CN203301443U - 一种开关型霍尔传感器的温度补偿电路 - Google Patents

一种开关型霍尔传感器的温度补偿电路 Download PDF

Info

Publication number
CN203301443U
CN203301443U CN2013202851979U CN201320285197U CN203301443U CN 203301443 U CN203301443 U CN 203301443U CN 2013202851979 U CN2013202851979 U CN 2013202851979U CN 201320285197 U CN201320285197 U CN 201320285197U CN 203301443 U CN203301443 U CN 203301443U
Authority
CN
China
Prior art keywords
hall
temperature
resistance
voltage
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn - After Issue
Application number
CN2013202851979U
Other languages
English (en)
Inventor
彭卓
陈忠志
赵翔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHENGDU XINJIN ELECTRONIC Co Ltd
Original Assignee
CHENGDU XINJIN ELECTRONIC Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHENGDU XINJIN ELECTRONIC Co Ltd filed Critical CHENGDU XINJIN ELECTRONIC Co Ltd
Priority to CN2013202851979U priority Critical patent/CN203301443U/zh
Application granted granted Critical
Publication of CN203301443U publication Critical patent/CN203301443U/zh
Anticipated expiration legal-status Critical
Withdrawn - After Issue legal-status Critical Current

Links

Images

Landscapes

  • Measuring Magnetic Variables (AREA)
  • Hall/Mr Elements (AREA)

Abstract

本实用新型公开了一种开关型霍尔传感器,包括:霍尔薄片、差分放大器、开关电容电路、稳压器、迟滞比较器,在稳压器和开关电容电路之间串联有参考电流产生电路和阈值电压产生电路,生成参考电流和阈值电压提供给迟滞比较器,迟滞比较器将放大后的霍尔感应电压与阈值电压进行比较,输出判别结果送入输出级。本实用新型增加了参考电流产生电路模块,改变了阈值电压产生方式,温度补偿精度更高,且不会受到电阻温度系数非线性的影响,可以在每一个温度值上实现无差别的高精度的补偿,降低了对所使用的工艺线的要求,无需特定的正负温度系数的电阻,放宽了设计工程师对工艺线的选择面。

Description

一种开关型霍尔传感器的温度补偿电路
技术领域
本实用新型涉及一种温度补偿电路,尤其涉及一种开关型霍尔传感器的温度补偿电路。
背景技术
霍尔传感器是根据霍尔效应制作的一种磁场传感器。霍尔效应是磁电效应的一种,该效应是美国科学家Hall于1879年在研究金属的导电机构时发现的。后来人们发现半导体的霍尔效应比金属强得多,利用这一现象制成了各种霍尔元件,广泛的应用于工业自动化,汽车电子,消费电子等领域。
在半导体薄片两端通以偏置电流I,并在薄片的垂直方向施加磁感应强度为B的磁场,则在垂直于电流和磁场的方向上,将产生电势差,该电势差被称为霍尔电压VHall
V Hall = K IB d - - - ( 1 )
I为流过霍尔薄片的偏置电流;
B为垂直霍尔薄片的磁场大小;
d为霍尔薄片的厚度;
k为霍尔系数,它与霍尔薄片的几何形状,材料有关。
基于霍尔效应可以制作出一系列的磁场传感器产品,霍尔开关是其中的一种。它通过霍尔薄片来感应外界磁场,当磁场大小达到阈值时,输出相应的数字电平来表征磁场的方向。
常规的开关型霍尔传感器如图1所示,包括稳压器,霍尔薄片,霍尔电压差分放大器,迟滞比较器,输出级。其中,霍尔薄片由半导体材料构成,当温度升高时,霍尔薄片的电阻会随之增加,而施加给霍尔薄片的电压是固定不变的,因此流过霍尔薄片的电流将随着温度的增加而降低,从式1可知这会导致霍尔开关的磁灵敏度降低。当温度升高到一定程度,可能会导致霍尔感应电压无法达到电路设定的阈值,从而霍尔开关的功能失效,无法感应磁场的变化。为解决这个问题,提高霍尔开关的应用温度范围,现有技术中提供了一种传统的温度补偿电路的方法:增加一个阈值电压产生电路模块,如图2和图3所示:增加一个阈值电压产生电路模块,该模块产生一个阈值电压提供给迟滞比较器,该模块采用正温度系数电阻(R7与R10)和负温度系数电阻(R8和R9)构成一个电阻串,通过选取合适的电阻比例,产生温度系数与霍尔感应电压温度系数大致相同的阈值电压。该方案可以在一定程度上对霍尔开关的灵敏度进行补偿,但是由于电阻随温度的变化并非线性,会导致在不同的温度下,磁灵敏度的补偿精度不一样。该温度补偿方法误差偏高,并且需要所使用的工艺线具有合适的正负温度系数的电阻类型。
专利申请号为201110103117.9的中国专利公开了一种温度补偿方式,即为传统的采用正负温度系数电阻进行温度补偿的方案。通过选取合适的正负温度系数电阻类型和电阻比例,可实现对霍尔感应电压温度漂移的补偿。但实际情况下由于电阻温度系数的非线性,该方案的补偿误差偏高,无法在每一个温度值上都实现无差别的补偿。集成电路的生产过程中受工艺控制精度的影响,不同批次的电阻阻值会有一定的差异,由于传统的补偿电路采用了正负温度系数两种电阻,其补偿效果和电阻阻值有直接关系,因此传统的方案容易受到工艺的影响。
实用新型内容
本实用新型的目的在于提供一种开关型霍尔传感器的温度补偿电路和温度补偿方法,该温度补偿电路及温度补偿方法的温度补偿效果与电阻阻值无关,不会受到不同批次工艺偏差的影响,解决现有技术存在的缺憾。
本实用新型采用如下技术方案实现:
一种开关型霍尔传感器的温度补偿电路,包括:一个霍尔薄片,用于将感应磁块信号并将其转化为电压信号;一个差分放大器,用于将霍尔电压进行放大;一个开关电容电路,用于将放大后的霍尔信号进行失调消除;一个稳压器,用于将外部电压转化为稳定的内部工作电压并提供给其他电路模块;一个迟滞比较器,用于将放大后的霍尔信号与阈值电压进行比较、输出判别结果并送入功率输出级,其特征在于:
在稳压器和开关电容电路之间串联有参考电流产生电路和阈值电压产生电路,所述参考电流产生电路生成一个与霍尔薄片电流温度系数相同的参考电流,所述阈值电压产生电路产生与霍尔感应电压的温度系数相同的阈值电压,提供给所述迟滞比较器,所述迟滞比较器将放大后的霍尔感应电压与阈值电压进行比较,输出判别结果送入输出级。
进一步的,所述霍尔薄片一端与稳压器相连,另一端接地,所述霍尔薄片还与所述差分放大器相连,所述差分放大器依次与开关电容电路、迟滞比较器和输出级相连。
进一步的,所述参考电流产生电路中包括第一、二、九晶体管,第一、二运算放大器,第一、二、三、四电阻,所述第一电阻的材料和几何形状与所述霍尔薄片相同,所述第一、二晶体管相连构成cascode电流镜,所述第一运算放大器与第九晶体管构成反馈环路。
进一步的,所述第一运算放大器的输出端连接所述第九晶体管的栅极,第一运算放大器的负输入端连接第九晶体管的漏极。
进一步的,所述第一电阻的面积为所述霍尔薄片的25%至50%。
进一步的,所述第二、三、四电阻均为高方块阻值电阻。
进一步的,还包括第五、六电阻,第七、八、十三、十四晶体管,所述第七、八晶体管相连构成PMOS cascode电流源,所述第十三、十四晶体管相连构成NMOS cascode电流源。
进一步的,所述第五、六电阻的温度系数为1x10-5/℃。
一种开关型霍尔传感器的温度补偿方法,其特征在于,包括如下步骤:感应磁场信号将其转化为电压信号,产生一个与霍尔薄片电流温度系数相同的参考电流,产生与霍尔感应电压的温度系数相同的阈值电压并提供给迟滞比较器,将霍尔感应电压进行放大并将放大后的霍尔信号进行失调消除,将放大后的霍尔感应电压与阈值电压进行比较,输出判别结果。
进一步的,所述参考电流通过电流镜镜像得到大小相等的偏置电流(ib3)和(ib4),阈值电压的温度系数与流过霍尔薄片的电流温度系数相同。
本实用新型具备的有益技术效果是:
与传统的温度补偿方案相比,本实用新型增加了参考电流产生电路模块,改变了阈值电压产生方式。本实用新型的温度补偿精度更高,且不会受到电阻温度系数非线性的影响,可以在每一个温度值上实现无差别的高精度的补偿。本实用新型降低了对所使用的工艺线的要求,无需特定的正负温度系数的电阻,放宽了设计工程师对工艺线的选择面。
附图说明
图1是常规开关型霍尔传感器的电路结构框图。
图2是现有技术温度补偿电路的结构框图。
图3是现有技术正、负温度系数电阻的电阻串。
图4是本实用新型开关型霍尔传感器的温度补偿电路结构框图。
图5是本实用新型开关型霍尔传感器的温度补偿电路结构原理图。
图6是本实用新型开关型霍尔传感器的温度补偿电路的整体结构图。
具体实施方式
通过下面对实施例的描述,将更加有助于公众理解本实用新型,但不能也不应当将申请人所给出的具体的实施例视为对本实用新型技术方案的限制,任何对部件或技术特征的定义进行改变和/或对整体结构作形式的而非实质的变换都应视为本实用新型的技术方案所限定的保护范围。
一种开关型霍尔传感器的温度补偿电路,包括:一个霍尔薄片,用于将感应磁块信号并将其转化为电压信号;一个差分放大器,用于将霍尔电压进行放大;一个开关电容电路,用于将放大后的霍尔信号进行失调消除;一个稳压器,用于将外部电压转化为稳定的内部工作电压并提供给其他电路模块;一个迟滞比较器,用于将放大后的霍尔信号与阈值电压进行比较、输出判别结果并送入功率输出级,其特征在于:
在稳压器和开关电容电路之间串联有参考电流产生电路和阈值电压产生电路,所述参考电流产生电路生成一个与霍尔薄片电流温度系数相同的参考电流,所述阈值电压产生电路产生与霍尔感应电压的温度系数相同的阈值电压,提供给所述迟滞比较器,所述迟滞比较器将放大后的霍尔感应电压与阈值电压进行比较,输出判别结果送入输出级。
进一步的,所述霍尔薄片一端与稳压器相连,另一端接地,所述霍尔薄片还与所述差分放大器相连,所述差分放大器依次与开关电容电路、迟滞比较器和输出级相连。
参考电流产生电路中包括第一、二、九晶体管,第一、二运算放大器,第一、二、三、四电阻,所述第一电阻的材料和几何形状与所述霍尔薄片相同,所述第一、二晶体管相连构成cascode电流镜,所述第一运算放大器与第九晶体管构成反馈环路。
进一步的,所述第一运算放大器的输出端连接所述第九晶体管的栅极,第一运算放大器的负输入端连接第九晶体管的漏极。
进一步的,所述第一电阻的面积为所述霍尔薄片的25%至50%。
进一步的,所述第二、三、四电阻均为高方块阻值电阻。
进一步的,还包括第五、六电阻,第七、八、十三、十四晶体管,所述第七、八晶体管相连构成PMOS cascode电流源,所述第十三、十四晶体管相连构成NMOS cascode电流源。
进一步的,所述第五、六电阻的温度系数为1x10-5/℃。
一种开关型霍尔传感器的温度补偿方法,包括如下步骤:感应磁场信号将其转化为电压信号,产生一个与霍尔薄片电流温度系数相同的参考电流,产生与霍尔感应电压的温度系数相同的阈值电压并提供给迟滞比较器,将霍尔感应电压进行放大并将放大后的霍尔信号进行失调消除,将放大后的霍尔感应电压与阈值电压进行比较,输出判别结果。
所述参考电流通过电流镜镜像得到大小相等的偏置电流ib3和ib4,阈值电压的温度系数与流过霍尔薄片的电流温度系数相同。
如图1所示,常规的开关型霍尔传感器,包括稳压器,霍尔薄片,霍尔电压差分放大器,迟滞比较器,输出级。其中霍尔薄片由半导体材料构成,当温度升高时,霍尔薄片的电阻会随之增加,而施加给霍尔薄片的电压是固定不变的,因此流过霍尔薄片的电流将随着温度的增加而降低,从背景技术部分的式(1)可知这会导致霍尔开关的磁灵敏度降低。当温度升高到一定程度,可能会导致霍尔感应电压无法达到电路设定的阈值,从而霍尔开关的功能失效,无法感应磁场的变化。为了提高霍尔开关的应用温度范围,需要在电路中加入温度补偿电路。
如图2和图3所示传统的补偿方式采用的阈值电压产生电路,增加一个阈值电压产生电路模块,该模块产生一个阈值电压提供给迟滞比较器,该模块采用正温度系数电阻(R7与R10)和负温度系数电阻(R8和R9)构成一个电阻串,通过选取合适的电阻类型与电阻比例来实现温度补偿,产生温度系数与霍尔感应电压温度系数大致相同的阈值电压。该方案可以在一定程度上对霍尔开关的灵敏度进行补偿,但是由于电阻随温度的变化并非线性,会导致在不同的温度下,磁灵敏度的补偿精度不一样。该温度补偿方法误差偏高,并且需要所使用的工艺线具有合适的正负温度系数的电阻类型。
如图4至图6所示:霍尔薄片的磁感应灵敏度随温度的增加而降低,因此霍尔传感器需要温度补偿电路来弥补其灵敏度的温度漂移。本实用新型的温度补偿方案如下:通过参考电流产生电路生成一个与流过霍尔薄片电流的温度系数相同的参考电流Iref,将该电流镜像后与温度系数很低的第五电阻R5,第六电阻R6生成阈值电压提供给迟滞比较器。该方案下迟滞比较器的阈值电压的温度系数与霍尔薄片灵敏度的温度系数几乎相同,仅仅受到阈值电压产生电路中第九电阻R9,第十电阻R10的温度系数的影响。假设阈值电压产生电路中选择温度系数为1x10-5的电阻,则在-40℃至150℃范围内,磁灵敏度的温度漂移仅为0.1%至0.2%,足以满足开关型霍尔传感器的应用需求。
本实用新型所提出的开关型霍尔传感器温度补偿方法以及电路包括:霍尔薄片,稳压器,偏置电流产生电路,阈值电压产生电路,霍尔电压差分放大器,开关电容电路,迟滞比较器,输出级。霍尔薄片感应磁场信号将其转化为电压信号;稳压器将外部电压VIN转化为稳定的内部工作电压VDD提供给其他电路模块;参考电流产生电路产生一个与霍尔薄片电流温度系数相同的参考电流;阈值电压产生电路产生温度系数随霍尔薄片灵敏度变化的阈值电压,提供给迟滞比较器;差分放大器将霍尔电压进行放大;开关电容电路将放大后的霍尔信号进行失调消除;迟滞比较器将放大后的霍尔信号与阈值电压进行比较,输出判别结果送入功率输出级。与传统的温度补偿方案相比,本实用新型增加了参考电流产生电路模块,改变了阈值电压产生方式。本实用新型的温度补偿精度更高,且不会受到电阻温度系数非线性的影响,可以在每一个温度值上实现无差别的高精度的补偿。本实用新型降低了对所使用的工艺线的要求,无需特定的正负温度系数的电阻,放宽了设计工程师对工艺线的选择面。
图4给出了本实用新型的系统框图,相比于传统的开关型霍尔传感器集成电路,本实用新型增加了参考电流产生电路,并改变了阈值电压的产生方式。
参考电流产生电路由电阻R1,R2,R3,R4,低失调的运放OPA1与OPA2,电流镜等部分组成。电阻R1的材料与霍尔薄片相同,电阻R1的几何形状与霍尔薄片相同,为霍尔薄片的等比例放大或缩小,通常选取霍尔薄片的25%至50%以节省版图空间。
分压电阻:第二电阻R2、第三电阻R3、第四电阻R4为同类型电阻,主要用作对VDD进行分解,得到与VDD成比例的电压。运放OPA1与晶体管M9构成反馈环路,将电阻R1的电压稳定在
Figure BDA00003235693900081
因此流过电阻R1的参考电流Iref的大小如式2所示:
Iref = R 4 R 2 + R 3 + R 4 * VDD R 1 - - - ( 2 )
通过采用合适的电阻比例,经过反馈环路后稳定在第一电阻R1的电压大小可取VDD的1/10至1/4。第二运算放大器OPA2连接成电压跟随器的结构,它的作用是将阈值电压产生电路模块的VCM节点电压稳定在VDD/2。
阈值电压产生电路模块由电流源与电阻串组成。第一晶体管M7和第八晶体管M8构成PMOS cascode电流源Ib3;第十三晶体管M13和第十四晶体管M14构成NMOS cascode电流源Ib4。Ib3和Ib4通过cascode电流镜镜像参考电流Iref得到,它们的大小相等。电阻串由低温度系数的电阻R5和R6组成。阈值电压ΔV1如式(3)所示。
ΔV1=V1-VCM=Ib3*R5=m*Iref*R5     (3)
m为Iref通过cascode电流镜镜像后得到Ib3的比例因子。
将(2)代入(3),可得:
ΔV 1 = m * R 4 R 2 + R 3 + R 4 * VDD R 1 * R 5 - - - ( 4 )
因为第二电阻R2、第三电阻R3和第四电阻R4的类型相同,所以从式(4)中可知,ΔV1的温度系数与VDD,第一电阻R1,第五电阻R5有关。
流过霍尔薄片的偏置电流大小为
I = VDD Rhall - - - ( 5 )
其中VDD为稳压器输出的电压,供给霍尔薄片以及其他内部电路模块,Rhall为霍尔薄片的电阻
V Hall = k IB d = k VDD Rhall * B d - - - ( 6 )
从式(6)中可知VHall的温度系数与VDD,Rhall的温度系数有关。
本实用新型中,第一电阻R1采用与霍尔薄片相同的材料,阻值大小与RHall相等,所以对比式(4)和式(6)可知,霍尔感应电压Vhall和迟滞比较器阈值电压ΔV1的温度系数的差别仅仅在于第五电阻(R5)的温度变化,如式7所示。
d ΔV 1 Vhall dT = m * R 4 R 2 + R 3 + R 4 * B d * dR 5 dT - - - ( 7 )
同理可得迟滞比较器另一个阈值电压ΔV2与霍尔感应电压Vhall的温度系数不同之处仅仅在于第六电阻R6的温度变化。
本实用新型中第五电阻R5和第六电阻R6选择温度系数很低的电阻类型,比如选择温度系数为1x10-5的电阻类型,则温度从-40℃变化到150℃时,R2的电阻变化比率不到0.2%,相应的霍尔传感器的磁灵敏度的温度漂移比率不超过0.2%。
该方案的温度补偿效果精度高于传统的采用一定比例的正负温度系数电阻产生阈值电压的方式,更大的优势在于该方案在整个应用温度范围内每一个温度值上实现的都是几乎无差别的精确补偿。此外,本实用新型可以解决温度补偿电路易受到工艺批次影响的问题。集成电路的生产过程中受工艺控制精度的影响,不同批次的电阻阻值会有一定的差异,由于传统的补偿电路采用了正负温度系数两种电阻,其补偿效果和电阻阻值有直接关系,因此传统的方案容易受到工艺的影响。本实用新型的温度补偿效果与电阻阻值无关,不会受到不同批次工艺偏差的影响。
当然,本实用新型还可以有其他多种实施例,在不背离本实用新型精神及其实质的情况下,熟悉本领域的技术人员可以根据本实用新型做出各种相应的改变和变形,但这些相应的改变和变形都应属于本实用新型所附的权利要求的保护范围。

Claims (8)

1.一种开关型霍尔传感器的温度补偿电路,包括:一个霍尔薄片,用于将感应磁块信号并将其转化为电压信号;一个差分放大器,用于将霍尔电压进行放大;一个开关电容电路,用于将放大后的霍尔信号进行失调消除;一个稳压器,用于将外部电压转化为稳定的内部工作电压并提供给其他电路模块;一个迟滞比较器,用于将放大后的霍尔信号与阈值电压进行比较、输出判别结果并送入功率输出级,其特征在于:
在稳压器和开关电容电路之间串联有参考电流产生电路和阈值电压产生电路,所述参考电流产生电路生成一个与霍尔薄片电流温度系数相同的参考电流,所述阈值电压产生电路产生与霍尔感应电压的温度系数相同的阈值电压,提供给所述迟滞比较器,所述迟滞比较器将放大后的霍尔感应电压与阈值电压进行比较,输出判别结果送入输出级。
2.根据权利要求1所述的开关型霍尔传感器的温度补偿电路,其特征在于,所述霍尔薄片一端与稳压器相连,另一端接地,所述霍尔薄片还与所述差分放大器相连,所述差分放大器依次与开关电容电路、迟滞比较器和输出级相连。
3.根据权利要求1或2所述的开关型霍尔传感器的温度补偿电路,其特征在于,所述参考电流产生电路中包括第一、二、九晶体管,第一、二运算放大器,第一、二、三、四电阻,所述第一电阻的材料和几何形状与所述霍尔薄片相同,所述第一、二晶体管相连构成cascode电流镜,所述第一运算放大器与第九晶体管构成反馈环路。
4.根据权利要求3所述的开关型霍尔传感器的温度补偿电路,其特征在于,所述第一运算放大器的输出端连接所述第九晶体管的栅极,第一运算放大器的负输入端连接第九晶体管的漏极。
5.根据权利要求3所述的开关型霍尔传感器的温度补偿电路,其特征在于,所述第一电阻的面积为所述霍尔薄片的25%至50%。
6.根据权利要求3所述的开关型霍尔传感器的温度补偿电路,其特征在于,所述第二、三、四电阻均为高方块阻值电阻。
7.根据权利要求1或2所述的开关型霍尔传感器的温度补偿电路,其特征在于,还包括第五、六电阻,第七、八、十三、十四晶体管,所述第七、八晶体管相连构成PMOS cascode电流源,所述第十三、十四晶体管相连构成NMOS cascode电流源。
8.根据权利要求7所述的开关型霍尔传感器的温度补偿电路,其特征在于,所述第五、六电阻的温度系数为1x10-5/℃。
CN2013202851979U 2013-05-23 2013-05-23 一种开关型霍尔传感器的温度补偿电路 Withdrawn - After Issue CN203301443U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2013202851979U CN203301443U (zh) 2013-05-23 2013-05-23 一种开关型霍尔传感器的温度补偿电路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2013202851979U CN203301443U (zh) 2013-05-23 2013-05-23 一种开关型霍尔传感器的温度补偿电路

Publications (1)

Publication Number Publication Date
CN203301443U true CN203301443U (zh) 2013-11-20

Family

ID=49577423

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2013202851979U Withdrawn - After Issue CN203301443U (zh) 2013-05-23 2013-05-23 一种开关型霍尔传感器的温度补偿电路

Country Status (1)

Country Link
CN (1) CN203301443U (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103248345A (zh) * 2013-05-23 2013-08-14 成都芯进电子有限公司 一种开关型霍尔传感器的温度补偿电路和温度补偿方法
RU2596905C1 (ru) * 2015-08-11 2016-09-10 Акционерное общество "Научно-исследовательский институт физических измерений" Способ уменьшения температурной погрешности датчика холла
CN112461270A (zh) * 2020-09-29 2021-03-09 成都凯天电子股份有限公司 一种霍尔传感器温度补偿方法
CN112838575A (zh) * 2021-01-07 2021-05-25 四川众航电子科技有限公司 一种温度补偿的霍尔传感器装置
CN113411074A (zh) * 2021-07-13 2021-09-17 上海艾为电子技术股份有限公司 霍尔传感器开关及电子设备
CN114111846A (zh) * 2022-01-26 2022-03-01 南京中旭电子科技有限公司 适用于霍尔传感器的补偿方法、装置及存储介质

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103248345A (zh) * 2013-05-23 2013-08-14 成都芯进电子有限公司 一种开关型霍尔传感器的温度补偿电路和温度补偿方法
CN103248345B (zh) * 2013-05-23 2018-03-27 成都芯进电子有限公司 一种开关型霍尔传感器的温度补偿电路和温度补偿方法
RU2596905C1 (ru) * 2015-08-11 2016-09-10 Акционерное общество "Научно-исследовательский институт физических измерений" Способ уменьшения температурной погрешности датчика холла
CN112461270A (zh) * 2020-09-29 2021-03-09 成都凯天电子股份有限公司 一种霍尔传感器温度补偿方法
CN112838575A (zh) * 2021-01-07 2021-05-25 四川众航电子科技有限公司 一种温度补偿的霍尔传感器装置
CN113411074A (zh) * 2021-07-13 2021-09-17 上海艾为电子技术股份有限公司 霍尔传感器开关及电子设备
CN113411074B (zh) * 2021-07-13 2022-11-15 上海艾为电子技术股份有限公司 霍尔传感器开关及电子设备
CN114111846A (zh) * 2022-01-26 2022-03-01 南京中旭电子科技有限公司 适用于霍尔传感器的补偿方法、装置及存储介质

Similar Documents

Publication Publication Date Title
CN103248345A (zh) 一种开关型霍尔传感器的温度补偿电路和温度补偿方法
CN203301443U (zh) 一种开关型霍尔传感器的温度补偿电路
CN102185600A (zh) 基于cmos工艺的霍尔开关温度补偿方法及其电路
CN103929166B (zh) 一种可编程开关型霍尔传感器
CN102622032B (zh) 低温度系数带隙电压基准电路
CN101886933B (zh) 带温度补偿的霍尔开关电路
CN102981545B (zh) 一种高阶曲率补偿的带隙基准电压电路
CN104215353A (zh) 用于温度测量系统的输入级
CN107390761A (zh) 一种cmos集成霍尔传感器温度补偿电路
CN111026220B (zh) 一种cmos霍尔传感器温度稳定控制系统
CN105051555A (zh) 虚拟电阻电路以及电荷检测电路
CN113411074B (zh) 霍尔传感器开关及电子设备
KR20160142240A (ko) 온도 보상 회로 및 센서 장치
CN202077004U (zh) 基于cmos工艺的霍尔开关温度补偿电路
CN115437442A (zh) 高阶补偿带隙电压基准电路
TWI484148B (zh) 溫度感測電路
CN106774572B (zh) 米勒补偿电路及电子电路
CN106155171B (zh) 线性温度系数补偿的带隙电压基准电路
CN109520635B (zh) 一种铂电阻非线性补偿及信号处理电路
US20170104494A1 (en) Signal-processing circuit
CN203554414U (zh) 振荡器
CN110377097B (zh) 一种应用于电流模式的cmos集成霍尔传感器温度补偿电路
CN203950228U (zh) 电流源电路
JP6257019B2 (ja) 磁気センサ
CN102915066B (zh) 用于输出基准电压的电路

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
AV01 Patent right actively abandoned

Granted publication date: 20131120

Effective date of abandoning: 20180327

AV01 Patent right actively abandoned