WO2023053652A1 - 複合粒子、電気化学素子用電極、及び電気化学素子 - Google Patents

複合粒子、電気化学素子用電極、及び電気化学素子 Download PDF

Info

Publication number
WO2023053652A1
WO2023053652A1 PCT/JP2022/026405 JP2022026405W WO2023053652A1 WO 2023053652 A1 WO2023053652 A1 WO 2023053652A1 JP 2022026405 W JP2022026405 W JP 2022026405W WO 2023053652 A1 WO2023053652 A1 WO 2023053652A1
Authority
WO
WIPO (PCT)
Prior art keywords
composite particles
electrode
less
composite
electrochemical device
Prior art date
Application number
PCT/JP2022/026405
Other languages
English (en)
French (fr)
Inventor
一輝 浅井
拓己 杉本
憲幸 押田
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2023550390A priority Critical patent/JPWO2023053652A1/ja
Priority to KR1020247006994A priority patent/KR20240067872A/ko
Priority to CN202280053319.3A priority patent/CN117769772A/zh
Publication of WO2023053652A1 publication Critical patent/WO2023053652A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to composite particles, electrodes for electrochemical devices, and electrochemical devices.
  • Electrochemical devices such as lithium-ion secondary batteries are small, lightweight, have high energy density, and can be repeatedly charged and discharged, and are used in a wide range of applications.
  • An electrode for an electrochemical device is composed mainly of an electrode active material on an electrode base material. It has a structure in which an electrode mixture layer containing other components such as a binder is arranged. From the viewpoint of improving the performance of the electrochemical device, it is preferable that the electrode active material and other components are uniformly dispersed in the electrode mixture layer.
  • a slurry composition containing an electrode active material, a conductive material, a binder, and a solvent is coated on an electrode substrate and dried to form the electrode mixture layer. Also, a method of forming an electrode mixture layer by pressure-molding composite particles containing an electrode active material, a conductive material, a binder, and a solvent on an electrode base material has been conventionally investigated.
  • the above-described conventional granulated particles have room for further improvement in the properties of electrodes formed using such composite particles and electrochemical devices equipped with such electrodes.
  • the present invention improves the flexibility of the electrode, suppresses cracking of the electrode active material in the electrode, and further improves the cycle characteristics and rate characteristics of the electrochemical device provided with such an electrode.
  • Composite particles. intended to provide Another object of the present invention is to provide an electrode for an electrochemical device containing the composite particles of the present invention and an electrochemical device comprising the same.
  • the inventor of the present invention conducted intensive studies with the aim of solving the above problems. Then, the present inventors found that composite particles having an average equivalent area diameter, a coefficient of variation of the equivalent area diameter, and a density coefficient each within a predetermined range improve the properties of the resulting electrode and electrochemical device. The present inventors have newly discovered that it is possible to achieve the present invention.
  • an object of the present invention is to advantageously solve the above problems, and the composite particles of the present invention are composite particles containing an electrode active material, a conductive material, and a binder,
  • the composite particles have an average equivalent area diameter of 20 ⁇ m or more and 250 ⁇ m or less,
  • the coefficient of variation of the area equivalent diameter calculated according to is 5% or more and 50% or less
  • the value of the density coefficient calculated according to Formula 2: compressed density/bulk density is 1.3 or more and 3.5 or less.
  • the flexibility of the electrode is increased, cracking of the electrode active material in the electrode is suppressed, Furthermore, the cycle characteristics and rate characteristics of an electrochemical device provided with such electrodes can be improved.
  • the average value of the equivalent area diameter, the coefficient of variation of the equivalent area diameter, and the value of the density coefficient can each be measured according to the methods described in the examples of this specification.
  • the composite particles of the present invention described in [1] above preferably have a volume resistivity of 1 ⁇ cm or more and 3000 ⁇ cm or less.
  • the volume resistivity of composite particles can be measured according to the method described in the examples of this specification.
  • the composite particle of the present invention described in [1] or [2] above has an area circularity of 0.50 or more and 0.93 or less, and a peripheral length envelopment of 0.70 or more and 0.70 or more. It is preferably 97 or less. If the area circularity and the perimeter length envelopment of the composite particles are within the above ranges, the flexibility of the electrode is further enhanced, cracking of the electrode active material in the electrode is further suppressed, and an electrochemical device comprising such an electrode is provided. The cycle characteristics and rate characteristics of the device can be further improved.
  • the area circularity and perimeter length envelopment of the composite particles can each be measured according to the methods described in the Examples herein.
  • the binder is a polymeric material that dissolves in a non-aqueous solvent having a boiling point at 1 atm of 95° C. or less. is preferred. If the binder is a polymeric material that dissolves in a non-aqueous solvent having a boiling point of 95° C. or less at 1 atm, deterioration of the polymeric material due to residual solvent can be suppressed, and the long-term life characteristics of the resulting electrochemical device can be enhanced. .
  • an object of the present invention is to advantageously solve the above-mentioned problems, and an electrode for an electrochemical device of the present invention is the composite according to any one of [1] to [4] above. It is characterized by comprising an electrode mixture layer containing particles.
  • An electrode for an electrochemical device comprising an electrode mixture layer containing composite particles has excellent flexibility, less cracking of the contained electrode active material, and further improves the cycle characteristics and rate characteristics of the electrochemical device comprising such an electrode. can be improved.
  • Another object of the present invention is to advantageously solve the above-mentioned problems, and an electrochemical device of the present invention is characterized by comprising the above-described electrode for an electrochemical device of the present invention. .
  • An electrochemical device provided with the electrode for an electrochemical device of the present invention is excellent in cycle characteristics and rate characteristics.
  • a composite particle capable of increasing the flexibility of an electrode, suppressing cracking of the electrode active material in the electrode, and further improving the cycle characteristics of an electrochemical device provided with such an electrode. be able to. Further, according to the present invention, it is possible to provide an electrochemical device electrode containing the composite particles of the present invention and an electrochemical device having the same.
  • FIG. 2 is a cross-sectional view along the line AA shown in FIG. 1;
  • the composite particles of the present invention can be suitably used as a compounding component of an electrode mixture layer provided in an electrode of an electrochemical device such as a secondary battery.
  • the composite particles of the present invention contain an electrode active material, a conductive material, and a binder.
  • the composite particles of the present invention have an average equivalent area diameter of 20 ⁇ m or more and 250 ⁇ m or less, Formula 1: (standard deviation of equivalent area diameter / average value of equivalent area diameter) x 100
  • the coefficient of variation of the area equivalent diameter calculated according to is 5% or more and 50% or less
  • the value of the density coefficient calculated according to Formula 2: compressed density/bulk density is 1.3 or more and 3.5 or less.
  • the flexibility of the electrode is increased, cracking of the electrode active material in the electrode is suppressed, Furthermore, the cycle characteristics and rate characteristics of an electrochemical device provided with such electrodes can be improved.
  • the average equivalent area diameter of the composite particles must be 20 ⁇ m or more and 250 ⁇ m or less, preferably 30 ⁇ m or more, more preferably 40 ⁇ m or more, preferably 200 ⁇ m or less, and 150 ⁇ m or less. is more preferable. If the average value of the area-equivalent diameter of the composite particles is at least the above lower limit, the flexibility of the electrode formed using the composite particles can be enhanced, and the rate characteristics of the electrochemical device including such an electrode can be enhanced. .
  • the average value of the area-equivalent diameter of the composite particles is equal to or less than the above upper limit, cracking of the electrode active material in the electrode mixture layer can be suppressed, and the cycle characteristics and rate characteristics of the obtained electrochemical device can be improved. can.
  • the coefficient of variation of the equivalent area diameter of the composite particles is required to be 5% or more and 50% or less, preferably 7% or more, more preferably 10% or more, and 45% or less. is preferred, and 40% or less is more preferred.
  • the coefficient of variation of the area-equivalent diameter is equal to or higher than the above lower limit, cracking of the electrode active material in the electrode formed using the composite particles can be suppressed satisfactorily.
  • the fact that the coefficient of variation is equal to or higher than the above lower limit means that the composite particles do not have completely uniform particle diameters, but have a certain or more variation.
  • the electrode active material is efficiently filled in the electrode mixture layer, and the cycle of the electrochemical device including such an electrode mixture layer is improved. You can improve your properties. Further, when the coefficient of variation of the equivalent area diameter is equal to or less than the above upper limit, the flexibility of the obtained electrode and the rate characteristics of the electrochemical device provided with such an electrode can be improved.
  • the area equivalent diameter of the composite particles is preferably 10 times or more, more preferably 20 times or more, still more preferably 50 times or more, preferably 3000 times or less, more preferably 1000 times or less, and more preferably 500 times the primary particle diameter of the electrode active material. More preferably less than twice.
  • the area-equivalent diameter of the composite particles is 10 times or more the primary particle diameter of the electrode active material, the composite particles can be improved in handleability while maintaining the homogeneity of the composite particles.
  • the area-equivalent diameter of the composite particles is 3000 times or less the primary particle diameter of the electrode active material, density control during electrode production is facilitated, and swelling during cycle tests of lithium ion batteries can be suppressed.
  • the density coefficient of the composite particles must be 1.3 or more and 3.5 or less, preferably 1.4 or more, more preferably 1.5 or more, and 3.0 or less. It is preferably 2.7 or less, and more preferably 2.7 or less. If the density coefficient is at least the above lower limit, the flexibility of the resulting electrode and the cycle characteristics of the electrochemical device provided with such an electrode can be improved. If the density coefficient is equal to or less than the above upper limit, it is possible to satisfactorily suppress cracking of the active material in the resulting electrode.
  • the bulk density of the composite particles is preferably 1.0 or more and 4.0 or less.
  • the bulk density is equal to or higher than the above lower limit, cracking of the electrode active material in the electrode formed using the composite particles can be suppressed.
  • the bulk density is equal to or less than the above upper limit value, the flexibility of the obtained electrode can be enhanced.
  • the homogeneity of composite particles can affect the cyclability of the resulting electrochemical device.
  • the homogeneity of composite particles can be evaluated by observing the composite particles with a scanning electron microscope (SEM). For example, by observing the appearance of the composite particles with an SEM, the uneven distribution and dispersibility of the binder and conductive material on the surfaces of the composite particles can be evaluated. Furthermore, by observing the cross section of the composite particles with an SEM, the uneven distribution and dispersibility of the binder and the conductive material inside the composite particles can be evaluated.
  • SEM scanning electron microscope
  • the fluidity of the composite particles is evaluated by the repose angle and collapse angle measured using a powder tester, and as described in the examples of the present application, the composite obtained when the composite particle layer is leveled using a doctor blade. It can be evaluated by the thinnest doctor blade thickness that does not cause streaks in the particle layer. It means that the thinner the thickness of the doctor blade capable of forming a composite particle layer without streaks, the better the fluidity of the composite particles and the more uniform the electrode mixture layer can be formed.
  • the doctor blade thickness evaluated by such a method is preferably 400 ⁇ m or less, more preferably 330 ⁇ m or less, and even more preferably 250 ⁇ m or less.
  • a homogeneous electrode mixture layer can be formed. Furthermore, a homogeneous electrode composite layer can improve the rate performance of the electrochemical device.
  • the fluidity of the composite particles can also be evaluated based on the roughness of the surface smoothed with a doctor blade. The surface roughness is preferably 0.50 ⁇ m 3 or less, more preferably 0.30 ⁇ m 3 or less, and even more preferably 0.20 ⁇ m 3 or less in space volume per 5.4 mm 2 . If the composite particles have excellent fluidity, it is possible to improve the smoothness of the surface of the resulting electrode, thereby reducing the internal resistance of the electrochemical device and enhancing the rate characteristics.
  • the volume resistivity of the composite particles is preferably 3000 ⁇ cm or less, more preferably 1000 ⁇ cm or less, even more preferably 500 ⁇ cm or less, and even more preferably 250 ⁇ cm or less. It is preferably 100 ⁇ cm or less, and particularly preferably 100 ⁇ cm or less.
  • the lower limit of the volume resistivity of the composite particles is not particularly limited, but can be, for example, 1 ⁇ cm or more. If the volume resistivity of the composite particles is equal to or less than the above upper limit, the rate characteristics of the resulting electrochemical device can be enhanced.
  • the volume resistivity of the composite particles can be measured by the method described in Examples.
  • the area circularity of the composite particles is preferably 0.50 or more, more preferably 0.60 or more, still more preferably 0.70 or more, preferably 0.93 or less, more preferably 0.92 or less, and 0.91 or less. is more preferred.
  • the area circularity of the composite particles is equal to or higher than the above lower limit, cracking of the electrode active material in the electrode formed using the composite particles can be suppressed. Further, when the areal circularity of the composite particles is equal to or less than the above upper limit, the rate characteristics of the resulting electrochemical device can be enhanced.
  • the circumference length envelopment of the composite particles is preferably 0.70 or more, more preferably 0.72 or more, still more preferably 0.75 or more, preferably 0.97 or less, more preferably 0.94 or less, and 0.92. More preferred are: When the perimeter envelopment of the composite particles is at least the above lower limit, the flexibility of the electrode formed using the composite particles can be enhanced. If the perimeter envelopment of the composite particles is equal to or less than the above upper limit, the resulting electrochemical device can have improved cycle characteristics.
  • the electrode active material is not particularly limited, and includes various active materials that can be used for positive and negative electrodes of electrochemical devices such as secondary batteries.
  • the positive electrode active material include, but are not limited to, lithium-containing cobalt oxide (lithium cobalt oxide, LiCoO 2 ), lithium manganate (LiMn 2 O 4 ), lithium-containing nickel oxide (LiNiO 2 ), Co - Ni--Mn lithium-containing composite oxide (Li(Co Mn Ni) O 2 ), Ni--Mn--Al lithium-containing composite oxide, Ni--Co---Al lithium-containing composite oxide, olivine-type iron phosphate Lithium (LiFePO 4 ), olivine-type lithium manganese phosphate (LiMnPO 4 ), Li 2 MnO 3 —LiNiO 2 solid solution, lithium-rich spinel represented by Li 1+x Mn 2-x O 4 (0 ⁇ X ⁇ 2) Compounds, Li[Ni 0.17 Li 0.2 Co
  • the particle size of the electrode active material is preferably 0.03 ⁇ m or more, more preferably 0.1 ⁇ m or more, even more preferably 0.5 ⁇ m or more, preferably 500 ⁇ m or less, more preferably 200 ⁇ m or less, and even more preferably 30 ⁇ m or less.
  • the particle size of the electrode active material can be measured by a laser diffraction method. More specifically, in the particle size distribution (volume basis) measured using a laser diffraction particle size distribution measuring device, the particle size D50 at which the cumulative volume calculated from the small size side becomes 50% is defined as the volume average particle size. , this value preferably satisfies the above particle size range.
  • the composition in the composite particles can be made more homogeneous. Furthermore, if the particle size of the electrode active material is equal to or less than the above upper limit, the electrode density of the obtained electrode can be increased, and the specific surface area of the electrode active material is sufficiently large, so that the electrochemical element is formed. Chemical reactions can be optimized.
  • the particle size of the electrode active material is at least the above lower limit value, the handling property of the powder material as a material for manufacturing the composite particles is improved, and the productivity of the composite particles is improved. Furthermore, when the particle size of the electrode active material is at least the above lower limit, it is possible to satisfactorily suppress deterioration of the electrode active material when the electrochemical device is repeatedly charged and discharged.
  • the conductive material is not particularly limited, and may be carbon black (eg, acetylene black, Ketjenblack (registered trademark), furnace black, etc.), single-walled or multi-walled carbon nanotubes (multi-walled carbon nanotubes include cup-stacked types). carbon nanohorns, vapor-grown carbon fibers, milled carbon fibers obtained by crushing polymer fibers after firing, single-layer or multi-layer graphene, carbon non-woven fabric sheets obtained by firing non-woven fabrics made of polymer fibers, etc. Carbon materials as well as fibers or foils of various metals can be used. These can be used individually by 1 type or in combination of multiple types.
  • the compounding ratio is not particularly limited, and may be a general compounding ratio contained in the electrode for an electrochemical device.
  • Binder examples include conjugated diene-based polymers, acrylic polymers, aromatic vinyl-based block polymers, fluorine-based polymers, cellulose-based polymers, and cyclic olefin-based polymers. Binders may be used singly or in combination of two or more.
  • a conjugated diene-based polymer refers to a polymer containing conjugated diene monomer units. Specific examples of the conjugated diene-based polymer are not particularly limited. Examples include polymers, butadiene rubber (BR), acrylic rubber (NBR) (copolymers containing acrylonitrile units and butadiene units), and hydrides thereof.
  • BR butadiene rubber
  • NBR acrylic rubber
  • acrylic polymers include, but are not limited to, polymers containing crosslinkable monomer units, (meth)acrylic acid ester monomer units, and acidic group-containing monomer units. is mentioned.
  • the proportion of (meth)acrylate monomer units in the acrylic polymer is preferably 50% by mass or more, more preferably 55% by mass or more, still more preferably 58% by mass or more, and preferably 98% by mass. % or less, more preferably 97 mass % or less, and still more preferably 96 mass % or less.
  • aromatic vinyl-based block polymers include block polymers containing block regions composed of aromatic vinyl monomer units.
  • aromatic vinyl monomers include styrene, styrenesulfonic acid and its salts, ⁇ -methylstyrene, pt-butylstyrene, butoxystyrene, vinyltoluene, chlorostyrene, and vinylnaphthalene, among others. Styrene is preferred.
  • Preferred examples of aromatic vinyl-based block polymers include styrene-isoprene-styrene block copolymers, styrene-butadiene-styrene copolymers, and hydrides thereof.
  • a fluorine-based polymer means a polymer that contains a fluorine-containing monomer unit and may further contain a fluorine-free monomer (non-fluorine-containing monomer) unit.
  • fluorine-containing monomers include, but are not limited to, vinylidene fluoride, tetrafluoroethylene, hexafluoropropylene, vinyl trifluoride, vinyl fluoride, trifluoroethylene, trifluorochloroethylene, 2, 3,3,3-tetrafluoropropene, perfluoroalkyl vinyl ether and the like.
  • the fluorine-based polymer is not particularly limited, and may be polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinylidene fluoride, polyvinyl fluoride, perfluoroalkoxy fluororesin, ethylene tetrafluoride-propylene hexafluoride copolymer. , ethylene-tetrafluoroethylene copolymer, ethylene-chlorotrifluoroethylene copolymer, vinylidene fluoride-propylene hexafluoride copolymer (vinylidene fluoride-hexafluoropropylene copolymer), and the like.
  • the cellulosic polymer is not particularly limited, and examples thereof include cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate, cyanoethyl pullulan, cyanoethyl polyvinyl alcohol, cyanoethyl cellulose, cyanoethyl sucrose, pullulan and carboxymethyl cellulose. be done.
  • the cyclic olefin polymer is not particularly limited, and for example, a polymer synthesized using a cyclic olefin compound as a monomer (addition polymer or ring-opening polymer) and its hydride, and an aromatic vinyl compound. as a monomer.
  • a cyclic olefin compound as a monomer (addition polymer or ring-opening polymer) and its hydride
  • an aromatic vinyl compound as a monomer.
  • hydrides of ring-opening polymers using cyclic olefin compounds as monomers and polymers using aromatic vinyl compounds as monomers are preferred because the degree of swelling of the electrolytic solution and the glass transition temperature can be easily adjusted to moderate levels. is preferred.
  • the cyclic olefin compound is not particularly limited, and for example, unsubstituted or alkyl-containing norbornenes such as norbornene, 5-methylnorbornene, 5-ethylnorbornene, 5-butylnorbornene, 5-hexylnorbornene, 5-decylnorbornene, 5-cyclohexylnorbornene, 5-cyclopentylnorbornene; norbornenes having an alkenyl group such as 5-ethylidenenorbornene, 5-vinylnorbornene, 5-propenylnorbornene, 5-cyclohexenylnorbornene, 5-cyclopentenylnorbornene; norbornenes having an aromatic ring such as 5-phenylnorbornene; 5-methoxycarbonylnorbornene, 5-ethoxycarbonylnorbornene, 5-methyl-5-methoxycarbonylnorbornene, 5-methyl-5-
  • Tetracyclododecenes with unsubstituted or alkyl groups such as 0.12, 5.17, 10]-3-dodecene; 8-methylidenetetracyclododecene, 8-ethylidenetetracyclododecene, 8-vinyltetracyclododecene, 8-propenyltetracyclododecene, 8-cyclohexenyltetracyclododecene, 8-cyclopentenyltetracyclododecene Tetracyclododecenes having an exocyclic double bond such as Tetracyclododecenes having an aromatic ring such as 8-phenyltetracyclododecene; 8-Methoxycarbonyltetracyclododecene, 8-methyl-8-methoxycarbonyltetracyclododecene, 8-hydroxymethyltetracyclod
  • non-polar norbornene-based monomers are preferable, and norbornenes having unsubstituted or alkyl groups (e.g., norbornene, 8-ethyltetracyclododecene), norbornenes having alkenyl groups (e.g., ethylidenetetracyclododecene (8-ethylidenetetracyclododecene)), dicyclopentadiene, norbornene derivatives having an aromatic ring (e.g., tetracyclo[9.2.1.02,10.03,8]tetradeca-3,5 ,7,12-tetraene (also referred to as 1,4-methano-1,4,4a,9a-tetrahydro-9H-fluorene), unsubstituted or alkyl-containing tetracyclododecenes (e.g., tetra
  • the polymer using a cyclic olefin compound as a monomer may be a polymer using only a cyclic olefin compound as a monomer, or a cyclic olefin compound and a monomer other than a cyclic olefin compound as monomers.
  • a polymer using only a cyclic olefin compound as a monomer is preferable.
  • the optionally hydrogenated polymer using a cyclic olefin compound as a monomer is preferably a polymer using tetracyclododecene, dicyclopentadiene and norbornene as a monomer. , dicyclopentadiene and norbornene are more preferred.
  • polymeric materials that dissolve in non-aqueous solvents having a boiling point at 1 atm of preferably 95°C or lower, more preferably 90°C or lower, and even more preferably 85°C or lower are preferred.
  • the lower limit of the boiling point at 1 atm of the non-aqueous solvent in which the binder is soluble is not particularly limited, but may be 50° C. or higher.
  • Solvents satisfying such conditions include cyclohexane, n-hexane, acetone, methyl ethyl ketone, ethyl acetate, tetrahydrofuran, methylene chloride, chloroform, and the like.
  • the composite particles of the present invention described above can be produced according to any production method without any particular limitation as long as the above essential attributes and preferred attributes can be satisfied.
  • the composite particles of the present invention are preferably produced using a granulation tank equipped with two or more stirring blades with different stirring axes.
  • a production method using a granulation tank equipped with two or more stirring blades with different stirring axes will be described.
  • the granulation tank is equipped with two or more stirring blades with different stirring axes.
  • the uniformity of the composition of the composite particles obtained by providing two or more stirring blades with different stirring axes is enhanced, and as a result, the cycle characteristics of the electrochemical device provided with electrodes formed using such composite particles are enhanced. be able to.
  • a granulation tank according to one example will be described with reference to FIGS.
  • FIG. 1 is a top view of the granulating tank 1
  • FIG. 2 is a cross-sectional view along the line AA shown in FIG.
  • the granulation tank 1 includes a main stirring blade 2 and an auxiliary stirring blade 3 having a stirring shaft different from that of the main stirring blade 2 .
  • the number of stirring blades is not particularly limited as long as it is two or more. By having two or more stirring blades, the uniformity of the composition of the composite particles can be improved, thereby improving the cycle characteristics of an electrochemical device provided with an electrode formed using such composite particles.
  • the granulation tank 1 is equipped with at least one supply means capable of supplying a liquid composition.
  • supply means include a spray nozzle and a dropping funnel configured to supply a liquid mist.
  • the number of supply means is not particularly limited, but a plurality of supply means may be arranged separately from each other according to the size of the granulation tank.
  • the granulation tank 1 may include a supply port for the powder material and a discharge port capable of discharging the formed composite particles.
  • the stirring shaft of the main stirring blade 2 is indicated by a broken line as the first stirring shaft RA1
  • the stirring shaft of the auxiliary stirring blade is indicated by a broken line as the second stirring shaft RA2.
  • the angle ⁇ between the first stirring axis RA1 and the second stirring axis RA2 is approximately 90 degrees.
  • the angle formed by the first stirring shaft RA1 and the second stirring shaft RA2 means the acute angle among the angles formed by these two axes.
  • “different stirring axes” means that the angle ⁇ between the stirring axes is 20° or more and 90° or less.
  • the angle ⁇ between the stirring shafts is preferably 30° or more, more preferably 45° or more, and even more preferably 85° or more.
  • the powder material can be effectively stirred, and the particle size and coefficient of variation of the resulting composite particles can be well controlled. Flexibility of the electrode formed using such composite particles and cracking of the electrode active material in the electrode can be suppressed, and the cycle characteristics of the resulting electrochemical device can be enhanced.
  • the "variation coefficient" means the coefficient of variation of the particle size distribution of the composite particles. It can be calculated according to the method described in the examples of this specification.
  • the shape of the granulation tank is not particularly limited as long as it can contain the powder material containing the electrode active material for a predetermined period and can be stirred with at least two stirring blades.
  • the shape of the granulation tank may be a cylindrical shape having circular bottom and top surfaces and a tapered top in the height direction, like the granulation tank 1 shown in FIGS.
  • the shape of the granulation tank is a predetermined cylindrical shape as shown in FIGS. It may correspond to a direction perpendicular to the central axis.
  • the shape of the granulation tank is a predetermined cylindrical shape as shown in FIGS. 1 and 2
  • the value obtained by dividing the diameter of the bottom surface by the height (diameter/height) is 0.1 or more. is preferably 0.3 or more, more preferably 0.5 or more, preferably 2.5 or less, more preferably 2.0 or less, 1.5 or less is more preferable. This is because the powder material can be effectively stirred.
  • the main stirring blade 2 has three main blades 21.
  • the shape and number of the main blades 21 are not particularly limited.
  • the secondary stirring blade 3 has two secondary blades 31 .
  • the secondary blades 31 are illustrated as anchor wings in FIGS. 1-2, they are not so limited.
  • the number of sub-blades 31 is not limited to the illustrated embodiment, and may be one or three or more.
  • the granulation tank 1 has an aeration mechanism configured to suppress mixing of the powder material into each driving part of the main stirring blade 2 and the auxiliary stirring blade 3 by passing air. can be provided.
  • Examples of granulation tanks that satisfy the above conditions include High Speed Mixer manufactured by Earth Technica, Henschel Mixer manufactured by Mitsui Sansha, Vertical Granulator manufactured by Powrex, CF Granulator manufactured by Freund Corporation, and CF Granulator manufactured by Nara Machinery Works.
  • a high-speed stirring and mixing granulator, SP granulator manufactured by Dalton, Balance Gran manufactured by Freund Corporation, etc. can be used.
  • the powder material is stirred to bring it into a stirred state.
  • the powder material is required to contain an electrode active material and may optionally contain a conductive material.
  • the electrode active material and the conductive material those described above can be used.
  • the powder material may inevitably contain a small amount of liquid component due to the influence of moisture that may adhere during manufacturing and storage.
  • the solid content concentration of the powder material at the start of the preliminary stirring operation is highly likely to be less than 100% by mass.
  • the solid content concentration of the powder material at the end of the preliminary stirring operation is preferably 95% by mass or more, more preferably 97% by mass or more, and further preferably 98% by mass or more. preferable.
  • the solid content concentration of the powder material can be measured by the method described in Examples.
  • the peripheral speed of the main stirring blades and the auxiliary stirring blades in the preliminary stirring operation is preferably 1 m/s or more and 20 m/s or less. If the peripheral speed is within such a range, it is possible to improve the homogeneity of the composition of the composite particles obtained, thereby suppressing cracking of the electrode active material in the obtained electrode, and thus the cycle of the electrochemical device equipped with such an electrode. You can improve your properties.
  • the peripheral speed of the main stirring blade and the auxiliary stirring blade in the preliminary stirring operation may be the same or different, and may be different. is preferably faster than the peripheral speed of the main stirring blade.
  • the value (flow rate/capacity) obtained by dividing the flow rate of the air flowing into the granulation tank by the capacity of the granulation tank is preferably 0.1/minute or more and 100/minute. If the aeration amount is within such a range, the solid content concentration of the powder material can be favorably increased in the pre-stirring operation.
  • the aeration amount may be the aeration amount by the aeration mechanism for preventing the powder material from entering the driving parts of the main stirring blade and the auxiliary stirring blade described above.
  • the temperature of the air to be ventilated is preferably less than 50°C, more preferably 45°C or less, even more preferably 40°C or less, and particularly preferably 30°C or less.
  • the time for performing the preliminary stirring operation is not particularly limited.
  • the pre-stirring time is preferably a time during which the solid content concentration can be made equal to or higher than the above-described preferred threshold.
  • the pre-stirring time can be from 5 minutes to 60 minutes.
  • the preliminary stirring operation may be performed in multiple steps.
  • a preliminary stirring operation using a stirring device (hereinafter also referred to as “stirring device A”) different from the granulation tank equipped with the stirring blades described above is performed in the granulation tank equipped with the stirring blades described above.
  • the stirring device A is not particularly limited as long as it is a stirring device different from the above-described granulation tank equipped with stirring blades, and examples thereof include a dry mixing device and a wet mixing device.
  • a dry mixing device for example, Miracle KCK manufactured by Asada Iron Works Co., Ltd., Hybridization System manufactured by Nara Machinery Co., Ltd., or the like can be used.
  • a wet mixing device for example, Planetary Despa manufactured by Asada Iron Works Co., Ltd. can be used.
  • the rate characteristics of the resulting electrochemical device can be enhanced. . It is believed that this is because the pre-stirring operation using the stirrer A can reduce the volume resistivity of the resulting composite particles.
  • Pre-composite particle forming operation a composition containing a binder and a solvent is added to the stirred powder material to form pre-composite particles.
  • the binder those described above can be used.
  • the mode of addition when adding the composition containing the binder and the solvent to the powder material is not particularly limited as long as it is a mode other than batch addition. Examples thereof include a mode of continuous addition throughout the pre-composite particle-forming operation, and an intermittent addition mode in which one or more periods of addition stoppage are interposed during the pre-composite particle-forming operation. Among them, a mode of continuous addition is preferable.
  • the pre-composite particle forming operation While the pre-composite particle forming operation is being carried out, i.e., under an atmosphere in which the powder material, solvent, and binder are all placed under stirring together, the pre-composite particles of the powder material and the binder gradually form. As they are being formed, particles can collide with each other, and between particles and solvent, resulting in a sizing effect. In other words, during the pre-composite particle-forming operation, the action of forming the pre-composite particles and the action of sizing can proceed simultaneously in the presence of the solvent. In this way, in the pre-composite particle forming operation, the pre-composite particles can be formed while being sized.
  • Examples of means for adding the composition containing the binder and solvent to the powder material include a spray nozzle and a dropping funnel, as described above.
  • the gas-liquid ratio gas volume / liquid volume
  • the gas-liquid ratio is 1.30 or more. is preferably 1.40 or more, more preferably 1.45 or more, preferably 1.80 or less, more preferably 1.70 or less, 1.60 or less is more preferable. If the gas-liquid ratio is equal to or higher than the above lower limit, it is possible to suppress enlargement of the particle size of the composite particles.
  • the value of the spray surface density which is the value corresponding to the composition spray amount per unit area on the stationary surface, is 0.20 (g/mm 2 /min) or more. is preferably 0.25 (g/mm 2 /min) or more, more preferably 0.38 (g/mm 2 /min) or more, and 0.60 (g/mm 2 /min) or more. minutes) or less, more preferably 0.50 (g/mm 2 /min) or less, and even more preferably 0.41 (g/mm 2 /min) or less.
  • the value of the spray area density (g/mm 2 /min) is at least the above lower limit, it is possible to prevent the particle size of the composite particles from becoming excessively small. That is, by controlling the gas-liquid ratio and/or spray area density within an appropriate range, the particle size of the resulting composite particles can be well controlled.
  • any solvent can be used without any particular limitation as the solvent.
  • organic solvents such as N-methyl-2-pyrrolidone, cyclohexane, n-hexane, acetone, methyl ethyl ketone, ethyl acetate, tetrahydrofuran, methylene chloride, and chloroform, and water can be used as solvents.
  • a non-aqueous solvent having a boiling point of 95° C. or lower at 1 atm and capable of dissolving the binder as described above can be preferably used.
  • the boiling point of the non-aqueous solvent at 1 atm is more preferably 90° C. or lower, more preferably 85° C. or lower.
  • the solvent can be efficiently removed in the granulation tank to reduce drying energy when forming pre-composite particles.
  • the lower limit of the boiling point of the non-aqueous solvent at 1 atm is not particularly limited, it is preferably 50° C. or higher from the viewpoint of enhancing the stability when forming the precomposite particles.
  • Solvents satisfying such conditions include those listed above. One type of solvent may be used alone, or two or more types may be used in combination at an arbitrary ratio.
  • the viscosity index of the composition containing the binder and solvent continuously added to the granulation tank in the pre-composite particle forming operation is preferably 100 mPa ⁇ s or more and 1000 mPa ⁇ s or less.
  • the viscosity index of the composition is a value obtained by dividing the viscosity of the composition by the solid content concentration and multiplying by 100, and can be measured and calculated by the method described in Examples.
  • the peripheral speed of the main stirring blade and the auxiliary stirring blade in the pre-composite particle forming operation is preferably 1 m/s or more and 20 m/s or less. If the peripheral speed of the main stirring blade is within the above range, the particle size of the resulting composite particles can be well controlled. Moreover, if the peripheral speed of the auxiliary stirring blade is within the above range, the coefficient of variation of the resulting composite particles can be well controlled. Furthermore, from the viewpoint of suppressing gas generation during high-temperature storage of the electrode formed using the composite particles by enhancing the particle size regulation effect that occurs when the pre-composite particle formation operation is performed, the peripheral speed of the main stirring blade is increased. It is preferably 6 m/s or more.
  • the value obtained by dividing the flow rate of the air flowing into the granulation tank by the capacity of the granulation tank is preferably 0.1/minute or more and 100/minute. If the aeration amount is within such a range, the solvent vapor amount in the granulation layer can be well controlled in the pre-composite particle forming operation, and the pre-composite particles can be efficiently formed.
  • the duration of the pre-composite particle formation operation is not particularly limited.
  • the pre-composite particle formation time can be from 5 minutes to 60 minutes.
  • the pre-composite particles are agitated after the completion of the addition of the composition (that is, after the completion of the (ii) pre-composite particle forming operation) to form composite particles.
  • the peripheral speed of the main stirring blade and the auxiliary stirring blade in the sizing operation is preferably 0.1 m/s or more and 10 m/s or less. If the peripheral speed of the main stirring blade is within the above range, the density coefficient and area circularity of the resulting composite particles can be well controlled. Moreover, if the peripheral speed of the auxiliary stirring blade is within the above range, the coefficient of variation and the degree of envelopment along the circumference of the obtained composite particles can be well controlled.
  • the value obtained by dividing the flow rate of the air flowing into the granulation tank by the capacity of the granulation tank is preferably 0.1/minute or more and 100/minute. If the aeration amount is within such a range, the wet state of the composite particles can be well controlled in the sizing operation, and the composite particles can be efficiently formed.
  • the duration of the sizing operation is not particularly limited.
  • the sizing time may be 10 seconds or longer, 60 minutes or shorter, preferably 20 minutes or shorter, preferably 8 minutes or shorter, and 3 minutes or shorter. more preferred.
  • the temperature in the granulation tank is preferably less than 50°C, more preferably 45°C or less, even more preferably 40°C or less.
  • An electrode for an electrochemical device of the present invention comprises an electrode mixture layer containing the composite particles of the present invention described above. ADVANTAGE OF THE INVENTION
  • the electrode for electrochemical devices of this invention is excellent in flexibility, the electrode active material contained therein is less likely to crack, and the cycle characteristics and rate characteristics of an electrochemical device provided with such an electrode can be improved.
  • the electrode for an electrochemical device of the present invention is formed by pressure-molding the composite particles produced according to the production method of the present invention on an electrode substrate to form an electrode mixture layer (pressure-molding operation). can be manufactured.
  • the pressing operation can be carried out according to known methods.
  • the composite particles produced according to the production method of the present invention are subjected to a roll press machine and roll-pressed on the electrode substrate, whereby the composite particles are pressure-molded on the electrode substrate to form an electrode mixture. Layers can be formed.
  • the pressure during pressing can be appropriately set according to the target electrode density.
  • a conductive and electrochemically durable material is used as the electrode base material.
  • a current collector made of iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, platinum, or the like can be used.
  • one type of the above materials may be used alone, or two or more types may be used in combination at an arbitrary ratio.
  • the electrochemical device of the present invention includes the electrochemical device electrode described above. Since the electrochemical device of the present invention includes the electrode for an electrochemical device of the present invention, it is excellent in cycle characteristics and rate characteristics.
  • the electrochemical device is not particularly limited, and may be, for example, a lithium ion secondary battery, an electric double layer capacitor, or a lithium ion capacitor, preferably a lithium ion secondary battery.
  • a lithium ion secondary battery as an electrochemical element of the present invention usually comprises electrodes (a positive electrode and a negative electrode), an electrolytic solution, and a separator, and uses the electrode for an electrochemical element of the present invention as at least one of the positive electrode and the negative electrode. .
  • Electrode other than the above-described electrode for an electrochemical device of the present invention which can be used in a lithium-ion secondary battery as an electrochemical device
  • known electrodes can be used without particular limitation.
  • an electrode obtained by forming an electrode mixture layer on a current collector using a known manufacturing method can be used.
  • an organic electrolytic solution in which a supporting electrolyte is dissolved in an organic solvent is usually used.
  • a lithium salt for example, is used as the supporting electrolyte.
  • lithium salts include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi. , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi and the like.
  • LiPF 6 , LiClO 4 and CF 3 SO 3 Li are preferable, and LiPF 6 is particularly preferable, because they are easily dissolved in a solvent and exhibit a high degree of dissociation.
  • an electrolyte may be used individually by 1 type, and may be used in combination of 2 or more types by arbitrary ratios.
  • the organic solvent used in the electrolytic solution is not particularly limited as long as it can dissolve the supporting electrolyte.
  • Examples include dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), carbonates such as butylene carbonate (BC) and methyl ethyl carbonate (EMC); esters such as ⁇ -butyrolactone and methyl formate; ethers such as 1,2-dimethoxyethane and tetrahydrofuran; sulfur-containing compounds such as sulfolane and dimethylsulfoxide and the like are preferably used. A mixture of these solvents may also be used. Note that the concentration of the electrolyte in the electrolytic solution can be adjusted as appropriate. Further, known additives such as vinylene carbonate, fluoroethylene carbonate, ethyl methyl sulfone, etc. may be added to the electrolytic solution.
  • a known separator can be used without any particular limitation. Among them, a microporous film made of a polyolefin resin (polyethylene, polypropylene, polybutene, polyvinyl chloride) is preferable. Furthermore, as the separator, a separator with a functional layer, in which a functional layer (porous membrane layer or adhesive layer) is provided on one side or both sides of a separator substrate, may be used.
  • a functional layer porous membrane layer or adhesive layer
  • Lithium-ion secondary batteries for example, a positive electrode and a negative electrode are superimposed with a separator interposed therebetween, and if necessary, they are rolled or folded according to the shape of the battery, placed in a battery container, and an electrolytic solution is added to the battery container. can be produced by injecting and sealing.
  • a fuse In order to prevent an increase in internal pressure of the secondary battery and the occurrence of overcharge/discharge, etc., a fuse, an overcurrent protection element such as a PTC element, an expanded metal, a lead plate, or the like may be provided as necessary.
  • the shape of the secondary battery may be, for example, coin-shaped, button-shaped, sheet-shaped, cylindrical, rectangular, or flat.
  • Average equivalent area diameter average equivalent area diameter D A ( ⁇ m) of 4000 analyzed composite particles
  • Variation coefficient of area-equivalent diameter Value CV calculated from the average value D A of the area-equivalent diameter of 4000 analyzed composite particles and its standard deviation ⁇
  • Variation coefficient of equivalent area diameter CV standard deviation ⁇ of equivalent area diameter / average value D A of equivalent area diameter ⁇ 100 (%)
  • Average perimeter envelopment average value obtained by dividing the perimeter of the convex circumscribed figure (minimum convex hull) by the perimeter P for all particles in the observation field
  • the primary particle size of the electrode active material was calculated by SEM observation of the composite particles obtained in Examples and Comparative Examples. Specifically, 10 target composite particles are determined at a magnification of 500 times, and the target composite particles are further observed at a magnification of 10000 times. was measured and the number average value was calculated. Divide the area-equivalent diameter of the composite particles calculated according to the above by the obtained value of the primary particle diameter of the electrode active material, and determine how many times the area-equivalent diameter of the composite particles is the primary particle diameter of the electrode active material. was calculated.
  • Density coefficient C ⁇ compressed density ⁇ p /bulk density ⁇ a [Bulk density ⁇ a ]
  • the bulk density (g/cm 3 ) of the composite particles was measured based on the constant volume measurement method described in JIS R 1628-1997.
  • [Compact density ⁇ p ] 4.00 g of the composite particles prepared in Examples and Comparative Examples were pressurized at 50 MPa to prepare cylindrical pellets having a base area of 2 cm 2 (diameter: 15.97 mm), the thickness of which was measured, and the compression density was calculated.
  • Lithium-ion secondary batteries as electrochemical devices produced in Examples and Comparative Examples were allowed to stand at a temperature of 25° C. for 5 hours after electrolyte injection. Next, it was charged to a cell voltage of 3.65 V by a constant current method at a temperature of 25° C. and 0.2 C, and then subjected to aging treatment at a temperature of 60° C. for 12 hours. Then, the battery was discharged to a cell voltage of 3.00 V by a constant current method at a temperature of 25° C. and 0.2 C. After that, CC-CV charging (upper limit cell voltage 4.20 V) was performed by a 0.2C constant current method, and CC discharge was performed to 3.00V by a 0.2C constant current method.
  • Lithium-ion secondary batteries as electrochemical devices produced in Examples and Comparative Examples were allowed to stand at a temperature of 25° C. for 5 hours after electrolyte injection. Next, it was charged to a cell voltage of 3.65 V by a constant current method at a temperature of 25° C. and 0.2 C, and then subjected to aging treatment at a temperature of 60° C. for 12 hours. Then, the battery was discharged to a cell voltage of 3.00 V by a constant current method at a temperature of 25° C. and 0.2 C. After that, CC-CV charging (upper limit cell voltage 4.20 V) was performed by a 0.2C constant current method, and CC discharge was performed to 3.00V by a 0.2C constant current method.
  • Electric capacity ratio is 90% or more
  • Example 1 ⁇ Production of Binder A1> 270 parts of dehydrated cyclohexane and 0.53 parts of ethylene glycol dibutyl ether are added to a reactor equipped with a stirring device and the interior of which is sufficiently replaced with nitrogen, and 0.47 parts of n-butyllithium (15% cyclohexane solution) is added. added. 12.5 parts of dehydrated styrene was continuously added into the reactor over 40 minutes while stirring the whole volume at 60°C. After the addition was completed, the whole volume was further stirred at 60° C. for 20 minutes. When the reaction solution was measured by gas chromatography, the polymerization conversion rate at this point was 99.5%.
  • the polymer solution is transferred to a pressure-resistant reactor equipped with a stirring device, and a diatomaceous earth-supported nickel catalyst (manufactured by Nikki Shokubai Kasei Co., Ltd., product name “E22U”, nickel support amount 60%) 7 as a hydrogenation catalyst. .0 part and 80 parts of dehydrated cyclohexane were added and mixed. The inside of the reactor was replaced with hydrogen gas, hydrogen was supplied while stirring the solution, and a hydrogenation reaction was carried out at a temperature of 190° C. and a pressure of 4.5 MPa for 6 hours.
  • a diatomaceous earth-supported nickel catalyst manufactured by Nikki Shokubai Kasei Co., Ltd., product name “E22U”, nickel support amount 60%
  • the reaction solution was filtered to remove the hydrogenation catalyst, and the filtrate was added with pentaerythrityl tetrakis[3-(3,5-di-t-butyl- 4-Hydroxyphenyl)propionate] (manufactured by Koyo Chemical Laboratory Co., Ltd., product name “Songnox 1010”) was dissolved in 1.0 part of a xylene solution and dissolved. Further, cyclohexane was added to prepare a binder A1 solution having a predetermined concentration.
  • a cylindrical container with an inner diameter of 180 mm and an internal capacity of 2 L as a granulation tank has stirring blades on two axes, vertical and horizontal, with the axial direction of the cylindrical container as the vertical direction (the vertical direction is the main stirring blade and the horizontal direction is the auxiliary stirring blade.)
  • a composite particle production apparatus was prepared.
  • the main stirring blade has an inclined paddle with three main blades with a diameter of 170 mm
  • the auxiliary stirring blade has a V-shaped anchor blade with a diameter of 30 mm. Therefore, it consists of a mechanism that is sealed by ventilating air.
  • sealing air air at room temperature (hereinafter also referred to as “sealing air”) for sealing each driving part of the main stirring blade and the auxiliary stirring blade is circulated at 20 L / min (ventilation rate 10 / min), and the main stirring Stirring was carried out for 15 minutes under the operating conditions of a peripheral speed of 5 m/s for the impeller and a peripheral speed of 6 m/s for the sub-stirring part.
  • the solid content concentration of the powder material after stirring was measured, it was 99% by mass or more.
  • ⁇ Preparation of positive electrode for lithium ion secondary battery> The prepared composite particles are fed to a press roll (roll temperature 100 ° C., roll temperature 100 ° C., A press line pressure of 500 kN/m) was supplied. An aluminum foil having a thickness of 20 ⁇ m is inserted between the pressing rolls, and the composite particles supplied from a quantitative feeder are adhered onto the aluminum foil, pressure-molded at a molding speed of 1.5 m / min, and a basis weight of 30 mg / cm. Thus, a positive electrode raw sheet for a lithium ion secondary battery having a positive electrode active material layer of No. 2 was obtained.
  • This positive electrode material was rolled by a roll press to produce a sheet-like positive electrode comprising a positive electrode mixture layer having a density of 3.5 g/cm 3 and an aluminum foil.
  • ⁇ Production of negative electrode> In a 5 MPa pressure vessel equipped with a stirrer, 33 parts of 1,3-butadiene as an aliphatic conjugated diene monomer, 3.5 parts of itaconic acid as an acidic group-containing monomer, and styrene 63 as an aromatic vinyl monomer.
  • aqueous dispersion containing the negative electrode binder 48.75 parts of artificial graphite as a negative electrode active material, 48.75 parts of natural graphite, and 1 part of carboxymethyl cellulose as a thickener were put into a planetary mixer. Furthermore, it was diluted with ion-exchanged water so that the solid content concentration was 60%, and then kneaded for 60 minutes at a rotational speed of 45 rpm. After that, 1.5 parts of the aqueous dispersion containing the negative electrode binder obtained as described above was added in terms of the solid content, and kneaded at a rotational speed of 40 rpm for 40 minutes.
  • ion-exchanged water was added so that the viscosity was 3000 ⁇ 500 mPa ⁇ s (measured with a Brookfield viscometer at 25° C. and 60 rpm) to prepare a slurry for the negative electrode mixture layer.
  • a copper foil having a thickness of 15 ⁇ m was prepared as a current collector.
  • the negative electrode mixture layer slurry was applied to a copper foil so that the coating amount after drying was 15 mg/cm 2 , and dried at 60° C. for 20 minutes and 120° C. for 20 minutes. After that, heat treatment was performed at 150° C. for 2 hours to obtain a negative electrode original fabric.
  • This negative electrode material was rolled by a roll press to produce a sheet-like negative electrode comprising negative electrode mixture layers (both sides) having a density of 1.6 g/cm 3 and copper foil.
  • a single-layer laminate cell (equivalent to a discharge capacity of 250 mAh) was produced using the positive electrode, negative electrode, and separator (made of polyethylene, thickness 12 ⁇ m), and placed in an aluminum packaging material.
  • Binder A2 In a reactor having an internal volume of 10 liters, 100 parts of ion-exchanged water, 35 parts of acrylonitrile as a nitrile group-containing monomer, and 65 parts of 1,3-butadiene as an aliphatic conjugated diene monomer are charged, and used as an emulsifier. 2 parts of potassium oleate, 0.1 part of potassium phosphate as a stabilizer, and 0.4 parts of tert-dodecyl mercaptan (TDM) as a molecular weight modifier were added, and 0.35 parts of potassium persulfate as a polymerization initiator. Emulsion polymerization was carried out at a temperature of 530° C.
  • an acetone solution of the precursor of the polymer as the object to be hydrogenated is obtained.
  • acetone solution of the precursor of the polymer as the object to be hydrogenated.
  • palladium silica Pd/SiO 2
  • hydrogenation reaction was performed at a temperature of 90 ° C. for 6 hours under a hydrogen pressure of 3.0 MPa. , to give the hydrogenation reactants.
  • palladium-silica was filtered off, and acetone was added so as to obtain a predetermined solid content concentration to obtain a binder A2 solution.
  • acetone as a solvent was added to prepare a mixture of a conductive material, a binder, and a solvent with a solid content concentration of 10% and a total amount of 1 kg.
  • the resulting mixture is dispersed using a bead mill (LMZ015, manufactured by Ashizawa Fine Tech) using zirconia beads with a diameter of 0.5 mm at a peripheral speed of 12 m / s for 1 hour to obtain a conductive material,
  • a composition containing a binder and a solvent was prepared.
  • the resulting composition had a solid content concentration of 10% by mass and a viscosity index of 300 mPa ⁇ s).
  • Example 4 In (ii) pre-composite particle formation operation in ⁇ Preparation of composite particles>, the peripheral speed of the main stirring blade was changed to 3 m / s, and the peripheral speed of the auxiliary stirring blade was changed to 5 m / s. Various operations, measurements, and evaluations were performed in the same manner as in Example 1, except that the speed was changed to 5/min. Table 1 shows the results.
  • Example 5 In (ii) pre-composite particle formation operation in ⁇ Preparation of composite particles>, the same procedure as in Example 1 was performed except that the peripheral speed of the main stirring blade was changed to 9 m / s and the peripheral speed of the auxiliary stirring blade was changed to 5 m / s. Various manipulations, measurements and evaluations were performed. Table 1 shows the results.
  • Example 6 Various operations, measurements, and evaluations were performed in the same manner as in Example 1, except that the peripheral speed of the auxiliary stirring blade was changed to 2 m/s in (ii) pre-composite particle formation operation in ⁇ Preparation of composite particles>. Table 1 shows the results.
  • Example 7 In the (ii) pre-composite particle formation operation in ⁇ Preparation of composite particles>, the peripheral speed of the auxiliary stirring blade was changed to 10 m / s, and (iii) after performing a particle size adjustment operation, a classification operation according to the following was performed. bottom. Various operations, measurements, and evaluations similar to those in Example 1 were performed except for this point. Table 1 shows the results.
  • ⁇ Classification operation> (iii) The composite particles obtained through the sizing operation were sieved using a sieve with an opening of 100 ⁇ m to remove coarse particles on the sieve. Further, the composite particles under the sieve were sieved using a sieve with an opening of 50 ⁇ m, the particles under the sieve were removed, and the composite particles remaining on the sieve were obtained.
  • Example 8 Various operations, measurements, and evaluations were carried out in the same manner as in Example 1, except that the peripheral speed of the main stirring blade in the (iii) sizing operation in ⁇ Preparation of composite particles> was changed to 0.4 m/s. Table 1 shows the results.
  • Example 9 Various operations, measurements, and evaluations were performed in the same manner as in Example 1, except that the peripheral speed of the main stirring blade in the (iii) sizing operation in ⁇ Preparation of Composite Particles> was changed to 6 m/s. Table 1 shows the results.
  • Example 10 ⁇ Preparation of Composite Particles>
  • Various operations, measurements, and evaluations were performed in the same manner as in Example 1, except that the steps were changed as follows. Table 2 shows the results.
  • (i) Pre-stirring operation in ⁇ Preparation of Composite Particles> was performed in two steps. Specifically, the pre-stirring time in the granulation tank under the same conditions as in Example 1 was shortened to 1 minute. Furthermore, prior to such operation, Miracle KCK (registered trademark) (model: M KCK-L) manufactured by Asada Iron Works Co., Ltd. was used under the conditions of a rotation speed of 40 rpm, a processing speed of 1 L / h, and a processing time of 10 minutes.
  • Miracle KCK registered trademark
  • a mixture of NMC532 as a positive electrode active material and carbon black as a conductive material was mixed, and the obtained powder material was subjected to a pre-stirring operation with a stirring time of 1 minute. Furthermore, (ii) in the pre-composite particle forming operation, the means for adding the composition was changed to a two-fluid spray, and the composition was introduced into the system with the gas-liquid ratio (gas volume/liquid volume) and spray surface density shown in Table 2. added continuously. In addition, in the (ii) pre-composite particle forming operation, the peripheral speed of the main stirring blade was changed to 8 m/s, and the aeration rate was changed to 5/min. (iii) In the sizing operation, the operating time was changed to 1 minute. The maximum temperature in the system throughout these steps was 40°C.
  • Example 11 ⁇ Preparation of Composite Particles>
  • Various operations, measurements, and evaluations were performed in the same manner as in Example 1, except that the steps were changed as follows. Table 2 shows the results.
  • (i) Pre-stirring operation in ⁇ Preparation of Composite Particles> was performed in two steps. Specifically, the pre-stirring time in the granulation tank under the same conditions as in Example 1 was shortened to 1 minute. Furthermore, prior to such operation, Miracle KCK (registered trademark) (model: M KCK-L) manufactured by Asada Iron Works Co., Ltd. was used under the conditions of a rotation speed of 40 rpm, a processing speed of 1 L / h, and a processing time of 10 minutes. A mixture of NMC532 as a positive electrode active material and carbon black as a conductive material was mixed, and the obtained powder material was subjected to a pre-stirring operation with a stirring time of 1 minute.
  • Miracle KCK registered trademark
  • M KCK-L manufactured by As
  • Example 12 ⁇ Preparation of Composite Particles> Various operations, measurements, and evaluations were performed in the same manner as in Example 1, except that the steps were changed as follows. Table 2 shows the results.
  • pre-composite particle formation operation in ⁇ Preparation of composite particles> the peripheral speed of the main stirring blade was changed to 8 m/s, and the aeration rate was changed to 5/min.
  • the operating time was changed to 1 minute. The maximum temperature in the system throughout steps (i)-(iii) was 40°C.
  • Example 13 ⁇ Preparation of Composite Particles>
  • Various operations, measurements, and evaluations were performed in the same manner as in Example 1, except that the steps were changed as follows. Table 2 shows the results.
  • the means for adding the composition was changed to a two-fluid spray, and the gas-liquid ratio (gas volume/liquid volume) and spray surface density shown in Table 2 were as follows: The composition was continuously added into the system. The maximum temperature in the system throughout steps (i)-(iii) was 40°C.
  • Example 14 ⁇ Preparation of Composite Particles>
  • Various operations, measurements, and evaluations were performed in the same manner as in Example 1, except that the steps were changed as follows. Table 2 shows the results.
  • the means for adding the composition was changed to a two-fluid spray, and the gas-liquid ratio (gas volume/liquid volume) and spray surface density shown in Table 2 were as follows: The composition was continuously added into the system. The maximum temperature in the system throughout steps (i)-(iii) was 36°C.
  • Example 15 ⁇ Preparation of Composite Particles>
  • Various operations, measurements, and evaluations were performed in the same manner as in Example 1, except that the steps were changed as follows. Table 2 shows the results.
  • the means for adding the composition was changed to a two-fluid spray, and the gas-liquid ratio (gas volume/liquid volume) and spray surface density shown in Table 2 were as follows: The composition was continuously added into the system.
  • the peripheral speed of the main stirring blade was changed to 15 m/s
  • the peripheral speed of the auxiliary stirring blade was changed to 2 m/s.
  • the peripheral speed of the auxiliary stirring blade was changed to 10 m/s.
  • the maximum temperature in the system through steps (i)-(iii) was 42°C.
  • Example 16 ⁇ Preparation of Composite Particles>
  • Various operations, measurements, and evaluations were performed in the same manner as in Example 1, except that the steps were changed as follows. Table 2 shows the results.
  • the means for adding the composition was changed to a two-fluid spray, and the gas-liquid ratio (gas volume/liquid volume) and spray surface density shown in Table 2 were as follows: The composition was continuously added into the system.
  • the peripheral speed of the main stirring blade was changed to 3 m/s, and the peripheral speed of the auxiliary stirring blade was changed to 10 m/s.
  • the maximum temperature in the system throughout steps (i)-(iii) was 34°C.
  • Example 17 ⁇ Preparation of Composite Particles>
  • Various operations, measurements, and evaluations were performed in the same manner as in Example 1, except that the steps were changed as follows. Table 2 shows the results.
  • the means for adding the composition was changed to a two-fluid spray, and the gas-liquid ratio (gas volume/liquid volume) and spray surface density shown in Table 2 were as follows: The composition was continuously added into the system.
  • the pre-composite particle forming operation the peripheral speed of the main stirring blade was changed to 8 m/s.
  • the peripheral speed of the main stirring blade was changed to 0.4 m/s.
  • the maximum temperature in the system throughout steps (i)-(iii) was 38°C.
  • Example 18 ⁇ Preparation of Composite Particles>
  • Various operations, measurements, and evaluations were performed in the same manner as in Example 1, except that the steps were changed as follows. Table 2 shows the results.
  • the means for adding the composition was changed to a two-fluid spray, and the gas-liquid ratio (gas volume/liquid volume) and spray surface density shown in Table 2 were as follows: The composition was continuously added into the system.
  • the peripheral speed of the auxiliary stirring impeller was changed to 10 m/s.
  • the peripheral speed of the main stirring blade was changed to 6 m/s.
  • the maximum temperature in the system throughout steps (i)-(iii) was 38°C.
  • a composite particle capable of increasing the flexibility of an electrode, suppressing cracking of the electrode active material in the electrode, and further improving the cycle characteristics of an electrochemical device provided with such an electrode. be able to. Further, according to the present invention, it is possible to provide an electrochemical device electrode containing the composite particles of the present invention and an electrochemical device having the same.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

電極活物質、導電材、及びバインダーを含む複合粒子である。かかる複合粒子は、面積相当径の平均値が20μm以上250μm以下であり、式1:(面積相当径の標準偏差/面積相当径の平均値)×100に従って算出される、面積相当径の変動係数が5%以上50%以下であり、式2:圧縮密度/かさ密度に従って算出される密度係数の値が1.3以上3.5以下である。

Description

複合粒子、電気化学素子用電極、及び電気化学素子
 本発明は、複合粒子、電気化学素子用電極、及び電気化学素子に関するものである。
 リチウムイオン二次電池などの電気化学素子は、小型で軽量、且つエネルギー密度が高く、更に繰り返し充放電が可能という特性があり、幅広い用途に使用されている。
 電気化学素子の性能を向上させるために、電気化学素子用電極を形成する材料についても様々な改善が行われている。電気化学素子用電極は、電極基材上に、電極活物質を主成分とし、必要に応じて、導電性、密着性、柔軟性などの特有の機能を電極に付与するために、導電材や結着材などのその他の成分を含有する電極合材層が配置されてなる構造を有する。電気化学素子の性能向上の観点からは、電極合材層において、電極活物質及びその他の成分が均一に分散していることが好ましい。
 電極合材層を形成するための方途としては、電極活物質、導電材、結着材、及び溶媒を含むスラリー組成物を電極基材上に塗布及び乾燥して電極合材層を形成する方途と、電極活物質、導電材、結着材、及び溶媒を含む複合粒子を電極基材上にて加圧成形することにより電極合材層を形成する方途などが、従来から検討されてきた。
 複合粒子としては、従来から様々な製造方法に従って様々な属性を有するものが検討されてきた(例えば、特許文献1~3参照)。
国際公開第2005/124801号 特開2006-060193号公報 国際公開第2015/029829号
 しかし、上記従来の造粒粒子には、かかる複合粒子を用いて形成した電極及びかかる電極を備える電気化学素子の性状において、一層の向上の余地があった。
 そこで、本発明は、電極の柔軟性を高めるとともに、電極における電極活物質の割れを抑制し、さらには、かかる電極を備える電気化学素子のサイクル特性及びレート特性を向上させることができる、複合粒子を提供することを目的とする。
 また、本発明は、本発明の複合粒子を含有する電気化学素子用電極及びこれを備える電気化学素子を提供することを目的とする。
 本発明者は、上記課題を解決することを目的として鋭意検討を行った。そして、本発明者は、面積相当径の平均値、面積相当径の変動係数、及び密度係数の値がそれぞれ所定範囲である複合粒子によれば、得られる電極及び電気化学素子の性状を向上させることが可能なことを新たに見出し、本発明を完成させた。
 [1]即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の複合粒子は、電極活物質、導電材、及びバインダーを含む複合粒子であって、該複合粒子は、面積相当径の平均値が20μm以上250μm以下であり、
 式1:(面積相当径の標準偏差/面積相当径の平均値)×100
に従って算出される、面積相当径の変動係数が5%以上50%以下であり、
 式2:圧縮密度/かさ密度
に従って算出される密度係数の値が1.3以上3.5以下であることを特徴とする。面積相当径の平均値、面積相当径の変動係数、及び密度係数の値がそれぞれ所定範囲である複合粒子によれば、電極の柔軟性を高めるとともに、電極における電極活物質の割れを抑制し、さらには、かかる電極を備える電気化学素子のサイクル特性及びレート特性を向上させることができる。面積相当径の平均値、面積相当径の変動係数、及び密度係数の値は、それぞれ、本明細書の実施例に記載した方法に従って測定することができる。
 [2]ここで、上記[1]に記載の本発明の複合粒子は、体積抵抗率が1Ω・cm以上3000Ω・cm以下であることが好ましい。複合粒子の体積抵抗率は、本明細書の実施例に記載した方法に従って測定することができる。
 [3]また、上記[1]又は[2]に記載の本発明の複合粒子は、面積円形度が0.50以上0.93以下であるとともに、周囲長包絡度が0.70以上0.97以下であることが好ましい。複合粒子の面積円形度及び周囲長包絡度がそれぞれ上記範囲内であれば、電極の柔軟性を一層高めるとともに、電極における電極活物質の割れを一層抑制し、さらには、かかる電極を備える電気化学素子のサイクル特性及びレート特性を一層向上させることができる。複合粒子の面積円形度及び周囲長包絡度は、それぞれ、本明細書の実施例に記載した方法に従って測定することができる。
 [4]また、上記[1]~[3]の何れかに記載の本発明の複合粒子は、前記バインダーが、1atmにおける沸点が95℃以下の非水系溶媒に溶解する高分子材料であることが好ましい。バインダーが、1atmにおける沸点が95℃以下の非水系溶媒に溶解する高分子材料であれば、残留溶媒による高分子材料の劣化が抑制され、得られる電気化学素子の長期寿命特性を高めることができる。
 [5]また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の電気化学素子用電極は、上記[1]~[4]の何れかに記載の複合粒子を含む電極合材層を備えることを特徴とする。複合粒子を含む電極合材層を備える電気化学素子用電極は、柔軟性に優れるとともに、含有する電極活物質の割れが少なく、さらには、かかる電極を備える電気化学素子のサイクル特性及びレート特性を向上させることができる。
 [6]また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の電気化学素子は、上述した本発明の電気化学素子用電極を備えることを特徴とする。本発明の電気化学素子用電極を備える電気化学素子は、サイクル特性及びレート特性に優れる。
 本発明によれば、電極の柔軟性を高めるとともに、電極における電極活物質の割れを抑制し、さらには、かかる電極を備える電気化学素子のサイクル特性を向上させることができる、複合粒子を提供することができる。
 また、本発明によれば、本発明の複合粒子を含む電気化学素子用電極及びこれを備える電気化学素子を提供することができる。
一例にかかる造粒槽の上面図である。 図1に示すA-A切断線に従う断面図である。
 以下、本発明の実施形態について詳細に説明する。
 ここで、本発明の複合粒子は、二次電池のような電気化学素子の電極に備えられる電極合材層の配合成分として好適に用いることができる。
(複合粒子)
 本発明の複合粒子は、電極活物質、導電材、及びバインダーを含む。そして、本発明の複合粒子は、面積相当径の平均値が20μm以上250μm以下であり、
 式1:(面積相当径の標準偏差/面積相当径の平均値)×100
に従って算出される、面積相当径の変動係数が5%以上50%以下であり、
 式2:圧縮密度/かさ密度
に従って算出される密度係数の値が1.3以上3.5以下であることを特徴とする。面積相当径の平均値、面積相当径の変動係数、及び密度係数の値がそれぞれ所定範囲である複合粒子によれば、電極の柔軟性を高めるとともに、電極における電極活物質の割れを抑制し、さらには、かかる電極を備える電気化学素子のサイクル特性及びレート特性を向上させることができる。
<面積相当径の平均値>
 複合粒子は、面積相当径の平均値が20μm以上250μm以下である必要があり、30μm以上であることが好ましく、40μm以上であることがより好ましく、200μm以下であることが好ましく、150μm以下であることがより好ましい。なお、複合粒子の面積相当径の平均値が上記下限値以上であれば、複合粒子を用いて形成した電極の柔軟性を高めるとともに、かかる電極を備える電気化学素子のレート特性を高めることができる。また、複合粒子の面積相当径の平均値が上記上限値以下であれば、電極合材層における電極活物質の割れを抑制するとともに、得られる電気化学素子のサイクル特性及びレート特性を高めることができる。
<面積相当径の変動係数>
 複合粒子の面積相当径の変動係数は、5%以上50%以下であることが必要であり、7%以上であることが好ましく、10%以上であることがより好ましく、45%以下であることが好ましく、40%以下であることがより好ましい。面積相当径の変動係数が上記下限値以上であれば、複合粒子を用いて形成した電極における電極活物質の割れを良好に抑制することができる。さらに、変動係数が上記下限値以上であるということは、複合粒子が完全に均一な粒子径を持つのではなく、一定以上のばらつきを持つことを意味する。このため、高密度な電極合材層を形成した場合であっても、電極合材層内において効率よく電極活物質が充填されるようになり、かかる電極合材層を含む電気化学素子のサイクル特性を高めることができる。また、面積相当径の変動係数が上記上限値以下であれば、得られる電極の柔軟性及びかかる電極を備える電気化学素子のレート特性を向上させることができる。
<複合粒子の面積相当径対電極活物質一次粒子径比>
 複合粒子の面積相当径は、電極活物質の一次粒子径の10倍以上が好ましく、20倍以上がより好ましく、50倍以上がさらに好ましく、3000倍以下が好ましく、1000倍以下がより好ましく、500倍以下がさらに好ましい。複合粒子の面積相当径が電極活物質の一次粒子径の10倍以上であれば、複合粒子の均質性を維持したまま、複合粒子のハンドリング性を向上することができる。また、複合粒子の面積相当径が電極活物質の一次粒子径の3000倍以下であれば、電極製造時の密度制御が容易となり、リチウムイオン電池のサイクル試験時膨れを抑制することができる。
<密度係数>
 複合粒子の密度係数は、1.3以上3.5以下である必要があり、1.4以上であることが好ましく、1.5以上であることがより好ましく、3.0以下であることが好ましく、2.7以下であることがより好ましい。密度係数が上記下限値以上であれば、得られる電極の柔軟性及びかかる電極を備える電気化学素子のサイクル特性を向上させることができる。密度係数が上記上限値以下であれば、得られる電極中において活物質の割れが発生することを良好に抑制することができる。
<かさ密度>
 複合粒子のかさ密度は、1.0以上4.0以下が好ましい。かさ密度が上記下限値以上であれば、複合粒子を用いて形成した電極における電極活物質の割れを抑制することができる。また、かさ密度が上記上限値以下であれば得られる電極の柔軟性を高めることができる。
<均質性>
 複合粒子の均質性は、得られる電気化学素子のサイクル特性に影響しうる。複合粒子の均質性は、複合粒子を走査型電子顕微鏡(SEM)観察することで評価することができる。例えば、複合粒子の外観をSEM観察することで、複合粒子表面のバインダー及び導電材について、偏在性及び分散性を評価することができる。さらに、複合粒子の断面をSEM観察することで、複合粒子内部のバインダー及び導電材について、偏在性及び分散性を評価することができる。
<流動性>
 複合粒子の流動性は、パウダーテスターを用いて測定される安息角や崩壊角で評価するほか、本願実施例に記載したように、ドクターブレードを用いて複合粒子層を均した際に得られる複合粒子層にスジの入らない最薄のドクターブレード厚みにより評価することができる。スジが入らない複合粒子層を形成可能なドクターブレードの厚みが薄いほど、複合粒子の流動性が良好であり、均質な電極合材層を形成可能であることを意味する。かかる方法で評価したドクターブレード厚みは、400μm以下であることが好ましく、330μm以下であることがより好ましく、250μm以下であることがさらに好ましい。上記の方法で評価したドクターブレード厚みがかかる上限値以下であれば、均質な電極合材層を形成することができる。さらに、均質な電極合材層は、電気化学素子のレート特性を向上させ得る。また、このほかに、本願実施例に記載したように、ドクターブレードで均した表面の粗さに基づいても、複合粒子の流動性を評価することができる。表面粗さは、5.4mm当たりの空間体積で、0.50μm3以下であることが好ましく、0.30μm3以下であることがより好ましく、0.20μm3以下であることが更に好ましい。複合粒子が流動性に優れていれば、得られる電極の表面の平滑性を高めることで、電気化学素子の内部抵抗を低減してレート特性を高めることができる。
<体積抵抗率>
 複合粒子の体積抵抗率は、3000Ω・cm以下であることが好ましく、1000Ω・cm以下であることがより好ましく、500Ω・cm以下であることがさらに好ましく、250Ω・cm以下であることが更により好ましく、100Ω・cm以下であることが特に好ましい。複合粒子の体積抵抗率の下限は、特に限定されないが、例えば、1Ω・cm以上でありうる。複合粒子の体積抵抗率が上記上限値以下であれば、得られる電気化学素子のレート特性を高めることができる。なお、複合粒子の体積抵抗率は、実施例に記載した方法により測定することができる。
<面積円形度>
 複合粒子の面積円形度は、0.50以上が好ましく、0.60以上がより好ましく、0.70以上がさらに好ましく、0.93以下が好ましく、0.92以下がより好ましく、0.91以下がさらに好ましい。複合粒子の面積円形度が上記下限値以上であれば、複合粒子を用いて形成した電極における電極活物質の割れを抑制することができる。また、複合粒子の面積円形度が上記上限値以下であれば、得られる電気化学素子のレート特性を高めることができる。
<周囲長包絡度>
 複合粒子の周囲長包絡度は、0.70以上が好ましく、0.72以上がより好ましく、0.75以上がさらに好ましく、0.97以下が好ましく、0.94以下がより好ましく、0.92以下がさらに好ましい。複合粒子の周囲長包絡度が上記下限値以上であれば、複合粒子を用いて形成した電極の柔軟性を高めることができる。複合粒子の周囲長包絡度が上記上限値以下であれば、得られる電気化学素子のサイクル特性を高めることができる。
<電極活物質>
 電極活物質としては、特に限定されることなく、二次電池などの電気化学素子の正極及び負極に用いられうる各種の活物質が挙げられる。正極活物質としては、特に限定されることなく、例えば、リチウム含有コバルト酸化物(コバルト酸リチウム、LiCoO)、マンガン酸リチウム(LiMn)、リチウム含有ニッケル酸化物(LiNiO)、Co-Ni-Mnのリチウム含有複合酸化物(Li(Co Mn Ni)O)、Ni-Mn-Alのリチウム含有複合酸化物、Ni-Co-Alのリチウム含有複合酸化物、オリビン型リン酸鉄リチウム(LiFePO)、オリビン型リン酸マンガンリチウム(LiMnPO)、LiMnO-LiNiO系固溶体、Li1+xMn2-x(0<X<2)で表されるリチウム過剰のスピネル化合物、Li[Ni0.17Li0.2Co0.07Mn0.56]O、LiNi0.5Mn1.5等の既知の正極活物質が挙げられる。また、負極活物質としては、炭素系負極活物質、金属系負極活物質、及びこれらを組み合わせた負極活物質などが挙げられる。
 電極活物質の粒子径は、0.03μm以上が好ましく、0.1μm以上がより好ましく、0.5μm以上がさらに好ましく、500μm以下が好ましく、200μm以下がより好ましく、30μm以下がさらに好ましい。電極活物質の粒子径は、レーザー回折法にて測定することができる。より具体的には、レーザー回折式粒子径分布測定装置を用いて測定した粒子径分布(体積基準)において、小径側から計算した累積体積が50%となる粒子径D50を、体積平均粒子径として、この値が上記粒子径範囲を満たすことが好ましい。電極活物質の粒子径が上記上限値以下であれば、複合粒子内の組成をより均質にすることができる。さらに、電極活物質の粒子径が上記上限値以下であれば、得られる電極の電極密度を高めることができるとともに、電極活物質の比表面積が十分に大きいため電気化学素子を形成した際における電気化学的反応を最適化することができる。電極活物質の粒子径が上記下限値以上であれば、複合粒子を製造する際の材料としての粉体材料のハンドリング性が向上するとともに、複合粒子の生産性が向上する。さらに、電極活物質の粒子径が上記下限値以上であれば電気化学素子の充放電を繰り返し行った際における電極活物質劣化を良好に抑制することができる。
<導電材>
 導電材としては、特に限定されることなく、カーボンブラック(例えば、アセチレンブラック、ケッチェンブラック(登録商標)、ファーネスブラックなど)、単層又は多層カーボンナノチューブ(多層カーボンナノチューブにはカップスタック型が含まれる)、カーボンナノホーン、気相成長炭素繊維、ポリマー繊維を焼成後に破砕して得られるミルドカーボン繊維、単層又は多層グラフェン、ポリマー繊維からなる不織布を焼成して得られるカーボン不織布シートなどの導電性炭素材料、並びに各種金属のファイバー又は箔などを用いることができる。これらは、一種を単独で、或いは複数種を組み合わせて用いることができる。
 電極活物質と導電材とを併用する場合のこれらの配合量比は特に限定されず、電気化学素子用電極に含有されるこれらの一般的な配合量比とすることができる。
<バインダー>
 バインダーとしては、例えば、共役ジエン系重合体、アクリル系重合体、芳香族ビニル系ブロック重合体、フッ素系重合体、セルロース系重合体、環状オレフィン系重合体などを挙げることができる。バインダーは、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 共役ジエン系重合体とは、共役ジエン単量体単位を含む重合体を指す。そして、共役ジエン系重合体の具体例としては、特に限定されることなく、スチレン-ブタジエン共重合体(SBR)などの芳香族ビニル単量体単位及び脂肪族共役ジエン単量体単位を含む共重合体、ブタジエンゴム(BR)、アクリルゴム(NBR)(アクリロニトリル単位及びブタジエン単位を含む共重合体)、並びに、それらの水素化物などが挙げられる。
 アクリル系重合体としては、特に限定されることなく、例えば、架橋性単量体単位と、(メタ)アクリル酸エステル単量体単位と、酸性基含有単量体単位とを含有する重合体などが挙げられる。なお、アクリル系重合体における(メタ)アクリル酸エステル単量体単位の割合は、好ましくは50質量%以上、より好ましくは55質量%以上、更に好ましくは58質量%以上であり、好ましくは98質量%以下、より好ましくは97質量%以下、更に好ましくは96質量%以下である。
 芳香族ビニル系ブロック重合体としては、芳香族ビニル単量体単位位からなるブロック領域を含有するブロック重合体が挙げられる。芳香族ビニル単量体としては、例えば、スチレン、スチレンスルホン酸及びその塩、α-メチルスチレン、p-t-ブチルスチレン、ブトキシスチレン、ビニルトルエン、クロロスチレン、並びに、ビニルナフタレンが挙げられ、中でもスチレンが好ましい。芳香族ビニル系ブロック重合体として、好ましくは、スチレン-イソプレン-スチレンブロック共重合体、スチレン-ブタジエン-スチレン共重合体、並びに、それらの水素化物などが挙げられる。
 フッ素系重合体とは、フッ素含有単量体単位を含有し、さらに、フッ素を含有しない単量体(フッ素非含有単量体)単位を含有してもよい重合体を意味する。フッ素含有単量体としては、特に限定されることなく、例えば、フッ化ビニリデン、テトラフルオロエチレン、ヘキサフルオロプロピレン、三フッ化塩化ビニル、フッ化ビニル、トリフルオロエチレン、トリフルオロクロロエチレン、2,3,3,3-テトラフルオロプロペン、パーフルオロアルキルビニルエーテルなどが挙げられる。フッ素系重合体としては、特に限定されることなく、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリフッ化ビニリデン、ポリフッ化ビニル、ペルフルオロアルコキシフッ素樹脂、四フッ化エチレン-六フッ化プロピレン共重合体、エチレン-四フッ化エチレン共重合体、エチレン-クロロトリフルオロエチレン共重合体、フッ化ビニリデン-六フッ化プロピレン共重合体(フッ化ビニリデン-ヘキサフルオロプロピレン共重合体)などが挙げられる。
 セルロース系重合体としては、特に限定されることなく、例えば、セルロースアセテート、セルロースアセテートブチレート、セルロースアセテートプロピオネート、シアノエチルプルラン、シアノエチルポリビニルアルコール、シアノエチルセルロース、シアノエチルスクロース、プルラン及びカルボキシルメチルセルロースなどが挙げられる。
 環状オレフィン系重合体としては、特に限定されることなく、例えば、環状オレフィン化合物をモノマーとして用いて合成した重合体(付加重合体又は開環重合体)及びその水素化物、並びに、芳香族ビニル化合物をモノマーとして用いた重合体の水素化物が挙げられる。中でも、電解液膨潤度及びガラス転移温度を適度な大きさに調整し易いため、環状オレフィン化合物をモノマーとして用いた開環重合体の水素化物、及び、芳香族ビニル化合物をモノマーとして用いた重合体の水素化物が好ましい。
 環状オレフィン化合物としては、特に限定されることなく、例えば、
 ノルボルネン、5-メチルノルボルネン、5-エチルノルボルネン、5-ブチルノルボルネン、5-ヘキシルノルボルネン、5-デシルノルボルネン、5-シクロヘキシルノルボルネン、5-シクロペンチルノルボルネン等の非置換又はアルキル基を有するノルボルネン類;
 5-エチリデンノルボルネン、5-ビニルノルボルネン、5-プロペニルノルボルネン、5-シクロヘキセニルノルボルネン、5-シクロペンテニルノルボルネン等のアルケニル基を有するノルボルネン類;
 5-フェニルノルボルネン等の芳香環を有するノルボルネン類;
 5-メトキシカルボニルノルボルネン、5-エトキシカルボニルノルボルネン、5-メチル-5-メトキシカルボニルノルボルネン、5-メチル-5-エトキシカルボニルノルボルネン、ノルボルネニル-2-メチルプロピオネート、ノルボルネニル-2-メチルオクタネート、5-ヒドロキシメチルノルボルネン、5,6-ジ(ヒドロキシメチル)ノルボルネン、5,5-ジ(ヒドロキシメチル)ノルボルネン、5-ヒドロキシ-i-プロピルノルボルネン、5,6-ジカルボキシノルボルネン、5-メトキシカルボニル-6-カルボキシノルボルネン等の酸素原子を含む極性基を有するノルボルネン類;
 5-シアノノルボルネン等の窒素原子を含む極性基を有するノルボルネン類;
 ジシクロペンタジエン、メチルジシクロペンタジエン、トリシクロ[5.2.1.02,6]デカ-8-エン等の芳香環構造を含まない3環以上の多環式ノルボルネン類;
 テトラシクロ[9.2.1.02,10.03,8]テトラデカ-3,5,7,12-テトラエン(1,4-メタノ-1,4,4a,9a-テトラヒドロ-9H-フルオレンともいう)、テトラシクロ[10.2.1.02,11.04,9]ペンタデカ-4,6,8,13-テトラエン(1,4-メタノ-1,4,4a,9,9a,10-ヘキサヒドロアントラセンともいう)等の芳香環を有する3環以上の多環式ノルボルネン類;
 テトラシクロドデセン、8-メチルテトラシクロドデセン、8-エチルテトラシクロドデセン、8-シクロヘキシルテトラシクロドデセン、8-シクロペンチルテトラシクロドデセン、8-メトキシカルボニル-8-メチルテトラシクロ[4.4.0.12,5.17,10]-3-ドデセン等の非置換又はアルキル基を有するテトラシクロドデセン類;
 8-メチリデンテトラシクロドデセン、8-エチリデンテトラシクロドデセン、8-ビニルテトラシクロドデセン、8-プロペニルテトラシクロドデセン、8-シクロヘキセニルテトラシクロドデセン、8-シクロペンテニルテトラシクロドデセン等の環外に二重結合を有するテトラシクロドデセン類;
 8-フェニルテトラシクロドデセン等の芳香環を有するテトラシクロドデセン類;
 8-メトキシカルボニルテトラシクロドデセン、8-メチル-8-メトキシカルボニルテトラシクロドデセン、8-ヒドロキシメチルテトラシクロドデセン、8-カルボキシテトラシクロドデセン、テトラシクロドデセン-8,9-ジカルボン酸、テトラシクロドデセン-8,9-ジカルボン酸無水物等の酸素原子を含む置換基を有するテトラシクロドデセン類;
 8-シアノテトラシクロドデセン、テトラシクロドデセン-8,9-ジカルボン酸イミド等の窒素原子を含む置換基を有するテトラシクロドデセン類;
 8-クロロテトラシクロドデセン等のハロゲン原子を含む置換基を有するテトラシクロドデセン類;
 8-トリメトキシシリルテトラシクロドデセン等のケイ素原子を含む置換基を有するテトラシクロドデセン類;
 上述したテトラシクロドデセン類とシクロペンタジエンとのディールズ・アルダー付加体等のヘキサシクロヘプタデセン類;
などが挙げられる。
 中でも、環状オレフィン化合物としては、非極性ノルボルネン系単量体が好ましく、非置換又はアルキル基を有するノルボルネン類(例えば、ノルボルネン、8-エチルテトラシクロドデセン)、アルケニル基を有するノルボルネン類(例えば、エチリデンテトラシクロドデセン(8-エチリデンテトラシクロドデセン))、ジシクロペンタジエン、芳香環を有するノルボルネン誘導体(例えば、テトラシクロ[9.2.1.02,10.03,8]テトラデカ-3,5,7,12-テトラエン(1,4-メタノ-1,4,4a,9a-テトラヒドロ-9H-フルオレンともいう))、非置換又はアルキル基を有するテトラシクロドデセン類(例えば、テトラシクロドデセン、8-メトキシカルボニル-8-メチルテトラシクロ[4.4.0.12,5.17,10]-3-ドデセン)がより好ましい。
 なお、任意に水素添加し得る、環状オレフィン化合物をモノマーとして用いた重合体は、モノマーとして環状オレフィン化合物のみを用いた重合体であってもよいし、モノマーとして環状オレフィン化合物と、環状オレフィン化合物以外の共重合可能な化合物とを用いた重合体であってもよいが、モノマーとして環状オレフィン化合物のみを用いた重合体であることが好ましい。
 そして、任意に水素添加し得る、環状オレフィン化合物をモノマーとして用いた重合体は、モノマーとしてテトラシクロドデセン、ジシクロペンタジエン及びノルボルネンを用いた重合体であることが好ましく、モノマーとしてテトラシクロドデセン、ジシクロペンタジエン及びノルボルネンを用いた開環重合体であることがより好ましい。
 上記した中でも、バインダーとしては、1atm下での沸点が、好ましくは95℃以下、より好ましくは90℃以下、さらに好ましくは85℃以下の非水系溶媒に対して溶解する高分子材料が好ましい。1atm下での沸点が上記上限値以下の非水系溶解に対して溶解可能であるバインダーによれば、残留溶媒による高分子材料の劣化が抑制され、得られる電気化学素子の長期寿命特性を向上させることができる。なお、バインダーが可溶である非水系溶媒の1atm下での沸点の下限値は特に限定されないが50℃以上でありうる。かかる条件を満たす溶媒としては、シクロヘキサン、n―ヘキサン、アセトン、メチルエチルケトン、酢酸エチル、テトラヒドロフラン、メチレンクロライド、クロロホルム、などが挙げられる。
<複合粒子の製造方法>
 上述した本発明の複合粒子は、上記必須の属性及び好適な属性を満たしうる限りにおいて特に限定されることなく、あらゆる製造方法に従って製造することができる。中でも、本発明の複合粒子は、撹拌軸が相異なる2つ以上の撹拌翼を備える造粒槽を用いて製造することが好ましい。以下、本発明の複合粒子を効率的に製造することができる製造方法の一例として、撹拌軸が相異なる2つ以上の撹拌翼を備える造粒槽を用いた製造方法について説明する。
<造粒槽>
 造粒槽は、撹拌軸が相異なる2つ以上の撹拌翼を備える。撹拌軸が相異なる2つ以上の撹拌翼を備えることで得られる複合粒子の組成の均一性が高まり、結果的に、かかる複合粒子を用いて形成した電極を備える電気化学素子のサイクル特性を高めることができる。一例にかかる造粒槽について、図1~2を参照して説明する。図1は、造粒槽1の上面図であり、図2は、図1に示すA-A切断線に従う断面図である。造粒槽1は、主撹拌翼2と、主撹拌翼2と撹拌軸の相異なる副撹拌翼3とを備える。なお、撹拌翼の個数は、2つ以上である限りにおいて特に限定されない。撹拌翼を2つ以上有することで、複合粒子の組成の均一性を高めることにより、かかる複合粒子を用いて形成した電極を備える電気化学素子のサイクル特性を高めることができる。
 さらに、図示しないが、造粒槽1は、液状の組成物を供給し得る供給手段を少なくとも一つ備えている。かかる供給手段としては、霧状の液状物を供給可能に構成されたスプレーノズル、及び滴下ロートが挙げられる。供給手段の個数は特に限定されないが、造粒槽のサイズに応じて複数個が、相互に離散して配置されていてもよい。さらに、図示しないが、造粒槽1は、粉体材料の供給口及び形成した複合粒子を排出可能に構成された排出口を備えうる。
 図2に、主撹拌翼2の撹拌軸を、第一撹拌軸RA1として破線で示し、副撹拌翼の撹拌軸を第二撹拌軸RA2として破線で示す。図2では、第一撹拌軸RA1と第二撹拌軸RA2とがなす角θは、約90度となっている。なお、第一撹拌軸RA1と第二撹拌軸RA2とがなす角は、これらの2つの軸線がなす角度のうち、鋭角側の角度を意味する。ここで、本明細書において、「撹拌軸が相異なる」とは、撹拌軸同士がなす角θが、20°以上90°以下であることを意味する。撹拌軸同士がなす角θは、30°以上であることが好ましく、45°以上であることがより好ましく、85°以上であることがさらに好ましい。撹拌軸同士がなす角θが上記範囲内であれば、粉体材料を効果的に撹拌することができ、得られる複合粒子の粒子径及び変動係数を良好に制御することができ、その結果、かかる複合粒子を用いて形成した電極の柔軟性及び電極における電極活物質の割れを抑制することができ、さらには、得られる電気化学素子のサイクル特性を高めることができる。なお、「変動係数」とは、複合粒子の粒子径分布の変動係数を意味し、複合粒子の面積相当径の標準偏差を面積相当径の平均値で除し、100分率とした値として、本明細書の実施例に記載した方法に従って算出することができる。
 造粒槽の形状は、内部において電極活物質を含む粉体材料を所定期間にわたり収容可能であるとともに、少なくとも2つの撹拌翼により撹拌可能である限りにおいて特に限定されない。例えば、造粒槽の形状は、図1~2に示す造粒槽1のように、底面及び上面の形状が円形であり、高さ方向における上部がテーパーを有する円筒形状であってもよい。なお、造粒槽の形状が図1~2に示すような所定の円筒形状である場合において、少なくとも2つの撹拌軸のうちの一方は円筒の中心軸線に一致しており、他方の撹拌軸はかかる中心軸線に対して鉛直な方向に一致していてもよい。さらに、造粒槽の形状が図1~2に示すような所定の円筒形状である場合において、底面の直径を高さで除した値(直径/高さ)が、0.1以上であることが好ましく、0.3以上であることがより好ましく、0.5以上であることがさらに好ましく、2.5以下であることが好ましく、2.0以下であることがより好ましく、1.5以下であることがさらに好ましい。粉体材料を効果的に撹拌することができるからである。
 主撹拌翼2は、3つの主ブレード21を備える。主ブレード21の形状及び数は特に限定されない。副撹拌翼3は、2つの副ブレード31を備える。副ブレード31は、図1~2ではアンカー翼として図示するが、これに限定されない。また、副ブレード31の数も図示の態様に限定されず、1つ、又は3つ以上であってもよい。さらに、造粒槽1は、図示しないが、空気を通気することで主撹拌翼2及び副撹拌翼3の各駆動部への粉体材料の混入を抑制し得るように構成された、通気機構を備えうる。
 上記のような条件を満たす造粒槽としては、例えば、アーステクニカ社製ハイスピードミキサー、三井三社製ヘンシェルミキサー、パウレック社製バーティカルグラニュレーター、フロイント産業社製CFグラニュレーター、奈良機械製作所社製高速攪拌混合造粒機、ダルトン社製SPグラニュレーター、フロイント産業社製バランスグランなどが使用できる。
 以下、造粒槽内にて実施されうる各種操作について説明する。
<(i)予備撹拌操作>
 予備撹拌操作においては、粉体材料を撹拌して撹拌状態とする。ここで、粉体材料は、電極活物質を含むことを必要とし、任意で、導電材を含有してもよい。電極活物質及び導電材としては、上述したものを用いることができる。予備撹拌操作を実施することにより、得られる複合粒子を用いて形成した電極を備える電気化学素子のサイクル特性を高めることができる。
 予備撹拌操作では、液状成分を配合しないこと好ましい。粉体材料には、製造時及び保管時などに付着し得る水分などの影響で、不可避的に液状成分が少量含有されうる。言い換えれば、予備撹拌操作の開始時における粉体材料の固形分濃度は、100質量%未満である蓋然性が高い。ここで、得られる複合粒子の性状及び複合粒子の製造効率を高める観点からは、予備撹拌操作を行うことで、粉体材料の固形分濃度を高めることが好ましい。具体的には、予備撹拌操作の終了時における粉体材料の固形分濃度が95質量%以上であることが好ましく、97質量%以上であることがより好ましく、98質量%以上であることがさらに好ましい。粉体材料の固形分濃度は、実施例に記載の方法により測定することができる。
 予備撹拌操作における主撹拌翼及び副撹拌翼の周速は、1m/s以上20m/s以下であることが好ましい。周速がかかる範囲内であれば、得られる複合粒子の組成の均質性を高めることができ、これにより得られる電極における電極活物質の割れを抑制し、ひいてはかかる電極を備える電気化学素子のサイクル特性を高めることができる。ここで、予備撹拌操作における主撹拌翼及び副撹拌翼の周速は、同一であっても異なっていてもよく、異なっていてもよいが異なっている場合においては、副撹拌翼の周速の方が主撹拌翼の周速よりも早いことが好ましい。
 予備撹拌操作における通気量は、造粒槽に流入させる空気の流量を造粒槽の容量で割った値(流量/容量)が0.1/分以上100/分であることが好ましい。通気量がかかる範囲内であれば、予備撹拌操作において、良好に粉体材料の固形分濃度を高めることができる。なお、通気量は、上述した、主撹拌翼及び副撹拌翼の駆動部への粉体材料の進入を防止するための通気機構による通気量でありうる。さらに、通気する空気の温度は、50℃未満であることが好ましく、45℃以下であることがより好ましく、40℃以下であることがさらに好ましく、30℃以下であることが特に好ましい。
 予備撹拌操作を実施する時間(予備撹拌時間)は、特に限定されない。例えば予備撹拌時間は、固形分濃度を上述した好適閾値以上となるようにし得る時間であることが好ましい。例えば、予備撹拌時間は、5分以上60分以下でありうる。
 なお、予備撹拌操作は、複数段階に分けて実施してもよい。その場合、上述した撹拌翼を備える造粒槽とは異なる撹拌装置(以下、「撹拌装置A」とも称する。)を用いた予備撹拌操作を、上述した撹拌翼を備える造粒槽における予備撹拌操作に先立って実施することが好ましい。撹拌装置Aとしては、上述した撹拌翼を備える造粒槽とは異なる撹拌装置である限りにおいて特に限定されることなく、例えば、乾式による混合装置、湿式による混合装置が挙げられる。乾式による混合装置としては、例えば、淺田鉄工社製ミラクルKCK、奈良機械社製作所社製ハイブリタイゼーションシステム等を用いることができる。湿式による混合装置としては、例えば、淺田鉄工社製プラネタリーデスパ等を用いることができる。そうした、撹拌装置Aを用いた予備撹拌操作を、上述した撹拌翼を備える造粒槽を用いた予備撹拌操作よりも前に実施することで、得られる電気化学素子のレート特性を高めることができる。これは、撹拌装置Aを用いた予備撹拌操作の実施により、得られる複合粒子の体積抵抗率を低減することができるためであると考えられる。
<(ii)プレ複合粒子形成操作>
 プレ複合粒子形成操作においては、撹拌状態にある粉体材料に対して、バインダー及び溶媒を含む組成物を添加してプレ複合粒子とする。バインダーとしては、上記したものを用いることができる。また、プレ複合粒子形成操作において、粉体材料に対してバインダー及び溶媒を含む組成物を添加する際の添加態様としては、一括添加以外の態様であれば特に限定されない。例えば、プレ複合粒子形成操作を通じて連続的に添加する態様、プレ複合粒子形成操作を実施する間に1回又は複数回の添加停止期間を介在させる断続的な添加態様などが挙げられる。中でも、連続的に添加する態様が好ましい。プレ複合粒子形成操作が実施されている間、すなわち、粉体材料、溶媒、及びバインダーが全て共に撹拌状態に置かれている雰囲気のもとでは、粉体材料及びバインダーのプレ複合粒子が徐々に形成されつつ、粒子同士、及び粒子と溶媒とが相互に衝突することで整粒作用が生じうる。言い換えると、プレ複合粒子形成操作の最中に、溶媒の存在下で、プレ複合粒子の形成作用と整粒作用とが同時進行しうる。このようにして、プレ複合粒子形成操作においては、プレ複合粒子を整粒しながら形成することができる。
 粉体材料に対してバインダー及び溶媒を含む組成物を添加する際の添加手段としては、上記の通りスプレーノズル及び滴下ロート等が挙げられる。中でも、気体の流れにより液体を粉砕・微粒化して噴出させる機構を有する2流体スプレーのようなスプレーノズルを用いる際には、気液比(気体体積/液体体積)が1.30以上であることが好ましく、1.40以上であることがより好ましく、1.45以上であることが更に好ましく、1.80以下であることが好ましく、1.70以下であることがより好ましく、1.60以下であることが更に好ましい。気液比が上記下限値以上であれば、複合粒子の粒子径が肥大化することを抑制することができる。また、気液比が上記上限値以下であれば、複合粒子の粒子径が過度に小さくなることを抑制することができる。また、静止面への単位面積あたりの組成物噴霧量に相当する値である噴霧面密度(g/mm2/分)の値が、0.20(g/mm2/分)以上であることが好ましく、0.25(g/mm2/分)以上であることがより好ましく、0.38(g/mm2/分)以上であることが更に好ましく、0.60(g/mm2/分)以下であることが好ましく、0.50(g/mm2/分)以下であることがより好ましく、0.41(g/mm2/分)以下であることが更に好ましい。噴霧面密度(g/mm2/分)の値が上記下限値以上であれば、複合粒子の粒子径が過度に小さくなることを抑制することができる。すなわち、気液比、及び/又は噴霧面密度を適切な範囲に制御することにより、得られる複合粒子の粒子径を良好に制御することができる。
 溶媒としては、特に限定されることなく、あらゆる溶媒を用いることができる。例えば、溶媒としてはN-メチル-2-ピロリドン、シクロヘキサン、n―ヘキサン、アセトン、メチルエチルケトン、酢酸エチル、テトラヒドロフラン、メチレンクロライド、及びクロロホルムなどの有機溶媒及び水を用いることができる。中でも、上記したような、バインダーを可溶である1atm下での沸点が95℃以下の非水系溶媒を好適に用いることができる。非水系溶媒の1atm下での沸点が90℃以下であることがより好ましく、85℃以下であることがさらに好ましい。1atm下での沸点が上記上限値以下であれば、造粒槽内において溶媒を効率的に除去してプレ複合粒子を形成する際の乾燥エネルギーを低減することができる。非水系溶媒の1atm下での沸点の下限値は特に限定されないが、プレ複合粒子を形成する際の安定性を高める観点からは50℃以上であることが好ましい。かかる条件を満たす溶媒としては、上記列挙したものが挙げられる。溶媒は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 プレ複合粒子形成操作にて造粒槽内に連続添加するバインダー及び溶媒を含む組成物の粘度指数は、100mPa・s以上1000mPa・s以下であることが好ましい。バインダー及び溶媒を含む組成物の粘度指数を上記範囲内とすることで、得られる複合粒子の粒子径及び変動係数を良好に制御することができる。なお、組成物の粘度指数は、組成物の粘度を固形分濃度で割って100をかけた値であり、実施例に記載の方法により測定及び算出することができる。
 プレ複合粒子形成操作における主撹拌翼及び副撹拌翼の周速は、1m/s以上20m/s以下であることが好ましい。主撹拌翼の周速が上記範囲内であれば、得られる複合粒子の粒子径を良好に制御することができる。また、副撹拌翼の周速が上記範囲内であれば、得られる複合粒子の変動係数を良好に制御することができる。さらに、プレ複合粒子形成操作が行われている際に生じる整粒作用を高めて、複合粒子を用いて形成した電極の高温保存時のガス発生を抑制する観点から、主撹拌翼の周速が6m/s以上であることが好ましい。
 プレ複合粒子形成操作における通気量は、造粒槽に流入させる空気の流量を造粒槽の容量で割った値(流量/容量)が0.1/分以上100/分であることが好ましい。通気量がかかる範囲内であれば、プレ複合粒子形成操作において、造粒層内の溶媒蒸気量を良好に制御することができ、プレ複合粒子を効率的に形成することができる。
 プレ複合粒子形成操作の持続時間(プレ複合粒子形成時間)は、特に限定されない。例えば、プレ複合粒子形成時間は、5分以上60分以下でありうる。
<(iii)整粒操作>
 整粒操作においては、組成物の添加完了後(すなわち、(ii)プレ複合粒子形成操作の完了後)にプレ複合粒子を撹拌することで整粒して複合粒子とする。
 整粒操作における主撹拌翼及び副撹拌翼の周速は、0.1m/s以上10m/s以下であることが好ましい。主撹拌翼の周速が上記範囲内であれば、得られる複合粒子の密度係数及び面積円形度を良好に制御することができる。また、副撹拌翼の周速が上記範囲内であれば、得られる複合粒子の変動係数及び周囲長包絡度を良好に制御することができる。
 整粒操作における通気量は、造粒槽に流入させる空気の流量を造粒槽の容量で割った値(流量/容量)が0.1/分以上100/分であることが好ましい。通気量がかかる範囲内であれば、整粒操作において、複合粒子の湿潤状態を良好に制御することができ、複合粒子を効率的に形成することができる。
 整粒操作の持続時間(整粒時間)は、特に限定されない。例えば、整粒時間は、10秒以上であってもよく、60分以下であってもよく、20分以下であることが好ましく、8分以下であることが好ましく、3分以下であることがより好ましい。整粒操作の時間を上記上限以下とすることで、複合粒子を用いて形成した電極を高温条件下で保存した際のガス発生量を低減することができる。
<造粒槽内温度>
 上記(i)~(iii)の操作を通じて、造粒槽内の温度が、50℃未満であることが好ましく、45℃以下であることがより好ましく、40℃以下であることがさらに好ましい。かかる温度条件を満たすことで、得られる複合粒子に含有される電極活物質の劣化を効果的に抑制することができ、複合粒子を用いて形成した電極における電極活物質の割れを効果的に抑制することができる。
(電気化学素子用電極)
 本発明の電気化学素子用電極は、上述した本発明の複合粒子を含む電極合材層を備える。本発明の電気化学素子用電極は、柔軟性に優れるとともに、含有する電極活物質の割れが少なく、さらには、かかる電極を備える電気化学素子のサイクル特性及びレート特性を向上させることができる。
<電気化学素子用電極の製造方法>
 本発明の電気化学素子用電極は、上述した本発明の製造方法に従って製造した複合粒子を、電極基材上で加圧成形し電極合材層を形成すること(加圧成形操作)を経て、製造することができる。
[加圧成形操作]
 加圧成形操作は、既知の方法に従って実施することができる。例えば、本発明の製造方法に従って製造した複合粒子を、ロールプレス機に供して、電極基材上にてロールプレスすることにより、電極基材上にて複合粒子を加圧成形して電極合材層を形成することができる。プレスの際の圧力は、目的とする電極密度に従って適宜設定することができる。
 電極基材としては、導電性を有し、かつ、電気化学的に耐久性のある材料が用いられる。具体的には、電極基材としては、例えば、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などからなる集電体を用い得る。なお、前記の材料は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
(電気化学素子)
 そして、本発明の電気化学素子は、上述した電気化学素子用電極を備える。本発明の電気化学素子は本発明の電気化学素子用電極を備えるので、サイクル特性及びレート特性に優れる。電気化学素子は、特に限定されることなく、例えば、リチウムイオン二次電池、電気二重層キャパシタ、又はリチウムイオンキャパシタであり、好ましくはリチウムイオン二次電池でありうる。
 ここで、以下では、一例として電気化学素子がリチウムイオン二次電池である場合について説明するが、本発明は下記の一例に限定されるものではない。本発明の電気化学素子としてのリチウムイオン二次電池は、通常、電極(正極及び負極)、電解液、並びにセパレータを備え、正極及び負極の少なくとも一方に本発明の電気化学素子用電極を使用する。
<電極>
 ここで、電気化学素子としてのリチウムイオン二次電池に使用し得る、上述した本発明の電気化学素子用電極以外の電極としては、特に限定されることなく、既知の電極を用いることができる。具体的には、上述した電気化学素子用電極以外の電極としては、既知の製造方法を用いて集電体上に電極合材層を形成してなる電極を用いることができる。
<電解液>
 電解液としては、通常、有機溶媒に支持電解質を溶解した有機電解液が用いられる。支持電解質としては、例えば、リチウム塩が用いられる。リチウム塩としては、例えば、LiPF、LiAsF、LiBF、LiSbF、LiAlCl、LiClO、CFSOLi、CSOLi、CFCOOLi、(CFCO)NLi、(CFSONLi、(CSO)NLiなどが挙げられる。なかでも、溶媒に溶けやすく高い解離度を示すので、LiPF、LiClO、CFSOLiが好ましく、LiPFが特に好ましい。なお、電解質は1種を単独で用いてもよく、2種以上を任意の比率で組み合わせて用いてもよい。
 電解液に使用する有機溶媒としては、支持電解質を溶解できるものであれば特に限定されないが、例えば、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、メチルエチルカーボネート(EMC)等のカーボネート類;γ-ブチロラクトン、ギ酸メチル等のエステル類;1,2-ジメトキシエタン、テトラヒドロフラン等のエーテル類;スルホラン、ジメチルスルホキシド等の含硫黄化合物類;などが好適に用いられる。またこれらの溶媒の混合液を用いてもよい。なお、電解液中の電解質の濃度は適宜調整することができる。また、電解液には、既知の添加剤、例えばビニレンカーボネート、フルオロエチレンカーボネート、エチルメチルスルホンなどを添加してもよい。
<セパレータ>
 セパレータとしては、特に限定されることなく既知のものを用いることができる。中でも、ポリオレフィン系(ポリエチレン、ポリプロピレン、ポリブテン、ポリ塩化ビニル)の樹脂からなる微多孔膜が好ましい。更に、セパレータとしては、セパレータ基材の片面又は両面に機能層(多孔膜層又は接着層)が設けられた、機能層付きセパレータを用いてもよい。
<リチウムイオン二次電池の製造方法>
 リチウムイオン二次電池は、例えば、正極と、負極とを、セパレータを介して重ね合わせ、これを必要に応じて電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口することにより製造することができる。二次電池の内部の圧力上昇、過充放電等の発生を防止するために、必要に応じて、ヒューズ、PTC素子等の過電流防止素子、エキスパンドメタル、リード板などを設けてもよい。二次電池の形状は、例えば、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、何れであってもよい。
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」及び「部」は、特に断らない限り、質量基準である。
 また、複数種類の単量体を共重合して製造される重合体において、ある単量体を重合して形成される繰り返し単位(単量体単位)の前記重合体における割合は、別に断らない限り、通常は、その重合体の重合に用いる全単量体に占める当該ある単量体の比率(仕込み比)と一致する。
 実施例及び比較例において、各種の属性の測定及び評価は、それぞれ下記の方法に従って実施した。
<粉体材料の固形分濃度>
 質量Wa[g]のアルミ皿に、測定対象をWo[g]量り取り、130℃のホットプレートで1時間加熱した。加熱後の質量W[g]を測定し、下記式から粉体材料の固形分濃度Cs[%]を算出した。
 Cs=(W-Wa)/Wo×100 [%]
<バインダー及び溶媒を含む組成物の粘度指数Cη>
 バインダー及び溶媒を含む組成物(バインダー溶液)の粘度指数は、以下に示す方法で測定した粘度と、前述の方法で測定した固形分濃度から下記式を用いて算出した。
 粘度測定:B型粘度計(東機産業社製「TVB-10M」)にて25℃、60rpmでの粘度ηを測定した。使用するローターは粘度に合わせて適宜変更した。
 粘度指数の算出:Cη=η/Cs×100 [mPa・s]
<複合粒子の面積相当径、粒子径分布の変動係数、面積円形度、周囲長包絡度>
 JIS Z 8827-1に従う画像解析法に基づいて、実施例、比較例にて作成した複合粒子の画僧解析処理を実施し、所定の物性を算出した。具体的にはMalvern製「Morphologi G3」を使用し、各実施例、比較例で作製した複合粒子をそれぞれ4000個について画像を二値化処理して解析し、以下の物性を求めた。なお用語の定義はJIS Z 8890、「粉体の粒子特性評価-用語」に従うものである。
 面積相当径の平均値:解析した複合粒子4000個の面積相当径の平均値DA(μm)
 面積相当径の変動係数:解析した複合粒子4000個の面積相当径の平均値DAとその標準偏差σから差算出される値CV
 面積相当径の変動係数CV=面積相当径の標準偏差σ/面積相当径の平均値DA×100(%)
 平均面積円形度:解析した粒子4000個について、4πA/P2 (A:投影面積、P周囲長)で算出される面積円形度の平均値CA
 平均周囲長包絡度:観察視野内の全粒子の、凸形外接図形(最小凸包)の周囲長を周囲長Pで除したものの平均値
<複合粒子の面積相当径対電極活物質一次粒子径比>
 電極活物質の一次粒子径は、実施例、比較例で得られた複合粒子をSEM観察し算出した。具体的には倍率500倍において対象となる複合粒子10個定め、対象となる複合粒子をさらに10000倍で観察し100個の電極活物質一次粒子の粒子径(粒子を包含する外接円の直径)を測定して、その数平均値を算出して得た。得られた電極活物質の一次粒子径の値で、上記に従って算出した複合粒子の面積相当径を除して、複合粒子の面積相当径が、電極活物質の一次粒子径の何倍であるかを算出した。
<密度係数>
 密度係数Cρ=圧縮密度ρp/かさ密度ρa
[かさ密度ρa
 JIS R 1628-1997に記載の定容積測定法に基づき、複合粒子のかさ密度(g/cm)測定した。
[圧縮密度ρp
 実施例、比較例で作製した複合粒子4.00gを、50MPaで加圧し底面積2cm2(直径:15.97mm)の円筒型ペレットを作製し、その厚みを測定し、圧縮密度を算出した。
<流動性(ドクターブレード厚みによる評価)>
 20cm四方の表面が平滑なガラス板の上に、実施例、比較例で製造した複合粒子5gを、それぞれ直径20mm程度となるように配置し、ドクターブレードで均した際に、均された複合粒子層にスジが入らないかを判別して、スジの入らない最薄のドクターブレード厚みを決定した。
<流動性(表面粗さによる評価)>
 20cm四方の表面が平滑なガラス板の上に、実施例、比較例で製造した複合粒子25gを、それぞれ直径20mm程度となるように配置し、280μmのドクターブレードで均した。均した表面について、レーザー顕微鏡を用いて5.4mm当たりの空間体積(μm3)を測定した。
<体積抵抗率>
 実施例、比較例で作製した複合粒子を、直径25.4mm、密度3.2g/cm2となるように加圧成形してペレットを作製した。このペレットの電気抵抗をデジタルLCRメーター(横河HP社製、機器名「4261A」)により測定した。測定した電気抵抗値を体積抵抗率(Ω・cm)に換算した。
<電極柔軟性>
 実施例、比較例で作製した正極を、径の異なる棒に巻き付けて正極合材層が割れるかどうかを評価した。棒に巻き付けたときに正極合材層が割れない棒の直径が小さいほど、電極が柔軟性に富み、捲回性に優れることを示す。電極の柔軟性を、正極合材層が割れなかった最も細い棒の直径に応じて、以下の基準で評価した。
 A:直径1.50mmの棒に巻きつけても割れない。
 B:直径1.80mmの棒に巻きつけても割れない。
 C:直径2.10mmの棒に巻きつけても割れない。
 D:直径3.00mmの棒に巻きつけても割れない。
<活物質割れの有無>
 実施例、比較例で作製した正極の断面SEM像を1000倍で観察し、活物質の割れが観測された個数に従い、以下のように評価した。
 A:割れた電極活物質が観測されない。
 B:割れた電極活物質の数が1個以上、3個未満。
 C:割れた正極活物質の数が3個以上、5個未満。
 D:割れた正極活物質の数が5個以上。
<サイクル特性>
 実施例、比較例で作製した電気化学素子としてのリチウムイオン二次電池を、電解液注液後、温度25℃で5時間静置した。次に、温度25℃、0.2Cの定電流法にて、セル電圧3.65Vまで充電し、その後、温度60℃で12時間エージング処理を行った。そして、温度25℃、0.2Cの定電流法にて、セル電圧3.00Vまで放電した。その後、0.2Cの定電流法にて、CC-CV充電(上限セル電圧4.20V)を行い、0.2Cの定電流法にて3.00VまでCC放電した。この0.2Cにおける充放電を3回繰り返し実施し、評価用セルとした。
 次に、温度45℃の環境下、上記の評価用セルについて、セル電圧4.20-3.00V、0.5Cの充放電レートにて充放電の操作を100サイクル行った。その際、第1回目のサイクルの放電容量をX1,第100回目のサイクルの放電容量をX2と定義した。該放電容量X1及び放電容量X2を用いて、容量維持率=(X2/X1)×100(%)を算出し、下記の基準で評価した。容量維持率の値が大きいほど、リチウムイオン二次電池がサイクル特性に優れることを示す。
 A:容量維持率が90%以上
 B:容量維持率が85%以上90%未満
 C:容量維持率が80%以上85%未満
 D:容量維持率が80%未満
<高温保存時のガス発生量>
 上述した<サイクル特性>の項目にて準備した評価用セルを温度25℃において0.2Cの定電流法にて、CC-CV充電(上限セル電圧4.20V)を行った後に、60℃の恒温環境にて1週間の保存を行った。保存前後のセル体積測定により、増加分をガス発生量とし、下記の基準で評価した。
 A:ガス発生量が5%未満
 B:ガス発生量が5%以上10%未満
 C;ガス発生量が10%以上20%未満
 D:ガス発生量が20%以上
<レート特性>
 実施例、比較例で作製した電気化学素子としてのリチウムイオン二次電池を、電解液注液後、温度25℃で5時間静置した。次に、温度25℃、0.2Cの定電流法にて、セル電圧3.65Vまで充電し、その後、温度60℃で12時間エージング処理を行った。そして、温度25℃、0.2Cの定電流法にて、セル電圧3.00Vまで放電した。その後、0.2Cの定電流法にて、CC-CV充電(上限セル電圧4.20V)を行い、0.2Cの定電流法にて3.00VまでCC放電した。この0.2Cにおける充放電を3回繰り返し実施した。
 次に、温度25℃の環境下、0.1Cの定電流法によって4.2Vまで充電しその後0.1Cにて3.0Vまで放電し、0.1C放電容量を求めた。さらに、0.1Cにて4.2Vまで充電しその後1Cにて3.0Vまで放電し、1C放電容量を求めた。これらの測定を、実施例、比較例で作製した電気化学素子としてのリチウムイオン二次電池それぞれ10セルについて行い、各測定値の平均値を、0.1C放電容量a、1C放電容量bとした。そして、電気容量の比=b/a×100(%)を算出し、下記の基準で評価した。電気容量の比の値が大きいほど、電気化学素子としてのリチウムイオン二次電池がレート特性に優れることを示す。
 A:電気容量の比が90%以上
 B:電気容量の比が80%以上90%未満
 C:電気容量の比が70%以上80%未満
 D:電気容量の比が70%未満
(実施例1)
<バインダーA1の製造>
 撹拌装置を備え、内部が充分に窒素置換された反応器に、脱水シクロヘキサン270部、エチレングリコールジブチルエーテル0.53部を入れ、さらに、n-ブチルリチウム(15%シクロヘキサン溶液)0.47部を加えた。全容を60℃で撹拌しながら、脱水スチレン12.5部を40分間に亘って連続的に反応器内に添加した。添加終了後、そのままさらに60℃で20分間全容を撹拌した。反応液をガスクロマトグラフィーにより測定したところ、この時点での重合転化率は99.5%であった。次に、脱水したイソプレン75.0部を、反応液に100分間に亘って連続的に添加し、添加終了後そのまま20分間撹拌を続けた。この時点での重合転化率は99.5%であった。その後、更に、脱水スチレン12.5部を、60分間に亘って連続的に添加し、添加終了後そのまま全容を30分間撹拌した。この時点での重合転化率はほぼ100%であった。ここで、反応液にイソプロピルアルコール0.5部を加えて反応を停止させた。得られたブロック共重合体[C1]の全イソプレン由来の構造単位の内、1,2-及び3,4-付加重合由来の構造単位の割合は58%であった。次に、上記重合体溶液を、撹拌装置を備えた耐圧反応器に移送し、水素化触媒として珪藻土担持型ニッケル触媒(日揮触媒化成社製、製品名「E22U」、ニッケル担持量60%)7.0部、及び脱水シクロヘキサン80部を添加して混合した。反応器内部を水素ガスで置換し、さらに溶液を撹拌しながら水素を供給し、温度190℃、圧力4.5MPaにて6時間水素化反応を行った。水素化反応終了後、反応溶液をろ過して水素化触媒を除去した後、ろ液に、フェノール系酸化防止剤であるペンタエリスリチル・テトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート](コーヨ化学研究所社製、製品名「Songnox1010」)0.1部を溶解したキシレン溶液1.0部を添加して溶解させた。さらにシクロヘキサンを添加することで、所定の濃度のバインダーA1溶液を作製した。
<バインダーA1の評価>
-重合体ブロック[B]中の鎖状共役ジエン化合物由来の構造単位の内、1,2-及び3,4-付加重合由来の構造単位の割合-
 重合体ブロック[B]中の鎖状共役ジエン化合物由来の構造単位の内、1,2-及び3,4-付加重合由来の構造単位の割合は、ブロック共重合体[C]のH-NMRスペクトル(重クロロホルム中)から、ポリマー主鎖にある炭素-炭素不飽和結合部の炭素に結合したHと、ポリマー側鎖にある炭素-炭素不飽和結合部の炭素に結合したHの比率から算出した。
<複合粒子の作製>
 造粒槽としての、内径180mm、内容量2Lの円筒状容器に、円筒状容器の軸線方向を鉛直方向として、鉛直方向と水平方向の2軸に撹拌翼を持つ(鉛直方向が主撹拌翼であり、水平方向が副撹拌翼である。)、複合粒子作製装置を準備した。なお、主撹拌翼は直径170mmの3枚の主ブレードを備える傾斜パドル、副撹拌翼は直径30mmのV型アンカーブレードを持ち、主撹拌翼及び副撹拌翼の各駆動部への原料混入を防ぐため、空気を通気することでシールされる機構からなる。上記複合粒子作製装置を用いて、(i)予備撹拌操作、(ii)プレ複合粒子形成操作、及び(iii)整粒操作をこの順に実施して、複合粒子を作製した。
 まず、(i)予備撹拌操作において、造粒槽内にリチウムイオン電池用正極活物質としてのNMC532(平均粒子径6μm)を96質量部(1344g)、導電材としてカーボンブラック(BET比表面積:62m/g、かさ密度0.16g/cm3)を2質量部(28g)投入した。次に主撹拌翼及び副撹拌翼の各駆動部をシールするための室温の空気(以下、「シール用空気」とも称する。)を20L/分(通気量10/分)で流通し、主撹拌翼を周速5m/s、副撹拌部を周速6m/sの運転条件で15分間撹拌した。撹拌後の粉体材料の固形分濃度を測定したところ、99質量%以上だった。
 次に(ii)プレ複合粒子形成操作として、室温のシール用空気を20L/分(通気量10/分)で流通し、主撹拌翼を周速5m/s、副撹拌翼を周速6m/sの運転条件で、バインダーA1及び溶媒を含む組成物(固形分濃度:10質量%、粘度指数:200mPa・s、溶媒:シクロヘキサン)を固形分として2質量部(280g)を15分かけて滴下ロートにより連続的に添加した。
 次に(iii)整粒操作として、室温のシール用空気を20L/分(通気量10/分)で流通し、主撹拌翼を周速2m/s、副撹拌翼を周速2m/sの運転条件で、10分間運転した。
 上記の操作(i)~(iii)をこの順に実施して作製した複合粒子について、各種測定を実施した。結果を表1に示す。
<リチウムイオン二次電池用正極の作製>
 作製した複合粒子を、定量フィーダ(ニッカ社製「ニッカスプレーK-V))を用いてロールプレス機(ヒラノ技研工業社製「押し切り粗面熱ロール」)のプレス用ロール(ロール温度100℃、プレス線圧500kN/m)に供給した。プレス用ロール間に、厚さ20μmのアルミニウム箔を挿入し、定量フィーダから供給された上記複合粒子をアルミニウム箔上に付着させ、成形速度1.5m/分で加圧成形し、目付30mg/cm2の正極活物質層を有するリチウムイオン二次電池用正極原反を得た。この正極原反をロールプレスで圧延し、密度が3.5g/cmの正極合材層と、アルミニウム箔とからなるシート状正極を作製した。
<負極の作製>
 撹拌機付き5MPa耐圧容器に、脂肪族共役ジエン単量体としての1,3-ブタジエン33部、酸性基含有単量体としてのイタコン酸3.5部、芳香族ビニル単量体としてのスチレン63.5部、乳化剤としてのドデシルベンゼンスルホン酸ナトリウム0.4部、イオン交換水150部、及び、重合開始剤としての過硫酸カリウム0.5部を入れ、十分に撹拌した後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し重合反応を停止して、粒子状のバインダー(スチレン-ブタジエン共重合体)を含む混合物を得た。この混合物に、5%水酸化ナトリウム水溶液を添加してpH8に調整後、加熱減圧蒸留によって未反応単量体の除去を行った。その後、混合物を30℃以下まで冷却し、負極用結着材を含む水分散液を得た。
 次にプラネタリーミキサーに、負極活物質としての人造黒鉛48.75部と、天然黒鉛48.75部と、増粘剤としてのカルボキシメチルセルロース1部とを投入した。さらに、イオン交換水を用いて固形分濃度が60%となるように希釈し、その後、回転速度45rpmで60分混練した。その後、上記に従って得た負極用結着材を含む水分散液を固形分相当で1.5部投入し、回転速度40rpmで40分混練した。そして、粘度が3000±500mPa・s(B型粘度計、25℃、60rpmで測定)となるようにイオン交換水を加えることにより、負極合材層用スラリーを調製した。
 次に、集電体として、厚さ15μmの銅箔を準備した。上記負極合材層用スラリーを銅箔に乾燥後の塗布量が15mg/cmになるように塗布し、60℃で20分、120℃で20分間乾燥した。その後、150℃で2時間加熱処理して、負極原反を得た。この負極原反をロールプレスで圧延し、密度が1.6g/cmの負極合材層(両面)と、銅箔とからなるシート状負極を作製した。
<リチウムイオン二次電池の作製>
 上記の正極、負極及びセパレータ(ポリエチレン製、厚み12μm)を用いて、単層ラミネートセル(放電容量250mAh相当)を作製し、アルミ包材内に配置した。その後、アルミ包材内に、電解液として濃度1.0MのLiPF溶液(溶媒:エチレンカーボネート(EC)/ジエチルカーボネート(DEC)=3/7(体積比)の混合溶媒、添加剤:ビニレンカーボネート2体積%(溶媒比)含有)を充填した。さらに、アルミ包材の開口を密封するために、温度150℃のヒートシールをしてアルミ包材を閉口し、リチウムイオン二次電池を作製した。このリチウムイオン二次電池を用いて、サイクル特性及びレート特性を評価した。結果を表1に示す。
(実施例2)
 <複合粒子の作製>における(ii)プレ複合粒子形成操作において、バインダーA1に代えて、下記に従って調製したバインダーA2(固形分濃度10質量%、バインダー液粘度:400mPa・s、溶媒:アセトン)を用いて製造した組成物を用いた以外は、実施例1と同様の各種操作、測定、及び評価を実施した。結果を表1に示す。
<バインダーA2の製造>
 内容積10リットルの反応器中に、イオン交換水100部、並びにニトリル基含有単量体としてのアクリロニトリル35部及び脂肪族共役ジエン単量体としての1,3-ブタジエン65部を仕込み、乳化剤としてオレイン酸カリウム2部、安定剤としてリン酸カリウム0.1部、さらに、分子量調整剤としてtert-ドデシルメルカプタン(TDM)0.4部を加えて、重合開始剤としての過硫酸カリウム0.35部の存在下、温度530 ℃で乳化重合を行い、アクリロニトリルと1,3-ブタジエンとを共重合した。重合転化率が95%に達した時点で、単量体100部あたり0.2部のヒドロキシルアミン硫酸塩を添加して重合を停止させた。続いて、加温し、減圧下で約90℃にて水蒸気蒸留して、残留単量体を回収した後、置換フェノールとしてジブチルヒドロキシトルエン(BHT)を0.1部添加して、重合体の水分散液を得た。得られた水分散液中の重合体固形分100部に対し、凝固剤として3部となる量の塩化カルシウム(CaCl)の25質量%水溶液を撹拌しながら加え、水分散液中の重合体を凝固させた。その後、濾別し、得られた重合体に対し50倍量のイオン交換水を通水して、水洗した後、温度90℃の減圧下で重合体を乾燥することにより重合体の前駆体を得た。次いで、水素化方法として、油層水素化法を採用し、上記重合体の前駆体を水素化した。この重合体の前駆体の濃度が12%となるようにアセトンに溶解することで、水素化対象物としての重合体の前駆体のアセトン溶液を得て、これをオートクレーブに入れ、水素化対象物としての重合体の前駆体の100%に対して、触媒としてパラジウム・シリカ(Pd/SiO)500ppmを加えた後、水素圧3.0MPaの下、温度90℃で6時間水素添加反応を行ない、水素添加反応物を得た。水素添加反応終了後、パラジウム・シリカを濾別し、所定の固形分濃度となるようにアセトンを投入し、バインダーA2溶液を得た。
(実施例3)
 <複合粒子の作製>における(i)予備撹拌操作において撹拌槽内に導電材を仕込まず、(ii)プレ複合粒子形成操作において、撹拌槽内に添加する組成物を下記のようにして調製した、バインダー、溶媒、及び導電材を含む組成物に変更した以外は、実施例2と同様の各種操作、測定、及び評価を実施した。結果を表1に示す。
<導電材を含む組成物の調製>
 導電材としてのカーボンブラック(BET比表面積:62m/g、かさ密度0.16g/cm3)2部と、実施例2と同様にして調製したバインダー溶液A2を固形分換算で2部混合し、さらに溶媒としてのアセトンを加え、固形分濃度10%、総量1kgの、導電材、バインダー、及び溶媒の混合物を用意した。次に、得られた混合物を、直径0.5mmのジルコニアビーズを用いたビーズミル(LMZ015、アシザワファインテック製)を使用し、周速12m/sにて1時間分散処理することにより、導電材、バインダー、及び溶媒を含有する組成物を調製した。得られた組成物は、固形分濃度10質量%、粘度指数300mPa・s)であった。
(実施例4)
 <複合粒子の作製>における(ii)プレ複合粒子形成操作において、主撹拌翼の周速を3m/s、副撹拌翼の周速5m/sに変更し、さらに、シール用空気の通気量を5/分に変更した以外は、実施例1と同様の各種操作、測定、及び評価を実施した。結果を表1に示す。
(実施例5)
 <複合粒子の作製>における(ii)プレ複合粒子形成操作において、主撹拌翼の周速を9m/s、副撹拌翼の周速を5m/sに変更した以外は、実施例1と同様の各種操作、測定、及び評価を実施した。結果を表1に示す。
(実施例6)
 <複合粒子の作製>における(ii)プレ複合粒子形成操作において、副撹拌翼の周速を2m/sに変更した以外は、実施例1と同様の各種操作、測定、及び評価を実施した。結果を表1に示す。
(実施例7)
 <複合粒子の作製>における(ii)プレ複合粒子形成操作において、副撹拌翼の周速を10m/sに変更し、さらに、(iii)整粒操作を実施した後に、下記に従う分級操作を実施した。かかる点以外は、実施例1と同様の各種操作、測定、及び評価を実施した。結果を表1に示す。
<分級操作>
 (iii)整粒操作を経て得られた複合粒子を、目開きが100μmの篩い網を用いて篩い、篩い網上の粗大粒子を除去した。さらに、篩い網下の複合粒子について、目開きが50μmの篩い網を用いて篩い、篩い網下の粒子を除去し、篩い網上に残った複合粒子を得た。
(実施例8)
 <複合粒子の作製>における(iii)整粒操作における主撹拌翼の周速を0.4m/sに変更した以外は、実施例1と同様の各種操作、測定、及び評価を実施した。結果を表1に示す。
(実施例9)
 <複合粒子の作製>における(iii)整粒操作における主撹拌翼の周速を6m/sに変更した以外は、実施例1と同様の各種操作、測定、及び評価を実施した。結果を表1に示す。
(実施例10)
 <複合粒子の作製>工程を以下の通りに変更した以外は、実施例1と同様の各種操作、測定、及び評価を実施した。結果を表2に示す。
 <複合粒子の作製>における(i)予備撹拌操作を2段階に分けて実施した。具体的には、実施例1と同様の条件とした造粒槽内における予備撹拌操作の時間を1分間に短縮して実施した。さらにかかる操作に先立って、淺田鉄工社製ミラクルKCK(登録商標)(型式:M・KCK-L)を用い、回転数40rpm、処理速度1L/h、処理時間10分の条件において、リチウムイオン電池用正極活物質としてのNMC532と導電材としてのカーボンブラックとの混合物を混合し、得られた粉体材料を撹拌時間を1分間とした予備撹拌操作に供した。
 さらに(ii)プレ複合粒子形成操作において、組成物の添加手段を2流体スプレーに変更し、表2に示す気液比(気体体積/液体体積)及び噴霧面密度として、組成物を系内に連続的に添加した。また、(ii)プレ複合粒子形成操作においては、主撹拌翼の周速を8m/sに変更し、通気量を5/分に変更した。
 そして、(iii)整粒操作において、運転時間を1分間に変更した。
 これらの工程を通じた系内の最高温度は、40℃であった。
(実施例11)
 <複合粒子の作製>工程を以下の通りに変更した以外は、実施例1と同様の各種操作、測定、及び評価を実施した。結果を表2に示す。
 <複合粒子の作製>における(i)予備撹拌操作を2段階に分けて実施した。具体的には、実施例1と同様の条件とした造粒槽内における予備撹拌操作の時間を1分間に短縮して実施した。さらにかかる操作に先立って、淺田鉄工社製ミラクルKCK(登録商標)(型式:M・KCK-L)を用い、回転数40rpm、処理速度1L/h、処理時間10分の条件において、リチウムイオン電池用正極活物質としてのNMC532と導電材としてのカーボンブラックとの混合物を混合し、得られた粉体材料を撹拌時間を1分間とした予備撹拌操作に供した。
(実施例12)
 <複合粒子の作製>工程を以下の通りに変更した以外は、実施例1と同様の各種操作、測定、及び評価を実施した。結果を表2に示す。
 <複合粒子の作製>における(ii)プレ複合粒子形成操作において、主撹拌翼の周速を8m/sに変更し、通気量を5/分に変更した。
 そして、(iii)整粒操作において、運転時間を1分間に変更した。
 工程(i)~(iii)を通じた系内の最高温度は、40℃であった。
(実施例13)
 <複合粒子の作製>工程を以下の通りに変更した以外は、実施例1と同様の各種操作、測定、及び評価を実施した。結果を表2に示す。
 <複合粒子の作製>における(ii)プレ複合粒子形成操作において、組成物の添加手段を2流体スプレーに変更し、表2に示す気液比(気体体積/液体体積)及び噴霧面密度として、組成物を系内に連続的に添加した。
 工程(i)~(iii)を通じた系内の最高温度は、40℃であった。
(実施例14)
 <複合粒子の作製>工程を以下の通りに変更した以外は、実施例1と同様の各種操作、測定、及び評価を実施した。結果を表2に示す。
 <複合粒子の作製>における(ii)プレ複合粒子形成操作において、組成物の添加手段を2流体スプレーに変更し、表2に示す気液比(気体体積/液体体積)及び噴霧面密度として、組成物を系内に連続的に添加した。
 工程(i)~(iii)を通じた系内の最高温度は、36℃であった。
(実施例15)
 <複合粒子の作製>工程を以下の通りに変更した以外は、実施例1と同様の各種操作、測定、及び評価を実施した。結果を表2に示す。
 <複合粒子の作製>における(ii)プレ複合粒子形成操作において、組成物の添加手段を2流体スプレーに変更し、表2に示す気液比(気体体積/液体体積)及び噴霧面密度として、組成物を系内に連続的に添加した。また、(ii)プレ複合粒子形成操作においては、主撹拌翼の周速を15m/sに変更し、副撹拌翼の周速を2m/sに変更した。
 また(iii)整粒操作において、副撹拌翼の周速を10m/sに変更した。
 工程(i)~(iii)を通じた系内の最高温度は、42℃であった。
(実施例16)
 <複合粒子の作製>工程を以下の通りに変更した以外は、実施例1と同様の各種操作、測定、及び評価を実施した。結果を表2に示す。
 <複合粒子の作製>における(ii)プレ複合粒子形成操作において、組成物の添加手段を2流体スプレーに変更し、表2に示す気液比(気体体積/液体体積)及び噴霧面密度として、組成物を系内に連続的に添加した。また、(ii)プレ複合粒子形成操作においては、主撹拌翼の周速を3m/sに変更し、副撹拌翼の周速を10m/sに変更した。
 工程(i)~(iii)を通じた系内の最高温度は、34℃であった。
(実施例17)
 <複合粒子の作製>工程を以下の通りに変更した以外は、実施例1と同様の各種操作、測定、及び評価を実施した。結果を表2に示す。
 <複合粒子の作製>における(ii)プレ複合粒子形成操作において、組成物の添加手段を2流体スプレーに変更し、表2に示す気液比(気体体積/液体体積)及び噴霧面密度として、組成物を系内に連続的に添加した。また、(ii)プレ複合粒子形成操作においては、主撹拌翼の周速を8m/sに変更した。
 また(iii)整粒操作において、主撹拌翼の周速を0.4m/sに変更した。
 工程(i)~(iii)を通じた系内の最高温度は、38℃であった。
(実施例18)
 <複合粒子の作製>工程を以下の通りに変更した以外は、実施例1と同様の各種操作、測定、及び評価を実施した。結果を表2に示す。
 <複合粒子の作製>における(ii)プレ複合粒子形成操作において、組成物の添加手段を2流体スプレーに変更し、表2に示す気液比(気体体積/液体体積)及び噴霧面密度として、組成物を系内に連続的に添加した。また、(ii)プレ複合粒子形成操作においては、副撹拌翼の周速を10m/sに変更した。
 また(iii)整粒操作において、主撹拌翼の周速を6m/sに変更した。
 工程(i)~(iii)を通じた系内の最高温度は、38℃であった。
(比較例1)
 (ii)プレ複合粒子形成操作の継続時間を5分、室温のシール用空気の流量を40L/分(通気量20/分)に変更した以外は、実施例1と同様の各種操作、測定、及び評価を実施した。結果を表3に示す。
(比較例2)
 (ii)プレ複合粒子形成操作における、主撹拌翼の周速を25m/s、室温のシール用空気の流量を100L/分(通気量50/分)に変更した以外は、実施例1と同様の各種操作、測定、及び評価を実施した。結果を表3に示す。
(比較例3)
 (ii)プレ複合粒子形成操作における、副撹拌翼の周速を2m/s、(iii)整粒操作における、副撹拌翼の周速を0.05m/s、(iii)操作の持続時間を5分、室温のシール用空気の流量を30L/分(通気量15/分)に変更した以外は、実施例1と同様の各種操作、測定、及び評価を実施した。結果を表3に示す。
(比較例4)
 (ii)プレ複合粒子形成操作における、副撹拌翼の周速を10m/s、(iii)整粒操作における、副撹拌翼の周速を15m/s、(iii)操作の持続時間を15分、室温のシール用空気の流量を10L/分(通気量5/分)に変更し、さらに、(iii)整粒操作の完了後に分級操作を実施した。これらの点以外は、実施例1と同様の各種操作、測定、及び評価を実施した。結果を表3に示す。
<分級操作>
 (iii)整粒操作を経て得られた複合粒子を、目開きが90μmの篩い網を用いて篩い、篩い網上の粗大粒子を除去した。さらに、篩い網下の複合粒子について、目開きが60μmの篩い網を用いて篩い、篩い網下の粒子を除去し、篩い網上に残った複合粒子を得た。
(比較例5)
 (iii)整粒操作における主撹拌翼の周速を0.05m/sに変更し、(iii)の持続時間を2分とし、室温のシール用空気の流量を100L/分(通気量50/分)に変更した以外は、実施例1と同様の各種操作、測定、及び評価を実施した。結果を表3に示す。
(比較例6)
 (iii)整粒操作における主撹拌翼の周速を12m/sに変更し、(iii)の持続時間を15分とし、室温のシール用空気の流量を10L/分(通気量5/分)に変更した以外は、実施例1と同様の各種操作、測定、及び評価を実施した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1~3より、面積相当径の平均値、面積相当径の変動係数、及び密度係数の値がそれぞれ所定範囲である複合粒子によれば、電極の柔軟性を高めるとともに、電極における電極活物質の割れを抑制し、さらには、かかる電極を備える電気化学素子のサイクル特性及びレート特性を向上させることができたことが分かる。
 本発明によれば、電極の柔軟性を高めるとともに、電極における電極活物質の割れを抑制し、さらには、かかる電極を備える電気化学素子のサイクル特性を向上させることができる、複合粒子を提供することができる。
 また、本発明によれば、本発明の複合粒子を含む電気化学素子用電極及びこれを備える電気化学素子を提供することができる。
1    造粒槽
2    主撹拌翼
21   主ブレード
3    副撹拌翼
31   副ブレード
RA1  第一撹拌軸
RA2  第二撹拌軸

Claims (6)

  1.  電極活物質、導電材、及びバインダーを含む複合粒子であって、該複合粒子は、
     面積相当径の平均値が20μm以上250μm以下であり、
     式1:(面積相当径の標準偏差/面積相当径の平均値)×100
    に従って算出される、面積相当径の変動係数が5%以上50%以下であり、
     式2:圧縮密度/かさ密度
    に従って算出される密度係数の値が1.3以上3.5以下である、
    複合粒子。
  2.  体積抵抗率が1Ω・cm以上3000Ω・cm以下である、請求項1に記載の複合粒子。
  3.  面積円形度が0.50以上0.93以下であるとともに、周囲長包絡度が0.70以上0.97以下である、請求項1に記載の複合粒子。
  4.  前記バインダーが、1atmにおける沸点が95℃以下の非水系溶媒に溶解する高分子材料であることを特徴とする、請求項1に記載の複合粒子。
  5.  請求項1~4の何れかに記載の複合粒子を含む電極合材層を備える、電気化学素子用電極。
  6.  請求項5に記載の電気化学素子用電極を備える、電気化学素子。
PCT/JP2022/026405 2021-09-29 2022-06-30 複合粒子、電気化学素子用電極、及び電気化学素子 WO2023053652A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023550390A JPWO2023053652A1 (ja) 2021-09-29 2022-06-30
KR1020247006994A KR20240067872A (ko) 2021-09-29 2022-06-30 복합 입자, 전기 화학 소자용 전극, 및 전기 화학 소자
CN202280053319.3A CN117769772A (zh) 2021-09-29 2022-06-30 复合颗粒、电化学元件用电极以及电化学元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-160044 2021-09-29
JP2021160044 2021-09-29

Publications (1)

Publication Number Publication Date
WO2023053652A1 true WO2023053652A1 (ja) 2023-04-06

Family

ID=85782231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026405 WO2023053652A1 (ja) 2021-09-29 2022-06-30 複合粒子、電気化学素子用電極、及び電気化学素子

Country Status (4)

Country Link
JP (1) JPWO2023053652A1 (ja)
KR (1) KR20240067872A (ja)
CN (1) CN117769772A (ja)
WO (1) WO2023053652A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103199251A (zh) * 2013-03-05 2013-07-10 东莞新能源科技有限公司 一种锂离子电池用负极材料及其制备方法
JP2015060704A (ja) * 2013-09-18 2015-03-30 トヨタ自動車株式会社 電極ペーストの製造方法及び製造装置
WO2019189801A1 (ja) * 2018-03-29 2019-10-03 国立大学法人信州大学 正極活物質、それを用いた正極及び二次電池、並びに正極活物質の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7567429B2 (en) 2004-06-22 2009-07-28 Zeon Corporation Electrode material for electric double layer capacitor and process for producing the same
JP4899354B2 (ja) 2004-07-22 2012-03-21 日本ゼオン株式会社 複合粒子の製造方法、電気化学素子用電極材料、電気化学素子用電極の製造方法及び電気化学素子用電極
US11331675B2 (en) 2013-08-26 2022-05-17 Zeon Corporation Method for producing granulated particles for electrochemical device, electrode for electrochemical device, and electrochemical device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103199251A (zh) * 2013-03-05 2013-07-10 东莞新能源科技有限公司 一种锂离子电池用负极材料及其制备方法
JP2015060704A (ja) * 2013-09-18 2015-03-30 トヨタ自動車株式会社 電極ペーストの製造方法及び製造装置
WO2019189801A1 (ja) * 2018-03-29 2019-10-03 国立大学法人信州大学 正極活物質、それを用いた正極及び二次電池、並びに正極活物質の製造方法

Also Published As

Publication number Publication date
KR20240067872A (ko) 2024-05-17
CN117769772A (zh) 2024-03-26
JPWO2023053652A1 (ja) 2023-04-06

Similar Documents

Publication Publication Date Title
JP7120257B2 (ja) 電気化学素子用導電材分散液、電気化学素子正極用スラリー、電気化学素子用正極の製造方法および電気化学素子の製造方法
CN105814718B (zh) 电极用导电材料糊、正极用浆料的制造方法、正极的制造方法以及二次电池
KR102401458B1 (ko) 2차 전지 정극용 바인더 조성물, 2차 전지 정극용 슬러리 조성물, 2차 전지용 정극 및 2차 전지
JP7056642B2 (ja) 電気化学素子電極用導電材分散液、電気化学素子電極用スラリー組成物およびその製造方法、電気化学素子用電極、並びに、電気化学素子
JP6870770B1 (ja) 電気化学素子用導電材分散液、電気化学素子電極用スラリー、電気化学素子用電極及び電気化学素子
WO2015151529A1 (ja) リチウムイオン二次電池正極用スラリー、リチウムイオン二次電池正極用スラリーの製造方法、リチウムイオン二次電池用正極の製造方法、およびリチウムイオン二次電池
JP6911986B1 (ja) 電気化学素子用電極及び電気化学素子
JP2016021391A (ja) 電気化学素子用導電材分散液、電気化学素子正極用スラリー、電気化学素子用正極および電気化学素子
JP6365181B2 (ja) 二次電池電極用導電材ペースト、二次電池正極用スラリーの製造方法、二次電池用正極の製造方法および二次電池の製造方法
JPWO2020137591A1 (ja) 二次電池電極用バインダー組成物、二次電池電極用導電材ペースト組成物、二次電池電極用スラリー組成物、二次電池用電極、及び二次電池
WO2023053652A1 (ja) 複合粒子、電気化学素子用電極、及び電気化学素子
WO2023053651A1 (ja) 複合粒子及び電気化学素子用電極の製造方法
WO2023100625A1 (ja) 複合粒子及びその製造方法、電気化学素子用電極、並びに電気化学素子
WO2022070736A1 (ja) 導電材分散液、非水系二次電池正極用スラリーの製造方法、非水系二次電池用正極の製造方法、及び、非水系二次電池の製造方法
WO2024142986A1 (ja) 複合粒子、二次電池用電極、および二次電池
WO2024048355A1 (ja) 複合粒子及びその製造方法、電気化学素子用電極、並びに電気化学素子
JP6911987B1 (ja) 電気化学素子用分散剤組成物、電気化学素子用導電材分散液、電気化学素子電極用スラリー、電気化学素子用電極及び電気化学素子
JP6870771B1 (ja) 電気化学素子用導電材分散液、電気化学素子電極用スラリー、電気化学素子用電極及び電気化学素子
JP7218730B2 (ja) 二次電池正極用バインダー組成物、二次電池正極用スラリー組成物及びその製造方法、二次電池用正極、並びに二次電池
WO2024018997A1 (ja) 電気化学素子用導電材分散液、電気化学素子電極用スラリー、電気化学素子用電極及び電気化学素子
WO2023145655A1 (ja) 電気化学素子正極用複合粒子およびその製造方法、電気化学素子用正極、ならびに、電気化学素子
WO2022181424A1 (ja) 電気化学素子正極用スラリー組成物、電気化学素子用正極及び電気化学素子
US20240222635A1 (en) Fluoropolymer binder
CN117790752A (zh) 钠离子电池复合正极材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22875531

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280053319.3

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023550390

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022875531

Country of ref document: EP

Effective date: 20240429