WO2023100762A1 - 転動部品及び転がり軸受 - Google Patents

転動部品及び転がり軸受 Download PDF

Info

Publication number
WO2023100762A1
WO2023100762A1 PCT/JP2022/043531 JP2022043531W WO2023100762A1 WO 2023100762 A1 WO2023100762 A1 WO 2023100762A1 JP 2022043531 W JP2022043531 W JP 2022043531W WO 2023100762 A1 WO2023100762 A1 WO 2023100762A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling
mass
steel
less
rolling bearing
Prior art date
Application number
PCT/JP2022/043531
Other languages
English (en)
French (fr)
Inventor
昌弘 山田
美有 佐藤
力 大木
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021194245A external-priority patent/JP2023080744A/ja
Priority claimed from JP2021194251A external-priority patent/JP2023080749A/ja
Priority claimed from JP2021194688A external-priority patent/JP2023081036A/ja
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Priority to EP22901195.2A priority Critical patent/EP4428261A1/en
Priority to CN202280077955.XA priority patent/CN118339321A/zh
Publication of WO2023100762A1 publication Critical patent/WO2023100762A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • C21D1/25Hardening, combined with annealing between 300 degrees Celsius and 600 degrees Celsius, i.e. heat refining ("Vergüten")
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/32Balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/62Selection of substances
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/58Raceways; Race rings
    • F16C33/64Special methods of manufacture
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/40Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for rings; for bearing races
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2202/00Solid materials defined by their properties
    • F16C2202/02Mechanical properties
    • F16C2202/04Hardness
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2204/00Metallic materials; Alloys
    • F16C2204/60Ferrous alloys, e.g. steel alloys
    • F16C2204/70Ferrous alloys, e.g. steel alloys with chromium as the next major constituent

Definitions

  • the present invention relates to rolling parts and rolling bearings. More particularly, the present invention relates to rolling components and rolling bearings for hydrogen-utilizing equipment.
  • Patent Document 1 Patent No. 3990212 describes a rolling component.
  • the rolling parts described in Patent Literature 1 are made of SUJ2, which is high carbon chromium bearing steel specified in JIS standards.
  • the bearing component described in Patent Document 1 is formed by performing nitriding treatment, quenching and tempering.
  • Patent Document 1 when the rolling component described in Patent Document 1 is used in a hydrogen-utilizing device, that is, in an environment exposed to hydrogen, there is a risk that early flaking may occur on the contact surface due to hydrogen embrittlement. be. In addition, the rolling component described in Patent Document 1 may have insufficient indentation forming ability.
  • the present invention has been made in view of the problems of the prior art as described above. More specifically, the present invention provides a rolling component for hydrogen-utilizing equipment, which can suppress the occurrence of hydrogen embrittlement due to penetration of hydrogen from the surface, and has improved indentation forming ability.
  • the rolling part according to the present invention has a surface and is made of steel. It has a surface layer portion which is a region with a depth of up to 20 ⁇ m from the surface.
  • the rolling parts are for hydrogen utilization equipment.
  • the steel contains 0.70 to 1.10 mass percent carbon, 0.15 to 0.35 mass percent silicon, and 0.30 to 0.60 mass percent manganese. , 1.30% by mass or more and 1.60% by mass or less of chromium. Precipitates containing chromium or vanadium as a main component are deposited in the steel in the surface layer portion. Compressive residual stress at a distance of 50 ⁇ m from the surface is 80 MPa or more.
  • the steel may further contain 0.01 mass percent or more and 0.50 mass percent or less of vanadium and 0.01 mass percent or more and 0.5 mass percent or more of molybdenum.
  • the steel contains 0.90 mass percent or more and 1.10 mass percent or less carbon, 0.20 mass percent or more and 0.30 mass percent or less silicon, and 0.40 mass percent or more and 0.40 mass percent or more. 50 mass percent or less manganese, 1.40 mass percent or more and 1.60 mass percent or less chromium, 0.10 mass percent or more and 0.30 mass percent or less molybdenum, and 0.20 mass percent or more and 0.30 mass percent percent or less of vanadium, with the balance being iron and incidental impurities.
  • the maximum grain size of precipitates may be 2.0 ⁇ m or less.
  • the precipitates may have an average area ratio of 1.0 percent or more.
  • the hardness of the steel at a distance of 50 ⁇ m from the surface may be 64 HRC or more.
  • the amount of retained austenite in the steel at a distance of 50 ⁇ m from the surface may be less than 25 volume percent.
  • the nitrogen concentration in the steel in the surface layer portion may be 0.2% by mass or more.
  • the average grain size of the martensite block grains at the top area ratio of 50% in steel in the surface layer portion is 1.5 ⁇ m or less.
  • a rolling bearing according to the present invention includes an inner ring, an outer ring, and rolling elements. At least one of the inner ring, the outer ring and the rolling elements is the above rolling component. Rolling bearings are for hydrogen utilization equipment.
  • the rolling part and the rolling bearing of the present invention it is possible to suppress the occurrence of hydrogen embrittlement caused by hydrogen penetration from the surface, and to improve the indentation formation ability.
  • FIG. 1 is a cross-sectional view of a rolling bearing 100
  • FIG. 4 is an enlarged cross-sectional view of the ball valve 200
  • FIG. 3 is a cross-sectional view of the hydrogen circulation pump 300
  • FIG. 3A to 3C are process diagrams showing a method of manufacturing the rolling bearing 100
  • It is process drawing which shows the modification of the manufacturing method of the rolling bearing 100.
  • FIG. 2 is a phase map by EBSD of a cross section near the raceway plane of Sample 1.
  • FIG. FIG. 4 is a phase map by EBSD of a cross section in the vicinity of the raceway plane of Sample 2.
  • FIG. FIG. 4 is a phase map by EBSD of a cross section near the raceway plane of Sample 3.
  • FIG. 4 is a phase map by EBSD of a cross section in the vicinity of the raceway plane of Sample 4.
  • FIG. 4 is a graph showing the average grain size of martensite block grains in steel in a region up to 20 ⁇ m deep from the raceway surface of Samples 1 to 4.
  • FIG. It is a sectional view of rolling bearing 100A. It is a sectional view of rolling bearing 100B. It is process drawing which shows the manufacturing method of the rolling bearing 100B.
  • 10 is a graph showing the distribution of carbon and nitrogen content in the surface layer portions of the inner ring and outer ring of Sample 5.
  • FIG. 5 shows representative cross-sectional FE-SEM images of the surface layers of the inner and outer rings of Sample 5.
  • FIG. 5 shows representative cross-sectional FE-SEM images of the surface layers of the inner and outer rings of Sample 5.
  • a rolling bearing according to the first embodiment will be described.
  • the rolling bearing according to the first embodiment is referred to as rolling bearing 100 .
  • the rolling bearing 100 is, for example, a deep groove ball bearing. However, the rolling bearing 100 is not limited to this. Rolling bearing 100 may be, for example, an angular ball bearing, a cylindrical roller bearing, a tapered roller bearing or a self-aligning roller bearing.
  • the rolling bearing 100 is for hydrogen utilization equipment.
  • Hydrogen utilization equipment is, for example, a ball valve or a compressor for a hydrogen station.
  • the system of the compressor is not particularly limited.
  • the compressor may be reciprocating (reciprocating), rotary (screw), centrifugal or axial.
  • the hydrogen utilization device may be a high-pressure hydrogen pressure reducing valve or a hydrogen circulation pump for fuel cell vehicles.
  • the rolling bearing 100 may be used for applications exposed to hydrogen.
  • FIG. 1 is a cross-sectional view of the rolling bearing 100.
  • the rolling bearing 100 has a central axis A as shown in FIG. FIG. 1 shows a section parallel to and passing through central axis A.
  • FIG. A rolling bearing 100 has an inner ring 10 , an outer ring 20 , a plurality of rolling elements 30 and a retainer 40 .
  • the inner ring 10 and the outer ring 20 are ring-shaped.
  • the rolling elements 30 are balls (spherical).
  • the direction along the central axis A be the axial direction.
  • a direction passing through the central axis A and orthogonal to the central axis A is defined as a radial direction.
  • a direction along the circumference centered on the central axis A is defined as a circumferential direction.
  • the inner ring 10 has a first end face 10a, a second end face 10b, an inner peripheral face 10c, and an outer peripheral face 10d.
  • the first end surface 10a, the second end surface 10b, the inner peripheral surface 10c, and the outer peripheral surface 10d form the surface of the inner ring 10.
  • the first end face 10a and the second end face 10b are end faces of the inner ring 10 in the axial direction.
  • the second end surface 10b is the opposite surface of the first end surface 10a.
  • the inner peripheral surface 10c extends along the circumferential direction.
  • the inner peripheral surface 10c faces the central axis A side.
  • the inner ring 10 is fitted to the shaft at the inner peripheral surface 10c.
  • the inner peripheral surface 10c continues to the first end surface 10a at one end in the axial direction, and continues to the second end surface 10b at the other end in the axial direction.
  • the outer peripheral surface 10d extends along the circumferential direction. 10 d of outer peripheral surfaces face the side opposite to the central axis A. As shown in FIG. That is, the outer peripheral surface 10d is the opposite surface of the inner peripheral surface 10c in the radial direction. The outer peripheral surface 10d continues to the first end surface 10a at one end in the axial direction, and continues to the second end surface 10b at the other end in the axial direction.
  • the outer peripheral surface 10d has a raceway surface 10da.
  • the raceway surface 10da is a portion of the outer peripheral surface 10d that contacts the rolling elements 30. As shown in FIG.
  • the raceway surface 10da extends along the circumferential direction.
  • the raceway surface 10da is located in the central portion of the outer peripheral surface 10d in the axial direction. In a cross-sectional view, the raceway surface 10da has a partial arc shape recessed toward the inner peripheral surface 10c.
  • the outer ring 20 has a first end face 20a, a second end face 20b, an inner peripheral face 20c, and an outer peripheral face 20d.
  • the first end surface 20a, the second end surface 20b, the inner peripheral surface 20c, and the outer peripheral surface 20d form the surface of the outer ring 20.
  • the outer ring 20 is disposed radially outward of the inner ring 10 with the inner peripheral surface 20c facing the outer peripheral surface 10d with a gap therebetween.
  • the first end surface 20a and the second end surface 20b are end surfaces of the outer ring 20 in the axial direction.
  • the second end surface 20b is the opposite surface of the first end surface 20a.
  • the inner peripheral surface 20c extends along the circumferential direction.
  • the inner peripheral surface 20c faces the central axis A side.
  • the inner peripheral surface 20c continues to the first end surface 20a at one end in the axial direction, and continues to the second end surface 20b at the other end in the axial direction.
  • the inner peripheral surface 20c has a raceway surface 20ca.
  • the raceway surface 20ca is the portion of the inner peripheral surface 20c that contacts the rolling elements 30 .
  • the raceway surface 20ca extends along the circumferential direction.
  • the raceway surface 20ca is located in the central portion of the inner peripheral surface 20c in the axial direction. In a cross-sectional view, the raceway surface 20ca has a partial arc shape recessed toward the outer peripheral surface 20d.
  • the outer peripheral surface 20d extends along the circumferential direction. 20 d of outer peripheral surfaces face the side opposite to the central axis A. As shown in FIG. That is, the outer peripheral surface 20d is the opposite surface of the inner peripheral surface 20c in the radial direction. Although not shown, the outer ring 20 is fitted to the housing at the outer peripheral surface 20d. The outer peripheral surface 20d continues to the first end face 20a at one end in the axial direction, and continues to the second end face 20b at the other end in the axial direction.
  • the rolling elements 30 are arranged between the outer peripheral surface 10d and the inner peripheral surface 20c, more specifically, between the raceway surface 10da and the raceway surface 20ca.
  • the multiple rolling elements 30 are arranged along the circumferential direction.
  • the rolling element 30 has a surface 30a.
  • the cage 40 holds a plurality of rolling elements 30 .
  • the retainer 40 holds the plurality of rolling elements 30 such that the distance between two adjacent rolling elements 30 in the circumferential direction is within a certain range.
  • the inner ring 10, outer ring 20 and rolling elements 30 are made of steel. More specifically, the inner ring 10, the outer ring 20 and the rolling elements 30 are made of steel having a composition shown in Table 1 (referred to as "first composition").
  • Silicon is added to ensure workability before deoxidizing and nitriding during steel refining. If the silicon content in the steel is less than 0.15 mass percent, the temper softening resistance will be insufficient. As a result, due to tempering after quenching or temperature rise during use of the rolling bearing 100, there is a possibility that the surface hardness of the rolling parts may be reduced. Moreover, in this case, workability becomes insufficient when processing the rolling parts.
  • the content of silicon is 0.15% by mass or more and 0.35% by mass or less.
  • Manganese is added to ensure the hardenability and hardness of the steel. If the manganese content in the steel is less than 0.30% by mass, it is difficult to ensure the hardenability of the steel. If the manganese content in the steel exceeds 0.60% by mass, manganese-based nonmetallic inclusions, which are impurities, increase. Therefore, the steel of the first composition has a manganese content of 0.30% by mass or more and 0.60% by mass or less.
  • Chromium is added to ensure the hardenability of steel and to form fine precipitates (nitrides, carbonitrides) with nitriding. If the content of chromium in the steel is less than 1.30% by mass, it is difficult to ensure the hardenability of the steel and sufficiently form fine precipitates. When the content of chromium in steel exceeds 1.60% by mass, the material cost of steel increases. Therefore, in the steel of the first composition, the content of chromium is 1.30% by mass or more and 1.60% by mass or less.
  • Molybdenum is added to ensure the hardenability of steel and to form fine precipitates with nitriding. Since molybdenum has a strong affinity for carbon, it precipitates as undissolved carbide in steel during nitriding treatment. Since this undissolved carbide of molybdenum becomes a precipitation nucleus during quenching, molybdenum increases the amount of precipitates after quenching.
  • the content of molybdenum in the steel is less than 0.01% by mass, it is difficult to ensure the hardenability of the steel and sufficiently form fine precipitates.
  • the content of molybdenum in steel exceeds 0.50% by mass, the material cost of steel increases. Therefore, in the steel of the first composition, the content of molybdenum is 0.01% by mass or more and 0.50% by mass or less.
  • Vanadium is added to ensure the hardenability of steel and to form fine precipitates with nitriding. If the vanadium content in the steel is less than 0.01% by mass, it is difficult to ensure the hardenability of the steel and sufficiently form fine precipitates. When the content of vanadium in steel exceeds 0.50% by mass, the material cost of steel increases. Therefore, in the steel of the first composition, the vanadium content is 0.01% by mass or more and 0.50% by mass or less.
  • the inner ring 10, outer ring 20 and rolling elements 30 may be made of steel having the composition shown in Table 2 (referred to as "second composition”).
  • the inner ring 10, the outer ring 20 and the rolling elements 30 may be made of steel having a composition shown in Table 3 (referred to as “third composition”).
  • the inner ring 10, the outer ring 20, and the rolling elements 30 are made of steel of the first composition or the second composition, precipitates are dispersed more finely in the steel of the surface layer portion 50, which will be described later.
  • all of the inner ring 10, the outer ring 20 and the rolling elements 30 need not be made of steel of the first composition, the second composition or the third composition. It may be formed of steel of the first composition, the second composition, or the third composition.
  • the inner ring 10, the outer ring 20 and the rolling elements 30 have a surface layer portion 50.
  • the surface layer portion 50 is a region up to 20 ⁇ m deep from the surface of the inner ring 10 .
  • the surface layer portion 50 is a region up to 20 ⁇ m deep from the surface of the outer ring 20 .
  • the surface layer portion 50 is a region having a depth of up to 20 ⁇ m from the surface 30a.
  • the surface layer portion 50 is formed by nitriding treatment.
  • the inner ring 10 may have the surface layer portion 50 formed at least on the raceway surface 10da
  • the outer ring 20 may have the surface layer portion 50 formed on the raceway surface 20ca.
  • Precipitates are deposited in the steel in the surface layer portion 50 .
  • the precipitate is mainly composed of chromium or vanadium.
  • the precipitates are nitrides based on chromium or vanadium.
  • the precipitates may be carbonitrides based on chromium or vanadium.
  • the precipitates may be a mixture of the above nitrides and carbonitrides.
  • the surface layer portion 50 does not need to be formed on all of the surfaces of the inner ring 10, the outer ring 20 and the rolling elements 30, and at least the surfaces of the inner ring 10, the outer ring 20 and the rolling elements 30 Any one of them may be formed.
  • Chromium (vanadium) nitrides are nitrides of chromium (vanadium) or those in which some of the chromium (vanadium) sites in the nitrides are replaced by alloying elements other than chromium (vanadium). is.
  • a carbonitride containing chromium (vanadium) as a main component is obtained by substituting part of the carbon sites in the chromium (vanadium) carbide with nitrogen.
  • the chromium (vanadium) sites of the carbonitride containing chromium (vanadium) as a main component may be substituted with an alloying element other than chromium (vanadium).
  • Compressive residual stress at the position where the depth from the surface of the inner ring 10 is 50 ⁇ m, the position where the depth from the surface of the outer ring 20 is 50 ⁇ m, and the position where the depth from the surface of the rolling element 30 (surface 30a) is 50 ⁇ m is 80 MPa or more.
  • the compressive residual stress at the position where the depth from the surface of the inner ring 10 is 50 ⁇ m and the position where the depth from the surface of the outer ring 20 is 50 ⁇ m are measured, for example, in the circumferential direction.
  • the above compressive residual stress is measured by an X-ray diffraction method.
  • the maximum grain size of precipitates is preferably 2.0 ⁇ m or less.
  • the average area ratio of precipitates is preferably 1.0 percent or more. When the maximum grain size of the precipitates is 2.0 ⁇ m or less and the average area ratio of the precipitates is 1.0% or more, fine dispersion of the precipitates causes the surface of the inner ring 10, the surface of the outer ring 20, and the rolling Wear resistance on the surface of the moving body 30 is improved.
  • the maximum grain size of precipitates is more preferably 1.0 ⁇ m or less.
  • the average area ratio of precipitates is more preferably 2.0 percent or more.
  • the average area ratio of precipitates is obtained by acquiring a cross-sectional image of the surface layer 50 at a magnification of 5000 using a field emission scanning electron microscope (FE-SEM) and binarizing the cross-sectional image. , is calculated by performing image processing on the binarized cross-sectional image.
  • Cross-sectional images of the surface layer portion 50 are acquired in three or more fields of view, and the average area ratio is the average value of the area ratios of precipitates obtained from the plurality of cross-sectional images.
  • the grain size of each precipitate is obtained by obtaining the area of each precipitate using the same method as above and multiplying the square root of the value obtained by dividing the area by ⁇ by 2. Then, the maximum grain size of the obtained precipitates is taken as the maximum grain size of the precipitates.
  • the nitrogen concentration in the steel in the surface layer portion 50 is preferably 0.2% by mass or more.
  • the nitrogen concentration in the steel in the surface layer portion 50 is measured by an electron probe microanalyzer (EPMA).
  • EPMA electron probe microanalyzer
  • the nitrogen concentration in the steel in the surface layer portion 50 is, for example, 0.5% by mass or less.
  • the thickness is preferably 64 HRC or more.
  • the hardness is measured by the Rockwell hardness test method specified in the JIS standard (JIS Z 2245:2016).
  • the steel in the surface layer portion 50 has martensite block grains.
  • Two adjacent martensite block grains have a crystal orientation difference of 15° or more at the grain boundary. From another point of view, even if there is a location with a deviation in crystal orientation, if the difference in crystal orientation is less than 15°, the location is different from the grain boundary of the martensite block grain. not considered.
  • Grain boundaries of martensite block grains are determined by an EBSD (Electron Back Scattered Diffraction) method.
  • the steel in the surface layer portion 50 preferably has an average grain size of 1.5 ⁇ m or less for martensite block grains with an upper area ratio of 50%.
  • the steel of the surface layer portion 50 when the martensite block grains are refined so that the average grain size at the upper area ratio of 50% is 1.5 ⁇ m or less, by increasing the toughness of the surface layer portion 50, Shear resistance near the surfaces of the inner ring 10, outer ring 20 and rolling elements 30 is improved.
  • the average grain size of martensite block grains with an upper area ratio of 50% is measured by the following method.
  • martensite block grains included in the observation field are specified by the EBSD method.
  • This observation field of view is an area observed at a magnification of 1500 times.
  • Second, the area of each martensite block grain included in the observation field is analyzed from the crystal orientation data obtained by the EBSD method.
  • each martensite block grain included in the observation field is added in descending order of area. This addition is performed until 50 percent of the total area of martensite block grains contained in the field of view is reached.
  • the equivalent circle diameter is calculated for each of the martensite block grains subjected to the above addition. This equivalent circle diameter is the square root of the value obtained by dividing the area of martensite block grains by ⁇ /4.
  • the average value of the circle-equivalent diameters of the martensite block grains subjected to the above addition is regarded as the average grain size of the martensite block grains with an upper area ratio of 50%.
  • Amount of retained austenite in steel at a depth of 50 ⁇ m from the surface of the inner ring 10, a depth of 50 ⁇ m from the surface of the outer ring 20, and a depth of 50 ⁇ m from the surface of the rolling element 30 (surface 30a) is preferably less than 25 volume percent. In this case, changes over time in the dimensions of the inner ring 10, the outer ring 20, and the rolling elements 30 due to the decomposition of retained austenite are suppressed.
  • Amount of retained austenite in steel at a depth of 50 ⁇ m from the surface of the inner ring 10, a depth of 50 ⁇ m from the surface of the outer ring 20, and a depth of 50 ⁇ m from the surface of the rolling element 30 (surface 30a) is more preferably less than 20 volume percent.
  • Amount of retained austenite in steel at a depth of 50 ⁇ m from the surface of the inner ring 10, a depth of 50 ⁇ m from the surface of the outer ring 20, and a depth of 50 ⁇ m from the surface of the rolling element 30 (surface 30a) is measured by X-ray diffractometry. More specifically, at a position at a depth of 50 ⁇ m from the surface of the inner ring 10, at a position at a depth of 50 ⁇ m from the surface of the outer ring 20, and at a position at a depth of 50 ⁇ m from the surface of the rolling element 30 (surface 30a).
  • the amount of retained austenite in steel is measured using MSF-3M manufactured by Rigaku Corporation.
  • the rolling member according to the first embodiment may be a slide bearing.
  • FIG. 2 is an enlarged cross-sectional view of the ball valve 200.
  • the ball valve 200 has a body 210 , a seat retainer 220 , a ball 230 , stems 231 and 232 and a slide bearing 240 .
  • the seat retainer 220 is arranged inside the body 210 .
  • the seat retainer 220 is formed with an internal space 220a and flow paths 220b and 220c.
  • the channel 220b and the channel 220c are connected to the internal space 220a.
  • the ball 230 is arranged in the internal space 220a.
  • the wall surface of the internal space 220a is in contact with the surface of the ball 230 at the sealing portion 220aa.
  • the stems 231 and 232 are connected to the upper and lower ends of the ball 230, respectively. By rotating the stems 231 and 232 around the central axis, the flow paths 220 b and 220 c are connected via a through hole (not shown) formed in the ball 230 .
  • the stems 231 and 232 are passed through through holes formed in the body 210 and seat retainer 220 . Hydrogen flows through the through holes formed in the flow paths 220 b , 220 c and the balls 230 .
  • the slide bearing 240 has a cylindrical shape and is attached to the body 210 on its outer peripheral surface.
  • the slide bearing 240 rotatably supports the stem 231 (stem 232).
  • the slide bearing 240 is a rolling member according to the first embodiment. From another point of view, the slide bearing 240 is made of steel of the first composition, the second composition, or the third composition, and the surface layer portion 50 is formed on the contact surface.
  • FIG. 3 is a cross-sectional view of the hydrogen circulation pump 300.
  • the hydrogen circulation pump 300 includes a motor housing 310, a pump housing 320, a rotating shaft 331 and a rotating shaft 332, a motor stator 341 and a motor rotor 342, a gear 351 and a gear 352, a rotor 361 and a rotor 362, and a rolling bearing 371.
  • a rolling bearing 372 a rolling bearing 373 , a rolling bearing 374 , a rolling bearing 375 and a rolling bearing 376 .
  • the motor housing 310 is attached to the pump housing 320 .
  • One end of the rotating shaft 331 is arranged inside the motor housing 310
  • the other end of the rotating shaft 331 is arranged inside the pump housing 320 .
  • One end and the other end of the rotary shaft 331 are rotatably supported by a rolling bearing 371 arranged in the motor housing 310 and a rolling bearing 372 arranged in the pump housing 320, respectively.
  • Rotating shaft 331 is rotatably supported between one end and the other end by rolling bearings 373 and 374 arranged in pump housing 320 .
  • the rotary shaft 332 is arranged inside the pump housing 320 .
  • One end of the rotating shaft 332 is rotatably supported by a rolling bearing 375 arranged inside the pump housing 320 .
  • Rotating shaft 332 is rotatably supported by rolling bearing 376 arranged in pump housing 320 at a position away from one end.
  • the motor stator 341 is arranged inside the motor housing 310 .
  • the motor rotor 342 is attached to the rotating shaft 331 so as to face the motor stator 341 .
  • the rotating shaft 331 is rotated by the motor stator 341 and the motor rotor 342 .
  • Gears 351 and 352 are attached to the rotating shafts 331 and 332, respectively. Rotation of the rotating shaft 331 is transmitted to the rotating shaft 332 by the gears 351 and 352 .
  • Gear 351 is between rolling bearing 373 and rolling bearing 374
  • gear 352 is between rolling bearing 375 and rolling bearing 376 .
  • a pump chamber 320 a is formed in the pump housing 320 .
  • a rotor 361 and a rotor 362 are arranged in the pump chamber 320a.
  • the rotors 361 and 362 are attached to the rotating shafts 331 and 332, respectively.
  • the rotor 361 rotates with the rotation of the rotary shaft 331, and the rotor 362 rotates with the rotation of the rotary shaft 332, whereby hydrogen is sucked into the pump chamber 320a and discharged from the pump chamber 320a. be.
  • Rolling bearing 371, rolling bearing 372, rolling bearing 373 and rolling bearing 375 are deep groove ball bearings. Rolling bearing 374 and rolling bearing 375 are double row angular contact ball bearings.
  • a rolling bearing 371, a rolling bearing 372, a rolling bearing 373, a rolling bearing 374, a rolling bearing 375, and a rolling bearing 376 are rolling bearings according to the first embodiment. That is, in the rolling bearing 371, the rolling bearing 372, the rolling bearing 373, the rolling bearing 374, the rolling bearing 375, and the rolling bearing 376, the race members and rolling elements are made of steel of the first composition, the second composition, or the third composition, A surface layer portion 50 is formed on the contact surface.
  • FIG. 4 is a process diagram showing a method of manufacturing the rolling bearing 100.
  • the method of manufacturing the rolling bearing 100 includes a preparation step S1, a nitriding treatment step S2, a first hardening step S3, a first tempering step S4, a second hardening step S5, and a second hardening step S5. 2 It has a tempering process S6, a post-treatment process S7, and an assembly process S8.
  • the method for manufacturing the rolling bearing 100 may not include the first tempering step S4 and the second hardening step S5.
  • a member to be processed is prepared.
  • the members to be processed ring-shaped members are prepared when the inner ring 10 and the outer ring 20 are to be formed, and spherical members are prepared when the rolling elements 30 are to be formed.
  • the member to be processed is made of steel of the first composition or the second composition.
  • the surface of the member to be processed is subjected to nitriding treatment.
  • This nitriding treatment is performed by holding the member to be processed at a temperature equal to or higher than the A1 transformation point for a predetermined period of time in an atmospheric gas containing a nitrogen source gas (for example, ammonia gas).
  • a nitrogen source gas for example, ammonia gas
  • the member to be processed is quenched. This quenching is performed by holding the member to be processed at a temperature equal to or higher than the A1 transformation point for a predetermined time and then cooling the member to be processed to a temperature equal to or lower than the Ms transformation point.
  • the member to be processed is tempered. This tempering is performed by holding the workpiece at a temperature below the A1 transformation point for a predetermined period of time.
  • step S5 hardening is performed on the member to be processed. This quenching is performed by holding the member to be processed at a temperature equal to or higher than the A1 transformation point for a predetermined time and then cooling the member to be processed to a temperature equal to or lower than the Ms transformation point.
  • the member to be processed is tempered. This tempering is performed by heating and holding the workpiece at a temperature below the A1 transformation point for a predetermined period of time.
  • the post-processing step S7 finishing (grinding/polishing) and cleaning of the member to be processed are performed. Thereby, the inner ring 10, the outer ring 20 and the rolling elements 30 are formed.
  • the assembly step S ⁇ b>8 the inner ring 10 , outer ring 20 and rolling elements 30 are assembled together with the retainer 40 . As described above, the rolling bearing 100 having the structure shown in FIG. 1 is manufactured.
  • the holding temperature in the second hardening step S5 is lower than the holding temperature in the nitriding treatment step S2 and the first hardening step S3.
  • the holding temperature in the nitriding treatment step S2 and the first hardening step S3 is, for example, 850°C.
  • the holding temperature in the second hardening step S5 is 810° C., for example.
  • the holding temperature and holding time in the first tempering step S4 and the second tempering step S6 are, for example, 180° C. and 2 hours, respectively.
  • FIG. 5 is a process diagram showing a modification of the manufacturing method of the rolling bearing 100.
  • the method of manufacturing the rolling bearing 100 may not include the first tempering step S4, and may include a sub-zero treatment step S9 instead of the second quenching step S5.
  • the sub-zero treatment step S9 is performed by cooling the member to be processed to a temperature of -100° C. or higher and room temperature or lower, for example.
  • the inner ring 10, the outer ring 20 and the rolling elements 30 are made of steel of the first composition, the second composition or the third composition. Precipitates are precipitated. Since the vicinity of the fine precipitates in the surface layer portion 50 becomes a trap site for hydrogen, the amount of hydrogen entering the surface layer portion 50 decreases. Therefore, in the rolling bearing 100, premature flaking damage due to hydrogen embrittlement is less likely to occur.
  • the depth from the surface of the inner ring 10 is 50 ⁇ m
  • the depth from the surface of the outer ring 20 is 50 ⁇ m
  • the depth from the surface of the rolling element 30 (surface 30a) is 50 ⁇ m.
  • the compressive residual stress at the position is 80 MPa or more. This compressive residual stress suppresses the formation of dents on the surface of the inner ring 10, the surface of the outer ring 20, and the surface of the rolling element 30 (surface 30a), and also suppresses the propagation of cracks originating from the dents.
  • Samples 1 to 4 were prepared as bearing ring samples. Samples 1 and 2 were made of steel having the composition shown in Table 4, and Samples 3 and 4 were made of steel having the composition shown in Table 5.
  • the steel composition shown in Table 4 corresponds to the first composition (second composition), and the composition shown in Table 5 corresponds to the SUJ2 composition (third composition) defined in the JIS standard.
  • Sample 1 was subjected to nitriding treatment step S2, first hardening step S3, sub-zero treatment step S9, and second tempering step S6.
  • Sample 2 was subjected to nitriding treatment step S2, first hardening step S3, first tempering step S4, second hardening step S5 and second tempering step S6.
  • Sample 3 was subjected to the nitriding treatment step S2, the first hardening step S3 and the second tempering step S6.
  • Sample 4 was subjected to the first hardening step S3 and the first tempering step S4.
  • the nitrogen concentration in the steel in the region up to 20 ⁇ m deep from the raceway surface was 0.2% by mass or more and 0.5% by mass or less.
  • the nitrogen concentration in the steel in the region up to 20 ⁇ m deep from the raceway surface was 0.3% by mass or more and 0.5% by mass or less.
  • no nitrogen was contained in the steel in the region up to 20 ⁇ m deep from the raceway surface.
  • the amount of retained austenite in the steel at a depth of 50 ⁇ m from the raceway surface is less than 20% by volume, and in sample 2, the depth from the raceway surface is 50 ⁇ m.
  • the amount of retained austenite in the steel at the position was less than 25 volume percent.
  • the amount of retained austenite in the steel at a depth of 50 ⁇ m from the raceway surface exceeds 25% by volume, and in sample 4, the retained austenite in the steel at a depth of 50 ⁇ m from the raceway surface. amount was less than 20 volume percent.
  • the amount of retained austenite in the steel in the vicinity of the raceway surface is less than 20 volume percent or less than 25 volume percent, so that the dimensional change over time due to the decomposition of the retained austenite is suppressed.
  • FIG. 6 is a cross-sectional EBSD phase map near the orbital plane of Sample 1.
  • FIG. 7 is a cross-sectional EBSD phase map near the orbital plane of Sample 2.
  • FIG. 8 is a cross-sectional EBSD phase map near the orbital plane of Sample 3.
  • FIG. 9 is a cross-sectional EBSD phase map near the orbital plane of sample 4.
  • martensite block grains are indicated by white areas.
  • FIG. 10 is a graph showing the average grain size of martensite block grains in steel in the region up to 20 ⁇ m deep from the raceway surface of Samples 1 to 4.
  • the vertical axis in FIG. 10 represents the average grain size (unit: ⁇ m) of martensite block grains in the steel in the region up to 20 ⁇ m deep from the raceway surface.
  • the average grain size of the martensite block grains at the top area ratio of 50% in the steel in the region up to 20 ⁇ m deep from the raceway surface is 1. 0.5 ⁇ m or less.
  • sample 3 the average grain size of martensite block grains at a top area ratio of 50% in steel in a region up to 20 ⁇ m deep from the raceway surface exceeded 1.5 ⁇ m. From this, in samples 1 and 2, in the region up to 20 ⁇ m deep from the raceway surface, precipitates containing chromium or vanadium as a main component are finely and densely precipitated in the steel, and as a result, marten It was clarified that the size of the site block grains was refined, and the shear resistance near the raceway surface was improved, which in turn improved the durability of the raceway surface.
  • Hydrogen penetrating properties into the surface layers of samples 1 to 4 were evaluated by the following method. In this evaluation, first, the amounts of hydrogen released from Samples 1 to 4 before use were measured by heating Samples 1 to 4 before use from room temperature to 400°C. Second, the track members of Samples 1 to 4 after being used in a hydrogen environment for 50 hours were heated from room temperature to 400° C. after being used in a hydrogen environment for 50 hours. was measured.
  • the ratio of the amount of hydrogen released before and after use (that is, the value obtained by dividing the amount of hydrogen released after use by the amount of hydrogen released before use) was 3.0 or more.
  • the hydrogen release amount ratio before and after use was in the range of 0.9 or more and 1.2 or less.
  • the ratio of the amount of hydrogen released before and after use was in the range of 1.3 or more and 2.0 or less.
  • a rolling bearing according to the second embodiment will be described.
  • the rolling bearing according to the second embodiment is referred to as a rolling bearing 100A.
  • points different from the rolling bearing 100 will be mainly described, and redundant description will not be repeated.
  • FIG. 11 is a cross-sectional view of the rolling bearing 100A.
  • the rolling bearing 100A has an inner ring 10, an outer ring 20, a plurality of rolling elements 30, and a retainer 40.
  • surface layer portions 50 are formed on the surfaces of the inner ring 10 , the outer ring 20 and the rolling elements 30 .
  • the inner ring 10, the outer ring 20 and the rolling elements 30 are made of steel of the first composition or the second composition. Regarding these points, the configuration of the rolling bearing 100A is common to the configuration of the rolling bearing 100. As shown in FIG.
  • the hardness of steel at a depth of 50 ⁇ m from the surface of the inner ring 10, the surface of the outer ring 20, and the surface of the rolling element 30 (surface 30a) is preferably 65.5 HRC or more.
  • the steel in the surface layer portion 50 preferably has an average grain size of 1.3 ⁇ m or less for martensite block grains with an upper area ratio of 50%.
  • the average grain size of martensite block grains with a top area ratio of 30% is preferably 1.6 ⁇ m or less.
  • the configuration of the rolling bearing 100A differs from the configuration of the rolling bearing 100. As shown in FIG.
  • the average grain size of martensite block grains with an upper area ratio of 50% is measured by the following method.
  • each martensite block grain included in the observation field is added in descending order of area. This addition is performed until 30 percent of the total area of martensite block grains contained in the field of view is reached.
  • the equivalent circle diameter is calculated for each of the martensite block grains subjected to the above addition. This equivalent circle diameter is the square root of the value obtained by dividing the area of martensite block grains by ⁇ /4.
  • the average value of the circle-equivalent diameters of the martensite block grains subjected to the above addition is regarded as the average grain size of the martensite block grains with an upper area ratio of 30%.
  • ⁇ Appendix 1> A steel rolling part having a surface, A surface layer portion having a depth of up to 20 ⁇ m from the surface, The rolling part is for a hydrogen utilization device, The steel contains 0.70 mass percent to 1.10 mass percent carbon, 0.15 mass percent to 0.35 mass percent silicon, and 0.30 mass percent to 0.60 mass percent manganese.
  • the balance consists of iron and inevitable impurities
  • the nitrogen concentration in the steel in the surface layer portion is 0.2% by mass or more
  • a precipitate containing chromium or vanadium as a main component is precipitated in the steel in the surface layer
  • the hardness of the steel at a distance of 50 ⁇ m from the surface is 64 HRC or more
  • a rolling component wherein the amount of retained austenite in said steel at a distance of 50 ⁇ m from said surface is less than 20 volume percent.
  • ⁇ Appendix 2> A steel rolling part having a surface, A surface layer portion having a depth of up to 20 ⁇ m from the surface, The rolling part is for a hydrogen utilization device, The steel contains 0.70 mass percent to 1.10 mass percent carbon, 0.15 mass percent to 0.35 mass percent silicon, and 0.30 mass percent to 0.60 mass percent manganese.
  • the balance consists of iron and inevitable impurities
  • the nitrogen concentration in the steel in the surface layer portion is 0.2% by mass or more
  • a precipitate containing chromium or vanadium as a main component is precipitated in the steel in the surface layer
  • the average grain size of the martensite block grains at the top area ratio of 50% in the steel in the surface layer portion is 1.3 ⁇ m or less
  • the hardness of the steel at a distance of 50 ⁇ m from the surface is 64 HRC or more
  • a rolling part wherein the amount of retained austenite in said steel at a distance of 50 ⁇ m from said surface is less than 25 volume percent.
  • the steel contains 0.90 to 1.10 mass percent carbon, 0.20 to 0.30 mass percent silicon, and 0.40 to 0.50 mass percent manganese. and 1.40% by mass or more and 1.60% by mass or less of chromium, 0.20% by mass or more and 0.30% by mass or less of molybdenum, and 0.20% by mass or more and 0.30% by mass or less of vanadium
  • Appendix 4 The rolling component according to any one of Appendices 1 to 3, wherein the precipitate has a maximum particle size of 1.0 ⁇ m or less.
  • a rolling bearing inner ring; an outer ring; a rolling element;
  • the rolling bearing is for hydrogen utilization equipment,
  • the outer ring 20 and the rolling elements 30 are made of steel of the first composition or the second composition, fine precipitates are deposited in the steel in the surface layer portion 50.
  • the hardness of the steel on the surface of the inner ring 10, the surface of the outer ring 20, and the surface of the rolling elements 30 can be ensured (more specifically, the position at the depth of 50 ⁇ m from the surface of the inner ring 10, the outer ring
  • the hardness of the steel at a depth of 50 ⁇ m from the surface of the rolling element 20 and a position of 50 ⁇ m from the surface of the rolling element 30 can be 64 HRC or more), and those precipitates are sources of stress concentration. (becoming a starting point of crack generation) can be suppressed.
  • the rolling bearing 100A fine precipitates are deposited in the steel in the surface layer portion 50, and the hardness of the steel on the surface of the inner ring 10, the surface of the outer ring 20, and the surface of the rolling elements 30 is ensured. Formation of new metal surfaces on the surface, the surface of the outer ring 20 and the surface of the rolling element 30 is suppressed. Therefore, in the rolling bearing 100 ⁇ /b>A, hydrogen is less likely to be generated on the surfaces of the inner ring 10 , the outer ring 20 , and the rolling elements 30 .
  • the vicinity of the fine precipitates precipitated in the steel in the surface layer portion 50 becomes a hydrogen trap site, so the amount of hydrogen entering the surface layer portion 50 is reduced. Therefore, in the rolling bearing 100A, premature flaking damage due to hydrogen embrittlement is less likely to occur.
  • retained austenite in the steel at a depth of 50 ⁇ m from the surface of the inner ring 10, a position of 50 ⁇ m from the surface of the outer ring 20, and a position of 50 ⁇ m from the surface of the rolling element 30 Since the amount is less than 20 volume percent (or less than 25 volume percent), dimensional changes in the inner ring 10, outer ring 20, and rolling elements 30 due to decomposition of retained austenite due to temperature rise during use can be suppressed.
  • the toughness of the surface layer portion 50 is increased. Shear resistance near the surfaces of the inner ring 10, outer ring 20 and rolling elements 30 is improved. Therefore, in this case, the durability of the rolling bearing 100A can be further improved.
  • a rolling bearing according to the third embodiment will be described.
  • a rolling bearing according to the third embodiment is referred to as a rolling bearing 100B.
  • points different from the rolling bearing 100 will be mainly described, and redundant description will not be repeated.
  • the rolling bearing 100B is, for example, a single plain seat thrust ball bearing. However, the rolling bearing 100B is not limited to this. Rolling bearing 100B may be, for example, a deep groove ball bearing, an angular contact ball bearing, a cylindrical roller bearing, a tapered roller bearing, or a self-aligning roller bearing. Rolling bearing 100B is for hydrogen utilization equipment.
  • FIG. 12 is a cross-sectional view of the rolling bearing 100B.
  • the rolling bearing 100B has a central axis A1.
  • FIG. 1 shows a cross-sectional view of the rolling bearing 100B in a cross section along the central axis A1.
  • the rolling bearing 100B has a bearing member (bearing ring or washer) and rolling elements.
  • raceway members are an inner ring (shaft washer) 10 and an outer ring (housing washer) 20, and rolling elements are balls 80.
  • FIG. Rolling bearing 100B further has retainer 90 .
  • the inner ring 60 has an annular (ring-like) shape.
  • the inner ring 60 has a first surface 60a, a second surface 60b, an inner peripheral surface 60c, and an outer peripheral surface 60d.
  • the first surface 60a and the second surface 60b constitute end surfaces in the direction along the central axis A1 (referred to as "axial direction” in this embodiment).
  • the second surface 60b is the axially opposite surface of the first surface 60a.
  • the first surface 60a has a raceway surface 60aa.
  • the first surface 60a is recessed toward the second surface 60b on the raceway surface 60aa.
  • the raceway surface 60aa has a partial arc shape.
  • the raceway surface 60 aa is a surface that contacts the ball 80 and constitutes a contact surface of the inner ring 60 .
  • the inner peripheral surface 60c is a surface facing the central axis A1 side. One end in the axial direction of the inner peripheral surface 60c is continuous with the first surface 60a, and the other end in the axial direction is continuous with the second surface 60b.
  • the outer peripheral surface 60d is a surface facing away from the central axis A1. That is, the outer peripheral surface 60d is the opposite surface of the inner peripheral surface 60c in the direction orthogonal to the central axis A1 (referred to as "radial direction" in this embodiment). One end in the axial direction of the outer peripheral surface 60d is continuous with the first surface 60a, and the other end in the axial direction is continuous with the second surface 60b.
  • the outer ring 70 has a ring shape.
  • the outer ring 70 has a first surface 70a, a second surface 70b, an inner peripheral surface 70c, and an outer peripheral surface 70d.
  • the first surface 70a and the second surface 70b constitute end surfaces in the axial direction.
  • the outer ring 70 is arranged such that the first surface 70a faces the first surface 60a.
  • the second surface 70b is the axially opposite surface of the first surface 70a.
  • the first surface 70a has a raceway surface 70aa.
  • the first surface 70a is recessed toward the second surface 70b on the raceway surface 70aa.
  • the raceway surface 70aa has a partial arc shape.
  • the raceway surface 70 aa is a surface that contacts the ball 80 and constitutes a contact surface of the outer ring 70 .
  • the inner peripheral surface 70c is a surface facing the central axis A1 side. One end in the axial direction of the inner peripheral surface 70c is continuous with the first surface 70a, and the other end in the axial direction is continuous with the second surface 70b.
  • the outer peripheral surface 70d is a surface facing away from the central axis A1. That is, the outer peripheral surface 70d is the opposite surface of the inner peripheral surface 70c in the direction perpendicular to the central axis A1. One end in the axial direction of the outer peripheral surface 70d is continuous with the first surface 70a, and the other end in the axial direction is continuous with the second surface 70b.
  • the ball 80 has a spherical shape.
  • the number of balls 80 is plural.
  • the ball 80 is arranged between the first surface 60a and the first surface 70a. More specifically, ball 80 is arranged between raceway surface 60aa and raceway surface 70aa.
  • the surface of the ball 80 contacts the raceway surface 60aa and the raceway surface 70aa. That is, the surface of ball 80 is the contact surface.
  • the retainer 90 holds the ball 80.
  • the retainer 90 holds the balls 80 so that the distance between two adjacent balls 80 in the direction along the circumference centered on the central axis A1 (referred to as the "circumferential direction" in this embodiment) is within a certain range. are doing.
  • the inner ring 60, outer ring 70 and ball 80 are made of steel of the first composition.
  • Inner ring 60, outer ring 70 and ball 80 may be formed from steel of the second composition.
  • the steel forming the inner ring 60, outer ring 70 and ball 80 is quenched.
  • At least one of the inner ring 60, the outer ring 70 and the balls 80 should be made of steel of the first composition (second composition).
  • the inner ring 60, the outer ring 70 and the ball 80 have surface layer portions 50 on their surfaces.
  • the surface layer portion 50 is a region from the surfaces of the inner ring 60, the outer ring 70 and the ball 80 to a depth of 20 ⁇ m.
  • the surface layer portion 50 may be formed at least on the contact surfaces of the inner ring 60 , the outer ring 70 and the balls 80 .
  • the surface layer portion 50 may be formed on at least one of the inner ring 60 , the outer ring 70 and the balls 80 .
  • the precipitates in the surface layer portion 50 are, for example, carbonitrides and nitrides, and may be nitrides containing chromium or vanadium as a main component, or carbonitrides containing chromium or vanadium as a main component.
  • the total area ratio of precipitates in the surface layer portion 50 is 1% or more and 10% or less in a cross-sectional view orthogonal to the contact surface. In a cross-sectional view perpendicular to the contact surface, the total area ratio of precipitates in the surface layer portion 50 is preferably 2% or more and 7% or less.
  • the nitrogen content in surface layer portion 50 is preferably 0.2% by mass or more and 0.8% by mass or less. More preferably, the nitrogen content in the surface layer portion 50 is 0.3% by mass or more and 0.5% by mass or less. However, the nitrogen content in the surface layer portion 50 is such that a total of 60 or more particles per 100 ⁇ m 2 of grain size can be present in the surface layer portion 50, and the total area ratio of precipitates in the surface layer portion 50 is If it can be 1% or more and 10% or less, it does not have to fall within the above range.
  • the area ratio of precipitates is obtained by acquiring a cross-sectional image of the surface layer 50 at a magnification of 5000 using an FE-SEM, binarizing the cross-sectional image, and performing image processing on the binarized cross-sectional image. Calculated by The cross-sectional images of the surface layer 50 are obtained in three or more fields of view, and the area ratio is the average value of the plurality of cross-sectional images.
  • the grain size of each precipitate is obtained by obtaining the area of each precipitate using the same method as described above, and multiplying the square root of the value obtained by dividing the area by ⁇ by 2.
  • the volume fraction of retained austenite in the steel forming the inner ring 60, the outer ring 70, and the balls 80 is 20% or more and 40% or less at a depth of 50 ⁇ m from the contact surface.
  • the volume ratio of retained austenite in the steel forming the inner ring 60, outer ring 70 and ball 80 is 25% or more and 35% or less at a depth of 50 ⁇ m from the contact surface.
  • the hardness at the position where the depth from the contact surfaces of the inner ring 60, the outer ring 70 and the balls 80 is 50 ⁇ m is 653 Hv or more and 800 Hv or less.
  • the hardness at a position where the depth from the contact surface of the inner ring 60, outer ring 70 and ball 80 is 50 ⁇ m is 653 Hv or more and 800 Hv. It does not have to be less than
  • the hardness at the position where the depth from the contact surface of the inner ring 60, outer ring 70 and ball 80 is 50 ⁇ m is measured by the Vickers hardness test method specified in the JIS standard (JIS Z 2244:2009). Moreover, the load at the time of measurement is set to 300 gf.
  • the average grain size of martensite block grains at a comparative area ratio (higher area ratio) of 30% is preferably 2.0 ⁇ m or less.
  • the average grain size of martensite block grains with a comparative area ratio of 50% is more preferably 1.5 ⁇ m or less.
  • the surface layer portion 50 is made tougher, and the contact surface (more specifically, the raceway surface 60aa, the raceway surface 70aa, and the surface of the ball 80) can have shear resistance.
  • a quenched steel rolling member having a contact surface The rolling member is for a hydrogen utilization device, The rolling member has a surface layer portion having a depth of up to 20 ⁇ m from the contact surface, The steel contains 0.70 mass percent to 1.10 mass percent carbon, 0.15 mass percent to 0.35 mass percent silicon, and 0.30 mass percent to 0.60 mass percent manganese.
  • the balance consists of iron and inevitable impurities
  • a total of 60 or more precipitates having a particle size of 0.50 ⁇ m or less are present per 100 ⁇ m 2 in the surface layer, and the precipitates in the surface layer
  • a rolling member having a total area ratio of 1% or more and 10% or less.
  • the steel contains 0.90 to 1.10 mass percent carbon, 0.20 to 0.30 mass percent silicon, and 0.40 to 0.50 mass percent manganese. and 1.40% by mass or more and 1.60% by mass or less of chromium, 0.20% by mass or more and 0.30% by mass or less of molybdenum, and 0.20% by mass or more and 0.30% by mass or less of vanadium
  • the rolling contact member according to appendix 1, containing iron and unavoidable impurities.
  • ⁇ Appendix 4> In a cross-sectional view orthogonal to the contact surface, a total of 80 or more precipitates having a particle size of 0.50 ⁇ m or less are present per 100 ⁇ m 2 in the surface layer, and the precipitates in the surface layer.
  • ⁇ Appendix 5> 4 The rolling member according to any one of appendices 1 to 4, wherein the volume fraction of the amount of retained austenite at a position at a depth of 50 ⁇ m from the contact surface is 20% or more and 40% or less.
  • ⁇ Appendix 6> The rolling member according to any one of Appendices 1 to 5, wherein the volume fraction of the amount of retained austenite at a position 50 ⁇ m deep from the contact surface is 25% or more and 35% or less.
  • Appendix 8> A rolling bearing, a track member; and a rolling element arranged in contact with the raceway member,
  • the rolling bearing is for hydrogen utilization equipment,
  • a rolling bearing, wherein at least one of the race member and the rolling element is the rolling contact member according to any one of Appendices 1 to 7.
  • FIG. 13 is a process diagram showing a method of manufacturing the rolling bearing 100B.
  • the method of manufacturing the rolling bearing 100B includes a preparation step S10, a heat treatment step S11, a finishing step S12, and an assembly step S13.
  • the heat treatment step S11 is performed after the preparation step S10.
  • the finishing step S12 is performed after the heat treatment step S11.
  • the assembling step S13 is performed after the finishing step S12.
  • members to be processed to be subjected to the heat treatment step S11 and the finishing step S12 are prepared.
  • a ring-shaped member is prepared when the inner ring 60 and the outer ring 70 are to be formed, and a spherical member is prepared when the ball 80 is to be formed.
  • the member to be processed is made of steel of the first composition or the second composition.
  • the heat treatment step S11 includes a heating step S111, a cooling step S112, and a tempering step S113.
  • the heating step S111 the member to be processed is held at a temperature equal to or higher than the A1 transformation point for a predetermined period of time.
  • the member to be processed is also subjected to nitriding treatment. This nitriding treatment is carried out by performing the above heating and holding in an atmospheric gas containing a nitrogen source gas (for example, ammonia gas).
  • the cooling step S112 is performed after the heating step S111.
  • the member to be processed is cooled to a temperature below the Ms transformation point. This cooling is performed, for example, by oil cooling.
  • the tempering step S113 is performed after the cooling step S112. In the tempering step S113, the member to be processed is held at a temperature lower than the A1 transformation point for a predetermined period of time.
  • finishing step S12 finishing (grinding/polishing) and cleaning of the member to be processed are performed. Thereby, the inner ring 60, the outer ring 70 and the ball 80 are prepared.
  • assembly step S ⁇ b>13 the inner ring 60 , outer ring 70 and balls 80 are assembled together with the retainer 90 .
  • the rolling bearing 100B having the structure shown in FIG. 1 is manufactured.
  • the inner ring 60, the outer ring 70, and the balls 80 are made of steel of the first composition or the second composition. Precipitates are deposited. Since the vicinity of the fine precipitates in the surface layer portion 50 becomes a trap site for hydrogen, the amount of hydrogen entering the surface layer portion 50 decreases. Therefore, in the rolling bearing 100B, premature flaking damage due to hydrogen embrittlement is less likely to occur.
  • Samples 5 and 6 were prepared as rolling bearing samples. Samples 5 and 6 are single thrust ball bearings of JIS standard 51106 model number with an inner diameter of 30 mm, an outer diameter of 47 mm and a width of 11 mm.
  • the inner ring and outer ring of Sample 5 were made of steel with the composition shown in Table 9.
  • the compositions shown in Table 9 are within the range of the first composition and the second composition.
  • the inner and outer rings of Sample 6 were made of steel with the composition shown in Table 10.
  • the compositions shown in Table 10 are within the composition range of SUJ2 defined in the JIS standard, and are outside the ranges of the first composition and the second composition.
  • the balls of samples 5 and 6 were made of stainless steel (SUS440C).
  • the heat treatment step S11 was performed on the inner ring and outer ring of sample 5.
  • the inner ring and outer ring of sample 6 were not subjected to the heat treatment step S11. More specifically, the inner ring and outer ring of sample 6 were quenched and tempered, but not nitrided.
  • FIG. 14 is a graph showing the distribution of the carbon and nitrogen content in the surface layer portions of the inner ring and outer ring of Sample 5.
  • the horizontal axis is the distance from the surface (unit: mm), and the vertical axis is the content of carbon and nitrogen (unit: mass percent).
  • the total area ratio of precipitates was 2.2% or more and 7.0% or less.
  • the total area ratio of precipitates was 0.07% or more and 0.24% or less.
  • the total number of precipitates per 100 ⁇ m 2 was 66 or more and 425 or less in the surface layer portions of the inner and outer rings of Sample 5. In the surface layer portions of the inner and outer rings of sample 6, the total number of precipitates was 8 or more and 50 or less per 100 ⁇ m 2 .
  • FIG. 15 is a representative cross-sectional FE-SEM image of the inner and outer ring surface layers of Sample 5.
  • the precipitates were refined in the surface layer portions of the inner ring and the outer ring of sample 5 (most of the precipitates had a grain size of 0.5 ⁇ m or less).
  • the precipitates were not refined (the grain size of most of the precipitates exceeded 0.5 ⁇ m).
  • the characteristics of hydrogen permeation into the surface layer of the raceway members (inner ring and outer ring) of samples 5 and 6 were evaluated by the following method. In this evaluation, first, by heating the track members of Samples 5 and 6 before use from room temperature to 400° C., the amount of hydrogen released from the track members of Samples 5 and 6 before use was measured. was done. Second, by heating the track members of Sample 5 and Sample 6 after being used in a hydrogen environment for 50 hours from room temperature to 400° C., the sample 5 and Sample 6 after being used in a hydrogen environment for 50 hours was measured.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

転動部品(10)は、表面(10a,10b,10c,10d)を有し、鋼製である。転動部品は、表面からの深さが20μmまでの領域である表層部(50)を備えている。転動部品は、水素利用機器用である。鋼は、0.70質量パーセント以上1.10質量パーセント以下の炭素と、0.15質量パーセント以上0.35質量パーセント以下のシリコンと、0.30質量パーセント以上0.60質量パーセント以下のマンガンと、1.30質量パーセント以上1.60質量パーセント以下のクロムと、0.01質量パーセント以上0.50質量パーセント以下のモリブデンと、0.01質量パーセント以上0.50質量パーセント以下のバナジウムとを含有するとともに、残部が鉄及び不可避不純物からなる。表層部における鋼中の窒素濃度は、0.2質量パーセント以上である。

Description

転動部品及び転がり軸受
 本発明は、転動部品及び転がり軸受に関する。より特定的には、本発明は、水素利用機器用の転動部品及び転がり軸受に関する。
 特許文献1(特許第3990212号公報)には、転動部品が記載されている。特許文献1に記載の転動部品は、JIS規格に定められている高炭素クロム軸受鋼であるSUJ2製である。特許文献1に記載の軸受部品は、浸窒処理、焼入れ及び焼戻しが行われることにより形成されている。
特許第3990212号公報
 しかしながら、特許文献1に記載の転動部品は、水素利用機器に用いられる場合、すなわち、水素に曝されている環境下において、水素脆性に起因して接触面に早期剥離が生じてしまうおそれがある。また、特許文献1に記載の転動部品は、耐圧痕形成能が不十分となるおそれがある。
 本発明は、上記のような従来技術の問題点に鑑みてなされたものである。より具体的には、本発明は、表面からの水素侵入に伴う水素脆性の発生を抑制可能であり、耐圧痕形成能が改善された水素利用機器用の転動部品を提供するものである。
 本発明に係る転動部品は、表面を有し、鋼製である。表面からの深さが20μmまでの領域である表層部を備える。転動部品は、水素利用機器用である。鋼は、0.70質量パーセント以上1.10質量パーセント以下の炭素と、0.15質量パーセント以上0.35質量パーセント以下のシリコンと、0.30質量パーセント以上0.60質量パーセント以下のマンガンと、1.30質量パーセント以上1.60質量パーセント以下のクロムとを含有している。表層部における鋼中には、クロム又はバナジウムを主成分とする析出物が析出している。表面からの距離が50μmの位置での圧縮残留応力は、80MPa以上である。
 上記の転動部品では、鋼が、0.01質量パーセント以上0.50質量パーセント以下のバナジウムと、0.01質量パーセント以上0.5質量パーセント以上のモリブデンとをさらに含有していてもよい。
 上記の転動部品では、鋼が、0.90質量パーセント以上1.10質量パーセント以下の炭素と、0.20質量パーセント以上0.30質量パーセント以下のシリコンと、0.40質量パーセント以上0.50質量パーセント以下のマンガンと、1.40質量パーセント以上1.60質量パーセント以下のクロムと、0.10質量パーセント以上0.30質量パーセント以下のモリブデンと、0.20質量パーセント以上0.30質量パーセント以下のバナジウムとを含有するとともに、残部が鉄及び不可避不純物からなっていてもよい。
 上記の転動部品では、析出物の最大粒径が、2.0μm以下であってもよい。上記の転動部品では、析出物の平均面積率が、1.0パーセント以上であってもよい。上記の転動部品では、表面からの距離が50μmの位置での鋼の硬さが、64HRC以上であってもよい。上記の転動部品では、表面からの距離が50μmの位置での鋼中の残留オーステナイト量が、25体積パーセント未満であってもよい。
 上記の転動部品では、表層部における鋼中の窒素濃度が、0.2質量パーセント以上であってもよい。上記の転動部品では、表層部における鋼中の上位面積率50パーセントでのマルテンサイトブロック粒の平均粒径が、1.5μm以下である。
 本発明に係る転がり軸受は、内輪と、外輪と、転動体とを備える。内輪、外輪及び転動体の少なくともいずれかは、上記の転動部品である。転がり軸受は、水素利用機器用である。
 本発明の転動部品及び転がり軸受によると、表面からの水素侵入に伴う水素脆性の発生を抑制可能であるとともに、耐圧痕形成能を改善可能である。
転がり軸受100の断面図である。 ボール弁200の拡大断面図である。 水素循環ポンプ300の断面図である。 転がり軸受100の製造方法を示す工程図である。 転がり軸受100の製造方法の変形例を示す工程図である。 サンプル1の軌道面付近における断面のEBSDによる相マップである。 サンプル2の軌道面付近における断面のEBSDによる相マップである。 サンプル3の軌道面付近における断面のEBSDによる相マップである。 サンプル4の軌道面付近における断面のEBSDによる相マップである。 サンプル1からサンプル4の軌道面からの深さが20μmまでの領域における鋼中のマルテンサイトブロック粒の平均粒径を示すグラフである。 転がり軸受100Aの断面図である。 転がり軸受100Bの断面図である。 転がり軸受100Bの製造方法を示す工程図である。 サンプル5の内輪及び外輪の表層部における炭素及び窒素の含有量の分布を示すグラフである。 サンプル5の内輪及び外輪の表層部における代表的な断面FE-SEM画像である。
 本発明の実施形態の詳細を、図面を参照しながら説明する。以下の図面では、同一又は相当する部分に同一の参照符号を付し、重複する説明は繰り返さないものとする。
 (第1実施形態)
 第1実施形態に係る転がり軸受を説明する。第1実施形態に係る転がり軸受を、転がり軸受100とする。
 <転がり軸受100の構成>
 以下に、転がり軸受100の構成を説明する。
 転がり軸受100は、例えば、深溝玉軸受である。但し、転がり軸受100は、これに限られない。転がり軸受100は、例えば、アンギュラ玉軸受、円筒ころ軸受、円錐ころ軸受又は自動調心ころ軸受であってもよい。
 転がり軸受100は、水素利用機器用である。水素利用機器は、例えば水素ステーション向けのボール弁又は圧縮機である。なお、圧縮機の方式は特に限定されない。例えば、圧縮機は、往復式(レシプロ)、回転式(スクリュ)、遠心式又は軸流式のいずれであってもよい。水素利用機器は、燃料電池車向けの高圧水素減圧弁又は水素循環ポンプであってもよい。転がり軸受100は、水素に曝される用途に用いられるものであればよい。
 図1は、転がり軸受100の断面図である。図1に示されるように、転がり軸受100は、中心軸Aを有している。図1には、中心軸Aに平行であり、かつ中心軸Aを通る断面が示されている。転がり軸受100は、内輪10と、外輪20と、複数の転動体30と、保持器40とを有している。内輪10及び外輪20は、リング状である。転動体30は、玉である(球状である)。
 中心軸Aに沿う方向を、軸方向とする。中心軸Aを通り、かつ中心軸Aに直交する方向を、径方向とする。中心軸Aを中心とする円周に沿う方向を、周方向とする。
 内輪10は、第1端面10aと、第2端面10bと、内周面10cと、外周面10dとを有している。第1端面10a、第2端面10b、内周面10c及び外周面10dは、内輪10の表面を構成している。第1端面10a及び第2端面10bは、軸方向における内輪10の端面である。第2端面10bは、第1端面10aの反対面である。
 内周面10cは、周方向に沿って延在している。内周面10cは、中心軸A側を向いている。図示されていないが、内輪10は、内周面10cにおいて、軸に嵌め合わされる。内周面10cは、軸方向における一方端において第1端面10aに連なっており、軸方向における他方端において第2端面10bに連なっている。
 外周面10dは、周方向に沿って延在している。外周面10dは、中心軸Aとは反対側を向いている。つまり、外周面10dは、径方向における内周面10cの反対面である。外周面10dは、軸方向における一方端において第1端面10aに連なっており、軸方向における他方端において第2端面10bに連なっている。
 外周面10dは、軌道面10daを有している。軌道面10daは、転動体30に接触する外周面10dの部分である。軌道面10daは、周方向に沿って延在している。軌道面10daは、軸方向における外周面10dの中央部に位置している。断面視において、軌道面10daは、内周面10c側に向かって窪む部分円弧形状である。
 外輪20は、第1端面20aと、第2端面20bと、内周面20cと、外周面20dとを有している。第1端面20a、第2端面20b、内周面20c及び外周面20dは、外輪20の表面を構成している。外輪20は、内周面20cが外周面10dと間隔を空けて対向している状態で、内輪10の径方向外側に配置されている。
 第1端面20a及び第2端面20bは、軸方向における外輪20の端面である。第2端面20bは、第1端面20aの反対面である。
 内周面20cは、周方向に沿って延在している。内周面20cは、中心軸A側を向いている。内周面20cは、軸方向における一方端において第1端面20aに連なっており、軸方向における他方端において第2端面20bに連なっている。
 内周面20cは、軌道面20caを有している。軌道面20caは、転動体30に接触する内周面20cの部分である。軌道面20caは、周方向に沿って延在している。軌道面20caは、軸方向における内周面20cの中央部に位置している。断面視において、軌道面20caは、外周面20d側に向かって窪む部分円弧形状である。
 外周面20dは、周方向に沿って延在している。外周面20dは、中心軸Aとは反対側を向いている。つまり、外周面20dは、径方向における内周面20cの反対面である。図示されていないが、外輪20は、外周面20dにおいてハウジングに嵌め合わされる。外周面20dは、軸方向における一方端において第1端面20aに連なっており、軸方向における他方端において第2端面20bに連なっている。
 転動体30は、外周面10dと内周面20cとの間、より具体的には、軌道面10daと軌道面20caとの間に配置されている。複数の転動体30は、周方向に沿って並んでいる。転動体30は、表面30aを有している。保持器40は、複数の転動体30を保持している。保持器40は、隣り合う2つの転動体30の間の周方向における距離が一定範囲内となるように、複数の転動体30を保持している。
 内輪10、外輪20及び転動体30は、鋼製である。より具体的には、内輪10、外輪20及び転動体30は、表1に示される組成(「第1組成」とする)の鋼により形成されている。
Figure JPOXMLDOC01-appb-T000001
 炭素は、焼入れ後における転動部品(内輪10、外輪20及び転動体30)の表面における鋼の硬さに影響を与える。鋼中の炭素の含有量が0.70質量パーセント未満である場合、転動部品の表面において、十分な硬さを確保することが困難である。鋼中の炭素の含有量が0.70質量パーセント未満である場合、浸炭処理等により転動部品の表面における炭素含有量を補う必要があり、生産効率の低下及び製造コスト増加の要因となる。他方で、鋼中の炭素の含有量が1.10質量パーセントを超える場合、焼入れ時の割れ(焼割れ)が発生するおそれがある。そのため、第1組成の鋼では、炭素の含有量が0.70質量パーセント以上1.10質量パーセント以下とされている。
 シリコンは、鋼の精錬時の脱酸及び浸窒処理前の加工性確保のために加えられている。鋼中のシリコンの含有量が0.15質量パーセント未満である場合、焼戻し軟化抵抗が不十分となる。その結果、焼入れ後の焼戻し又は転がり軸受100の使用時の温度上昇により、転動部品の表面における硬さが低下するおそれがある。また、この場合、転動部品を加工する際の加工性が不十分となる。
 鋼中のシリコンの含有量が0.35質量パーセントを超える場合、鋼が硬くなり過ぎ、転動部品を加工する際の加工性がかえって低下する。また、この場合、鋼の材料コストが上昇してしまう。そのため、第1組成の鋼では、シリコンの含有量が0.15質量パーセント以上0.35質量パーセント以下とされている。
 マンガンは、鋼の焼入れ性及び硬さを確保するために加えられている。鋼中のマンガンの含有量が0.30質量パーセント未満である場合、鋼の焼入れ性を確保することが困難である。鋼中のマンガンの含有量が0.60質量パーセントを超える場合、不純物であるマンガン系の非金属介在物が増加してしまう。そのため、第1組成の鋼では、マンガンの含有量が0.30質量パーセント以上0.60質量パーセント以下とされている。
 クロムは、鋼の焼入れ性の確保するため及び浸窒処理に伴って微細な析出物(窒化物、炭窒化物)を形成させるために加えられている。鋼中のクロムの含有量が1.30質量パーセント未満である場合、鋼の焼入れ性を確保すること及び微細な析出物を十分形成することが困難である。鋼中のクロムの含有量が1.60質量パーセントを超える場合、鋼の材料コストが上昇してしまう。そのため、第1組成の鋼では、クロムの含有量が1.30質量パーセント以上1.60質量パーセント以下とされている。
 モリブデンは、鋼の焼入れ性を確保するため及び浸窒処理に伴って微細な析出物を形成させるために加えられている。モリブデンは、炭素に対して強い親和性があるため、浸窒処理の際に鋼中に未固溶炭化物として析出している。このモリブデンの未固溶炭化物が焼入れ時に析出核となるため、モリブデンは、焼入れ後の析出物の量を増加させる。
 鋼中のモリブデンの含有量が0.01質量パーセント未満である場合、鋼の焼入れ性を確保すること及び微細な析出物を十分に形成することが困難である。鋼中のモリブデンの含有量が0.50質量パーセントを超える場合、鋼の材料コストが上昇してしまう。そのため、第1組成の鋼では、モリブデンの含有量が0.01質量パーセント以上0.50質量パーセント以下とされている。
 バナジウムは、鋼の焼入れ性を確保するため及び浸窒処理に伴って微細な析出物を形成させるために加えられている。鋼中のバナジウムの含有量が0.01質量パーセント未満である場合、鋼の焼入れ性を確保すること及び微細な析出物を十分に形成することが困難である。鋼中のバナジウムの含有量が0.50質量パーセントを超える場合、鋼の材料コストが上昇してしまう。そのため、第1組成の鋼では、バナジウムの含有量が0.01質量パーセント以上0.50質量パーセント以下とされている。
 内輪10、外輪20及び転動体30は、表2に示される組成(「第2組成」とする)の鋼により形成されていてもよい。内輪10、外輪20及び転動体30は、表3に示される組成(「第3組成」とする)の鋼により形成されていてもよい。内輪10、外輪20及び転動体30が第1組成又は第2組成の鋼により形成されている場合、後述する表層部50の鋼中に析出物がより微細に分散される。なお、内輪10、外輪20及び転動体30の全てが第1組成、第2組成又は第3組成の鋼により形成されている必要はなく、内輪10、外輪20及び転動体30の少なくともいずれかが第1組成、第2組成又は第3組成の鋼により形成されていればよい。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 図1に示されるように、内輪10、外輪20及び転動体30は、表層部50を有している。内輪10では、内輪10の表面からの深さが20μmまでの領域が、表層部50である。外輪20では、外輪20の表面からの深さが20μmまでの領域が、表層部50である。転動体30では、表面30aからの深さが20μmまでの領域が表層部50である。表層部50は、浸窒処理により形成される。なお、内輪10では表層部50が少なくとも軌道面10daに形成されていればよく、外輪20では表層部50が軌道面20caに形成されていればよい。
 表層部50における鋼中には、析出物が析出している。析出物は、クロム又はバナジウムを主成分としている。析出物は、クロム又はバナジウムを主成分とする窒化物である。析出物は、クロム又はバナジウムを主成分とする炭窒化物であってもよい。析出物は、上記の窒化物及び炭窒化物が混在していてもよい。
 また、表層部50は、内輪10の表面、外輪20の表面及び転動体30の表面の全てに形成されている必要はなく、内輪10の表面、外輪20の表面及び転動体30の表面の少なくともいずれかに形成されていればよい。
 クロム(バナジウム)を主成分とする窒化物は、クロム(バナジウム)の窒化物又は当該窒化物中のクロム(バナジウム)のサイトの一部がクロム(バナジウム)以外の合金元素により置換されているものである。クロム(バナジウム)を主成分とする炭窒化物は、クロム(バナジウム)の炭化物中の炭素のサイトの一部が窒素により置換されているものである。クロム(バナジウム)を主成分とする炭窒化物のクロム(バナジウム)のサイトは、クロム(バナジウム)以外の合金元素により置換されていてもよい。
 内輪10の表面からの深さが50μmとなる位置、外輪20の表面からの深さが50μmとなる位置及び転動体30の表面(表面30a)からの深さが50μmとなる位置における圧縮残留応力は、80MPa以上である。内輪10の表面からの深さが50μmとなる位置及び外輪20の表面からの深さが50μmとなる位置における圧縮残留応力は、例えば周方向において測定される。上記の圧縮残留応力は、X線回折法により測定される。
 析出物の最大粒径は、好ましくは、2.0μm以下である。析出物の平均面積率は、好ましくは、1.0パーセント以上である。析出物の最大粒径が2.0μm以下であり、析出物の平均面積率が1.0パーセント以上である場合には、析出物の微細分散により、内輪10の表面、外輪20の表面及び転動体30の表面における耐摩耗性が改善される。析出物の最大粒径は、さらに好ましくは、1.0μm以下である。析出物の平均面積率は、さらに好ましくは、2.0パーセント以上である。
 析出物の平均面積率は、電界放射型走査電子顕微鏡(FE-SEM:Field Emission Scanning Electron Microscope)を用いて倍率5000倍で表層部50の断面画像を取得するとともに、当該断面画像を二値化し、二値化された当該断面画像に対して画像処理を行うことにより算出される。表層部50の断面画像は、3視野以上で取得され、平均面積率は、それら複数の断面画像から得られた析出物の面積率の平均値である。
 各々の析出物の粒径は、上記と同様の方法を用いて各々の析出物の面積を取得するとともに、当該面積をπで除した値の平方根に2を乗じることにより得られる。そして、得られた析出物の粒径のうちで最大のものが、析出物の粒径の最大値とされる。
 表層部50における鋼中の窒素濃度は、0.2質量パーセント以上であることが好ましい。表層部50における鋼中の窒素濃度は、電子線マイクロアナライザ(EPMA:Electron Probe Micro Analyzer)により測定される。なお、表層部50における鋼中の窒素濃度は、例えば0.5質量パーセント以下である。
 内輪10の表面からの深さが50μmとなる位置、外輪20の表面からの深さが50μmとなる位置及び転動体30の表面(表面30a)からの深さが50μmとなる位置における鋼の硬さは、64HRC以上であることが好ましい。
 内輪10の表面からの深さが50μmとなる位置、外輪20の表面からの深さが50μmとなる位置及び転動体30の表面(表面30a)からの深さが50μmとなる位置における鋼の硬さは、JIS規格(JIS Z 2245:2016)に規定されているロックウェル硬さ試験法により測定される。
 表層部50における鋼は、マルテンサイトブロック粒を有している。隣り合う2つのマルテンサイトブロック粒は、粒界において、結晶方位の差が15°以上になっている。このことを別の観点から言えば、結晶方位にずれがある箇所が存在していても、結晶方位の差が15°未満である場合、当該箇所は、マルテンサイトブロック粒の結晶粒界とは見做されない。マルテンサイトブロック粒の粒界は、EBSD(Electron Back Scattered Diffraction)法により決定される。
 表層部50における鋼は、上位面積率が50パーセントでのマルテンサイトブロック粒の平均粒径が1.5μm以下であることが好ましい。表層部50の鋼中において、上位面積率50パーセントでの平均粒径が1.5μm以下となるようにマルテンサイトブロック粒が微細化されている場合には、表層部50の高靭性化により、内輪10、外輪20及び転動体30の表面近傍における剪断抵抗が改善される。
 上位面積率が50パーセントでのマルテンサイトブロック粒の平均粒径は、以下の方法により測定される。第1に、表層部50を含む断面において、断面観察が行われる。この際、EBSD法により観察視野に含まれているマルテンサイトブロック粒が特定される。この観察視野は、倍率1500倍において観察される領域である。第2に、EBSD法により得られた結晶方位データから、観察視野に含まれているマルテンサイトブロック粒の各々の面積が解析される。
 第3に、観察視野に含まれているマルテンサイトブロック粒の各々の面積を、面積が大きいものから順に加算していく。この加算は、観察視野に含まれているマルテンサイトブロック粒の合計面積の50パーセントに達するまで行われる。上記の加算の対象になったマルテンサイトブロック粒の各々について、円相当径が算出される。この円相当径は、マルテンサイトブロック粒の面積をπ/4で除した値の平方根である。上記の加算の対象になったマルテンサイトブロック粒の円相当径の平均値が、上位面積率が50パーセントでのマルテンサイトブロック粒の平均粒径と見做される。
 内輪10の表面からの深さが50μmの位置、外輪20の表面からの深さが50μmの位置及び転動体30の表面(表面30a)からの深さが50μmの位置における鋼中の残留オーステナイト量は、25体積パーセント未満であることが好ましい。この場合には、残留オーステナイトの分解に伴う内輪10、外輪20及び転動体30の寸法の経時変化が抑制される。内輪10の表面からの深さが50μmの位置、外輪20の表面からの深さが50μmの位置及び転動体30の表面(表面30a)からの深さが50μmの位置における鋼中の残留オーステナイト量は、さらに好ましくは、20体積パーセント未満である。
 内輪10の表面からの深さが50μmの位置、外輪20の表面からの深さが50μmの位置及び転動体30の表面(表面30a)からの深さが50μmの位置における鋼中の残留オーステナイト量は、X線回折法により測定される。より具体的には、内輪10の表面からの深さが50μmの位置、外輪20の表面からの深さが50μmの位置及び転動体30の表面(表面30a)からの深さが50μmの位置における鋼中の残留オーステナイト量は、株式会社リガク製のMSF-3Mを用いて測定される。
 上記においては、第1実施形態に係る転動部材が転がり軸受の構成要素である場合について説明をしたが、第1実施形態に係る転動部材は、滑り軸受であってもよい。
 <第1実施形態に係る転動部材の適用例>
 第1実施形態に係る転動部材は、ボール弁200に用いられる。図2は、ボール弁200の拡大断面図である。図2に示されるように、ボール弁200は、ボディ210と、シートリテーナ220と、ボール230と、ステム231及びステム232と、滑り軸受240とを有している。
 シートリテーナ220は、ボディ210の内部に配置されている。シートリテーナ220には、内部空間220aと、流路220b及び流路220cとが形成されている。流路220b及び流路220cは、内部空間220aに接続されている。ボール230は、内部空間220aに配置されている。内部空間220aの壁面は、シール部220aaにおいてボール230の表面に接触している。
 ステム231及びステム232は、それぞれ、ボール230の上端及び下端に接続されている。ステム231及びステム232が中心軸回りに回転することにより、ボール230に形成されている貫通穴(図示せず)を介して、流路220b及び流路220cが接続される。ステム231及びステム232は、ボディ210及びシートリテーナ220に形成されている貫通穴に通されている。なお、流路220b、流路220c及びボール230に形成されている貫通穴には、水素が流れる。
 滑り軸受240は、筒状になっており、外周面においてボディ210に取り付けられている。滑り軸受240は、ステム231(ステム232)を回転可能に軸支している。滑り軸受240は、第1実施形態に係る転動部材である。このことを別の観点から言えば、滑り軸受240は、第1組成、第2組成又は第3組成の鋼製であり、かつ接触面に表層部50が形成されている。
 <第1実施形態に係る転がり軸受の適用例>
 図3は、水素循環ポンプ300の断面図である。水素循環ポンプ300は、モータハウジング310と、ポンプハウジング320と、回転軸331及び回転軸332と、モータステータ341及びモータロータ342と、ギア351及びギア352と、ロータ361及びロータ362と、転がり軸受371、転がり軸受372、転がり軸受373、転がり軸受374、転がり軸受375及び転がり軸受376とを有している。
 モータハウジング310は、ポンプハウジング320に取り付けられている。回転軸331の一方端側はモータハウジング310内に配置されており、回転軸331の他方端側はポンプハウジング320内に配置されている。回転軸331の一方端及び他方端は、それぞれ、モータハウジング310内に配置されている転がり軸受371及びポンプハウジング320内に配置されている転がり軸受372により回転可能に軸支されている。回転軸331は、一方端と他方端との間において、ポンプハウジング320内に配置されている転がり軸受373及び転がり軸受374により回転可能に軸支されている。
 回転軸332は、ポンプハウジング320内に配置されている。回転軸332の一方端は、ポンプハウジング320内に配置されている転がり軸受375により回転可能に軸支されている。回転軸332は、一方端から離れた位置において、ポンプハウジング320内に配置されている転がり軸受376により回転可能に軸支されている。
 モータステータ341は、モータハウジング310内に配置されている。モータロータ342は、モータステータ341と対向するように回転軸331に取り付けられている。モータステータ341及びモータロータ342により、回転軸331は回転される。回転軸331及び回転軸332には、それぞれ、ギア351及びギア352が取り付けられている。ギア351及びギア352により、回転軸331の回転が、回転軸332に伝達される。なお、ギア351は転がり軸受373と転がり軸受374との間にあり、ギア352は転がり軸受375と転がり軸受376との間にある。
 ポンプハウジング320内には、ポンプ室320aが形成されている。ポンプ室320a内には、ロータ361及びロータ362が配置されている。ロータ361及びロータ362は、それぞれ、回転軸331及び回転軸332に取り付けられている。回転軸331の回転に伴ってロータ361が回転するとともに、回転軸332の回転に伴ってロータ362が回転することにより、ポンプ室320a内に水素が吸入され、ポンプ室320a内から水素が吐出される。
 転がり軸受371、転がり軸受372、転がり軸受373及び転がり軸受375は、深溝玉軸受である。転がり軸受374及び転がり軸受375は、複列アンギュラ玉軸受である。転がり軸受371、転がり軸受372、転がり軸受373、転がり軸受374、転がり軸受375及び転がり軸受376は、第1実施形態に係る転がり軸受である。つまり、転がり軸受371、転がり軸受372、転がり軸受373、転がり軸受374、転がり軸受375及び転がり軸受376では、軌道部材及び転動体が第1組成、第2組成又は第3組成の鋼製であり、接触面に表層部50が形成されている。
 図4は、転がり軸受100の製造方法を示す工程図である。図4に示されるように、転がり軸受100の製造方法は、準備工程S1と、浸窒処理工程S2と、第1焼入れ工程S3と、第1焼戻し工程S4と、第2焼入れ工程S5と、第2焼戻し工程S6と、後処理工程S7と、組み立て工程S8とを有している。なお、転がり軸受100の製造方法は、第1焼戻し工程S4及び第2焼入れ工程S5を有していなくてもよい。
 準備工程S1においては、加工対象部材が準備される。加工対象部材としては、内輪10及び外輪20を形成しようとする場合はリング状の部材が準備され、転動体30を形成しようとする場合は球状の部材が準備される。この加工対象部材は、第1組成又は第2組成の鋼により形成されている。
 浸窒処理工程S2においては、加工対象部材の表面に対する浸窒処理が行われる。この浸窒処理は、窒素源となるガス(例えばアンモニアガス)を含む雰囲気ガス中において、加工対象部材をA変態点以上の温度で所定時間保持することにより行われる。第1焼入れ工程S3においては、加工対象部材に対する焼入れが行われる。この焼入れは、加工対象部材をA変態点以上の温度で所定時間保持した後に加工対象部材をMs変態点以下の温度まで冷却することにより行われる。
 第1焼戻し工程S4においては、加工対象部材に対する焼戻しが行われる。この焼戻しは、加工対象部材をA変態点未満の温度で所定時間保持することにより行われる。
 第2焼入れ工程S5においては、加工対象部材に対する焼入れが行われる。この焼入れは、加工対象部材をA変態点以上の温度で所定時間保持した後に加工対象部材をMs変態点以下の温度まで冷却することにより行われる。
 第2焼戻し工程S6においては、加工対象部材に対する焼戻しが行われる。この焼戻しは、加工対象部材をA変態点未満の温度で所定時間加熱保持することにより行われる。
 後処理工程S7においては、加工対象部材に対する仕上げ加工(研削・研磨)及び洗浄が行われる。これにより、内輪10、外輪20及び転動体30が形成される。組み立て工程S8においては、内輪10、外輪20及び転動体30が、保持器40とともに組み立てられる。以上により、図1に示される構造の転がり軸受100が製造される。
 第2焼入れ工程S5における保持温度は、浸窒処理工程S2及び第1焼入れ工程S3における保持温度よりも低い。浸窒処理工程S2及び第1焼入れ工程S3における保持温度は、例えば850℃である。第2焼入れ工程S5における保持温度は、例えば810℃である。第1焼戻し工程S4及び第2焼戻し工程S6における保持温度及び保持時間は、例えば、それぞれ180℃及び2時間である。
 図5は、転がり軸受100の製造方法の変形例を示す工程図である。図5に示されるように、転がり軸受100の製造方法は、第1焼戻し工程S4を有していなくてもよく、第2焼入れ工程S5に代えてサブゼロ処理工程S9を有していてもよい。サブゼロ処理工程S9においては、加工対象部材を例えば-100℃以上室温以下の温度まで冷却することにより行われる。
 <転がり軸受100の効果>
 以下に、転がり軸受100の効果を説明する。
 転がり軸受100では、内輪10、外輪20及び転動体30が第1組成、第2組成又は第3組成の鋼で形成されているため、浸窒処理により形成された表層部50における鋼中に微細な析出物が析出する。表層部50中の微細な析出物の近傍が水素のトラップサイトになるため、表層部50における水素侵入量が低下する。そのため、転がり軸受100においては、水素脆性に起因した早期剥離損傷が生じにくい。
 転がり軸受100では、内輪10の表面からの深さが50μmとなる位置、外輪20の表面からの深さが50μmとなる位置及び転動体30の表面(表面30a)からの深さが50μmとなる位置における圧縮残留応力が80MPa以上になっている。この圧縮残留応力により、内輪10の表面、外輪20の表面及び転動体30の表面(表面30a)における圧痕形成が抑制されるとともに、圧痕を起点とする亀裂の進展が抑制される。このように、転がり軸受100によると、表面からの水素侵入に伴う水素脆性の発生を抑制可能であるとともに、耐圧痕形成能を改善可能である。
 <実施例>
 軌道輪のサンプルとして、サンプル1からサンプル4が準備された。サンプル1及びサンプル2は表4に示される組成の鋼により形成され、サンプル3及びサンプル4は表5に示される組成の鋼により形成された。表4に示される鋼の組成は、第1組成(第2組成)に対応しており、表5に示される組成はJIS規格に定められているSUJ2の組成(第3組成)に対応している。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 サンプル1に対しては、浸窒処理工程S2、第1焼入れ工程S3、サブゼロ処理工程S9及び第2焼戻し工程S6が行われた。サンプル2に対しては、浸窒処理工程S2、第1焼入れ工程S3、第1焼戻し工程S4、第2焼入れ工程S5及び第2焼戻し工程S6が行われた。サンプル3に対しては、浸窒処理工程S2、第1焼入れ工程S3及び第2焼戻し工程S6が行われた。サンプル4に対しては、第1焼入れ工程S3及び第1焼戻し工程S4が行われた。
 表6に示されるように、サンプル1からサンプル3では、軌道面近傍における(軌道面からの深さが50μmとなる位置における)周方向の圧縮残留応力が80MPa以上になっていた。他方で、サンプル4では、軌道面近傍における(軌道面からの深さが50μmとなる位置における)周方向の圧縮残留応力が30MPa以下になっていた。サンプル1からサンプル3では、軌道面の耐圧痕形成能が、サンプル4と比較して優れていた。この比較から、軌道面近傍における圧縮残留応力が80MPa以上とされることにより軌道面の耐圧痕形成能が改善されることが明らかになった。
 表6に示されるように、サンプル1及びサンプル2では、軌道面からの深さが20μmまでの領域における鋼中の窒素濃度が、0.2質量パーセント以上0.5質量パーセント以下であった。サンプル3では、軌道面からの深さが20μmまでの領域における鋼中の窒素濃度が、0.3質量パーセント以上0.5質量パーセント以下であった。サンプル4では、軌道面からの深さが20μmまでの領域における鋼中に、窒素が含まれていなかった。
 表6に示されるように、サンプル1からサンプル3では、軌道面からの深さが20μmまでの領域に、クロム又はバナジウムを主成分とする析出物が微細(最大粒径が2.0μm以下)かつ高密度(平均面積率が1.0パーセント以上)に析出していた。サンプル4では、軌道面からの深さが20μmまでの領域に、クロム又はバナジウムを主成分とする析出物が析出していなかった。
 表6に示されるように、サンプル1及びサンプル2では、軌道面からの深さが20μmまでの領域に、クロム又はバナジウムを主成分とする析出物が特に微細かつ高密度(最大粒径が1.0μm以下かつ平均面積率が2.0パーセント以上)に分散していた。これに伴い、サンプル1及びサンプル2では、軌道面からの深さが50μmとなる位置における鋼の硬さが64HRC以上になっており、軌道面の耐圧痕形成能が特に良好であった。
 表6に示されるように、サンプル1では軌道面からの深さが50μmとなる位置における鋼中の残留オーステナイト量が20体積パーセント未満になっており、サンプル2では軌道面からの深さが50μmとなる位置における鋼中の残留オーステナイト量が25体積パーセント未満となっていた。サンプル3では軌道面からの深さが50μmとなる位置における鋼中の残留オーステナイト量が25体積パーセントを超えており、サンプル4では軌道面からの深さが50μmとなる位置における鋼中の残留オーステナイト量が20体積パーセント未満となっていた。このことから、サンプル1及びサンプル2では、軌道面近傍における鋼中の残留オーステナイト量が20体積パーセント未満又は25体積パーセント未満になっていることにより残留オーステナイトの分解に伴う寸法の経時変化が抑制されていることが明らかになった。
Figure JPOXMLDOC01-appb-T000006
 図6は、サンプル1の軌道面付近における断面のEBSDによる相マップである。図7は、サンプル2の軌道面付近における断面のEBSDによる相マップである。図8は、サンプル3の軌道面付近における断面のEBSDによる相マップである。図9は、サンプル4の軌道面付近における断面のEBSDによる相マップである。図6から図9中では、マルテンサイトブロック粒が、白色の領域により示されている。
 図10は、サンプル1からサンプル4の軌道面からの深さが20μmまでの領域における鋼中のマルテンサイトブロック粒の平均粒径を示すグラフである。図10の縦軸は、軌道面からの深さが20μmまでの領域における鋼中のマルテンサイトブロック粒の平均粒径(単位:μm)である。図10及び表7に示されるように、サンプル1及びサンプル2では、軌道面からの深さが20μmまでの領域における鋼中の上位面積率50パーセントでのマルテンサイトブロック粒の平均粒径が1.5μm以下になっていた。
 他方で、サンプル3では、軌道面からの深さが20μmまでの領域における鋼中の上位面積率50パーセントでのマルテンサイトブロック粒の平均粒径が1.5μmを超えていた。このことから、サンプル1及びサンプル2では、軌道面からの深さが20μmまでの領域において、鋼中にクロム又はバナジウムを主成分とする析出物が微細かつ高密度に析出している結果、マルテンサイトブロック粒が微細化され、軌道面近傍における剪断抵抗が改善されること、ひいては軌道面の耐久性が改善されることが明らかになった。
Figure JPOXMLDOC01-appb-T000007
 <水素侵入特性>
 サンプル1からサンプル4の表層部への水素侵入特性を、以下の方法により評価した。この評価では、第1に、上記の使用前のサンプル1からサンプル4を室温から400℃まで加熱することにより、使用前のサンプル1からサンプル4からの水素放出量が測定された。第2に、水素環境下で50時間使用された後のサンプル1からサンプル4を室温から400°まで加熱することにより、水素環境下で50時間使用された後のサンプル1からサンプル4の軌道部材からの水素放出量が測定された。
 表8に示されるように、サンプル4では、使用前後での水素放出量の比(すなわち、使用後の水素放出量を使用前の水素放出量で除した値)が、3.0以上になっていた。他方で、サンプル1及びサンプル2では、使用前後での水素放出量の比が0.9以上1.2以下の範囲内にあった。サンプル3では、使用前後での水素放出量の比が1.3以上2.0以下の範囲内にあった。
Figure JPOXMLDOC01-appb-T000008
 上記のとおり、サンプル1からサンプル3では軌道面からの深さが20μmまでの領域にクロム又はバナジウムを主成分とする析出物が析出している一方、サンプル4では軌道面からの深さが20μmまでの領域に、クロム又はバナジウムを主成分とする析出物が析出していなかった。この比較から、表層部50にクロム又はバナジウムを主成分とする析出物が析出することによりその周囲が水素のトラップサイトになること、すなわち、表層部50への水素侵入が抑制されて水素脆性に起因した早期剥離が抑制されることが明らかにされた。
 (第2実施形態)
 第2実施形態に係る転がり軸受を説明する。第2実施形態に係る転がり軸受を、転がり軸受100Aとする。ここでは、転がり軸受100と異なる点を主に説明し、重複する説明は繰り返さないものとする。
 <転がり軸受100Aの構成>
 図11は、転がり軸受100Aの断面図である。図11に示されているように、転がり軸受100Aは、内輪10と、外輪20と、複数の転動体30と、保持器40とを有している。転がり軸受100Aでは、内輪10、外輪20及び転動体30の表面に、表層部50が形成されている。内輪10、外輪20及び転動体30は、第1組成又は第2組成の鋼で形成されている。これらの点に関して、転がり軸受100Aの構成は、転がり軸受100の構成と共通している。
 転がり軸受100Aでは、内輪10の表面、外輪20の表面及び転動体30の表面(表面30a)からの深さが50μmとなる位置における鋼の硬さが、65.5HRC以上であることが好ましい。
 転がり軸受100Aでは、表層部50における鋼は、上位面積率が50パーセントでのマルテンサイトブロック粒の平均粒径が1.3μm以下であることが好ましい。表層部50の鋼中において、上位面積率が30パーセントでのマルテンサイトブロック粒の平均粒径は、1.6μm以下であることが好ましい。これらの点に関して、転がり軸受100Aの構成は、転がり軸受100の構成と異なっている。なお、上位面積率が50パーセントでのマルテンサイトブロック粒の平均粒径は、以下の方法により測定される。
 第1に、表層部50を含む断面において、断面観察が行われる。この際、EBSD法により観察視野に含まれているマルテンサイトブロック粒が特定される。この観察視野は、倍率1300倍において観察される領域である。第2に、EBSD法により得られた結晶方位データから、観察視野に含まれているマルテンサイトブロック粒の各々の面積が解析される。
 第3に、観察視野に含まれているマルテンサイトブロック粒の各々の面積を、面積が大きいものから順に加算していく。この加算は、観察視野に含まれているマルテンサイトブロック粒の合計面積の30パーセントに達するまで行われる。上記の加算の対象になったマルテンサイトブロック粒の各々について、円相当径が算出される。この円相当径は、マルテンサイトブロック粒の面積をπ/4で除した値の平方根である。上記の加算の対象になったマルテンサイトブロック粒の円相当径の平均値が、上位面積率が30パーセントでのマルテンサイトブロック粒の平均粒径と見做される。
 このように、第2実施形態には、以下の構成が開示されている。
 <付記1>
 表面を有する鋼製の転動部品であって、
 前記表面からの深さが20μmまでの領域である表層部を備え、
 前記転動部品は、水素利用機器用であり、
 前記鋼は、0.70質量パーセント以上1.10質量パーセント以下の炭素と、0.15質量パーセント以上0.35質量パーセント以下のシリコンと、0.30質量パーセント以上0.60質量パーセント以下のマンガンと、1.30質量パーセント以上1.60質量パーセント以下のクロムと、0.01質量パーセント以上0.50質量パーセント以下のモリブデンと、0.01質量パーセント以上0.50質量パーセント以下のバナジウムとを含有するとともに、残部が鉄及び不可避不純物からなり、
 前記表層部における前記鋼中の窒素濃度は、0.2質量パーセント以上であり、
 前記表層部における前記鋼中には、クロム又はバナジウムを主成分とする析出物が析出しており、
 前記表面からの距離が50μmの位置での前記鋼の硬さは、64HRC以上であり、
 前記表面からの距離が50μmの位置での前記鋼中の残留オーステナイト量は、20体積パーセント未満である、転動部品。
 <付記2>
 表面を有する鋼製の転動部品であって、
 前記表面からの深さが20μmまでの領域である表層部を備え、
 前記転動部品は、水素利用機器用であり、
 前記鋼は、0.70質量パーセント以上1.10質量パーセント以下の炭素と、0.15質量パーセント以上0.35質量パーセント以下のシリコンと、0.30質量パーセント以上0.60質量パーセント以下のマンガンと、1.30質量パーセント以上1.60質量パーセント以下のクロムと、0.01質量パーセント以上0.50質量パーセント以下のモリブデンと、0.01質量パーセント以上0.50質量パーセント以下のバナジウムとを含有するとともに、残部が鉄及び不可避不純物からなり、
 前記表層部における前記鋼中の窒素濃度は、0.2質量パーセント以上であり、
 前記表層部における前記鋼中には、クロム又はバナジウムを主成分とする析出物が析出しており、
 前記表層部における前記鋼中の上位面積率50パーセントでのマルテンサイトブロック粒の平均粒径は、1.3μm以下であり、
 前記表面からの距離が50μmの位置での前記鋼の硬さは64HRC以上であり、
 前記表面からの距離が50μmの位置での前記鋼中の残留オーステナイト量は、25体積パーセント未満である、転動部品。
 <付記3>
 前記鋼は、0.90質量パーセント以上1.10質量パーセント以下の炭素と、0.20質量パーセント以上0.30質量パーセント以下のシリコンと、0.40質量パーセント以上0.50質量パーセント以下のマンガンと、1.40質量パーセント以上1.60質量パーセント以下のクロムと、0.20質量パーセント以上0.30質量パーセント以下のモリブデンと、0.20質量パーセント以上0.30質量パーセント以下のバナジウムとを含有するとともに、残部が鉄及び不可避不純物からなる、付記1又は付記2に記載の転動部品。
 <付記4>
 前記析出物の最大粒径は、1.0μm以下である、付記1~付記3のいずれかに記載の転動部品。
 <付記5>
 前記析出物の平均面積率は、2.0パーセント以上である、付記1~付記4のいずれかに記載の転動部品。
 <付記6>
 前記表面からの距離が50μmの位置での前記鋼の硬さは65.5HRC以上である、付記1~付記5のいずれかに記載の転動部品。
 <付記7>
 転がり軸受であって、
 内輪と、
 外輪と、
 転動体とを備え、
 前記転がり軸受は、水素利用機器用であり、
 前記内輪、前記外輪及び前記転動体の少なくともいずれかは、付記1~付記2のいずれかの前記転動部品である、転がり軸受。
 <転がり軸受100Aの効果>
 転がり軸受100Aでは、内輪10、外輪20及び転動体30が第1組成又は第2組成の鋼で形成されているため、表層部50における鋼中に微細な析出物が析出する。これにより、内輪10の表面、外輪20の表面及び転動体30の表面における鋼の硬さを確保することができる(より具体的には、内輪10の表面からの深さが50μmの位置、外輪20の表面からの深さが50μmの位置及び転動体30の表面からの深さが50μmの位置における鋼の硬さが64HRC以上とすることができる)とともに、それらの析出物が応力集中源となる(亀裂発生の起点となる)ことを抑制することができる。
 転がり軸受100Aでは、表層部50における鋼中に微細な析出物が析出し、内輪10の表面、外輪20の表面及び転動体30の表面における鋼の硬さが確保されているため、内輪10の表面、外輪20の表面及び転動体30の表面に金属新生面が形成されることが抑制される。そのため、転がり軸受100Aでは、内輪10の表面、外輪20の表面及び転動体30の表面に水素が発生しにくい。
 転がり軸受100Aでは、表層部50における鋼中に析出している微細な析出物の近傍が水素のトラップサイトになるため、表層部50への水素侵入量が低下する。そのため、転がり軸受100Aでは、水素脆性に起因した早期剥離損傷が生じにくい。転がり軸受100Aでは、内輪10の表面からの深さが50μmの位置、外輪20の表面からの深さが50μmの位置及び転動体30の表面からの深さが50μmの位置における鋼中の残留オーステナイト量が20体積パーセント未満(又は25体積パーセント未満)とされているため、使用時の温度上昇に伴う残留オーステナイトの分解による内輪10、外輪20及び転動体30の寸法変化を抑制することができる。
 表層部50の鋼中において、上位面積率50パーセントでの平均粒径が1.3μm以下となるようにマルテンサイトブロック粒が微細化されている場合には、表層部50の高靭性化により、内輪10、外輪20及び転動体30の表面近傍における剪断抵抗が改善される。そのため、この場合、転がり軸受100Aの耐久性をさらに改善することができる。
 (第3実施形態)
 第3実施形態に係る転がり軸受を説明する。第3実施形態に係る転がり軸受を、転がり軸受100Bとする。ここでは、転がり軸受100と異なる点を主に説明し、重複する説明は繰り返さないものとする。
 <転がり軸受100Bの効果>
 転がり軸受100Bは、例えば、単式平面座スラスト玉軸受である。但し、転がり軸受100Bは、これに限られない。転がり軸受100Bは、例えば、深溝玉軸受、アンギュラ玉軸受、円筒ころ軸受、円錐ころ軸受又は自動調心ころ軸受であってもよい。転がり軸受100Bは、水素利用機器用である。
 図12は、転がり軸受100Bの断面図である。図12に示されるように、転がり軸受100Bは、中心軸A1を有している。図1には、中心軸A1に沿う断面における転がり軸受100Bの断面図が示されている。転がり軸受100Bは、軌道部材(軌道輪又は軌道盤)と、転動体とを有している。転がり軸受100Bにおいて、軌道部材は内輪(軸軌道盤)10及び外輪(ハウジング軌道盤)20であり、転動体は玉80である。転がり軸受100Bは、保持器90をさらに有している。
 内輪60は、環状(リング状)の形状を有している。内輪60は、第1面60aと、第2面60bと、内周面60cと、外周面60dとを有している。
 第1面60a及び第2面60bは、中心軸A1に沿う方向(本実施形態において「軸方向」とする)における端面を構成している。第2面60bは、第1面60aの軸方向における反対面になっている。第1面60aは、軌道面60aaを有している。第1面60aは、軌道面60aaにおいて第2面60b側に窪んでいる。断面視において、軌道面60aaは、部分円弧形状を有している。軌道面60aaは、玉80に接触する面であり、内輪60の接触面を構成している。
 内周面60cは、中心軸A1側を向いている面である。内周面60cは、軸方向における一方端で第1面60aに連なっており、軸方向における他方端で第2面60bに連なっている。
 外周面60dは、中心軸A1とは反対側を向いている面である。すなわち、外周面60dは、中心軸A1に直交する方向(本実施形態において「径方向」という)における内周面60cの反対面になっている。外周面60dは、軸方向における一方端で第1面60aに連なっており、軸方向における他方端で第2面60bに連なっている。
 外輪70は、リング状の形状を有している。外輪70は、第1面70aと、第2面70bと、内周面70cと、外周面70dとを有している。
 第1面70a及び第2面70bは、軸方向における端面を構成している。外輪70は、第1面70aが第1面60aに対向するように配置されている。第2面70bは、第1面70aの軸方向における反対面になっている。第1面70aは、軌道面70aaを有している。第1面70aは、軌道面70aaにおいて第2面70b側に窪んでいる。断面視において、軌道面70aaは、部分円弧形状を有している。軌道面70aaは、玉80に接触する面であり、外輪70の接触面を構成している。
 内周面70cは、中心軸A1側を向いている面である。内周面70cは、軸方向における一方端で第1面70aに連なっており、軸方向における他方端で第2面70bに連なっている。
 外周面70dは、中心軸A1とは反対側を向いている面である。すなわち、外周面70dは、中心軸A1に直交する方向における内周面70cの反対面になっている。外周面70dは、軸方向における一方端で第1面70aに連なっており、軸方向における他方端で第2面70bに連なっている。
 玉80は、球状の形状を有している。玉80の数は、複数である。玉80は、第1面60aと第1面70aとの間に配置されている。より具体的には、玉80は、軌道面60aaと軌道面70aaとの間に配置されている。玉80は、その表面において、軌道面60aa及び軌道面70aaと接触する。すなわち、玉80の表面は、接触面である。
 保持器90は、玉80を保持している。保持器90は、中心軸A1を中心とする円周に沿う方向(本実施形態において「周方向」とする)において隣り合う2つの玉80の間隔が一定範囲となるように、玉80を保持している。
 内輪60、外輪70及び玉80は、第1組成の鋼により形成されている。内輪60、外輪70及び玉80は、第2組成の鋼により形成されていてもよい。内輪60、外輪70及び玉80を構成している鋼には、焼き入れが行われている。内輪60、外輪70及び玉80の少なくともいずれかが、第1組成(第2組成)の鋼により形成されていればよい。内輪60、外輪70及び玉80は、それらの表面において、表層部50を有している。表層部50は、内輪60、外輪70及び玉80の表面から深さが20μmまでの領域である。表層部50は、少なくとも内輪60、外輪70及び玉80の接触面に形成されていればよい。表層部50は、内輪60、外輪70及び玉80の少なくともいずれかに形成されていればよい。
 転がり軸受100Bでは、接触面に直交する断面視において、表層部50中に、粒径が0.5μm以下の析出物が100μmあたり合計して60個以上存在している。接触面に直交する断面視において、表層部50中には、粒径が0.5μm以下の析出物が100μmあたり合計して80個以上存在していることが好ましい。なお、表層部50中の析出物は、例えば炭窒化物及び窒化物であり、クロム若しくはバナジウムを主成分とする窒化物又はクロム若しくはバナジウムを主成分とする炭窒化物であってもよい。
 転がり軸受100Bでは、接触面に直交する断面視において、表層部50中における析出物の面積率の合計は、1パーセント以上10パーセント以下である。接触面に直交する断面視において、表層部50中における析出物の面積率の合計は、2パーセント以上7パーセント以下であることが好ましい。
 転がり軸受100Bでは、表層部50中における窒素の含有量が、0.2質量パーセント以上0.8質量パーセント以下であることが好ましい。表層部50中における窒素の含有量は、0.3質量パーセント以上0.5質量パーセント以下であることがさらに好ましい。但し、表層部50中における窒素の含有量は、表層部50中に粒径が100μmあたり合計して60個以上存在させることができ、かつ表層部50中における析出物の面積率の合計が1パーセント以上10パーセント以下とすることができれば、上記の範囲内になくてもよい。
 析出物の面積率は、FE-SEMを用いて倍率5000倍で表層部50の断面画像を取得するとともに、当該断面画像を二値化し、二値化された当該断面画像に対して画像処理を行うことにより算出される。なお、表層部50の断面画像は、3視野以上で取得され、面積率は、それら複数の断面画像の平均値とされる。各々の析出物の粒径は、上記と同様の方法を用いて各々の析出物の面積を取得するとともに、当該面積をπで除した値の平方根に2を乗じることにより得られる。
 転がり軸受100Bでは、内輪60、外輪70及び玉80を構成している鋼中の残留オーステナイトの体積率が、接触面からの深さが50μmの位置において、20パーセント以上40パーセント以下であることが好ましい。内輪60、外輪70及び玉80を構成している鋼中の残留オーステナイトの体積比は、接触面からの深さが50μmの位置において、25パーセント以上35パーセント以下であることがさらに好ましい。これにより、異物混入環境下における接触面の耐久性を改善することができるとともに、残留オーステナイトの分解に伴う経年変化を抑制することができる。
 転がり軸受100Bでは、内輪60、外輪70及び玉80の接触面からの深さが50μmとなる位置における硬さが、653Hv以上800Hv以下であることが好ましい。なお、潤滑油の分解に伴って発生する水素に起因した水素脆性を抑制する際には接触面近傍の硬さを向上させて接触面に金属新生面が生じにくくすることが水素発生を抑制するために有効であるが、金属新生面の発生の有無にかかわらず水素が存在する環境下では、内輪60、外輪70及び玉80の接触面からの深さが50μmとなる位置における硬さは653Hv以上800Hv以下でなくてもよい。
 内輪60、外輪70及び玉80の接触面からの深さが50μmとなる位置における硬さは、JIS規格(JIS Z 2244:2009)に規定されているビッカース硬さ試験法により測定される。また、測定時の荷重は、300gfとされる。
 転がり軸受100Bでは、表層部50の鋼中において、比較面積率(上位面積率)が30パーセントでのマルテンサイトブロック粒の平均粒径が、2.0μm以下であることが好ましい。表層部50の鋼中において、比較面積率が50パーセントでのマルテンサイトブロック粒の平均粒径は、1.5μm以下であることがさらに好ましい。これにより、表層部50が高靭性化され、接触面(より具体的には、軌道面60aa、軌道面70aa及び玉80の表面)の剪断抵抗をすることができる。
 このように、第3実施形態には、以下の構成が開示されている。
 <付記1>
 接触面を有する焼き入れが行われた鋼製の転動部材であって、
 前記転動部材は、水素利用機器用であり、
 前記転動部材は、前記接触面からの深さが20μmまでの領域である表層部を備え、
 前記鋼は、0.70質量パーセント以上1.10質量パーセント以下の炭素と、0.15質量パーセント以上0.35質量パーセント以下のシリコンと、0.30質量パーセント以上0.60質量パーセント以下のマンガンと、1.30質量パーセント以上1.60質量パーセント以下のクロムと、0.01質量パーセント以上0.50質量パーセント以下のモリブデンと、0.01質量パーセント以上0.50質量パーセント以下のバナジウムとを含有するとともに、残部が鉄及び不可避不純物からなり、
 前記接触面に直交する断面視において、前記表層部中には粒径が0.50μm以下の析出物が100μmあたり合計して60個以上存在し、かつ、前記表層部での前記析出物の面積率の合計が1パーセント以上10パーセント以下である、転動部材。
 <付記2>
 前記鋼は、0.90質量パーセント以上1.10質量パーセント以下の炭素と、0.20質量パーセント以上0.30質量パーセント以下のシリコンと、0.40質量パーセント以上0.50質量パーセント以下のマンガンと、1.40質量パーセント以上1.60質量パーセント以下のクロムと、0.20質量パーセント以上0.30質量パーセント以下のモリブデンと、0.20質量パーセント以上0.30質量パーセント以下のバナジウムとを含有するとともに残部が鉄及び不可避不純物からなる、付記1に記載の転動部材。
 <付記3>
 前記表層部中における窒素の含有量は、0.3質量パーセント以上0.5質量パーセント以下である、付記1又は付記2に記載の転動部材。
 <付記4>
 前記接触面に直交する断面視において、前記表層部中には粒径が0.50μm以下の析出物が100μmあたり合計して80個以上存在し、かつ、前記表層部での前記析出物の面積率の合計が2パーセント以上7パーセント以下である、付記1~付記3のいずれかに記載の転動部材。
 <付記5>
 前記接触面からの深さが50μmの位置での残留オーステナイト量の体積率は、20パーセント以上40パーセント以下である、付記1~付記4のいずれか1項に記載の転動部材。
 <付記6>
 前記接触面からの深さが50μmの位置での残留オーステナイト量の体積率は、25パーセント以上35パーセント以下である、付記1~付記5のいずれかに記載の転動部材。
 <付記7>
 前記接触面からの深さが50μmの位置での硬さは、653Hv以上800Hv以下である、付記1~付記6のいずれかに記載の転動部材。
 <付記8>
 転がり軸受であって、
 軌道部材と、
 前記軌道部材に接触して配置される転動体とを備え、
 前記転がり軸受は、水素利用機器用であり、
 前記軌道部材及び前記転動体の少なくともいずれかは、付記1~付記7のいずれかに記載の前記転動部材である、転がり軸受。
 <転がり軸受100Bの製造方法>
 図13は、転がり軸受100Bの製造方法を示す工程図である。図13に示されるように、転がり軸受100Bの製造方法は、準備工程S10と、熱処理工程S11と、仕上げ工程S12と、組み立て工程S13とを有している。熱処理工程S11は、準備工程S10の後に行われる。仕上げ工程S12は、熱処理工程S11の後に行われる。組み立て工程S13は、仕上げ工程S12の後に行われる。
 準備工程S10においては、熱処理工程S11及び仕上げ工程S12に供される加工対象部材が準備される。この加工対象部材としては、内輪60及び外輪70を形成しようとする場合はリング状の部材が準備され、玉80を形成しようとする場合は球状の部材が準備される。この加工対象部材は、第1組成又は第2組成の鋼により形成されている。
 熱処理工程S11は、加熱工程S111と、冷却工程S112と、焼戻し工程S113とを有している。加熱工程S111においては、加工対象部材が、A変態点以上の温度に所定時間保持される。また、加熱工程S111においては、加工対象部材に対する浸窒処理も行われる。この浸窒処理は、窒素源となるガス(例えば、アンモニアガス)を含む雰囲気ガス中において、上記の加熱保持を行うことにより実施される。冷却工程S112は、加熱工程S111の後に行われる。冷却工程S112においては、加工対象部材が、Ms変態点以下の温度まで冷却される。この冷却は、例えば、油冷により行われる。焼戻し工程S113は、冷却工程S112の後に行われる。焼戻し工程S113においては、加工対象部材が、A変態点未満の温度に所定時間保持される。
 仕上げ工程S12においては、加工対象部材に対する仕上げ加工(研削・研磨)及び洗浄が行われる。これにより、内輪60、外輪70及び玉80が準備される。組み立て工程S13においては、内輪60、外輪70及び玉80が、保持器90とともに組み立てられる。以上により、図1に示される構造の転がり軸受100Bが製造される。
 <転がり軸受100Bの効果>
 転がり軸受100Bでは、内輪60、外輪70及び玉80が第1組成又は第2組成の鋼により形成されているため、熱処理工程S11(浸窒処理)が行われることにより、表層部50に微細な析出物が析出する。表層部50中の微細な析出物の近傍が水素のトラップサイトになるため、表層部50における水素侵入量が低下する。そのため、転がり軸受100Bにおいては、水素脆性に起因した早期剥離損傷が生じにくい。
 <実施例>
 転がり軸受のサンプルとして、サンプル5及びサンプル6が準備された。サンプル5及びサンプル6は、内径30mm、外径47mm及び幅11mmのJIS規格51106型番の単式スラスト玉軸受である。
 サンプル5の内輪及び外輪は、表9に示される組成の鋼により形成された。表9に示される組成は、第1組成及び第2組成の範囲内にある。サンプル6の内輪及び外輪は、表10に示される組成の鋼により形成された。表10に示される組成は、JIS規格に定めるSUJ2の組成範囲内にあり、第1組成及び第2組成の範囲外にある。なお、サンプル5及びサンプル6の玉は、ステンレス鋼(SUS440C)により形成された。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 サンプル5の内輪及び外輪には、熱処理工程S11が行われた。サンプル6の内輪及び外輪には、熱処理工程S11が行われていない。より具体的には、サンプル6の内輪及び外輪に対しては、焼き入れ及び焼戻しが行われているが、浸窒処理が行われていない。
 図14は、サンプル5の内輪及び外輪の表層部における炭素及び窒素の含有量の分布を示すグラフである。図14において、横軸は表面からの距離(単位はmm)であり、縦軸は炭素及び窒素の含有量(単位は質量パーセント)である。
 図14及び表11に示されているように、サンプル5の内輪及び外輪には熱処理工程S11(浸窒処理)が行われているため、サンプル5の内輪及び外輪における表層部には、窒素が含まれていた。他方で、表11に示されるように、サンプル6の内輪及び外輪には熱処理工程S11(浸窒処理)が行われていないため、サンプル6の内輪及び外輪における表層部には、窒素が含有されていなかった。
 表11に示されるように、サンプル5の内輪及び外輪における表層部中では、析出物の面積率の合計が2.2パーセント以上7.0パーセント以下であった。サンプル6の内輪及び外輪における表層部中では、析出物の面積率の合計が0.07パーセント以上0.24パーセント以下であった。
 表11に示されるように、サンプル5の内輪及び外輪における表層部中では、析出物の数が、100μmあたり合計して66個以上425個以下であった。サンプル6の内輪及び外輪における表層部中では、析出物の数が、100μmあたり合計して8個以上50個以下であった。
Figure JPOXMLDOC01-appb-T000011
 図15は、サンプル5の内輪及び外輪の表層部における代表的な断面FE-SEM画像である。図15に示されるように、サンプル5の内輪及び外輪の表層部においては、析出物が微細化されていた(殆どの析出物の粒径が、0.5μm以下であった)。なお、サンプル6の内輪及び外輪の表層部においては、析出物が微細化されていなかった(殆どの析出物の粒径が、0.5μmを超えていた)。
 サンプル5及びサンプル6の軌道部材(内輪及び外輪)の表層部への水素侵入特性を、以下の方法により評価した。この評価では、第1に、上記の使用前のサンプル5及びサンプル6の軌道部材を室温から400℃まで加熱することにより、使用前のサンプル5及びサンプル6の軌道部材からの水素放出量が測定された。第2に、水素環境下で50時間使用された後のサンプル5及びサンプル6の軌道部材を室温から400℃まで加熱することにより、水素環境下で50時間使用された後のサンプル5及びサンプル6の軌道部材からの水素放出量が測定された。
 サンプル6では、使用前後での水素放出量の比(すなわち、使用後の水素放出量を使用前の水素放出量で除した値)が、3.2になっていた。他方で、サンプル5では、使用前後での水素放出量の比が、0.9になっていた。この比較から、接触面に表層部50が形成されることにより表層部50への水素侵入が抑制され、水素脆性に起因した早期剥離が抑制されることが、実験的に明らかにされた。
 以上のように本発明の実施形態について説明を行ったが、上記の実施形態を様々に変形することも可能である。また、本発明の範囲は、上記の実施形態に限定されるものではない。本発明の範囲は、請求の範囲によって示され、請求の範囲と均等の意味及び範囲内での全ての変更を含むことが意図される。
 100 転がり軸受、10 内輪、10a 第1端面、10b 第2端面、10c 内周面、10d 外周面、10da 軌道面、20 外輪、20a 第1端面、20b 第2端面、20c 内周面、20ca 軌道面、20d 外周面、30 転動体、30a 表面、40 保持器、50 表層部、A,A1 中心軸、S1 準備工程、S2 浸窒処理工程、S3 第1焼入れ工程、S4 第1焼戻し工程、S5 第2焼入れ工程、S6 第2焼戻し工程、S7 後処理工程、S8 組み立て工程、S9 サブゼロ処理工程、100A 転がり軸受、100B 転がり軸受、60 内輪、60a 第1面、60aa 軌道面、60b 第2面、60c 内周面、60d 外周面、70 外輪、70a 第1面、70aa 軌道面、70b 第2面、70c 内周面、70d 外周面、80 玉、90 保持器、S10 準備工程、S11 熱処理工程、S12 仕上げ工程、S13 組み立て工程、S111 加熱工程、S112 冷却工程、S113 焼戻し工程。

Claims (10)

  1.  表面を有する鋼製の転動部品であって、
     前記表面からの深さが20μmまでの領域である表層部を備え、
     前記転動部品は、水素利用機器用であり、
     前記鋼は、0.70質量パーセント以上1.10質量パーセント以下の炭素と、0.15質量パーセント以上0.35質量パーセント以下のシリコンと、0.30質量パーセント以上0.60質量パーセント以下のマンガンと、1.30質量パーセント以上1.60質量パーセント以下のクロムとを含有しており、
     前記表層部における前記鋼中には、クロム又はバナジウムを主成分とする析出物が析出しており、
     前記表面からの距離が50μmの位置での圧縮残留応力は、80MPa以上である、転動部品。
  2.  前記鋼は、0.01質量パーセント以上0.50質量パーセント以下のバナジウムと、0.01質量パーセント以上0.50質量パーセント以上のモリブデンとをさらに含有している、請求項1に記載の転動部品。
  3.  前記鋼は、0.90質量パーセント以上1.10質量パーセント以下の炭素と、0.20質量パーセント以上0.30質量パーセント以下のシリコンと、0.40質量パーセント以上0.50質量パーセント以下のマンガンと、1.40質量パーセント以上1.60質量パーセント以下のクロムと、0.10質量パーセント以上0.30質量パーセント以下のモリブデンと、0.20質量パーセント以上0.30質量パーセント以下のバナジウムとを含有するとともに、残部が鉄及び不可避不純物からなる、請求項1又は請求項2に記載の転動部品。
  4.  前記析出物の最大粒径は、2.0μm以下である、請求項1~請求項3のいずれか1項に記載の転動部品。
  5.  前記析出物の平均面積率は、1.0パーセント以上である、請求項1~請求項4のいずれか1項に記載の転動部品。
  6.  前記表面からの距離が50μmの位置での前記鋼の硬さは、64HRC以上である、請求項1~請求項5のいずれか1項に記載の転動部品。
  7.  前記表面からの距離が50μmの位置での前記鋼中の残留オーステナイト量は、25体積パーセント未満である、請求項1~請求項6のいずれか1項に記載の転動部品。
  8.  前記表層部における前記鋼中の窒素濃度は、0.2質量パーセント以上である、請求項1~請求項7のいずれか1項に記載の転動部品。
  9.  前記表層部における前記鋼中の上位面積率50パーセントでのマルテンサイトブロック粒の平均粒径は、1.5μm以下である、請求項1~請求項8のいずれか1項に記載の転動部品。
  10.  転がり軸受であって、
     内輪と、
     外輪と、
     転動体とを備え、
     前記転がり軸受は、水素利用機器用であり、
     前記内輪、前記外輪及び前記転動体の少なくともいずれかは、請求項1~請求項9のいずれか1項に記載の前記転動部品である、転がり軸受。
PCT/JP2022/043531 2021-11-30 2022-11-25 転動部品及び転がり軸受 WO2023100762A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22901195.2A EP4428261A1 (en) 2021-11-30 2022-11-25 Rolling component and rolling bearing
CN202280077955.XA CN118339321A (zh) 2021-11-30 2022-11-25 滚动部件和滚动轴承

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2021-194251 2021-11-30
JP2021194245A JP2023080744A (ja) 2021-11-30 2021-11-30 転動部材及び転がり軸受
JP2021194251A JP2023080749A (ja) 2021-11-30 2021-11-30 転動部品及び転がり軸受
JP2021-194688 2021-11-30
JP2021-194245 2021-11-30
JP2021194688A JP2023081036A (ja) 2021-11-30 2021-11-30 転動部品及び転がり軸受

Publications (1)

Publication Number Publication Date
WO2023100762A1 true WO2023100762A1 (ja) 2023-06-08

Family

ID=86612170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/043531 WO2023100762A1 (ja) 2021-11-30 2022-11-25 転動部品及び転がり軸受

Country Status (2)

Country Link
EP (1) EP4428261A1 (ja)
WO (1) WO2023100762A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004011712A (ja) * 2002-06-05 2004-01-15 Nsk Ltd 転がり軸受、これを用いたベルト式無段変速機
JP2004052101A (ja) * 2001-11-14 2004-02-19 Koyo Seiko Co Ltd 転がり、摺動部品およびその製造方法
JP3990212B2 (ja) 2001-11-29 2007-10-10 Ntn株式会社 軸受部品および転がり軸受
JP2008111512A (ja) * 2006-10-31 2008-05-15 Ntn Corp 燃料電池システム用転がり軸受
JP2014080661A (ja) * 2012-10-17 2014-05-08 Ntn Corp 軸受部品、転がり軸受および軸受部品の製造方法
WO2021206049A1 (ja) * 2020-04-06 2021-10-14 Ntn株式会社 軌道輪、軌道輪の製造方法及び転がり軸受
WO2022092210A1 (ja) * 2020-10-30 2022-05-05 Ntn株式会社 転動部材及び転がり軸受
WO2022230979A1 (ja) * 2021-04-30 2022-11-03 Ntn株式会社 転がり軸受

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004052101A (ja) * 2001-11-14 2004-02-19 Koyo Seiko Co Ltd 転がり、摺動部品およびその製造方法
JP3990212B2 (ja) 2001-11-29 2007-10-10 Ntn株式会社 軸受部品および転がり軸受
JP2004011712A (ja) * 2002-06-05 2004-01-15 Nsk Ltd 転がり軸受、これを用いたベルト式無段変速機
JP2008111512A (ja) * 2006-10-31 2008-05-15 Ntn Corp 燃料電池システム用転がり軸受
JP2014080661A (ja) * 2012-10-17 2014-05-08 Ntn Corp 軸受部品、転がり軸受および軸受部品の製造方法
WO2021206049A1 (ja) * 2020-04-06 2021-10-14 Ntn株式会社 軌道輪、軌道輪の製造方法及び転がり軸受
WO2022092210A1 (ja) * 2020-10-30 2022-05-05 Ntn株式会社 転動部材及び転がり軸受
WO2022230979A1 (ja) * 2021-04-30 2022-11-03 Ntn株式会社 転がり軸受

Also Published As

Publication number Publication date
EP4428261A1 (en) 2024-09-11

Similar Documents

Publication Publication Date Title
JP5194532B2 (ja) 転がり軸受
WO2019124074A1 (ja) 軸受部品及び転がり軸受
WO2021059975A1 (ja) 転がり軸受
JP4998054B2 (ja) 転がり軸受
WO2022092210A1 (ja) 転動部材及び転がり軸受
JP2008151236A (ja) 転がり軸受
WO2023100762A1 (ja) 転動部品及び転がり軸受
JP7538770B2 (ja) 転がり軸受
CN114746564B (zh) 轴承部件
JP2011190921A (ja) スラストころ軸受
JP2008232212A (ja) 転動装置
JP2023081036A (ja) 転動部品及び転がり軸受
JP2023080749A (ja) 転動部品及び転がり軸受
JP2023080744A (ja) 転動部材及び転がり軸受
JP7212100B2 (ja) 転がり軸受
WO2023058518A1 (ja) 転動部品及び転がり軸受
JP6974642B1 (ja) 転動部材及び転がり軸受
JP7177883B2 (ja) 転動部品及び転がり軸受
JP2022107970A (ja) 軸受部品及び転がり軸受
JP2022107971A (ja) 軸受部品及び転がり軸受
WO2024157823A1 (ja) 転動部材
JP2009092161A (ja) 転がり軸受
JP2022171155A (ja) 転がり軸受
JP2024104031A (ja) 転動部材
CN116583611A (zh) 滚动构件和滚动轴承

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22901195

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280077955.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022901195

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022901195

Country of ref document: EP

Effective date: 20240605

NENP Non-entry into the national phase

Ref country code: DE