JPS6310104B2 - - Google Patents

Info

Publication number
JPS6310104B2
JPS6310104B2 JP6826783A JP6826783A JPS6310104B2 JP S6310104 B2 JPS6310104 B2 JP S6310104B2 JP 6826783 A JP6826783 A JP 6826783A JP 6826783 A JP6826783 A JP 6826783A JP S6310104 B2 JPS6310104 B2 JP S6310104B2
Authority
JP
Japan
Prior art keywords
weight
glass
coating
baking
ruo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6826783A
Other languages
Japanese (ja)
Other versions
JPS59195552A (en
Inventor
Masataka Sakaeda
Kenichi Hasegawa
Hiromitsu Tagi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP6826783A priority Critical patent/JPS59195552A/en
Publication of JPS59195552A publication Critical patent/JPS59195552A/en
Publication of JPS6310104B2 publication Critical patent/JPS6310104B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/24Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders
    • C03C8/245Fusion seal compositions being frit compositions having non-frit additions, i.e. for use as seals between dissimilar materials, e.g. glass and metal; Glass solders containing more than 50% lead oxide, by weight

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

[産業上の利用分野] 本発明は被覆用ガラス組成物及び被覆用ガラス
ペーストに関するものであり、更に詳しくはセラ
ミツク基板上のRuO2、Ag−Pd等の厚膜回路を
被覆しこれらを保護するためのガラス組成物及び
保護被膜を形成するために材料として用いるガラ
スペーストに関するものである。 [従来例の構成とその問題点] アルミナ等のセラミツク基板上の厚膜回路は、
導電体部をAg−Pd、Ag等の導電ペーストを印刷
後焼き付けし、抵抗体、コンデンサ、コイルなど
電子部品をハンダ付けして作られている。従来の
被覆用ガラスは、この導電体部だけを保護するた
めに用いられて来た。しかしながら近年、回路の
高密度化を図るために、Ag−Pd、Ag等の導電体
部と同じように、基板上にRuO2を印刷後焼き付
けして抵抗体が形成されるようになり、この抵抗
体をも含めて保護被膜を形成することが望まれて
いる。しかし、従来の被覆用ガラスでは、これを
印刷、焼き付けした場合、この抵抗体の抵抗値が
大きく変化してしまい回路の形成が不能となつて
しまうので、RuO2抵抗体を含む厚膜回路の被覆
保護には使用出来なかつた。 被覆用ガラスはレーザートリミング時、被覆膜
下の回路の位置を正確に確認できなければなら
ず、また、ある程度の美観を呈する必要もあるの
で、焼き付け後の透明性をも満足するものでなけ
ればならない。 [発明の目的] 本発明の目的は、アルミナ等のセラミツク基板
上に形成されたRuO2抵抗体を含む厚膜回路中の
RuO2抵抗体の抵抗値変化が少なく、透明性を有
し美しい外観を呈するガラス被膜を提供すること
により、この種の厚膜回路の被覆保護を可能にす
ることである。 [発明の構成] 本発明の被覆用ガラス組成物は、上記の目的を
達成するために、SiO2を3〜7重量%、B2O3
18〜25重量%、Al2O3を3〜8重量%、PbOを65
〜75重量%、Cr2O3を5重量%以下の組成範囲に
することを特徴とする。 また、本発明の被覆用ガラスペーストは上記範
囲の組成よりなる粉末状ガラス組成物を、有機溶
剤と有機結合剤にて練り合せたことを特徴として
いる。 上記範囲内の組成であれば、焼き付け後の
RuO2抵抗体の抵抗値変化が少なく、被覆ガラス
膜に亀裂を生じないと共に、透明性の良好な被覆
ガラス膜が形成され、且つ目的に応じて被覆ガラ
ス膜の熱膨張係数値を65×10-7〜85×10-7-1
範囲に自由に選択することができる。 SiO2を3〜7重量%且つAl2O3を3〜8重量%
添加しないと、RuO2抵抗体の抵抗値変化率が大
きくなる。 PbOが75重量%を越えると、熱膨張係数が85×
10-7-1を越えて亀裂が発生し、65重量%未満と
なると焼き付け不良を起こす。 B2O3が25重量%を越えると焼き付け不良を起
こし、15重量%未満となると相対的にPbOの重量
%が増して熱膨張係数が85×10-7-1を越えて亀
裂の発生を起こし、また、抵抗値の変化率を
SiO2とAl2O3の量で調整できなくなる。 PbOが65〜75重量%、B2O3が15〜25重量%の
範囲内にないと抵抗値の変化率をSiO2、Al2O3
量で調整できなくなる。 Cr2O3は0〜5重量%の範囲で添加され、5重
量%を越えると透明性が悪くなる。 本発明の被覆用ガラス組成物は通常10〜50μm
の膜厚で用いられる。膜厚が50μmを越えると透
視できなくなり、10μmより薄い膜厚では保護被
膜の強度上問題がある。 本発明の被覆用ガラスペーストはセラミツク基
板上のRuO2、Ag−Pd等の厚膜回路上に印刷さ
れ、460〜560℃で焼き付けられて被覆ガラス膜を
形成する。これに用いる粉末状ガラス組成物の粉
末粒子の平均粒径は、表面の滑らかな保護被膜を
形成するために5〜30μmの範囲にすることが好
ましい。 有機溶剤及び有機結合剤はガラス組成物をペー
スト状態にするためのもので、いずれも空気中で
の焼き付け処理によつて飛散してしまうものであ
る。従つて、有機溶剤は焼き付け温度以下で飛散
し得るものでガラス組成物と反応しないものであ
れば特に限定されず、一般的にはαテルピネオー
ル、ブチルカルビトール及びカルビトールアセテ
ート等が用いられる。有機結合剤は、従来セルロ
ース系樹脂が用いられて来たが、セルロース系樹
脂は多量にガラスペーストに入れて用いると、融
着温度が560℃以下のガラスの場合、残炭を起こ
し透明性を低減すると共に色調の変化を起こし美
観を損なうという欠点を有している。また、セル
ロース系樹脂結合剤の量を減らすと、ガラスペー
ストの印刷性並びに印刷後の強度を著しく損うと
いう欠点を有している。そこで、種々の結合剤を
検討した結果、アクリル系樹脂結合剤、または、
アクリル系樹脂とセルロース系樹脂との混合結合
剤を用いた有機ビヒクルを使用することにより、
透明性の高い無色または緑色を呈する美しいガラ
ス被覆膜の形成が可能となつた。アクリル系樹脂
結合剤としてはポリメタクリル酸メチルエステ
ル、ポリメタクリル酸エチルエステル、ポリアク
リル酸メチルエステル、ポリアクリル酸エチルエ
ステル等を用いることができるがこのうち、ポリ
メタクリル酸メチルエステル、ポリアクリル酸メ
チルエステルが好ましい。セルロース系樹脂結合
剤としてはメチルセルロース、エチルセルロー
ス、ニトロセルロース等を用いることができるが
このうち、エチルセルロースが好ましい。 [実施例の説明] 以下に本発明の一実施例を説明する。 実施例 1 試料の作成は先ず、工業用原料(純度99.9%以
上)であるSiO2、B2O3、PbO、Al2O3、Cr2O3
を、第1表に示す組成比になるように調合して、
アルミナポツトミルを用いて乾式混合を行なつ
た。これを白金るつぼに入れて電気炉中で800〜
1000℃の温度で溶融し、その後冷却ガラス化を行
なつた。これをクラツシヤーミルで破砕後、アル
ミナポツトミルで粉砕し、平均粒径を5〜30μm
にそろえた。次に、このガラス粉末50gに対し有
機溶剤としてαテルピネオールを10g、有機結合
剤としてポリメタアクリル酸メチルエステル及び
エチルセルロースを0.4gづつ加えて三本ローラ
ーミルで混合し、ガラスペーストとした。 試料番号1〜16までは本発明の実施例で、試料
番号17〜28までは比較例である。
[Industrial Application Field] The present invention relates to a coating glass composition and a coating glass paste, and more specifically to a coating glass composition and a coating glass paste for coating and protecting thick film circuits such as RuO 2 and Ag-Pd on ceramic substrates. The present invention relates to a glass composition for use in the invention and a glass paste used as a material for forming a protective coating. [Conventional configuration and its problems] Thick film circuits on ceramic substrates such as alumina are
The conductor part is made by printing and baking a conductive paste such as Ag-Pd or Ag, and then soldering electronic components such as resistors, capacitors, and coils. Conventional covering glasses have been used to protect only this conductor portion. However, in recent years, in order to increase the density of circuits, resistors have been formed by printing RuO 2 on the substrate and then baking it, similar to conductors such as Ag-Pd and Ag. It is desired to form a protective coating including the resistor. However, with conventional coating glass, when it is printed and baked, the resistance value of this resistor changes greatly, making it impossible to form a circuit. It could not be used for coating protection. The coating glass must be able to accurately confirm the position of the circuit under the coating film during laser trimming, and it also needs to have a certain degree of aesthetic appearance, so it must also satisfy the transparency after baking. Must be. [Object of the Invention] The object of the present invention is to improve the performance of thick film circuits including RuO 2 resistors formed on ceramic substrates such as alumina.
The object of the present invention is to provide a glass coating that exhibits little resistance value change of the RuO 2 resistor, is transparent, and has a beautiful appearance, thereby making it possible to protect the coating of this type of thick film circuit. [Structure of the Invention] In order to achieve the above object, the coating glass composition of the present invention contains 3 to 7% by weight of SiO2 and B2O3 .
18-25% by weight, 3-8% by weight of Al2O3 , 65% by weight of PbO
~75% by weight, and the composition range is 5% by weight or less of Cr 2 O 3 . Further, the coating glass paste of the present invention is characterized in that a powdered glass composition having a composition within the above range is kneaded with an organic solvent and an organic binder. If the composition is within the above range, after baking
The resistance value change of the RuO 2 resistor is small, the coating glass film does not crack, and a coating glass film with good transparency is formed. It can be freely selected within the range of -7 to 85×10 -7-1 . 3-7% by weight of SiO 2 and 3-8% by weight of Al 2 O 3
If it is not added, the resistance change rate of the RuO 2 resistor will increase. When PbO exceeds 75% by weight, the coefficient of thermal expansion is 85×
Cracks occur when the temperature exceeds 10 -7-1 , and baking failure occurs when the temperature falls below 65% by weight. If B 2 O 3 exceeds 25% by weight, baking defects will occur, and if it is less than 15% by weight, the weight% of PbO will increase relatively and the coefficient of thermal expansion will exceed 85 × 10 -7 °C -1 , causing cracks. and also the rate of change of resistance value.
It becomes impossible to adjust the amounts of SiO 2 and Al 2 O 3 . If PbO is not in the range of 65 to 75% by weight and B2O3 is not in the range of 15 to 25% by weight , the rate of change in resistance value cannot be adjusted by the amounts of SiO2 and Al2O3 . Cr 2 O 3 is added in an amount of 0 to 5% by weight, and if it exceeds 5% by weight, transparency deteriorates. The coating glass composition of the present invention usually has a thickness of 10 to 50 μm.
It is used with a film thickness of If the film thickness exceeds 50 μm, it will not be possible to see through the protective film, and if the film thickness is less than 10 μm, there will be problems with the strength of the protective film. The coating glass paste of the present invention is printed on a thick film circuit such as RuO 2 or Ag-Pd on a ceramic substrate and baked at 460 to 560°C to form a coating glass film. The average particle size of the powder particles of the powdered glass composition used for this purpose is preferably in the range of 5 to 30 μm in order to form a protective film with a smooth surface. The organic solvent and the organic binder are used to make the glass composition into a paste state, and both of them are scattered during the baking process in the air. Therefore, the organic solvent is not particularly limited as long as it can scatter at a temperature below the baking temperature and does not react with the glass composition, and α-terpineol, butyl carbitol, carbitol acetate, etc. are generally used. Conventionally, cellulose-based resins have been used as organic binders, but if cellulose-based resins are used in large quantities in glass paste, they will cause carbon residue and reduce transparency if the glass has a fusing temperature of 560°C or less. However, it has the disadvantage that it causes a change in color tone and impairs the aesthetic appearance. Furthermore, if the amount of the cellulose resin binder is reduced, the printability of the glass paste and the strength after printing are significantly impaired. Therefore, as a result of examining various binders, we found that acrylic resin binders,
By using an organic vehicle with a mixed binder of acrylic resin and cellulose resin,
It has become possible to form a beautiful glass coating film that is highly transparent and colorless or green. As the acrylic resin binder, polymethyl methacrylate, polyethyl methacrylate, polymethyl acrylate, polyethyl acrylate, etc. can be used. Among these, polymethyl methacrylate, polymethyl acrylate, etc. Esters are preferred. As the cellulose resin binder, methylcellulose, ethylcellulose, nitrocellulose, etc. can be used, and among these, ethylcellulose is preferred. [Description of Example] An example of the present invention will be described below. Example 1 Samples were first prepared using industrial raw materials (purity of 99.9% or higher) such as SiO 2 , B 2 O 3 , PbO, Al 2 O 3 , and Cr 2 O 3
were mixed to have the composition ratio shown in Table 1,
Dry mixing was performed using an alumina pot mill. Put this in a platinum crucible and heat it in an electric furnace for 800~
It was melted at a temperature of 1000°C and then cooled and vitrified. This is crushed with a crusher mill and then crushed with an alumina pot mill to obtain an average particle size of 5 to 30 μm.
Aligned. Next, to 50 g of this glass powder, 10 g of α-terpineol as an organic solvent and 0.4 g each of polymethacrylic acid methyl ester and ethyl cellulose as organic binders were added and mixed in a three-roller mill to form a glass paste. Sample numbers 1 to 16 are examples of the present invention, and sample numbers 17 to 28 are comparative examples.

【表】 熱膨張係数は、ガラスを20mm×30mmφの円柱状
に形成し、熱膨張測定装置により測定した。 添付図面に示したようにアルミナ等のセラミツ
ク基板上に上記のガラスペーストを印刷し、460
〜560℃の範囲まで昇温しながら焼き付けを行な
つた。添付図面はセラミツク基板上にRuO2、Ag
−Pdにて回路形成を行なつた厚膜回路の平面図
で1はセラミツク基板、2はRuO2抵抗体、3は
ガラス被覆部、4はAg−Pd電極部である。 ガラス被膜に亀裂があるか否かは、光学顕微鏡
により、この基板を観察して行なつた。 RuO2抵抗値変化率の測定は、添付図面の回路
の各抵抗を4端子法により測定して、焼き付け前
の抵抗値と焼き付け後の抵抗値との差を、焼き付
け前の抵抗値で割つた値に100を乗じた値(%)
で示した。この値が0.3%以下であれば合格とし
た。 透明性の判断は、この焼き付けを行なつた基板
で、厚膜回路が50μmの厚さの被覆ガラス膜を通
してはつきりと見えるか否かで行なつた。 これらの結果を第2表に示す。第2表中の透明
性の欄で、(−)印のものは、焼き付け不良でガ
ラスが基板上に融着せず、透明性を判定するに値
しないことを意味する。第2表から明らかなよう
に、本発明の実施例である試料番号1〜16は、
460〜560℃の焼き付け温度範囲内で、被覆性も良
好で、焼き付け後の亀裂の発生がなく、透明性も
よく、熱膨張係数も65×10-7〜85×10-7-1の範
囲内にあり、抵抗値変化も少なく、諸特性におい
て優秀な特性を示している。 これに対して、比較例である試料番号17〜26
は、抵抗値の変化率が高いか、亀裂の発生が起こ
るか、若しくは、460〜560℃の焼き付け温度範囲
外で焼き付け不良を起こすかのいずれかの欠点を
有している。また、試料番号27、28の試料では、
被覆ガラス膜の色が濃厚になりすぎて、被覆ガラ
ス膜を通じて基板上の厚膜回路を透視できないと
いう欠点がある。
[Table] The coefficient of thermal expansion was measured by forming glass into a cylinder of 20 mm x 30 mmφ and using a thermal expansion measuring device. As shown in the attached drawing, the above glass paste is printed on a ceramic substrate such as alumina, and
Baking was performed while increasing the temperature to a range of ~560°C. The attached drawing shows RuO 2 and Ag on a ceramic substrate.
- In a plan view of a thick film circuit in which a circuit is formed using Pd, 1 is a ceramic substrate, 2 is a RuO 2 resistor, 3 is a glass covering part, and 4 is an Ag--Pd electrode part. The presence of cracks in the glass coating was determined by observing the substrate using an optical microscope. To measure the RuO 2 resistance value change rate, measure each resistance of the circuit shown in the attached drawing using the four-terminal method, and divide the difference between the resistance value before baking and the resistance value after baking by the resistance value before baking. Value multiplied by 100 (%)
It was shown in If this value was 0.3% or less, it was considered to be a pass. Transparency was judged by whether or not the thick film circuit on the printed board could be clearly seen through the 50 μm thick coated glass film. These results are shown in Table 2. In the transparency column of Table 2, those marked with a (-) mean that the glass was not fused onto the substrate due to poor baking and was not worthy of being judged for transparency. As is clear from Table 2, sample numbers 1 to 16, which are examples of the present invention, are
Within the baking temperature range of 460 to 560℃, it has good coverage, no cracking after baking, good transparency, and a thermal expansion coefficient of 65×10 -7 to 85×10 -7-1. It is within the range, there is little change in resistance value, and it shows excellent characteristics in various characteristics. In contrast, sample numbers 17 to 26, which are comparative examples,
These have the disadvantages of either a high rate of change in resistance, cracking, or baking failure outside the baking temperature range of 460 to 560°C. In addition, for sample numbers 27 and 28,
The drawback is that the color of the coated glass film becomes too deep, making it impossible to see through the thick film circuitry on the substrate through the coated glass film.

【表】 実施例 2 本発明の被覆用ガラスペーストに用いる有機結
合剤について検討した。実験条件は有機結合剤の
種類を除いて実施例1と同様である。セルロース
系樹脂としてエチルセルロースを用い、アクリル
系樹脂としてポリメタクリル酸メチルエステルを
用いて実験を行なつた。 その結果セルロース系樹脂の一部または全部を
アクリル系樹脂に代えることにより、これらを飛
散させるための保持時間を低減させることが可能
となり、また、残炭を起こさないで透明なガラス
被膜を形成することが可能となつた。 アクリル系樹脂とセルロース系樹脂との混合結
合剤を用いた場合は、セルロース系樹脂の重量を
アクリル系樹脂の重量の1.2倍以下にする必要が
あり、これ以上にセルロース系樹脂量を増やす
と、焼き付け時に、セルロース系樹脂を飛散させ
るため300〜400℃付近にて2時間以上の保持時間
が必要である。これでは、短時間に焼き付けを完
了させることが不可能であり、この飛散のための
保持時間を怠ると残炭を起こし、色調の変化を起
こすと共に透明性が著しく低減した。しかし、セ
ルロース系樹脂とアクリル系樹脂の重量の比を
1.2倍以下にすると、昇温、焼き付け、冷却の時
間を1時間以下で済ませることが可能となつた。
また、アクリル系樹脂のみの場合は約30分でこの
操作が完了した。 なお、これらの実施例では、B2O3を得る原料
として、無水ホウ酸を用いたが、H3BO3でも良
く、また、PbOの代用としてPb3O4でもよく、そ
の他の原料も、ガラスとして溶解する時に、酸化
して上記のSiO2、B2O3、PbO、Al2O3、Cr2O3
なるようなシユウ酸塩、炭酸塩、硝酸塩等のもの
であつても良好な特性ならびに結果が得られた。 [発明の効果] 以上のように、本発明の被覆用ガラス及びガラ
スペーストを用いれば、RuO2抵抗体を含む厚膜
回路の被覆保護が、RuO2抵抗体の抵抗値の補正
もせずに可能になるので、回路の集積度を向上さ
せたこの種の厚膜回路の信頼性が維持、保障さ
れ、電子回路の小型化が促進されることとなり、
産業上、特に電子回路の分野で裨益するところ多
大である。
[Table] Example 2 The organic binder used in the coating glass paste of the present invention was studied. The experimental conditions were the same as in Example 1 except for the type of organic binder. Experiments were conducted using ethyl cellulose as the cellulose resin and polymethacrylic acid methyl ester as the acrylic resin. As a result, by replacing part or all of the cellulose resin with acrylic resin, it is possible to reduce the holding time for these resins to scatter, and it is also possible to form a transparent glass film without causing residual carbon. It became possible. When using a mixed binder of acrylic resin and cellulose resin, the weight of the cellulose resin must be 1.2 times or less than the weight of the acrylic resin, and if the amount of cellulose resin is increased beyond this, During baking, a holding time of 2 hours or more is required at around 300 to 400°C to scatter the cellulose resin. In this case, it was impossible to complete baking in a short time, and if the holding time for this scattering was not maintained, residual charcoal was formed, causing a change in color tone and a marked reduction in transparency. However, the weight ratio of cellulose resin and acrylic resin
By reducing the temperature to 1.2 times or less, it became possible to complete the heating, baking, and cooling times in less than one hour.
In addition, when using only acrylic resin, this operation was completed in about 30 minutes. In addition, in these Examples, boric anhydride was used as a raw material for obtaining B 2 O 3 , but H 3 BO 3 may also be used, Pb 3 O 4 may be used as a substitute for PbO, and other raw materials may also be used. Even oxalates, carbonates, nitrates, etc. that oxidize to form the above-mentioned SiO 2 , B 2 O 3 , PbO, Al 2 O 3 , Cr 2 O 3 when melted as glass are acceptable. The characteristics and results were obtained. [Effects of the Invention] As described above, by using the coating glass and glass paste of the present invention, it is possible to protect the coating of a thick film circuit containing a RuO 2 resistor without having to correct the resistance value of the RuO 2 resistor. Therefore, the reliability of this type of thick film circuit with improved circuit integration is maintained and guaranteed, and the miniaturization of electronic circuits is promoted.
There are many industrial benefits, especially in the field of electronic circuits.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図面はセラミツク基板上にRuO2、Ag−
Pdにて回路形成を行なつた厚膜回路の平面図で
ある。 1……セラミツク基板、2……RuO2抵抗体、
3……ガラス被覆部、4……Ag−Pd電極部。
The attached drawing shows RuO 2 and Ag− on a ceramic substrate.
FIG. 2 is a plan view of a thick film circuit in which a circuit is formed using Pd. 1... Ceramic substrate, 2... RuO 2 resistor,
3...Glass covering part, 4...Ag-Pd electrode part.

Claims (1)

【特許請求の範囲】 1 SiO2を3〜7重量%、B2O3を15〜25重量%、
PbOを65〜75重量%、Al2O3を3〜8重量%、
Cr2O3を5重量%以下含む組成よりなる被覆用ガ
ラス組成物。 2 SiO2を3〜7重量%、B2O3を15〜25重量%、
PbOを65〜75重量%、Al2O3を3〜8重量%、
Cr2O3を5重量%以下含む組成よりなる粉末状ガ
ラス組成物を、有機溶剤と有機結合剤にて練り合
わせてなる被覆用ガラスペースト。 3 前記粉末状ガラス組成物の平均粒径が、5〜
30μmである特許請求の範囲第2項に記載の被覆
用ガラスペースト。 4 前記有機結合剤が、アクリル系樹脂のみ、ま
たは、アクリル系樹脂とセルロース系樹脂との混
合結合剤である特許請求の範囲第2項に記載の被
覆用ガラスペースト。
[Claims] 1 3 to 7% by weight of SiO 2 , 15 to 25% by weight of B 2 O 3 ,
65-75% by weight of PbO, 3-8% by weight of Al 2 O 3 ,
A coating glass composition comprising 5% by weight or less of Cr 2 O 3 . 2 3 to 7% by weight of SiO2 , 15 to 25% by weight of B2O3 ,
65-75% by weight of PbO, 3-8% by weight of Al 2 O 3 ,
A coating glass paste made by kneading a powdered glass composition containing 5% by weight or less of Cr 2 O 3 with an organic solvent and an organic binder. 3 The average particle size of the powdered glass composition is 5 to 5.
The glass paste for coating according to claim 2, which has a thickness of 30 μm. 4. The glass paste for coating according to claim 2, wherein the organic binder is an acrylic resin alone or a mixed binder of an acrylic resin and a cellulose resin.
JP6826783A 1983-04-20 1983-04-20 Glass composition for coating and glass paste for coating Granted JPS59195552A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6826783A JPS59195552A (en) 1983-04-20 1983-04-20 Glass composition for coating and glass paste for coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6826783A JPS59195552A (en) 1983-04-20 1983-04-20 Glass composition for coating and glass paste for coating

Publications (2)

Publication Number Publication Date
JPS59195552A JPS59195552A (en) 1984-11-06
JPS6310104B2 true JPS6310104B2 (en) 1988-03-03

Family

ID=13368799

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6826783A Granted JPS59195552A (en) 1983-04-20 1983-04-20 Glass composition for coating and glass paste for coating

Country Status (1)

Country Link
JP (1) JPS59195552A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61227940A (en) * 1985-03-29 1986-10-11 Sumitomo Metal Mining Co Ltd Glass paste
US4717690A (en) * 1986-02-12 1988-01-05 Heraeus, Inc. Cermalloy Division Overglaze inks
US5224001A (en) * 1989-11-29 1993-06-29 Matsushita Electric Industrial Co., Ltd. Magnetic head
JP5404470B2 (en) * 2010-02-25 2014-01-29 京セラ株式会社 Glass ceramic wiring board
JP2013189372A (en) * 2013-04-23 2013-09-26 Central Glass Co Ltd Conductive paste material
CN109093289A (en) * 2018-10-11 2018-12-28 南京恩瑞科技有限公司 A kind of cryogenic vacuum sealing-in solder and preparation method thereof

Also Published As

Publication number Publication date
JPS59195552A (en) 1984-11-06

Similar Documents

Publication Publication Date Title
US5051381A (en) Powdery coating glass material, coating glass paste using the same and coating glass composition prepared thereby
JP5406277B2 (en) Resistor composition using Cu-containing glass frit
JPS6339082B2 (en)
US4209764A (en) Resistor material, resistor made therefrom and method of making the same
JPH10224004A (en) Thick film resistor paste
US4397915A (en) Electrical resistor material, resistor made therefrom and method of making the same
JPS6038802B2 (en) Electrical resistors and their manufacture
US4322477A (en) Electrical resistor material, resistor made therefrom and method of making the same
US5534194A (en) Thick film resistor composition containing pyrochlore and silver-containing binder
JPS60155544A (en) Borosilicate glass composition
JPS6310104B2 (en)
JPH05186242A (en) Mounting medium composition
US4205298A (en) Resistor material, resistor made therefrom and method of making the same
JPH05116984A (en) Capsulating material composition
US4137519A (en) Resistor material, resistor made therefrom and method of making the same
JPS5931841B2 (en) Resistance materials and resistors made from them
JPH0225241B2 (en)
KR0166446B1 (en) Insulation paste paste containing glass
JP2986539B2 (en) Thick film resistor composition
JPH0277485A (en) Encapsulating composition
JP2001322831A (en) Over-coat glass and thick film printed circuit board
JPS6054721B2 (en) Paste composition for forming insulators
JP3042180B2 (en) Thick film resistor and method of manufacturing the same
KR100284785B1 (en) Memory data processing system and method and communication system having system
JPS63245809A (en) Finely crushed particle and thick film electronic material composition