JPS62276437A - Evaluation of thick film material - Google Patents

Evaluation of thick film material

Info

Publication number
JPS62276437A
JPS62276437A JP11937286A JP11937286A JPS62276437A JP S62276437 A JPS62276437 A JP S62276437A JP 11937286 A JP11937286 A JP 11937286A JP 11937286 A JP11937286 A JP 11937286A JP S62276437 A JPS62276437 A JP S62276437A
Authority
JP
Japan
Prior art keywords
thick film
glass substrate
substrate
film material
ceramic substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11937286A
Other languages
Japanese (ja)
Inventor
Osamu Sekihara
関原 修
Shigeharu Ishigame
重治 石亀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP11937286A priority Critical patent/JPS62276437A/en
Publication of JPS62276437A publication Critical patent/JPS62276437A/en
Pending legal-status Critical Current

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To certainly evaluate adaptability, by a method wherein a thick film material is applied to a glass substrate having coefficient of heat expansion almost the same to that of a ceramic substrate and baked while the residual stress generated between the glass substrate and the baked thick film is measured according to a photoelastic method. CONSTITUTION:In place of a ceramic substrate to which a thick film material is adapted, a transparent glass substrate 8 having coefficient of heat expansion almost same to that of the ceramic substrate is used as a substrate. The thick film material 9 is applied to the glass substrate 8 and baked under the same condition as a case performing baking on the ceramic substrate and the residual stress generated between the glass substrate 8 and the baked thick film material 9 is measured according to a photoelectric method. That is, if there is residual stress in a specimen 6, internal strain is generated in glass and, as the result of the double refraction of light due to said internal strain, phase difference is generated and light is polarized and a part of light passes through an analyser to allow an interference fringe 7 to appear. The position of the interference fringe 7 is largely affected by the internal stress.

Description

【発明の詳細な説明】 3、発明の詳細な説明 〔産業上の利用分野〕 本発明は、導体、抵抗体、誘電体等の厚膜材料のセラミ
ック基体との適合性を評価する方法に関する。
Detailed Description of the Invention 3. Detailed Description of the Invention [Field of Industrial Application] The present invention relates to a method for evaluating the compatibility of thick film materials such as conductors, resistors, dielectrics, etc. with ceramic substrates.

〔従来の技術〕[Conventional technology]

混成集積回路や個別受動素子に導体、抵抗体、誘電体等
の厚膜材料が用いられている。これら厚膜材料は、導電
物質、抵抗物質、誘電物質等の粉末とガラス粉末を有機
質ビヒクルと混練してペースト状としたもので、該材料
をセラミック基体上にスクリーン印刷法、転写法等によ
り塗布し、750〜950℃の温度で焼成することによ
り該セラミック基体上に導電体膜、砥抗体膜、誘電体膜
を形成できるようになっている。
Thick film materials such as conductors, resistors, and dielectrics are used in hybrid integrated circuits and individual passive devices. These thick film materials are made by kneading powders of conductive materials, resistive materials, dielectric materials, etc. and glass powder with an organic vehicle to form a paste.The materials are applied onto a ceramic substrate by screen printing, transfer, etc. However, by firing at a temperature of 750 to 950°C, a conductive film, an abrasive film, and a dielectric film can be formed on the ceramic substrate.

上記厚膜材料にガラス粉末を混合するのはセラミック基
体と導体、抵抗体、誘電体等の膜とを固着するためであ
る。従ってこのガラス粉末は焼成温度において充分軟化
することが必要で、軟化点430〜600℃程度のもの
が選択使用されている。
The reason why glass powder is mixed into the above-mentioned thick film material is to fix the ceramic substrate and films such as conductors, resistors, dielectrics, etc. Therefore, this glass powder needs to be sufficiently softened at the firing temperature, and those having a softening point of about 430 to 600°C are selected for use.

上記ガラス粉末は又、塗布の対象となるセラミック基体
との熱膨張係数の適合性も必要である。
The glass powder must also be compatible in coefficient of thermal expansion with the ceramic substrate to which it is applied.

セラミック基体と熱膨張係数があまり違い過ぎると、焼
成膜が剥離することがあるからである。このため厚膜材
料に用いるガラス粉末は熱膨張係数60〜80 x 1
0−’/’c程度のものが選択される。
This is because if the coefficient of thermal expansion is too different from that of the ceramic substrate, the fired film may peel off. Therefore, the glass powder used for thick film materials has a coefficient of thermal expansion of 60 to 80 x 1
A value of about 0-'/'c is selected.

ところが、このようにガラス粉末の軟化点、熱膨張係数
が選択されているにもかかわらず、焼成膜の特性が経時
的に変化することがある。例えば導体膜上に半田付して
150°C程度に放置した場合に導体膜とセラミック基
体との固着強度が低下したり、抵抗体膜をレーザー(L
ASER)カントした場合、抵抗値が経時的に上昇する
ことがある。このように特性が変化する原因は、セラミ
ック基体と焼成膜の間に介在するガラス中に厚膜材料の
他の添加物質が混入して組成が変り、熱膨張係数の差が
大きくなって残留応力が増大するためと考えられる。こ
の残留応力を何らかの手段で簡便に測ることが可能とな
る。
However, even though the softening point and thermal expansion coefficient of the glass powder are selected in this way, the characteristics of the fired film may change over time. For example, if soldered onto a conductor film and left at around 150°C, the adhesion strength between the conductor film and the ceramic substrate may decrease, or the resistance film may be damaged by laser (L).
(ASER) cant, the resistance value may increase over time. The reason for this change in properties is that other additives of the thick film material mix into the glass interposed between the ceramic substrate and the fired film, changing the composition, increasing the difference in thermal expansion coefficients, and causing residual stress. This is thought to be due to an increase in This residual stress can be easily measured by some means.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は上記事情に濫みて為されたもので、厚膜材料と
該材料が適用されるセラミック基体との適合性を評価す
る方法を提供するものである。
The present invention was made in view of the above circumstances, and provides a method for evaluating the compatibility of a thick film material and a ceramic substrate to which the material is applied.

〔問題点を解決するための手段〕[Means for solving problems]

この目的を達成するため本発明の方法は、厚膜材料が適
用されるセラミック基体の代りに、該セラミック基体と
同程度の熱膨張係数を有する透明なガラス基板を基体と
して用い、該ガラス基板上に厚膜材料を塗布し、これを
セラミック基体上で焼成する場合と同じ条件で焼成し、
該ガラス基板と焼成厚膜の間に生ずる残留応力を光弾性
法により測定する点に特徴がある。
To achieve this objective, the method of the present invention uses a transparent glass substrate as a substrate, which has a coefficient of thermal expansion similar to that of the ceramic substrate, instead of a ceramic substrate to which a thick film material is applied, and A thick film material is applied to the ceramic substrate, and this is fired under the same conditions as when firing on a ceramic substrate.
The method is characterized in that the residual stress generated between the glass substrate and the fired thick film is measured by a photoelastic method.

本発明法において、ガラス基板の熱膨張係数は、厚膜材
料が適用されるべきセラミック基体と同程度であれば良
く、必ずしも同一でなくても良い。
In the method of the present invention, the coefficient of thermal expansion of the glass substrate only needs to be comparable to that of the ceramic substrate to which the thick film material is applied, and does not necessarily have to be the same.

これは多少の差であれば残留応力の測定結果を外挿法で
補正できるからである。しかしながらガラス基板とセラ
ミック基体の熱膨張係数の差は10X 10−’/”C
以内とするのが望ましい。これ以上大きいと残留応力に
よってガラス基板や焼成厚膜にクラックが入り、正確な
応力測定ができない場合もある。又該ガラス基板は軟化
温度が焼成温度より高いことが必要であることは言うま
でもない。
This is because if there is a slight difference, the measurement results of residual stress can be corrected by extrapolation. However, the difference in thermal expansion coefficient between the glass substrate and the ceramic substrate is 10X 10-'/”C
It is desirable to keep it within the range. If the stress is larger than this, the residual stress may cause cracks in the glass substrate or fired thick film, making accurate stress measurement impossible. It goes without saying that the glass substrate needs to have a softening temperature higher than the firing temperature.

このようなガラス組成は5iOz 、 Al2O2、B
z03゜BaO、CaO、NazO等の調合比率を変え
ることにより容易に得ることができるが、ガラス中に気
泡、脈理、未溶解物等の不均一物がないこと、固化後充
分アニール(除歪)しておくことが必要である。
Such a glass composition is 5iOz, Al2O2, B
z03゜It can be easily obtained by changing the blending ratio of BaO, CaO, NazO, etc., but it is necessary to ensure that there are no non-uniform substances such as bubbles, striae, and undissolved substances in the glass, and that sufficient annealing (de-straining) is performed after solidification. ) is necessary.

不均一物の存在、固化歪の存在は残留応力測定結果に影
響するからである。
This is because the presence of non-uniform objects and the presence of solidification strain affect the residual stress measurement results.

ガラス基板の厚さは1〜3龍程度が適当である。The appropriate thickness of the glass substrate is about 1 to 3 mm.

あまり厚過ぎると厚膜材料焼成時に割れることがあるか
らである。
This is because if the thickness is too large, the thick film material may crack during firing.

上記ガラス基板上に厚膜材料を塗布・焼成した後、焼成
膜を横断して一定の幅でガラス基板を切り取り、該切り
取り片の切断面を鏡面研摩して、あるいはガラス基板と
同じ屈折率をもつ浸漬液に入れて試料とし、光弾性法に
供する。この試料の厚さく切り取り幅)は0.5〜1曹
諷程度で良い。
After coating and firing the thick film material on the glass substrate, cut the glass substrate across the fired film to a certain width, and mirror-polish the cut surface of the cut piece, or polish the cut surface to the same refractive index as the glass substrate. The sample is placed in an immersion solution and subjected to the photoelastic method. The thickness of this sample (cut width) may be about 0.5 to 1 mm.

光弾性法による残留応力の測定は、第1図に示すような
光学系で行うことができる。この光学系は、光源1、単
色フィルタ2、ポラライザ3.174波長板(又は鋭敏
色板)4及びアナライザ5からなり、試料6はポラライ
ザ3と1ノ4波長槻4の間に置く。この状態でポラライ
ザ3とアナライザ5の偏光面を互に垂直にしておくと試
料6に残留応力が無い場合は光アナライザ5から出す、
アナライザ5側から試料6を見ても暗視野である。
Residual stress can be measured by the photoelastic method using an optical system as shown in FIG. This optical system consists of a light source 1, a monochromatic filter 2, a polarizer 3, a 174 wavelength plate (or sensitive color plate) 4, and an analyzer 5, and a sample 6 is placed between the polarizer 3 and the 1/4 wavelength plate 4. In this state, if the polarization planes of the polarizer 3 and analyzer 5 are made perpendicular to each other, if there is no residual stress in the sample 6, it will be taken out from the optical analyzer 5.
Even when looking at the sample 6 from the analyzer 5 side, it is a dark field.

ところが、試料6に残留応力があるとガラスに内部歪が
でき、この内部歪によって光が複屈折する結果位相差が
生じると共に偏光し、一部の光がアナライザ5を通過し
て第2図(A)に示すような干渉縞7が現われる。この
干渉縞7の位置は内部歪の大きさに左右され、歪が大き
い捏上に凸になる。この干渉縞7の中心部のガラス基板
8と厚膜9との界面からの最大距離がりタープ−ジョン
R[μm〕で、このRを4111定することによってガ
ラス基板8の光弾性定数C(mu/ can/ kg/
 cut)及び試料6の肉厚(即ら光路長)  t (
cm)とから残留応力σ(kg / ant )を次式
によって計算することができる。
However, if there is residual stress in the sample 6, internal strain will occur in the glass, and this internal strain will cause the light to become birefringent, resulting in a phase difference and polarization, with some of the light passing through the analyzer 5 as shown in Figure 2 ( Interference fringes 7 as shown in A) appear. The position of the interference fringes 7 depends on the magnitude of the internal distortion, and is convex on the dough with greater distortion. The maximum distance from the interface between the glass substrate 8 and the thick film 9 at the center of the interference fringes 7 is tarp John R [μm], and by setting this R to 4111, the photoelastic constant C (mu / can/ kg/
cut) and the wall thickness of sample 6 (i.e. optical path length) t (
The residual stress σ (kg/ant) can be calculated from the following equation:

R グ −  □  昏  □     t このリターデーションRの測定は、アナライザ5の通過
光を白紙に当てて実測しても良いが、アナライザ5の偏
光面を前記ポラライザ3の偏光面との垂直の位置から回
転させ、干渉縞を第2図(B)に示すように殆んどガラ
ス基板8と厚膜9との界面に移動させるに要した回転角
θから求めるのが簡便である。この場合リターデーショ
ンRは回転角θに比例し、R=k・θでRを計算するこ
とができる。kは使用する光の波長によって異なるが、
波長を予め決めておけば実験的に求まる定数である。
R - □ □ t This retardation R can be measured by shining the light passing through the analyzer 5 onto a blank sheet of paper. It is easy to determine this from the rotation angle θ required to rotate the interference fringes and move them almost to the interface between the glass substrate 8 and the thick film 9 as shown in FIG. 2(B). In this case, the retardation R is proportional to the rotation angle θ, and can be calculated by R=k·θ. k varies depending on the wavelength of the light used, but
This is a constant that can be determined experimentally if the wavelength is determined in advance.

〔実施例〕〔Example〕

5iOz  55.0 、^1z0314.5. Bz
(hl 1.5゜BaO8,4、Ca0 6.0 +N
az0 4.6各重量%の組成のガラスをアルミナ基体
の代用として用いた。
5iOz 55.0, ^1z0314.5. Bz
(hl 1.5゜BaO8.4, Ca0 6.0 +N
A glass having a composition of 4.6% by weight az0 was used as a substitute for the alumina substrate.

このガラスの熱膨張係数は65xlO−’/”c (5
0〜300℃)であり、アルミナの71 x 10−’
/ ’c (40〜400°C)と極めて近い。このガ
ラスを25■l角、厚さ2關の板状とし、該ガラス基板
上中央部にAg −Pd系厚膜導電ペーストを7龍角の
パターンでスクリーン印刷し、850℃で焼成後該ガラ
ス基板を0.75■lの間隔で切断し、切断面を研磨し
て光弾性法の試料とした。
The coefficient of thermal expansion of this glass is 65xlO-'/”c (5
0~300℃) and 71 x 10-' of alumina
/'c (40-400°C), which is very close to that. This glass was formed into a plate shape of 25 cm square and 2 cm thick. Ag-Pd thick film conductive paste was screen printed in a 7 square pattern on the center of the glass substrate, and after baking at 850°C, the glass The substrate was cut at intervals of 0.75 μl, and the cut surfaces were polished to prepare samples for the photoelastic method.

この試料の厚膜側をPb −Sn共晶半田槽に15秒間
浸漬して半田付けした後、1個はそのまま、その他は1
50°Cの恒温器に入れて25,50゜75.100時
間のエージングを行い、それぞれについて光弾性法によ
りどのように残留応力が変化するかを調べた。その結果
エージング0時間では35kg/cnlであったものが
、25時間後200.50時間後300.75時間後1
70.100時間後では同じ< 170 kg/cJと
なった。この結果されたことを示唆している。この結果
は、アルミナ基板にAg −Pd系厚膜導電ペーストを
塗布焼成後翼電膜に半田付けすると、エージングによっ
て固着強度が大幅に低下する現象をよく説明できる。
After immersing the thick film side of this sample in a Pb-Sn eutectic solder bath for 15 seconds and soldering, one piece was left as is, and the other pieces were soldered.
The samples were placed in a thermostat at 50°C and aged for 25, 50°, 75, and 100 hours, and how the residual stress changed was investigated using a photoelastic method. As a result, the weight was 35 kg/cnl at 0 hours of aging, but after 25 hours, 200.50 hours, and 300.75 hours, it was 1
70. After 100 hours, it was the same < 170 kg/cJ. This result suggests that it was. This result can well explain the phenomenon that when an Ag--Pd based thick-film conductive paste is coated on an alumina substrate, baked, and then soldered to a wing electrical film, the adhesion strength is significantly reduced due to aging.

このことから本発明法が厚膜材料のセラミック基体との
適合性評価に極めて有効な手段であることが分る。
This shows that the method of the present invention is an extremely effective means for evaluating the compatibility of thick film materials with ceramic substrates.

〔発明の効果〕〔Effect of the invention〕

本発明法により厚膜材料としてセラミック基体との適合
性評価を確実に行えるようになり、厚膜材料の開発、改
良に有力な手段を提供することができた。
The method of the present invention has made it possible to reliably evaluate the compatibility of thick film materials with ceramic substrates, and has provided an effective means for developing and improving thick film materials.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は光弾性測定の光学系を示す図、第2図は厚膜と
ガラス基板との間に残留応力があるときに生ずる干渉縞
の様子を示す図である。 1・・・光源、2・・・単色フィルタ、3・・・ポララ
イザ、4・・・174波長板(又は鋭敏色板)、5・・
・アナライザ、6・・・試料。 特許出願人  住友金属鉱山株式会社 第1図 (偏光) 第2図
FIG. 1 is a diagram showing an optical system for photoelasticity measurement, and FIG. 2 is a diagram showing interference fringes that occur when there is residual stress between a thick film and a glass substrate. 1... Light source, 2... Monochromatic filter, 3... Polarizer, 4... 174 wavelength plate (or sensitive color plate), 5...
・Analyzer, 6...sample. Patent applicant: Sumitomo Metal Mining Co., Ltd. Figure 1 (polarized light) Figure 2

Claims (1)

【特許請求の範囲】[Claims] セラミック基体と同程度の熱膨張係数を有するガラス基
板上に厚膜材料を塗布・焼成し、該ガラス基板と焼成厚
膜の間に生ずる残留応力を光弾性法により測定すること
を特徴とする厚膜材料の評価方法。
A thick film material is coated and fired on a glass substrate having a coefficient of thermal expansion comparable to that of a ceramic substrate, and the residual stress generated between the glass substrate and the fired thick film is measured by a photoelastic method. Evaluation method for membrane materials.
JP11937286A 1986-05-26 1986-05-26 Evaluation of thick film material Pending JPS62276437A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11937286A JPS62276437A (en) 1986-05-26 1986-05-26 Evaluation of thick film material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11937286A JPS62276437A (en) 1986-05-26 1986-05-26 Evaluation of thick film material

Publications (1)

Publication Number Publication Date
JPS62276437A true JPS62276437A (en) 1987-12-01

Family

ID=14759874

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11937286A Pending JPS62276437A (en) 1986-05-26 1986-05-26 Evaluation of thick film material

Country Status (1)

Country Link
JP (1) JPS62276437A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110043787A1 (en) * 2009-08-20 2011-02-24 Carlos Duran Photoelastic method for absolute determination of zero cte crossover in low expansion silica-titania glass samples
WO2023100892A1 (en) * 2021-12-03 2023-06-08 日本電気硝子株式会社 Transparent body measuring method and measuring instrument, and method for producing glass plate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110043787A1 (en) * 2009-08-20 2011-02-24 Carlos Duran Photoelastic method for absolute determination of zero cte crossover in low expansion silica-titania glass samples
US8328417B2 (en) * 2009-08-20 2012-12-11 Corning Incorporated Photoelastic method for absolute determination of zero CTE crossover in low expansion silica-titania glass samples
WO2023100892A1 (en) * 2021-12-03 2023-06-08 日本電気硝子株式会社 Transparent body measuring method and measuring instrument, and method for producing glass plate

Similar Documents

Publication Publication Date Title
DE19540194C1 (en) Resistance thermometer for accurately measuring temperatures between -200 and 500 deg. C
DE69822770T2 (en) Thick film Piezo-resistive sensor arrangement
US5051381A (en) Powdery coating glass material, coating glass paste using the same and coating glass composition prepared thereby
KR100306554B1 (en) Thick Film Resistor and the Manuring Method Thereof
GB1585689A (en) Thick film resistance thermometer
WO1995004005A1 (en) Lead-free thick film paste composition
US4183136A (en) Temperature sensing resistance device
US20080290460A1 (en) Chip Resistor, and Its Manufacturing Method
JP3611160B2 (en) Thick film resistor paste
MacDonald Influence of a magnetic field on the size-variation of electrical conductivity
JPS62276437A (en) Evaluation of thick film material
Cerqua et al. Stress measurements in sol-gel films
JP3333404B2 (en) Chip component and method of manufacturing the same
JPH11317301A (en) Chip-type part and manufacture of the same
JPH0896623A (en) Conductive paste
JPS6435306A (en) Incidence angle determining method for refractive index and film thickness measurement
JPS6310104B2 (en)
JP3090999B2 (en) Glazed ceramic substrate
KR100275820B1 (en) Metal powder composition for metallization and metallized substrate
JPH02114601A (en) Manufacture of electronic component
SU1046208A1 (en) Glass for making thick-film resistors
JPS62153830A (en) Preparation of liquid crystal display element
JPH01304702A (en) Manufacture of resistor, paste resistor, and resistive elements and thermal head
JPH0660716A (en) Conductive paste, and method for forming electrode of ceramic electronic part using same
JPH02124405A (en) Thickness measuring method of semiconductor layer on insulating film