JP5076171B2 - Shape measuring method and shape measuring apparatus - Google Patents

Shape measuring method and shape measuring apparatus Download PDF

Info

Publication number
JP5076171B2
JP5076171B2 JP2004364383A JP2004364383A JP5076171B2 JP 5076171 B2 JP5076171 B2 JP 5076171B2 JP 2004364383 A JP2004364383 A JP 2004364383A JP 2004364383 A JP2004364383 A JP 2004364383A JP 5076171 B2 JP5076171 B2 JP 5076171B2
Authority
JP
Japan
Prior art keywords
sensor
thin plate
pair
reference gauge
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004364383A
Other languages
Japanese (ja)
Other versions
JP2006170834A (en
JP2006170834A5 (en
Inventor
淑光 松橋
幹雄 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuroda Precision Industries Ltd
Original Assignee
Kuroda Precision Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuroda Precision Industries Ltd filed Critical Kuroda Precision Industries Ltd
Priority to JP2004364383A priority Critical patent/JP5076171B2/en
Publication of JP2006170834A publication Critical patent/JP2006170834A/en
Publication of JP2006170834A5 publication Critical patent/JP2006170834A5/ja
Application granted granted Critical
Publication of JP5076171B2 publication Critical patent/JP5076171B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、薄板の表面形状及び厚さを測定するための測定方法及び測定装置に関し、特に、ガラス基板の表面形状及び厚さを測定するための測定方法及び測定装置に関するものである。 The present invention relates to a measuring method and measuring apparatus for measuring the surface shape and thickness of a thin plate, and more particularly to a measuring method and measuring apparatus for measuring the surface shape and thickness of a glass substrate.

一般に、薄板の表面形状を測定する手法として、薄板であるシリコンウェーハの厚さ及びその表面形状(例えば、平坦度)を連続して測定する手法が知られている。例えば、シリコンウェーハの中心部のみをチャックで支持した状態で容量型センサによって各点の厚みを測定し、続いてチャックに支持位置を中心部からずらして、中心部の厚みを測定し、厚みを表すデータに基づいて平坦度を算出するようにしたものがある(特許文献1参照)。   In general, as a method for measuring the surface shape of a thin plate, a method of continuously measuring the thickness of a silicon wafer, which is a thin plate, and its surface shape (for example, flatness) is known. For example, the thickness of each point is measured by a capacitive sensor while only the center of the silicon wafer is supported by the chuck, and then the thickness of the center is measured by shifting the support position of the chuck from the center. There is one in which the flatness is calculated based on data to be expressed (see Patent Document 1).

さらに、シリコンウェーハの厚さを測定する装置として、シリコンウェーハを支持する旋回手段と、旋回手段を載せて平面上を直線状に移動可能な直線移動手段とを備えて、一対の変位センサの間にシリコンウェーハを配置して、変位センサによってシリコンウェーハの各点でその厚さを測定するようにしたものがある(特許文献2参照)。   Further, as an apparatus for measuring the thickness of the silicon wafer, the apparatus includes a turning means for supporting the silicon wafer, and a linear moving means that can be moved linearly on a plane by placing the turning means, and between the pair of displacement sensors. A silicon wafer is disposed on the silicon wafer, and the thickness is measured at each point of the silicon wafer by a displacement sensor (see Patent Document 2).

また、シリコンウェーハの厚さを測定する装置として、所定の間隔を置いて互いに対向して一対の距離センサを配置して、ウェーハ支持部によって両距離センサの間でシリコンウェーハの周縁部をその表裏両面が両距離センサの対向方向にほぼ直角になるように支持し、エアースライドによって両距離センサをその対向方向と直角方向に移動可能に支持して、エアースライドを介して両距離センサのシリコンウェーハに対する位置を制御しつつ、厚さを測定するようにしたものがある(特許文献3参照)。   In addition, as a device for measuring the thickness of a silicon wafer, a pair of distance sensors are arranged facing each other at a predetermined interval, and the peripheral portion of the silicon wafer is placed between the distance sensors by the wafer support portion. Both sides are supported so that they are almost perpendicular to the opposing direction of both distance sensors, and both distance sensors are supported by an air slide so as to be movable in a direction perpendicular to the opposing direction. There is one in which the thickness is measured while controlling the position with respect to (see Patent Document 3).

加えて、シリコンウェーハの厚さ及び平坦度を測定する装置として、シリコンウェーハをロータに保持して、シリコンウェーハの回転面に平行な軸に沿って直線的に移動可能なアームに取り付けた走査センサを備えて、螺旋状その他の走査経路を実現して、シリコンウェーハの各点における厚みを計測して、これら厚みデータに応じて平坦度を求めるようにしたものがある(特許文献4参照)。   In addition, as a device for measuring the thickness and flatness of a silicon wafer, a scanning sensor is mounted on an arm that is held on a rotor and linearly movable along an axis parallel to the rotation surface of the silicon wafer. , A spiral or other scanning path is realized, the thickness at each point of the silicon wafer is measured, and the flatness is obtained according to these thickness data (see Patent Document 4).

また、シリコンウェーハ等の薄板を同一平面内において回動自在に支持するとともに、この平面の一側及び他側に平行に第1及び第2の案内軸を、第1及び第2の案内軸が互いに平行になるように配置して、第1及び第2の案内軸に沿って独立に移動する第1及び第2のセンサによって薄板の一面及び他面までの距離を独立して測定して、薄板の一面及び他面の表面形状を測定するようにしたものがある(特許文献5参照)。   Further, a thin plate such as a silicon wafer is rotatably supported in the same plane, and the first and second guide shafts are arranged in parallel to one side and the other side of the plane. The first and second sensors, which are arranged so as to be parallel to each other and move independently along the first and second guide axes, independently measure the distance to one surface and the other surface of the thin plate, There is one in which the surface shape of one surface and the other surface of a thin plate is measured (see Patent Document 5).

そして、シリコンウェーハ等の薄板材の平坦度を測定する装置として、薄板材を薄板材回転手段で保持しつつ回転させて、薄板材を取り囲むよう配置された環状の取付台における薄板材の両面側方の対称位置に、薄板材の対向表面までの距離又は距離の変化をそれぞれ測定する一対の変位センサを取り付けて、取付台を測定走査手段により直線移動させて変位センサの測定位置を薄板材の回転半径方向に走査するようにしたものがある(特許文献6参照)。   Then, as a device for measuring the flatness of a thin plate material such as a silicon wafer, both sides of the thin plate material in an annular mounting base arranged to surround the thin plate material by rotating the thin plate material while being held by the thin plate material rotating means A pair of displacement sensors that measure the distance to the opposing surface of the thin plate material or a change in the distance are attached at symmetrical positions, and the mounting base is moved linearly by the measurement scanning means, so that the measurement position of the displacement sensor is There is one that scans in the direction of the radius of rotation (see Patent Document 6).

特公平5−77179号公報Japanese Patent Publication No. 5-77179 実開昭64−10610号公報Japanese Utility Model Publication No. 64-10610 実開平6−49958号公報Japanese Utility Model Publication No. 6-49958 特許第3197001号公報Japanese Patent No. 3197001 特開平11−351857号公報JP-A-11-351857 特開2001−124542公報JP 2001-124542 A

特許文献1〜6に記載された測定装置においては、シリコンウェーハの両面側に所定の間隔をおいて互いに対向する一対の測定センサ(距離センサ等)を配置して、各測定センサからシリコンウェーハ表面までの距離を測定する。そして、一対の測定センサ間の間隔(センサ間距離)は予め規定されているので、センサ間距離と各測定センサで測定された距離とに応じてシリコンウェーハの厚さを求めている。さらに、各測定センサをシリコンウェーハ表面に沿って移動させつつ、シリコンウェーハの厚みを連続的に測定すれば、シリコンシリコンウェーハの表面形状を測定することができる。   In the measurement apparatuses described in Patent Documents 1 to 6, a pair of measurement sensors (distance sensors, etc.) facing each other with a predetermined interval are arranged on both sides of the silicon wafer, and the silicon wafer surface is measured from each measurement sensor. Measure the distance to. And since the space | interval (distance between sensors) between a pair of measurement sensors is prescribed | regulated previously, the thickness of a silicon wafer is calculated | required according to the distance between sensors and the distance measured by each measurement sensor. Furthermore, if the thickness of the silicon wafer is continuously measured while moving each measurement sensor along the surface of the silicon wafer, the surface shape of the silicon silicon wafer can be measured.

ところが、特許文献1〜6に記載された測定装置では、シリコンウェーハ等の薄板材の表面形状を測定することができるものの、ガラス基板等の薄板材の表面形状を精度よく測定することが難しい。   However, although the measuring devices described in Patent Documents 1 to 6 can measure the surface shape of a thin plate material such as a silicon wafer, it is difficult to accurately measure the surface shape of a thin plate material such as a glass substrate.

つまり、液晶パネルの普及に伴って、ガラス基板の種類も曇りガラス状の基板、透明基板等種々の基板があり、例えば、測定センサとしてレーザ光を照射してその反射光によってガラス基板表面までの距離を測定しようとすると、レーザ光がガラス基板を透過したり、乱反射したりして、互いに対向して配置された測定センサにおいて相互干渉(以下光干渉と呼ぶ)が生じてしまい、精度よくガラス基板の表面形状を測定できないという課題がある。   In other words, with the widespread use of liquid crystal panels, there are various types of glass substrates such as frosted glass substrates and transparent substrates. For example, a laser beam is irradiated as a measurement sensor, and the reflected light reaches the glass substrate surface. When trying to measure the distance, the laser light passes through the glass substrate or diffusely reflects, causing mutual interference (hereinafter referred to as optical interference) in the measurement sensors arranged opposite to each other, and the glass is accurately obtained. There is a problem that the surface shape of the substrate cannot be measured.

本発明の目的は、薄板であるガラス基板の表面形状及び厚さを精度よく測定することのできる形状測定方法及び形状測定装置を提供することにある。 An object of the present invention is to provide a shape measuring method及beauty shape measuring device that can of measuring accurately the surface shape and thickness of the glass substrate is thin.

上記の課題を解決するため、本発明は、第1センサ及び第2センサからなる一対の反射型センサを、該一対の反射型センサの間に配置された薄板に沿って走査方向に、前記薄板に対して相対的に移動させて該薄板の形状を測定するための測定方法であって、基準ゲージの第1表面に前記第1センサの焦点が合うように前記第1センサの位置決めを行うステップと、前記第1表面とは反対側の前記基準ゲージの第2表面に前記第2センサの焦点が合うように前記第2センサの位置決めを行うステップと、位置決めされた前記一対の反射型センサを前記走査方向に互いに所定のずれ量だけずらして配置するステップと、前記所定のずれ量を維持しながら、前記一対の反射型センサを前記薄板に沿って前記走査方向に、前記薄板に対して相対的に移動させて前記薄板表面を走査して前記薄板の両面の表面形状を測定するステップと、測定された前記薄板の両面の表面形状から前記薄板の厚さを算出するステップとを有し、前記薄板はガラス基板であり、前記基準ゲージはガラス製であり、前記第1センサの位置決めは、前記第2センサを前記基準ゲージから退避させた状態で行い、前記第2センサの位置決めは、前記第1センサを前記基準ゲージから退避させた状態で行うことを特徴とするものである。 In order to solve the above problems, the present invention relates to a pair of reflective sensors composed of a first sensor and a second sensor in a scanning direction along a thin plate disposed between the pair of reflective sensors. A measuring method for measuring the shape of the thin plate by moving the first sensor so that the first sensor is focused on the first surface of a reference gauge. Positioning the second sensor so that the second sensor is focused on the second surface of the reference gauge opposite to the first surface, and the pair of positioned reflective sensors A step of disposing a predetermined amount of displacement from each other in the scanning direction, and the pair of reflective sensors relative to the thin plate in the scanning direction along the thin plate while maintaining the predetermined amount of displacement. Automatically Scanning the surface of the thin plate to measure the surface shape of both surfaces of the thin plate, and calculating the thickness of the thin plate from the measured surface shape of both surfaces of the thin plate, It is a glass substrate, the reference gauge is made of glass , the first sensor is positioned with the second sensor retracted from the reference gauge, and the second sensor is positioned with the first sensor Is performed in a state of being retracted from the reference gauge .

さらに本発明によれば、第1センサ及び第2センサからなる一対の反射型センサを、該一対の反射型センサの間に配置された薄板に沿って走査方向に、前記薄板に対して相対的に移動させて該薄板の形状を測定するための測定装置であって、前記一対の反射型センサは、基準ゲージの第1表面に前記第1センサの焦点が合い、前記基準ゲージの前記第1表面とは反対側の第2表面に前記第2センサの焦点が合うように位置決めされ、前記第1センサ及び前記第2センサは前記走査方向に互いに所定のずれ量だけずらして配置されているとともに、前記所定のずれ量を維持しながら、前記一対の反射型センサを前記薄板に沿って前記走査方向に、前記薄板に対して相対的に移動させて前記薄板表面を走査して前記薄板の両面の表面形状を得る走査手段と、前記薄板の両面の表面形状から前記薄板の厚さを算出する算出手段とを有し、前記薄板はガラス基板であり、前記基準ゲージはガラス製であり、前記第1センサは、前記第2センサを前記基準ゲージから退避させた状態で、前記基準ゲージの前記第1表面に焦点が合うように位置決めされており、前記第2センサは、前記第1センサを前記基準ゲージから退避させた状態で、前記基準ゲージの前記第2表面に焦点が合うように位置決めされていることを特徴とする形状測定装置が得られる。 Furthermore, according to the present invention, a pair of reflective sensors composed of the first sensor and the second sensor are relative to the thin plate in the scanning direction along the thin plate disposed between the pair of reflective sensors. A measuring apparatus for measuring the shape of the thin plate by moving the first sensor to the first surface of the reference gauge, wherein the pair of reflective sensors is focused on the first surface of the reference gauge. The second sensor is positioned so that the second sensor is in focus on the second surface opposite to the surface, and the first sensor and the second sensor are arranged to be shifted from each other by a predetermined amount in the scanning direction. The pair of reflective sensors are moved along the thin plate in the scanning direction relative to the thin plate while scanning the surface of the thin plate while maintaining the predetermined deviation amount. Get the surface shape of A means, a calculation means for calculating the thickness of the thin from both sides of the surface shape of the thin, the thin plate is a glass substrate, the reference gauge is made of glass, said first sensor, said With the second sensor retracted from the reference gauge, the second sensor is positioned so as to be focused on the first surface of the reference gauge, and the second sensor retracts the first sensor from the reference gauge. In such a state, a shape measuring device is obtained which is positioned so as to be focused on the second surface of the reference gauge .

本発明では、前記走査手段は前記一対の反射型センサを前記薄板表面に沿って同時に走査しており、前記薄板は、例えば、ガラス基板である。   In the present invention, the scanning unit simultaneously scans the pair of reflective sensors along the surface of the thin plate, and the thin plate is, for example, a glass substrate.

以上のように、本発明では、一対の反射型センサを所定の間隔をおいて配置するとともに、所定の間隔方向と直交する面において互いに所定のずれ量だけずらして配置して、直交する面に沿って薄板及び一対の反射型センサを相対的に移動させて薄板表面を走査するようにしたので、一対の反射型センサからの光が薄板を透過したり又は乱反射しても、光干渉が生じることなく、精度よく薄板の表面形状を測定できるという効果がある。 As described above, in the present invention, a pair of reflective sensors are arranged at a predetermined interval, and are shifted from each other by a predetermined deviation amount on a plane orthogonal to a predetermined interval direction, so that the orthogonal surfaces are arranged. Since the thin plate and the pair of reflective sensors are relatively moved along the scanning surface to scan the thin plate surface, light interference occurs even if light from the pair of reflective sensors passes through the thin plate or is irregularly reflected. Without being able to accurately measure the surface shape of the thin plate.

以下、本発明の実施の形態について図面を参照して説明する。但し、この実施の形態に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, the dimensions, materials, shapes, relative arrangements, and the like of the component parts described in this embodiment are not intended to limit the scope of the present invention only to the description unless otherwise specified. It is just an example.

図1を参照して、図1は本発明による表面形状測定装置の一例を示す側面図であり、図示の表面形状測定装置はガラス基板等の薄板の表面形状を測定する際に用いられる。つまり、薄板は透明又は曇り(すり)ガラス基板である。表面形状測定装置は、基台(ベース)10を有しており、ベース10上には基板垂直保持機構10a及び測定機構10bが搭載されている。   Referring to FIG. 1, FIG. 1 is a side view showing an example of a surface shape measuring apparatus according to the present invention, and the illustrated surface shape measuring apparatus is used when measuring the surface shape of a thin plate such as a glass substrate. That is, the thin plate is a transparent or frosted glass substrate. The surface shape measuring apparatus has a base 10 on which a substrate vertical holding mechanism 10a and a measuring mechanism 10b are mounted.

基板垂直保持機構10aは下部保持部21及び上部保持部22を有し、下部保持部21はベース10上に配置され、図中上側に突出する一対の保持部材21a及び21bを備えている。これら保持部材21a及び21bは図中左右方向に移動可能であり、保持部材21a及び21bはガラス基板Wの幅(大きさ)に応じて調整される。   The substrate vertical holding mechanism 10a has a lower holding part 21 and an upper holding part 22, and the lower holding part 21 is disposed on the base 10 and includes a pair of holding members 21a and 21b protruding upward in the drawing. These holding members 21a and 21b are movable in the left-right direction in the figure, and the holding members 21a and 21b are adjusted according to the width (size) of the glass substrate W.

ベース10の後ろ側には柱部22aが植立しており、この柱部22aに沿って上下ねじ送り機構22b(例えば、ボールねじ)が装着されている。そして、上下ねじ送り機構22bを構成する駆動ナットに取付部材22cが装着されて、取付部材22cの下端に上部保持部22が装着され、上部保持部22はガラス基板Wの大きさに合わせてその位置が調整される。そして、一対の保持部材21a及び21bと上部保持部22とによってガラス基板Wが保持される。   A column portion 22a is planted on the rear side of the base 10, and a vertical screw feed mechanism 22b (for example, a ball screw) is mounted along the column portion 22a. Then, the mounting member 22c is mounted on the drive nut constituting the vertical screw feed mechanism 22b, the upper holding portion 22 is mounted on the lower end of the mounting member 22c, and the upper holding portion 22 is adjusted to the size of the glass substrate W. The position is adjusted. The glass substrate W is held by the pair of holding members 21 a and 21 b and the upper holding portion 22.

つまり、下部保持部21ではガラス基板Wの下端を2箇所で保持し、上部保持部22はガラス基板Wの上端をその中央1箇所で保持する(即ち、基板垂直保持機構10aはガラス基板Wを3箇所で垂直に保持することになる)。   That is, the lower holding portion 21 holds the lower end of the glass substrate W at two locations, and the upper holding portion 22 holds the upper end of the glass substrate W at one central portion (that is, the substrate vertical holding mechanism 10a holds the glass substrate W. It will be held vertically at three locations).

測定機構10bは上下スライド装置30及び40を有しており、これら上下スライド機構30及び40はそれぞれベース10上の図中左右両端部に垂直に植立配置されている。上下スライド装置30及び40の内側にはそれぞれボールねじ等によるねじ送り機構50及び60が配置されている。   The measurement mechanism 10b has vertical slide devices 30 and 40, and these vertical slide mechanisms 30 and 40 are vertically planted and arranged at both left and right ends in the drawing on the base 10, respectively. Screw feed mechanisms 50 and 60 such as ball screws are arranged inside the vertical slide devices 30 and 40, respectively.

図示のように、上下スライド装置30及び40には上下方向(垂直方向)にスライドするスライド部材31及び41が備えられ、スライド部材31及び41には測定部移動機構70が連結されている。そして、測定部移動機構70は後述するように水平方向に移動可能となっている。   As shown in the figure, the vertical slide devices 30 and 40 are provided with slide members 31 and 41 that slide in the vertical direction (vertical direction), and a measuring unit moving mechanism 70 is connected to the slide members 31 and 41. The measuring unit moving mechanism 70 is movable in the horizontal direction as will be described later.

図示のように、ベース10の右端部にはモータ等の駆動部80が配設されており、この駆動部80は連結部(図示せず)を介してねじ送り機構50及び60に接続されている。これによって、駆動部80の回転駆動力が同時にねじ送り機構50及び60に伝達される。ねじ送り機構50及び60にはそれぞれナット部51及び61が備えられ、これらナット部51及び61にはスライド部材31及び41が一体に取り付けられ、駆動部80が回転すると、スライド部材31及び41が上下方向にスライドし、これによって、測定部移動機構70が上下方向に移動する。   As shown in the figure, a drive unit 80 such as a motor is disposed at the right end of the base 10, and this drive unit 80 is connected to the screw feed mechanisms 50 and 60 via a connecting unit (not shown). Yes. Thereby, the rotational driving force of the drive unit 80 is simultaneously transmitted to the screw feed mechanisms 50 and 60. The screw feed mechanisms 50 and 60 are provided with nut portions 51 and 61, respectively. Slide members 31 and 41 are integrally attached to the nut portions 51 and 61, and when the drive unit 80 rotates, the slide members 31 and 41 are moved. By sliding in the vertical direction, the measurement unit moving mechanism 70 moves in the vertical direction.

ここで、図2も参照して、測定部移動機構70は被測定物であるガラス基板Wの幅よりもその長さが大きく、所定の間隔をおいて平行に配置された一対のスライドレール部71及び72を有し、スライドレール部71及び72はガラス基板Wの幅方向に延在している。スライドレール部71及び72にはそれぞれ水平方向に移動可能にスライド部材73及び74が装着されており、スライド部材73及び74の対向面にはそれぞれ測定部(例えば、変位センサ(一対の反射型センサ))75及び76が取り付けられ、測定部75及び76はガラス基板Wを挟んで対向する位置に配設されている。 Here, referring also to FIG. 2, the measuring unit moving mechanism 70 has a length larger than the width of the glass substrate W, which is the object to be measured, and a pair of slide rail units arranged in parallel at a predetermined interval. 71 and 72, and the slide rail portions 71 and 72 extend in the width direction of the glass substrate W. Slide members 73 and 74 are mounted on the slide rail portions 71 and 72 so as to be movable in the horizontal direction, and measuring portions (for example, displacement sensors (a pair of reflective sensors) are mounted on opposing surfaces of the slide members 73 and 74, respectively. )) 75 and 76 are attached, and the measuring parts 75 and 76 are arranged at positions facing each other with the glass substrate W interposed therebetween.

なお、上述の例では、上下スライド装置30及び40はエアースライドによって構成され、測定部移動機構70はリニアモータ機構によって構成されている。また、スライドレール部71及び72の両端部は、スライド部材31及び41の側部に固着した取付部材32及び42上に載置されている。   In the above-described example, the vertical slide devices 30 and 40 are configured by air slides, and the measurement unit moving mechanism 70 is configured by a linear motor mechanism. Further, both end portions of the slide rail portions 71 and 72 are placed on attachment members 32 and 42 fixed to the side portions of the slide members 31 and 41.

図1に示す表面形状測定装置では、ガラス基板Wを前述したように基板垂直保持機構10aによって垂直に保持して、測定部移動機構70、つまり、スライド部材73及び74をX−Y方向に移動制御する。これによって、測定部75及び76がガラス基板Wの表面に沿って移動し、非接触でガラス基板Wの表面形状を測定する(例えば、その平坦度を連続的又は間歇的に測定し、さらには測定部75及び76による測定結果からガラス基板Wの厚さが算出される)。   In the surface shape measuring apparatus shown in FIG. 1, the glass substrate W is vertically held by the substrate vertical holding mechanism 10a as described above, and the measuring unit moving mechanism 70, that is, the slide members 73 and 74 are moved in the XY directions. Control. As a result, the measuring units 75 and 76 move along the surface of the glass substrate W and measure the surface shape of the glass substrate W in a non-contact manner (for example, the flatness is measured continuously or intermittently, The thickness of the glass substrate W is calculated from the measurement results obtained by the measurement units 75 and 76).

ここで、本発明による測定手法を容易に理解するため、従来の測定手法について概説する。図3を参照して、厚さ基準ゲージG(例えば、石英ガラス製でガラス基板の厚さに近いゲージ)を挟んで、実線矢印で示すように変位センサ75及び76の焦点を合わせて互いに対向するように同一の線上に配置する。そして、被測定物であるガラス基板Wを変位センサ75及び76の間に配置して、図4(a)に実線矢印で示すように、変位センサ75及び76を走査して、ガラス基板Wの厚さ及び表面形状を測定する。   Here, in order to easily understand the measurement technique according to the present invention, the conventional measurement technique will be outlined. Referring to FIG. 3, a thickness reference gauge G (for example, a gauge made of quartz glass that is close to the thickness of the glass substrate) is sandwiched, and the displacement sensors 75 and 76 are focused to face each other as indicated by solid arrows. Arrange on the same line. And the glass substrate W which is a to-be-measured object is arrange | positioned between the displacement sensors 75 and 76, and the displacement sensors 75 and 76 are scanned as shown by the solid line arrow in FIG. Measure thickness and surface shape.

なお、ガラス基板Wの厚さと厚さ基準ゲージGの厚さとが異なる際には、例えば、変位センサ75及び76の位置を図4(b)に実線矢印で示す方向に移動して再度変位センサ75及び76の焦点を合わせた後測定を行う。   When the thickness of the glass substrate W is different from the thickness of the thickness reference gauge G, for example, the positions of the displacement sensors 75 and 76 are moved in the direction indicated by the solid line arrow in FIG. Measurements are taken after focusing 75 and 76.

ところで、図3及び図4で説明した測定手法では、変位センサ75及び76を互いに対向した状態に位置付けて、変位センサ75及び76を走査しているため、ガラス基板Wが薄い透明基板であるか又は曇りガラス基板であると、変位センサ75及び76からの光がガラス基板を透過したり又は乱反射したりして、光干渉を生じてしまい、精度よくガラス基板の表面形状を測定できない。   By the way, in the measurement method demonstrated in FIG.3 and FIG.4, since the displacement sensors 75 and 76 are positioned in the mutually opposing state and the displacement sensors 75 and 76 are scanned, is the glass substrate W a thin transparent substrate? Or if it is a frosted glass substrate, the light from the displacement sensors 75 and 76 will be transmitted through the glass substrate or irregularly reflected, causing optical interference, and the surface shape of the glass substrate cannot be measured accurately.

このような不具合を防止するため、本実施例では次のようにしてガラス基板Wの表面形状を測定した。まず、図5(a)に実線矢印で示すように、変位センサ75を退避させて、厚さ基準ゲージGと変位センサ76を対向させて、実線矢印で示すように変位センサ76の焦点を合わせ、変位センサ76の位置決めを行う。続いて、図5(b)に実線矢印で示すように、変位センサ76を退避させて、厚さ基準ゲージGと変位センサ75を対向させて、実線矢印で示すように変位センサ75の焦点を合わせ、変位センサ75の位置決めを行う。   In order to prevent such a problem, in this example, the surface shape of the glass substrate W was measured as follows. First, as shown by the solid line arrow in FIG. 5A, the displacement sensor 75 is retracted, the thickness reference gauge G and the displacement sensor 76 are opposed, and the displacement sensor 76 is focused as shown by the solid line arrow. Then, the displacement sensor 76 is positioned. Subsequently, as shown by the solid line arrow in FIG. 5B, the displacement sensor 76 is retracted, the thickness reference gauge G and the displacement sensor 75 are made to face each other, and the focus of the displacement sensor 75 is made as shown by the solid line arrow. In addition, the displacement sensor 75 is positioned.

このようにして変位センサ75及び76の位置決めを行うことになるが、図1に示す例では、変位センサ75及び76の位置決めが既に行われており、さらに、変位センサ75及び76はその走査方向(水平方向)に予め規定された距離(ずらし量(例えば、25mm))だけずらして配置されている。   In this way, the displacement sensors 75 and 76 are positioned. In the example shown in FIG. 1, the displacement sensors 75 and 76 are already positioned, and the displacement sensors 75 and 76 are also in the scanning direction. They are shifted in the (horizontal direction) by a predetermined distance (shift amount (for example, 25 mm)).

図6を参照すると、変位センサ75及び76は走査方向(図1において水平方向)に所定のずらし量だけずらされて配置されており、変位センサ75及び76は、図6に実線矢印で示す方向に走査して、ガラス基板Wの表面形状を計測する。この際、変位センサ75及び76は所定のずらし量Pだけずらされて配置されているから、ガラス基板Wが薄い透明基板であるか又はすりガラス基板であっても、相互に光干渉を与えることがなく、精度よくガラス基板Wの表面形状を計測することができる。   Referring to FIG. 6, the displacement sensors 75 and 76 are arranged to be shifted by a predetermined shift amount in the scanning direction (horizontal direction in FIG. 1), and the displacement sensors 75 and 76 are directions indicated by solid arrows in FIG. And the surface shape of the glass substrate W is measured. At this time, since the displacement sensors 75 and 76 are shifted by a predetermined shift amount P, even if the glass substrate W is a thin transparent substrate or a ground glass substrate, optical interference can be given to each other. The surface shape of the glass substrate W can be accurately measured.

なお、変位センサ75及び76の間隔及び変位センサ76の測定値(ガラス基板Wと変位センサ76との距離)と所定のずれ量走査した後の変位センサ75の測定値(ガラス基板Wと変位センサ75との距離)とに基づいて、ガラス基板Wの厚さを求めることができる。また、上述の例では、ガラス基板Wを垂直に保持した例について説明したが、ガラス基板Wを水平に保持した際にも同様にしてガラス基板Wの表面形状を測定することができる。また、変位センサ75及び76を固定状態として、ガラス基板Wを移動させるようにしてもよい。   The distance between the displacement sensors 75 and 76 and the measured value of the displacement sensor 76 (distance between the glass substrate W and the displacement sensor 76) and the measured value of the displacement sensor 75 after scanning a predetermined amount of deviation (the glass substrate W and the displacement sensor). And the thickness of the glass substrate W. Moreover, although the example which hold | maintained the glass substrate W vertically was demonstrated in the above-mentioned example, when the glass substrate W is hold | maintained horizontally, the surface shape of the glass substrate W can be measured similarly. Alternatively, the glass substrate W may be moved with the displacement sensors 75 and 76 fixed.

一対の反射型センサを所定の間隔をおいて配置するとともに、所定の間隔方向と直交する面において互いに所定のずれ量だけずらして配置して、直交する面に沿って薄板及び一対の反射型センサを相対的に移動させて薄板表面を走査するようにしたから、一対の反射型センサからの光が薄板を透過したり又は乱反射しても、光干渉が生じることなく、精度よく薄板の表面形状を測定できる結果、各種薄板の表面形状測定に適用できる。 A pair of reflective sensors are arranged at a predetermined interval, and are arranged by being shifted from each other by a predetermined deviation amount on a plane orthogonal to the predetermined interval direction, and the thin plate and the pair of reflective sensors are arranged along the orthogonal plane. Since the thin plate surface is scanned by relatively moving the light, the surface shape of the thin plate can be accurately obtained without causing light interference even if light from a pair of reflective sensors passes through the thin plate or is irregularly reflected. Can be applied to the surface shape measurement of various thin plates.

本発明による表面形状測定装置の一例を側方から示す図である。It is a figure which shows an example of the surface shape measuring apparatus by this invention from the side. 図1に示す表面形状測定装置で用いられる測定部移動機構を図1のA−A線方向から示す図である。It is a figure which shows the measurement part moving mechanism used with the surface shape measuring apparatus shown in FIG. 1 from the AA line direction of FIG. 従来の表面形状測定方法を行う際の変位センサの焦点合わせを説明するための図である。It is a figure for demonstrating focusing of the displacement sensor at the time of performing the conventional surface shape measuring method. 従来の表面形状測定方法を説明するための図であり、(a)は変位センサの走査方向を示す図、(b)はガラス基板が厚さ基準ゲージよりも薄い際の変位センサの再焦点合わせを説明するための図である。It is a figure for demonstrating the conventional surface shape measuring method, (a) is a figure which shows the scanning direction of a displacement sensor, (b) is the refocusing of the displacement sensor when a glass substrate is thinner than a thickness reference gauge. It is a figure for demonstrating. 本発明による表面形状測定方法を行う際の変位センサの焦点合わせを説明するための図であり、(a)は一方の変位センサの焦点合わせを示す図、(b)は他方の変位センサの焦点合わせを示す図である。It is a figure for demonstrating focusing of the displacement sensor at the time of performing the surface shape measuring method by this invention, (a) is a figure which shows focusing of one displacement sensor, (b) is a focus of the other displacement sensor. FIG. 本発明による表面形状測定方法の一例を説明するための図である。It is a figure for demonstrating an example of the surface shape measuring method by this invention.

符号の説明Explanation of symbols

10 基台(ベース)
10a 基板垂直保持機構
10b 測定機構
21 下部保持部
22 上部保持部
21a,21b 保持部材
22a 柱部
22b 上下ねじ送り機構
22c,32,42 取付部材
30,40 上下スライド装置
50,60 ねじ送り機構
31,41 スライド部材
70 測定部移動機構
80 駆動部
51,61 ナット部
71,72 スライドレール部
73,74 スライド部材
75,76 測定部(変位センサ(一対の反射型センサ))
10 base (base)
10a Substrate vertical holding mechanism 10b Measuring mechanism 21 Lower holding part 22 Upper holding part 21a, 21b Holding member 22a Column part 22b Vertical screw feeding mechanism 22c, 32, 42 Mounting member 30, 40 Vertical sliding device 50, 60 Screw feeding mechanism 31, 41 Slide member 70 Measuring unit moving mechanism 80 Drive unit 51, 61 Nut unit 71, 72 Slide rail unit 73, 74 Slide member 75, 76 Measuring unit (displacement sensor (a pair of reflective sensors))

Claims (3)

第1センサ及び第2センサからなる一対の反射型センサを、該一対の反射型センサの間に配置された薄板に沿って走査方向に、前記薄板に対して相対的に移動させて該薄板の形状を測定するための測定方法であって、
基準ゲージの第1表面に前記第1センサの焦点が合うように前記第1センサの位置決めを行うステップと、
前記第1表面とは反対側の前記基準ゲージの第2表面に前記第2センサの焦点が合うように前記第2センサの位置決めを行うステップと、
位置決めされた前記一対の反射型センサを前記走査方向に互いに所定のずれ量だけずらして配置するステップと、
前記所定のずれ量を維持しながら、前記一対の反射型センサを前記薄板に沿って前記走査方向に、前記薄板に対して相対的に移動させて前記薄板表面を走査して前記薄板の両面の表面形状を測定するステップと、
測定された前記薄板の両面の表面形状から前記薄板の厚さを算出するステップとを有し、
前記薄板はガラス基板であり、前記基準ゲージはガラス製であり、
前記第1センサの位置決めは、前記第2センサを前記基準ゲージから退避させた状態で行い、
前記第2センサの位置決めは、前記第1センサを前記基準ゲージから退避させた状態で行うことを特徴とする形状測定方法。
A pair of reflective sensors composed of a first sensor and a second sensor are moved relative to the thin plate in the scanning direction along the thin plate disposed between the pair of reflective sensors. A measuring method for measuring a shape,
Positioning the first sensor such that the first sensor is in focus with a first surface of a reference gauge;
Positioning the second sensor so that the second sensor is in focus on the second surface of the reference gauge opposite to the first surface;
Disposing and positioning the pair of positioned reflective sensors in the scanning direction by a predetermined deviation amount;
While maintaining the predetermined shift amount, the pair of reflective sensors are moved along the thin plate in the scanning direction relative to the thin plate to scan the surface of the thin plate and Measuring a surface shape;
Calculating the thickness of the thin plate from the measured surface shape of both surfaces of the thin plate,
The thin plate is a glass substrate, the reference gauge is made of glass ,
The positioning of the first sensor is performed with the second sensor retracted from the reference gauge,
The shape measuring method , wherein the positioning of the second sensor is performed in a state where the first sensor is retracted from the reference gauge .
前記薄板の表面形状を得るステップでは、前記一対の反射型センサを前記薄板表面に沿って同時に走査するようにしたことを特徴とする請求項1に記載の形状測定方法。   The shape measuring method according to claim 1, wherein in the step of obtaining the surface shape of the thin plate, the pair of reflective sensors are simultaneously scanned along the surface of the thin plate. 第1センサ及び第2センサからなる一対の反射型センサを、該一対の反射型センサの間に配置された薄板に沿って走査方向に、前記薄板に対して相対的に移動させて該薄板の形状を測定するための測定装置であって、A pair of reflective sensors composed of a first sensor and a second sensor are moved relative to the thin plate in the scanning direction along the thin plate disposed between the pair of reflective sensors. A measuring device for measuring a shape,
前記一対の反射型センサは、基準ゲージの第1表面に前記第1センサの焦点が合い、前記基準ゲージの前記第1表面とは反対側の第2表面に前記第2センサの焦点が合うように位置決めされ、In the pair of reflective sensors, the first sensor is focused on the first surface of the reference gauge, and the second sensor is focused on the second surface of the reference gauge opposite to the first surface. Is positioned on
前記第1センサ及び前記第2センサは前記走査方向に互いに所定のずれ量だけずらして配置されているとともに、The first sensor and the second sensor are arranged to be shifted from each other by a predetermined amount in the scanning direction,
前記所定のずれ量を維持しながら、前記一対の反射型センサを前記薄板に沿って前記走査方向に、前記薄板に対して相対的に移動させて前記薄板表面を走査して前記薄板の両面の表面形状を得る走査手段と、While maintaining the predetermined shift amount, the pair of reflective sensors are moved along the thin plate in the scanning direction relative to the thin plate to scan the surface of the thin plate and Scanning means for obtaining a surface shape;
前記薄板の両面の表面形状から前記薄板の厚さを算出する算出手段とを有し、Calculating means for calculating the thickness of the thin plate from the surface shape of both surfaces of the thin plate;
前記薄板はガラス基板であり、前記基準ゲージはガラス製であり、The thin plate is a glass substrate, the reference gauge is made of glass,
前記第1センサは、前記第2センサを前記基準ゲージから退避させた状態で、前記基準ゲージの前記第1表面に焦点が合うように位置決めされており、  The first sensor is positioned so as to be focused on the first surface of the reference gauge in a state where the second sensor is retracted from the reference gauge.
前記第2センサは、前記第1センサを前記基準ゲージから退避させた状態で、前記基準ゲージの前記第2表面に焦点が合うように位置決めされていることを特徴とする形状測定装置。The shape measuring apparatus, wherein the second sensor is positioned so as to be focused on the second surface of the reference gauge in a state where the first sensor is retracted from the reference gauge.
JP2004364383A 2004-12-16 2004-12-16 Shape measuring method and shape measuring apparatus Active JP5076171B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004364383A JP5076171B2 (en) 2004-12-16 2004-12-16 Shape measuring method and shape measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004364383A JP5076171B2 (en) 2004-12-16 2004-12-16 Shape measuring method and shape measuring apparatus

Publications (3)

Publication Number Publication Date
JP2006170834A JP2006170834A (en) 2006-06-29
JP2006170834A5 JP2006170834A5 (en) 2008-02-14
JP5076171B2 true JP5076171B2 (en) 2012-11-21

Family

ID=36671752

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004364383A Active JP5076171B2 (en) 2004-12-16 2004-12-16 Shape measuring method and shape measuring apparatus

Country Status (1)

Country Link
JP (1) JP5076171B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7310664B2 (en) * 2020-03-13 2023-07-19 トヨタ車体株式会社 Workpiece measurement jig and work plate thickness measurement method using the jig

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3932157A1 (en) * 1989-09-27 1991-04-04 Desowag Materialschutz Gmbh WOOD PRESERVATIVES AND METHOD FOR THE PRODUCTION THEREOF
JPH0649958U (en) * 1992-10-01 1994-07-08 京セラ株式会社 Semiconductor wafer thickness measuring machine
JPH09273912A (en) * 1996-04-04 1997-10-21 Dainippon Printing Co Ltd Apparatus for measuring thickness
JPH11351857A (en) * 1998-06-08 1999-12-24 Kuroda Precision Ind Ltd Method and apparatus for measurement of surface shape of thin plate

Also Published As

Publication number Publication date
JP2006170834A (en) 2006-06-29

Similar Documents

Publication Publication Date Title
TW528881B (en) Position measuring apparatus
CN102629566B (en) Processing unit (plant)
JP3468352B2 (en) Flatness measuring device for quartz glass substrate surface
TW201239554A (en) Optical apparatus, method of scanning, lithographic apparatus and device manufacturing method
JP2003177009A (en) Table device and instrument for coordinate measurement
JPH11351857A (en) Method and apparatus for measurement of surface shape of thin plate
JP4693581B2 (en) Substrate inspection apparatus and substrate inspection method
JP4570437B2 (en) Surface roughness / contour shape measuring device
US8073650B2 (en) Dimension measuring apparatus
TWI739693B (en) Measurement equipment
JP5691398B2 (en) Mounting table, shape measuring device, and shape measuring method
JP2008122349A (en) Measuring instrument
JP5076171B2 (en) Shape measuring method and shape measuring apparatus
JP2005024567A (en) Location finding apparatus
JP6274732B2 (en) Surface shape measuring apparatus and surface shape measuring method
JP5252777B2 (en) Scanning mechanism and scanning method for vertical two-dimensional surface
CN102484046A (en) Supporting device and light exposure device
JP2013178156A (en) Measuring object support device and shape measuring device
JP5292668B2 (en) Shape measuring apparatus and method
JP2001124542A (en) Method and apparatus for measurement of planarity of thin sheet material
JP2002228411A (en) Two-dimensional measuring apparatus
JP5070370B2 (en) Ultraprecision shape measuring method and apparatus
WO2023100892A1 (en) Transparent body measuring method and measuring instrument, and method for producing glass plate
JP2003322520A (en) Flatness and shape measuring device for surface plate for surface grinding/polishing device
JP6274733B2 (en) Surface shape measuring apparatus and surface shape measuring method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071214

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100428

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100507

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100813

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101006

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110412

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110422

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20110610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120807

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150907

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5076171

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250