WO2023100625A1 - 複合粒子及びその製造方法、電気化学素子用電極、並びに電気化学素子 - Google Patents

複合粒子及びその製造方法、電気化学素子用電極、並びに電気化学素子 Download PDF

Info

Publication number
WO2023100625A1
WO2023100625A1 PCT/JP2022/042141 JP2022042141W WO2023100625A1 WO 2023100625 A1 WO2023100625 A1 WO 2023100625A1 JP 2022042141 W JP2022042141 W JP 2022042141W WO 2023100625 A1 WO2023100625 A1 WO 2023100625A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite particles
particles
active material
electrode active
electrode
Prior art date
Application number
PCT/JP2022/042141
Other languages
English (en)
French (fr)
Inventor
幸枝 伊東
康博 一色
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Publication of WO2023100625A1 publication Critical patent/WO2023100625A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/42Powders or particles, e.g. composition thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to composite particles, methods for producing the same, electrodes for electrochemical devices, and electrochemical devices.
  • Electrochemical devices such as lithium-ion secondary batteries are small, lightweight, have high energy density, and can be repeatedly charged and discharged, and are used in a wide range of applications.
  • An electrode for an electrochemical device is composed mainly of an electrode active material on an electrode base material. It has a structure in which an electrode mixture layer containing other components such as a binder is arranged.
  • the electrode active material is specifically optimized for the density and particle size, etc. Attempts have been made to improve the properties of (see, for example, US Pat.
  • an object of the present invention is to provide composite particles and a method for producing the same, which can improve the stability of the basis weight and the rollability of the obtained electrode.
  • Another object of the present invention is to provide an electrode for an electrochemical device which is excellent in stability in basis weight and rollability, and an electrochemical device including the same.
  • the present inventors have conducted intensive studies with the aim of solving the above problems.
  • the present inventors have found that composite particles containing electrode active material particles whose primary particles have a median diameter within a predetermined range, and whose D50 value in the volume-based particle size distribution is within a predetermined range, Composite particles having a value of D90/D10 within a predetermined range and a ratio of carbon atoms in the surface of the composite particles within a predetermined range exhibit stability and rollability when forming an electrode.
  • the present invention has been completed by newly discovering that it is possible to improve the
  • the composite particles of the present invention are composite particles containing electrode active material particles, a conductive material, and a binder.
  • the number-based median diameter of the primary particles of the electrode active material particles is 0.2 ⁇ m or more and 4.0 ⁇ m or less, and the D50 in the volume-based particle size distribution of the composite particles is 20 ⁇ m or more and 250 ⁇ m or less.
  • D90/D10 are 2 or more and 30 or less, and the ratio of carbon atoms in the surface of the composite particles is 20% or more and 70% or less by mass.
  • An electrode formed using composite particles satisfying such various attributes is excellent in basis weight stability and rollability.
  • an electrochemical device provided with such electrodes is excellent in high-temperature storage characteristics.
  • the "number-based median diameter of the primary particles of the electrode active material particles", the “volume-based particle size distribution of the composite particles”, and the “proportion of carbon atoms in the surface of the composite particles” are It can be measured by the method described in Examples of the present specification.
  • the electrode active material particles preferably have a true specific gravity of 3.5 or more and 6.0 or less.
  • Composite particles satisfying such conditions are more excellent in the stability of basis weight and rollability of the resulting electrode.
  • an electrochemical device provided with such an electrode is even more excellent in high-temperature storage characteristics.
  • the "true specific gravity of the electrode active material particles" in the present invention can be measured according to JIS Z 8807:2012.
  • the electrode active material particles are Al, Zr, W, Ti, Mg, Ta, Nb, Mo, Ir, Sc, V, Cr , and Hf, and the proportion of the element in the electrode active material particles is preferably 0.05 mol % or more and 2.0 mol % or less. If the electrode active material particles contain at least one of these elements in the above ratio, the resulting electrode will be more excellent in basis weight stability and rollability. Furthermore, an electrochemical device provided with such an electrode is even more excellent in high-temperature storage characteristics.
  • the electrode active material particles contain the above elements
  • the proportion of the above elements in the electrode active material particles are determined by SEM/EDX (scanning electron microscope/energy dispersive X-ray Spectroscopy) can be used to identify and measure according to the methods described in the Examples herein.
  • the present invention is intended to advantageously solve the above problems, and the method for producing composite particles of the present invention comprises electrode active material particles, a conductive material, and a binder.
  • a method for producing composite particles wherein the powder material containing the electrode active material particles having a median diameter based on the number of primary particles of 0.2 ⁇ m or more and 4 ⁇ m or less is stirred to be in a stirred state; By adding the binder to the powder material in the state, the D50 in the volume-based particle size distribution is 20 ⁇ m or more and 250 ⁇ m or less, and the value of D90/D10 is 2 or more and 30 or less. and a stirring granulation step for obtaining composite particles.
  • An electrode formed using composite particles manufactured according to such a manufacturing method is excellent in basis weight stability and rollability. Furthermore, an electrochemical device provided with such electrodes is excellent in high-temperature storage characteristics.
  • the aggregates of the electrode active material particles are crushed in the presence of the conductive material.
  • the composite particles can be efficiently produced and the quality of the obtained composite particles can be improved.
  • the pre-stirring step can be carried out in a dry manner.
  • an object of the present invention is to advantageously solve the above-mentioned problems. It is characterized by comprising an electrode mixture layer containing composite particles for use. If the electrode contains an electrode mixture layer containing any of the composite particles for an electrochemical device described above, the electrode will be more excellent in basis weight stability and rollability.
  • Another object of the present invention is to advantageously solve the above problems, and an electrochemical device of the present invention comprises the electrode for an electrochemical device according to [8] above.
  • Such an electrochemical device has excellent high-temperature storage characteristics.
  • the composite particle and its manufacturing method which can improve the basis weight stability and rollability of the electrode obtained can be provided.
  • FIG. 2 is a cross-sectional view along the line AA shown in FIG. 1;
  • the composite particles of the present invention can be advantageously used as a compounding component of an electrode mixture layer provided in an electrode of an electrochemical device such as a secondary battery. Moreover, according to the method for producing composite particles of the present invention, the composite particles of the present invention can be produced efficiently.
  • the composite particles of the present invention contain electrode active material particles, a conductive material, and a binder.
  • the electrode active material particles contained in the composite particles of the present invention have a median diameter of 0.2 ⁇ m or more and 4 ⁇ m or less based on the number of primary particles.
  • D50 is 20 ⁇ m or more and 250 ⁇ m or less
  • the value of D90/D10 is 2 or more and 30 or less
  • the ratio of carbon atoms occupying the surface of the composite particles. is 20% by mass or more and 70% by mass or less.
  • Composite particles containing such electrode active material particles whose primary particle size satisfies predetermined conditions, and whose particle size distribution and surface properties satisfy predetermined conditions, are stable in basis weight when an electrode is formed. It has excellent ductility and rollability.
  • excellent in basis weight stability means that the bias in component distribution in the electrode is suppressed and the uniformity is excellent.
  • that the electrode is "excellent in rollability” means that the electrode is easily densified when pressed. An electrochemical device having an electrode that satisfies such characteristics is excellent in high-temperature storage characteristics.
  • the electrode active material particles should have a median diameter of 0.2 ⁇ m or more and 4.0 ⁇ m or less based on the number of primary particles. Further, the number-based median diameter of the primary particles is preferably 0.5 ⁇ m or more, more preferably 1.0 ⁇ m or more, preferably 3.5 ⁇ m or less, and 3.0 ⁇ m or less. is more preferred. When the number-based median diameter of the primary particles is at least the above lower limit, the high-temperature storage characteristics of the resulting electrochemical device can be enhanced. Further, if the median diameter of the primary particles based on the number is equal to or less than the above upper limit, the rollability of the resulting electrode can be enhanced.
  • the electrode active material particles are not particularly limited as long as they satisfy the essential conditions regarding the size of the primary particles as described above.
  • the electrode active material particles contain at least one element selected from the group consisting of Al, Zr, W, Ti, Mg, Ta, Nb, Mo, Ir, Sc, V, Cr, and Hf. Active material particles are preferred. Above all, the electrode active material particles preferably contain at least one element selected from Zr, W, and Ti. More specifically, the electrode active material particles preferably have these elements on their surfaces.
  • the ratio of the elements listed above in the electrode active material particles is preferably 0.05 mol% or more, more preferably 0.1 mol% or more, further preferably 0.2 mol% or more, and 2.0 mol% or less. preferably 1.5 mol % or less, even more preferably 1.0 mol % or less. If the ratio of the listed elements is equal to or higher than the above lower limit, the rollability of the obtained electrode can be further improved. Further, if the ratio of the listed elements is equal to or less than the above upper limit, it is possible to further improve the stability of the basis weight of the obtained electrode and the high-temperature storage characteristics of the electrochemical device provided with such an electrode. In addition, when a plurality of types of target elements are detected when the electrode active material is analyzed by the method described in Examples, the total amount thereof preferably satisfies the above range.
  • positive electrode active materials constituting positive electrode active material particles used in lithium ion secondary batteries include lithium-containing cobalt oxide (LiCoO 2 ), lithium manganate (LiMn 2 O 4 ), lithium-containing nickel oxide (LiNiO 2 ), Co—Ni—Mn lithium-containing composite oxide, Ni—Mn—Al lithium-containing composite oxide, Ni—Co—Al lithium-containing composite oxide, olivine-type lithium manganese phosphate (LiMnPO 4 ), Lithium-rich spinel compounds represented by olivine-type lithium iron phosphate (LiFePO 4 ) and Li 1+x Mn 2-x O 4 (0 ⁇ X ⁇ 2) can be mentioned.
  • LiCoO 2 lithium-containing cobalt oxide
  • LiMn 2 O 4 lithium manganate
  • LiNiO 2 lithium-containing nickel oxide
  • Co—Ni—Mn lithium-containing composite oxide Co—Ni—Mn lithium-containing composite oxide
  • Ni—Mn—Al lithium-containing composite oxide Ni—Co—Al
  • the positive electrode active material is preferably a positive electrode active material containing nickel-cobalt and at least one of manganese and aluminum from the viewpoint of further improving the high-temperature storage characteristics of the resulting electrochemical device. Co—Ni—Mn. and lithium-containing composite oxides of Ni--Co--Al are more preferred.
  • the electrode active material particles may have a coating layer having a composition different from that of the electrode active material itself on at least part of the surface of the electrode active material as described above. The coating layer may partially cover the surface of the electrode active material particles, or may cover the entire surface.
  • the various elements listed above as elements that the electrode active material particles may preferably have on the surface thereof may be contained in the electrode active material particles themselves, or may be contained in the coating layer. may be contained.
  • the coating layer includes, for example, zirconium oxide (ZrO 2 ), aluminum oxide (Al 2 O 3 ), boron oxide (B 2 O 3 ), and phosphorous oxide (P 2 O 5 , P 4 O 10 ).
  • the electrode active material particles preferably have a true specific gravity of 3.5 or more, more preferably 4.0 or more, even more preferably 4.3 or more, and 6.0 or less. preferable.
  • the true specific gravity of the electrode active material particles is at least the above lower limit, the high-temperature storage characteristics of the resulting electrochemical device can be further enhanced. Further, when the true specific gravity of the electrode active material particles is equal to or less than the above upper limit value, the stability of the basis weight of the obtained electrode can be further enhanced.
  • the conductive material is not particularly limited, and may be carbon black (eg, acetylene black, Ketjenblack (registered trademark), furnace black, etc.), single-walled or multi-walled carbon nanotubes (multi-walled carbon nanotubes include cup-stacked types). carbon nanohorns, vapor-grown carbon fibers, milled carbon fibers obtained by crushing polymer fibers after firing, single-layer or multi-layer graphene, carbon non-woven fabric sheets obtained by firing non-woven fabrics made of polymer fibers, etc. Carbon materials as well as fibers or foils of various metals can be used. These can be used individually by 1 type or in combination of multiple types.
  • the content of the conductive material is not particularly limited.
  • the content of the conductive material is preferably 0.5% by mass or more, more preferably 1.0% by mass or more, and 5% by mass or less. is preferable, and it is more preferable that it is 3% by mass or less. If the content of the conductive material in the composite particles is within the range described above, the electrical resistance can be favorably reduced when the electrode mixture layer is formed.
  • the binder is not particularly limited, and examples thereof include conjugated diene-based polymers, acrylic polymers, aromatic vinyl-based block polymers, fluorine-based polymers, cellulose-based polymers, cyclic olefin-based polymers, and the like. can be used. These may be used individually by 1 type, and may be used in combination of 2 or more type.
  • a conjugated diene-based polymer refers to a polymer containing conjugated diene monomer units. Specific examples of the conjugated diene-based polymer are not particularly limited. Examples include polymers, butadiene rubber (BR), acrylic rubber (NBR) (copolymers containing acrylonitrile units and butadiene units), and hydrides thereof.
  • BR butadiene rubber
  • NBR acrylic rubber
  • acrylic polymers include, but are not limited to, polymers containing crosslinkable monomer units, (meth)acrylic acid ester monomer units, and acidic group-containing monomer units. is mentioned.
  • the proportion of (meth)acrylate monomer units in the acrylic polymer is preferably 50% by mass or more, more preferably 55% by mass or more, still more preferably 58% by mass or more, and preferably 98% by mass. % or less, more preferably 97 mass % or less, and still more preferably 96 mass % or less.
  • aromatic vinyl-based block polymers include block polymers containing block regions composed of aromatic vinyl monomer units.
  • aromatic vinyl monomers include styrene, styrenesulfonic acid and its salts, ⁇ -methylstyrene, pt-butylstyrene, butoxystyrene, vinyltoluene, chlorostyrene, and vinylnaphthalene, among others. Styrene is preferred.
  • Preferred examples of aromatic vinyl-based block polymers include styrene-isoprene-styrene block copolymers, styrene-butadiene-styrene copolymers, and hydrides thereof.
  • a fluorine-based polymer means a polymer that contains a fluorine-containing monomer unit and may further contain a fluorine-free monomer (non-fluorine-containing monomer) unit.
  • fluorine-containing monomers include, but are not limited to, vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene, vinyl trifluoride, vinyl fluoride, trifluoroethylene, trifluorochloroethylene, 2, 3,3,3-tetrafluoropropene, perfluoroalkyl vinyl ether and the like.
  • the fluorine-based polymer is not particularly limited, and may be polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinylidene fluoride, polyvinyl fluoride, perfluoroalkoxy fluororesin, ethylene tetrafluoride-propylene hexafluoride copolymer. , ethylene-tetrafluoroethylene copolymer, ethylene-chlorotrifluoroethylene copolymer, vinylidene fluoride-propylene hexafluoride copolymer (vinylidene fluoride-hexafluoropropylene copolymer), and the like.
  • the cellulosic polymer is not particularly limited, and examples thereof include cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate, cyanoethyl pullulan, cyanoethyl polyvinyl alcohol, cyanoethyl cellulose, cyanoethyl sucrose, pullulan and carboxymethyl cellulose. be done.
  • the cyclic olefin polymer is not particularly limited, and for example, a polymer synthesized using a cyclic olefin compound as a monomer (addition polymer or ring-opening polymer) and its hydride, and an aromatic vinyl compound. as a monomer.
  • a cyclic olefin compound as a monomer (addition polymer or ring-opening polymer) and its hydride
  • an aromatic vinyl compound as a monomer.
  • hydrides of ring-opening polymers using cyclic olefin compounds as monomers and polymers using aromatic vinyl compounds as monomers are preferred because the degree of swelling of the electrolytic solution and the glass transition temperature can be easily adjusted to moderate levels. is preferred.
  • the cyclic olefin compound is not particularly limited, and for example, unsubstituted or alkyl-bearing norbornenes such as norbornene, 5-methylnorbornene, 5-ethylnorbornene, 5-butylnorbornene, 5-hexylnorbornene, 5-decylnorbornene, 5-cyclohexylnorbornene, 5-cyclopentylnorbornene; Norbornenes having an alkenyl group such as 5-ethylidenenorbornene, 5-vinylnorbornene, 5-propenylnorbornene, 5-cyclohexenylnorbornene, 5-cyclopentenylnorbornene; norbornenes having an aromatic ring such as 5-phenylnorbornene; 5-methoxycarbonylnorbornene, 5-ethoxycarbonylnorbornene, 5-methyl-5-methoxycarbonylnorbornene, 5-methyl
  • Tetracyclododecenes with unsubstituted or alkyl groups such as 0.12, 5.17, 10]-3-dodecene; 8-methylidenetetracyclododecene, 8-ethylidenetetracyclododecene, 8-vinyltetracyclododecene, 8-propenyltetracyclododecene, 8-cyclohexenyltetracyclododecene, 8-cyclopentenyltetracyclododecene Tetracyclododecenes having an exocyclic double bond such as Tetracyclododecenes having an aromatic ring such as 8-phenyltetracyclododecene; 8-Methoxycarbonyltetracyclododecene, 8-methyl-8-methoxycarbonyltetracyclododecene, 8-hydroxymethyltetracyclod
  • the content of the binder is not particularly limited.
  • the content of the binder is preferably 0.5% by mass or more, more preferably 1.0% by mass or more, and 5% by mass or less. is preferred, and it is more preferably 3% by mass or less.
  • the content of the binder in the composite particles is at least the above lower limit, the high-temperature storage characteristics of the resulting electrochemical device can be enhanced.
  • the content of the binder in the composite particles is equal to or less than the above upper limit, the rollability of the resulting electrode can be further enhanced.
  • the composite particles should have a D50 of 20 ⁇ m or more and 250 ⁇ m or less and a value of D90/D10 of 2 or more and 30 or less in the volume-based particle size distribution.
  • the particle size distribution of the composite particles can be adjusted by changing the production conditions in the method for producing composite particles described below, and by classifying the composite particles.
  • the value of D50 in the particle size distribution of the composite particles is preferably 30 ⁇ m or more, more preferably 40 ⁇ m or more, preferably 200 ⁇ m or less, and more preferably 150 ⁇ m or less. If the value of D50 in the particle size distribution of the composite particles is at least the above lower limit, the high-temperature storage characteristics of the resulting electrochemical device can be enhanced. Moreover, when the value of D50 in the particle size distribution of the composite particles is equal to or less than the above upper limit, it is possible to improve the basis weight stability and rollability of the obtained electrode.
  • the value of D90/D10 in the particle size distribution of the composite particles is preferably 3 or more, more preferably 5 or more, preferably 25 or less, and more preferably 20 or less. If the value of D90/D10 in the particle size distribution of the composite particles is within the above range, it is possible to improve the basis weight stability and rollability of the obtained electrode, and further improve the high-temperature storage characteristics of the obtained electrochemical device. can be done.
  • the ratio of carbon atoms in the surface of the composite particles should be 20% by mass or more and 70% by mass or less. Furthermore, the ratio of carbon atoms in the surface of the composite particles is preferably 25% by mass or more. 30 mass % or more is more preferable, 65 mass % or less is preferable, and 60 mass % or less is more preferable. If the ratio of carbon atoms occupying the surface of the composite particles is at least the above lower limit, the high-temperature storage characteristics of the resulting electrochemical device can be enhanced.
  • the proportion of carbon atoms in the surface of the composite particles is equal to or less than the above upper limit, it is possible to further improve the basis weight stability and rollability of the obtained electrode.
  • the ratio of carbon atoms occupying the surface of the composite particles can be controlled based on the manufacturing conditions when manufacturing the composite particles.
  • the method for producing composite particles of the present invention includes a preliminary stirring step of stirring a powder material containing electrode active material particles having a median diameter of 0.2 ⁇ m or more and 4 ⁇ m or less based on the number of primary particles to be in a stirred state; Composite particles having a D50 of 20 ⁇ m or more and 250 ⁇ m or less and a D90/D10 value of 2 or more and 30 or less in the volume-based particle size distribution by adding a binder to the powder material in the state and a stirring granulation step.
  • An electrode formed using composite particles produced according to the production method of the present invention is excellent in basis weight stability and rollability. Furthermore, an electrochemical device provided with such electrodes is excellent in high-temperature storage characteristics.
  • each step described in detail below can be carried out, for example, in a granulation tank equipped with a stirring member such as a stirring blade.
  • Preliminary stirring step In the pre-stirring step, the powder material containing the electrode active material particles is stirred to be in a stirred state.
  • the aggregate of the electrode active material particles can be crushed in the presence of the conductive material.
  • “Agglomerate of electrode active material particles” means that a plurality of electrode active material particles composed of a plurality of primary particles are further agglomerated to be integrated.
  • the crushing step is preferably carried out dry, that is, under conditions in which no liquid medium such as water is present.
  • the powder material containing at least the electrode active material particles and optionally containing the conductive material is preferably in a dry state at the end of the pre-stirring step.
  • ⁇ Stirring granulation step> a binder is added to the powder material in the agitation state, and the D50 in the volume-based particle size distribution is 20 ⁇ m or more and 250 ⁇ m or less, and the value of D90/D10 is 2. More than 30 or less composite particles are obtained.
  • the binder can be used in the form of a dispersion obtained by dissolving or dispersing it in a solvent.
  • the solvent is not particularly limited, and any solvent can be used as long as it can dissolve or disperse the binder described above.
  • the solvent includes cyclohexane, n-hexane, acetone, methyl ethyl ketone, ethyl acetate, tetrahydrofuran, methylene chloride, chloroform, and the like.
  • cyclohexane n-hexane
  • acetone methyl ethyl ketone
  • ethyl acetate tetrahydrofuran
  • methylene chloride chloroform, and the like.
  • a granulation step of sizing by stirring the powder material in the stirring tank can be performed.
  • FIGS. 1 and 2 are cross-sectional views taken along line AA shown in FIG.
  • the granulation tank 1 includes a main stirring blade 2 and an auxiliary stirring blade 3 having a stirring shaft different from that of the main stirring blade 2 .
  • the main stirring blade 2 includes main blades 21, although the shape thereof is not particularly limited to the illustrated embodiment.
  • the auxiliary stirring impeller 3 is also provided with auxiliary blades 31, although its shape is not particularly limited to the illustrated embodiment.
  • the granulation tank 1 is equipped with at least one supply means such as a spray capable of supplying a liquid composition.
  • the granulation tank 1 is provided with a supply port for the powder material and a discharge port capable of discharging the formed composite particles.
  • the stirring shaft of the main stirring blade 2 is indicated by a broken line as a first stirring shaft RA1
  • the stirring shaft of the auxiliary stirring blade is indicated by a broken line as a second stirring shaft RA2.
  • the angle ⁇ between the first stirring axis RA1 and the second stirring axis RA2 is approximately 90 degrees.
  • the electrode of the present invention includes at least an electrode mixture layer containing the composite particles of the present invention.
  • the electrode mixture layer is arranged on at least one surface of the electrode base material. Since the electrode of the present invention includes the electrode mixture layer containing the composite particles of the present invention, it is excellent in basis weight stability and rollability. By using the electrode, the electrochemical device can exhibit excellent high-temperature storage characteristics.
  • Electrode base material a material having conductivity and electrochemical durability is used.
  • a current collector made of iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, platinum, or the like can be used.
  • one type of the above materials may be used alone, or two or more types may be used in combination at an arbitrary ratio.
  • An electrode for an electrochemical device includes pressure-molding the composite particles of the present invention on an electrode substrate to form an electrode mixture layer (pressure-molding step). According to this manufacturing method, the electrode for an electrochemical device of the present invention can be efficiently manufactured.
  • the pressing operation can be carried out according to known methods.
  • the composite particles produced according to the production method of the present invention are subjected to a roll press machine and roll-pressed on the electrode substrate, whereby the composite particles are pressure-molded on the electrode substrate to form an electrode mixture. Layers can be formed.
  • the pressure during pressing can be appropriately set according to the target electrode density.
  • the electrochemical element formed using the electrode for an electrochemical element of the present invention described above is not particularly limited, and is preferably a lithium ion secondary battery, an electric double layer capacitor, or a lithium ion capacitor, for example. can be a lithium ion secondary battery.
  • An electrochemical device formed using the electrode for an electrochemical device of the present invention is excellent in high-temperature storage characteristics.
  • a lithium ion secondary battery as an electrochemical element of the present invention usually comprises electrodes (a positive electrode and a negative electrode), an electrolytic solution, and a separator, and uses the electrode for an electrochemical element of the present invention as at least one of the positive electrode and the negative electrode. .
  • Electrode other than the above-described electrode for an electrochemical device of the present invention which can be used in a lithium-ion secondary battery as an electrochemical device
  • known electrodes can be used without particular limitation.
  • an electrode obtained by forming an electrode mixture layer on a current collector using a known manufacturing method can be used.
  • an organic electrolytic solution in which a supporting electrolyte is dissolved in an organic solvent is usually used.
  • a lithium salt for example, is used as the supporting electrolyte.
  • lithium salts include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi. , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi and the like.
  • LiPF 6 , LiClO 4 and CF 3 SO 3 Li are preferable, and LiPF 6 is particularly preferable, because they are easily dissolved in a solvent and exhibit a high degree of dissociation.
  • an electrolyte may be used individually by 1 type, and may be used in combination of 2 or more types by arbitrary ratios.
  • the organic solvent used in the electrolytic solution is not particularly limited as long as it can dissolve the supporting electrolyte.
  • Examples include dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), carbonates such as butylene carbonate (BC) and methyl ethyl carbonate (EMC); esters such as ⁇ -butyrolactone and methyl formate; ethers such as 1,2-dimethoxyethane and tetrahydrofuran; sulfur-containing compounds such as sulfolane and dimethylsulfoxide and the like are preferably used. A mixture of these solvents may also be used. Note that the concentration of the electrolyte in the electrolytic solution can be adjusted as appropriate. Further, known additives such as vinylene carbonate, fluoroethylene carbonate, ethyl methyl sulfone, etc. may be added to the electrolytic solution.
  • a known separator can be used without any particular limitation. Among them, a microporous film made of a polyolefin resin (polyethylene, polypropylene, polybutene, polyvinyl chloride) is preferable. Furthermore, as the separator, a separator with a functional layer, in which a functional layer (porous membrane layer or adhesive layer) is provided on one side or both sides of a separator substrate, may be used.
  • a functional layer porous membrane layer or adhesive layer
  • Lithium-ion secondary batteries for example, a positive electrode and a negative electrode are superimposed with a separator interposed therebetween, and if necessary, they are rolled or folded according to the shape of the battery, placed in a battery container, and an electrolytic solution is added to the battery container. can be produced by injecting and sealing.
  • a fuse In order to prevent an increase in internal pressure of the secondary battery and the occurrence of overcharge/discharge, etc., a fuse, an overcurrent protection element such as a PTC element, an expanded metal, a lead plate, or the like may be provided as necessary.
  • the shape of the secondary battery may be, for example, coin-shaped, button-shaped, sheet-shaped, cylindrical, rectangular, or flat.
  • ⁇ Particle size distribution of composite particles The particle size distribution (volume basis) of the composite particles was measured using a dry laser diffraction/scattering particle size distribution analyzer (manufactured by Nikkiso Co., Ltd.: Microtrac MT-3200II) based on JIS Z 8825:2013. Based on the particle size distribution obtained by measurement, the value of the particle size (D50) at which the cumulative volume is 50% from the small diameter side, and the value of the particle size (D90) at which the cumulative volume is 90% from the small diameter side. , the value D90/D10 was calculated by dividing the value of the particle diameter (D10) at which the cumulative volume becomes 10% from the small diameter side.
  • the “particle size of the primary particles of the electrode active material particles” was defined as the diameter of the circumscribed circle of the target primary particles. Specifically, 100 primary particles were randomly selected from an SEM image with an observation magnification of 50,000 times, and the number-based median diameter was calculated based on the diameter data of the circumscribed circle obtained for each particle.
  • the electrode active material particles were analyzed using Auger electron spectroscopy to measure the content (mol%) of the target element on the surface of the electrode active material particles.
  • the target elements were Al, Zr, W, Ti, Mg, Ta, Nb, Mo, Ir, Sc, V, Cr, and Hf.
  • ⁇ Electrode basis weight stability> The basis weight was measured at arbitrary five locations within 20 cm 2 of the positive electrode for lithium ion secondary batteries produced in Examples and Comparative Examples. For the measurement, a 2 cm 2 electrode was punched out and the weight was measured, and the weight per unit cm 2 was calculated from the weight of the mixture layer excluding the current collector. The smaller the variation in film thickness, the easier it is for lithium to move uniformly within the battery, resulting in a lower resistance.
  • D In-plane variation is 5% or more
  • the lithium ion secondary batteries produced in Examples and Comparative Examples were allowed to stand at a temperature of 25° C. for 5 hours after electrolyte injection. Next, it was charged to a cell voltage of 3.65 V by a constant current method at a temperature of 25° C. and 0.2 C, and then subjected to aging treatment at a temperature of 60° C. for 12 hours. Then, the battery was discharged to a cell voltage of 3.00 V by a constant current method at a temperature of 25° C. and 0.2 C.
  • CC-CV charging upper limit cell voltage 4.20V
  • CC discharging was performed to a cell voltage of 3.00V at a constant current of 0.2C.
  • the initial IV resistance was then measured as follows. After charging to 50% of SOC (State Of Charge) at 1C (C is a numerical value represented by rated capacity (mA) / 1h (hour)) in an atmosphere of 25 ° C., centering on 50% of SOC Charge for 20 seconds and discharge for 20 seconds at 0.5C, 1.0C, 1.5C, and 2.0C, respectively. The slope was obtained as IV resistance ( ⁇ ) (IV resistance during charge and IV resistance during discharge).
  • Example 1 ⁇ Method for producing binder A> 270 parts of dehydrated cyclohexane and 0.53 parts of ethylene glycol dibutyl ether are placed in a reactor equipped with a stirring device and the inside of which is sufficiently replaced with nitrogen, and 0.47 parts of n-butyllithium (15% cyclohexane solution) is added. added. 12.5 parts of dehydrated styrene was continuously added into the reactor over 40 minutes while stirring the whole volume at 60°C. After the addition was completed, the whole volume was further stirred at 60° C. for 20 minutes. When the reaction solution was measured by gas chromatography, the polymerization conversion rate at this point was 99.5%.
  • the reaction solution was filtered to remove the hydrogenation catalyst, and the filtrate was added with pentaerythrityl tetrakis[3-(3,5-di-t-butyl- 4-Hydroxyphenyl)propionate] (manufactured by Koyo Chemical Laboratory Co., Ltd., product name “Songnox 1010”) was dissolved in 1.0 part of a xylene solution and dissolved. By further adding cyclohexane, a binder A solution having a solid content concentration of 10% by mass was produced.
  • a cylindrical container with an inner diameter of 180 mm and an internal capacity of 2 L is provided with stirring blades on two axes, the vertical direction and the horizontal direction, with the axial direction of the cylindrical container as the vertical direction (the vertical direction is the main stirring blade and the horizontal direction is the auxiliary stirring blade.)
  • a composite particle production apparatus was prepared.
  • the main stirring blade has an inclined paddle with three main blades with a diameter of 170 mm
  • the auxiliary stirring blade has a V-shaped anchor blade with a diameter of 30 mm. Therefore, it consists of a mechanism that is sealed by ventilating air.
  • Composite particles were produced by performing (i) a pre-stirring step, (ii) agitation granulation step, and (iii) sizing step in this order using the composite particle-producing apparatus.
  • step (i) 96 parts by mass (1344 g) of NCM622 (number average primary particle diameter: 2 ⁇ m, Zr: 0.5 mol%) as a positive electrode active material for lithium ion batteries and carbon black as a conductive material were placed in a granulation tank. 2 parts by weight (28 g) of (BET specific surface area: 62 m 2 /g, bulk density: 0.16 g/cm 3 ) was added.
  • step (ii) 20 L/min of air for sealing the stirring part was circulated (aeration rate of 10/min), and stirring was carried out for 15 minutes under the operating conditions of the peripheral speed of 5 m/s in the main stirring part and the peripheral speed of 6 m/s in the sub-stirring part.
  • the operating condition is that air for sealing the stirring section is circulated at 20 L/min (aeration rate of 10/min), the peripheral speed of the main stirring section is 5 m/sec, and the peripheral speed of the auxiliary stirring section is 6 m/sec.
  • step (iii) 2 mass parts (280 g) of binder A solution (solid concentration: 10 mass %, viscosity index: 200 mPa ⁇ s, solvent: cyclohexane) was continuously added over 15 minutes.
  • step (iii) the operating conditions are that air for sealing the stirring section is circulated at 20 L/min (aeration rate of 10/min), the peripheral speed of the main stirring section is 2 m/s, and the peripheral speed of the auxiliary stirring section is 2 m/s. and ran for 10 minutes.
  • Table 1 shows the results.
  • ⁇ Preparation of positive electrode for lithium ion secondary battery> The composite particles prepared as described above are fed to a press roll (roll temperature 100 °C and a press line pressure of 500 kN/m). An aluminum foil with a thickness of 20 ⁇ m is inserted between the press rolls, and the composite particles supplied from a quantitative feeder are adhered onto the aluminum foil, pressure-molded at a molding speed of 1.5 m / min, and a basis weight of 30 mg / cm. Thus, a positive electrode raw sheet for a lithium ion secondary battery having a positive electrode active material layer of No. 2 was obtained. This positive electrode material was rolled by a roll press to produce a sheet-like positive electrode comprising a positive electrode mixture layer having a density of 3.5 g/cm 3 and an aluminum foil.
  • the mixture was cooled to terminate the polymerization reaction to obtain a mixture containing a particulate binder (styrene-butadiene copolymer).
  • a particulate binder styrene-butadiene copolymer
  • unreacted monomers were removed by heating under reduced pressure distillation.
  • the mixture was cooled to 30° C. or less to obtain an aqueous dispersion containing the negative electrode binder.
  • 48.75 parts of artificial graphite as a negative electrode active material, 48.75 parts of natural graphite, and 1 part of carboxymethyl cellulose as a thickener were put into a planetary mixer.
  • the mixture was diluted with ion-exchanged water to a solid concentration of 60%, and then kneaded at a rotation speed of 45 rpm for 60 minutes. After that, 1.5 parts of the aqueous dispersion containing the negative electrode binder obtained as described above was added in terms of the solid content, and kneaded at a rotational speed of 40 rpm for 40 minutes. Then, ion-exchanged water was added so that the viscosity was 3000 ⁇ 500 mPa ⁇ s (measured with a Brookfield viscometer at 25° C. and 60 rpm) to prepare a slurry for the negative electrode mixture layer. Next, a copper foil having a thickness of 15 ⁇ m was prepared as a current collector.
  • the negative electrode mixture layer slurry was applied to a copper foil so that the coating amount after drying was 15 mg/cm 2 , and dried at 60° C. for 20 minutes and 120° C. for 20 minutes. After that, heat treatment was performed at 150° C. for 2 hours to obtain a negative electrode original fabric.
  • This negative electrode material was rolled by a roll press to produce a sheet-like negative electrode comprising negative electrode mixture layers (both sides) having a density of 1.6 g/cm 3 and copper foil.
  • Example 2 Various steps and measurements were performed in the same manner as in Example 1, except that NCM622 containing 0.5 mol % W was used as the positive electrode active material. Table 1 shows the results.
  • Example 3 Various steps and measurements were performed in the same manner as in Example 1, except that NCM622 containing 0.07 mol % Zr was used as the positive electrode active material. Table 1 shows the results.
  • Example 4 Various steps and measurements were performed in the same manner as in Example 1, except that NCM622 containing 1.8 mol % Zr was used as the positive electrode active material. Table 1 shows the results.
  • Example 5 Various steps and measurements were performed in the same manner as in Example 1, except that LFP (primary particle size: 0.3 ⁇ m; containing 0.5 mol % of Zr) was used as the positive electrode active material. Table 1 shows the results.
  • LFP primary particle size: 0.3 ⁇ m; containing 0.5 mol % of Zr
  • Example 6 Various steps and measurements were performed in the same manner as in Example 1, except that NCM622 (containing 0.5 mol % Zr) having a primary particle size of 0.3 ⁇ m was used as the positive electrode active material. Table 1 shows the results.
  • Example 7 Various steps and measurements were performed in the same manner as in Example 1, except that a binder B prepared as described below was used as the binder. Table 1 shows the results.
  • ⁇ Preparation of Binder B> In a reactor having an internal volume of 10 liters, 100 parts of ion-exchanged water, 35 parts of acrylonitrile as a nitrile group-containing monomer, and 65 parts of 1,3-butadiene as an aliphatic conjugated diene monomer are charged, and emulsifier 2 parts of potassium oleate, 0.1 part of potassium phosphate as a stabilizer, and 0.4 parts of tert-dodecyl mercaptan (TDM) as a molecular weight modifier were added, and 0.35 parts of potassium persulfate as a polymerization initiator.
  • TDM tert-dodecyl mercaptan
  • Emulsion polymerization was carried out at a temperature of 530° C. in the presence of to copolymerize acrylonitrile and 1,3-butadiene. When the polymerization conversion rate reached 95%, 0.2 part of hydroxylamine sulfate per 100 parts of monomer was added to terminate the polymerization. Subsequently, the mixture is heated and steam-distilled at about 90° C. under reduced pressure to recover residual monomers, and then 0.1 part of dibutylhydroxytoluene (BHT) is added as a substituted phenol to obtain a polymer. An aqueous dispersion was obtained.
  • BHT dibutylhydroxytoluene
  • an acetone solution of the precursor of the polymer as the object to be hydrogenated is obtained.
  • acetone solution After adding 500 ppm of palladium silica (Pd/SiO 2 ) as a catalyst to 100% of the precursor of the polymer, hydrogenation reaction was performed at a temperature of 90 ° C. for 6 hours under a hydrogen pressure of 3.0 MPa. , to give the hydrogenation reactants.
  • palladium-silica was filtered off, and acetone was added so as to obtain a solid content concentration of 10% by mass and a viscosity index of 400 mPa ⁇ s, thereby obtaining a binder B solution.
  • Example 8 Various steps and operations were performed in the same manner as in Example 1, except that the conductive material was not blended into the powder material in step (i), and the conductive material was supplied as a dispersion in step (ii). Table 1 shows the results.
  • NCM622 number average primary particle diameter: 2 ⁇ m, Zr: 0.5 mol%) as a positive electrode active material for lithium ion batteries was placed in the granulation tank in 96 wt. portion (1344 g) was charged.
  • 20 L/min of air for sealing the stirring part was circulated (aeration rate of 10/min), and stirring was carried out for 15 minutes under the operating conditions of the peripheral speed of 5 m/s in the main stirring part and the peripheral speed of 6 m/s in the sub-stirring part.
  • (iii) as a granulation step air for sealing the stirring part is circulated at 20 L / min (ventilation rate 10 / min), the main stirring part is at a peripheral speed of 2 m / s, and the auxiliary stirring part is at a peripheral speed of 2 m / s. It was operated for 10 minutes under operating conditions. Various measurements were performed on the produced composite particles. Table 1 shows the results.
  • Example 9 When producing the composite particles, the operating conditions of the step (ii) described in Example 1 were changed so that the peripheral speeds of both the main stirring section and the sub-stirring section were both slowed down so that the attributes of the composite particles were as shown in Table 1. Various operations and measurements were carried out in the same manner as in Example 1, except for changing to . Table 1 shows the results.
  • Example 10 When producing the composite particles, the operating conditions of the step (iii) described in Example 1 were changed so that the peripheral speeds of both the main stirring part and the sub-stirring part were increased so that the attributes of the composite particles were as shown in Table 1. Various operations and measurements were carried out in the same manner as in Example 1, except for changing to . Table 1 shows the results.
  • Example 11 The same various materials as in Example 1 were used, except that when the composite particles were produced, the duration of step (iii) described in Example 1 was changed so that the attributes of the composite particles were as shown in Table 1. operation and measurement were performed. Table 1 shows the results.
  • Example 1 Various operations and measurements were performed in the same manner as in Example 1, except that NCM622 having a primary particle size of 0.1 ⁇ m was used as the positive electrode active material particles. Table 2 shows the results.
  • Example 2 Various operations and measurements were performed in the same manner as in Example 1, except that NCM622 having a primary particle size of 7 ⁇ m was used as the positive electrode active material particles. Table 2 shows the results.
  • Example 3 When producing the composite particles, the operating conditions of step (i) described in Example 1 were changed to slow the circumferential speeds of both the main stirring section and the auxiliary stirring section, and the operating conditions of step (ii) were changed to the main stirring section. The same as Example 1, except that the peripheral speed of both the secondary stirring part and the auxiliary stirring part was changed to be slower, the duration of step (ii) was increased, and the attributes of the composite particles were changed as shown in Table 2. Various operations and measurements were performed. Table 2 shows the results.
  • Example 4 Various operations and measurements were performed in the same manner as in Example 1, except that the composite particles prepared in Example 1 were classified as follows. Table 2 shows the results. For the classification, a sieve with an opening of 85 ⁇ m was used to remove coarse particles on the sieve. Furthermore, the composite particles under the sieve were sieved using a sieve with an opening of 65 ⁇ m, the particles under the sieve were removed, and the composite particles remaining on the sieve were used for evaluation.
  • Example 5 When producing the composite particles, the operating conditions of the step (ii) described in Example 1 were set such that the peripheral speeds of both the main stirring section and the sub-stirring section were increased, and the duration of the step (ii) was shortened, and the composite Various operations and measurements were performed in the same manner as in Example 1, except that the attributes of the particles were changed as shown in Table 2. Table 2 shows the results.
  • Example 6 When producing the composite particles, the operating conditions of step (ii) described in Example 1 are set such that the peripheral speeds of both the main stirring section and the auxiliary stirring section are slowed down so that the attributes of the composite particles are as shown in Table 2. Various operations and measurements were performed in the same manner as in Example 1, except that the conditions were changed. Table 2 shows the results.
  • the median diameter of the primary particles is a composite particle containing electrode active material particles within a predetermined range
  • the value of D50 in the volume-based particle size distribution is within a predetermined range
  • the ratio of D90/D10 is In Examples 1 to 11, in which an electrode mixture layer was formed using composite particles in which the value is within a predetermined range and the ratio of carbon atoms occupying the surface of the composite particles is within a predetermined range, It can be seen that the stability of the basis weight and the rollability of the electrode were able to be excellent.
  • the composite particle and its manufacturing method which can improve the basis weight stability and rollability of the electrode obtained can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

電極活物質粒子、導電材、及び結着材を含有する複合粒子である。電極活物質粒子の一次粒子の個数基準のメディアン径は、0.2μm以上4.0μm以下である。複合粒子の体積基準の粒子径分布における、D50が20μm以上250μm以下であるとともに、D90/D10の値が2以上30以下である。さらに、複合粒子の表面に占める炭素原子の割合が20質量%以上70質量%以下である。

Description

複合粒子及びその製造方法、電気化学素子用電極、並びに電気化学素子
 本発明は、複合粒子及びその製造方法、電気化学素子用電極、並びに電気化学素子に関するものである。
 リチウムイオン二次電池などの電気化学素子は、小型で軽量、且つエネルギー密度が高く、さらに繰り返し充放電が可能という特性があり、幅広い用途に使用されている。
 電気化学素子の性能を向上させるために、電気化学素子用電極を形成する材料についても様々な改善が行われている。電気化学素子用電極は、電極基材上に、電極活物質を主成分とし、必要に応じて、導電性、密着性、柔軟性などの特有の機能を電極に付与するために、導電材や結着材などのその他の成分を含有する電極合材層が配置されてなる構造を有する。
 従来から様々な改善が行われてきた電気化学素子用電極を形成する材料の中でも、電極活物質については、具体的には、密度及び粒子径などを最適化することにより、得られる電気化学素子の特性を高めることが試みられてきた(例えば、特許文献1及び2参照)。
特開2004-311427号公報 国際公開第2013/076958号
 しかし、従来の電極活物質には、得られる電極の目付安定性及び圧延性において、一層の向上の余地があった。
 そこで、本発明は、得られる電極の目付安定性及び圧延性を高めることができる、複合粒子及びその製造方法を提供することを目的とする。
 また、本発明は、目付安定性及び圧延性に優れる電気化学素子用電極、及びこれを備える電気化学素子を提供することを目的とする。
 本発明者らは、上記課題を解決することを目的として鋭意検討を行った。そして、本発明者らは、一次粒子のメディアン径が所定範囲内である電極活物質粒子を含む複合粒子であり、その体積基準の粒子径分布におけるD50の値が所定の範囲内であるとともに、D90/D10の値が所定の範囲内であり、さらに、当該複合粒子の表面に占める炭素原子の割合が所定の範囲内である、複合粒子は、電極を形成した際に目付安定性及び圧延性を優れたものとすることができることを新たに見出し、本発明を完成させた。
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、〔1〕本発明の複合粒子は、電極活物質粒子、導電材、及び結着材を含有する複合粒子であって、前記電極活物質粒子の一次粒子の個数基準のメディアン径が0.2μm以上4.0μm以下であり、前記複合粒子の体積基準の粒子径分布における、D50が20μm以上250μm以下であるとともに、D90/D10の値が2以上30以下であり、及び、前記複合粒子の表面に占める炭素原子の割合が20質量%以上70質量%以下であることを特徴とする。このような各種の属性を満たす複合粒子を用いて形成した電極は、目付安定性及び圧延性に優れる。さらに、かかる電極を備える電気化学素子は、高温保存特性に優れる。
 ここで、本発明において、「電極活物質粒子の一次粒子の個数基準のメディアン径」、「複合粒子の体積基準の粒子径分布」、及び「複合粒子の表面に占める炭素原子の割合」は、本明細書の実施例に記載の方法により測定することができる。
 〔2〕ここで、上記〔1〕に記載した複合粒子において、前記電極活物質粒子の真比重が、3.5以上6.0以下であることが好ましい。かかる条件を満たす複合粒子は、得られる電極の目付安定性及び圧延性に一層優れる。さらに、かかる電極を備える電気化学素子は、高温保存特性に一層優れる。
 ここで、本発明において「電極活物質粒子の真比重」は、JIS Z 8807:2012に従って測定することができる。
 〔3〕また、上記〔1〕又は〔2〕に記載した複合粒子において、前記電極活物質粒子が、Al、Zr、W、Ti、Mg、Ta、Nb、Mo、Ir、Sc、V、Cr、及びHfからなる群より選択される少なくとも一種の元素を含み、前記電極活物質粒子に占める前記元素の割合が0.05mol%以上2.0mol%以下であることが好ましい。電極活物質粒子がこれらの元素のうちの少なくとも一種を、上記割合で含んでいれば、得られる電極が目付安定性及び圧延性に一層優れる。さらに、かかる電極を備える電気化学素子は、高温保存特性に一層優れる。
 なお、「電極活物質粒子が上記の元素を含有するか否か」という点及び「電極活物質粒子に占める上記の元素の割合」は、SEM/EDX(走査型電子顕微鏡/エネルギー分散型X線分光法)を用いて、本明細書の実施例に記載した方法に従って確認及び測定することができる。
 〔4〕また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の複合粒子の製造方法は、電極活物質粒子、導電材、及び結着材を含有する複合粒子の製造方法であって、一次粒子の個数基準のメディアン径が0.2μm以上4μm以下である前記電極活物質粒子を含む粉体材料を撹拌して撹拌状態とする予備撹拌工程と、撹拌状態にある前記粉体材料に対して、前記結着材を添加して、体積基準の粒子径分布における、D50が20μm以上250μm以下であるとともに、D90/D10の値が2以上30以下となる複合粒子を得る、撹拌造粒工程と、を含むことを特徴とする。このような製造方法に従って製造された複合粒子を用いて形成した電極は、目付安定性及び圧延性に優れる。さらに、かかる電極を備える電気化学素子は、高温保存特性に優れる。
 〔5〕ここで、上記〔4〕に記載の複合粒子の製造方法が、前記予備撹拌工程にて、前記電極活物質粒子の凝集体を前記導電材の存在下で解砕することが好ましい。予備撹拌工程にて、電極活物質粒子の凝集体を導電材の存在下で解砕することで、複合粒子を効率的に製造することができるとともに、得られる複合粒子の品質を高めることができる。
 〔6〕また、上記〔5〕に記載の複合粒子の製造方法において、前記予備撹拌工程を乾式で実施することができる。
 〔7〕また、上記〔4〕に記載の本発明の製造方法において、前記撹拌造粒工程にて、溶媒中に分散させた前記導電材を、撹拌状態にある前記粉体材料に対して添加することができる。
 〔8〕また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の電気化学素子用電極は、上記〔1〕~〔3〕のいずれかの電気化学素子用複合粒子を含む電極合材層を備えることを特徴とする。電極が上述したいずれかの電気化学素子用複合粒子を含む電極合材層を含んでいれば、かかる電極は目付安定性及び圧延性に一層優れる。
 〔9〕また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の電気化学素子は、上記〔8〕に記載の電気化学素子用電極を備える。かかる電気化学素子は、高温保存特性に優れる。
 本発明によれば、得られる電極の目付安定性及び圧延性を高めることができる、複合粒子及びその製造方法を提供することができる。
 また、本発明によれば、目付安定性及び圧延性に優れる電気化学素子用電極、及びこれを備える電気化学素子を提供することができる。
一例にかかる造粒槽の上面図である。 図1に示すA-A切断線に従う断面図である。
 以下、本発明の実施形態について詳細に説明する。
 ここで、本発明の複合粒子は、二次電池のような電気化学素子の電極に備えられる電極合材層の配合成分として有利に用いることができる。また、本発明の複合粒子の製造方法によれば、本発明の複合粒子を効率的に製造することができる。
(複合粒子)
 本発明の複合粒子は、電極活物質粒子、導電材、及び結着材を含有する。ここで、本発明の複合粒子に含有される電極活物質粒子は、一次粒子の個数基準のメディアン径が0.2μm以上4μm以下である。そして、本発明の複合粒子の体積基準の粒子径分布における、D50が20μm以上250μm以下であるとともに、D90/D10の値が2以上30以下であるとともに、複合粒子の表面に占める炭素原子の割合が20質量%以上70質量%以下である、ことを特徴とする。このような、一次粒子のサイズが所定の条件を満たす電極活物質粒子を含むとともに、それ自体の粒子径分布及び表面性状が所定の条件を満たす、複合粒子は、電極を形成した際の目付安定性及び圧延性に優れる。なお、本明細書において、電極が、「目付安定性に優れる」とは、電極内における成分分布の偏りが抑制されており、均一性に優れることを意味する。また、本明細書において、電極が「圧延性に優れる」とは、電極をプレスした際に高密度化し易いことを意味する。そして、このような特性を満たす電極を備える電気化学素子は、高温保存特性に優れる。
<電極活物質粒子>
 電極活物質粒子は、一次粒子の個数基準のメディアン径が0.2μm以上4.0μm以下である必要がある。さらに、一次粒子の個数基準のメディアン径は、0.5μm以上であることが好ましく、1.0μm以上であることがより好ましく、3.5μm以下であることが好ましく、3.0μm以下であることがより好ましい。一次粒子の個数基準のメディアン径が上記下限値以上であれば、得られる電気化学素子の高温保存特性を高めることができる。また、一次粒子の個数基準のメディアン径が上記上限値以下であれば、得られる電極の圧延性を高めることができる。
 電極活物質粒子(正極活物質粒子、負極活物質粒子)としては、上記のような一次粒子のサイズに関する必須の条件を満たす範囲であれば、特に限定されることなく、既知の電極活物質、及び任意で当該電極活物質の表面を被覆する被覆層を有する粒子などを用いることができる。
 中でも、電極活物質粒子としては、Al、Zr、W、Ti、Mg、Ta、Nb、Mo、Ir、Sc、V、Cr、及びHfからなる群より選択される少なくとも一種の元素を含む、電極活物質粒子が好ましい。中でも、電極活物質粒子としては、Zr、W、及びTiのうちの少なくとも一種の元素を含むことが好ましい。より具体的には、電極活物質粒子は、これらの元素をその表面に有することが好ましい。
 そして、電極活物質粒子に占める、上記列挙にかかる元素の割合は、0.05mol%以上が好ましく、0.1mol%以上がより好ましく、0.2mol%以上がさらに好ましく、2.0mol%以下であることが好ましく、1.5mol%以下であることがより好ましく、1.0mol%以下であることがさらに好ましい。列挙にかかる元素の割合が上記下限値以上であれば、得られる電極の圧延性を一層高めることができる。また、列挙にかかる元素の割合が上記上限値以下であれば、得られる電極の目付安定性及びかかる電極を備える電気化学素子の高温保存特性を一層高めることができる。なお、電極活物質を実施例に記載の方法で解析した場合に複数種の対象元素が検出された場合には、その合計量が上記範囲を満たすことが好ましい。
 リチウムイオン二次電池に用いられる正極活物質粒子を構成する正極活物質としては、例えば、リチウム含有コバルト酸化物(LiCoO)、マンガン酸リチウム(LiMn)、リチウム含有ニッケル酸化物(LiNiO)、Co-Ni-Mnのリチウム含有複合酸化物、Ni-Mn-Alのリチウム含有複合酸化物、Ni-Co-Alのリチウム含有複合酸化物、オリビン型リン酸マンガンリチウム(LiMnPO)、オリビン型リン酸鉄リチウム(LiFePO)、Li1+xMn2-x(0<X<2)で表されるリチウム過剰のスピネル化合物が挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。そして正極活物質としては、得られる電気化学素子の高温保存特性を一層向上させる観点から、ニッケルコバルトを含有し、更にマンガンとアルミニウムの少なくとも一方を含有する正極活物質が好ましく、Co-Ni-Mnのリチウム含有複合酸化物、Ni-Co-Alのリチウム含有複合酸化物がより好ましい。なお、電極活物質粒子は、上記のような電極活物質の表面の少なくとも一部に電極活物質それ自体とは組成の異なる被覆層を有していてもよい。なお被覆層は、電極活物質粒子の表面を一部被覆していてもよく、表面全体を被覆していてもよい。そして、電極活物質粒子が、好適にはその表面に有していてもよい元素として、上記に列挙した各種の元素は、電極活物質粒子それ自体に含有されていてもよいし、被覆層に含有されていてもよい。
 電極活物質粒子が被覆層を有する場合には、例えば被覆層は、酸化ジルコニウム(ZrO)、酸化アルミニウム(Al)、酸化ホウ素(B)、及びリン酸化物(P、P10)からなる群から選択される少なくとも1種から構成されうる。
 電極活物質粒子は、真比重が、3.5以上であることが好ましく、4.0以上であることがより好ましく、4.3以上であることがさらに好ましく、6.0以下であることが好ましい。電極活物質粒子の真比重が上記下限値以上であれば、得られる電気化学素子の高温保存特性を一層高めることができる。また、電極活物質粒子の真比重が上記上限値以下であれば、得られる電極の目付安定性を一層高めることができる。
<導電材>
 導電材としては、特に限定されることなく、カーボンブラック(例えば、アセチレンブラック、ケッチェンブラック(登録商標)、ファーネスブラックなど)、単層又は多層カーボンナノチューブ(多層カーボンナノチューブにはカップスタック型が含まれる)、カーボンナノホーン、気相成長炭素繊維、ポリマー繊維を焼成後に破砕して得られるミルドカーボン繊維、単層又は多層グラフェン、ポリマー繊維からなる不織布を焼成して得られるカーボン不織布シートなどの導電性炭素材料、並びに各種金属のファイバー又は箔などを用いることができる。これらは、一種を単独で、或いは複数種を組み合わせて用いることができる。
 導電材の含有量は、特に限定されない。例えば、複合粒子の全質量を基準として、導電材の含有量が、0.5質量%以上であることが好ましく、1.0質量%以上であることがより好ましく、5質量%以下であることが好ましく、3質量%以下であることがより好ましい。複合粒子における導電材の含有量が上述した範囲内であれば、電極合材層を形成した場合の電気抵抗を良好に低減することができる。
<結着材>
 結着材としては、特に限定されることなく、例えば、共役ジエン系重合体、アクリル系重合体、芳香族ビニル系ブロック重合体、フッ素系重合体、セルロース系重合体、環状オレフィン系重合体などを用いることができる。これらは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 共役ジエン系重合体とは、共役ジエン単量体単位を含む重合体を指す。そして、共役ジエン系重合体の具体例としては、特に限定されることなく、スチレン-ブタジエン共重合体(SBR)などの芳香族ビニル単量体単位及び脂肪族共役ジエン単量体単位を含む共重合体、ブタジエンゴム(BR)、アクリルゴム(NBR)(アクリロニトリル単位及びブタジエン単位を含む共重合体)、並びに、それらの水素化物などが挙げられる。
 アクリル系重合体としては、特に限定されることなく、例えば、架橋性単量体単位と、(メタ)アクリル酸エステル単量体単位と、酸性基含有単量体単位とを含有する重合体などが挙げられる。なお、アクリル系重合体における(メタ)アクリル酸エステル単量体単位の割合は、好ましくは50質量%以上、より好ましくは55質量%以上、さらに好ましくは58質量%以上であり、好ましくは98質量%以下、より好ましくは97質量%以下、さらに好ましくは96質量%以下である。
 芳香族ビニル系ブロック重合体としては、芳香族ビニル単量体単位位からなるブロック領域を含有するブロック重合体が挙げられる。芳香族ビニル単量体としては、例えば、スチレン、スチレンスルホン酸及びその塩、α-メチルスチレン、p-t-ブチルスチレン、ブトキシスチレン、ビニルトルエン、クロロスチレン、並びに、ビニルナフタレンが挙げられ、中でもスチレンが好ましい。芳香族ビニル系ブロック重合体として、好ましくは、スチレン-イソプレン-スチレンブロック共重合体、スチレン-ブタジエン-スチレン共重合体、並びに、それらの水素化物などが挙げられる。
 フッ素系重合体とは、フッ素含有単量体単位を含有し、さらに、フッ素を含有しない単量体(フッ素非含有単量体)単位を含有してもよい重合体を意味する。フッ素含有単量体としては、特に限定されることなく、例えば、フッ化ビニリデン、テトラフルオロエチレン、ヘキサフルオロプロピレン、三フッ化塩化ビニル、フッ化ビニル、トリフルオロエチレン、トリフルオロクロロエチレン、2,3,3,3-テトラフルオロプロペン、パーフルオロアルキルビニルエーテルなどが挙げられる。フッ素系重合体としては、特に限定されることなく、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリフッ化ビニリデン、ポリフッ化ビニル、ペルフルオロアルコキシフッ素樹脂、四フッ化エチレン-六フッ化プロピレン共重合体、エチレン-四フッ化エチレン共重合体、エチレン-クロロトリフルオロエチレン共重合体、フッ化ビニリデン-六フッ化プロピレン共重合体(フッ化ビニリデン-ヘキサフルオロプロピレン共重合体)などが挙げられる。
 セルロース系重合体としては、特に限定されることなく、例えば、セルロースアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート、シアノエチルプルラン、シアノエチルポリビニルアルコール、シアノエチルセルロース、シアノエチルスクロース、プルラン及びカルボキシルメチルセルロースなどが挙げられる。
 環状オレフィン系重合体としては、特に限定されることなく、例えば、環状オレフィン化合物をモノマーとして用いて合成した重合体(付加重合体または開環重合体)およびその水素化物、並びに、芳香族ビニル化合物をモノマーとして用いた重合体の水素化物が挙げられる。中でも、電解液膨潤度およびガラス転移温度を適度な大きさに調整し易いため、環状オレフィン化合物をモノマーとして用いた開環重合体の水素化物、および、芳香族ビニル化合物をモノマーとして用いた重合体の水素化物が好ましい。
 環状オレフィン化合物としては、特に限定されることなく、例えば、
 ノルボルネン、5-メチルノルボルネン、5-エチルノルボルネン、5-ブチルノルボルネン、5-ヘキシルノルボルネン、5-デシルノルボルネン、5-シクロヘキシルノルボルネン、5-シクロペンチルノルボルネン等の非置換またはアルキル基を有するノルボルネン類;
 5-エチリデンノルボルネン、5-ビニルノルボルネン、5-プロペニルノルボルネン、5-シクロヘキセニルノルボルネン、5-シクロペンテニルノルボルネン等のアルケニル基を有するノルボルネン類;
 5-フェニルノルボルネン等の芳香環を有するノルボルネン類;
 5-メトキシカルボニルノルボルネン、5-エトキシカルボニルノルボルネン、5-メチル-5-メトキシカルボニルノルボルネン、5-メチル-5-エトキシカルボニルノルボルネン、ノルボルネニル-2-メチルプロピオネート、ノルボルネニル-2-メチルオクタネート、5-ヒドロキシメチルノルボルネン、5,6-ジ(ヒドロキシメチル)ノルボルネン、5,5-ジ(ヒドロキシメチル)ノルボルネン、5-ヒドロキシ-i-プロピルノルボルネン、5,6-ジカルボキシノルボルネン、5-メトキシカルボニル-6-カルボキシノルボルネン等の酸素原子を含む極性基を有するノルボルネン類;
 5-シアノノルボルネン等の窒素原子を含む極性基を有するノルボルネン類;
 ジシクロペンタジエン、メチルジシクロペンタジエン、トリシクロ[5.2.1.02
,6]デカ-8-エン等の芳香環構造を含まない3環以上の多環式ノルボルネン類;
 テトラシクロ[9.2.1.02,10.03,8]テトラデカ-3,5,7,12-テトラエン(1,4-メタノ-1,4,4a,9a-テトラヒドロ-9H-フルオレンともいう)、テトラシクロ[10.2.1.02,11.04,9]ペンタデカ-4,6,8,13-テトラエン(1,4-メタノ-1,4,4a,9,9a,10-ヘキサヒドロアントラセンともいう)等の芳香環を有する3環以上の多環式ノルボルネン類;
 テトラシクロドデセン、8-メチルテトラシクロドデセン、8-エチルテトラシクロドデセン、8-シクロヘキシルテトラシクロドデセン、8-シクロペンチルテトラシクロドデセン、8-メトキシカルボニル-8-メチルテトラシクロ[4.4.0.12,5.17,10]-3-ドデセン等の非置換またはアルキル基を有するテトラシクロドデセン類;
 8-メチリデンテトラシクロドデセン、8-エチリデンテトラシクロドデセン、8-ビニルテトラシクロドデセン、8-プロペニルテトラシクロドデセン、8-シクロヘキセニルテトラシクロドデセン、8-シクロペンテニルテトラシクロドデセン等の環外に二重結合を有するテトラシクロドデセン類;
 8-フェニルテトラシクロドデセン等の芳香環を有するテトラシクロドデセン類;
 8-メトキシカルボニルテトラシクロドデセン、8-メチル-8-メトキシカルボニルテトラシクロドデセン、8-ヒドロキシメチルテトラシクロドデセン、8-カルボキシテトラシクロドデセン、テトラシクロドデセン-8,9-ジカルボン酸、テトラシクロドデセン-8,9-ジカルボン酸無水物等の酸素原子を含む置換基を有するテトラシクロドデセン類;
 8-シアノテトラシクロドデセン、テトラシクロドデセン-8,9-ジカルボン酸イミド等の窒素原子を含む置換基を有するテトラシクロドデセン類;
 8-クロロテトラシクロドデセン等のハロゲン原子を含む置換基を有するテトラシクロドデセン類;
 8-トリメトキシシリルテトラシクロドデセン等のケイ素原子を含む置換基を有するテトラシクロドデセン類;
 上述したテトラシクロドデセン類とシクロペンタジエンとのディールズ・アルダー付加体等のヘキサシクロヘプタデセン類;
などが挙げられる。
 結着材の含有量は、特に限定されない。例えば、複合粒子の全質量を基準として、結着材の含有量が、0.5質量%以上であることが好ましく、1.0質量%以上であることがより好ましく、5質量%以下であることが好ましく、3質量%以下であることがより好ましい。複合粒子における結着材の含有量が上記下限値以上であれば、得られる電気化学素子の高温保存特性を高めることができる。また、複合粒子における結着材の含有量が上記上限値以下であれば、得られる電極の圧延性を一層高めることができる。
<複合粒子の粒子径分布>
 複合粒子は、体積基準の粒子径分布における、D50が20μm以上250μm以下であるとともに、D90/D10の値が2以上30以下である必要がある。複合粒子粒子径分布は、後述する複合粒子の製造方法における製造条件を変更すること、及び、複合粒子について分級操作を実施することなどにより、調節することができる。
[複合粒子の粒子径分布におけるD50の値]
 複合粒子の粒子径分布におけるD50の値は、30μm以上が好ましく、40μm以上がより好ましく、200μm以下が好ましく、150μm以下がより好ましい。複合粒子の粒子径分布におけるD50の値が上記下限値以上であれば、得られる電気化学素子の高温保存特性を高めることができる。また、複合粒子の粒子径分布におけるD50の値が上記上限値以下であれば、得られる電極の目付安定性及び圧延性を高めることができる。
[複合粒子の粒子径分布におけるD90/D10の値]
 複合粒子の粒子径分布におけるD90/D10の値は、3以上であることが好ましく、5以上であることがより好ましく、25以下であることが好ましく、20以下であることがより好ましい。複合粒子の粒子径分布におけるD90/D10の値が上記範囲内であれば、得られる電極の目付安定性及び圧延性を高めることができ、さらに、得られる電気化学素子の高温保存特性を高めることができる。
<複合粒子の表面に占める炭素原子の割合>
 複合粒子の表面に占める炭素原子の割合は、20質量%以上70質量%以下である必要がある。さらに、複合粒子の表面に占める炭素原子の割合は、25質量%以上が好ましく。30質量%以上がより好ましく、65質量%以下が好ましく、60質量%以下がより好ましい。複合粒子の表面に占める炭素原子の割合が上記下限値以上であれば、得られる電気化学素子の高温保存特性を高めることができる。また、複合粒子の表面に占める炭素原子の割合が上記上限値以下であれば、得られる電極の目付安定性及び圧延性を一層高めることができる。なお、複合粒子の表面に占める炭素原子の割合は、複合粒子を製造する際の製造条件に基づいて制御することができる。
(複合粒子の製造方法)
 本発明の複合粒子の製造方法は、一次粒子の個数基準のメディアン径が0.2μm以上4μm以下である電極活物質粒子を含む粉体材料を撹拌して撹拌状態とする予備撹拌工程と、撹拌状態にある粉体材料に対して、結着材を添加して、体積基準の粒子径分布における、D50が20μm以上250μm以下であるとともに、D90/D10の値が2以上30以下となる複合粒子を得る、撹拌造粒工程とを含むことを特徴とする。かかる本発明の製造方法に従って製造された複合粒子を用いて形成した電極は、目付安定性及び圧延性に優れる。さらに、かかる電極を備える電気化学素子は、高温保存特性に優れる。なお、以下に詳述する各工程において用いる電極活物質粒子、導電材、及び結着材としては、上述したものを用いることができる。また、以下に詳述する各工程は、例えば、撹拌翼などの撹拌用部材を備える造粒槽内にて実施することができる。
<予備撹拌工程>
 予備撹拌工程では、電極活物質粒子を含む粉体材料を撹拌して撹拌状態とする。ここで、予備撹拌工程にて、前記電極活物質粒子の凝集体を導電材の存在下で解砕することができる。「電極活物質粒子の凝集体」、とは、複数の一次粒子からなる電極活物質粒子が、さらに複数個凝集して一体となったものである。解砕工程は、乾式、すなわち、水などの液状媒体の存在しない条件下にて実施することが好ましい。言い換えると、少なくとも電極活物質粒子を含み、任意で導電材を含有し得る粉体材料は、予備撹拌工程の終了時点において乾燥状態にあることが好ましい。
<撹拌造粒工程>
 撹拌造粒工程では、撹拌状態にある粉体材料に対して、結着材を添加して、体積基準の粒子径分布における、D50が20μm以上250μm以下であるとともに、D90/D10の値が2以上30以下となる複合粒子を得る。ここで、結着材は、溶媒中に溶解又は分散させた分散液状態で用いることができる。溶媒としては、特に限定されることなく、上述した結着材を溶解又は分散可能な限りにおいてあらゆる溶媒を用いることができる。中でも、溶媒としては、シクロヘキサン、n―ヘキサン、アセトン、メチルエチルケトン、酢酸エチル、テトラヒドロフラン、メチレンクロライド、クロロホルム、などが挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 任意で、撹拌造粒工程の完了後に、撹拌槽内の粉体材料を撹拌することで整粒する整粒工程を実施することができる。
 なお、特に限定されないが、上述した各工程は、図1~2に一例として示す造粒槽1を用いて効率的に実施することができる。なお、図1は、造粒槽1の上面図であり、図2は、図1に示すA-A切断線に従う断面図である。造粒槽1は、主撹拌翼2と、主撹拌翼2と撹拌軸の相異なる副撹拌翼3とを備える。主撹拌翼2は、その形状は図示の態様に特に限定されないが、主ブレード21を備える。副撹拌翼3もまた、その形状は図示の態様に特に限定されないが、副ブレード31を備える。さらに、図示しないが、造粒槽1は、液状の組成物を供給し得る、スプレーなどの供給手段を少なくとも一つ備えている。さらに、図示しないが、造粒槽1は、粉体材料の供給口及び形成した複合粒子を排出可能に構成された排出口を備えている。図2に、主撹拌翼2の撹拌軸を、第一撹拌軸RA1として破線で示し、副撹拌翼の撹拌軸を第二撹拌軸RA2として破線で示す。図2では、第一撹拌軸RA1と第二撹拌軸RA2とがなす角θは、約90度となっている。
(電気化学素子用電極)
 本発明の電極は、本発明の複合粒子を含む電極合材層を少なくとも備える。電極合材層は、電極基材の少なくとも一方の表面に配置される。そして、本発明の電極は、本発明の複合粒子を含む電極合材層を備えているため、目付安定性及び圧延性に優れる。そして当該電極を用いることにより電気化学素子に優れた高温保存特性を発揮させることができる。
<電極基材>
 電極基材としては、導電性を有し、かつ、電気化学的に耐久性のある材料が用いられる。具体的には、電極基材としては、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などからなる集電体を用い得る。なお、前記の材料は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
<電気化学素子用電極の製造方法>
 電気化学素子用電極は、上述した本発明の複合粒子を電極基材上で加圧成形して電極合材層を形成することと(加圧成形工程)、を含む。かかる製造方法によれば、本発明の電気化学素子用電極を効率的に製造することができる。
<加圧成形工程>
 加圧成形操作は、既知の方法に従って実施することができる。例えば、本発明の製造方法に従って製造した複合粒子を、ロールプレス機に供して、電極基材上にてロールプレスすることにより、電極基材上にて複合粒子を加圧成形して電極合材層を形成することができる。プレスの際の圧力は、目的とする電極密度に従って適宜設定することができる。
(電気化学素子)
 そして、上述した本発明の電気化学素子用電極を用いて形成した電気化学素子は、特に限定されることなく、例えば、リチウムイオン二次電池、電気二重層キャパシタ、又はリチウムイオンキャパシタであり、好ましくはリチウムイオン二次電池でありうる。本発明の電気化学素子用電極を用いて形成した電気化学素子は、高温保存特性に優れる。
 ここで、以下では、一例として電気化学素子がリチウムイオン二次電池である場合について説明するが、本発明は下記の一例に限定されるものではない。本発明の電気化学素子としてのリチウムイオン二次電池は、通常、電極(正極及び負極)、電解液、並びにセパレータを備え、正極及び負極の少なくとも一方に本発明の電気化学素子用電極を使用する。
<電極>
 ここで、電気化学素子としてのリチウムイオン二次電池に使用し得る、上述した本発明の電気化学素子用電極以外の電極としては、特に限定されることなく、既知の電極を用いることができる。具体的には、上述した電気化学素子用電極以外の電極としては、既知の製造方法を用いて集電体上に電極合材層を形成してなる電極を用いることができる。
<電解液>
 電解液としては、通常、有機溶媒に支持電解質を溶解した有機電解液が用いられる。支持電解質としては、例えば、リチウム塩が用いられる。リチウム塩としては、例えば、LiPF、LiAsF、LiBF、LiSbF、LiAlCl、LiClO、CFSOLi、CSOLi、CFCOOLi、(CFCO)NLi、(CFSONLi、(CSO)NLiなどが挙げられる。なかでも、溶媒に溶けやすく高い解離度を示すので、LiPF、LiClO、CFSOLiが好ましく、LiPFが特に好ましい。なお、電解質は1種を単独で用いてもよく、2種以上を任意の比率で組み合わせて用いてもよい。
 電解液に使用する有機溶媒としては、支持電解質を溶解できるものであれば特に限定されないが、例えば、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、メチルエチルカーボネート(EMC)等のカーボネート類;γ-ブチロラクトン、ギ酸メチル等のエステル類;1,2-ジメトキシエタン、テトラヒドロフラン等のエーテル類;スルホラン、ジメチルスルホキシド等の含硫黄化合物類;などが好適に用いられる。またこれらの溶媒の混合液を用いてもよい。なお、電解液中の電解質の濃度は適宜調整することができる。また、電解液には、既知の添加剤、例えばビニレンカーボネート、フルオロエチレンカーボネート、エチルメチルスルホンなどを添加してもよい。
<セパレータ>
 セパレータとしては、特に限定されることなく既知のものを用いることができる。中でも、ポリオレフィン系(ポリエチレン、ポリプロピレン、ポリブテン、ポリ塩化ビニル)の樹脂からなる微多孔膜が好ましい。さらに、セパレータとしては、セパレータ基材の片面又は両面に機能層(多孔膜層又は接着層)が設けられた、機能層付きセパレータを用いてもよい。
<リチウムイオン二次電池の製造方法>
 リチウムイオン二次電池は、例えば、正極と、負極とを、セパレータを介して重ね合わせ、これを必要に応じて電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口することにより製造することができる。二次電池の内部の圧力上昇、過充放電等の発生を防止するために、必要に応じて、ヒューズ、PTC素子等の過電流防止素子、エキスパンドメタル、リード板などを設けてもよい。二次電池の形状は、例えば、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、何れであってもよい。
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」及び「部」は、特に断らない限り、質量基準である。
 また、複数種類の単量体を共重合して製造される重合体において、ある単量体を重合して形成される繰り返し単位(単量体単位)の前記重合体における割合は、別に断らない限り、通常は、その重合体の重合に用いる全単量体に占める当該ある単量体の比率(仕込み比)と一致する。
 実施例及び比較例において、各種の属性の測定及び評価は、それぞれ下記の方法に従って実施した。
<複合粒子の粒子径分布>
 複合粒子の粒子径分布(体積基準)の測定は、乾式レーザー回折・散乱式粒度分布測定装置(日機装株式会社製:マイクロトラックMT-3200II)を用いて、JIS Z 8825:2013に基づき行った。測定して得られた粒子径分布に基づき、累積体積が小径側から50%となる粒子径(D50)の値、及び、累積体積が小径側から90%となる粒子径(D90)の値を、累積体積が小径側から10%となる粒子径(D10)の値で除した値D90/D10を算出した。
<複合粒子の表面炭素量>
 SEM/EDX(走査型電子顕微鏡/エネルギー分散型X線分光法;JEOL社製JSM-7800F)を用いて、加速電圧15kV、LED(下方検出器)の条件下で確認した。具体的には、観察倍率5万倍で、10観察視野内に入った複合粒子の全体の全構成成分を100質量%として、炭素原子の質量の比率(質量%)を算出した。
<電極活物質粒子の一次粒子径>
 SEM(走査型電子顕微鏡;JEOL社製JSM-7800F)を用いて、加速電圧1kV、LED(下方検出器)の条件下で電極活物質粒子を観察した。「電極活物質粒子の一次粒子の粒子径」は、対象とする一次粒子の外接円の直径として定義した。具体的には、観察倍率5万倍のSEM画像から、ランダムに100個の一次粒子を選出して、それぞれについて得た外接円の直径データに基づいて個数基準のメディアン径を算出した。
<電極活物質粒子の表面元素解析>
 電極活物質粒子について、オージェ電子分光法を用いて解析することにより、電極活物質粒子の表面における、対象元素の含有量(mol%)を測定した。対象元素は、Al、Zr、W、Ti、Mg、Ta、Nb、Mo、Ir、Sc、V、Cr、及びHfとした。
<電極活物質粒子の真比重>
 電極活物質の真比重は、JIS Z 8807:2012に従って測定した。
<電極の目付安定性>
 実施例、比較例で作製したリチウムイオン二次電池用正極20cm2内の任意の5カ所の目付の測定を行った。測定は、2cm2に電極を打ち抜いて重さを測定し、集電体を除いた合材層の重さから単位cm2当たりの重量で計算した。膜厚のばらつきが小さいほど電池内でリチウムの移動が均一に起こりやすくなり、抵抗が低くなる。
 A:面内ばらつきが1.5%未満
 B:面内ばらつきが1.5%以上3%未満
 C:面内ばらつきが3%以上5%未満
 D:面内ばらつきが5%以上
<圧延性>
 実施例、比較例で得られた正極を、直径12mmの円盤状に打ち抜き、平板プレス装置を用いて温度25℃、圧力254MPaにて10秒間圧縮し、プレス性を以下の基準により評価した。密度の値が大きいほど、正極合材層がプレス性に優れることを示す。
 A:密度が3.40g/cm以上
 B:密度が3.30g/cm以上3.40g/cm未満
 C:密度が3.20g/cm以上3.30g/cm未満
 D:密度が3.20g/cm未満、もしくは合材滑落により測定不可
<高温保存後のIV抵抗の測定>
 実施例、比較例で作製したリチウムイオン二次電池を、電解液注液後、温度25℃で、5時間静置した。次に、温度25℃、0.2Cの定電流法にて、セル電圧3.65Vまで充電し、その後、温度60℃で12時間エージング処理を行った。そして、温度25℃、0.2Cの定電流法にて、セル電圧3.00Vまで放電した。その後、0.2Cの定電流にて、CC-CV充電(上限セル電圧4.20V)を行い、0.2Cの定電流にてセル電圧3.00VまでCC放電を行った。その後、以下のようにして初期IV抵抗を測定した。25℃雰囲気下、1C(Cは定格容量(mA)/1h(時間)で表される数値)でSOC(State Of Charge:充電深度)の50%まで充電した後、SOCの50%を中心として0.5C、1.0C、1.5C、2.0Cで20秒間充電と20秒間放電とをそれぞれ行い、それぞれの場合(充電側及び放電側)における20秒後の電池電圧を電流値に対してプロットし、その傾きをIV抵抗(Ω)(充電時IV抵抗及び放電時IV抵抗)として求めた。その後、0.2Cの定電流にて、CC-CV充電(上限セル電圧4.20V)を行った。次いで、処理室内を60℃窒素雰囲気としたイナー卜オーブン中に、リチウムイオン二次電池を4週間保管した。その後、初期IV抵抗と同様の方法で高温保存後のIV抵抗を測定した。得られた高温保存試験後のIV抵抗の値(Ω)について、初期IV抵抗の値(Ω)を基準とした変化率(%)を算出した。そして、下記の基準で評価した。
 高温保存試験前後でのIV抵抗変化率(%)が小さいほど、長期にわたって内部抵抗が低減されており、リチウムイオン二次電池の高温保存特性が優れていることを示す。
 A:IV抵抗化率が40%未満
 B:IV抵抗変化率が40%以上50%未満
 C:IV抵抗変化率が50%以上65%未満
 D:IV抵抗変化率が65%以上
(実施例1)
<バインダーAの製造方法>
 撹拌装置を備え、内部が充分に窒素置換された反応器に、脱水シクロヘキサン270部、エチレングリコールジブチルエーテル0.53部を入れ、さらに、n-ブチルリチウム(15%シクロヘキサン溶液)0.47部を加えた。全容を60℃で撹拌しながら、脱水スチレン12.5部を40分間に亘って連続的に反応器内に添加した。添加終了後、そのままさらに60℃で20分間全容を撹拌した。反応液をガスクロマトグラフィーにより測定したところ、この時点での重合転化率は99.5%であった。次に、脱水したイソプレン75.0部を、反応液に100分間に亘って連続的に添加し、添加終了後そのまま20分間撹拌を続けた。この時点での重合転化率は99.5%であった。その後、更に、脱水スチレン12.5部を、60分間に亘って連続的に添加し、添加終了後そのまま全容を30分間撹拌した。この時点での重合転化率はほぼ100%であった。
 ここで、反応液にイソプロピルアルコール0.5部を加えて反応を停止させた。得られた重合体溶液を、撹拌装置を備えた耐圧反応器に移送し、水素化触媒として珪藻土担持型ニッケル触媒(日揮触媒化成社製、製品名「製品名「E22U」、ニッケル担持量60%)7.0部、及び脱水シクロヘキサン80部を添加して混合した。反応器内部を水素ガスで置換し、さらに溶液を撹拌しながら水素を供給し、温度190℃、圧力4.5MPaにて6時間水素化反応を行った。
 水素化反応終了後、反応溶液をろ過して水素化触媒を除去した後、ろ液に、フェノール系酸化防止剤であるペンタエリスリチル・テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート](コーヨ化学研究所社製、製品名「Songnox1010」)0.1部を溶解したキシレン溶液1.0部を添加して溶解させた。さらにシクロヘキサンを添加することで、固形分濃度10質量%の結着材A溶液を作製した。
<複合粒子の作製>
 造粒槽としての、内径180mm、内容量2Lの円筒状容器に、円筒状容器の軸線方向を鉛直方向として、鉛直方向と水平方向の2軸に撹拌翼を持つ(鉛直方向が主撹拌翼であり、水平方向が副撹拌翼である。)、複合粒子作製装置を準備した。なお、主撹拌翼は直径170mmの3枚の主ブレードを備える傾斜パドル、副撹拌翼は直径30mmのV型アンカーブレードを持ち、主撹拌翼及び副撹拌翼の各駆動部への原料混入を防ぐため、空気を通気することでシールされる機構からなる。上記複合粒子作製装置を用いて、(i)予備撹拌工程、(ii)撹拌造粒工程、及び(iii)整粒工程をこの順に実施して、複合粒子を作製した。
 まず工程(i)として、造粒槽内にリチウムイオン電池用正極活物質としてのNCM622(個数平均一次粒子径2μm、Zr:0.5mol%)を96質量部(1344g)、導電材としてカーボンブラック(BET比表面積:62m/g、かさ密度0.16g/cm3)を2重量部(28g)投入した。次に撹拌部シール用空気を20L/分(通気量10/分)で流通し、主撹拌部を周速5m/s、副撹拌部を周速6m/sの運転条件で15分間撹拌した。
 次に工程(ii)として、撹拌部シール用空気を20L/分(通気量10/分)で流通し、主撹拌部を周速5m/秒、副撹拌部を周速6m/秒の運転条件で、結着材A溶液(固形分濃度10質量%、粘度指数200mPa・s、溶媒:シクロヘキサン)を固形分として2質量部(280g)を15分かけて連続的に添加した。
 次に工程(iii)として、撹拌部シール用空気を20L/分(通気量10/分)で流通し、主撹拌部を周速2m/s、副撹拌部を周速2m/sの運転条件で、10分間運転した。作製した複合粒子について、各種測定を実施した。結果を表1に示す。
<リチウムイオン二次電池用正極の作製>
 上記に従って作製した複合粒子を、定量フィーダ(ニッカ社製「ニッカスプレーK-V))を用いてロールプレス機(ヒラノ技研工業社製「押し切り粗面熱ロール」)のプレス用ロール(ロール温度100℃、プレス線圧500kN/m)に供給した。プレス用ロール間に、厚さ20μmのアルミニウム箔を挿入し、定量フィーダから供給された上記複合粒子をアルミニウム箔上に付着させ、成形速度1.5m/分で加圧成形し、目付30mg/cm2の正極活物質層を有するリチウムイオン二次電池用正極原反を得た。この正極原反をロールプレスで圧延し、密度が3.5g/cmの正極合材層と、アルミニウム箔とからなるシート状正極を作製した。
<リチウムイオン二次電池用負極の作製>
 撹拌機付き5MPa耐圧容器に、脂肪族共役ジエン単量体としての1,3-ブタジエン33部、酸性基含有単量体としてのイタコン酸3.5部、芳香族ビニル単量体としてのスチレン63.5部、乳化剤としてのドデシルベンゼンスルホン酸ナトリウム0.4部、イオン交換水150部、及び、重合開始剤としての過硫酸カリウム0.5部を入れ、十分に撹拌した後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し重合反応を停止して、粒子状のバインダー(スチレン-ブタジエン共重合体)を含む混合物を得た。この混合物に、5%水酸化ナトリウム水溶液を添加してpH8に調整後、加熱減圧蒸留によって未反応単量体の除去を行った。その後、混合物を30℃以下まで冷却し、負極用結着材を含む水分散液を得た。
 次にプラネタリーミキサーに、負極活物質としての人造黒鉛48.75部と、天然黒鉛48.75部と、増粘剤としてのカルボキシメチルセルロース1部とを投入した。さらに、イオン交換水を用いて固形分濃度が60%となるように希釈し、その後、回転速度45rpmで60分混練した。その後、上記に従って得た負極用結着材を含む水分散液を固形分相当で1.5部投入し、回転速度40rpmで40分混練した。そして、粘度が3000±500mPa・s(B型粘度計、25℃、60rpmで測定)となるようにイオン交換水を加えることにより、負極合材層用スラリーを調製した。
 次に、集電体として、厚さ15μmの銅箔を準備した。上記負極合材層用スラリーを銅箔に乾燥後の塗布量が15mg/cmになるように塗布し、60℃で20分、120℃で20分間乾燥した。その後、150℃で2時間加熱処理して、負極原反を得た。この負極原反をロールプレスで圧延し、密度が1.6g/cmの負極合材層(両面)と、銅箔とからなるシート状負極を作製した。
<リチウムイオン二次電池の作製>
 上記の正極、負極及びセパレータ(ポリエチレン製、厚み12μm)を用いて、単層ラミネートセル(放電容量250mAh相当)を作製し、アルミ包材内に配置した。その後、アルミ包材内に、電解液として濃度1.0MのLiPF溶液(溶媒:エチレンカーボネート(EC)/ジエチルカーボネート(DEC)=3/7(体積比)の混合溶媒、添加剤:ビニレンカーボネート2体積%(溶媒比)含有)を充填した。さらに、アルミ包材の開口を密封するために、温度150℃のヒートシールをしてアルミ包材を閉口し、リチウムイオン二次電池を作製した。このリチウムイオン二次電池を用いて、高温保存特性を評価した。結果を表1に示す。
(実施例2)
 正極活物質として、0.5mol%のWを含むNCM622に変更した以外は実施例1と同様にして、各種工程及び測定を実施した。結果を表1に示す。
(実施例3)
 正極活物質として、0.07mol%のZrを含むNCM622に変更した以外は実施例1と同様にして、各種工程及び測定を実施した。結果を表1に示す。
(実施例4)
 正極活物質として、1.8mol%のZrを含むNCM622に変更した以外は実施例1と同様にして、各種工程及び測定を実施した。結果を表1に示す。
(実施例5)
 正極活物質として、LFP(一次粒子径0.3μm;0.5mol%のZrを含む)を使用した以外は実施例1と同様にして、各種工程及び測定を実施した。結果を表1に示す。
(実施例6)
 正極活物質として、一次粒子径が0.3μmであるNCM622(0.5mol%のZrを含む)を使用した以外は実施例1と同様にして、各種工程及び測定を実施した。結果を表1に示す。
(実施例7)
 結着材として、下記のようにして調製した結着材Bを用いた以外は、実施例1と同様にして、各種工程及び測定を実施した。結果を表1に示す。
<結着材Bの調製>
 内容積10リットルの反応器中に、イオン交換水100部、並びにニトリル基含有単量体としてのアクリロニトリル35部及び脂肪族共役ジエン単量体としての1,3-ブタジエン65部を仕込み、乳化剤としてオレイン酸カリウム2部、安定剤としてリン酸カリウム0.1部、さらに、分子量調整剤としてtert-ドデシルメルカプタン(TDM)0.4部を加えて、重合開始剤としての過硫酸カリウム0.35部の存在下、温度530 ℃で乳化重合を行い、アクリロニトリルと1,3-ブタジエンとを共重合した。
 重合転化率が95%に達した時点で、単量体100部あたり0.2部のヒドロキシルアミン硫酸塩を添加して重合を停止させた。続いて、加温し、減圧下で約90℃にて水蒸気蒸留して、残留単量体を回収した後、置換フェノールとしてジブチルヒドロキシトルエン(BHT)を0.1部添加して、重合体の水分散液を得た。
 得られた水分散液中の重合体固形分100部に対し、凝固剤として3部となる量の塩化カルシウム(CaCl)の25質量%水溶液を撹拌しながら加え、水分散液中の重合体を凝固させた。その後、濾別し、得られた重合体に対し50倍量のイオン交換水を通水して、水洗した後、温度90℃の減圧下で重合体を乾燥することにより重合体の前駆体を得た。
 次いで、水素化方法として、油層水素化法を採用し、上記重合体の前駆体を水素化した。この重合体の前駆体の濃度が12%となるようにアセトンに溶解することで、水素化対象物としての重合体の前駆体のアセトン溶液を得て、これをオートクレーブに入れ、水素化対象物としての重合体の前駆体の100%に対して、触媒としてパラジウム・シリカ(Pd/SiO)500ppmを加えた後、水素圧3.0MPaの下、温度90℃で6時間水素添加反応を行ない、水素添加反応物を得た。水素添加反応終了後、パラジウム・シリカを濾別し、固形分濃度(10質量%、粘度指数400mPa・s)となるようにアセトンを投入し、結着材B溶液を得た。
(実施例8)
 工程(i)では導電材を粉体材料中に配合せず、工程(ii)において導電材を分散液として供給した以外は、実施例1と同様にして各種工程及び操作を実施した。結果を表1に示す。
<導電材分散液の作製>
 導電材としてのカーボンブラック(BET比表面積:62m/g、かさ密度0.16g/cm3)を30g、バインダーA1溶液(固形分濃度10質量%、バインダー液粘度指数200mPa・s、溶媒:シクロヘキサン)を300gをディスパーを用いて撹拌し(3000rpm、10分)、その後、直径1mmのジルコニアビーズを用いたビーズミルを使用し、周速8m/秒にて1時間混合することにより、固形分濃度が18.2%の導電材分散液を製造した。
<複合粒子の作製>
 実施例1で用いたものと同じ構造の造粒槽を用いた。
 (i)予備撹拌工程において、造粒槽内にリチウムイオン電池用正極活物質としてのリチウムイオン電池用正極活物質としてのNCM622(個数平均一次粒子径2μm、Zr:0.5mol%)を96重量部(1344g)投入した。次に撹拌部シール用空気を20L/分(通気量10/分)で流通し、主撹拌部を周速5m/s、副撹拌部を周速6m/sの運転条件で15分間撹拌した。
 次に、(ii)撹拌造粒工程において、撹拌部シール用空気を20L/分(通気量10/分)で流通し、主撹拌部を周速5m/秒、副撹拌部を周速6m/秒の運転条件で、上記で調製した導電材分散液を固形分換算でカーボンブラック2部、バインダーA2部(固形分濃度18.2%、308g)になるように、15分かけて連続的に添加した。
 次に(iii)整粒工程として、撹拌部シール用空気を20L/分(通気量10/分)で流通し、主撹拌部を周速2m/s、副撹拌部を周速2m/sの運転条件で、10分間運転した。作製した複合粒子について、各種測定を実施した。結果を表1に示す。
(実施例9)
 複合粒子の作製時、実施例1記載の工程(ii)の運転条件を、主撹拌部及び副撹拌部の周速を共に遅く変更して、複合粒子の属性が表1に示す通りとなるように変更した以外は、実施例1と同様の各種の操作、及び測定を実施した。結果を表1に示す。
(実施例10)
 複合粒子の作製時、実施例1記載の工程(iii)の運転条件を、主撹拌部及び副撹拌部の周速を共に速く変更して、複合粒子の属性が表1に示す通りとなるように変更した以外は、実施例1と同様の各種の操作、及び測定を実施した。結果を表1に示す。
(実施例11)
 複合粒子の作製時、実施例1記載の工程(iii)の持続時間を長く変更して、複合粒子の属性が表1に示す通りとなるように変更した以外は、実施例1と同様の各種の操作、及び測定を実施した。結果を表1に示す。
(比較例1)
 正極活物質粒子として、一次粒子径が0.1μmであるNCM622を使用した以外は、実施例1と同様の各種の操作、及び測定を実施した。結果を表2に示す。
(比較例2)
 正極活物質粒子として、一次粒子径が7μmであるNCM622を使用した以外は、実施例1と同様の各種の操作、及び測定を実施した。結果を表2に示す。
(比較例3)
 複合粒子の作製時、実施例1記載の工程(i)の運転条件を、主撹拌部及び副撹拌部の周速を共に遅く変更し、且つ、工程(ii)の運転条件を、主撹拌部及び副撹拌部の周速を共に遅く変更し、さらに工程(ii)の持続時間を長くして、複合粒子の属性が表2に示す通りとなるように変更した以外は、実施例1と同様の各種の操作、及び測定を実施した。結果を表2に示す。
(比較例4)
 実施例1で作製した複合粒子について、以下に従って分級を行ったものを用いた以外は、実施例1と同様の各種の操作、及び測定を実施した。結果を表2に示す。
 分級に際しては、目開きが85μmの篩い網を用いて、篩い網上の粗大粒子を除去した。さらに、篩い網下の複合粒子について、目開きが65μmの篩い網を用いて篩い、篩い網下の粒子を除去し、篩い網上に残った複合粒子を評価に使用した。
(比較例5)
 複合粒子の作製時、実施例1記載の工程(ii)の運転条件を、主撹拌部及び副撹拌部の周速を共に速くし、且つ、工程(ii)の持続時間を短くして、複合粒子の属性が表2に示す通りとなるように変更した以外は、実施例1と同様の各種の操作、及び測定を実施した。結果を表2に示す。
(比較例6)
 複合粒子の作製時、実施例1記載の工程(ii)の運転条件を、主撹拌部及び副撹拌部の周速を共に遅くして、複合粒子の属性が表2に示す通りとなるように変更した以外は、実施例1と同様の各種の操作、及び測定を実施した。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1より、一次粒子のメディアン径が所定範囲内である電極活物質粒子を含む複合粒子であり、その体積基準の粒子径分布におけるD50の値が所定の範囲内であるとともに、D90/D10の値が所定の範囲内であり、さらに、当該複合粒子の表面に占める炭素原子の割合が所定の範囲内である、複合粒子を用いて、電極合材層を形成した実施例1~11では、電極の目付安定性及び圧延性を優れたものとすることができたことが分かる。
 本発明によれば、得られる電極の目付安定性及び圧延性を高めることができる、複合粒子及びその製造方法を提供することができる。
 また、本発明によれば、目付安定性及び圧延性に優れる電気化学素子用電極、及びこれを備える電気化学素子を提供することができる。
1    造粒槽
2    主撹拌翼
21   主ブレード
3    副撹拌翼
31   副ブレード
RA1  第一撹拌軸
RA2  第二撹拌軸

Claims (9)

  1.  電極活物質粒子、導電材、及び結着材を含有する複合粒子であって、
     前記電極活物質粒子の一次粒子の個数基準のメディアン径が0.2μm以上4.0μm以下であり、
     前記複合粒子の体積基準の粒子径分布における、D50が20μm以上250μm以下であるとともに、D90/D10の値が2以上30以下であり、及び、
     前記複合粒子の表面に占める炭素原子の割合が20質量%以上70質量%以下である、
    複合粒子。
  2.  前記電極活物質粒子の真比重が、3.5以上6.0以下である、請求項1に記載の複合粒子。
  3.  前記電極活物質粒子が、Al、Zr、W、Ti、Mg、Ta、Nb、Mo、Ir、Sc、V、Cr、及びHfからなる群より選択される少なくとも一種の元素を含み、
     前記電極活物質粒子に占める前記元素の割合が0.05mol%以上2.0mol%以下である、請求項1に記載の複合粒子。
  4.  電極活物質粒子、導電材、及び結着材を含有する複合粒子の製造方法であって、
     一次粒子の個数基準のメディアン径が0.2μm以上4μm以下である前記電極活物質粒子を含む粉体材料を撹拌して撹拌状態とする予備撹拌工程と、
     撹拌状態にある前記粉体材料に対して、前記結着材を添加して、体積基準の粒子径分布における、D50が20μm以上250μm以下であるとともに、D90/D10の値が2以上30以下となる複合粒子を得る、撹拌造粒工程と、
    を含む、複合粒子の製造方法。
  5.  前記予備撹拌工程にて、前記電極活物質粒子の凝集体を前記導電材の存在下で解砕する、請求項4に記載の複合粒子の製造方法。
  6.  前記予備撹拌工程を乾式で実施する、請求項5に記載の複合粒子の製造方法。
  7.  前記撹拌造粒工程にて、溶媒中に分散させた前記導電材を、撹拌状態にある前記粉体材料に対して添加する、請求項4に記載の複合粒子の製造方法。
  8.  請求項1~3の何れかに記載の電気化学素子用複合粒子を含む電極合材層を備える、電気化学素子用電極。
  9.  請求項8に記載の電気化学素子用電極を備える、電気化学素子。
PCT/JP2022/042141 2021-11-30 2022-11-11 複合粒子及びその製造方法、電気化学素子用電極、並びに電気化学素子 WO2023100625A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-194941 2021-11-30
JP2021194941 2021-11-30

Publications (1)

Publication Number Publication Date
WO2023100625A1 true WO2023100625A1 (ja) 2023-06-08

Family

ID=86612098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/042141 WO2023100625A1 (ja) 2021-11-30 2022-11-11 複合粒子及びその製造方法、電気化学素子用電極、並びに電気化学素子

Country Status (1)

Country Link
WO (1) WO2023100625A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016517384A (ja) * 2013-03-15 2016-06-16 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company リチウム遷移金属リン酸塩二次凝集体及びその製造のための方法
JP2016155055A (ja) * 2015-02-24 2016-09-01 日本ゼオン株式会社 アトマイザ、噴霧乾燥装置及び複合粒子の製造方法
JP2017111964A (ja) * 2015-12-16 2017-06-22 トヨタ自動車株式会社 撹拌装置
US20200176776A1 (en) * 2017-09-28 2020-06-04 Lg Chem, Ltd. Method for predicting processability of electrode slurry and selecting electrode binder

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016517384A (ja) * 2013-03-15 2016-06-16 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company リチウム遷移金属リン酸塩二次凝集体及びその製造のための方法
JP2016155055A (ja) * 2015-02-24 2016-09-01 日本ゼオン株式会社 アトマイザ、噴霧乾燥装置及び複合粒子の製造方法
JP2017111964A (ja) * 2015-12-16 2017-06-22 トヨタ自動車株式会社 撹拌装置
US20200176776A1 (en) * 2017-09-28 2020-06-04 Lg Chem, Ltd. Method for predicting processability of electrode slurry and selecting electrode binder

Similar Documents

Publication Publication Date Title
JP5390336B2 (ja) 非水電解質二次電池用負極材料、非水電解質二次電池用負極材の製造方法並びに非水電解質二次電池用負極及び非水電解質二次電池
JP5861845B2 (ja) リチウムイオン二次電池負極用スラリー組成物、リチウムイオン二次電池負極、及びリチウムイオン二次電池
KR102393257B1 (ko) 이차 전지 전극용 도전재 페이스트, 이차 전지 정극용 슬러리의 제조 방법, 이차 전지용 정극의 제조 방법 및 이차 전지
US20120315541A1 (en) Lithium-ion secondary battery
US20120148922A1 (en) Negative electrode for non-aqueous electrolyte secondary battery and method for producing the same
US20120135312A1 (en) Negative electrode for non-aqueous electrolyte secondary battery and method for producing the same
EP3598544A1 (en) Conductive material dispersion liquid for electrochemical element electrodes, slurry composition for electrochemical element electrodes, method for producing same, electrode for electrochemical elements, and electrochemical element
JP6870770B1 (ja) 電気化学素子用導電材分散液、電気化学素子電極用スラリー、電気化学素子用電極及び電気化学素子
JP2011060467A (ja) リチウムイオン二次電池用負極材料およびその製造方法
JP4171259B2 (ja) 黒鉛質材料の製造方法、リチウムイオン二次電池用負極材料およびリチウムイオン二次電池
JP4579892B2 (ja) リチウムイオン二次電池用負極材料およびその製造方法
JP6944082B1 (ja) 炭素質被覆黒鉛粒子、リチウムイオン二次電池用負極およびリチウムイオン二次電池
WO2023100625A1 (ja) 複合粒子及びその製造方法、電気化学素子用電極、並びに電気化学素子
WO2023053652A1 (ja) 複合粒子、電気化学素子用電極、及び電気化学素子
WO2021172105A1 (ja) 電気化学素子用複合粒子及びその製造方法、並びに、電気化学素子用電極及び電気化学素子
WO2023053651A1 (ja) 複合粒子及び電気化学素子用電極の製造方法
JP2016066544A (ja) 二次電池電極用導電材ペースト、二次電池正極用スラリー、二次電池用正極の製造方法および二次電池
KR20220132665A (ko) 전기 화학 소자용 도전재 분산액, 전기 화학 소자 전극용 슬러리 조성물 및 그 제조 방법, 전기 화학 소자용 전극, 그리고 전기 화학 소자
KR20220134046A (ko) 전기 화학 소자용 분산제 조성물, 전기 화학 소자용 도전재 분산액, 전기 화학 소자 전극용 슬러리 조성물 및 그 제조 방법, 전기 화학 소자용 전극, 그리고 전기 화학 소자
KR20240067872A (ko) 복합 입자, 전기 화학 소자용 전극, 및 전기 화학 소자
JP6911987B1 (ja) 電気化学素子用分散剤組成物、電気化学素子用導電材分散液、電気化学素子電極用スラリー、電気化学素子用電極及び電気化学素子
KR20240070511A (ko) 복합 입자 및 전기 화학 소자용 전극의 제조 방법
WO2024048355A1 (ja) 複合粒子及びその製造方法、電気化学素子用電極、並びに電気化学素子
TWI813461B (zh) 鋰離子電池用之負極材料粉末
WO2022045218A1 (ja) 電気化学素子用導電材分散液、電気化学素子電極用スラリー、電気化学素子用電極及び電気化学素子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22901058

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023564848

Country of ref document: JP

Kind code of ref document: A