WO2023100892A1 - Transparent body measuring method and measuring instrument, and method for producing glass plate - Google Patents

Transparent body measuring method and measuring instrument, and method for producing glass plate Download PDF

Info

Publication number
WO2023100892A1
WO2023100892A1 PCT/JP2022/044027 JP2022044027W WO2023100892A1 WO 2023100892 A1 WO2023100892 A1 WO 2023100892A1 JP 2022044027 W JP2022044027 W JP 2022044027W WO 2023100892 A1 WO2023100892 A1 WO 2023100892A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring
transparent body
mounting table
measurement
measuring device
Prior art date
Application number
PCT/JP2022/044027
Other languages
French (fr)
Japanese (ja)
Inventor
直樹 大庭
忠 高橋
透 前田
裕二 徳丸
智明 小柳
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2023100892A1 publication Critical patent/WO2023100892A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/892Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the flaw, defect or object feature examined
    • G01N21/896Optical defects in or on transparent materials, e.g. distortion, surface flaws in conveyed flat sheet or rod

Definitions

  • the present invention relates to a measuring method and measuring instrument capable of measuring the characteristics of transparent bodies including glass plates, and a method of manufacturing a glass plate.
  • Patent Document 1 a pedestal, a mounting table that is held by the pedestal and on which a glass substrate is mounted, and a glass substrate that is horizontally supported by the mounting table are irradiated with a laser beam to measure strain. and a measuring unit (glass substrate strain measuring device) is disclosed (see claim 6 of the same document).
  • the pedestal has a slide mechanism that moves the mounting table in the horizontal direction.
  • the mounting table has a plurality of openings for irradiating the glass substrate with laser light emitted from the strain measuring section.
  • the strain measuring unit includes a laser light irradiation unit movable in a direction orthogonal to the moving direction of the mounting table, and a laser light receiving unit arranged to face the laser light irradiation unit and movable in the same direction as the laser light irradiation unit.
  • the strain measuring unit irradiates a horizontal glass substrate supported on a mounting table with a laser beam while changing its position along a predetermined direction.
  • the laser light irradiation unit and the laser light reception unit perform various operations such as moving, stopping, and irradiating and receiving laser light with respect to the measurement points of the glass substrate set within the range of each opening of the mounting table. is repeated (see paragraphs 0054 and 0064 of the same document).
  • the strain measurement unit stops and measures the strain every time it moves to the measurement point of the glass substrate set within the range of each opening of the mounting table. In such a measurement method, there is a risk that the measurement time will be prolonged for a glass substrate that is becoming larger.
  • the present invention has been made in view of the above circumstances, and its technical problem is to efficiently measure the characteristics of transparent bodies including glass plates.
  • the present invention is intended to solve the above-mentioned problems, and is a method for measuring the characteristics of a transparent body including a glass plate by using a laser transmission type measuring device, comprising: a preparatory step of placing the transparent body; and a measuring step of measuring the characteristics of the transparent body by irradiating a laser beam from a measuring device.
  • the characteristics of the transparent body are measured while moving the measuring device relative to the mounting table along the predetermined measurement direction without stopping. Measurement time can be shortened compared to the case of stopping the device for measurement. This makes it possible to efficiently measure the properties of the glass substrate.
  • the measurement device is a birefringence measurement device, and in the preparation step, the transparent body is horizontally placed, and in the measurement step, the birefringence measurement is performed.
  • the property of the transparent body measured by the device may be distortion of the transparent body.
  • the transparent body may be a glass substrate for a display.
  • the birefringence measuring device includes a plurality of birefringence measuring devices, and the plurality of birefringence measuring devices are perpendicular to the measurement direction. They may be spaced apart in the direction. By using a plurality of birefringence measuring devices, the distortion of the transparent body can be measured more efficiently.
  • the opening of the mounting table may be rectangular.
  • the opening area of the opening formed in the mounting table can be secured as large as possible. Therefore, by securing a wide range in which the transparent body can be irradiated with the laser light, it is possible to acquire more measurement data.
  • the opening of the mounting table is configured in a rectangular shape, and the long side of the opening extends along the measuring direction. may be formed along the With such a configuration, it is possible to ensure a wide measurement range set on the glass substrate along the measurement direction.
  • the opening of the mounting table includes a plurality of linearly arranged openings
  • the measuring step includes: The measuring device may move linearly along the direction in which the plurality of openings are arranged. According to this configuration, by moving the measuring device linearly along the direction in which the plurality of openings are arranged, the transparent body can be efficiently irradiated with the laser beam through each opening located on the straight line. can be done.
  • the measurement step includes a data detection step of acquiring detection data related to the laser beam that has passed through the glass substrate, and the detection data detected in the data detection step.
  • the mounting table includes a frame portion that partitions the plurality of openings, and in the measuring step, the measuring device applies strain to the transparent body a plurality of times while moving relative to the mounting table.
  • the width dimension of the frame portion positioned between the two adjacent opening portions is determined by the laser beam accompanying the movement of the measuring device during the execution of the arithmetic processing step related to one strain measurement.
  • the laser beam emitted from the laser beam irradiation unit may pass through the frame portion during execution of the arithmetic processing step.
  • the laser light emitted from the measuring device passes through the frame during execution of the arithmetic processing process, thereby ensuring a greater number of strain measurements on the glass substrate within the range of the opening. can be done. This makes it possible to efficiently acquire more measurement data.
  • the relative movement of the measuring device with respect to the mounting table may be the movement of the measuring device.
  • the relative movement of the measuring device with respect to the mounting table may be movement of the mounting table.
  • the present invention is intended to solve the above problems, and is a method for manufacturing a glass plate, comprising a forming step of forming a glass ribbon from molten glass, and a slow cooling step of slowly cooling the glass ribbon. , a cutting step of cutting the glass ribbon that has undergone the slow cooling step into glass plates of a predetermined size; and an inspection step.
  • the present invention is intended to solve the above-mentioned problems, and is a measuring instrument for measuring the characteristics of a transparent body including a glass plate, comprising: a mounting table for horizontally supporting the transparent body; a laser transmission type measuring device that moves relative to a mounting table, wherein the mounting table has an opening for irradiating a glass substrate with laser light emitted from the measuring device; The characteristics of the transparent body are measured while relatively moving along a predetermined measurement direction with respect to the mounting table without stopping.
  • the measuring apparatus by measuring the properties of the transparent body while relatively moving along the predetermined measurement direction without stopping the measuring apparatus with respect to the mounting table, the measuring apparatus can be stopped as in the conventional art. Measurement time can be shortened compared to the case of measuring by This makes it possible to efficiently measure the properties of the glass substrate.
  • the opening of the mounting table may be configured in a rectangular shape. As a result, the opening area of the opening formed in the mounting table can be secured as large as possible.
  • the properties of transparent bodies including glass plates can be efficiently measured.
  • FIG. 10 is a plan view showing another example of the mounting table in the measuring machine.
  • FIGS. 1 to 9 show an embodiment of the transparent body measuring method and measuring apparatus according to the present invention.
  • the X-axis direction and the Y-axis direction indicate the horizontal direction
  • the Z-axis direction indicates the vertical direction (vertical direction).
  • the measuring method and measuring instrument according to the present invention are for measuring the properties of transparent bodies including glass plates.
  • Properties of the transparent body include, for example, thickness, surface roughness, waviness, distortion, and the like.
  • transparent bodies include a transparent glass plate, a glass plate laminate obtained by laminating a plurality of transparent glass plates via a transparent adhesive, and a transparent adhesive between a transparent glass plate and a transparent resin.
  • Examples thereof include a glass resin laminate formed by laminating via a material.
  • the glass substrate is formed in a square or rectangular shape, for example, and the size of one side thereof is, for example, 2000 to 3400 mm.
  • the thickness of the glass substrate is, for example, 0.1 to 1.2 mm.
  • the shape, dimensions, thickness, and the like of the glass substrate are not particularly limited, and can be appropriately changed according to the application.
  • the measuring instrument 1 includes a pedestal 2, a mounting table 3 capable of horizontally supporting a glass substrate G, and a A relatively movable laser transmission type measuring device 4 and a control device 5 for controlling operations of the mounting table 3 and the measuring device 4 are provided.
  • the mount 2 is a stand for holding the mounting table 3 in an inclined state or a horizontal state, and is installed on the floor surface.
  • the “horizontal state” means that the tilt angle with respect to the horizontal direction (Y-axis direction) is ⁇ 10° or more and less than 0°, or more than 0° and 10° when the mounting table 3 is slightly tilted. It also includes states that are in the following range.
  • the gantry 2 is elongated along the Y-axis direction.
  • the gantry 2 includes a slide mechanism 6 that moves the mounting table 3 along its longitudinal direction.
  • the slide mechanisms 6 are arranged at both ends of the mounting table 3 in the width direction (X-axis direction).
  • Each slide mechanism 6 includes a rotating shaft 7 that rotatably supports the intermediate portion of the mounting table 3 , a horizontal driving device (not shown) that moves the mounting table 3 along the horizontal direction, and a rotating shaft 7 . and a rotation drive device (not shown) for rotating the mounting table 3 around the .
  • the horizontal drive device is composed of, for example, an LM guide (registered trademark), a ball screw mechanism, a linear motion mechanism equipped with a motor, etc.
  • the mounting table 3 in a horizontal state can be moved along the longitudinal direction (Y-axis direction) of the gantry 2 .
  • the rotation drive device is composed of an actuator such as an air cylinder or a motor.
  • the rotary drive device can change the mounting table 3 between, for example, an inclined state having an angle of 70 to 80 degrees with respect to the horizontal direction (Y-axis direction) and a horizontal state via the rotary shaft 7. can.
  • the mounting table 3 includes a stage portion 8, a receiving portion 9, and positioning portions 10a and 10b.
  • the stage part 8 is configured by a plate-shaped member made of metal (eg, made of aluminum).
  • the stage portion 8 functions as a surface plate for maintaining the flatness of the glass substrate G at a desired accuracy when strain is measured.
  • the stage part 8 has a mounting surface configured as a flat surface.
  • the mounting surface includes a plurality of openings 11 and frame portions 12 a and 12 b that separate the openings 11 .
  • Each opening 11 is configured, for example, in a square shape, but is not limited to this shape. Each opening 11 is for irradiating the glass substrate G with a laser beam emitted upward from below the mounting table 3 when strain measurement is performed by the measuring device 4 .
  • the plurality of openings 11 are linearly arranged at predetermined intervals along the X-axis direction and the Y-axis direction of the stage portion 8 .
  • the frame portions 12 a and 12 b support one surface of the glass substrate G when the glass substrate G is placed on the stage portion 8 .
  • Each of the frame portions 12a and 12b has a predetermined length dimension and width dimension, and is configured linearly.
  • the frame portions 12a and 12b include a first frame portion 12a along the X-axis direction and a second frame portion 12b along the Y-axis direction.
  • the opening portion 11 has a rectangular shape.
  • the mounting surface of the stage section 8 is configured in a grid pattern by connecting the plurality of first frame portions 12a and the second frame portions 12b so as to be orthogonal to each other.
  • the receiving portion 9 is provided on one end side of the stage portion 8 and is elongated along the width direction of the mounting table 3 .
  • the receiving portion 9 supports one end portion (lower end portion) of the glass substrate G when the mounting table 3 is in an inclined state. Further, the receiving portion 9 functions as a positioning portion that contacts one end portion of the glass substrate G when the mounting table 3 is in a horizontal state.
  • the receiving part 9 is configured so that its position can be changed so that it can be positioned according to the size of the glass substrate G. As shown in FIG.
  • the positioning portions 10a and 10b include a pair of first positioning portions 10a for positioning each end portion of the glass substrate G in the X-axis direction when the mounting table 3 is in a horizontal state, and a second positioning portion 10b that positions the end portion of the glass substrate G in the direction (the end portion opposite to the end portion that contacts the receiving portion 9).
  • Each positioning part 10a, 10b is configured so that the position can be changed so that the positioning can be performed according to the size of the glass substrate G. As shown in FIG.
  • the measuring device 4 is arranged in the middle of the gantry 2 in the longitudinal direction.
  • the measurement device 4 includes a laser beam irradiation unit 13, a laser beam receiving unit 14, a support member 15 for supporting the laser beam receiving unit 14, a driving device (not shown) for driving the laser beam irradiation unit 13, and a laser beam. and a driving device (not shown) that drives the light receiving unit 14 .
  • the laser beam irradiation unit 13 is provided below the pedestal 2 and configured to emit a laser beam upward from below the mounting table 3 toward the opening 11 . Also, the laser beam irradiation unit 13 is configured to be moved along the X-axis direction by a driving device.
  • the laser light receiving section 14 is positioned above the laser light irradiation section 13 so as to face the laser light irradiation section 13 in the vertical direction (Z-axis direction).
  • the laser light receiving section 14 is configured to be moved along the X-axis direction by a driving device.
  • the laser beam irradiation unit 13 and the laser beam receiving unit 14 are positioned vertically (in the Z-axis direction). It will be located between 14.
  • the support member 15 supports the laser light receiving section 14 so as to be movable in the X-axis direction. Further, the support member 15 supports a driving device that drives the laser light receiving section 14 .
  • the drive device for the laser light irradiation unit 13 and the drive device for the laser light reception unit 14 are configured by, for example, a linear motion mechanism including an LM guide (registered trademark), a ball screw mechanism, a motor, and the like.
  • the measurement device 4 may be configured to move the laser light irradiation unit 13 and the laser light reception unit 14 in the X-axis direction and the Y-axis direction by combining a plurality of driving devices without being limited to the above configuration. .
  • the measuring device 4 may have a configuration in which the laser beam irradiation unit 13 and the laser beam receiving unit 14 are attached to a robot arm (driving device). Thereby, the measuring device 4 can three-dimensionally move the laser beam irradiation unit 13 and the laser beam receiving unit 14 .
  • a birefringence measuring device that measures the birefringence amount of the glass substrate G using a common optical path interferometer and a Fourier analysis method by an optical heterodyne method is preferably used.
  • This birefringence measuring apparatus can measure the magnitude of retardation (retardation: phase difference due to birefringence) and the azimuth angle of the retardation in order to evaluate the degree of distortion of the glass substrate G.
  • retardation phase difference due to birefringence
  • FIG. it means that distortion is so large that retardation is large.
  • the control device 5 controls the operation of the drive device (horizontal drive device, rotation drive device) of the slide mechanism 6 of the pedestal 2, the operation of the drive device of the measurement device 4, and the measurement device 4 (laser beam irradiation unit) related to strain measurement. 13 and laser light receiving unit 14).
  • the control device 5 is, for example, a personal computer (PC) equipped with a processing device such as a CPU, a storage device such as a memory, and a display device such as a display.
  • the control device 5 can output measurement results and the like of the glass substrate G to the display device.
  • the control device 5 can store data such as measurement results of the glass substrate G in the storage device.
  • a method of measuring the strain, which is a characteristic of the glass substrate G, and a method of manufacturing the glass substrate G using the measuring instrument 1 configured as described above will be described below.
  • This measurement method is used, for example, to measure the strain of the glass substrate G in the manufacturing process of the glass substrate G, and to feed back information regarding the quality of the glass substrate G to the manufacturing process based on the measurement results.
  • the method for manufacturing the glass substrate G includes a forming step of drawing molten glass in a predetermined direction to form a plate-shaped glass ribbon, a slow cooling step of slowly cooling the glass ribbon formed in the forming step, and a slow cooling step.
  • the method includes a cutting step of cutting the slowly cooled glass ribbon into a predetermined size to obtain a glass plate, and an inspection step of applying the present measurement method to the glass plate obtained in the cutting step.
  • the glass ribbon flows down inside the slow cooling furnace, which prevents unintended thermal strain from occurring in the glass ribbon.
  • the slow cooling furnace is equipped with a plurality of heaters in the drawing direction and width direction of the glass ribbon, and is adjusted to a predetermined temperature gradient.
  • the distortion of the glass sheet can be reduced by controlling the output of the heater in the annealing furnace and adjusting the temperature gradient in the annealing furnace based on the distortion of the glass sheet measured by this measuring method.
  • This measurement method includes a preparation step of mounting the glass substrate G on the mounting table 3 and a measurement step of measuring the distortion of the glass substrate G mounted on the mounting table 3 .
  • the glass substrate G is placed on the mounting table 3 that stands by in an inclined state on one end side of the pedestal 2 .
  • an operator holds the glass substrate G using a suction holder such as a vacuum lift, and then places the glass substrate G on the mounting table 3 .
  • the glass substrate G is supported in an inclined manner with its lower end in contact with the receiving portion 9 of the mounting table 3 .
  • the control device 5 operates the rotation drive device of the slide mechanism 6 to rotate the mounting table 3 around the rotation shaft 7 .
  • the posture of the mounting table 3 is changed from the inclined state to the horizontal state, and the glass substrate G is horizontally supported by the mounting table 3 .
  • the measuring machine 1 measures the glass substrate G by relatively moving the mounting table 3 and the measuring device 4 under the control of the control device 5 .
  • the relative movement modes of the mounting table 3 and the measuring device 4 are a first movement mode in which the laser light irradiation unit 13 and the laser light receiving unit 14 are moved while the mounting table 3 is stopped; and a second movement mode in which the mounting table 3 is moved while the laser light receiving unit 14 is stopped.
  • FIG. 5 to 7 are plan views showing the glass substrate G mounted on the stage portion 8 of the mounting table 3 in a horizontal state. 5 and 6 show the measurement process based on the first movement mode, and FIG. 7 shows the measurement process based on the second movement mode.
  • the laser beam irradiation unit 13 and the laser beam receiving unit 14 move in the measurement direction X1 from the position corresponding to the first opening 11S in the first row M1 to the position corresponding to the last opening 11E. move along. In this case, the laser beam irradiation unit 13 and the laser beam receiving unit 14 move (continuously) at a constant speed without stopping until reaching the position corresponding to the last opening 11E of the first row M1. . While the laser beam irradiation unit 13 and the laser beam receiving unit 14 are moving, the mounting table 3 is in a stopped state (hereinafter, the same applies to measurements of the second row M2 and the third row M3).
  • the laser light emitted from the laser light irradiation unit 13 is, in a plan view shown in FIG. It moves so as to pass through the openings 11S, 11, 11E and the second frame portion 12b associated with the row M1 along the measurement direction X1.
  • the moving speed of the laser beam that is, the moving speed of the laser beam irradiation unit 13 and the laser beam receiving unit 14 is, for example, 10 to 1000 mm/s, preferably 50 to 200 mm/s.
  • the laser beam irradiates the glass substrate G through each opening 11 while moving as described above.
  • the laser light applied to the glass substrate G through the opening 11 reaches the laser light receiving section 14 after passing through the glass substrate G.
  • the control device 5 calculates the distortion of the glass substrate G based on the detection data regarding the birefringence amount of the laser light detected by the laser light receiving section 14 .
  • the control device 5 stops the laser beam irradiation unit 13 and the laser beam receiving unit 14, and moves the mounting table 3 in the direction Y2 perpendicular to the measurement direction X1. move along.
  • the laser light is distributed relative to the glass substrate G from the position of the last opening 11E in the first row M1 to the position of the first opening 11S in the second row M2, as indicated by the arrow A2. , and move in a straight line.
  • the laser light passes through the first frame portion 12a that separates the last opening 11E in the first row M1 and the first opening 11S in the second row M2.
  • the control device 5 stops the mounting table 3 and moves the laser beam irradiation unit 13 and the laser beam receiving unit 14 along the measurement direction X2.
  • the laser light travels relatively and linearly with respect to the glass substrate G from the position of the first opening 11S to the position of the last opening 11E in the second row M2. Moving.
  • the glass substrate G is irradiated with laser light through each opening 11 , and the laser light that has passed through the glass substrate G is received by the laser light receiving section 14 .
  • the control device 5 calculates the distortion of the glass substrate G based on the detection data regarding the birefringence amount of the laser light detected by the laser light receiving section 14 in the same manner as the measurement at the openings 11 of the first row M1.
  • the control device 5 stops the laser beam irradiation unit 13 and the laser beam receiving unit 14, and moves the mounting table 3 in the direction Y2 perpendicular to the measurement direction X2. move along.
  • the laser light is distributed relative to the glass substrate G from the position of the last opening 11E in the second row M2 to the position of the first opening 11S in the third row M3, as indicated by an arrow A4. , and move in a straight line.
  • the laser light passes through the first frame portion 12a that separates the last opening 11E in the second row M2 and the first opening 11S in the third row M3.
  • the control device 5 stops the mounting table 3 and moves the laser beam irradiation unit 13 and the laser beam receiving unit 14 along the measurement direction X1.
  • the laser light travels from the position of the first opening 11S to the position of the last opening 11E in the third row M3 relatively and linearly with respect to the glass substrate G.
  • strain measurement similar to the measurement of the glass substrate G corresponding to the openings 11 of the first row M1 and the second row M2 is performed. After that, the above operation is repeated from the fourth row to the last row to complete the measurement of the entire glass substrate G.
  • the glass substrate G is distorted once or multiple times within the range of the opening 11. can be measured.
  • the measurement process includes a data detection process of obtaining detection data on the birefringence amount of the laser light by the laser light receiving unit 14, and a control device based on the detection data detected in the data detection process. and an arithmetic processing step of calculating the strain.
  • the time required for one strain measurement is the sum of the data detection time required for the data detection step and the arithmetic processing time required for the arithmetic processing step. In this embodiment, it is desirable that the time required for each strain measurement by the measuring device 4 is 0.1 second or less.
  • FIG. 6 shows an enlarged state in which the laser light moves in the direction indicated by the arrow A5 with respect to the openings 11 belonging to the third row M3 illustrated in FIG.
  • the measuring device 4 is set to perform three measurements in one opening 11 belonging to the third row M3.
  • Three measurement areas, a first measurement area MA1, a second measurement area MA2 and a third measurement area MA3, are set within the range of one opening 11 on the glass substrate G placed on the stage part 8. It is
  • Each of the measurement areas MA1-MA3 is configured linearly along the measurement direction X1.
  • the laser beam irradiation unit 13 irradiates the first measurement area MA1 with laser beams while moving along the measurement direction X1 together with the laser beam receiving unit 14 .
  • the laser light passes through this first measurement area MA1 and reaches the laser light receiving section 14 .
  • the time during which the first measurement area MA1 is irradiated with the moving laser light corresponds to the data detection time in the data detection process.
  • the travel time (data detection time) of this laser beam is, for example, 0.05 seconds. While this time elapses, the laser light moves by the length of the first measurement area MA1, that is, the distance (first movement distance) indicated by symbol D1 in FIG.
  • the control device 5 executes the arithmetic processing process while the laser beam moves from the end of the first measurement area MA1 to the beginning of the second measurement area MA2. That is, the control device 5 calculates the strain in the first measurement area MA1 based on the detection data of the laser light detected through the laser light receiving section 14.
  • FIG. The time taken for the laser light to move from the first measurement area MA1 to the second measurement area MA2 corresponds to the arithmetic processing time in the arithmetic processing step.
  • the movement time (calculation processing time) of the laser light is, for example, 0.05 seconds. While this time elapses, the laser beam moves by a distance (second movement distance) indicated by symbol D2 in FIG.
  • the second moving distance D2 is equal to the first moving distance D1, but these distances D1 and D2 may be different.
  • the measurement of strain in the first measurement area MA1 that is, the time required for the first measurement (measurement time) is, for example, 0.1 seconds, which is the sum of the data detection time and the arithmetic processing time.
  • the moving distance of the laser beam (relative moving distance of the measuring device 4) in the first measurement is the sum of the first moving distance D1 and the second moving distance D2 (D1+D2). That is, in the measurement process of the present embodiment, the data detection process and the arithmetic processing process performed while the laser beam moves this distance (D1+D2) are regarded as one cycle, and laser beams are applied to each measurement area set at an equal pitch (D2).
  • the glass substrate G is measured while being irradiated with light. Note that the moving distance (D1+D2) of the laser light is, for example, 5 to 10 mm, but is not limited to this range.
  • the second measurement will be performed.
  • the second measurement area MA2 is irradiated with the laser beam emitted from the laser beam irradiation unit 13 as the measurement device 4 is continuously moved.
  • the laser light that has passed through the second measurement area MA2 is received by the laser light receiving unit 14, and detection data related to the laser light is detected (data detection step).
  • the control device 5 calculates the distortion of the second measurement area MA2 (computation processing step ).
  • the data detection time and distortion calculation processing time in the second measurement are the same as in the first measurement.
  • the distance traveled by the measuring device 4 and the laser light is the same as the travel distance (D1+D2) in the first measurement.
  • the third measurement will be done in the same way as the first and second measurements.
  • the measurement device 4 irradiates the third measurement area MA3 with laser light while moving along the measurement direction X1. During this time, the laser light that has passed through the third measurement area MA3 is received by the laser light receiving unit 14, and detection data related to the laser light is detected (data detection step). Based on this detection data, the control device 5 calculates the strain associated with the third measurement area MA3 (calculation processing step).
  • the opening 11 has an opening area that allows multiple measurements by the measuring device 4 as described above. That is, the interval W1 between the pair of second frame portions 12b that separate one opening 11 is greater than the distance (D1+D2) that the laser beam and the measuring device 4 move in one measurement (W1>(D1+D2)).
  • the final measurement (the third measurement in the above example) is during execution of the arithmetic processing process by the control device 5.
  • the laser light passes through the second frame portion 12b that separates the opening 11 and the next opening 11 .
  • measurement of the glass substrate G can be started immediately after the laser light reaches the next opening 11 . Therefore, it is possible to secure as many strain measurements as possible within the range of one opening 11 .
  • the width dimension W2 of the second frame portion 12b positioned between the two openings 11 adjacent in the measurement direction X1 is determined by the laser beam and the It is preferably set smaller than the second moving distance D2 that the measuring device 4 moves (W2 ⁇ D2).
  • the control device 5 When the arithmetic processing process is completed, the control device 5 outputs the measurement result (distortion calculation result) of the glass substrate G to the display device. Further, the control device 5 saves the data of the measurement result of the glass substrate G in the storage device. In addition, the control device 5 compares the measurement results with standard values (magnitude of retardation and azimuth angle of retardation), which are preset indices for evaluating distortion, and judges whether the distortion in the glass substrate G is good or bad. can be done. The control device 5 causes the display device to display the determination result.
  • standard values magnitude of retardation and azimuth angle of retardation
  • FIG. 7 shows the measurement process according to the second movement mode.
  • a first row N1 among the plurality of openings 11 formed in the stage portion 8 of the mounting table 3, a first row N1, a second row N2 and a A case of measuring the glass substrate G according to the openings 11 belonging to the third row N3 will be described.
  • the control device 5 arranges the laser beam irradiation unit 13 and the laser beam receiving unit 14 of the measurement device 4 at positions corresponding to the first opening 11S of the first row N1. After that, the control device 5 causes the laser light irradiation section 13 to emit laser light while the laser light irradiation section 13 and the laser light receiving section 14 are stopped.
  • control device 5 moves the mounting table 3 linearly at a constant speed along the measurement direction Y1 with respect to the stopped laser beam irradiation unit 13 and laser beam receiving unit 14 .
  • the laser light travels relatively and linearly with respect to the glass substrate G from the position of the first opening 11S to the position of the last opening 11E in the first row N1.
  • the measurement device 4 and the control device 5 move the mounting table 3 in the Y1 direction to move the laser light relative to the mounting table 3, and move the laser beams relative to the mounting table 3. Similarly, the data detection process and the arithmetic processing process are repeated.
  • the control device 5 stops the mounting table 3 and moves the laser beam irradiation unit 13 and the laser beam receiving unit 14 in the measurement direction. It is moved along the direction X1 orthogonal to Y1. As a result, the laser light travels from the position of the last opening 11E in the first row N1 to the position of the first opening 11S in the second row N2 relative to the glass substrate G, as indicated by an arrow B2. , and move in a straight line.
  • the control device 5 stops the laser beam irradiation unit 13 and the laser beam receiving unit 14, and moves the mounting table 3 along the measurement direction Y2.
  • the laser light travels from the position of the first opening 11S to the position of the last opening 11E in the second row N2 relatively and linearly with respect to the glass substrate G. Moving.
  • the control device 5 stops the mounting table 3 and moves the laser beam irradiation unit 13 and the laser beam receiving unit 14 in the measurement direction. It is moved along the direction X1 orthogonal to Y2. As a result, the laser light is distributed relative to the glass substrate G from the position of the last opening 11E in the second row N2 to the position of the first opening 11S in the third row N3, as indicated by an arrow B4. , and move in a straight line.
  • the control device 5 stops the laser beam irradiation unit 13 and the laser beam receiving unit 14, and moves the mounting table 3 along the measurement direction Y1.
  • the laser light travels from the position of the first opening 11S to the position of the last opening 11E in the third row N3 relatively and linearly with respect to the glass substrate G. Moving.
  • FIG. 8 shows another example of the measurement process.
  • the measurement of the glass substrate G is performed by repeating the movement of the laser light a plurality of times within the range of the plurality of openings 11 arranged in a row.
  • measurements based on the first movement mode will be described, but measurements based on the second movement mode can also be performed.
  • the movement of the measuring device 4 in the first movement mode is repeated three times with respect to the plurality of openings 11 arranged in the third row M3, so that the laser light is moved from arrows C1 to Repeat the linear movement three times, as indicated by C3.
  • the control device 5 causes the laser beam irradiation unit 13 to emit a laser beam while the mounting table 3 is stopped, and moves the laser beam irradiation unit 13 and the laser beam receiving unit 14 in the measurement direction X1. move along. Thereby, the laser light moves relatively and linearly with respect to the glass substrate G, as indicated by an arrow C1. Thereby, the distortion of the glass substrate G is measured through the plurality of openings 11 belonging to the third row M3.
  • the control device 5 moves the mounting table 3 along the direction Y2 orthogonal to the measurement direction X1 in order to change the irradiation position of the laser light on the glass substrate G.
  • the laser light changes its position in the Y-axis direction within the range of the openings 11 belonging to the same third row M3 through which it passed by the first movement.
  • the control device 5 stops the mounting table 3 and linearly moves the laser beam irradiation unit 13 and the laser beam receiving unit 14 along the measurement direction X2. Thereby, the laser light moves relatively and linearly with respect to the glass substrate G so as to pass through the plurality of openings 11 belonging to the third row M3, as indicated by the arrow C2.
  • the control device 5 moves the mounting table 3 along the direction Y2 perpendicular to the measurement direction X2.
  • the laser light changes its position in the Y-axis direction within the range of the openings 11 belonging to the same third row M3 passed by the second movement.
  • the control device 5 stops the mounting table 3 and moves the laser beam irradiation unit 13 and the laser beam receiving unit 14 along the measurement direction X1. Thereby, the laser light moves relatively and linearly with respect to the glass substrate G so as to pass through the plurality of openings 11 belonging to the third row M3, as indicated by the arrow C3.
  • a larger number of measurement data can be acquired by reciprocating the laser light multiple times within the range of the multiple openings 11 located in the same row. For such measurements, it is better to configure the opening 11 in a rectangular shape rather than in a circular shape.
  • the opening area is increased compared to the case of configuring in a circular shape (indicated by a two-dot chain line in FIG. 8), and the measurement range for the glass substrate G is widened as much as possible. can be secured.
  • FIG. 9 shows another example of the mounting table 3 (stage section 8) in the measuring machine 1.
  • the opening 11 of the stage section 8 is configured in a rectangular shape.
  • a long side 11a of the opening 11 is formed along the measurement directions Y1 and Y2 with respect to the Y-axis direction.
  • the length dimension in the Y-axis direction of the second frame portion 12b of the stage portion 8 is larger than the length dimension in the X-axis direction of the first frame portion 12a.
  • the long sides of the opening 11 may be formed along the measurement directions X1 and X2. .
  • the laser beam irradiation unit 13 is provided at the bottom of the pedestal 2 and the laser beam receiving unit 14 is provided at the top of the pedestal 2, but the present invention is not limited to this configuration.
  • the laser beam irradiation unit 13 may be provided on the upper part of the pedestal 2 and the laser beam receiving part 14 may be provided on the lower part of the pedestal 2 .
  • the glass substrate G is irradiated with laser light even while the arithmetic processing step is being executed, but the present invention is not limited to this configuration.
  • the irradiation of the laser beam to the glass substrate G may be stopped while the arithmetic processing step is being performed.
  • the measuring device 4 having one laser beam irradiation unit 13 and one laser beam receiving unit 14 was exemplified, but the present invention is not limited to this configuration.
  • the measuring device 4 may include a plurality of laser beam irradiation units 13 and laser beam receiving units 14 .
  • the plurality of laser light emitting units 13 and laser light receiving units 14 can be arranged at intervals in directions Y1 and Y2 perpendicular to the measurement directions X1 and X2 in relation to the X-axis direction, for example. According to this configuration, the measuring device 4 can shorten the measurement time as much as possible compared to the case where the measuring device 4 is provided with one laser beam irradiation unit 13 and one laser beam receiving unit 14 .
  • the birefringence measuring device was exemplified as the measuring device 4 of the measuring instrument 1, but the present invention is not limited to this configuration.
  • a laser transmission type measuring device other than the birefringence measuring device may be applied to the present invention.

Abstract

This transparent body measuring method includes: a preparation step for placing a transparent body on a placement platform provided with an opening portion; and a measurement step for measuring a property of the transparent body by shining a laser beam from a measuring device through the opening portion onto a glass substrate, while causing the measuring device to move relative to the placement platform in a prescribed measuring direction without stopping.

Description

透明体の測定方法及び測定機並びにガラス板の製造方法Measuring method and measuring instrument for transparent body and method for manufacturing glass plate
 本発明は、ガラス板を含む透明体の特性を測定することが可能な測定方法及び測定機並びにガラス板の製造方法に関する。 The present invention relates to a measuring method and measuring instrument capable of measuring the characteristics of transparent bodies including glass plates, and a method of manufacturing a glass plate.
 近年、液晶表示装置や有機EL表示装置などのパネルディスプレイでは、大型化が推進されている。このようなディスプレイにおいては、画像の色むらが問題になる。この画像の色むらは、ディスプレイに使用されるガラス基板の歪に起因するため、ガラス基板の製造時においてその歪を測定する必要がある。 In recent years, panel displays such as liquid crystal display devices and organic EL display devices are becoming larger. In such a display, color unevenness of images becomes a problem. Since the color unevenness of the image is caused by the distortion of the glass substrate used for the display, it is necessary to measure the distortion when manufacturing the glass substrate.
 例えば特許文献1には、架台と、架台に保持されるとともにガラス基板が載置される載置台と、載置台によって水平状に支持されるガラス基板にレーザ光を照射して歪を測定する歪測定部と、を備える測定機(ガラス基板歪測定装置)が開示されている(同文献の請求項6参照)。 For example, in Patent Document 1, a pedestal, a mounting table that is held by the pedestal and on which a glass substrate is mounted, and a glass substrate that is horizontally supported by the mounting table are irradiated with a laser beam to measure strain. and a measuring unit (glass substrate strain measuring device) is disclosed (see claim 6 of the same document).
 この測定機において、架台は、載置台を水平方向に移動させるスライド機構を有する。載置台は、歪測定部から放出されるレーザ光をガラス基板に照射させるための複数の開口部を有する。歪測定部は、載置台の移動方向に直交する方向に移動可能なレーザ光照射部と、レーザ光照射部と対向するように配置され、レーザ光照射部と同じ方向に移動可能なレーザ光受光部とを有する(同文献の段落0033、0041、0053、図1乃至図4参照)。 In this measuring machine, the pedestal has a slide mechanism that moves the mounting table in the horizontal direction. The mounting table has a plurality of openings for irradiating the glass substrate with laser light emitted from the strain measuring section. The strain measuring unit includes a laser light irradiation unit movable in a direction orthogonal to the moving direction of the mounting table, and a laser light receiving unit arranged to face the laser light irradiation unit and movable in the same direction as the laser light irradiation unit. (See paragraphs 0033, 0041, and 0053 of the same document and FIGS. 1 to 4).
 この測定機を使用してガラス基板の歪を測定する方法では、歪測定部は、所定の方向に沿って位置を変えながら、載置台に支持される水平状のガラス基板にレーザ光を照射する。具体的には、レーザ光照射部及びレーザ光受光部は、載置台の各開口部の範囲内に設定されるガラス基板の測定点に対し、移動、停止、レーザ光の照射及び受光といった各動作を繰り返し行う(同文献の段落0054、0064参照)。 In the method of measuring the strain of a glass substrate using this measuring device, the strain measuring unit irradiates a horizontal glass substrate supported on a mounting table with a laser beam while changing its position along a predetermined direction. . Specifically, the laser light irradiation unit and the laser light reception unit perform various operations such as moving, stopping, and irradiating and receiving laser light with respect to the measurement points of the glass substrate set within the range of each opening of the mounting table. is repeated (see paragraphs 0054 and 0064 of the same document).
国際公開第2017/221825号WO2017/221825
 従来の歪測定方法では、歪測定部は、載置台の各開口部の範囲内で設定されるガラス基板の測定点に移動する度に、停止して歪の測定を行っている。このような測定方法では、大型化するガラス基板に対して測定時間が長期化するおそれがあった。 In the conventional strain measurement method, the strain measurement unit stops and measures the strain every time it moves to the measurement point of the glass substrate set within the range of each opening of the mounting table. In such a measurement method, there is a risk that the measurement time will be prolonged for a glass substrate that is becoming larger.
 本発明は上記の事情に鑑みてなされたものであり、ガラス板を含む透明体の特性を効率良く測定することを技術的課題とする。 The present invention has been made in view of the above circumstances, and its technical problem is to efficiently measure the characteristics of transparent bodies including glass plates.
(1) 本発明は上記の課題を解決するためのものであり、ガラス板を含む透明体の特性をレーザ透過型の測定装置によって測定する方法であって、開口部を備える載置台に対して前記透明体を載置する準備工程と、前記載置台に対して前記測定装置を停止させることなく所定の測定方向に沿って相対的に移動させながら、前記開口部を通じて前記透明体に対して前記測定装置からレーザ光を照射することにより、前記透明体の前記特性を測定する測定工程と、を備えることを特徴とする。 (1) The present invention is intended to solve the above-mentioned problems, and is a method for measuring the characteristics of a transparent body including a glass plate by using a laser transmission type measuring device, comprising: a preparatory step of placing the transparent body; and a measuring step of measuring the characteristics of the transparent body by irradiating a laser beam from a measuring device.
 かかる構成によれば、測定工程において、載置台に対して測定装置を停止させることなく所定の測定方向に沿って相対的に移動させながら透明体の特性を測定することで、従来のように測定装置を停止させて測定する場合と比較して、測定時間を短縮することができる。これにより、ガラス基板の特性を効率良く測定することが可能となる。 According to such a configuration, in the measurement process, the characteristics of the transparent body are measured while moving the measuring device relative to the mounting table along the predetermined measurement direction without stopping. Measurement time can be shortened compared to the case of stopping the device for measurement. This makes it possible to efficiently measure the properties of the glass substrate.
(2) 上記の(1)の測定方法において、前記測定装置は、複屈折測定装置であり、前記準備工程では、前記透明体を水平状に載置し、前記測定工程において、前記複屈折測定装置によって測定される前記透明体の前記特性は、前記透明体の歪であってもよい。 (2) In the measurement method of (1) above, the measurement device is a birefringence measurement device, and in the preparation step, the transparent body is horizontally placed, and in the measurement step, the birefringence measurement is performed. The property of the transparent body measured by the device may be distortion of the transparent body.
(3) 上記の(2)の測定方法において、前記透明体は、ディスプレイ用のガラス基板であってもよい。 (3) In the measuring method of (2) above, the transparent body may be a glass substrate for a display.
(4) 上記の(2)又は(3)の測定方法において、前記複屈折測定装置は、複数の複屈折測定装置を含み、前記複数の複屈折測定装置は、前記測定方向に対して直交する方向に間隔をおいて配置されてもよい。複数の複屈折測定装置によって、透明体の歪をより効率良く測定することができる。 (4) In the measurement method of (2) or (3) above, the birefringence measuring device includes a plurality of birefringence measuring devices, and the plurality of birefringence measuring devices are perpendicular to the measurement direction. They may be spaced apart in the direction. By using a plurality of birefringence measuring devices, the distortion of the transparent body can be measured more efficiently.
(5) 上記の(1)から(4)のいずれかの測定方法において、前記載置台の前記開口部は、矩形状に構成されてもよい。これにより、載置台に形成される開口部の開口面積を可及的に大きく確保することができる。したがって、透明体に対してレーザ光を照射可能な範囲を広く確保することで、より多くの測定データを取得することが可能となる。 (5) In the measuring method according to any one of (1) to (4) above, the opening of the mounting table may be rectangular. As a result, the opening area of the opening formed in the mounting table can be secured as large as possible. Therefore, by securing a wide range in which the transparent body can be irradiated with the laser light, it is possible to acquire more measurement data.
(6) また、上記の(1)から(5)のいずれかの測定方法において、前記載置台の前記開口部は、長方形状に構成されており、前記開口部の長辺は、前記測定方向に沿うように形成されてもよい。かかる構成によれば、測定方向に沿ってガラス基板に設定される測定範囲を広く確保することができる。 (6) In addition, in the measuring method according to any one of (1) to (5) above, the opening of the mounting table is configured in a rectangular shape, and the long side of the opening extends along the measuring direction. may be formed along the With such a configuration, it is possible to ensure a wide measurement range set on the glass substrate along the measurement direction.
(7) また、上記の(1)から(6)のいずれかの測定方法において、前記載置台の前記開口部は、直線状に配される複数の開口部を含み、前記測定工程では、前記測定装置は、前記複数の開口部が配される方向に沿って直線状に移動してもよい。かかる構成によれば、複数の開口部が配される方向に沿って測定装置を直線状に移動させることで、この直線上に位置する各開口部を通じて透明体にレーザ光を効率良く照射することができる。 (7) Further, in the measuring method according to any one of the above (1) to (6), the opening of the mounting table includes a plurality of linearly arranged openings, and the measuring step includes: The measuring device may move linearly along the direction in which the plurality of openings are arranged. According to this configuration, by moving the measuring device linearly along the direction in which the plurality of openings are arranged, the transparent body can be efficiently irradiated with the laser beam through each opening located on the straight line. can be done.
(8) 上記の(7)の測定方法において、前記測定工程は、前記ガラス基板を透過した前記レーザ光に係る検出データを取得するデータ検出工程と、前記データ検出工程で検出された検出データに基づいて、制御装置により前記歪を算出する演算処理工程と、を備え、前記測定装置は、前記レーザ光を放出するレーザ光照射部と、前記レーザ光を受光するレーザ光受光部とを備え、前記載置台は、前記複数の開口部を区切る枠部を備え、前記測定工程では、前記測定装置は、前記載置台に対して相対的に移動しながら前記透明体に対して複数回の歪の測定を行い、隣り合う二つの前記開口部の間に位置する前記枠部の幅寸法は、一回の歪の測定に係る前記演算処理工程の実行中における前記測定装置の移動に伴う前記レーザ光の移動距離よりも小さく設定されており、前記測定工程では、前記演算処理工程の実行中に、前記レーザ光照射部から放出される前記レーザ光が前記枠部を通過してもよい。 (8) In the measurement method of (7) above, the measurement step includes a data detection step of acquiring detection data related to the laser beam that has passed through the glass substrate, and the detection data detected in the data detection step. an arithmetic processing step of calculating the strain by a control device based on the measurement device, wherein the measurement device includes a laser light irradiation unit that emits the laser light and a laser light reception unit that receives the laser light, The mounting table includes a frame portion that partitions the plurality of openings, and in the measuring step, the measuring device applies strain to the transparent body a plurality of times while moving relative to the mounting table. Measurement is performed, and the width dimension of the frame portion positioned between the two adjacent opening portions is determined by the laser beam accompanying the movement of the measuring device during the execution of the arithmetic processing step related to one strain measurement. , and in the measurement step, the laser beam emitted from the laser beam irradiation unit may pass through the frame portion during execution of the arithmetic processing step.
 かかる構成によれば、演算処理工程の実行中に、測定装置から放出されたレーザ光が枠部を通過することで、開口部の範囲内におけるガラス基板に対する歪の測定回数をより多く確保することができる。これにより、より多くの測定データを効率良く取得することが可能となる。 According to such a configuration, the laser light emitted from the measuring device passes through the frame during execution of the arithmetic processing process, thereby ensuring a greater number of strain measurements on the glass substrate within the range of the opening. can be done. This makes it possible to efficiently acquire more measurement data.
(9) 上記の(1)から(8)のいずれかの測定方法において、前記測定装置の前記載置台に対する相対的な移動は、前記測定装置の移動であってもよい。 (9) In the measuring method according to any one of (1) to (8) above, the relative movement of the measuring device with respect to the mounting table may be the movement of the measuring device.
(10) また、上記の(1)から(8)のいずれかの測定方法において、前記測定装置の前記載置台に対する相対的な移動は、前記載置台の移動であってもよい。 (10) In the measuring method according to any one of (1) to (8) above, the relative movement of the measuring device with respect to the mounting table may be movement of the mounting table.
(11) 本発明は上記の課題を解決するためのものであり、ガラス板の製造方法であって、溶融ガラスからガラスリボンを成形する成形工程と、前記ガラスリボンを徐冷する徐冷工程と、前記徐冷工程を経た前記ガラスリボンを所定サイズのガラス板に切り出す切断工程と、前記ガラス板に対して、上記の(1)から(9)のいずれかの透明体の測定方法を実行する検査工程と、を備えることを特徴とする。 (11) The present invention is intended to solve the above problems, and is a method for manufacturing a glass plate, comprising a forming step of forming a glass ribbon from molten glass, and a slow cooling step of slowly cooling the glass ribbon. , a cutting step of cutting the glass ribbon that has undergone the slow cooling step into glass plates of a predetermined size; and an inspection step.
 かかる構成によれば、検査工程においてガラス基板の特性を効率良く測定することで、ガラス板の特性の変化を徐冷工程に速やかにフィードバックすることができる。 According to this configuration, by efficiently measuring the properties of the glass substrate in the inspection process, changes in the properties of the glass plate can be quickly fed back to the slow cooling process.
(12) 本発明は上記の課題を解決するためのものであり、ガラス板を含む透明体の特性を測定する測定機であって、前記透明体を水平状に支持する載置台と、前記載置台に対して相対的に移動するレーザ透過型の測定装置と、を備え、前記載置台は、前記測定装置から放出されるレーザ光をガラス基板に照射させるための開口部を備え、前記測定装置を停止させることなく前記載置台に対して所定の測定方向に沿って相対的に移動させながら、前記透明体の特性を測定することを特徴とする。 (12) The present invention is intended to solve the above-mentioned problems, and is a measuring instrument for measuring the characteristics of a transparent body including a glass plate, comprising: a mounting table for horizontally supporting the transparent body; a laser transmission type measuring device that moves relative to a mounting table, wherein the mounting table has an opening for irradiating a glass substrate with laser light emitted from the measuring device; The characteristics of the transparent body are measured while relatively moving along a predetermined measurement direction with respect to the mounting table without stopping.
 かかる構成によれば、載置台に対して測定装置を停止させることなく所定の測定方向に沿って相対的に移動させながら透明体の特性を測定することで、従来のように測定装置を停止させて測定する場合と比較して、測定時間を短縮することができる。これにより、ガラス基板の特性を効率良く測定することが可能となる。 According to this configuration, by measuring the properties of the transparent body while relatively moving along the predetermined measurement direction without stopping the measuring apparatus with respect to the mounting table, the measuring apparatus can be stopped as in the conventional art. Measurement time can be shortened compared to the case of measuring by This makes it possible to efficiently measure the properties of the glass substrate.
(13) 上記の(12)の測定機において、前記載置台の前記開口部は、矩形状に構成されてもよい。これにより、載置台に形成される開口部の開口面積を可及的に大きく確保することができる。 (13) In the measuring machine of (12) above, the opening of the mounting table may be configured in a rectangular shape. As a result, the opening area of the opening formed in the mounting table can be secured as large as possible.
 本発明によれば、ガラス板を含む透明体の特性を効率良く測定することができる。 According to the present invention, the properties of transparent bodies including glass plates can be efficiently measured.
測定機の側面図である。It is a side view of a measuring machine. 測定機の側面図である。It is a side view of a measuring machine. 測定機の平面図である。It is a top view of a measuring machine. 測定機の正面図である。It is a front view of a measuring machine. 透明体の測定方法を示す平面図である。It is a top view which shows the measuring method of a transparent body. 透明体の測定方法を示す平面図である。It is a top view which shows the measuring method of a transparent body. 透明体の測定方法を示す平面図である。It is a top view which shows the measuring method of a transparent body. 透明体の測定方法を示す平面図である。It is a top view which shows the measuring method of a transparent body. 測定機における載置台の他の例を示す平面図である。FIG. 10 is a plan view showing another example of the mounting table in the measuring machine;
 以下、本発明を実施するための形態について、図面を参照しながら説明する。図1乃至図9は、本発明に係る透明体の測定方法及び測定機の一実施形態を示す。なお、図1乃至図9に示すXYZの三軸からなる直交座標系において、X軸方向及びY軸方向は水平方向を示し、Z軸方向は鉛直方向(上下方向)を示す。 Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings. FIGS. 1 to 9 show an embodiment of the transparent body measuring method and measuring apparatus according to the present invention. In the XYZ orthogonal coordinate system shown in FIGS. 1 to 9, the X-axis direction and the Y-axis direction indicate the horizontal direction, and the Z-axis direction indicates the vertical direction (vertical direction).
 本発明に係る測定方法及び測定機は、ガラス板を含む透明体の特性を測定するためのものである。透明体の特性としては、例えば、厚さ、表面粗さ、うねり、歪などが挙げられる。透明体の例としては、透明なガラス板の他、複数の透明なガラス板を透明な接着材を介して積層してなるガラス板積層体、透明なガラス板と透明な樹脂とを透明な接着材を介して積層してなるガラス樹脂積層体などが挙げられる。 The measuring method and measuring instrument according to the present invention are for measuring the properties of transparent bodies including glass plates. Properties of the transparent body include, for example, thickness, surface roughness, waviness, distortion, and the like. Examples of transparent bodies include a transparent glass plate, a glass plate laminate obtained by laminating a plurality of transparent glass plates via a transparent adhesive, and a transparent adhesive between a transparent glass plate and a transparent resin. Examples thereof include a glass resin laminate formed by laminating via a material.
 本実施形態では、ディスプレイ用の透明なガラス基板の歪を測定する場合を一例として説明する。ガラス基板は、例えば正方形や長方形状に形成されており、その一辺の寸法は、例えば2000~3400mmである。ガラス基板の厚さは、例えば0.1~1.2mmである。ガラス基板の形状、寸法、厚さ等は、特に限定されず、その用途に応じて適宜変更することができる。 In this embodiment, a case of measuring distortion of a transparent glass substrate for display will be described as an example. The glass substrate is formed in a square or rectangular shape, for example, and the size of one side thereof is, for example, 2000 to 3400 mm. The thickness of the glass substrate is, for example, 0.1 to 1.2 mm. The shape, dimensions, thickness, and the like of the glass substrate are not particularly limited, and can be appropriately changed according to the application.
 図1乃至図4に示すように、測定機1は、架台2と、ガラス基板Gを水平状に支持することが可能な載置台3と、載置台3に対して所定の測定方向に沿って相対的に移動可能なレーザ透過型の測定装置4と、載置台3及び測定装置4の動作を制御する制御装置5と、を備える。 As shown in FIGS. 1 to 4, the measuring instrument 1 includes a pedestal 2, a mounting table 3 capable of horizontally supporting a glass substrate G, and a A relatively movable laser transmission type measuring device 4 and a control device 5 for controlling operations of the mounting table 3 and the measuring device 4 are provided.
 架台2は、載置台3を傾斜状態もしくは水平状態で保持するための台であって、床面上に設置される。ここで、「水平状態」とは、完全な水平状態(傾斜角度=0°)に限るものではなく、略水平な状態であることも含み、例えば、見た目で水平を呈する状態も含む。具体的には、「水平状態」とは、載置台3が僅かに傾斜している場合において、水平方向(Y軸方向)に対する傾斜角度が-10°以上0°未満又は0°を超え10°以下の範囲である状態も含む。 The mount 2 is a stand for holding the mounting table 3 in an inclined state or a horizontal state, and is installed on the floor surface. Here, the “horizontal state” is not limited to a completely horizontal state (tilt angle=0°), but also includes a substantially horizontal state, for example, a visually horizontal state. Specifically, the “horizontal state” means that the tilt angle with respect to the horizontal direction (Y-axis direction) is −10° or more and less than 0°, or more than 0° and 10° when the mounting table 3 is slightly tilted. It also includes states that are in the following range.
 図1乃至図3に示すように、架台2は、Y軸方向に沿って長尺状に構成されている。架台2は、その長手方向に沿って載置台3を移動させるスライド機構6を備える。スライド機構6は、載置台3の幅方向(X軸方向)の両端部にそれぞれ配置される。 As shown in FIGS. 1 to 3, the gantry 2 is elongated along the Y-axis direction. The gantry 2 includes a slide mechanism 6 that moves the mounting table 3 along its longitudinal direction. The slide mechanisms 6 are arranged at both ends of the mounting table 3 in the width direction (X-axis direction).
 各スライド機構6は、載置台3の中途部を回動可能に支持する回動軸7と、載置台3を水平方向に沿って移動させる水平駆動装置(図示せず)と、回動軸7を中心にして載置台3を回動させる回動駆動装置(図示せず)と、を備える。 Each slide mechanism 6 includes a rotating shaft 7 that rotatably supports the intermediate portion of the mounting table 3 , a horizontal driving device (not shown) that moves the mounting table 3 along the horizontal direction, and a rotating shaft 7 . and a rotation drive device (not shown) for rotating the mounting table 3 around the .
 水平駆動装置は、例えばLMガイド(登録商標)やボールねじ機構、モーター等を備える直動機構により構成される。水平駆動装置を作動させることで、水平状態にある載置台3を架台2の長手方向(Y軸方向)に沿って移動させることができる。 The horizontal drive device is composed of, for example, an LM guide (registered trademark), a ball screw mechanism, a linear motion mechanism equipped with a motor, etc. By operating the horizontal drive device, the mounting table 3 in a horizontal state can be moved along the longitudinal direction (Y-axis direction) of the gantry 2 .
 回動駆動装置は、例えばエアシリンダ等のアクチュエータ又はモーター等により構成される。回動駆動装置は、回動軸7を介して、載置台3を、例えば水平方向(Y軸方向)に対して70~80度の角度を有する傾斜状態と、水平状態とに変更することができる。 The rotation drive device is composed of an actuator such as an air cylinder or a motor. The rotary drive device can change the mounting table 3 between, for example, an inclined state having an angle of 70 to 80 degrees with respect to the horizontal direction (Y-axis direction) and a horizontal state via the rotary shaft 7. can.
 図3に示すように、載置台3は、ステージ部8と、受け部9と、位置決め部10a,10bとを備える。 As shown in FIG. 3, the mounting table 3 includes a stage portion 8, a receiving portion 9, and positioning portions 10a and 10b.
 ステージ部8は、金属製(例えばアルミニウム製)の板状部材により構成される。ステージ部8は、歪を測定する際にガラス基板Gの平坦度を所望の精度に維持するための定盤として機能する。 The stage part 8 is configured by a plate-shaped member made of metal (eg, made of aluminum). The stage portion 8 functions as a surface plate for maintaining the flatness of the glass substrate G at a desired accuracy when strain is measured.
 ステージ部8は、平坦面として構成される載置面を有する。載置面は、複数の開口部11と、各開口部11を区切る枠部12a,12bとを備える。 The stage part 8 has a mounting surface configured as a flat surface. The mounting surface includes a plurality of openings 11 and frame portions 12 a and 12 b that separate the openings 11 .
 各開口部11は、例えば正方形状に構成されるが、この形状に限定されない。各開口部11は、測定装置4による歪測定の際に載置台3の下方から上方に向かって照射されるレーザ光をガラス基板Gに照射させるためのものである。複数の開口部11は、ステージ部8のX軸方向及びY軸方向に沿って、所定の間隔をおいて直線状に配列されている。 Each opening 11 is configured, for example, in a square shape, but is not limited to this shape. Each opening 11 is for irradiating the glass substrate G with a laser beam emitted upward from below the mounting table 3 when strain measurement is performed by the measuring device 4 . The plurality of openings 11 are linearly arranged at predetermined intervals along the X-axis direction and the Y-axis direction of the stage portion 8 .
 図3に示すように、枠部12a,12bは、ガラス基板Gがステージ部8に載置されたときに、このガラス基板Gの一方の面を支持する。各枠部12a,12bは、所定の長さ寸法及び幅寸法を有するとともに、直線状に構成される。 As shown in FIG. 3 , the frame portions 12 a and 12 b support one surface of the glass substrate G when the glass substrate G is placed on the stage portion 8 . Each of the frame portions 12a and 12b has a predetermined length dimension and width dimension, and is configured linearly.
 枠部12a,12bは、X軸方向に沿う第一枠部12aと、Y軸方向に沿う第二枠部12bとを含む。第一枠部12aと第二枠部12bとが直交するように形成されることで、開口部11は、矩形状を呈する。また、複数の第一枠部12aと第二枠部12bとが直交するように連結されることで、ステージ部8の載置面は格子状に構成されている。 The frame portions 12a and 12b include a first frame portion 12a along the X-axis direction and a second frame portion 12b along the Y-axis direction. By forming the first frame portion 12a and the second frame portion 12b to be perpendicular to each other, the opening portion 11 has a rectangular shape. Moreover, the mounting surface of the stage section 8 is configured in a grid pattern by connecting the plurality of first frame portions 12a and the second frame portions 12b so as to be orthogonal to each other.
 図1乃至図3に示すように、受け部9は、ステージ部8の一端部側に設けられるとともに、載置台3の幅方向に沿って長尺状に構成される。受け部9は、載置台3が傾斜状態にあるときに、ガラス基板Gの一端部(下端部)を支持する。また、受け部9は、載置台3が水平状態にあるときに、ガラス基板Gの一端部に接触する位置決め部として機能する。受け部9は、ガラス基板Gの大きさに応じて位置決めを行うことができるように、位置変更可能に構成される。 As shown in FIGS. 1 to 3 , the receiving portion 9 is provided on one end side of the stage portion 8 and is elongated along the width direction of the mounting table 3 . The receiving portion 9 supports one end portion (lower end portion) of the glass substrate G when the mounting table 3 is in an inclined state. Further, the receiving portion 9 functions as a positioning portion that contacts one end portion of the glass substrate G when the mounting table 3 is in a horizontal state. The receiving part 9 is configured so that its position can be changed so that it can be positioned according to the size of the glass substrate G. As shown in FIG.
 図3に示すように、位置決め部10a,10bは、載置台3が水平状態にあるときに、X軸方向におけるガラス基板Gの各端部を位置決めする一対の第一位置決め部10aと、Y軸方向におけるガラス基板Gの端部(受け部9に接触する端部とは反対側の端部)を位置決めする第二位置決め部10bと、を含む。各位置決め部10a,10bは、ガラス基板Gの大きさに応じて位置決めを行うことができるように、位置変更可能に構成される。 As shown in FIG. 3, the positioning portions 10a and 10b include a pair of first positioning portions 10a for positioning each end portion of the glass substrate G in the X-axis direction when the mounting table 3 is in a horizontal state, and a second positioning portion 10b that positions the end portion of the glass substrate G in the direction (the end portion opposite to the end portion that contacts the receiving portion 9). Each positioning part 10a, 10b is configured so that the position can be changed so that the positioning can be performed according to the size of the glass substrate G. As shown in FIG.
 測定装置4は、架台2の長手方向における中途部に配置されている。測定装置4は、レーザ光照射部13と、レーザ光受光部14と、レーザ光受光部14を支持する支持部材15と、レーザ光照射部13を駆動する駆動装置(図示せず)と、レーザ光受光部14を駆動する駆動装置(図示せず)と、を備える。 The measuring device 4 is arranged in the middle of the gantry 2 in the longitudinal direction. The measurement device 4 includes a laser beam irradiation unit 13, a laser beam receiving unit 14, a support member 15 for supporting the laser beam receiving unit 14, a driving device (not shown) for driving the laser beam irradiation unit 13, and a laser beam. and a driving device (not shown) that drives the light receiving unit 14 .
 レーザ光照射部13は、架台2の下部に設けられており、載置台3の下方から開口部11に向かって上方にレーザ光を放出するように構成される。また、レーザ光照射部13は、駆動装置によりX軸方向に沿って移動するように構成される。 The laser beam irradiation unit 13 is provided below the pedestal 2 and configured to emit a laser beam upward from below the mounting table 3 toward the opening 11 . Also, the laser beam irradiation unit 13 is configured to be moved along the X-axis direction by a driving device.
 レーザ光受光部14は、上下方向(Z軸方向)においてレーザ光照射部13と対向するように、このレーザ光照射部13の上方に位置する。レーザ光受光部14は、駆動装置によりX軸方向に沿って移動するように構成される。 The laser light receiving section 14 is positioned above the laser light irradiation section 13 so as to face the laser light irradiation section 13 in the vertical direction (Z-axis direction). The laser light receiving section 14 is configured to be moved along the X-axis direction by a driving device.
 上記のようなレーザ光照射部13及びレーザ光受光部14の位置関係により、載置台3は、水平状態にあるときに、上下方向(Z軸方向)においてレーザ光照射部13とレーザ光受光部14との間に位置することになる。 Due to the positional relationship between the laser beam irradiation unit 13 and the laser beam receiving unit 14 as described above, when the mounting table 3 is in a horizontal state, the laser beam irradiation unit 13 and the laser beam receiving unit 13 are positioned vertically (in the Z-axis direction). It will be located between 14.
 支持部材15は、レーザ光受光部14をX軸方向に移動可能に支持する。また、支持部材15は、レーザ光受光部14を駆動する駆動装置を支持している。 The support member 15 supports the laser light receiving section 14 so as to be movable in the X-axis direction. Further, the support member 15 supports a driving device that drives the laser light receiving section 14 .
 レーザ光照射部13の駆動装置及びレーザ光受光部14の駆動装置は、例えばLMガイド(登録商標)やボールねじ機構、モーター等を備える直動機構により構成される。 The drive device for the laser light irradiation unit 13 and the drive device for the laser light reception unit 14 are configured by, for example, a linear motion mechanism including an LM guide (registered trademark), a ball screw mechanism, a motor, and the like.
 上記の構成に限らず、測定装置4は、複数の駆動装置を組み合わせることで、レーザ光照射部13及びレーザ光受光部14をX軸方向及びY軸方向に移動させるように構成されてもよい。また、測定装置4は、レーザ光照射部13及びレーザ光受光部14をロボットアーム(駆動装置)に取り付けてなる構成としてもよい。これにより、測定装置4は、レーザ光照射部13及びレーザ光受光部14を三次元的に移動させることが可能になる。 The measurement device 4 may be configured to move the laser light irradiation unit 13 and the laser light reception unit 14 in the X-axis direction and the Y-axis direction by combining a plurality of driving devices without being limited to the above configuration. . Moreover, the measuring device 4 may have a configuration in which the laser beam irradiation unit 13 and the laser beam receiving unit 14 are attached to a robot arm (driving device). Thereby, the measuring device 4 can three-dimensionally move the laser beam irradiation unit 13 and the laser beam receiving unit 14 .
 測定装置4としては、例えば光ヘテロダイン法による共通光路干渉計とフーリエ解析法を利用して、ガラス基板Gの複屈折量を測定する複屈折測定装置が好適に使用される。この複屈折測定装置は、ガラス基板Gの歪の程度を評価するために、レタデーション(Retardation:複屈折による位相差)の大きさ及びレタデーションの方位角を測定することができる。なお、レタデーションが大きい程、歪が大きいことを意味する。 As the measuring device 4, for example, a birefringence measuring device that measures the birefringence amount of the glass substrate G using a common optical path interferometer and a Fourier analysis method by an optical heterodyne method is preferably used. This birefringence measuring apparatus can measure the magnitude of retardation (retardation: phase difference due to birefringence) and the azimuth angle of the retardation in order to evaluate the degree of distortion of the glass substrate G. FIG. In addition, it means that distortion is so large that retardation is large.
 制御装置5は、架台2のスライド機構6が有する駆動装置(水平駆動装置、回動駆動装置)の動作、測定装置4が有する駆動装置の動作、及び歪測定に関する測定装置4(レーザ光照射部13及びレーザ光受光部14)の動作等を制御する。 The control device 5 controls the operation of the drive device (horizontal drive device, rotation drive device) of the slide mechanism 6 of the pedestal 2, the operation of the drive device of the measurement device 4, and the measurement device 4 (laser beam irradiation unit) related to strain measurement. 13 and laser light receiving unit 14).
 制御装置5は、例えば、CPU等の処理装置やメモリ等の記憶装置、ディスプレイ等の表示装置を備えたパーソナルコンピュータ(PC)である。制御装置5は、ガラス基板Gの測定結果等を表示装置に出力することができる。また、制御装置5は、ガラス基板Gの測定結果等のデータを記憶装置に保存することができる。 The control device 5 is, for example, a personal computer (PC) equipped with a processing device such as a CPU, a storage device such as a memory, and a display device such as a display. The control device 5 can output measurement results and the like of the glass substrate G to the display device. In addition, the control device 5 can store data such as measurement results of the glass substrate G in the storage device.
 以下、上記構成の測定機1を使用してガラス基板Gの特性である歪を測定する方法、及びガラス基板Gの製造方法について説明する。本測定方法は、例えばガラス基板Gの製造工程において、ガラス基板Gの歪の測定を行うとともに、その測定結果に基づいて、ガラス基板Gの良否に関する情報を製造工程にフィードバックさせるために行われる。 A method of measuring the strain, which is a characteristic of the glass substrate G, and a method of manufacturing the glass substrate G using the measuring instrument 1 configured as described above will be described below. This measurement method is used, for example, to measure the strain of the glass substrate G in the manufacturing process of the glass substrate G, and to feed back information regarding the quality of the glass substrate G to the manufacturing process based on the measurement results.
 ガラス基板Gの製造方法は、溶融ガラスを所定方向に延伸して板状のガラスリボンを成形する成形工程と、成形工程で成形されたガラスリボンを徐冷する徐冷工程と、徐冷工程で徐冷されたガラスリボンを所定の大きさに切断してガラス板を得る切断工程と、切断工程で得たガラス板に本測定方法を実施する検査工程とを備える。 The method for manufacturing the glass substrate G includes a forming step of drawing molten glass in a predetermined direction to form a plate-shaped glass ribbon, a slow cooling step of slowly cooling the glass ribbon formed in the forming step, and a slow cooling step. The method includes a cutting step of cutting the slowly cooled glass ribbon into a predetermined size to obtain a glass plate, and an inspection step of applying the present measurement method to the glass plate obtained in the cutting step.
 徐冷工程では、徐冷炉内をガラスリボンが流下することで、意図しない熱歪がガラスリボンに発生するのが抑制される。徐冷炉は、ガラスリボンの板引き方向、及び幅方向に複数のヒータを備え、所定の温度勾配に調整されている。本測定方法で測定されたガラス板の歪に基づいて、徐冷炉内のヒータの出力を制御し、徐冷炉内の温度勾配を調整することで、ガラス板の歪を低減することができる。 In the slow cooling process, the glass ribbon flows down inside the slow cooling furnace, which prevents unintended thermal strain from occurring in the glass ribbon. The slow cooling furnace is equipped with a plurality of heaters in the drawing direction and width direction of the glass ribbon, and is adjusted to a predetermined temperature gradient. The distortion of the glass sheet can be reduced by controlling the output of the heater in the annealing furnace and adjusting the temperature gradient in the annealing furnace based on the distortion of the glass sheet measured by this measuring method.
 本測定方法は、ガラス基板Gを載置台3に載置する準備工程と、載置台3に載置されたガラス基板Gの歪を測定する測定工程と、を備える。 This measurement method includes a preparation step of mounting the glass substrate G on the mounting table 3 and a measurement step of measuring the distortion of the glass substrate G mounted on the mounting table 3 .
 図1に示すように、準備工程では、架台2の一端部側において傾斜状態で待機する載置台3にガラス基板Gを載置する。具体的には、例えば作業者がバキュームリフト等の吸引保持具を用いてガラス基板Gを保持した後、このガラス基板Gを載置台3に載置する。これにより、ガラス基板Gは、その下端部が載置台3の受け部9に接触した状態で傾斜状に支持される。 As shown in FIG. 1, in the preparation process, the glass substrate G is placed on the mounting table 3 that stands by in an inclined state on one end side of the pedestal 2 . Specifically, for example, an operator holds the glass substrate G using a suction holder such as a vacuum lift, and then places the glass substrate G on the mounting table 3 . As a result, the glass substrate G is supported in an inclined manner with its lower end in contact with the receiving portion 9 of the mounting table 3 .
 その後、図2に示すように、制御装置5は、スライド機構6の回動駆動装置を作動させて、回動軸7を中心に載置台3を回動させる。これにより、載置台3の姿勢は、傾斜状態から水平状態に変更され、ガラス基板Gは、この載置台3によって水平状に支持された状態となる。 After that, as shown in FIG. 2 , the control device 5 operates the rotation drive device of the slide mechanism 6 to rotate the mounting table 3 around the rotation shaft 7 . As a result, the posture of the mounting table 3 is changed from the inclined state to the horizontal state, and the glass substrate G is horizontally supported by the mounting table 3 .
 測定工程において、測定機1は、制御装置5の制御によって載置台3と測定装置4とを相対的に移動させることで、ガラス基板Gの測定を行う。この載置台3及び測定装置4の相対的な移動態様は、載置台3を停止させた状態でレーザ光照射部13及びレーザ光受光部14を移動させる第一移動態様と、レーザ光照射部13及びレーザ光受光部14を停止させた状態で載置台3を移動させる第二移動態様と、を含む。 In the measurement process, the measuring machine 1 measures the glass substrate G by relatively moving the mounting table 3 and the measuring device 4 under the control of the control device 5 . The relative movement modes of the mounting table 3 and the measuring device 4 are a first movement mode in which the laser light irradiation unit 13 and the laser light receiving unit 14 are moved while the mounting table 3 is stopped; and a second movement mode in which the mounting table 3 is moved while the laser light receiving unit 14 is stopped.
 以下、第一移動態様及び第二移動態様に基づく測定工程について、図5乃至図7を参照しながら説明する。図5乃至図7は、水平状態の載置台3のステージ部8に載置されたガラス基板Gを示す平面図である。図5及び図6は第一移動態様に基づく測定工程を示し、図7は第二移動態様に基づく測定工程を示す。 The measurement process based on the first movement mode and the second movement mode will be described below with reference to FIGS. 5 to 7. FIG. 5 to 7 are plan views showing the glass substrate G mounted on the stage portion 8 of the mounting table 3 in a horizontal state. 5 and 6 show the measurement process based on the first movement mode, and FIG. 7 shows the measurement process based on the second movement mode.
 図5及び図6に示す例では、載置台3のステージ部8に形成された複数の開口部11のうち、X軸方向(測定方向X1,X2)に沿って配される第一列M1、第二列M2及び第三列M3に属する開口部11に対してガラス基板Gの測定を行う場合について説明する。 In the example shown in FIGS. 5 and 6, among the plurality of openings 11 formed in the stage portion 8 of the mounting table 3, the first row M1 arranged along the X-axis direction (measurement directions X1, X2), A case of measuring the glass substrate G with respect to the openings 11 belonging to the second row M2 and the third row M3 will be described.
 制御装置5の制御により、レーザ光照射部13及びレーザ光受光部14は、第一列M1における最初の開口部11Sに対応する位置から最後の開口部11Eに対応する位置まで、測定方向X1に沿って移動する。この場合において、レーザ光照射部13及びレーザ光受光部14は、第一列M1の最後の開口部11Eに対応する位置に到達するまで、停止することなく等速で(連続して)移動する。レーザ光照射部13及びレーザ光受光部14が移動している間、載置台3は停止した状態にある(以下、第二列M2、第三列M3の測定において同じ)。 Under the control of the control device 5, the laser beam irradiation unit 13 and the laser beam receiving unit 14 move in the measurement direction X1 from the position corresponding to the first opening 11S in the first row M1 to the position corresponding to the last opening 11E. move along. In this case, the laser beam irradiation unit 13 and the laser beam receiving unit 14 move (continuously) at a constant speed without stopping until reaching the position corresponding to the last opening 11E of the first row M1. . While the laser beam irradiation unit 13 and the laser beam receiving unit 14 are moving, the mounting table 3 is in a stopped state (hereinafter, the same applies to measurements of the second row M2 and the third row M3).
 上記のようなレーザ光照射部13及びレーザ光受光部14の移動に伴い、レーザ光照射部13から放出されるレーザ光は、図5に示す平面視において、矢印A1で示すように、第一列M1に係る各開口部11S,11,11E及び第二枠部12bを測定方向X1に沿って通過するように移動する。これにより、レーザ光は、ガラス基板Gに対して相対的に、かつ直線的に移動する。レーザ光の移動速度、すなわちレーザ光照射部13及びレーザ光受光部14の移動速度は、例えば10~1000mm/sであり、好ましくは50~200mm/sである。 With the movement of the laser light irradiation unit 13 and the laser light receiving unit 14 as described above, the laser light emitted from the laser light irradiation unit 13 is, in a plan view shown in FIG. It moves so as to pass through the openings 11S, 11, 11E and the second frame portion 12b associated with the row M1 along the measurement direction X1. As a result, the laser light moves relative to the glass substrate G and linearly. The moving speed of the laser beam, that is, the moving speed of the laser beam irradiation unit 13 and the laser beam receiving unit 14 is, for example, 10 to 1000 mm/s, preferably 50 to 200 mm/s.
 レーザ光は、上記のように移動しながら、各開口部11を通じてガラス基板Gに照射される。開口部11を通じてガラス基板Gに照射されたレーザ光は、このガラス基板Gを透過した後に、レーザ光受光部14に到達する。制御装置5は、レーザ光受光部14によって検出されたレーザ光の複屈折量に関する検出データに基づいて、ガラス基板Gの歪を算出する。 The laser beam irradiates the glass substrate G through each opening 11 while moving as described above. The laser light applied to the glass substrate G through the opening 11 reaches the laser light receiving section 14 after passing through the glass substrate G. As shown in FIG. The control device 5 calculates the distortion of the glass substrate G based on the detection data regarding the birefringence amount of the laser light detected by the laser light receiving section 14 .
 第一列M1に属する全ての開口部11に対応するガラス基板Gの測定が終了すると、第二列M2に属する開口部11に対応するガラス基板Gの測定が実行される。レーザ光が第一列M1の最後の開口部11Eに到達すると、制御装置5は、レーザ光照射部13及びレーザ光受光部14を停止させるとともに、載置台3を測定方向X1に直交する方向Y2に沿って移動させる。 When the measurement of the glass substrates G corresponding to all the openings 11 belonging to the first row M1 is completed, the measurement of the glass substrates G corresponding to the openings 11 belonging to the second row M2 is performed. When the laser beam reaches the last opening 11E of the first row M1, the control device 5 stops the laser beam irradiation unit 13 and the laser beam receiving unit 14, and moves the mounting table 3 in the direction Y2 perpendicular to the measurement direction X1. move along.
 これにより、レーザ光は、矢印A2で示すように、第一列M1における最後の開口部11Eの位置から第二列M2における最初の開口部11Sの位置まで、ガラス基板Gに対して相対的に、かつ直線的に移動する。このとき、レーザ光は、第一列M1における最後の開口部11Eと第二列M2における最初の開口部11Sとを区切る第一枠部12aを通過する。 As a result, the laser light is distributed relative to the glass substrate G from the position of the last opening 11E in the first row M1 to the position of the first opening 11S in the second row M2, as indicated by the arrow A2. , and move in a straight line. At this time, the laser light passes through the first frame portion 12a that separates the last opening 11E in the first row M1 and the first opening 11S in the second row M2.
 その後、制御装置5は、載置台3を停止させるとともに、レーザ光照射部13及びレーザ光受光部14を測定方向X2に沿って移動させる。これにより、レーザ光は、矢印A3で示すように、第二列M2における最初の開口部11Sの位置から最後の開口部11Eの位置まで、ガラス基板Gに対して相対的に、かつ直線的に移動する。 After that, the control device 5 stops the mounting table 3 and moves the laser beam irradiation unit 13 and the laser beam receiving unit 14 along the measurement direction X2. As a result, as indicated by an arrow A3, the laser light travels relatively and linearly with respect to the glass substrate G from the position of the first opening 11S to the position of the last opening 11E in the second row M2. Moving.
 この移動により、各開口部11を通じてガラス基板Gにレーザ光が照射され、ガラス基板Gを透過したレーザ光がレーザ光受光部14によって受光される。制御装置5は、第一列M1の開口部11における測定と同様に、レーザ光受光部14によって検出されたレーザ光の複屈折量に関する検出データに基づいて、ガラス基板Gの歪を算出する。 Due to this movement, the glass substrate G is irradiated with laser light through each opening 11 , and the laser light that has passed through the glass substrate G is received by the laser light receiving section 14 . The control device 5 calculates the distortion of the glass substrate G based on the detection data regarding the birefringence amount of the laser light detected by the laser light receiving section 14 in the same manner as the measurement at the openings 11 of the first row M1.
 第二列M2に属する全ての開口部11に対応するガラス基板Gの測定が終了すると、第三列M3に属する開口部11に対応するガラス基板Gの測定が実行される。レーザ光が第二列M2の最後の開口部11Eに到達すると、制御装置5は、レーザ光照射部13及びレーザ光受光部14を停止させるとともに、載置台3を測定方向X2に直交する方向Y2に沿って移動させる。 When the measurement of the glass substrates G corresponding to all the openings 11 belonging to the second row M2 is completed, the measurement of the glass substrates G corresponding to the openings 11 belonging to the third row M3 is performed. When the laser beam reaches the last opening 11E of the second row M2, the control device 5 stops the laser beam irradiation unit 13 and the laser beam receiving unit 14, and moves the mounting table 3 in the direction Y2 perpendicular to the measurement direction X2. move along.
 これにより、レーザ光は、矢印A4で示すように、第二列M2における最後の開口部11Eの位置から第三列M3における最初の開口部11Sの位置まで、ガラス基板Gに対して相対的に、かつ直線的に移動する。このとき、レーザ光は、第二列M2における最後の開口部11Eと第三列M3における最初の開口部11Sとを区切る第一枠部12aを通過する。 As a result, the laser light is distributed relative to the glass substrate G from the position of the last opening 11E in the second row M2 to the position of the first opening 11S in the third row M3, as indicated by an arrow A4. , and move in a straight line. At this time, the laser light passes through the first frame portion 12a that separates the last opening 11E in the second row M2 and the first opening 11S in the third row M3.
 その後、制御装置5は、載置台3を停止させるとともに、レーザ光照射部13及びレーザ光受光部14を測定方向X1に沿って移動させる。これにより、レーザ光は、矢印A5で示すように、第三列M3における最初の開口部11Sの位置から最後の開口部11Eの位置まで、ガラス基板Gに対して相対的に、かつ直線的に移動する。このレーザ光の移動中に、第一列M1及び第二列M2の開口部11に対応するガラス基板Gの測定と同様な歪の測定が行われる。その後、以上のような動作を、第四列から最後の列まで繰り返すことで、ガラス基板Gの全体に対する測定が完了する。 After that, the control device 5 stops the mounting table 3 and moves the laser beam irradiation unit 13 and the laser beam receiving unit 14 along the measurement direction X1. As a result, as indicated by an arrow A5, the laser light travels from the position of the first opening 11S to the position of the last opening 11E in the third row M3 relatively and linearly with respect to the glass substrate G. Moving. During the movement of the laser light, strain measurement similar to the measurement of the glass substrate G corresponding to the openings 11 of the first row M1 and the second row M2 is performed. After that, the above operation is repeated from the fourth row to the last row to complete the measurement of the entire glass substrate G. FIG.
 上記の測定工程では、レーザ光が測定方向X1,X2に沿って一つの開口部11を通過する間に、その開口部11の範囲内において、ガラス基板Gに対して一回又は複数回の歪の測定を行うことができる。 In the above measurement process, while the laser light passes through one opening 11 along the measurement directions X1 and X2, the glass substrate G is distorted once or multiple times within the range of the opening 11. can be measured.
 測定工程は、一回の歪の測定において、レーザ光受光部14によってレーザ光の複屈折量に関する検出データを取得するデータ検出工程と、データ検出工程で検出された検出データに基づいて制御装置により歪を算出する演算処理工程と、を備える。一回の歪の測定にかかる時間は、データ検出工程にかかるデータ検出時間と、演算処理工程にかかる演算処理時間との和である。本実施形態において、測定装置4による一回毎の歪の測定にかかる時間は、0.1秒以下であることが望ましい。 In a single measurement of strain, the measurement process includes a data detection process of obtaining detection data on the birefringence amount of the laser light by the laser light receiving unit 14, and a control device based on the detection data detected in the data detection process. and an arithmetic processing step of calculating the strain. The time required for one strain measurement is the sum of the data detection time required for the data detection step and the arithmetic processing time required for the arithmetic processing step. In this embodiment, it is desirable that the time required for each strain measurement by the measuring device 4 is 0.1 second or less.
 本実施形態では、測定工程におけるデータ検出工程と演算処理工程とを交互に繰り返すことにより、一つの開口部11の範囲内においてガラス基板Gに対して複数回の歪の測定を行うことができる。以下、図6を参照しながら、この測定を行う場合について説明する。図6では、図5で例示した第三列M3に属する開口部11に対し、矢印A5で示す方向にレーザ光が移動する状態を拡大して示している。 In this embodiment, by alternately repeating the data detection process and the arithmetic processing process in the measurement process, it is possible to measure the distortion of the glass substrate G multiple times within the range of one opening 11 . The case of performing this measurement will be described below with reference to FIG. FIG. 6 shows an enlarged state in which the laser light moves in the direction indicated by the arrow A5 with respect to the openings 11 belonging to the third row M3 illustrated in FIG.
 測定装置4は、第三列M3に属する一つの開口部11において、三回の測定を行うように設定されている。ステージ部8に載置されるガラス基板Gには、一つの開口部11の範囲内において、第一測定領域MA1、第二測定領域MA2及び第三測定領域MA3の三か所の測定領域が設定されている。各測定領域MA1~MA3は、測定方向X1に沿って直線状に構成される。 The measuring device 4 is set to perform three measurements in one opening 11 belonging to the third row M3. Three measurement areas, a first measurement area MA1, a second measurement area MA2 and a third measurement area MA3, are set within the range of one opening 11 on the glass substrate G placed on the stage part 8. It is Each of the measurement areas MA1-MA3 is configured linearly along the measurement direction X1.
 レーザ光照射部13は、レーザ光受光部14とともに測定方向X1に沿って移動しながら、第一測定領域MA1にレーザ光を照射する。レーザ光は、この第一測定領域MA1を透過してレーザ光受光部14に到達する。 The laser beam irradiation unit 13 irradiates the first measurement area MA1 with laser beams while moving along the measurement direction X1 together with the laser beam receiving unit 14 . The laser light passes through this first measurement area MA1 and reaches the laser light receiving section 14 .
 レーザ光が移動しながら第一測定領域MA1に照射される間の時間は、データ検出工程におけるデータ検出時間に相当する。このレーザ光の移動時間(データ検出時間)は、例えば0.05秒である。この時間が経過する間に、レーザ光は、第一測定領域MA1の長さ分、すなわち図6において符号D1で示す距離(第一移動距離)だけ移動する。 The time during which the first measurement area MA1 is irradiated with the moving laser light corresponds to the data detection time in the data detection process. The travel time (data detection time) of this laser beam is, for example, 0.05 seconds. While this time elapses, the laser light moves by the length of the first measurement area MA1, that is, the distance (first movement distance) indicated by symbol D1 in FIG.
 制御装置5は、レーザ光が第一測定領域MA1の終端部から第二測定領域MA2の始端部に移動するまでの間に、演算処理工程を実行する。すなわち、制御装置5は、レーザ光受光部14を通じて検出されたレーザ光の検出データに基づいて、第一測定領域MA1における歪を算出する。レーザ光が第一測定領域MA1から第二測定領域MA2まで移動する時間は、演算処理工程における演算処理時間に相当する。この場合において、レーザ光の移動時間(演算処理時間)は、例えば0.05秒である。この時間が経過する間に、レーザ光は、図6において符号D2で示す距離(第二移動距離)だけ移動する。本実施形態では、第二移動距離D2は第一移動距離D1と等しいが、これらの距離D1,D2は異なっていてもよい。 The control device 5 executes the arithmetic processing process while the laser beam moves from the end of the first measurement area MA1 to the beginning of the second measurement area MA2. That is, the control device 5 calculates the strain in the first measurement area MA1 based on the detection data of the laser light detected through the laser light receiving section 14. FIG. The time taken for the laser light to move from the first measurement area MA1 to the second measurement area MA2 corresponds to the arithmetic processing time in the arithmetic processing step. In this case, the movement time (calculation processing time) of the laser light is, for example, 0.05 seconds. While this time elapses, the laser beam moves by a distance (second movement distance) indicated by symbol D2 in FIG. In this embodiment, the second moving distance D2 is equal to the first moving distance D1, but these distances D1 and D2 may be different.
 第一測定領域MA1における歪の測定、すなわち第一回目の測定に要する時間(測定時間)は、データ検出時間と演算処理時間の和により、例えば0.1秒となる。また、第一回目の測定におけるレーザ光の移動距離(測定装置4の相対的な移動距離)は、第一移動距離D1と第二移動距離D2の和(D1+D2)である。すなわち、本実施形態における測定工程は、レーザ光がこの距離(D1+D2)を移動する間に行うデータ検出工程及び演算処理工程を一サイクルとして、等ピッチ(D2)で設定される各測定領域にレーザ光を照射しながらガラス基板Gの測定を行うものである。なお、このレーザ光の移動距離(D1+D2)は、例えば5~10mmとされるが、この範囲に限定されない。 The measurement of strain in the first measurement area MA1, that is, the time required for the first measurement (measurement time) is, for example, 0.1 seconds, which is the sum of the data detection time and the arithmetic processing time. Further, the moving distance of the laser beam (relative moving distance of the measuring device 4) in the first measurement is the sum of the first moving distance D1 and the second moving distance D2 (D1+D2). That is, in the measurement process of the present embodiment, the data detection process and the arithmetic processing process performed while the laser beam moves this distance (D1+D2) are regarded as one cycle, and laser beams are applied to each measurement area set at an equal pitch (D2). The glass substrate G is measured while being irradiated with light. Note that the moving distance (D1+D2) of the laser light is, for example, 5 to 10 mm, but is not limited to this range.
 第一回目の測定が完了すると、第二回目の測定が行われる。第二回目の測定では、測定装置4の連続的な移動とともに、レーザ光照射部13から放出されたレーザ光が第二測定領域MA2に照射される。この間に、第二測定領域MA2を透過したレーザ光がレーザ光受光部14によって受光され、レーザ光に係る検出データが検出される(データ検出工程)。 When the first measurement is completed, the second measurement will be performed. In the second measurement, the second measurement area MA2 is irradiated with the laser beam emitted from the laser beam irradiation unit 13 as the measurement device 4 is continuously moved. During this time, the laser light that has passed through the second measurement area MA2 is received by the laser light receiving unit 14, and detection data related to the laser light is detected (data detection step).
 その後、レーザ光が第二測定領域MA2の終端部から第三測定領域MA3の始端部に移動するまでの間に、制御装置5によって第二測定領域MA2に係る歪が算出される(演算処理工程)。第二回目の測定におけるデータ検出時間及び歪の演算処理時間は、第一回目の場合と同じである。第二回目の測定において、測定装置4及びレーザ光が移動する距離は、第一回目の測定における移動距離(D1+D2)と同じである。 After that, while the laser beam moves from the end of the second measurement area MA2 to the beginning of the third measurement area MA3, the control device 5 calculates the distortion of the second measurement area MA2 (computation processing step ). The data detection time and distortion calculation processing time in the second measurement are the same as in the first measurement. In the second measurement, the distance traveled by the measuring device 4 and the laser light is the same as the travel distance (D1+D2) in the first measurement.
 第三回目の測定についても、第一回目、第二回目の測定と同様に行われる。測定装置4は、測定方向X1に沿って移動しながら、レーザ光を第三測定領域MA3に照射する。この間に、第三測定領域MA3を透過したレーザ光がレーザ光受光部14によって受光され、レーザ光に係る検出データが検出される(データ検出工程)。制御装置5は、この検出データに基づいて、第三測定領域MA3に係る歪を算出する(演算処理工程)。 The third measurement will be done in the same way as the first and second measurements. The measurement device 4 irradiates the third measurement area MA3 with laser light while moving along the measurement direction X1. During this time, the laser light that has passed through the third measurement area MA3 is received by the laser light receiving unit 14, and detection data related to the laser light is detected (data detection step). Based on this detection data, the control device 5 calculates the strain associated with the third measurement area MA3 (calculation processing step).
 開口部11は、上記のように測定装置4による複数回の測定ができるような開口面積を有している。すなわち、一つの開口部11を区切る一対の第二枠部12bの間隔W1は、一回の測定においてレーザ光及び測定装置4が移動する距離(D1+D2)よりも大きい(W1>(D1+D2))。 The opening 11 has an opening area that allows multiple measurements by the measuring device 4 as described above. That is, the interval W1 between the pair of second frame portions 12b that separate one opening 11 is greater than the distance (D1+D2) that the laser beam and the measuring device 4 move in one measurement (W1>(D1+D2)).
 一つの開口部11の範囲内でガラス基板Gに対して行われる複数回の測定のうち、最後の回(上記の例では第三回目)の測定では、制御装置5による演算処理工程の実行中に、レーザ光が、その開口部11と次の開口部11との間を区切る第二枠部12bを通過することが望ましい。これにより、レーザ光が次の開口部11に到達した直後にガラス基板Gの測定を開始することができる。したがって、一つの開口部11の範囲内における歪の測定回数を可及的に多く確保することができる。 Of the plurality of measurements performed on the glass substrate G within the range of one opening 11, the final measurement (the third measurement in the above example) is during execution of the arithmetic processing process by the control device 5. In addition, it is desirable that the laser light passes through the second frame portion 12b that separates the opening 11 and the next opening 11 . Thereby, measurement of the glass substrate G can be started immediately after the laser light reaches the next opening 11 . Therefore, it is possible to secure as many strain measurements as possible within the range of one opening 11 .
 この場合において、図6に示すように、測定方向X1において隣り合う二つの開口部11の間に位置する第二枠部12bの幅寸法W2は、演算処理工程における演算処理時間内にレーザ光及び測定装置4が移動する第二移動距離D2よりも小さく設定されることが好ましい(W2<D2)。 In this case, as shown in FIG. 6, the width dimension W2 of the second frame portion 12b positioned between the two openings 11 adjacent in the measurement direction X1 is determined by the laser beam and the It is preferably set smaller than the second moving distance D2 that the measuring device 4 moves (W2<D2).
 制御装置5は、演算処理工程が終了すると、ガラス基板Gの測定結果(歪の算出結果)を表示装置に出力する。また、制御装置5は、ガラス基板Gの測定結果のデータを記憶装置に保存する。その他、制御装置5は、予め設定された歪を評価する指標である規格値(レタデーションの大きさ及びレタデーションの方位角)と測定結果とを比較し、ガラス基板Gにおける歪に関する良否判定を行うことができる。制御装置5は、この判定結果を表示装置に表示させる。 When the arithmetic processing process is completed, the control device 5 outputs the measurement result (distortion calculation result) of the glass substrate G to the display device. Further, the control device 5 saves the data of the measurement result of the glass substrate G in the storage device. In addition, the control device 5 compares the measurement results with standard values (magnitude of retardation and azimuth angle of retardation), which are preset indices for evaluating distortion, and judges whether the distortion in the glass substrate G is good or bad. can be done. The control device 5 causes the display device to display the determination result.
 図7は、第二移動態様による測定工程を示す。この例では、載置台3のステージ部8に形成された複数の開口部11のうち、Y軸方向(測定方向Y1,Y2)に沿って配される第一列N1、第二列N2及び第三列N3に属する開口部11に応じてガラス基板Gの測定を行う場合について説明する。 FIG. 7 shows the measurement process according to the second movement mode. In this example, among the plurality of openings 11 formed in the stage portion 8 of the mounting table 3, a first row N1, a second row N2 and a A case of measuring the glass substrate G according to the openings 11 belonging to the third row N3 will be described.
 制御装置5は、第一列N1の最初の開口部11Sに対応する位置に、測定装置4のレーザ光照射部13及びレーザ光受光部14を配置する。その後、制御装置5は、レーザ光照射部13及びレーザ光受光部14を停止させた状態で、レーザ光照射部13からレーザ光を放出させる。 The control device 5 arranges the laser beam irradiation unit 13 and the laser beam receiving unit 14 of the measurement device 4 at positions corresponding to the first opening 11S of the first row N1. After that, the control device 5 causes the laser light irradiation section 13 to emit laser light while the laser light irradiation section 13 and the laser light receiving section 14 are stopped.
 その後、制御装置5は、停止しているレーザ光照射部13及びレーザ光受光部14に対し、載置台3を測定方向Y1に沿って、等速で直線的に移動させる。これにより、レーザ光は、矢印B1で示すように、第一列N1における最初の開口部11Sの位置から最後の開口部11Eの位置まで、ガラス基板Gに対して相対的に、かつ直線的に移動する。 After that, the control device 5 moves the mounting table 3 linearly at a constant speed along the measurement direction Y1 with respect to the stopped laser beam irradiation unit 13 and laser beam receiving unit 14 . As a result, as indicated by an arrow B1, the laser light travels relatively and linearly with respect to the glass substrate G from the position of the first opening 11S to the position of the last opening 11E in the first row N1. Moving.
 測定装置4及び制御装置5は、載置台3をY1方向に移動させることでレーザ光を載置台3に対して相対的に移動させながら、図5及び図6で示した第一移動態様の例と同様に、データ検出工程及び演算処理工程を繰り返し行う。 The measurement device 4 and the control device 5 move the mounting table 3 in the Y1 direction to move the laser light relative to the mounting table 3, and move the laser beams relative to the mounting table 3. Similarly, the data detection process and the arithmetic processing process are repeated.
 第一列N1の最後の開口部11Eの範囲内におけるガラス基板Gの測定が終了すると、制御装置5は、載置台3を停止させるとともに、レーザ光照射部13及びレーザ光受光部14を測定方向Y1に直交する方向X1に沿って移動させる。これにより、レーザ光は、矢印B2で示すように、第一列N1の最後の開口部11Eの位置から第二列N2における最初の開口部11Sの位置まで、ガラス基板Gに対して相対的に、かつ直線的移動する。 When the measurement of the glass substrate G within the range of the last opening 11E of the first row N1 is completed, the control device 5 stops the mounting table 3 and moves the laser beam irradiation unit 13 and the laser beam receiving unit 14 in the measurement direction. It is moved along the direction X1 orthogonal to Y1. As a result, the laser light travels from the position of the last opening 11E in the first row N1 to the position of the first opening 11S in the second row N2 relative to the glass substrate G, as indicated by an arrow B2. , and move in a straight line.
 その後、制御装置5は、レーザ光照射部13及びレーザ光受光部14を停止させるとともに、載置台3を測定方向Y2に沿って移動させる。これにより、レーザ光は、矢印B3で示すように、第二列N2における最初の開口部11Sの位置から最後の開口部11Eの位置まで、ガラス基板Gに対して相対的に、かつ直線的に移動する。 After that, the control device 5 stops the laser beam irradiation unit 13 and the laser beam receiving unit 14, and moves the mounting table 3 along the measurement direction Y2. As a result, as indicated by an arrow B3, the laser light travels from the position of the first opening 11S to the position of the last opening 11E in the second row N2 relatively and linearly with respect to the glass substrate G. Moving.
 第二列N2における最後の開口部11Eの範囲内におけるガラス基板Gの測定が終了すると、制御装置5は、載置台3を停止させるとともに、レーザ光照射部13及びレーザ光受光部14を測定方向Y2に直交する方向X1に沿って移動させる。これにより、レーザ光は、矢印B4で示すように、第二列N2における最後の開口部11Eの位置から第三列N3における最初の開口部11Sの位置まで、ガラス基板Gに対して相対的に、かつ直線的に移動する。 When the measurement of the glass substrate G within the range of the last opening 11E in the second row N2 is completed, the control device 5 stops the mounting table 3 and moves the laser beam irradiation unit 13 and the laser beam receiving unit 14 in the measurement direction. It is moved along the direction X1 orthogonal to Y2. As a result, the laser light is distributed relative to the glass substrate G from the position of the last opening 11E in the second row N2 to the position of the first opening 11S in the third row N3, as indicated by an arrow B4. , and move in a straight line.
 その後、制御装置5は、レーザ光照射部13及びレーザ光受光部14を停止させるとともに、載置台3を測定方向Y1に沿って移動させる。これにより、レーザ光は、矢印B5で示すように、第三列N3における最初の開口部11Sの位置から最後の開口部11Eの位置まで、ガラス基板Gに対して相対的に、かつ直線的に移動する。 After that, the control device 5 stops the laser beam irradiation unit 13 and the laser beam receiving unit 14, and moves the mounting table 3 along the measurement direction Y1. As a result, as indicated by an arrow B5, the laser light travels from the position of the first opening 11S to the position of the last opening 11E in the third row N3 relatively and linearly with respect to the glass substrate G. Moving.
 上記の第二移動態様に基づく測定工程においても、図6の例と同様に、一つの開口部11の範囲内においてガラス基板Gに対して複数回の歪の測定を行うことができる。 Also in the measurement process based on the second movement mode described above, it is possible to measure the strain on the glass substrate G multiple times within the range of one opening 11, as in the example of FIG.
 図8は、測定工程の他の例を示す。この測定工程の例では、一列に配された複数の開口部11の範囲内において、レーザ光の移動を複数回繰り返すことで、ガラス基板Gの測定を行う。この例では、第一移動態様に基づく測定を説明するが、第二移動態様に基づく測定を行うこともできる。 FIG. 8 shows another example of the measurement process. In this example of the measurement process, the measurement of the glass substrate G is performed by repeating the movement of the laser light a plurality of times within the range of the plurality of openings 11 arranged in a row. In this example, measurements based on the first movement mode will be described, but measurements based on the second movement mode can also be performed.
 具体的には、この測定工程では、第三列M3に配される複数の開口部11に対し、第一移動態様による測定装置4の移動を三回繰り返すことで、レーザ光は、矢印C1~C3で示すように、直線的な移動を三回繰り返す。 Specifically, in this measurement step, the movement of the measuring device 4 in the first movement mode is repeated three times with respect to the plurality of openings 11 arranged in the third row M3, so that the laser light is moved from arrows C1 to Repeat the linear movement three times, as indicated by C3.
 第一回目の移動において、制御装置5は、載置台3を停止させた状態で、レーザ光照射部13からレーザ光を放出させるとともに、レーザ光照射部13及びレーザ光受光部14を測定方向X1に沿って移動させる。これにより、レーザ光は、矢印C1で示すように、ガラス基板Gに対して相対的に、かつ直線的に移動する。これにより、第三列M3に属する複数の開口部11を通じて、ガラス基板Gに対する歪の測定が行われる。 In the first movement, the control device 5 causes the laser beam irradiation unit 13 to emit a laser beam while the mounting table 3 is stopped, and moves the laser beam irradiation unit 13 and the laser beam receiving unit 14 in the measurement direction X1. move along. Thereby, the laser light moves relatively and linearly with respect to the glass substrate G, as indicated by an arrow C1. Thereby, the distortion of the glass substrate G is measured through the plurality of openings 11 belonging to the third row M3.
 第一回目の移動が終了すると、制御装置5は、ガラス基板Gに対するレーザ光の照射位置を変更するために、載置台3を測定方向X1に直交する方向Y2に沿って移動させる。この場合において、レーザ光は、第一回目の移動によって通過した同じ第三列M3に属する開口部11の範囲内で、その位置をY軸方向に変更する。 After the first movement is completed, the control device 5 moves the mounting table 3 along the direction Y2 orthogonal to the measurement direction X1 in order to change the irradiation position of the laser light on the glass substrate G. In this case, the laser light changes its position in the Y-axis direction within the range of the openings 11 belonging to the same third row M3 through which it passed by the first movement.
 第二回目の移動において、制御装置5は、載置台3を停止させるとともに、レーザ光照射部13及びレーザ光受光部14を測定方向X2に沿って直線的に移動させる。これにより、レーザ光は、矢印C2で示すように、第三列M3に属する複数の開口部11を通過するように、ガラス基板Gに対して相対的に、かつ直線的に移動する。 In the second movement, the control device 5 stops the mounting table 3 and linearly moves the laser beam irradiation unit 13 and the laser beam receiving unit 14 along the measurement direction X2. Thereby, the laser light moves relatively and linearly with respect to the glass substrate G so as to pass through the plurality of openings 11 belonging to the third row M3, as indicated by the arrow C2.
 第二回目の移動が終了すると、制御装置5は、載置台3を測定方向X2に直交する方向Y2に沿って移動させる。この場合において、レーザ光は、第二回目の移動によって通過した同じ第三列M3に属する開口部11の範囲内で、その位置をY軸方向に変更する。 When the second movement is completed, the control device 5 moves the mounting table 3 along the direction Y2 perpendicular to the measurement direction X2. In this case, the laser light changes its position in the Y-axis direction within the range of the openings 11 belonging to the same third row M3 passed by the second movement.
 第三回目の移動において、制御装置5は、載置台3を停止させるとともに、レーザ光照射部13及びレーザ光受光部14を測定方向X1に沿って移動させる。これにより、レーザ光は、矢印C3で示すように、第三列M3に属する複数の開口部11を通過するように、ガラス基板Gに対して相対的に、かつ直線的に移動する。 In the third movement, the control device 5 stops the mounting table 3 and moves the laser beam irradiation unit 13 and the laser beam receiving unit 14 along the measurement direction X1. Thereby, the laser light moves relatively and linearly with respect to the glass substrate G so as to pass through the plurality of openings 11 belonging to the third row M3, as indicated by the arrow C3.
 上記のように、同じ列に位置する複数の開口部11の範囲内において、複数回に亘りレーザ光を往復移動させることで、より多数の測定データを取得することができる。このような測定を行う場合には、開口部11を円形状に構成するよりも矩形状に構成した方がよい。開口部11を矩形状に構成することで、円形状(図8において二点鎖線で示す)に構成した場合と比較して開口面積が大きくなり、ガラス基板Gに対する測定範囲を可及的に広く確保することができる。 As described above, a larger number of measurement data can be acquired by reciprocating the laser light multiple times within the range of the multiple openings 11 located in the same row. For such measurements, it is better to configure the opening 11 in a rectangular shape rather than in a circular shape. By configuring the opening 11 in a rectangular shape, the opening area is increased compared to the case of configuring in a circular shape (indicated by a two-dot chain line in FIG. 8), and the measurement range for the glass substrate G is widened as much as possible. can be secured.
 図9は、測定機1における載置台3(ステージ部8)の他の例を示す。この例において、ステージ部8の開口部11は、長方形状に構成されている。この開口部11の長辺11aは、Y軸方向に関する測定方向Y1,Y2に沿うように形成されている。換言すると、ステージ部8の第二枠部12bのY軸方向における長さ寸法は、第一枠部12aのX軸方向における長さ寸法よりも大きい。 FIG. 9 shows another example of the mounting table 3 (stage section 8) in the measuring machine 1. FIG. In this example, the opening 11 of the stage section 8 is configured in a rectangular shape. A long side 11a of the opening 11 is formed along the measurement directions Y1 and Y2 with respect to the Y-axis direction. In other words, the length dimension in the Y-axis direction of the second frame portion 12b of the stage portion 8 is larger than the length dimension in the X-axis direction of the first frame portion 12a.
 上記の構成により、測定方向Y1,Y2に沿ってレーザ光を移動させる場合に、各開口部11の範囲内において、ガラス基板Gに対してより多くの測定領域を設定することができる。これにより、より多くの測定データを取得することが可能となる。 With the above configuration, more measurement areas can be set on the glass substrate G within the range of each opening 11 when moving the laser light along the measurement directions Y1 and Y2. This makes it possible to acquire more measurement data.
 この例に限らず、X軸方向に関する測定方向X1,X2に沿ってレーザ光を移動させる場合には、開口部11の長辺は、その測定方向X1,X2に沿うように形成されてもよい。 Not limited to this example, when the laser light is moved along the measurement directions X1 and X2 related to the X-axis direction, the long sides of the opening 11 may be formed along the measurement directions X1 and X2. .
 なお、本発明は、上記実施形態の構成に限定されるものではなく、上記した作用効果に限定されるものでもない。本発明は、本発明の要旨を逸脱しない範囲で種々の変更が可能である。 It should be noted that the present invention is not limited to the configuration of the above-described embodiment, nor is it limited to the above-described effects. Various modifications can be made to the present invention without departing from the gist of the present invention.
 上記実施形態では、架台2の下部にレーザ光照射部13を、架台2の上部にレーザ光受光部14を設けていたが、本発明はこの構成に限定されない。架台2の上部にレーザ光照射部13を、架台2の下部にレーザ光受光部14を設けても良い。 In the above embodiment, the laser beam irradiation unit 13 is provided at the bottom of the pedestal 2 and the laser beam receiving unit 14 is provided at the top of the pedestal 2, but the present invention is not limited to this configuration. The laser beam irradiation unit 13 may be provided on the upper part of the pedestal 2 and the laser beam receiving part 14 may be provided on the lower part of the pedestal 2 .
 本実施形態では、演算処理工程を実行中もガラス基板Gにレーザ光を照射していたが、本発明はこの構成に限定されない。演算処理工程を実行中は、ガラス基板Gへのレーザ光の照射を停止しても良い。 In the present embodiment, the glass substrate G is irradiated with laser light even while the arithmetic processing step is being executed, but the present invention is not limited to this configuration. The irradiation of the laser beam to the glass substrate G may be stopped while the arithmetic processing step is being performed.
 上記実施形態では、一個のレーザ光照射部13及びレーザ光受光部14を有する測定装置4を例示したが、本発明はこの構成に限定されない。測定装置4は、複数個のレーザ光照射部13及びレーザ光受光部14を備えてもよい。この場合、複数個のレーザ光照射部13及びレーザ光受光部14は、例えば、X軸方向に関する測定方向X1,X2に直交する方向Y1,Y2に間隔をおいて配置され得る。この構成によれば、測定装置4は、一個のレーザ光照射部13及びレーザ光受光部14を備える場合と比較して、その測定時間を可及的に短縮することができる。 In the above embodiment, the measuring device 4 having one laser beam irradiation unit 13 and one laser beam receiving unit 14 was exemplified, but the present invention is not limited to this configuration. The measuring device 4 may include a plurality of laser beam irradiation units 13 and laser beam receiving units 14 . In this case, the plurality of laser light emitting units 13 and laser light receiving units 14 can be arranged at intervals in directions Y1 and Y2 perpendicular to the measurement directions X1 and X2 in relation to the X-axis direction, for example. According to this configuration, the measuring device 4 can shorten the measurement time as much as possible compared to the case where the measuring device 4 is provided with one laser beam irradiation unit 13 and one laser beam receiving unit 14 .
 上記の実施形態では、測定機1の測定装置4として複屈折測定装置を例示したが、本発明はこの構成に限定されない。複屈折測定装置以外のレーザ透過型の測定装置を本発明に適用してもよい。 In the above embodiment, the birefringence measuring device was exemplified as the measuring device 4 of the measuring instrument 1, but the present invention is not limited to this configuration. A laser transmission type measuring device other than the birefringence measuring device may be applied to the present invention.
 1      測定機
 3      載置台
 4      測定装置
11      開口部
11a     開口部の長辺
12a     第一枠部
12b     第二枠部
13      レーザ光照射部
14      レーザ光受光部
 G      ガラス基板(透明体)
 X1     測定方向
 X2     測定方向
 Y1     測定方向
 Y2     測定方向
Reference Signs List 1 measuring machine 3 mounting table 4 measuring device 11 opening 11a long side 12a of opening first frame 12b second frame 13 laser beam irradiation unit 14 laser beam receiving unit G glass substrate (transparent body)
X1 measurement direction X2 measurement direction Y1 measurement direction Y2 measurement direction

Claims (13)

  1.  ガラス板を含む透明体の特性をレーザ透過型の測定装置によって測定する方法であって、
     開口部を備える載置台に対して前記透明体を載置する準備工程と、
     前記載置台に対して前記測定装置を停止させることなく所定の測定方向に沿って相対的に移動させながら、前記開口部を通じて前記透明体に対して前記測定装置からレーザ光を照射することにより、前記透明体の前記特性を測定する測定工程と、を備えることを特徴とする透明体の測定方法。
    A method for measuring properties of a transparent body including a glass plate with a laser transmission type measuring device,
    a preparation step of mounting the transparent body on a mounting table having an opening;
    By irradiating the transparent body with a laser beam from the measuring device through the opening while moving the measuring device relative to the mounting table along a predetermined measurement direction without stopping, and a measuring step of measuring the properties of the transparent body.
  2.  前記測定装置は、複屈折測定装置であり、
     前記準備工程では、前記透明体を水平状に載置し、
     前記測定工程において、前記複屈折測定装置によって測定される前記透明体の前記特性は、前記透明体の歪である請求項1に記載の透明体の測定方法。
    The measuring device is a birefringence measuring device,
    In the preparation step, the transparent body is placed horizontally,
    2. The method of measuring a transparent body according to claim 1, wherein in the measuring step, the characteristic of the transparent body measured by the birefringence measuring device is distortion of the transparent body.
  3.  前記透明体は、ディスプレイ用のガラス基板である請求項2に記載の透明体の測定方法。 The method for measuring a transparent body according to claim 2, wherein the transparent body is a glass substrate for a display.
  4.  前記複屈折測定装置は、複数の複屈折測定装置を含み、
     前記複数の複屈折測定装置は、前記測定方向に対して直交する方向に間隔をおいて配置される請求項2又は3に記載の透明体の測定方法。
    The birefringence measurement device includes a plurality of birefringence measurement devices,
    4. The method of measuring a transparent body according to claim 2, wherein the plurality of birefringence measuring devices are arranged at intervals in a direction orthogonal to the measuring direction.
  5.  前記載置台の前記開口部は、矩形状に構成される請求項1から3のいずれか一項に記載の透明体の測定方法。 The transparent body measuring method according to any one of claims 1 to 3, wherein the opening of the mounting table is configured in a rectangular shape.
  6.  前記載置台の前記開口部は、長方形状に構成されており、
     前記開口部の長辺は、前記測定方向に沿うように形成される請求項1から3のいずれか一項に記載の透明体の測定方法。
    The opening of the mounting table is configured in a rectangular shape,
    The method of measuring a transparent body according to any one of claims 1 to 3, wherein the long sides of the opening are formed along the measurement direction.
  7.  前記載置台の前記開口部は、直線状に配される複数の開口部を含み、
     前記測定工程では、前記測定装置は、前記複数の開口部が配される方向に沿って直線状に移動する請求項1から3のいずれか一項に記載の透明体の測定方法。
    the opening of the mounting table includes a plurality of linearly arranged openings,
    4. The transparent body measuring method according to claim 1, wherein in the measuring step, the measuring device moves linearly along the direction in which the plurality of openings are arranged.
  8.  前記測定工程は、前記透明体を透過した前記レーザ光に係る検出データを取得するデータ検出工程と、前記データ検出工程で検出された検出データに基づいて、制御装置により前記歪を算出する演算処理工程と、を備え、
     前記測定装置は、前記レーザ光を放出するレーザ光照射部と、前記レーザ光を受光するレーザ光受光部とを備え、
     前記載置台は、前記複数の開口部を区切る枠部を備え、
     前記測定工程では、前記測定装置は、前記載置台に対して相対的に移動しながら前記透明体に対して複数回の前記特性の測定を行い、
     隣り合う二つの前記開口部の間に位置する前記枠部の幅寸法は、一回の前記特性の測定に係る前記演算処理工程の実行中における前記測定装置の移動に伴う前記レーザ光の移動距離よりも小さく設定されており、
     前記測定工程では、前記演算処理工程の実行中に、前記レーザ光照射部から放出される前記レーザ光が前記枠部を通過する請求項7に記載の透明体の測定方法。
    The measurement step includes a data detection step of acquiring detection data related to the laser beam that has passed through the transparent body, and an arithmetic processing of calculating the strain by a control device based on the detection data detected in the data detection step. comprising a process and
    The measuring device includes a laser light irradiation unit that emits the laser light and a laser light receiving unit that receives the laser light,
    The mounting table includes a frame section that separates the plurality of openings,
    In the measuring step, the measuring device measures the characteristics of the transparent body a plurality of times while moving relative to the mounting table;
    The width dimension of the frame positioned between the two adjacent openings is the moving distance of the laser beam accompanying the movement of the measuring device during execution of the arithmetic processing step relating to one measurement of the characteristics. is set smaller than
    8. The method of measuring a transparent body according to claim 7, wherein in the measuring step, the laser beam emitted from the laser beam irradiation unit passes through the frame portion during execution of the arithmetic processing step.
  9.  前記測定装置の前記載置台に対する相対的な移動は、前記測定装置の移動である請求項1から3のいずれか一項に記載の透明体の測定方法。 The method for measuring a transparent body according to any one of claims 1 to 3, wherein the relative movement of the measuring device with respect to the mounting table is movement of the measuring device.
  10.  前記測定装置の前記載置台に対する相対的な移動は、前記載置台の移動である請求項1から3のいずれか一項に記載の透明体の測定方法。 The method for measuring a transparent body according to any one of claims 1 to 3, wherein the relative movement of the measuring device with respect to the mounting table is movement of the mounting table.
  11.  溶融ガラスからガラスリボンを成形する成形工程と、前記ガラスリボンを徐冷する徐冷工程と、前記徐冷工程を経た前記ガラスリボンを所定サイズのガラス板に切り出す切断工程と、前記ガラス板に対して、請求項1から3のいずれか一項に記載の透明体の測定方法を実行する検査工程と、を備えることを特徴とするガラス板の製造方法。 A forming step of forming a glass ribbon from molten glass, a slow cooling step of slowly cooling the glass ribbon, a cutting step of cutting the glass ribbon that has undergone the slow cooling step into glass plates of a predetermined size, and for the glass plate and an inspection step of performing the method for measuring a transparent body according to any one of claims 1 to 3.
  12.  ガラス板を含む透明体の特性を測定する測定機であって、
     前記透明体を水平状に支持する載置台と、前記載置台に対して相対的に移動するレーザ透過型の測定装置と、を備え、
     前記載置台は、前記測定装置から放出されるレーザ光をガラス基板に照射させるための開口部を備え、
     前記測定装置を停止させることなく前記載置台に対して所定の測定方向に沿って相対的に移動させながら、前記透明体の特性を測定することを特徴とする透明体の測定機。
    A measuring instrument for measuring properties of a transparent body including a glass plate,
    A mounting table that horizontally supports the transparent body, and a laser transmission type measuring device that moves relative to the mounting table,
    The mounting table has an opening for irradiating the glass substrate with laser light emitted from the measuring device,
    A measuring instrument for measuring a transparent body, wherein the measuring device measures the properties of the transparent body while moving relative to the mounting table along a predetermined measuring direction without stopping the measuring device.
  13.  前記載置台の前記開口部は、矩形状に構成される請求項12に記載の透明体の測定機。 The transparent body measuring machine according to claim 12, wherein the opening of the mounting table is configured in a rectangular shape.
PCT/JP2022/044027 2021-12-03 2022-11-29 Transparent body measuring method and measuring instrument, and method for producing glass plate WO2023100892A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-197109 2021-12-03
JP2021197109 2021-12-03

Publications (1)

Publication Number Publication Date
WO2023100892A1 true WO2023100892A1 (en) 2023-06-08

Family

ID=86612302

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044027 WO2023100892A1 (en) 2021-12-03 2022-11-29 Transparent body measuring method and measuring instrument, and method for producing glass plate

Country Status (1)

Country Link
WO (1) WO2023100892A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62276437A (en) * 1986-05-26 1987-12-01 Sumitomo Metal Mining Co Ltd Evaluation of thick film material
JPH09159615A (en) * 1995-12-08 1997-06-20 Matsushita Electric Ind Co Ltd Defect inspection device and method of light transmission sheet material
JP2010151666A (en) * 2008-12-25 2010-07-08 Toray Ind Inc Pattern inspection device and inspection method
WO2014027375A1 (en) * 2012-08-13 2014-02-20 川崎重工業株式会社 Plate glass inspection unit and manufacturing facility
JP2016121981A (en) * 2014-12-24 2016-07-07 日東電工株式会社 Transmission type defect inspection device and defect inspection method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62276437A (en) * 1986-05-26 1987-12-01 Sumitomo Metal Mining Co Ltd Evaluation of thick film material
JPH09159615A (en) * 1995-12-08 1997-06-20 Matsushita Electric Ind Co Ltd Defect inspection device and method of light transmission sheet material
JP2010151666A (en) * 2008-12-25 2010-07-08 Toray Ind Inc Pattern inspection device and inspection method
WO2014027375A1 (en) * 2012-08-13 2014-02-20 川崎重工業株式会社 Plate glass inspection unit and manufacturing facility
JP2016121981A (en) * 2014-12-24 2016-07-07 日東電工株式会社 Transmission type defect inspection device and defect inspection method

Similar Documents

Publication Publication Date Title
TWI623724B (en) Shape measuring device, structure manufacturing system, stage system, shape measuring method, structure manufacturing method, shape measuring program, and computer readable recording medium
KR100783618B1 (en) Apparatus for inspecting flat display panel
US20140123458A1 (en) Method of manufacture and apparatus therefor
JP2015505154A5 (en)
JP6014572B2 (en) Thickness measuring device, thickness measuring method and corrosion depth measuring method
CN107561784B (en) Optical alignment control method and optical alignment equipment
TWI613460B (en) Polarized light irradiation device
JP4964176B2 (en) Glass plate thickness measuring apparatus and glass plate thickness measuring method
JP2006105878A (en) Flatness measuring device of substrate and its shape dimension measuring device
CN109387153A (en) Inner diameter measuring device
JP4693581B2 (en) Substrate inspection apparatus and substrate inspection method
WO2023100892A1 (en) Transparent body measuring method and measuring instrument, and method for producing glass plate
JP2013130417A (en) Warpage measuring method for glass pane and manufacturing method of glass pane
KR101259415B1 (en) A jig for property measurement of flexible display panel
WO2017221825A1 (en) Glass substrate distortion measuring method and glass substrate distortion measuring device
JP2009147320A (en) Inspection apparatus
KR101234954B1 (en) Second-dimensional Coordinate Measuring Instrument
JP6101603B2 (en) Stage device and charged particle beam device
CN108020995B (en) Horizontal measuring device and method for photoetching machine
JP2012093237A (en) Error distribution calculation method, shape measurement method, and shape measurement device
KR102297834B1 (en) Rotational stage apparatus for inspecting a large scale panel
JP2011154021A (en) Method of measuring plate thickness distribution
JP2014052273A (en) Apparatus and method for comparatively measuring end measure
JP6482221B2 (en) Shape measuring device
KR20130042367A (en) Method for compensating position of measuring device on xy stage

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22901324

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023565024

Country of ref document: JP