换单元连接于所述是控制电压端与霍尔元件之间,用于按照第一周期切换所述控制电压端与所述霍尔元件的两对信号端之间的通断状态,以切换所述霍尔元件的控制端和输出端。
可选的,所述控制电压切换单元包括两个开关,分别连接至所述霍尔元件的两个相邻的信号端;所述霍尔元件的另外两个信号端接地。
可选的,还包括逻辑模块,连接至所述比较模块的输出端,用于对所述比较模块输出的控制信号进行逻辑运算。
可选的,所述逻辑模块用于对不同周期输出的控制信号进行同或运算,并输出开关信号。
可选的,所述霍尔元件为正方形的霍尔盘,所述两对信号端分别为两组相对的顶角。
本申请还提供一种全极性霍尔传感器件的控制方法,包括:提供如上述任一项所述的全极性霍尔传感器件;按照第一周期切换所述霍尔元件的控制端和输出端,且按照第二周期依次向所述霍尔元件的各个信号端输入阈值控制电流。
可选的,所述第一周期与所述第二周期相同。
本申请还提供一种电子设备,包括:如上述任一项所述的全极性霍尔传感器件。
上述全极性霍尔传感器件通过按照第一周期切换霍尔元件的控制端和输出端,以及按照第二周期依次向各个信号端输入阈值控制电流, 使得输出的控制信号对应有两个磁场阈值,分别对应南极和北极磁场,当外部磁场达到其中任意一个磁场阈值,都会使得输出的控制信号发生翻转。上述全极性霍尔传感器件仅需要一个霍尔元件,就能够实现全极性传感,降低了全极性霍尔传感器件的体积以及功耗。
进一步的,上述阈值控制电流的输入,还能够消除霍尔元件的温度敏感性对所述全极性霍尔传感器件的影响,提高所述霍尔传感器件的传感准确性。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1a是单极性霍尔开关功能图;
图1b是全极性霍尔开关功能图;
图2a是本申请一实施例的全极性霍尔传感器件的结构示意图;
图2b是本申请一实施例的全极性霍尔传感器件的霍尔元件的结构示意图;
图2c是本申请一实施例的霍尔元件的等效示意图;
图3是本申请一实施例的全极性霍尔传感器件的结构示意图;
图4是本申请一实施例的全极性霍尔传感器件的局部电路的结构示意图;
图5是本申请一实施的阈值控制信号的示意图;
图6a是本申请的全极性霍尔传感器件的工作过程中的周期1时的电路示意图;
图6b是本申请的全极性霍尔传感器件的工作过程中的周期2时的电路示意图;
图6c是本申请的全极性霍尔传感器件的工作过程中的周期3时的电路示意图;
图6d是本申请的全极性霍尔传感器件的工作过程中的周期4时的电路示意图。
具体实施方式
本发明提出一种新的全极性霍尔传感器件电路,降低全极性霍尔传感器件的功耗和体积。
下面结合附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而非全部实施例。基于本申请中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。在不冲突的情况下,下述各个实施例及其技术特征可以相互组合。
请参考图2a,为本发明一实施例的全极性霍尔传感器件的结构示意图。
所述全极性霍尔传感器件包括霍尔传感模块110、比较模块120和阈值控制模块130。
所述霍尔传感模块110包括:霍尔元件,用于根据外加磁场变化产生对应的霍尔电压。该实施例中,所述霍尔元件为霍尔盘(请参考图2b),所述霍尔元件为正方形的霍尔盘,所述两对信号端分别为于两组相对的顶角。具有两对信号端,其中一对信号端为H1和H3,另一对信号端为H2和H4。其中一对信号端作为两个控制端,连接至控制电压端,用于输入控制电压,另一对信号端作为两个输出端,所述两个输出端用于输出与外部磁场相关的传感信号。该实施例中,两个控制端和两个输出端分别位于正方形霍尔盘的两个相对的顶角,控制端之间的控制电流方向与输出端之间的感应电流相位相差90°。
所述比较模块120,用于接收所述传感信号,并根据所述传感信号输出相应的控制信号VO1,在外部磁场达到磁场阈值时,所述控制信号发生翻转。所述控制信号为0(低电平)或1(高电平),控制信号发生翻转包括从0翻转为1,或者从1翻转为0。
所述阈值控制模块130,用于根据阈值控制信号,按照第一周期切 换所述霍尔元件的控制端和输出端,且按照第二周期依次向各个信号端输入固定的阈值控制电流,使得所述控制信号发生翻转时,外部磁场对应于两个方向相反的磁场阈值中的任意一个。由于霍尔传感器等效于电阻器,例如正方形的霍尔盘等效于惠斯通电桥,每一个桥臂的电阻为R H,整个霍尔盘的等效电阻为R H。当一端输入阈值控制电流时,可以调整输出的传感信号的大小,当磁场发生变化时,两个输出端之间输出的传感信号为霍尔电压V H叠加阈值控制电流产生的阈值电压大小为V’。因此,通过调整阈值控制电流大小,可以调整输出的传感信号的大小。通过不同方向输入阈值控制电流,产生两个相位相反的阈值电压,分别为V’和-V’,那么两个输出端之间输出的传感信号分别为V H+V’,以及V H-V’。
在一个实施例中,通过输入阈值控制电流,可以调整两个输出端之间输出的传感信号的大小,以两个输出端输出的传感信号大小分别作为比较模块120输入的差分信号。当两个输出端之间的传感信号为0,即V H+V’=0以及V H-V’=0时,信号发生翻转,此时分别对应两个霍尔电压阈值,即V H=-V’,V H=V’,进而对应两个极性相反的磁场阈值B 0和-B 0,分别对应南极和北极磁场,从而实现全极性的霍尔传感。
请参考图3,为本发明一实施例的全极性霍尔传感器件的结构示意图。
该实施例中,所述霍尔传感模块110还包括控制电压端A,控制电压端A与电源电压VDD之间串联第一电阻R0,通过所述第一电阻R0限制流过所述霍尔元件的控制电流大小。霍尔盘的等效电阻位R H,则控制电压端A的电压
Figure PCTCN2021137252-appb-000001
所述阈值控制模块130包括控制电压切换单元133,所述控制电压切换单元133连接于控制电压端A与霍尔元件之间,用于按照第一周期切换所述控制电压端A与所述霍尔元件的两对信号端之间的通断状态,以切换所述霍尔元件的控制端和输出端。
该实施例中,所述控制电压切换单元133包括开关S1a和开关S2a,分别连接至所述霍尔元件的两个相邻的信号端H1和H4;所述霍尔元件 的另外两个信号端H2和H3分别通过开关S2e和开关S1e接地。当开关S1a、S1e导通,S2a、S2e断开,此时,信号端H1连接至控制电压端A,信号端H3接地,H1和H3作为控制端,两个信号端H2和H4作为信号输出端;当开关S2a、S2e导通,S1a、S1e断开,此时,信号端H4连接至控制电压端A,信号端H2接地,H4和H2作为控制端,两个信号端H1和H3作为信号输出端。
可以通过周期性控制开关S1a、S2a、S1e和S2e的通断状态,实现控制端和输出端的周期性切换,切换周期为第一周期。
所述霍尔传感器件的阈值控制模块130还包括控制电流提供单元131和电流切换单元132。所述控制电流提供单元131用于提供固定的阈值控制电流I1,所述电流切换单元132用于周期性切换所述控制电流提供单元131的电流输出端与所述霍尔元件的各个信号端之间的通断状态,从而按照第二周期依次向各个信号端输入阈值控制电流。
所述控制电流提供单元131包括串联于电源电压VDD与固定电位端B之间的限流电阻R1,所述固定电位端B具有固定电位V B,所述固定电位端B即为所述控制电流提供单元131的电流输出端。所述阈值控制电流
Figure PCTCN2021137252-appb-000002
所述固定电位端B可以通过连接至恒压电源或者钳位电路,使得所述固定电位端B具有固定的电位。该实施例中,通过钳位放大器将所述固定电位端B的电位钳位至控制电压端A的电位VA,即VB=VA。具体的,该实施例中,所述控制电流提供单元还包括:钳位放大器AP2,所述钳位放大器AP2的正输入端连接至所述控制电压端A,负输入端连接至所述固定电位端B,且所述钳位放大器AP2的输出端连接至所述钳位放大器AP2的负输入端。所述钳位放大器AP2将负输入端即固定电位端B的电位VB被钳位至所述控制电压端A的电位V A,即
Figure PCTCN2021137252-appb-000003
经过限流电阻R1至固定电位端B之间的阈值控制电流位I 1
Figure PCTCN2021137252-appb-000004
进一步的,该实施例中,所述固定电位端B与钳位放大器AP2的输出端之间还连接有开关元件,所述钳位放大器AP2的输出端连接至所述开关元件的控制。上述开关元件仅在所述钳位放大器AP2处于正常工作状态时,所述开关元件导通,使得所述固定电位端B连接至所述霍尔元件。该实施例中,所述开关元件为PMOS晶体管M0,所述钳位放大器AP2的输出端连接至所述PMOS晶体管M0的栅极,所述PMOS晶体管M0的源极连接至所述钳位放大器AP2的负输入端,所述PMOS晶体管M0的漏极连接至所述电流切换单元132。在其他实施例中,也可以不用设置所述开关元件,将所述固定电位端B直接连接至所述电流切换单元132的输入端。
在其他实施例中,也可以通过其他钳位电路,将所述固定电位端B的电位限定在固定电位值,所述钳位电路的具体结构在此不做限定,本领域技术人员可以根据需求进行合理的选择。
进一步的,所述电流切换单元132包括连接在所述电流输出端B与各信号端之间的电流通路,各个电流通路上均设置有开关,以控制各电流通路的通断状态。具体的,所述电流输出端与信号端H1之间串联有开关S3a、S2b,与信号端H2之间串联有开关S4a和S2c,与信号端H3之间串联有S3a和S1c,与信号端H4之间串联有开关S3a和S1b。
所述电流切换单元132还可以包括连接于所述霍尔元件与比较模块120之间的连接通路上的开关,用于在霍尔元件的输出端发生切换时,将切换后的输出端连接至比较模块120。具体的,所述信号端H1与所述第一放大器AP1的正输入端之间串联有开关S2d,信号端H4与所述第一放大器AP1的正输入端之间串联有开关S1d,信号端H2与所述第一放大器AP1的负输入端之间串联有开关S1f,信号端H3与所述第一放大器AP1的负输入端之间串联有开关S2f。
所述控制电压切换单元133、电流切换单元132内各个开关的通断状态可以由预设的阈值控制信号控制,以周期性的控制各个开关的通断 状态,从而按照第一周期切换霍尔元件的输入端和控制端,以及按照第二周期依次向霍尔元件的各个信号端输入阈值控制电流I1。
该实施例中,所述比较模块120包括第一放大器AP1和与所述第一放大器AP1的输出端连接的比较器COMP;所述第一放大器AP1的两个输入端分别连接至所述霍尔元件的两个输出端,用于将所述两个输出端之间的传感信号放大后输出至所述比较器COMP,作为所述比较器COMP的差分输入信号;所述比较器COMP根据输入的差分输入信号大小,输出相应的控制信号VO1。所述第一放大器AP1的两个输出端分别连接至所述比较器COMP的两个输入端,所述第一放大器AP1的一个输出与所述比较器COMP的负输入端之间连接有电容C0,所述比较器COMP负输入端与COMP的输出端之间连接有开关S2g。第一放大器AP1将霍尔电压和阈值电压的混合信号放大,并将放大后的信号存入电容C0,然后比较器COMP再判断当前磁场是否达到了设定阈值。
该实施例中,所述全极性霍尔传感器件还包括逻辑模块140。
所述逻辑模块140用于对所述比较模块120输出的控制信号进行逻辑运算。
该实施例中,所述逻辑模块140用于对不同时刻输出的两个控制信号进行同或运算。具体的,所述逻辑模块140包括四个触发器以及同或门,分别为触发器1、触发器2、触发器3以及触发器4。触发器1的输入端D1连接至所述比较器COMP的输出端,触发器2的输出端D2连接至触发器1的输出端Q1,触发器1的时钟端C1和触发器2的时钟端C2均连接至第一时钟信号CK1;触发器3的输入端D3连接至所述触发器1的输出端Q1,触发器4的输入端D4连接至触发器2的输出端Q2,触发器3的时钟端C3和触发器4的时钟端C4均连接至第二时钟信号CK2;触发器3的输出端Q3以及触发器4的输出端Q4,连接至所述同或门的两个输入端,所述同或门输出开关信号VO2。
当触发器的时钟信号为0时,其输出信号保持上一个状态,即Q n=Q n-1。因此,当CK1=1,
Figure PCTCN2021137252-appb-000005
当CK2=1,
Figure PCTCN2021137252-appb-000006
所以
Figure PCTCN2021137252-appb-000007
所以,逻辑模块140的功能是将南极比较结果和北极比较结果做同或逻辑输出,使得所述霍尔传感器件实现霍尔传感开关的功能。
该实施例中,所述逻辑模块140还连接至输出模块150,用于将开关信号VO2反相放大后输出VOUT。所述输出模块150包括:包括晶体管M以及电阻R2,该实施例中,所述晶体管M为NMOS晶体管。所述电阻R2一端连接至电源电压VDD,另一端连接至所述晶体管M的漏极,所述晶体管M的栅极连接至所述锁存逻辑模块140的输出端,源极接地,以所述晶体管M的漏极作为输出端,用于输出控制信号VOUT。当Q3为高电平,晶体管M导通,VOUT为低电平;当Q3为低电平,晶体管M断开,VOUT为高电平。
当磁场B<BOPN<BOPS时,
Figure PCTCN2021137252-appb-000008
则Vo2=1,VOUT=0;
当BOPN<B<BOPS时,
Figure PCTCN2021137252-appb-000009
则Vo2=0,VOUT=1;
当BOPN<BOPS<B时,
Figure PCTCN2021137252-appb-000010
则Vo2=1,VOUT=0。
开关信号Vo2驱动输出电路150即可得到图1b所示的全极霍尔开关的功能图。
在其他实施例中,所述逻辑模块140还可以用于进行其他逻辑运算,用于实现其他功能,例如实现锁存霍尔传感功能等。
请进一步参考图4,为本发明一实施例的第一放大器AP1的结构示意图。
所述第一放大器AP1包括第三放大器AP3和第四放大器AP4;所述第三放大器AP3的正输入端连接至霍尔元件的一个输出端,输入电压V1,第三放大器AP3的负输入端与第四放大器AP4的正输入端之间串联有电阻R4,第四放大器AP4的负输入端连接至霍尔元件的另一输出端,输入电压V2;第三放大器AP3的输出端输出电压V3,且输出端与其负输入端之间串联有电阻R3;第四放大器AP4的输出端输出电压V4,且输出端与其证输入端连接。
根据图4电路,可以得到以下公式:
Figure PCTCN2021137252-appb-000011
V 4=V 2
由此,所述第一放大器AP1能够将差分信号V1、V2,放大为差分信号V3和V4,A1为第三放大器AP3的放大系数。
由上述公式可知,V 3>>V 4,相对于V3,则V4可看作为一个直流信号。
在其他实施例中,所述第一放大器AP1还可以采用其他能够对输入信号进行差分放大的电路结构。
本申请的实施例还提供一种全极性霍尔传感器件的控制方法,包括:按照第一周期切换所述霍尔元件的控制端和输出端,且按照第二周期依次向霍尔元件的各个信号端输入阈值控制电流。具体的,所述第一周期与所述第二周期相同。
上述切换过程通过控制所述全极性霍尔传感器件内的各个开关的通断状态实现。
请参考图5,为本发明一实施例的控制电压切换单元133、电流切换单元132内各个开关的阈值控制信号的示意图。
图5中,各个控制信号的高电平对应于开关导通,低电平对应于开关断开。具体的,开关S3a和开关S4a以周期T1切换开关状态,则切换霍尔元件的控制端和输出端的第一周期为T1/2;其他开关以周期T2切换开关状态,即第二周期为T2,其中T1=2T2,使得第一周期和第二周期相同。
以下,对各个周期下对应的电路状态进行具体描述。
请参考图6a,在周期1时,开关S3a导通、开关S4a断开、开关S2a~S2g导通,开关S1a~S1f断开。控制电压端A连接至信号端H4,H2接地,信号端H4和H2作为控制端;信号端H1和H3作为输出端,分别连接至第一放大器AP1的正输入端和负输入端,向所述比较模块120输出传感信号Vin。控制电流提供单元131的阈值控制电流I1,流向信号端H1,该周期下,霍尔元件产生霍尔电压-V H;S3a开关导通, 阈值控制电流I1在输出端之间产生叠加于霍尔上的阈值电压0.5I 1R H,其中R H为霍尔器件的等效电阻,则第一放大器AP1的输入信号Vin=-V H+0.5I 1R H;开关S2g导通,电容C0存储周期1时放大后的霍尔电压信号和阈值电压的混合信号V C1,V C1=A1*(-V H+0.5I 1R H)。
请参考图6b,周期2时,开关S3a导通、开关S4a断开、开关S1a~S1f开关导通、开关S2a~S2g断开,电压V A加在霍尔器件的H1和H3两端,H1和H3为控制端,H2和H4为输出端连接至第一放大器AP1的两个输入端。周期2时霍尔元件产生的霍尔电压为V H;开关S3a、S1c导通,阈值控制电流I1流向霍尔器件的信号端H3,周期2时产生的阈值电压为-0.5I 1R H,则第一放大器AP1的输入信号Vin=V H-0.5I 1R H,放大后信号为V C2=A1*(V H-0.5I 1R H);开关S2g断开,比较器COMP开始比较,比较的信号为V C2-V C1=A1*(V H-0.5I 1R H)-A1*(-V H+0.5I 1R H)=A1*(2V H-I 1R H)。当V C2-V C1=0,比较器COMP输出的控制信号发生翻转,对应于霍尔电压阈值V H1=0.5I 1R H
请参考图6c,周期3时,开关S3a断开、开关S4a导通,S2a~S2f开关导通,开关S1a~S1f断开,电压V A加在霍尔元件的H4和H2两端,H4和H2作为控制端,H1和H3作为输出端。周期3时霍尔器件产生的霍尔电压为-VH;S4a开关导通,阈值控制电流I1流向霍尔器件的H2端,产生的阈值电压为-0.5I 1R H,则放大器1的输入信号Vin=-V H-0.5I 1R H;开关S2g导通,电容C0存储周期3时放大后的霍尔电压信号和电压阈值的混合信号,V C3=A1*(-V H-0.5I 1R H)。
请参考图6d,周期4时S1a~S1f开关导通,S2a~S2f开关断开,电压VA加在霍尔器件的H1和H3两端,周期4时霍尔器件产生的霍尔电压为VH;S4a开关导通,阈值控制电流I1流向霍尔器件的信号端H4,产生的阈值电压为0.5I 1R H,则放大器1的输入信号Vin=V H+0.5I 1R H,放大后信号V C4=A1*(V H+0.5I 1R H);开关S2g断开,比较器COMP开始比较,比较的信号为V C4-V C3=A1*(V H+0.5I 1R H)-A1*(-V H-0.5I 1R H)=A1*(2V H+I 1R H)。当V C4-V C3=0,比较器COMP输出的控制信号发生翻转,对应于霍尔电压阈值V H2=-0.5I 1R H
可见比较器COMP输出信号发生翻转所对应的两个霍尔电压阈值分别为南极阈值电压VOPS=V H1=0.5I 1R H,以及北极阈值电压VOPN=V H2=-0.5I 1R H,分别对应于两个方向相反的磁场阈值BOPS和BOPN,即本发明的全极性霍尔传感器件有两个翻转点:南极翻转点(BOPS)和北极翻转点(BOPN)。
上述全极性霍尔传感器通过周期性的切换霍尔元件的控制端和输出端,以及依次向各个信号端输入阈值控制电流,使得输出的控制信号对应有两个磁场阈值,分别对应南极和北极磁场。仅需要一个霍尔元件,就能够实现全极性传感,降低了全极性霍尔传感器件的体积以及功耗。
进一步的,霍尔元件等效为一个惠斯通电桥(请参考图2c),每个桥臂的电阻为R H,两个输出端之间由于磁场B产生霍尔电压V H,
Figure PCTCN2021137252-appb-000012
由于阈值控制电流I 1的输入,第一放大器AP1的输入端输入差分电压Vin=0时,两个电压阈值VOPS=0.5I 1R H,VOPN=-0.5I 1R H,由于
Figure PCTCN2021137252-appb-000013
得到对应的两个磁场阈值分别为
Figure PCTCN2021137252-appb-000014
以及
Figure PCTCN2021137252-appb-000015
而限流电阻R1为方块电阻,
Figure PCTCN2021137252-appb-000016
其中,q为电荷常数,n为电子浓度,u n为电子迁移率,w为电阻的宽度,L为电阻的长度,d为电阻的厚度。
在恒压条件(即V A恒定的情况)下,霍尔元件的灵敏度可表示为:
Figure PCTCN2021137252-appb-000017
其中u n为霍尔元件的电子迁移率,与限流电阻R 1的迁移率相同。v为电荷运动速度,W′为霍尔元件110的宽度,L′为霍尔元件110的长度。由于R 1与u n成反比,K H与u n成正比,R 1与K H相乘,正好抵消了u n 的影响。
根据上述公式,可得比较器COMP的翻转点磁场阈值大小:
Figure PCTCN2021137252-appb-000018
以及
Figure PCTCN2021137252-appb-000019
由此可见,翻转点磁场B与温度相关的参数只有第一电阻R0的阻值,而与霍尔元件的温度系数无关。即便随温度变化,霍尔元件的电子迁移率发生变化而导致霍尔元件的灵敏度发生变化,但是翻转点磁场B s和B N的大小也不会跟随霍尔元件的灵敏度变化而变化,从而可以提高所述全极性霍尔传感器件的检测准确性。为了尽可能降低温度变化对翻转点磁场B的影响,所述第一电阻R0可以采用温度系数很小的电阻类型,例如低温飘电阻,包括:箔电阻、薄膜电阻、箔电阻、金属膜电阻以及模压电阻等。比较器COMP的翻转点磁场的大小随着温度的变化较小,可以得到一个稳定的磁场翻转点,从而提高了霍尔传感器件的稳定性。
本发明的实施例中,还提供一种电子设备,包括:如上述实施例中任一项所述的全极性霍尔传感器件。由于本发明的全极性霍尔传感器件的体积较小,功耗低,能够进一步提高电子设备的集成度,并降低功耗。
以上所述仅为本申请的实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,例如各实施例之间技术特征的相互结合,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (17)

  1. 一种全极性霍尔传感器件,其特征在于,包括:
    霍尔传感模块,包括霍尔元件,所述霍尔元件具有两对信号端,其中一对信号端作为两个控制端,连接至控制电压端,用于输入控制电压,另一对信号端作为两个输出端,所述两个输出端用于输出与外部磁场相关的传感信号;
    比较模块,用于接收所述传感信号,并根据所述传感信号输出相应的控制信号,在外部磁场达到磁场阈值时,所述控制信号发生翻转;
    阈值控制模块,用于按照第一周期切换所述霍尔元件的控制端和输出端,且按照第二周期依次向各个信号端输入阈值控制电流,使得所述控制信号发生翻转时,外部磁场对应于两个方向相反的磁场阈值中的任意一个。
  2. 根据权利要求1所述的全极性霍尔传感器件,其特征在于,所述第一周期与所述第二周期相同。
  3. 根据权利要求1所述的全极性霍尔传感器件,其特征在于,所述比较模块包括第一放大器和与所述第一放大器的输出端连接的比较器;其中,所述第一放大器的两个输入端分别连接至所述霍尔元件的两个输出端,用于将所述霍尔元件的两个输出端之间的传感电压放大后输出至所述比较器,以作为所述比较器的差分输入信号;所述比较器根据输入的差分输入信号大小,输出相应的控制信号;所述第一放大器的正输出端与所述比较器的负输入端之间串联一电容,且所述比较器的负输入端与输出端之间串联一开关,所述第一放大器的负输入端连接至所述比较器的正输入端。
  4. 根据权利要求1所述的全极性霍尔传感器件,其特征在于,所述阈值控制模块包括:控制电流提供单元和电流切换单元,所述控制电流提供单元用于提供阈值控制电流,所述电流切换单元用于按照第二周期切换所述控制电流提供单元的电流输出端与所述霍尔元件的各个信号端之间的通断状态。
  5. 根据权利要求4所述的全极性霍尔传感器件,其特征在于,所述控制电流提供单元包括:串联于电源电压与固定电位端之间的限流电阻,所述固定电位端具有固定电位。
  6. 根据权利要求5所述的全极性霍尔传感器件,其特征在于,所述控制电流提供单元还包括:钳位放大器,所述钳位放大器的正输入端连接至所述控制电压端,负输入端连接至所述固定电位端,且所述钳位放大器的输出端连接至所述钳位放大器的负输入端。
  7. 根据权利要求6所述的全极性霍尔传感器件,其特征在于,所述固定电位端与所述电流切换单元之间还连接有开关元件,所述钳位放大器的输出端连接至所述开关元件的控制端。
  8. 根据权利要求5所述的全极性霍尔传感器件,其特征在于,所述电流切换单元包括:连接在所述电流输出端与各信号端之间的电流通路,各个所述电流通路上均设置有开关,以控制各个所述电流通路的通断状态。
  9. 根据权利要求5所述的全极性霍尔传感器件,其特征在于,所述限流电阻与所述霍尔元件的电阻类型一致。
  10. 根据权利要求4所述的全极性霍尔传感器件,其特征在于,所述阈值控制模块还包括控制电压切换单元,所述控制电压切换单元连接于所述控制电压端与所述霍尔元件之间,用于按照第一周期切换所述控制电压端与所述霍尔元件的两对信号端之间的通断状态,以切换所述霍尔元件的控制端和输出端。
  11. 根据权利要求10所述的全极性霍尔传感器件,其特征在于,所述控制电压切换单元包括两个开关,分别连接至所述霍尔元件的两个相邻的信号端;所述霍尔元件的另外两个信号端接地。
  12. 根据权利要求1所述的全极性霍尔传感器件,其特征在于,还包括逻辑模块,连接至所述比较模块的输出端,用于对所述比较模块输出的控制信号进行逻辑运算。
  13. 根据权利要求12所述的全极性霍尔传感器件,其特征在于,所述逻辑模块用于对不同周期输出的控制信号进行同或运算,并输出开 关信号。
  14. 根据权利要求1所述的全极性霍尔传感器件,其特征在于,所述霍尔元件为正方形的霍尔盘,所述两对信号端分别为两组相对的顶角。
  15. 一种全极性霍尔传感器件的控制方法,其特征在于,包括:
    提供如权利要求1至14中任一项所述的全极性霍尔传感器件;
    按照第一周期切换所述霍尔元件的控制端和输出端,且按照第二周期,依次向所述霍尔元件的各个信号端输入阈值控制电流。
  16. 根据权利要求15所述的全极性霍尔传感器件的控制方法,其特征在于,所述第一周期与所述第二周期相同。
  17. 一种电子设备,其特征在于,包括:如权利要求1至14中任一项所述的全极性霍尔传感器件。
PCT/CN2021/137252 2021-12-10 2021-12-10 全极性霍尔传感器件及其控制方法、电子设备 WO2023102937A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2021/137252 WO2023102937A1 (zh) 2021-12-10 2021-12-10 全极性霍尔传感器件及其控制方法、电子设备
CN202111551125.XA CN114280512A (zh) 2021-12-10 2021-12-17 单霍尔传感器件和电子设备
CN202111551156.5A CN114285399A (zh) 2021-12-10 2021-12-17 单霍尔锁存传感器和电子设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/137252 WO2023102937A1 (zh) 2021-12-10 2021-12-10 全极性霍尔传感器件及其控制方法、电子设备

Publications (1)

Publication Number Publication Date
WO2023102937A1 true WO2023102937A1 (zh) 2023-06-15

Family

ID=80872861

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/137252 WO2023102937A1 (zh) 2021-12-10 2021-12-10 全极性霍尔传感器件及其控制方法、电子设备

Country Status (2)

Country Link
CN (2) CN114285399A (zh)
WO (1) WO2023102937A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116576932A (zh) * 2023-07-14 2023-08-11 微传智能科技(常州)有限公司 一种智能计量方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005260629A (ja) * 2004-03-12 2005-09-22 Toko Inc 磁気センサ回路
CN101779137A (zh) * 2007-08-21 2010-07-14 精工电子有限公司 磁性传感器电路
CN107436416A (zh) * 2017-08-28 2017-12-05 上海麦歌恩微电子股份有限公司 能处理垂直霍尔盘信号的磁开关系统及信号处理方法
CN110120803A (zh) * 2018-02-06 2019-08-13 意瑞半导体(上海)有限公司 一种全极霍尔开关电路
CN113411074A (zh) * 2021-07-13 2021-09-17 上海艾为电子技术股份有限公司 霍尔传感器开关及电子设备

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59800474D1 (de) * 1997-11-28 2001-03-22 Saia Burgess Electronics Ag Mu Gleichstrommotor
CN101320082B (zh) * 2007-06-07 2010-08-18 勤益股份有限公司 霍尔磁场元件测试装置
JP4897585B2 (ja) * 2007-06-22 2012-03-14 ローム株式会社 磁気センサ回路及びこれを用いた電子機器
JP4786608B2 (ja) * 2007-07-30 2011-10-05 パナソニック株式会社 磁界検出装置
JP5109800B2 (ja) * 2008-05-19 2012-12-26 株式会社島津製作所 磁気計測装置
KR101594866B1 (ko) * 2009-06-02 2016-02-26 엘에스산전 주식회사 전원 차단 시스템용 병렬 디지털 신호의 직렬 디지털 신호로의 변환 장치 및 방법
CN101825690A (zh) * 2010-05-13 2010-09-08 上海欣磁电子科技有限公司 一种全极性磁场检测方法
US8669759B2 (en) * 2011-03-31 2014-03-11 Infineon Technologies Ag Omnipolar magnetic switches
WO2014036664A1 (en) * 2012-09-07 2014-03-13 Sensima Technology Sa Hall-effect-based angular orientation sensor and corresponding methods and devices
CN103308075B (zh) * 2013-05-07 2016-08-03 赛卓电子科技(上海)有限公司 电流输出型线性霍尔传感器
CN103326702B (zh) * 2013-05-31 2015-11-11 北京经纬恒润科技有限公司 一种霍尔开关电路
CN104734669A (zh) * 2013-12-20 2015-06-24 施耐德电气工业公司 可配置硬件滤波器
CN104076196B (zh) * 2014-06-27 2017-02-15 南京城市职业学院 一种高精度直流电流霍尔数字传感系统及电流测量方法
US9716453B2 (en) * 2014-08-08 2017-07-25 Johnson Electric S.A. Magnetic sensor and an integrated circuit
CN107314782A (zh) * 2017-05-18 2017-11-03 重庆神缘智能科技有限公司 一种霍尔计数装置
CN107437934B (zh) * 2017-09-08 2023-09-01 上海灿瑞微电子有限公司 一种全极性霍尔传感器开关
JP2019097075A (ja) * 2017-11-24 2019-06-20 オムロン株式会社 デジタルノイズフィルタ
JP7061457B2 (ja) * 2017-12-22 2022-04-28 ローム株式会社 磁気センサ、半導体装置及び電気機器
CN110816399A (zh) * 2018-08-14 2020-02-21 深圳市路畅科技股份有限公司 一种模拟汽车引擎进行鸣声的方法、装置及系统
CN111525918A (zh) * 2019-02-02 2020-08-11 邵金泽 单路多功能定向磁控电子开关模块
CN112325755A (zh) * 2020-11-03 2021-02-05 上海艾为电子技术股份有限公司 一种位置传感系统、获取位置传感信号的方法及电子设备
CN213602634U (zh) * 2020-12-24 2021-07-02 南京邮电大学 一种带稳定电平转换器的串并转换电路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005260629A (ja) * 2004-03-12 2005-09-22 Toko Inc 磁気センサ回路
CN101779137A (zh) * 2007-08-21 2010-07-14 精工电子有限公司 磁性传感器电路
CN107436416A (zh) * 2017-08-28 2017-12-05 上海麦歌恩微电子股份有限公司 能处理垂直霍尔盘信号的磁开关系统及信号处理方法
CN110120803A (zh) * 2018-02-06 2019-08-13 意瑞半导体(上海)有限公司 一种全极霍尔开关电路
CN113411074A (zh) * 2021-07-13 2021-09-17 上海艾为电子技术股份有限公司 霍尔传感器开关及电子设备

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116576932A (zh) * 2023-07-14 2023-08-11 微传智能科技(常州)有限公司 一种智能计量方法
CN116576932B (zh) * 2023-07-14 2023-10-20 微传智能科技(常州)有限公司 一种智能计量方法

Also Published As

Publication number Publication date
CN114280512A (zh) 2022-04-05
CN114285399A (zh) 2022-04-05

Similar Documents

Publication Publication Date Title
US6356741B1 (en) Magnetic pole insensitive switch circuit
CN100495919C (zh) 具有多增益级的比较器
KR101918338B1 (ko) 센서 장치
CN113411074B (zh) 霍尔传感器开关及电子设备
US9322672B2 (en) Magnetic sensor device
JP4675994B2 (ja) 磁気センサ及び磁気測定方法
US9267818B2 (en) Magnetic sensor device
US9461589B2 (en) Asymmetric H-bridge in a class D power amplifier
CN103248345A (zh) 一种开关型霍尔传感器的温度补偿电路和温度补偿方法
CN101562453A (zh) 一种模拟采样开关及模数转换器
JP2010268350A (ja) 終端抵抗調整回路
WO2023102937A1 (zh) 全极性霍尔传感器件及其控制方法、电子设备
CN108664077B (zh) 电流传送器电路、对应的设备、装置和方法
CN203301443U (zh) 一种开关型霍尔传感器的温度补偿电路
US4091333A (en) Transconductance amplifier circuit
CN114279470A (zh) 锁存霍尔传感器和电子设备
JP2015078949A (ja) ホール起電力信号検出回路
KR19980025477A (ko) 선형화된 저항성을 이용한 모스펫 아날로그 곱셈기
CN102097939A (zh) 一种电流采样电路
TWM383162U (en) Analog multiplier
CN216086592U (zh) 电子设备
CN105425886B (zh) 一种电压调整电路及程控电源
CN114244291B (zh) 功率驱动放大电路及方法
CN107479620A (zh) 一种平方根项跨导电路
TWI763688B (zh) 輸入裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21966855

Country of ref document: EP

Kind code of ref document: A1