WO2022181424A1 - 電気化学素子正極用スラリー組成物、電気化学素子用正極及び電気化学素子 - Google Patents

電気化学素子正極用スラリー組成物、電気化学素子用正極及び電気化学素子 Download PDF

Info

Publication number
WO2022181424A1
WO2022181424A1 PCT/JP2022/006235 JP2022006235W WO2022181424A1 WO 2022181424 A1 WO2022181424 A1 WO 2022181424A1 JP 2022006235 W JP2022006235 W JP 2022006235W WO 2022181424 A1 WO2022181424 A1 WO 2022181424A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
mass
polymer
slurry composition
electrochemical element
Prior art date
Application number
PCT/JP2022/006235
Other languages
English (en)
French (fr)
Inventor
純平 元木
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to US18/264,115 priority Critical patent/US20240120467A1/en
Priority to KR1020237028172A priority patent/KR20230148162A/ko
Priority to EP22759463.7A priority patent/EP4300625A1/en
Priority to JP2023502322A priority patent/JPWO2022181424A1/ja
Priority to CN202280015143.2A priority patent/CN116848657A/zh
Publication of WO2022181424A1 publication Critical patent/WO2022181424A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/133Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a slurry composition for an electrochemical element positive electrode, an electrochemical element positive electrode, and an electrochemical element.
  • Electrochemical devices such as lithium-ion secondary batteries, electric double layer capacitors, and lithium-ion capacitors are small, lightweight, have high energy density, and can be repeatedly charged and discharged, and are used in a wide range of applications.
  • a positive electrode used in an electrochemical device usually includes a current collector and a positive electrode mixture layer formed on the current collector. Then, the positive electrode mixture layer is formed, for example, by applying a slurry composition containing positive electrode active material particles, a binder, and a dispersion medium onto a current collector and drying the applied slurry composition. be done.
  • the conventional technology described above has room for improvement in terms of achieving a well-balanced reduction in the IV resistance of the electrochemical element and improvement in cycle characteristics and high-temperature storage characteristics.
  • the present invention provides an electrochemical element positive electrode slurry composition capable of forming a positive electrode capable of exhibiting excellent cycle characteristics and high-temperature storage characteristics in the electrochemical element while reducing the IV resistance of the electrochemical element.
  • Another object of the present invention is to provide a positive electrode for an electrochemical device that can exhibit excellent cycle characteristics and high-temperature storage characteristics while reducing the IV resistance of the electrochemical device.
  • Another object of the present invention is to provide an electrochemical device having low IV resistance and excellent cycle characteristics and high-temperature storage characteristics.
  • the inventor of the present invention conducted intensive studies with the aim of solving the above problems.
  • the inventors of the present invention include a composite particle obtained by coating a positive electrode active material particle with a carbon film having a predetermined property, a binder containing a predetermined polymer A, and a dispersion medium, and the composite particle contains If the positive electrode mixture layer is formed using a slurry composition in which the amount of the carbon film covering the positive electrode active material particles is within a predetermined range and the ratio of the polymer A to the total solid content is within a predetermined range, electricity can be obtained.
  • the inventors have found that the reduction of the IV resistance of the chemical element and the improvement of the cycle characteristics and high-temperature storage characteristics can be achieved in a well-balanced manner, and have completed the present invention.
  • an object of the present invention is to advantageously solve the above-described problems, and a positive electrode slurry composition for an electrochemical element of the present invention is an electrochemical slurry composition containing composite particles, a binder, and a dispersion medium.
  • the composite particles include positive electrode active material particles and a carbon coating covering at least a part of the outer surface of the positive electrode active material particles, and the carbon coating contained in the composite particles is 0.4 parts by mass or more and 3.5 parts by mass or less per 100 parts by mass of the positive electrode active material particles, and the ratio of the D band peak intensity to the G band peak intensity in the Raman spectrum of the carbon coating is 0.6 is 1.7 or less, the binder contains a polymer A containing a nitrile group-containing monomer unit and an alkylene structural unit, and the ratio of the polymer A to the total solid content is 0.05 mass % or more and 2.0 mass % or less.
  • the "amount of carbon coating” (hereinafter sometimes referred to as “amount of coating”) in the composite particles can be measured using the method described in Examples.
  • the “ratio of the D band peak intensity to the G band peak intensity in the Raman spectrum” (hereinafter sometimes referred to as the "D/G ratio") can be measured using the method described in the Examples. can.
  • “comprising a monomer unit” means "a repeating unit derived from the monomer is contained in the polymer obtained using the monomer”.
  • n in the general formula —C n H 2n — is preferably an integer of 4 or more, more preferably 4.
  • the composite particles preferably have a volume average particle size of less than 20 ⁇ m.
  • the volume average particle diameter of the composite particles is the particle diameter at 50% of the integrated value in the particle size distribution (volume basis) measured using a particle size distribution measuring device based on the laser scattering/diffraction method, that is, 50% volume shall mean the average particle size (D50).
  • the "volume average particle size" of the composite particles can be measured according to JIS Z8825:2013, and specifically, it can be measured using the method described in Examples.
  • the ratio of the composite particles to the total solid content is preferably 90% by mass or more and 99% by mass or less. If the proportion of the composite particles in the total solid content is within the above range, the IV resistance of the electrochemical device can be further reduced, and the cycle characteristics and high-temperature storage characteristics can be further improved.
  • the binder preferably contains a polymer B other than the polymer A. If the polymer B is used in addition to the polymer A as the binder, the IV resistance of the electrochemical device can be further reduced, and the cycle characteristics and high-temperature storage characteristics can be further improved.
  • the proportion of the polymer B in the total solid content is preferably 0.1% by mass or more and 5% by mass or less. If the proportion of the polymer B in the total solid content is within the above range, the IV resistance of the electrochemical device can be further reduced, and the cycle characteristics and high-temperature storage characteristics can be further improved.
  • the positive electrode slurry composition for an electrochemical element of the present invention preferably further contains a conductive material. If the slurry composition further contains a conductive material, the IV resistance of the electrochemical device can be further reduced, and the cycle characteristics and high-temperature storage characteristics can be further improved.
  • the proportion of the conductive material in the total solid content is preferably 0.4% by mass or more and 5% by mass or less. If the proportion of the conductive material in the total solid content is within the above range, the IV resistance of the electrochemical device can be further reduced, and the cycle characteristics and high-temperature storage characteristics can be further improved.
  • Another object of the present invention is to advantageously solve the above-described problems, and the positive electrode for an electrochemical element of the present invention is formed using any of the slurry compositions for an electrochemical element positive electrode described above. It is characterized by comprising a positive electrode mixture layer.
  • a positive electrode having a positive electrode mixture layer formed from the slurry composition described above an electrochemical device having low IV resistance and excellent cycle characteristics and high-temperature storage characteristics can be produced.
  • Another object of the present invention is to advantageously solve the above problems, and an electrochemical device of the present invention is characterized by comprising the positive electrode for an electrochemical device described above.
  • An electrochemical device including the positive electrode described above has low IV resistance and excellent cycle characteristics and high-temperature storage characteristics.
  • a slurry composition for an electrochemical element positive electrode capable of forming a positive electrode capable of exhibiting excellent cycle characteristics and high-temperature storage characteristics in the electrochemical element while reducing the IV resistance of the electrochemical element. be able to.
  • an electrochemical device having low IV resistance and excellent cycle characteristics and high-temperature storage characteristics can be provided.
  • the slurry composition for an electrochemical element positive electrode of the present invention can be used for forming a positive electrode mixture layer of an electrochemical element positive electrode.
  • the positive electrode for an electrochemical device of the present invention can be used as a positive electrode for electrochemical devices such as a lithium ion secondary battery, an electric double layer capacitor, and a lithium ion capacitor. It has a positive electrode mixture layer formed using a slurry composition.
  • the electrochemical device of the present invention comprises the positive electrode for an electrochemical device of the present invention.
  • the slurry composition of the present invention contains composite particles obtained by coating positive electrode active material particles with a carbon film, a polymer A as a binder, and a dispersion medium, and optionally a polymer B as a binder, It contains at least one selected from the group consisting of a conductive material and other components.
  • the amount of the carbon coating contained in the composite particles is 0.4 parts by mass or more and 3.5 parts by mass or less per 100 parts by mass of the positive electrode active material particles, and the carbon coating D/G The ratio should be 0.6 or more and 1.7 or less.
  • the polymer A contains a nitrile group-containing monomer unit and an alkylene structural unit, and the proportion of the polymer A in the total solid content of the slurry composition is 0.05% by mass or more 2 0% by mass or less.
  • the slurry composition of the present invention it is possible to obtain a positive electrode for an electrochemical device that allows the electrochemical device to exhibit excellent cycle characteristics and high-temperature storage characteristics while reducing the IV resistance of the electrochemical device. .
  • the composite particles include positive electrode active material particles and carbon coatings covering part or all of the outer surfaces of the positive electrode active material particles.
  • the positive electrode active material particles are particles made of a positive electrode active material that transfers electrons in the positive electrode of an electrochemical device.
  • a material capable of intercalating and deintercalating lithium is usually used as the positive electrode active material.
  • the slurry composition for electrochemical element positive electrodes is a slurry composition for lithium ion secondary battery positive electrodes is demonstrated as an example, this invention is not limited to the following example.
  • the positive electrode active material constituting the positive electrode active material particles for lithium ion secondary batteries is not particularly limited, and lithium-containing cobalt oxide (lithium cobalt oxide, LiCoO 2 ), lithium manganate (LiMn 2 O 4 ). , lithium-containing nickel oxide (LiNiO 2 ), lithium-containing composite oxide of Co—Ni—Mn (Li(CoMnNi)O 2 ), lithium-containing composite oxide of Ni—Mn—Al, Ni—Co—Al represented by LiMPO 4 (M is at least one selected from the group consisting of Fe, Mn, Ni, Co, Cu, Sc, Ti, Cr, V and Zn.) Phosphate compounds having an olivine structure (e.g., olivine-type lithium iron phosphate (LiFePO 4 ), olivine-type lithium manganese phosphate (LiMnPO 4 )), Li 2 MnO 3 —LiNiO 2 -based solid solutions, Li 1+x Mn 2 ⁇ x
  • positive electrode active material particles made of a phosphoric acid compound having an olivine structure generally have a demerit of poor conductivity.
  • the positive electrode active material particles are used in the state of composite particles coated with a carbon film, even if a phosphoric acid compound having an olivine structure is used as the positive electrode active material constituting the positive electrode active material particles, can also exhibit sufficiently excellent conductivity as a composite particle due to the contribution of the carbon coating. Therefore, it is possible to satisfactorily reduce the IV resistance of the electrochemical device and improve the cycle characteristics and high-temperature storage characteristics.
  • the method for preparing the positive electrode active material particles is not particularly limited, and can be prepared by a known method.
  • the carbon coating is a coating made of carbon and covers part or all of the outer surface of the positive electrode active material particles described above.
  • the carbon coating must have a D/G ratio of 0.6 or more and 1.7 or less as described above, preferably 0.7 or more, more preferably 0.8 or more, It is more preferably 0.9 or more, preferably 1.5 or less, more preferably 1.2 or less, and even more preferably 1.1 or less.
  • the D/G ratio is an index commonly used to evaluate the quality of carbon materials. Vibrational modes called G band (near 1600 cm ⁇ 1 ) and D band (near 1350 cm ⁇ 1 ) are observed in the Raman spectrum of a carbon material measured by a Raman spectrometer.
  • the G band is a vibrational mode derived from the hexagonal lattice structure of graphite
  • the D band is a vibrational mode derived from amorphous sites. Therefore, it can be said that a carbon film having a higher peak intensity ratio (D/G ratio) between the D band and the G band has more amorphous portions, that is, defective structures. According to the study of the present inventors, it is speculated that the polymer A containing the nitrile group-containing monomer unit and the alkylene structural unit can be well adsorbed to the composite particles using the defect structure as the adsorption site.
  • the cycle characteristics can be improved while the IV resistance of the electrochemical device is lowered.
  • the D/G ratio of the carbon coating is less than 0.6
  • the IV resistance of the electrochemical device is lowered and the cycle characteristics are impaired.
  • the defective structure of the carbon film becomes excessive, the defective structure reacts with the electrolytic solution inside the electrochemical element to decompose the electrolytic solution, but the cycle characteristics and high-temperature storage characteristics may deteriorate. This has been clarified by the studies of the inventors of the present invention. In other words, if the D/G ratio of the carbon coating exceeds 1.7, the electrochemical device will suffer from poor cycle characteristics and high-temperature storage characteristics.
  • the amount of the carbon film covering the positive electrode active material particles must be 0.4 parts by mass or more and 3.5 parts by mass or less per 100 parts by mass of the positive electrode active material particles, as described above. parts by mass or more, more preferably 0.8 parts by mass or more, still more preferably 0.9 parts by mass or more, preferably 2.5 parts by mass or less, and 1.5 parts by mass It is more preferably 1.2 parts by mass or less, more preferably 1.2 parts by mass or less. If the coating amount is less than 0.4 parts by mass per 100 parts by mass of the positive electrode active material particles, the electrical conductivity of the composite particles is lowered. Therefore, the IV resistance of the electrochemical device cannot be sufficiently lowered, and the cycle characteristics are impaired.
  • the coating amount is more than 3.5 parts by mass per 100 parts by mass of the positive electrode active material particles, the relative amount of the polymer A with respect to the carbon coating decreases, resulting in a side reaction between the composite particles and the electrolyte during storage. This is presumed to be due to the fact that the high-temperature storage characteristics deteriorate. Also, the IV resistance of the electrochemical device cannot be sufficiently lowered.
  • the method of coating the positive electrode active material particles with the carbon film to prepare the composite particles is not particularly limited.
  • the composite particles are produced, for example, by mixing the positive electrode active material particles and the carbon source in the presence of a solvent to prepare a composite particle slurry (slurry preparation step), and drying the composite particle slurry to obtain granulated particles. It can be prepared through a step (granulation step) and a step of heat-treating the granulated particles (heating step).
  • the positive electrode active material particles, the carbon source, and the solvent are mixed to prepare slurry for composite particles.
  • the carbon source is not particularly limited as long as it can be used as a material for a carbon film, but for example, a polymer composed of carbon atoms, hydrogen atoms and oxygen atoms is preferably used. Examples of such polymers include polyvinyl alcohol and lactose.
  • a carbon source may be used individually by 1 type, and may be used in combination of 2 or more types by arbitrary ratios.
  • the solvent is not particularly limited as long as it can disperse and/or dissolve the carbon source while dispersing the positive electrode active material particles, but it is preferable to use water.
  • a solvent may be used individually by 1 type, and may be used in combination of 2 or more types by arbitrary ratios.
  • the mixing ratio of the positive electrode active material particles and the carbon source is not particularly limited, and may be appropriately adjusted according to the desired coating amount in the resulting composite particles.
  • the amount of the carbon source used can be 0.1 parts by mass or more and 16 parts by mass or less per 100 parts by mass of the positive electrode active material particles.
  • the method of mixing the positive electrode active material particles and the carbon source in the presence of the solvent is not particularly limited, and a known mixing device such as a bead mill can be used.
  • the slurry for composite particles obtained in the slurry preparation step is dried to remove the solvent to obtain granulated particles.
  • the drying/granulation method in the granulation step is not particularly limited as long as desired granulated particles can be obtained, but a spray granulation method can be preferably used.
  • the drying temperature in the granulation step is not particularly limited, but is preferably 100° C. or higher, more preferably 150° C. or higher, preferably 250° C. or lower, and more preferably 200° C. or lower.
  • the apparatus used for the spray granulation method is not particularly limited, and a known spray dryer can be used.
  • the granulated particles obtained in the granulating step are heat-treated.
  • the D/G ratio of the carbon coating of the resulting composite particles can be controlled. Specifically, if the heating temperature is raised, the crystallinity of the carbon coating increases and the D/G ratio decreases, and if the heating temperature is lowered, the defect structure of the carbon coating increases and the D/G ratio increases. Further, if the heating time is lengthened, the crystallinity of the carbon coating increases and the D/G ratio decreases, and if the heating time is shortened, the defect structure of the carbon coating increases and the D/G ratio increases.
  • the heating temperature is preferably 500° C. or higher, more preferably 600° C. or higher, and 700° C. or higher. is more preferably 1000° C. or lower, more preferably 900° C. or lower, and even more preferably 800° C. or lower.
  • the heating time is preferably 10 minutes or more, more preferably 30 minutes or more, and 50 minutes or more, from the viewpoint of forming a carbon film having the desired D/G ratio satisfactorily. is more preferably 120 minutes or less, more preferably 100 minutes or less, and even more preferably 70 minutes or less.
  • the device used for the heat treatment is not particularly limited, and a known heating device can be used.
  • the composite particles preferably have a volume average particle size of less than 20 ⁇ m, more preferably less than 10 ⁇ m, and even more preferably less than 5 ⁇ m.
  • the composite particles preferably have a volume average particle diameter of 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more. If the volume average particle diameter of the composite particles is 0.1 ⁇ m or more, the viscosity stability of the slurry composition can be ensured.
  • the composite particles may be primary particles in the slurry composition, or may be secondary particles formed by association of a plurality of primary particles.
  • the volume average particle diameter of the composite particles can be changed by changing the particle diameter of the positive electrode active material particles used for preparing the composite particles, the amount of carbon source used in the above-described method for preparing composite particles, and the granulation conditions. controllable.
  • the ratio of the composite particles to the total solid content is preferably 90% by mass or more, more preferably 91% by mass or more, with the total solid content being 100% by mass. It is more preferably 92% by mass or more, preferably 99% by mass or less, more preferably 98% by mass or less, and even more preferably 97% by mass or less. If the ratio of the composite particles to the total solid content of the slurry composition is within the above range, the IV resistance of the electrochemical device can be further reduced, and the cycle characteristics and high-temperature storage characteristics can be further improved.
  • the slurry composition contains at least the polymer A as a binder, and optionally contains a polymer (polymer B) that does not correspond to the polymer A.
  • Polymer A contains at least a nitrile group-containing monomer unit and an alkylene structural unit, and optionally contains other repeating units.
  • nitrile group-containing monomer unit examples include ⁇ , ⁇ -ethylenically unsaturated nitrile monomers.
  • the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer is not particularly limited as long as it is an ⁇ , ⁇ -ethylenically unsaturated compound having a nitrile group.
  • Examples include acrylonitrile; ⁇ -chloroacrylonitrile; ⁇ -halogenoacrylonitrile such as ⁇ -bromoacrylonitrile; ⁇ -alkylacrylonitrile such as methacrylonitrile and ⁇ -ethylacrylonitrile;
  • the nitrile group-containing monomer may be used singly, or two or more of them may be used in combination at an arbitrary ratio. And among these, acrylonitrile is preferred.
  • the content of the nitrile group-containing monomer units in the polymer A is preferably 20% by mass or more, more preferably 25% by mass or more, based on 100% by mass of all repeating units in the polymer A. , more preferably 30% by mass or more, preferably 55% by mass or less, more preferably 50% by mass or less, and even more preferably 45% by mass or less. If the content of the nitrile group-containing monomer unit in the polymer A is 20% by mass or more, the solubility in the dispersion medium (eg, N-methyl-2-pyrrolidone) in the slurry composition is sufficiently ensured. be done.
  • the dispersion medium eg, N-methyl-2-pyrrolidone
  • the content ratio of the nitrile group-containing monomer unit in the polymer A is 55% by mass or less, excessive outflow of the polymer A into the electrolytic solution can be suppressed. If the content of the nitrile group-containing monomer unit in the polymer A is within the above range, the IV resistance of the electrochemical device can be further reduced, and the cycle characteristics and high-temperature storage characteristics can be further improved. can. Also, the viscosity stability of the slurry composition can be ensured.
  • the content of monomer units and structural units (including "hydride units” described later) in the polymer is determined by nuclear magnetic resonance (NMR) such as 1 H-NMR and 13 C-NMR. It can be measured using the method.
  • NMR nuclear magnetic resonance
  • the alkylene structural unit may be linear or branched, but from the viewpoint of further improving the cycle characteristics and high-temperature storage characteristics while further reducing the IV resistance of the electrochemical device, the alkylene structural unit is It is preferably linear, that is, a linear alkylene structural unit.
  • the method for introducing the alkylene structural unit into the polymer A is not particularly limited, but for example the following methods (1) and (2): (1) A method of converting a conjugated diene monomer unit into an alkylene structural unit by preparing a polymer from a monomer composition containing a conjugated diene monomer and hydrogenating the polymer (2) 1 - A method of preparing a polymer from a monomer composition containing an olefinic monomer. Among these, the method (1) is preferable because the production of the polymer A is easy.
  • conjugated diene monomers include conjugated diene compounds having 4 or more carbon atoms such as 1,3-butadiene, isoprene, 2,3-dimethyl-1,3-butadiene and 1,3-pentadiene. Among them, 1,3-butadiene is preferred. That is, the alkylene structural unit is preferably a structural unit obtained by hydrogenating a conjugated diene monomer unit (conjugated diene hydride unit), and a structure obtained by hydrogenating a 1,3-butadiene monomer unit Units (1,3-butadiene hydride units) are more preferred.
  • 1-olefin monomers include ethylene, propylene and 1-butene. Each of these conjugated diene monomers and 1-olefin monomers may be used alone, or two or more of them may be used in combination at any ratio.
  • the content of the alkylene structural unit in the polymer A is preferably 35% by mass or more, more preferably 45% by mass or more, based on 100% by mass of all repeating units in the polymer A. It is more preferably 55% by mass or more, preferably 80% by mass or less, and more preferably 70% by mass or less.
  • the content of the alkylene structural unit in the polymer A is 35% by mass or more, excessive outflow of the polymer A into the electrolytic solution can be suppressed.
  • the solubility in the dispersion medium eg, N-methyl-2-pyrrolidone
  • the content of the alkylene structural unit in the polymer A is within the above range, the IV resistance of the electrochemical device can be further reduced, and the cycle characteristics and high-temperature storage characteristics can be further improved. Also, the viscosity stability of the slurry composition can be ensured.
  • the polymer A is a hydrogenated polymer obtained by hydrogenating a polymer obtained by polymerizing a monomer composition containing a conjugated diene monomer
  • the hydrogenated The polymer may contain unhydrogenated conjugated diene monomer units in addition to alkylene structural units.
  • the total content of the alkylene structural units and the unhydrogenated conjugated diene monomer units in the polymer A (hereinafter referred to as "the content of repeating units derived from the conjugated diene monomer") is Based on 100% by mass of the total repeating units in the coalescence A, the content is preferably 35% by mass or more, more preferably 45% by mass or more, still more preferably 55% by mass or more, and 80% by mass or less. It is preferably 70% by mass or less, more preferably 70% by mass or less. If the content of the repeating unit derived from the conjugated diene monomer in the polymer A is 35% by mass or more, excessive outflow of the polymer A into the electrolytic solution can be suppressed.
  • the content of the repeating unit derived from the conjugated diene monomer in the polymer A is 80% by mass or less, the dispersion medium in the slurry composition (e.g., N-methyl-2-pyrrolidone) solubility in is sufficiently ensured. Further, when the content of the repeating unit derived from the conjugated diene monomer in the polymer A is within the above range, the IV resistance of the electrochemical device is further reduced, and the cycle characteristics and high-temperature storage characteristics are further improved. be able to. Also, the viscosity stability of the slurry composition can be ensured.
  • the dispersion medium in the slurry composition e.g., N-methyl-2-pyrrolidone
  • repeating units that may be contained in the polymer A include, but are not particularly limited to, aromatic vinyl monomer units, acidic group-containing monomer units, and (meth)acrylic acid ester monomer units.
  • Polymer A may contain one type of other repeating unit, or may contain two or more types of other repeating units.
  • (meth)acryl means acryl and/or methacryl.
  • aromatic vinyl monomers capable of forming aromatic vinyl monomer units include styrene, ⁇ -methylstyrene, pt-butylstyrene, butoxystyrene, vinyltoluene, chlorostyrene, and vinylnaphthalene. mentioned.
  • the aromatic vinyl monomers may be used singly or in combination of two or more at any ratio. Among these, styrene is preferred.
  • the content ratio of the aromatic vinyl monomer unit in the polymer A further reduces the IV resistance of the electrochemical device, while improving the cycle characteristics and high-temperature storage characteristics.
  • the content ratio of the aromatic vinyl monomer unit in the polymer A is preferably 10% by mass or more, more preferably 20% by mass or more, and 70% by mass or less. It is preferably 60% by mass or less, more preferably 50% by mass or less.
  • acidic group-containing monomers capable of forming acidic group-containing monomer units include carboxylic acid group-containing monomers, sulfonic acid group-containing monomers, and phosphoric acid group-containing monomers.
  • the acidic group-containing monomers may be used singly or in combination of two or more at any ratio.
  • Carboxylic acid group-containing monomers include monocarboxylic acids and their derivatives, dicarboxylic acids and their acid anhydrides, their derivatives, and the like.
  • Monocarboxylic acids include acrylic acid, methacrylic acid, crotonic acid and the like.
  • Monocarboxylic acid derivatives include 2-ethylacrylic acid, isocrotonic acid, ⁇ -acetoxyacrylic acid, ⁇ -trans-aryloxyacrylic acid, ⁇ -chloro- ⁇ -E-methoxyacrylic acid and the like.
  • Dicarboxylic acids include maleic acid, fumaric acid, itaconic acid, and the like.
  • Dicarboxylic acid derivatives include methylmaleic acid, dimethylmaleic acid, phenylmaleic acid, chloromaleic acid, dichloromaleic acid, fluoromaleic acid, nonyl maleate, decyl maleate, dodecyl maleate, octadecyl maleate, and fluoro maleate.
  • Examples include maleic acid monoesters such as alkyls.
  • Acid anhydrides of dicarboxylic acids include maleic anhydride, acrylic anhydride, methyl maleic anhydride, and dimethyl maleic anhydride.
  • an acid anhydride that produces a carboxylic acid group by hydrolysis can also be used. Among them, acrylic acid and methacrylic acid are preferable as the carboxylic acid group-containing monomer.
  • sulfonic acid group-containing monomers examples include vinylsulfonic acid, methylvinylsulfonic acid, (meth)allylsulfonic acid, styrenesulfonic acid, ethyl (meth)acrylate-2-sulfonate, and 2-acrylamido-2-methylpropane. sulfonic acid, 3-allyloxy-2-hydroxypropanesulfonic acid, and the like.
  • “(meth)allyl” means allyl and/or methallyl.
  • Phosphate group-containing monomers include, for example, 2-(meth)acryloyloxyethyl phosphate, 2-(meth)acryloyloxyethyl methyl phosphate, ethyl-(meth)acryloyloxyethyl phosphate, and the like. mentioned.
  • (meth)acryloyl means acryloyl and/or methacryloyl.
  • the content ratio of the acidic group-containing monomer unit in the polymer A further reduces the IV resistance of the electrochemical device, while improving the cycle characteristics and high-temperature storage characteristics.
  • the total repeating units in polymer A is preferably 1% by mass or more, more preferably 3% by mass or more, and 10% by mass or less. It is preferably 7% by mass or less, and more preferably 7% by mass or less.
  • (Meth)acrylic acid ester monomers capable of forming (meth)acrylic acid ester monomer units include, for example, methyl acrylate, ethyl acrylate, n-propyl acrylate, isopropyl acrylate, n-butyl acrylate, t-butyl acrylic acid alkyl esters such as acrylate, pentyl acrylate, hexyl acrylate, heptyl acrylate, octyl acrylate, 2-ethylhexyl acrylate, nonyl acrylate, decyl acrylate, lauryl acrylate, n-tetradecyl acrylate, stearyl acrylate; methyl methacrylate, ethyl methacrylate, n -propyl methacrylate, isopropyl methacrylate, n-butyl methacrylate, t-butyl methacrylate, pentyl meth
  • the content of the (meth)acrylic acid ester monomer unit in the polymer A further reduces the IV resistance of the electrochemical device, From the viewpoint of further improving cycle characteristics and high-temperature storage characteristics, it is preferably 10% by mass or more, more preferably 20% by mass or more, more preferably 30% by mass, based on 100% by mass of all repeating units in polymer A. % or more, preferably 70% by mass or less, more preferably 60% by mass or less, and even more preferably 50% by mass or less.
  • the method for preparing polymer A is not particularly limited.
  • Polymer A is produced, for example, by polymerizing a monomer composition containing the above-described monomers in an aqueous solvent and optionally hydrogenating the polymer.
  • the content ratio of each monomer in the monomer composition can be determined according to the content ratio of desired repeating units (monomer units and/or structural units) in the polymer.
  • the polymerization mode is not particularly limited, and any method such as a solution polymerization method, suspension polymerization method, bulk polymerization method and emulsion polymerization method can be used.
  • any reaction such as ionic polymerization, radical polymerization, living radical polymerization, various types of condensation polymerization, and addition polymerization can be used.
  • known emulsifiers and polymerization initiators can be used as necessary.
  • Hydrogenation can also be carried out by known methods.
  • the ratio of the polymer A to the total solid content is 0.05% by mass or more and 2.0% by mass or less as described above, with the total solid content being 100% by mass. is preferably 0.1% by mass or more, more preferably 0.15% by mass or more, preferably 1.0% by mass or less, and preferably 0.5% by mass or less More preferably, it is 0.35% by mass or less. If the ratio of the polymer A to the total solid content of the slurry composition is less than 0.05% by mass, the relative amount of the polymer A to the carbon coating is reduced, and the composite particles and the electrolytic solution are mixed during storage.
  • the polymer B is not particularly limited as long as it is not applicable to the polymer A and can exhibit binding ability inside the electrochemical device.
  • examples of such a polymer B include, for example, a polymer (acrylic polymer) mainly containing (meth)acrylic acid ester monomer units, and a polymer mainly containing fluorine-containing monomer units (fluoropolymer ).
  • fluorine-based polymers are preferred, and polyvinylidene fluoride is more preferred, from the viewpoint of further improving the cycle characteristics and high-temperature storage characteristics while further reducing the IV resistance of the electrochemical device.
  • the phrase "mainly containing" a certain monomer unit in a polymer means "the content ratio of the monomer unit when the amount of all repeating units contained in the polymer is 100% by mass. exceeds 50% by mass.”
  • the method for preparing polymer B is not particularly limited, and it can be prepared in the same manner as for polymer A described above.
  • the proportion of the polymer B in the total solid content is preferably 0.1% by mass or more, preferably 0.5% by mass or more, with the total solid content being 100% by mass. is more preferably 1% by mass or more, preferably 5% by mass or less, more preferably 4% by mass or less, and even more preferably 3% by mass or less. If the ratio of the polymer B to the total solid content of the slurry composition is within the above range, the IV resistance of the electrochemical device can be further reduced, and the cycle characteristics and high-temperature storage characteristics can be further improved.
  • a dispersion medium for the slurry composition either water or an organic solvent can be used, but an organic solvent is preferred.
  • organic solvents that can be used include acetonitrile, N-methylpyrrolidone, acetylpyridine, cyclopentanone, N,N-dimethylacetamide, dimethylformamide, dimethylsulfoxide, methylformamide, methylethylketone, furfural, and ethylenediamine.
  • NMP N-methyl-2-pyrrolidone
  • a dispersion medium may be used individually by 1 type, and may be used in combination of 2 or more types by arbitrary ratios.
  • the conductive material optionally included in the slurry composition of the present invention is not particularly limited as long as it can ensure electrical contact between the positive electrode active material particles in the positive electrode mixture layer formed from the slurry composition. It is preferred to use a carbon material. Carbon materials include carbon black (e.g., acetylene black, Ketjenblack (registered trademark), furnace black, etc.); graphite; carbon flakes; carbon materials; One of these may be used alone, or two or more of them may be used in combination at any ratio.
  • the CNTs may be single-walled carbon nanotubes, multi-walled carbon nanotubes, or a mixture thereof.
  • the ratio of the conductive material to the total solid content is preferably 0.4% by mass or more, preferably 0.7% by mass or more, with the total solid content being 100% by mass. more preferably 1% by mass or more, preferably 5% by mass or less, more preferably 4% by mass or less, and even more preferably 3% by mass or less. If the ratio of the conductive material to the total solid content of the slurry composition is within the above range, the IV resistance of the electrochemical device can be further reduced, and the cycle characteristics and high-temperature storage characteristics can be further improved.
  • Other components optionally included in the slurry composition of the present invention include known components such as reinforcing materials, antioxidants, rheology modifiers, and electrolyte additives having a function of suppressing decomposition of the electrolyte.
  • other components may be used individually by 1 type, and may be used in combination of 2 or more types by arbitrary ratios.
  • the slurry composition of the present invention can be prepared by mixing the above components. Specifically, using a mixer such as a ball mill, a sand mill, a bead mill, a pigment disperser, a crusher, an ultrasonic disperser, a homogenizer, a planetary mixer, and a film mix, the above components are mixed to obtain a slurry. Compositions can be prepared.
  • the positive electrode for an electrochemical device of the present invention includes a positive electrode mixture layer formed using the slurry composition for a positive electrode of an electrochemical device of the present invention described above.
  • the positive electrode of the present invention includes a current collector and a positive electrode mixture layer formed on the current collector, and the positive electrode mixture layer is a dried slurry composition for an electrochemical element positive electrode of the present invention.
  • the positive electrode for an electrochemical device of the present invention may optionally include layers other than the positive electrode mixture layer (for example, an adhesive layer and a porous membrane layer).
  • the positive electrode for an electrochemical device of the present invention can be used as a positive electrode for electrochemical devices such as lithium ion secondary batteries, electric double layer capacitors and lithium ion capacitors.
  • an electrochemical device with low IV resistance and excellent cycle characteristics and high-temperature storage characteristics can be produced.
  • the current collector included in the positive electrode for an electrochemical device is not particularly limited as long as it is a material having electrical conductivity and electrochemical durability, depending on the type of the electrochemical device. can be selected.
  • the material constituting the current collector includes iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, platinum, and the like. is mentioned.
  • aluminum foil is particularly preferable as a material constituting the current collector used for the positive electrode. One of these materials may be used alone, or two or more of them may be used in combination at an arbitrary ratio.
  • the positive electrode mixture layer formed using the slurry composition of the present invention is, for example, a dried product of the slurry composition of the present invention. That is, the positive electrode mixture layer contains at least composite particles and polymer A, and optionally contains at least one selected from the group consisting of polymer B, conductive material, and other components.
  • the proportion of a certain component (excluding the dispersion medium) in the positive electrode mixture layer is generally the same as the proportion of the component in the total solid content in the slurry composition of the present invention.
  • the method for producing the positive electrode for an electrochemical device is not particularly limited. It is produced through a step (drying step) of drying the slurry composition applied to the surface of the current collector to form a positive electrode mixture layer on the current collector.
  • the method for applying the slurry composition onto the current collector is not particularly limited, and a known method can be used. Specifically, as the coating method, a doctor blade method, a dip method, a reverse roll method, a direct roll method, a gravure method, an extrusion method, a brush coating method, or the like can be used.
  • the thickness of the slurry film on the current collector after application and before drying can be appropriately set according to the thickness of the positive electrode mixture layer obtained by drying.
  • the method for drying the slurry composition on the current collector is not particularly limited, and known methods can be used, for example, drying with warm air, hot air, low humidity air, vacuum drying, irradiation with infrared rays, electron beams, etc. and a drying method by By drying the slurry composition on the current collector in this way, it is possible to form a positive electrode mixture layer on the current collector and obtain a positive electrode for an electrochemical device comprising the current collector and the positive electrode mixture layer. can.
  • the positive electrode mixture layer may be pressurized using a mold press, a roll press, or the like.
  • the pressure treatment can improve the adhesion between the positive electrode mixture layer and the current collector.
  • An electrochemical device of the present invention is characterized by comprising the positive electrode for an electrochemical device described above.
  • the electrochemical device of the present invention is not particularly limited, and is, for example, a lithium ion secondary battery, an electric double layer capacitor, or a lithium ion capacitor, preferably a lithium ion secondary battery. Since the electrochemical device of the present invention includes the positive electrode of the present invention, it has low IV resistance and excellent cycle characteristics and high-temperature storage characteristics.
  • a lithium ion secondary battery as an electrochemical device of the present invention usually comprises electrodes (a positive electrode and a negative electrode), an electrolytic solution, and a separator, and uses the positive electrode for an electrochemical device of the present invention as the positive electrode.
  • the negative electrode that can be used in the lithium ion secondary battery as the electrochemical device of the present invention is not particularly limited, and known negative electrodes can be used.
  • a negative electrode obtained by forming a negative electrode mixture layer on a current collector such as a copper foil using a known manufacturing method can be used.
  • an organic electrolytic solution in which a supporting electrolyte is dissolved in an organic solvent is usually used.
  • a lithium salt for example, is used as the supporting electrolyte.
  • lithium salts include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi. , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi and the like.
  • LiPF 6 , LiClO 4 and CF 3 SO 3 Li are preferable, and LiPF 6 is particularly preferable, because they are easily dissolved in a solvent and exhibit a high degree of dissociation.
  • an electrolyte may be used individually by 1 type, and may be used in combination of 2 or more types by arbitrary ratios. Generally, lithium ion conductivity tends to increase as a supporting electrolyte with a higher degree of dissociation is used, so the lithium ion conductivity can be adjusted depending on the type of supporting electrolyte.
  • the organic solvent used in the electrolytic solution is not particularly limited as long as it can dissolve the supporting electrolyte.
  • Examples include dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), carbonates such as butylene carbonate (BC) and ethyl methyl carbonate (EMC); esters such as ⁇ -butyrolactone and methyl formate; ethers such as 1,2-dimethoxyethane and tetrahydrofuran; sulfur-containing compounds such as sulfolane and dimethylsulfoxide and the like are preferably used.
  • a mixture of these solvents may also be used.
  • carbonates are preferably used because they have a high dielectric constant and a wide stable potential range, and a mixture of ethylene carbonate and ethyl methyl carbonate is more preferably used.
  • the concentration of the electrolyte in the electrolytic solution can be adjusted as appropriate, for example, it is preferably 0.5 to 15% by mass, more preferably 2 to 13% by mass, and 5 to 10% by mass. is more preferred. Further, known additives such as vinylene carbonate, fluoroethylene carbonate, ethyl methyl sulfone, etc. may be added to the electrolytic solution.
  • the separator is not particularly limited, and for example, those described in JP-A-2012-204303 can be used. Among these, the film thickness of the entire separator can be reduced, thereby increasing the ratio of the electrode active material particles in the lithium ion secondary battery and increasing the capacity per volume. Microporous membranes made of polyolefin resins (polyethylene, polypropylene, polybutene, polyvinyl chloride) are preferred. Furthermore, as the separator, a separator with a functional layer, in which a functional layer (porous membrane layer or adhesive layer) is provided on one side or both sides of a separator substrate, may be used.
  • the lithium-ion secondary battery according to the present invention can be produced, for example, by stacking a positive electrode and a negative electrode with a separator interposed therebetween, winding or folding this according to the shape of the battery, if necessary, and placing it in a battery container. It can be produced by injecting an electrolytic solution into the container and sealing it. In order to prevent an increase in internal pressure of the secondary battery and the occurrence of overcharge/discharge, etc., a fuse, an overcurrent protection element such as a PTC element, an expanded metal, a lead plate, or the like may be provided as necessary.
  • the shape of the secondary battery may be, for example, coin-shaped, button-shaped, sheet-shaped, cylindrical, rectangular, or flat.
  • the volume average particle diameter of the composite particles, the amount of carbon coating in the composite particles (coating amount), the D / G ratio of the carbon coating, and the IV resistance, cycle characteristics and high temperature of the electrochemical element Storage properties were measured or evaluated using the following methods, respectively.
  • the D/G ratio of the carbon coating was measured by fixing the sample under glass and using the Raman method (microscopic laser Raman SENTERRA manufactured by Bruker Optics) at an excitation wavelength of 532 nm.
  • the lithium ion secondary battery was charged to 50% of the SOC (State Of Charge) at 1C (C is a numerical value represented by rated capacity (mA)/1h (hour)) in an atmosphere of 25°C.
  • IV resistance is less than 2.0 ⁇
  • the lithium ion secondary battery was allowed to stand at a temperature of 25° C. for 5 hours after the injection of the electrolyte. Next, it was charged to a cell voltage of 3.65 V by a constant current method at a temperature of 25° C. and 0.2 C, and then subjected to aging treatment at a temperature of 60° C. for 12 hours.
  • the battery was discharged to a cell voltage of 3.00 V by a constant current method at a temperature of 25° C. and 0.2 C.
  • CC-CV charging upper limit cell voltage 4.20 V
  • CC discharge was performed to 3.00V by a 0.2C constant current method.
  • This charge/discharge at 0.2C was repeated three times.
  • 100 cycles of charge/discharge operation were performed at a cell voltage of 4.20 to 3.00 V and a charge/discharge rate of 1.0 C under an environment of a temperature of 45°C.
  • the discharge capacity of the first cycle was defined as X1
  • the discharge capacity of the 100th cycle was defined as X2.
  • a larger value of the capacity change rate ⁇ C indicates better cycle characteristics.
  • the lithium ion secondary battery was allowed to stand at a temperature of 25° C. for 5 hours after the electrolytic solution was injected. Next, it was charged to a cell voltage of 3.65 V by a constant current method at a temperature of 25° C.
  • CC-CV charging upper limit cell voltage 4.20V
  • CC discharging was performed to a cell voltage of 3.00V at a constant current of 0.2C. This charge/discharge at 0.2C was repeated three times.
  • the third discharge capacity at 0.2C was defined as the initial capacity Cx.
  • CC-CV charging upper limit cell voltage 4.20 V
  • a high-temperature capacity retention rate represented by (Cy/Cx) ⁇ 100 (%) was determined and evaluated according to the following criteria. A larger value of this high-temperature capacity retention ratio indicates less deterioration of the battery during high-temperature storage (that is, better high-temperature storage characteristics).
  • positive electrode active material particles composed of LiFePO 4 .
  • the obtained granulated particles are subjected to a heat treatment (heating step) in a nitrogen atmosphere under the conditions of a heating temperature of 750° C. and a heating time of 60 minutes. Particles were obtained. The volume-average particle size, the amount of carbon coating, and the D/G ratio of the obtained composite particles were measured. Table 1 shows the results.
  • ⁇ Preparation of Polymer A> An autoclave equipped with a stirrer was charged with 240 parts of ion-exchanged water, 2.5 parts of sodium alkylbenzenesulfonate, 30 parts of acrylonitrile as a nitrile group-containing monomer, 5 parts of methacrylic acid as a carboxylic acid group-containing monomer, and chain transfer.
  • t-dodecyl mercaptan 0.25 part of t-dodecyl mercaptan as an agent was added in this order, and the inside of the bottle was replaced with nitrogen. After that, 65 parts of 1,3-butadiene as a conjugated diene monomer was injected under pressure, 0.25 part of ammonium persulfate was added, and polymerization was carried out at a reaction temperature of 40°C. Then, a polymer containing acrylonitrile units, methacrylic acid units and 1,3-butadiene units was obtained. The polymerization conversion rate was 85%.
  • a solution of 400 mL (total solid content of 48 g) adjusted to a total solid content concentration of 12% using water for the obtained polymer was put into an autoclave with a volume of 1 L and equipped with a stirrer, and nitrogen gas was flowed for 10 minutes. After removing oxygen dissolved in the solution with a rag, 75 mg of palladium acetate as a hydrogenation reaction catalyst was dissolved in 180 mL of ion-exchanged water containing nitric acid in an amount of 4 times the molar amount of Pd, and added. After replacing the inside of the system with hydrogen gas twice, the contents of the autoclave were heated to 50° C.
  • NMP NMP solution (solid concentration: 8%) of polymer A (hydrogenated nitrile rubber).
  • ⁇ Preparation of positive electrode slurry composition 95.8 parts of the composite particles, 0.2 parts of the hydrogenated nitrile rubber (solid content equivalent) as polymer A, 2.0 parts of polyvinylidene fluoride as polymer B, and carbon as a conductive material 2.0 parts of black (manufactured by TIMCAL, trade name "SUPER P Li") and NMP were mixed in a planetary mixer (60 rpm, 30 minutes) to prepare a positive electrode slurry composition.
  • the amount of NMP added is such that the viscosity of the obtained positive electrode slurry composition (measured with a single cylindrical rotational viscometer according to JIS Z8803: 1991; temperature: 25 ° C., rotation speed: 60 rpm) is 4000 to 5000 mPa ⁇ adjusted to be within the range of s.
  • An aluminum foil having a thickness of 20 ⁇ m was prepared as a current collector.
  • the positive electrode slurry composition obtained as described above was applied to one side of an aluminum foil with a comma coater so that the weight per unit area after drying was 20 mg/cm 2 , and dried at 90°C for 20 minutes and 120°C for 20 minutes.
  • a heat treatment was performed at 60° C. for 10 hours to obtain a positive electrode original sheet.
  • This positive electrode material was rolled by a roll press to produce a sheet-like positive electrode comprising a positive electrode mixture layer having a density of 3.2 g/cm 3 and an aluminum foil. Then, the sheet-like positive electrode was cut into a width of 48.0 mm and a length of 47 cm to obtain a positive electrode for a lithium ion secondary battery.
  • ⁇ Preparation of negative electrode for lithium ion secondary battery 33 parts of 1,3-butadiene as a conjugated diene monomer, 3.5 parts of itaconic acid as a carboxylic acid group-containing monomer, and 63 parts of styrene as an aromatic vinyl monomer were placed in a 5 MPa pressure vessel equipped with a stirrer. 5 parts, 0.4 parts of sodium dodecylbenzenesulfonate as an emulsifier, 150 parts of ion-exchanged water, and 0.5 parts of potassium persulfate as a polymerization initiator were added, thoroughly stirred, and then heated to 50°C. to initiate polymerization.
  • the mixture was cooled to terminate the polymerization reaction to obtain a mixture containing a particulate binder (styrene-butadiene copolymer).
  • a particulate binder styrene-butadiene copolymer
  • pH 8
  • a 5% sodium hydroxide aqueous solution unreacted monomers were removed by heating under reduced pressure distillation.
  • the mixture was cooled to 30° C. or less to obtain an aqueous dispersion containing the negative electrode binder.
  • a planetary mixer was charged with 48.75 parts of artificial graphite and 48.75 parts of natural graphite as negative electrode active material particles and 1 part of carboxymethyl cellulose (equivalent to solid content) as a thickener.
  • the mixture was diluted with ion-exchanged water to a solid content concentration of 60%, and then kneaded at a rotational speed of 45 rpm for 60 minutes. After that, 1.5 parts of the aqueous dispersion containing the negative electrode binder obtained as described above was added in terms of the solid content, and kneaded at a rotation speed of 40 rpm for 40 minutes. Then, ion-exchanged water was added so that the viscosity was 3000 ⁇ 500 mPa ⁇ s (measured with a Brookfield viscometer at 25° C. and 60 rpm) to prepare a negative electrode slurry composition.
  • the negative electrode slurry composition was applied to the surface of a 15 ⁇ m-thick copper foil as a current collector with a comma coater in an amount of 10 ⁇ 0.5 mg/cm 2 . After that, the copper foil coated with the negative electrode slurry composition was conveyed at a speed of 400 mm/min in an oven at a temperature of 80° C. for 2 minutes and further in an oven at a temperature of 110° C. for 2 minutes. The slurry composition on the foil was dried to obtain a negative electrode raw fabric in which a negative electrode mixture layer was formed on a current collector.
  • This negative electrode material was rolled by a roll press to produce a sheet-like negative electrode comprising a negative electrode mixture layer having a density of 1.6 g/cm 3 and an aluminum foil. Then, the sheet-shaped negative electrode was cut into a width of 50.0 mm and a length of 52 cm to obtain a negative electrode for a lithium ion secondary battery.
  • the positive electrode for a lithium ion secondary battery and the negative electrode for a lithium ion secondary battery that were prepared are arranged so that the electrode mixture layers face each other, and a separator (polyethylene microporous film) having a thickness of 15 ⁇ m is interposed, A core with a diameter of 20 mm was wound to obtain a wound body.
  • the wound body after compression had an elliptical shape in plan view, and the ratio of the major axis to the minor axis (major axis/minor axis) was 7.7.
  • This lithium ion secondary battery was a pouch-shaped battery with a width of 35 mm, a height of 60 mm, and a thickness of 5 mm, and the nominal capacity of the battery was 700 mAh. IV resistance, cycle characteristics, and high-temperature storage characteristics were evaluated for the resulting lithium ion secondary battery. Table 1 shows the results.
  • Examples 2 to 4, 12, 13 The amount of polyvinyl alcohol as a carbon source in the slurry preparation step during preparation of composite particles was 6 g (Example 2), 2.5 g (Example 3), 10 g (Example 4), and 1.8 g (Example 12). ), 14.5 g (Example 13), in the same manner as in Example 1, positive electrode active material particles, composite particles, polymer A, positive electrode slurry composition, positive electrode for lithium ion secondary battery, A negative electrode for a lithium ion secondary battery and a lithium ion secondary battery were prepared and various evaluations were performed. The results are shown in Tables 1 and 2.
  • Example 5 Heating temperature: 850°C, Heating time: 20 minutes
  • Example 6 Heating temperature: 700°C, Heating time: 80 minutes
  • Example 7 Heating temperature: 850°C, Heating time: 40 minutes
  • Example 8 Heating temperature: 700°C , Heating time: 60 minutes
  • Example 14 Heating temperature: 850 ° C., Heating time: 60 minutes
  • Example 15 Heating temperature: 700 ° C., Heating time: 40 minutes
  • Example 9 to 11, 16, 17 In the preparation of the positive electrode slurry composition, the same procedure as in Example 1 was carried out, except that the amount of hydrogenated nitrile rubber (solid content equivalent) as polymer A and the amount of composite particles were changed as follows. , positive electrode active material particles, composite particles, polymer A, slurry composition for positive electrode, positive electrode for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery were prepared and various evaluations were performed. The results are shown in Tables 1 and 2.
  • Example 9 Polymer A: 0.4 parts, composite particles: 95.6 parts
  • Example 10 Polymer A: 0.1 parts, composite particles: 95.9 parts
  • Example 11 Polymer A: 1.0 parts, Composite particles: 95.0 parts
  • Example 16 Polymer A: 0.05 parts, composite particles: 95.95 parts
  • Example 17 Polymer A: 2.0 parts, composite particles: 94.0 parts
  • a positive electrode was prepared in the same manner as in Example 1, except that the amount of polyvinyl alcohol as a carbon source in the slurry preparation step during composite particle preparation was changed to 1.2 g (Comparative Example 1) and 18 g (Comparative Example 2), respectively. Active material particles, composite particles, polymer A, slurry composition for positive electrode, positive electrode for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery were prepared and various evaluations were performed. Table 2 shows the results.
  • Positive electrode active material particles, composite particles, and positive electrode slurry were prepared in the same manner as in Example 1, except that polymer A was not prepared and polyvinylpyrrolidone was used instead of polymer A in preparing the positive electrode slurry composition.
  • a composition, a positive electrode for a lithium ion secondary battery, a negative electrode for a lithium ion secondary battery, and a lithium ion secondary battery were prepared and subjected to various evaluations. Table 2 shows the results.
  • HNBR hydrogenated nitrile rubber
  • PVDF polyvinylidene fluoride
  • PVP polyvinylpyrrolidone
  • a slurry composition for an electrochemical element positive electrode capable of forming a positive electrode capable of exhibiting excellent cycle characteristics and high-temperature storage characteristics in the electrochemical element while reducing the IV resistance of the electrochemical element. be able to.
  • an electrochemical device having low IV resistance and excellent cycle characteristics and high-temperature storage characteristics can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

本発明は、電気化学素子のIV抵抗を低下させつつ、当該電気化学素子に優れたサイクル特性及び高温保存特性を発揮させうる正極を形成可能な電気化学素子正極用スラリー組成物の提供を目的とする。本発明のスラリー組成物は、複合粒子、結着材、及び分散媒を含む。複合粒子は、正極活物質粒子と、正極活物質粒子の外表面の少なくとも一部を覆う炭素被膜とを備える。複合粒子中の炭素被膜の量が、正極活物質粒子100質量部当たり0.4質量部以上3.5質量部以下である。炭素被膜のラマンスペクトルにおけるD/G比が0.6以上1.7以下である。そして、結着材は、ニトリル基含有単量体単位とアルキレン構造単位を含む重合体Aを含有し、全固形分に占める重合体Aの割合が0.05質量%以上2.0質量%以下である。

Description

電気化学素子正極用スラリー組成物、電気化学素子用正極及び電気化学素子
 本発明は、電気化学素子正極用スラリー組成物、電気化学素子用正極及び電気化学素子に関する。
 リチウムイオン二次電池、電気二重層キャパシタ、及びリチウムイオンキャパシタなどの電気化学素子は、小型で軽量、且つ、エネルギー密度が高く、更に繰り返し充放電が可能という特性があり、幅広い用途に使用されている。
 電気化学素子に用いられる正極は、通常、集電体と、集電体上に形成された正極合材層とを備えている。そして、この正極合材層は、例えば、正極活物質粒子と、結着材と、分散媒とを含むスラリー組成物を集電体上に塗布し、塗布したスラリー組成物を乾燥させることにより形成される。
 ここで、電気化学素子の素子特性を向上させるべく、正極合材層の調製に用いるスラリー組成物や当該スラリー組成物に含まれる成分を改良する試みが以前からなされている(例えば、特許文献1参照)。
特開2020-30920号公報
 しかしながら、上記従来の技術には、電気化学素子のIV抵抗の低下と、サイクル特性及び高温保存特性の向上とをバランス良く達成するという点において、改善の余地があった。
 そこで、本発明は、電気化学素子のIV抵抗を低下させつつ、当該電気化学素子に優れたサイクル特性及び高温保存特性を発揮させうる正極を形成可能な電気化学素子正極用スラリー組成物の提供を目的とする。
 また、本発明は、電気化学素子のIV抵抗を低下させつつ、当該電気化学素子に優れたサイクル特性及び高温保存特性を発揮させうる電気化学素子用正極の提供を目的とする。
 そして、本発明は、IV抵抗が低く、且つサイクル特性及び高温保存特性に優れる電気化学素子の提供を目的とする。
 本発明者は、上記課題を解決することを目的として鋭意検討を行った。そして本発明者は、所定の性状を有する炭素被膜で正極活物質粒子を被覆してなる複合粒子と、所定の重合体Aを含有する結着材と、分散媒とを含み、複合粒子中の正極活物質粒子を覆う炭素被膜の量が所定範囲内であり、全固形分中に占める重合体Aの割合が所定範囲内であるスラリー組成物を用いて正極合材層を形成すれば、電気化学素子のIV抵抗の低下と、サイクル特性及び高温保存特性の向上とをバランス良く達成しうることを見出し、本発明を完成させた。
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の電気化学素子用正極用スラリー組成物は、複合粒子、結着材、及び分散媒を含む電気化学素子正極用スラリー組成物であって、前記複合粒子は、正極活物質粒子と、前記正極活物質粒子の外表面の少なくとも一部を覆う炭素被膜とを備え、前記複合粒子が含有する前記炭素被膜の量が、前記正極活物質粒子100質量部当たり0.4質量部以上3.5質量部以下であり、前記炭素被膜のラマンスペクトルにおけるGバンドピーク強度に対するDバンドピーク強度の比が0.6以上1.7以下であり、前記結着材が、ニトリル基含有単量体単位とアルキレン構造単位を含む重合体Aを含有し、全固形分に占める前記重合体Aの割合が0.05質量%以上2.0質量%以下であることを特徴とする。上述したスラリー組成物を用いれば、電気化学素子のIV抵抗を低下させつつ、当該電気化学素子に優れたサイクル特性及び高温保存特性を発揮させうる電気化学素子用正極を得ることができる。
 本発明において複合粒子における「炭素被膜の量」(以下、「被覆量」と称する場合がある。)は、実施例に記載の方法を用いて測定することができる。
 本発明において「ラマンスペクトルにおけるGバンドピーク強度に対するDバンドピーク強度の比」(以下、「D/G比」と称する場合がある。)は、実施例に記載の方法を用いて測定することができる。
 本発明において「単量体単位を含む」とは、「その単量体を用いて得た重合体中に当該単量体由来の繰り返し単位が含まれている」ことを意味する。
 本発明において「アルキレン構造単位を含む」とは、「重合体中に一般式-C2n-[但し、nは2以上の整数]で表わされるアルキレン構造のみで構成される繰り返し単位が含まれている」ことを意味する。なお、上記一般式-C2n-のnは4以上の整数であることが好ましく、4であることがより好ましい。
 また、本発明の電気化学素子用正極用スラリー組成物は、前記複合粒子の体積平均粒子径が20μm未満であることが好ましい。複合粒子の体積平均粒子径が20μm未満であれば、電気化学素子のIV抵抗を更に低下させつつ、サイクル特性及び高温保存特性を一層向上させることができる。
 本発明において複合粒子の「体積平均粒子径」は、レーザ散乱・回折法に基づく粒度分布測定装置を用いて測定した粒度分布(体積基準)における積算値50%での粒子径、すなわち50%体積平均粒子径(D50)を意味するものとする。また、本発明において複合粒子の「体積平均粒子径」は、JIS Z8825:2013に準拠して測定することができ、具体的には、実施例に記載の方法を用いて測定することができる。
 ここで、本発明の電気化学素子用正極用スラリー組成物は、全固形分中に占める前記複合粒子の割合が90質量%以上99質量%以下であることが好ましい。全固形分中に占める複合粒子の割合が上記範囲内であれば、電気化学素子のIV抵抗を更に低下させつつ、サイクル特性及び高温保存特性を一層向上させることができる。
 そして、本発明の電気化学素子用正極用スラリー組成物は、前記結着材が前記重合体A以外の重合体Bを含むことが好ましい。結着材として、重合体Aに加え重合体Bを用いれば、電気化学素子のIV抵抗を更に低下させつつ、サイクル特性及び高温保存特性を一層向上させることができる。
 さらに、本発明の電気化学素子用正極用スラリー組成物は、全固形分中に占める前記重合体Bの割合が0.1質量%以上5質量%以下であることが好ましい。全固形分中に占める重合体Bの割合が上記範囲内であれば、電気化学素子のIV抵抗を更に低下させつつ、サイクル特性及び高温保存特性を一層向上させることができる。
 くわえて、本発明の電気化学素子用正極用スラリー組成物は、更に導電材を含むことが好ましい。スラリー組成物が更に導電材を含めば、電気化学素子のIV抵抗を更に低下させつつ、サイクル特性及び高温保存特性を一層向上させることができる。
 ここで、本発明の電気化学素子用正極用スラリー組成物は、全固形分中に占める前記導電材の割合が0.4質量%以上5質量%以下であることが好ましい。全固形分中に占める導電材の割合が上記範囲内であれば、電気化学素子のIV抵抗を更に低下させつつ、サイクル特性及び高温保存特性を一層向上させることができる。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の電気化学素子用正極は、上述した何れかの電気化学素子正極用スラリー組成物を用いて形成した正極合材層を備えることを特徴とする。上述したスラリー組成物から形成される正極合材層を備える正極を用いれば、IV抵抗が低く、且つサイクル特性及び高温保存特性に優れる電気化学素子を製造することができる。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の電気化学素子は、上述した電気化学素子用正極を備えることを特徴とする。上述した正極を備える電気化学素子は、IV抵抗が低く、且つサイクル特性及び高温保存特性に優れる。
 本発明によれば、電気化学素子のIV抵抗を低下させつつ、当該電気化学素子に優れたサイクル特性及び高温保存特性を発揮させうる正極を形成可能な電気化学素子正極用スラリー組成物を提供することができる。
 また、本発明によれば、電気化学素子のIV抵抗を低下させつつ、当該電気化学素子に優れたサイクル特性及び高温保存特性を発揮させうる電気化学素子用正極を提供することができる。
 そして、本発明によれば、IV抵抗が低く、且つサイクル特性及び高温保存特性に優れる電気化学素子を提供することができる。
 以下、本発明の実施形態について詳細に説明する。
 ここで、本発明の電気化学素子正極用スラリー組成物は、電気化学素子用正極の正極合材層の形成に用いることができる。
 そして、本発明の電気化学素子用正極は、リチウムイオン二次電池、電気二重層キャパシタ、及びリチウムイオンキャパシタなどの電気化学素子の正極として使用し得るものであり、本発明の電気化学素子正極用スラリー組成物を用いて形成された正極合材層を有するものである。
 くわえて、本発明の電気化学素子は、本発明の電気化学素子用正極を備えるものである。
(電気化学素子正極用スラリー組成物)
 本発明のスラリー組成物は、正極活物質粒子を炭素被膜で被覆してなる複合粒子、結着材としての重合体A、及び分散媒を含み、任意に、結着材としての重合体B、導電材及びその他の成分からなる群から選択される少なくとも一つを含む。
 ここで、本発明のスラリー組成物は、複合粒子に含まれる炭素被膜の量が正極活物質粒子100質量部当たり0.4質量部以上3.5質量部以下であり、炭素被膜のD/G比が0.6以上1.7以下であることを必要とする。更に、本発明のスラリー組成物は、重合体Aがニトリル基含有単量体単位とアルキレン構造単位を含み、スラリー組成物の全固形分に占める重合体Aの割合が0.05質量%以上2.0質量%以下であることを必要とする。
 そして、本発明のスラリー組成物を用いれば、電気化学素子のIV抵抗を低下させつつ、当該電気化学素子に優れたサイクル特性及び高温保存特性を発揮させうる電気化学素子用正極を得ることができる。
<複合粒子>
 複合粒子は、正極活物質粒子と、正極活物質粒子の外表面の一部又は全部を覆う炭素被膜とを備える。
<<正極活物質粒子>>
 正極活物質粒子は、電気化学素子の正極において電子の受け渡しをする正極活物質からなる粒子である。そして、例えば電気化学素子がリチウムイオン二次電池の場合には、正極活物質としては、通常は、リチウムを吸蔵及び放出し得る物質を用いる。
 なお、以下では、一例として電気化学素子正極用スラリー組成物がリチウムイオン二次電池正極用スラリー組成物である場合について説明するが、本発明は下記の一例に限定されるものではない。
 リチウムイオン二次電池用の正極活物質粒子を構成する正極活物質としては、特に限定されることなく、リチウム含有コバルト酸化物(コバルト酸リチウム、LiCoO)、マンガン酸リチウム(LiMn)、リチウム含有ニッケル酸化物(LiNiO)、Co-Ni-Mnのリチウム含有複合酸化物(Li(Co Mn Ni)O)、Ni-Mn-Alのリチウム含有複合酸化物、Ni-Co-Alのリチウム含有複合酸化物、LiMPO(Mは、Fe、Mn、Ni、Co、Cu、Sc、Ti、Cr、V及びZnからなる群から選択される少なくとも一つである。)で表されるオリビン構造を有するリン酸化合物(例えば、オリビン型リン酸鉄リチウム(LiFePO)、オリビン型リン酸マンガンリチウム(LiMnPO))、LiMnO-LiNiO系固溶体、Li1+xMn2-x(0<X<2)で表されるリチウム過剰のスピネル化合物、Li[Ni0.17Li0.2Co0.07Mn0.56]O、LiNi0.5Mn1.5等の既知の正極活物質が挙げられる。これらは、1種を単独で用いてもよく、2種以上を任意の比率で組み合わせて用いてもよい。
 これらの中でも、安全性に特に優れる正極活物質として、オリビン構造を有するリン酸化合物が好ましく、LiFePOがより好ましい。なお、オリビン構造を有するリン酸化合物からなる正極活物質粒子は、一般に導電性に劣るというデメリットがある。しかしながら本発明では、正極活物質粒子は炭素被膜で被覆した複合粒子の状態で使用されるため、正極活物質粒子を構成する正極活物質としてオリビン構造を有するリン酸化合物を用いた場合であっても、炭素被膜の寄与により複合粒子として十分に優れた導電性を発揮し得る。そのため、電気化学素子のIV抵抗の低下と、サイクル特性及び高温保存特性の向上とを良好に達成することができる。
 なお、正極活物質粒子の調製方法は特に限定されず、既知の方法により調製することができる。
<<炭素被膜>>
 炭素被膜は、炭素からなる被膜であり、上述した正極活物質粒子の外表面の一部又は全部を覆う。
 炭素被膜は、D/G比が、上述した通り0.6以上1.7以下であることが必要であり、0.7以上であることが好ましく、0.8以上であることがより好ましく、0.9以上であることが更に好ましく、1.5以下であることが好ましく、1.2以下であることがより好ましく、1.1以下であることが更に好ましい。
 ここで、D/G比は、炭素材料の品質を評価するのに一般的に用いられている指標である。ラマン分光装置によって測定される炭素材料のラマンスペクトルには、Gバンド(1600cm-1付近)とDバンド(1350cm-1付近)と呼ばれる振動モードが観測される。Gバンドはグラファイトの六方格子構造由来の振動モードであり、Dバンドは非晶箇所に由来する振動モードである。よって、DバンドとGバンドのピーク強度比(D/G比)が高い炭素被膜ほど、非晶箇所、すなわち欠陥構造が多いといえる。そして本発明者の検討によれば、当該欠陥構造を吸着サイトとして、ニトリル基含有単量体単位とアルキレン構造単位を含む重合体Aが複合粒子に良好に吸着しうると推察される。炭素被膜の欠陥構造を介して重合体Aが複合粒子に良好に吸着すると、複合粒子同士(正極活物質粒子同士)の相互作用が弱まり、スラリー組成物中で複合粒子を良好に分散させることができる。その結果として、電気化学素子のIV抵抗を低下させつつサイクル特性を高めることができる。換言すると、炭素被膜のD/G比が0.6未満であると、電気化学素子のIV抵抗が低下し、またサイクル特性が損なわれる。
 一方で、炭素被膜の欠陥構造が過多になると、電気化学素子内部において当該欠陥構造が電解液と反応して電解液が分解するためと考えられるが、サイクル特性及び高温保存特性が低下することが本発明者の検討により明らかとなった。換言すると、炭素被膜のD/G比が1.7超であると、電気化学素子のサイクル特性及び高温保存特性が損なわれる。
<<被覆量>>
 そして、正極活物質粒子を覆う炭素被膜の量は、正極活物質粒子100質量部当たり、上述した通り0.4質量部以上3.5質量部以下であることが必要であり、0.6質量部以上であることが好ましく、0.8質量部以上であることがより好ましく、0.9質量部以上であることが更に好ましく、2.5質量部以下であることが好ましく、1.5質量部以下であることがより好ましく、1.2質量部以下であることが更に好ましい。被覆量が正極活物質粒子100質量部当たり0.4質量部未満であると、複合粒子の導電性が低下する。そのため電気化学素子のIV抵抗を十分に低下させることができず、またサイクル特性が損なわれる。一方、被覆量が正極活物質粒子100質量部当たり3.5質量部超であると、炭素被膜に対する重合体Aの相対的な量が減少して保管中に複合粒子と電解液との副反応が発生しやくなるためと推察されるが、高温保存特性が低下する。また電気化学素子のIV抵抗を十分に低下させることができない。
<<複合粒子の調製方法>>
 正極活物質粒子を炭素被膜により被覆して複合粒子を調製する方法は、特に限定されない。複合粒子は、例えば、正極活物質粒子と炭素源を溶媒の存在下で混合して複合粒子用スラリーを調製する工程(スラリー調製工程)と、複合粒子用スラリーを乾燥して造粒粒子を得る工程(造粒工程)と、造粒粒子に加熱処理を施す工程(加熱工程)とを経て調製することができる。
[スラリー調製工程]
 スラリー調製工程では、正極活物質粒子、炭素源、及び溶媒を混合して複合粒子用スラリーを調製する。
 炭素源としては、炭素被膜の材料となりうるものであれば特に限定されないが、例えば、炭素原子と、水素原子と、酸素原子とで構成される重合体が好ましく用いられる。このような重合体としては、例えば、ポリビニルアルコール、ラクトースが挙げられる。なお、炭素源は、1種を単独で用いてもよく、2種以上を任意の比率で組み合わせて用いてもよい。
 また溶媒としては、正極活物質粒子を分散させつつ炭素源を分散及び/又は溶解可能であれば特に限定されないが、水を用いることが好ましい。なお、溶媒は、1種を単独で用いてもよく、2種以上を任意の比率で組み合わせて用いてもよい。
 正極活物質粒子と炭素源の混合比は特に限定されず、得られる複合粒子における所期の被覆量に応じて適宜調整すればよい。例えば、炭素源の使用量は、正極活物質粒子100質量部当たり0.1質量部以上16質量部以下とすることができる。
 なお、溶媒の存在下で正極活物質粒子と炭素源を混合する方法は特に限定されず、ビーズミル等の既知の混合装置を用いることができる。
[造粒工程]
 造粒工程では、上記スラリー調製工程で得られた複合粒子用スラリーを乾燥して溶媒を除去し、造粒粒子を得る。
 造粒工程における乾燥・造粒方法は、所期の造粒粒子を得ることができれば特に限定されないが、噴霧造粒法を好ましく用いることができる。造粒工程における乾燥温度は、特に限定されないが、100℃以上であることが好ましく、150℃以上であることがより好ましく、250℃以下であることが好ましく、200℃以下であることがより好ましい。
 なお、噴霧造粒法に用いる装置は特に限定されず、既知のスプレードライヤーを用いることができる。
[加熱工程]
 加熱工程では、上記造粒工程で得られた造粒粒子に加熱処理を施す。
 加熱処理における加熱温度及び加熱時間を制御することで、得られる複合粒子が有する炭素被膜のD/G比を制御することができる。具体的には、加熱温度を上げれば炭素被膜の結晶性が高まりD/G比が低下し、加熱温度を下げれば炭素被膜の欠陥構造が増加しD/G比が上昇する。また、加熱時間を長くすれば炭素被膜の結晶性が高まりD/G比が低下し、加熱時間を短くすれば炭素被膜の欠陥構造が増加しD/G比が上昇する。
 そして、所期のD/G比を有する炭素被膜を良好に形成する観点から、加熱温度は、500℃以上であることが好ましく、600℃以上であることがより好ましく、700℃以上であることが更に好ましく、1000℃以下であることが好ましく、900℃以下であることがより好ましく、800℃以下であることが更に好ましい。加えて、所期のD/G比を有する炭素被膜を良好に形成する観点から、加熱時間は、10分以上であることが好ましく、30分以上であることがより好ましく、50分以上であることが更に好ましく、120分以下であることが好ましく、100分以下であることがより好ましく、70分以下であることが更に好ましい。
 なお、加熱処理に用いる装置は特に限定されず、既知の加熱装置を用いることができる。
<<体積平均粒子径>>
 複合粒子は、体積平均粒子径が20μm未満であることが好ましく、10μm未満であることがより好ましく、5μm未満であることが更に好ましい。複合粒子の体積平均粒子径が20μm未満であれば、電気化学素子のIV抵抗を更に低下させつつ、サイクル特性及び高温保存特性を一層向上させることができる。
 また、複合粒子は、体積平均粒子径が0.1μm以上であることが好ましく、0.5μm以上であることがより好ましい。複合粒子の体積平均粒子径が0.1μm以上であれば、スラリー組成物の粘度安定性を確保することができる。
 なお、複合粒子は、スラリー組成物中で一次粒子であってもよいし、複数の一次粒子が会合してなる二次粒子であってもよい。
 また、複合粒子の体積平均粒子径は、複合粒子の調製に用いる正極活物質粒子の粒子径や、上述した複合粒子の調製方法における炭素源の使用量や造粒の条件を変更することで、制御しうる。
<<含有割合>>
 本発明のスラリー組成物において、全固形分に占める上記複合粒子の割合は、全固形分を100質量%として、90質量%以上であることが好ましく、91質量%以上であることがより好ましく、92質量%以上であることが更に好ましく、99質量%以下であることが好ましく、98質量%以下であることがより好ましく、97質量%以下であることが更に好ましい。スラリー組成物の全固形分に占める複合粒子の割合が上記範囲内であれば、電気化学素子のIV抵抗を更に低下させつつ、サイクル特性及び高温保存特性を一層向上させることができる。
<結着材>
 スラリー組成物は、結着材として少なくとも重合体Aを含有し、任意に重合体Aに該当しない重合体(重合体B)を含有する。
<<重合体A>>
 重合体Aは、ニトリル基含有単量体単位及びアルキレン構造単位を少なくとも含み、任意にその他の繰り返し単位を含む。
[ニトリル基含有単量体単位]
 ニトリル基含有単量体単位を形成し得るニトリル基含有単量体としては、α,β-エチレン性不飽和ニトリル単量体が挙げられる。具体的には、α,β-エチレン性不飽和ニトリル単量体としては、ニトリル基を有するα,β-エチレン性不飽和化合物であれば特に限定されないが、例えば、アクリロニトリル;α-クロロアクリロニトリル、α-ブロモアクリロニトリルなどのα-ハロゲノアクリロニトリル;メタクリロニトリル、α-エチルアクリロニトリルなどのα-アルキルアクリロニトリル;などが挙げられる。なお、ニトリル基含有単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。そしてこれらの中でも、アクリロニトリルが好ましい。
 重合体Aにおけるニトリル基含有単量体単位の含有割合は、重合体A中の全繰り返し単位を100質量%として、20質量%以上であることが好ましく、25質量%以上であることがより好ましく、30質量%以上であることが更に好ましく、55質量%以下であることが好ましく、50質量%以下であることがより好ましく、45質量%以下であることが更に好ましい。重合体A中のニトリル基含有単量体単位の含有割合が20質量%以上であれば、スラリー組成物中の分散媒(例えば、N-メチル-2-ピロリドン)への溶解性が十分に確保される。一方、重合体A中のニトリル基含有単量体単位の含有割合が55質量%以下であれば、重合体Aが電解液中へ過度に流出するのを抑制しうる。そして、重合体A中のニトリル基含有単量体単位の含有割合が上述した範囲内であれば、電気化学素子のIV抵抗を更に低下させつつ、サイクル特性及び高温保存特性を一層向上させることができる。また、スラリー組成物の粘度安定性を確保することができる。
 なお、本発明において重合体中の単量体単位及び構造単位(後述の「水素化物単位」を含む。)の含有割合は、H-NMR及び13C-NMRなどの核磁気共鳴(NMR)法を用いて測定することができる。
[アルキレン構造単位]
 アルキレン構造単位は、直鎖状であっても分岐状であってもよいが、電気化学素子のIV抵抗を更に低下させつつ、サイクル特性及び高温保存特性を一層向上させる観点から、アルキレン構造単位は直鎖状、すなわち直鎖アルキレン構造単位であることが好ましい。
 そして、重合体Aへのアルキレン構造単位の導入方法は、特に限定はされないが、例えば以下の(1)、(2)の方法:
(1)共役ジエン単量体を含む単量体組成物から重合体を調製し、当該重合体に水素添加することで、共役ジエン単量体単位をアルキレン構造単位に変換する方法
(2)1-オレフィン単量体を含む単量体組成物から重合体を調製する方法
が挙げられる。これらの中でも、(1)の方法が重合体Aの製造が容易であり好ましい。
 共役ジエン単量体としては、たとえば、1,3-ブタジエン、イソプレン、2,3-ジメチル-1,3-ブタジエン、1,3-ペンタジエンなどの炭素数4以上の共役ジエン化合物が挙げられる。中でも、1,3-ブタジエンが好ましい。すなわち、アルキレン構造単位は、共役ジエン単量体単位を水素化して得られる構造単位(共役ジエン水素化物単位)であることが好ましく、1,3-ブタジエン単量体単位を水素化して得られる構造単位(1,3-ブタジエン水素化物単位)であることがより好ましい。
 また、1-オレフィン単量体としては、例えば、エチレン、プロピレン、1-ブテンなどが挙げられる。
 これらの共役ジエン単量体や1-オレフィン単量体はそれぞれ、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 そして、重合体A中におけるアルキレン構造単位の含有割合は、重合体A中の全繰り返し単位を100質量%として、35質量%以上であることが好ましく、45質量%以上であることがより好ましく、55質量%以上であることが更に好ましく、80質量%以下であることが好ましく、70質量%以下であることがより好ましい。重合体A中のアルキレン構造単位の含有割合が35質量%以上であれば、重合体Aが電解液中へ過度に流出するのを抑制しうる。一方、重合体A中のアルキレン構造単位の含有割合が80質量%以下であれば、スラリー組成物中の分散媒(例えば、N-メチル-2-ピロリドン)への溶解性が十分に確保される。そして、重合体A中のアルキレン構造単位の含有割合が上述した範囲内であれば、電気化学素子のIV抵抗を更に低下させつつ、サイクル特性及び高温保存特性を一層向上させることができる。また、スラリー組成物の粘度安定性を確保することができる。
 なお、上述したように、重合体Aが共役ジエン単量体を含有する単量体組成物を重合して得た重合体を水素化してなる水添重合体である場合には、当該水添重合体は、アルキレン構造単位に加え、未水添の共役ジエン単量体単位を含みうる。かかる場合、重合体A中におけるアルキレン構造単位と未水添の共役ジエン単量体単位の合計含有割合(以下、「共役ジエン単量体由来の繰り返し単位の含有割合」と称する。)は、重合体A中の全繰り返し単位を100質量%として、35質量%以上であることが好ましく、45質量%以上であることがより好ましく、55質量%以上であることが更に好ましく、80質量%以下であることが好ましく、70質量%以下であることがより好ましい。重合体A中の共役ジエン単量体由来の繰り返し単位の含有割合が35質量%以上であれば、重合体Aが電解液中へ過度に流出するのを抑制しうる。一方、重合体A中の共役ジエン単量体由来の繰り返し単位の含有割合が80質量%以下であれば、スラリー組成物中の分散媒(例えば、N-メチル-2-ピロリドン)への溶解性が十分に確保される。そして、重合体A中の共役ジエン単量体由来の繰り返し単位の含有割合が上述した範囲内であれば、電気化学素子のIV抵抗を更に低下させつつ、サイクル特性及び高温保存特性を一層向上させることができる。また、スラリー組成物の粘度安定性を確保することができる。
[その他の繰り返し単位]
 重合体Aに含有され得るその他の繰り返し単位としては、特に限定されないが、芳香族ビニル単量体単位、酸性基含有単量体単位、(メタ)アクリル酸エステル単量体単位が挙げられる。重合体Aは、1種類のその他の繰り返し単位を含んでいてもよく、2種類以上のその他の繰り返し単位を含んでいてもよい。
 なお、本発明において、「(メタ)アクリル」とは、アクリル及び/又はメタクリルを意味する。
 芳香族ビニル単量体単位を形成し得る芳香族ビニル単量体としては、例えば、スチレン、α-メチルスチレン、p-t-ブチルスチレン、ブトキシスチレン、ビニルトルエン、クロロスチレン、並びに、ビニルナフタレンが挙げられる。なお、芳香族ビニル単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。そしてこれらの中でも、スチレンが好ましい。
 重合体Aが芳香族ビニル単量体単位を含む場合、重合体A中における芳香族ビニル単量体単位の含有割合は、電気化学素子のIV抵抗を更に低下させつつ、サイクル特性及び高温保存特性を一層向上させる観点から、重合体A中の全繰り返し単位を100質量%として、10質量%以上であることが好ましく、20質量%以上であることがより好ましく、70質量%以下であることが好ましく、60質量%以下であることがより好ましく、50質量%以下であることが更に好ましい。
 酸性基含有単量体単位を形成し得る酸性基含有単量体としては、カルボン酸基含有単量体、スルホン酸基含有単量体、リン酸基含有単量体が挙げられる。なお、酸性基含有単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 カルボン酸基含有単量体としては、モノカルボン酸及びその誘導体や、ジカルボン酸及びその酸無水物並びにそれらの誘導体などが挙げられる。
 モノカルボン酸としては、アクリル酸、メタクリル酸、クロトン酸などが挙げられる。
 モノカルボン酸誘導体としては、2-エチルアクリル酸、イソクロトン酸、α-アセトキシアクリル酸、β-trans-アリールオキシアクリル酸、α-クロロ-β-E-メトキシアクリル酸などが挙げられる。
 ジカルボン酸としては、マレイン酸、フマル酸、イタコン酸などが挙げられる。
 ジカルボン酸誘導体としては、メチルマレイン酸、ジメチルマレイン酸、フェニルマレイン酸、クロロマレイン酸、ジクロロマレイン酸、フルオロマレイン酸や、マレイン酸ノニル、マレイン酸デシル、マレイン酸ドデシル、マレイン酸オクタデシル、マレイン酸フルオロアルキルなどのマレイン酸モノエステルが挙げられる。
 ジカルボン酸の酸無水物としては、無水マレイン酸、アクリル酸無水物、メチル無水マレイン酸、ジメチル無水マレイン酸などが挙げられる。
 また、カルボン酸基含有単量体としては、加水分解によりカルボン酸基を生成する酸無水物も使用できる。中でも、カルボン酸基含有単量体としては、アクリル酸及びメタクリル酸が好ましい。
 スルホン酸基含有単量体としては、ビニルスルホン酸、メチルビニルスルホン酸、(メタ)アリルスルホン酸、スチレンスルホン酸、(メタ)アクリル酸-2-スルホン酸エチル、2-アクリルアミド-2-メチルプロパンスルホン酸、3-アリロキシ-2-ヒドロキシプロパンスルホン酸などが挙げられる。
 なお、本発明において、「(メタ)アリル」とは、アリル及び/又はメタリルを意味する。
 リン酸基含有単量体としては、例えば、リン酸-2-(メタ)アクリロイルオキシエチル、リン酸メチル-2-(メタ)アクリロイルオキシエチル、リン酸エチル-(メタ)アクリロイルオキシエチル、などが挙げられる。
 なお、本発明において、「(メタ)アクリロイル」とは、アクリロイル及び/又はメタクリロイルを意味する。
 重合体Aが酸性基含有単量体単位を含む場合、重合体A中における酸性基含有単量体単位の含有割合は、電気化学素子のIV抵抗を更に低下させつつ、サイクル特性及び高温保存特性を一層向上させる観点から、重合体A中の全繰り返し単位を100質量%として、1質量%以上であることが好ましく、3質量%以上であることがより好ましく、10質量%以下であることが好ましく、7質量%以下であることがより好ましい。
 (メタ)アクリル酸エステル単量体単位を形成し得る(メタ)アクリル酸エステル単量体としては、例えば、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、イソプロピルアクリレート、n-ブチルアクリレート、t-ブチルアクリレート、ペンチルアクリレート、ヘキシルアクリレート、ヘプチルアクリレート、オクチルアクリレート、2-エチルヘキシルアクリレート、ノニルアクリレート、デシルアクリレート、ラウリルアクリレート、n-テトラデシルアクリレート、ステアリルアクリレート等のアクリル酸アルキルエステル;メチルメタクリレート、エチルメタクリレート、n-プロピルメタクリレート、イソプロピルメタクリレート、n-ブチルメタクリレート、t-ブチルメタクリレート、ペンチルメタクリレート、ヘキシルメタクリレート、ヘプチルメタクリレート、オクチルメタクリレート、2-エチルヘキシルメタクリレート、ノニルメタクリレート、デシルメタクリレート、ラウリルメタクリレート、n-テトラデシルメタクリレート、ステアリルメタクリレート等のメタクリル酸アルキルエステルが挙げられる。なお、(メタ)アクリル酸エステル単量体は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
 重合体Aが(メタ)アクリル酸エステル単量体単位を含む場合、重合体A中における(メタ)アクリル酸エステル単量体単位の含有割合は、電気化学素子のIV抵抗を更に低下させつつ、サイクル特性及び高温保存特性を一層向上させる観点から、重合体A中の全繰り返し単位を100質量%として、10質量%以上であることが好ましく、20質量%以上であることがより好ましく、30質量%以上であることが更に好ましく、70質量%以下であることが好ましく、60質量%以下であることがより好ましく、50質量%以下であることが更に好ましい。
[重合体Aの調製方法]
 重合体Aの調製方法は特に限定されない。重合体Aは、例えば、上述した単量体を含む単量体組成物を水系溶媒中で重合し、任意に水素化を行うことにより製造される。なお、単量体組成物中の各単量体の含有割合は、重合体中の所望の繰り返し単位(単量体単位及び/又は構造単位)の含有割合に準じて定めることができる。
 重合様式は、特に制限なく、溶液重合法、懸濁重合法、塊状重合法、乳化重合法などのいずれの方法も用いることができる。また、重合反応としては、イオン重合、ラジカル重合、リビングラジカル重合、各種縮合重合、付加重合などいずれの反応も用いることができる。そして、重合に際しては、必要に応じて既知の乳化剤や重合開始剤を使用することができる。また、水素化は、既知の方法により行うことができる。
[含有割合]
 本発明のスラリー組成物において、全固形分に占める上記重合体Aの割合は、全固形分を100質量%として、上述した通り0.05質量%以上2.0質量%以下であることが必要であり、0.1質量%以上であることが好ましく、0.15質量%以上であることがより好ましく、1.0質量%以下であることが好ましく、0.5質量%以下であることがより好ましく、0.35質量%以下であることが更に好ましい。スラリー組成物の全固形分に占める重合体Aの割合が0.05質量%未満であると、炭素被膜に対する重合体Aの相対的な量が減少して保管中に複合粒子と電解液との副反応が発生しやくなるためと推察されるが、高温保存特性が低下する。また電気化学素子のIV抵抗を十分に低下させることができない。一方、スラリー組成物の全固形分に占める重合体Aの割合が2.0質量%超であると、抵抗成分としての重合体Aの増量によりIV抵抗が低下し、またサイクル特性が損なわれる。
<<重合体B>>
 重合体Bとしては、重合体Aに該当せず、且つ電気化学素子内部で結着能を発揮し得る重合体であれば特に限定されない。このような重合体Bとしては、例えば、(メタ)アクリル酸エステル単量体単位を主として含む重合体(アクリル系重合体)、及びフッ素含有単量体単位を主として含む重合体(フッ素系重合体)が挙げられる。これらは1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。そしてこれらの中でも、電気化学素子のIV抵抗を更に低下させつつ、サイクル特性及び高温保存特性を一層向上させる観点から、フッ素系重合体が好ましく、ポリフッ化ビニリデンがより好ましい。
 なお、本発明において重合体がある単量体単位を「主として含む」とは、「重合体に含有される全繰り返し単位の量を100質量%とした場合に、当該単量体単位の含有割合が50質量%を超える」ことを意味する。
 また重合体Bの調製方法は特に限定されず、上述した重合体Aと同様の方法で調製することができる。
 そして、本発明のスラリー組成物において、全固形分に占める上記重合体Bの割合は、全固形分を100質量%として、0.1質量%以上であることが好ましく、0.5質量%以上であることがより好ましく、1質量%以上であることが更に好ましく、5質量%以下であることが好ましく、4質量%以下であることがより好ましく、3質量%以下であることが更に好ましい。スラリー組成物の全固形分に占める重合体Bの割合が上記範囲内であれば、電気化学素子のIV抵抗を更に低下させつつ、サイクル特性及び高温保存特性を一層向上させることができる。
<分散媒>
 スラリー組成物の分散媒としては、水、有機溶媒の何れも用いることができるが、有機溶媒が好ましい。有機溶媒としては、例えば、アセトニトリル、N-メチルピロリドン、アセチルピリジン、シクロペンタノン、N,N-ジメチルアセトアミド、ジメチルホルムアミド、ジメチルスルホキシド、メチルホルムアミド、メチルエチルケトン、フルフラール、エチレンジアミンなどを用いることができる。これらの中でも、取扱い易さ、安全性、合成の容易さなどの観点から、N-メチル-2-ピロリドン(NMP)が特に好ましい。
 なお、分散媒は、1種を単独で用いてもよく、2種以上を任意の比率で組み合わせて用いてもよい。
<導電材>
 本発明のスラリー組成物が任意に含む導電材は、スラリー組成物から形成される正極合材層中で正極活物質粒子同士の電気的接触を確保し得るものであれば、特に限定されないが、炭素材料を用いることが好ましい。
 炭素材料としては、カーボンブラック(例えば、アセチレンブラック、ケッチェンブラック(登録商標)、ファーネスブラックなど);グラファイト;カーボンフレーク;カーボンナノファイバー、カーボンナノチューブ(CNT)及び気相成長炭素繊維などの繊維状炭素材料;が挙げられる。これらは、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。なおCNTは、単層カーボンナノチューブと多層カーボンナノチューブの何れであっても良く、これらの混合物であってもよい。
 そして、本発明のスラリー組成物において、全固形分に占める上記導電材の割合は、全固形分を100質量%として、0.4質量%以上であることが好ましく、0.7質量%以上であることがより好ましく、1質量%以上であることが更に好ましく、5質量%以下であることが好ましく、4質量%以下であることがより好ましく、3質量%以下であることが更に好ましい。スラリー組成物の全固形分に占める導電材の割合が上記範囲内であれば、電気化学素子のIV抵抗を更に低下させつつ、サイクル特性及び高温保存特性を一層向上させることができる。
<その他の成分>
 本発明のスラリー組成物が任意に含むその他の成分としては、補強材、酸化防止剤、レオロジー調製剤、電解液の分解を抑制する機能を有する電解液添加剤などの既知の成分が挙げられる。
 なお、その他の成分は、1種を単独で用いてもよく、2種以上を任意の比率で組み合わせて用いてもよい。
<電気化学素子正極用スラリー組成物の製造方法>
 本発明のスラリー組成物は、上記各成分を混合することにより調製することができる。具体的には、ボールミル、サンドミル、ビーズミル、顔料分散機、らい潰機、超音波分散機、ホモジナイザー、プラネタリーミキサー、フィルミックスなどの混合機を用いて、上記各成分を混合することにより、スラリー組成物を調製することができる。
(電気化学素子用正極)
 本発明の電気化学素子用正極は、上述した本発明の電気化学素子正極用スラリー組成物を用いて形成される正極合材層を備える。例えば、本発明の正極は、集電体と、集電体上に形成された正極合材層とを備え、正極合材層が、本発明の電気化学素子正極用スラリー組成物の乾燥物である。なお、本発明の電気化学素子用正極は、任意に、正極合材層以外の他の層(例えば、接着層や多孔膜層)を備えていてもよい。本発明の電気化学素子用正極は、リチウムイオン二次電池、電気二重層キャパシタ、及びリチウムイオンキャパシタなどの電気化学素子の正極として使用することができる。
 そして、本発明の正極を用いれば、IV抵抗が低く、且つサイクル特性及び高温保存特性に優れる電気化学素子を製造することができる。
<集電体>
 電気化学素子用正極が備える集電体としては、電気導電性を有し、かつ、電気化学的に耐久性のある材料であれば、特に限定されるものではなく、電気化学素子の種類に応じて選択すればよい。そして、電気化学素子用正極がリチウムイオン二次電池用正極である場合には、集電体を構成する材料としては、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などが挙げられる。中でも、正極に用いる集電体を構成する材料としては、アルミニウム箔が特に好ましい。
 なお、これらの材料は、1種を単独で用いてもよく、2種以上を任意の比率で組み合わせて用いてもよい。
<正極合材層>
 そして、本発明のスラリー組成物を用いて形成される正極合材層は、例えば、本発明のスラリー組成物の乾燥物である。すなわち正極合材層は、複合粒子と、重合体Aとを少なくとも含有し、任意に、重合体B、導電材、及びその他の成分からなる群から選択される少なくとも1つを含有する。
 ここで、正極合材層に含まれている各成分は、本発明のスラリー組成物中に含まれていたものであるため、(分散媒を除く)ある成分が正極合材層中に占める割合は、通常、本発明のスラリー組成物において当該ある成分が全固形分中に占める割合と同じである。
<電気化学素子用正極の製造方法>
 ここで、電気化学素子用正極の製造方法は、特に限定されることなく、例えば、スラリー組成物を集電体の少なくとも一方の面に塗布する工程(塗布工程)と、集電体の少なくとも一方の面に塗布されたスラリー組成物を乾燥して集電体上に正極合材層を形成する工程(乾燥工程)を経て製造される。
<<塗布工程>>
 スラリー組成物を集電体上に塗布する方法としては、特に限定されず、公知の方法を用いることができる。具体的には、塗布方法としては、ドクターブレード法、ディップ法、リバースロール法、ダイレクトロール法、グラビア法、エクストルージョン法、ハケ塗り法などを用いることができる。なお、塗布後乾燥前の集電体上のスラリー膜の厚みは、乾燥して得られる正極合材層の厚みに応じて適宜に設定し得る。
<<乾燥工程>>
 集電体上のスラリー組成物を乾燥する方法としては、特に限定されず、公知の方法を用いることができ、例えば温風、熱風、低湿風による乾燥、真空乾燥、赤外線や電子線などの照射による乾燥法が挙げられる。このように集電体上のスラリー組成物を乾燥することで、集電体上に正極合材層を形成し、集電体と正極合材層とを備える電気化学素子用正極を得ることができる。
 なお、乾燥工程の後、金型プレス又はロールプレスなどを用い、正極合材層に加圧処理を施してもよい。加圧処理により、正極合材層と集電体の密着性を向上させることができる。
(電気化学素子)
 そして、本発明の電気化学素子は、上述した電気化学素子用正極を備えることを特徴とする。本発明の電気化学素子は、特に限定されることなく、例えば、リチウムイオン二次電池、電気二重層キャパシタ、又はリチウムイオンキャパシタであり、好ましくはリチウムイオン二次電池である。本発明の電気化学素子は、本発明の正極を備えているので、IV抵抗が低く、且つサイクル特性及び高温保存特性に優れる。
 ここで、以下では、一例として電気化学素子がリチウムイオン二次電池である場合について説明するが、本発明は下記の一例に限定されるものではない。本発明の電気化学素子としてのリチウムイオン二次電池は、通常、電極(正極及び負極)、電解液、並びにセパレータを備え、正極として本発明の電気化学素子用正極を使用する。
<負極>
 ここで、本発明の電気化学素子としてのリチウムイオン二次電池に使用し得る負極としては、特に限定されることなく、既知の負極を用いることができる。具体的には、負極としては、既知の製造方法を用いて銅箔などの集電体上に負極合材層を形成してなる負極を用いることができる。
<電解液>
 電解液としては、通常、有機溶媒に支持電解質を溶解した有機電解液が用いられる。支持電解質としては、例えば、リチウム塩が用いられる。リチウム塩としては、例えば、LiPF、LiAsF、LiBF、LiSbF、LiAlCl、LiClO、CFSOLi、CSOLi、CFCOOLi、(CFCO)NLi、(CFSONLi、(CSO)NLiなどが挙げられる。なかでも、溶媒に溶けやすく高い解離度を示すので、LiPF、LiClO、CFSOLiが好ましく、LiPFが特に好ましい。なお、電解質は1種を単独で用いてもよく、2種以上を任意の比率で組み合わせて用いてもよい。通常は、解離度の高い支持電解質を用いるほどリチウムイオン伝導度が高くなる傾向があるので、支持電解質の種類によりリチウムイオン伝導度を調節することができる。
 電解液に使用する有機溶媒としては、支持電解質を溶解できるものであれば特に限定されないが、例えば、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、エチルメチルカーボネート(EMC)等のカーボネート類;γ-ブチロラクトン、ギ酸メチル等のエステル類;1,2-ジメトキシエタン、テトラヒドロフラン等のエーテル類;スルホラン、ジメチルスルホキシド等の含硫黄化合物類;などが好適に用いられる。またこれらの溶媒の混合液を用いてもよい。中でも、誘電率が高く、安定な電位領域が広いのでカーボネート類を用いることが好ましく、エチレンカーボネートとエチルメチルカーボネートとの混合物を用いることが更に好ましい。
 なお、電解液中の電解質の濃度は適宜調整することができ、例えば0.5~15質量%することが好ましく、2~13質量%とすることがより好ましく、5~10質量%とすることが更に好ましい。また、電解液には、既知の添加剤、例えばビニレンカーボネート、フルオロエチレンカーボネート、エチルメチルスルホンなどを添加してもよい。
<セパレータ>
 セパレータとしては、特に限定されることなく、例えば特開2012-204303号公報に記載のものを用いることができる。これらの中でも、セパレータ全体の膜厚を薄くすることができ、これにより、リチウムイオン二次電池内の電極活物質粒子の比率を高くして体積あたりの容量を高くすることができるという点より、ポリオレフィン系(ポリエチレン、ポリプロピレン、ポリブテン、ポリ塩化ビニル)の樹脂からなる微多孔膜が好ましい。更に、セパレータとしては、セパレータ基材の片面又は両面に機能層(多孔膜層又は接着層)が設けられた、機能層付きセパレータを用いてもよい。
<リチウムイオン二次電池の製造方法>
 本発明に従うリチウムイオン二次電池は、例えば、正極と、負極とを、セパレータを介して重ね合わせ、これを必要に応じて電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口することにより製造することができる。二次電池の内部の圧力上昇、過充放電等の発生を防止するために、必要に応じて、ヒューズ、PTC素子等の過電流防止素子、エキスパンドメタル、リード板などを設けてもよい。二次電池の形状は、例えば、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、何れであってもよい。
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、以下の説明において、量を表す「%」及び「部」は、特に断らない限り、質量基準である。
 また、複数種類の単量体を共重合して製造される重合体において、ある単量体を重合して形成される単量体単位の前記重合体における割合は、別に断らない限り、通常は、その重合体の重合に用いる全単量体に占める当該ある単量体の比率(仕込み比)と一致する。
 そして、実施例及び比較例において、複合粒子の体積平均粒子径、複合粒子における炭素被膜の量(被覆量)、炭素被膜のD/G比、並びに、電気化学素子のIV抵抗、サイクル特性及び高温保存特性は、それぞれ以下の方法を使用して測定又は評価した。
<体積平均粒子径>
 複合粒子について、JIS Z8825:2013に準拠し、レーザ回析・散乱式粒度分布測定装置(マイクロトラックベル社製、マイクロトラックMT-3300EXII)を用いて、圧縮空気による粒子の分散は行わずに、体積平均粒子径を乾式測定した。
<被覆量>
 複合粒子について、炭素被膜の量(被覆量)は、炭素分析装置(株式会社堀場製作所製、炭素・硫黄分析装置EMIA-920V2)を用いて測定した。
<D/G比>
 複合粒子について、炭素被膜のD/G比は、試料をガラス下に固定し、ラマン法(ブルカー・オプティクス製、顕微レーザーラマンSENTERRA)にて、励起波長532nmで測定した。
<IV抵抗>
 リチウムイオン二次電池を、25℃雰囲気下、1C(Cは定格容量(mA)/1h(時間)で表される数値)でSOC(State Of Charge:充電深度)の50%まで充電した。次いで、SOCの50%を中心として0.5C、1.0C、1.5C、2.0Cで20秒間充電と20秒間放電とをそれぞれ行い、それぞれの場合(充電側および放電側)における20秒後の電池電圧を電流値に対してプロットし、その傾きをIV抵抗(Ω)(充電時IV抵抗および放電時IV抵抗)として求めた。得られたIV抵抗の値(Ω)について、以下の基準で評価した。IV抵抗の値が小さいほど、内部抵抗が少ないことを示す。
A:IV抵抗が2.0Ω未満
B:IV抵抗が2.0Ω以上2.3Ω未満
C:IV抵抗が2.3Ω以上2.5Ω未満
D:IV抵抗が2.5Ω以上3.0Ω未満
E:IV抵抗が3.0Ω以上
<サイクル特性>
 リチウムイオン二次電池を、電解液注液後、温度25℃で5時間静置した。次に、温度25℃、0.2Cの定電流法にて、セル電圧3.65Vまで充電し、その後、温度60℃で12時間エージング処理を行った。そして、温度25℃、0.2Cの定電流法にて、セル電圧3.00Vまで放電した。その後、0.2Cの定電流法にて、CC-CV充電(上限セル電圧4.20V)を行い、0.2Cの定電流法にて3.00VまでCC放電した。この0.2Cにおける充放電を3回繰り返し実施した。
 その後、温度45℃の環境下、セル電圧4.20-3.00V、1.0Cの充放電レートにて充放電の操作を100サイクル行った。その際、第1回目のサイクルの放電容量をX1、第100回目のサイクルの放電容量をX2と定義した。該放電容量X1および放電容量X2を用いて、ΔC=(X2/X1)×100(%)で示される容量変化率を求め、以下の基準により評価した。この容量変化率ΔCの値が大きいほど、サイクル特性に優れることを示す。
 A:ΔCが93%以上
 B:ΔCが90%以上93%未満
 C:ΔCが87%以上90%未満
 D:ΔCが87%未満
<高温保存特性>
 リチウムイオン二次電池を、電解液注液後、温度25℃で、5時間静置した。次に、温度25℃、0.2Cの定電流法にて、セル電圧3.65Vまで充電し、その後、温度60℃で12時間エージング処理を行った。そして、温度25℃、0.2Cの定電流法にて、セル電圧3.00Vまで放電した。その後、0.2Cの定電流にて、CC-CV充電(上限セル電圧4.20V)を行い、0.2Cの定電流にてセル電圧3.00VまでCC放電を行った。この0.2Cにおける充放電を3回繰り返し実施した。この0.2Cにおける3回目の放電容量を初期容量Cxとした。その後、0.2Cの定電流にて、CC-CV充電(上限セル電圧4.20V)を行った。次いで、処理室内を60℃窒素雰囲気としたイナートオーブン中に、リチウムイオン二次電池を4週間保管した。その後、0.2Cの定電流法にて、セル電圧3.00Vまで放電し、このときの放電容量をCyとした。(Cy/Cx)×100(%)で示される高温容量維持率を求め、以下の基準により評価した。この高温容量維持率の値が大きいほど、高温保存における電池の劣化が少ない(即ち、高温保存特性に優れる)ことを示す。
 A:高温容量維持率が80%以上
 B:高温容量維持率が75%以上80%未満
 C:高温容量維持率が70%以上75%未満
 D:高温容量維持率が70%未満
(実施例1)
<正極活物質粒子の調製>
 LiFePOからなる正極活物質粒子を、下記のように調製した。
 Li源としてLiOH、P源としてNHPO、Fe源としてFeSO・7HOを用いた。これらをモル比でLi:Fe:P=3:1:1となるよう、純水とあわせて混合し、250mlのスラリーを調製した。このスラリーを耐圧密閉容器に入れ、180℃で9時間加熱した後に25℃まで冷却して反応生成物を得た。得られた反応生成物を純水で洗浄後、80℃で3時間真空乾燥させて、LiFePOからなる正極活物質粒子を得た。
<複合粒子の調製>
 上記で得られた正極活物質100gと、炭素源としてのポリビニルアルコール4gと、純水とを、直径1mmのジルコニアボールを用いたビーズミル(フリッチュ社製、遊星型ビーズミル、P-5型)により30分間分散処理を行い、複合粒子用スラリーを得た(スラリー調製工程)。得られた複合粒子用スラリーを、スプレードライヤーを用いて170℃の大気雰囲気中で噴霧及び乾燥して造粒した(造粒工程)。得られた造粒粒子を、窒素雰囲気下、加熱温度:750℃、加熱時間:60分間の条件で加熱処理を行うことにより(加熱工程)、正極活物質粒子が炭素被膜で被覆されてなる複合粒子を得た。得られた複合粒子について、体積平均粒子径、並びに炭被膜の被覆量及びD/G比を測定した。結果を表1に示す。
<重合体Aの調製>
 撹拌機付きのオートクレーブに、イオン交換水240部、アルキルベンゼンスルホン酸ナトリウム2.5部、ニトリル基含有単量体としてのアクリロニトリル30部、カルボン酸基含有単量体としてのメタクリル酸5部、連鎖移動剤としてのt-ドデシルメルカプタン0.25部をこの順で入れ、ボトル内部を窒素置換した。その後、共役ジエン単量体としての1,3-ブタジエン65部を圧入し、過硫酸アンモニウム0.25部を添加して、反応温度40℃で重合反応させた。そして、アクリロニトリル単位、メタクリル酸単位及び1,3-ブタジエン単位を含む重合体を得た。重合転化率は85%であった。
 得られた重合体に対して水を用いて全固形分濃度を12%に調整した400mL(全固形分48g)の溶液を、容積1Lの撹拌機付きオートクレーブに投入し、窒素ガスを10分間流して溶液中の溶存酸素を除去した後、水素添加反応用触媒としての酢酸パラジウム75mgを、Pdに対して4倍モルの硝酸を添加したイオン交換水180mLに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(第一段階の水素添加反応)を行った。
 次いで、オートクレーブを大気圧にまで戻し、更に水素添加反応用触媒として、酢酸パラジウム25mgを、Pdに対して4倍モルの硝酸を添加した水60mLに溶解して、添加した。系内を水素ガスで2回置換した後、3MPaまで水素ガスで加圧した状態でオートクレーブの内容物を50℃に加温し、6時間水素添加反応(第二段階の水素添加反応)を行い、水素化ニトリルゴムの水分散液を得た。得られた水素化ニトリルゴムの水分散液に、NMPを適量添加して混合物を得た。その後、90℃にて減圧蒸留を実施して混合物から水及び過剰なNMPを除去し、重合体A(水素化ニトリルゴム)のNMP溶液(固形分濃度:8%)を得た。
<正極用スラリー組成物の調製>
 上記複合粒子95.8部と、重合体Aとしての上記水素化ニトリルゴム0.2部(固形分相当量)と、重合体Bとしてのポリフッ化ビニリデン2.0部と、導電材としてのカーボンブラック(TIMCAL製、商品名「SUPER P Li」)2.0部と、NMPとを、プラネタリーミキサーにて混合(60rpm、30分)して、正極用スラリー組成物を調製した。なお、NMPの添加量は、得られる正極用スラリー組成物の粘度(JIS Z8803:1991に準じて単一円筒形回転粘度計により測定。温度:25℃、回転数:60rpm)が4000~5000mPa・sの範囲内となるように調整した。
<リチウムイオン二次電池用正極の作製>
 集電体として、厚さ20μmのアルミ箔を準備した。上述のようにして得た正極用スラリー組成物をコンマコーターでアルミ箔の片面に乾燥後の目付量が20mg/cmになるように塗布し、90℃で20分、120℃で20分間乾燥後、60℃で10時間加熱処理して正極原反を得た。この正極原反をロールプレスで圧延し、密度が3.2g/cmの正極合材層とアルミ箔とからなるシート状正極を作製した。そして、シート状正極を幅48.0mm、長さ47cmに切断して、リチウムイオン二次電池用正極とした。
<リチウムイオン二次電池用負極の作製>
 撹拌機付き5MPa耐圧容器に、共役ジエン単量体としての1,3-ブタジエン33部、カルボン酸基含有単量体としてのイタコン酸3.5部、芳香族ビニル単量体としてのスチレン63.5部、乳化剤としてのドデシルベンゼンスルホン酸ナトリウム0.4部、イオン交換水150部、及び重合開始剤としての過硫酸カリウム0.5部を入れ、十分に撹拌した後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し重合反応を停止して、粒子状の結着材(スチレン-ブタジエン共重合体)を含む混合物を得た。上記混合物に、5%水酸化ナトリウム水溶液を添加してpH8に調整後、加熱減圧蒸留によって未反応単量体の除去を行った。その後、混合物を30℃以下まで冷却し、負極用結着材を含む水分散液を得た。
 プラネタリーミキサーに、負極活物質粒子としての人造黒鉛48.75部及び天然黒鉛48.75部、並びに増粘剤としてのカルボキシメチルセルロース1部(固形分相当)を投入した。さらに、イオン交換水にて固形分濃度が60%となるように希釈し、次いで、回転速度45rpmで60分混練した。その後、上述のようにして得た負極用結着材を含む水分散液を固形分相当で1.5部投入し、回転速度40rpmで40分混練した。そして、粘度が3000±500mPa・s(B型粘度計、25℃、60rpmで測定)となるようにイオン交換水を加えることにより、負極用スラリー組成物を調製した。
 上記の負極用スラリー組成物を、コンマコーターで、集電体である厚さ15μmの銅箔の表面に、塗付量が10±0.5mg/cmとなるように塗布した。その後、負極用スラリー組成物が塗布された銅箔を、400mm/分の速度で、温度80℃のオーブン内を2分間、さらに温度110℃のオーブン内を2分間かけて搬送することにより、銅箔上のスラリー組成物を乾燥させ、集電体上に負極合材層が形成された負極原反を得た。
 この負極原反をロールプレスで圧延し、密度が1.6g/cmの負極合材層とアルミ箔とからなるシート状負極を作製した。そして、シート状負極を幅50.0mm、長さ52cmに切断して、リチウムイオン二次電池用負極とした。
<リチウムイオン二次電池の作製>
 作製したリチウムイオン二次電池用正極とリチウムイオン二次電池用負極とを、互いの電極合材層同士が向かい合うようにし、厚さ15μmのセパレータ(ポリエチレン製の微多孔膜)を介在させて、直径20mmの芯を用いて捲回し、捲回体を得た。そして、得られた捲回体を、10mm/秒の速度で厚さ4.5mmになるまで一方向から圧縮した。なお、圧縮後の捲回体は平面視楕円形をしており、その長径と短径との比(長径/短径)は7.7であった。
 また、電解液として濃度1.0MのLiPF溶液(溶媒:エチレンカーボネート(EC)/ジエチルカーボネート(DEC)=3/7(体積比)の混合溶媒、添加剤:ビニレンカーボネート2体積%(溶媒比)含有)を準備した。
 その後、圧縮後の捲回体をアルミ製ラミネートケース内に3.2gの電解液とともに収容した。そして、二次電池用負極の所定の箇所にニッケルリード線を接続し、二次電池用正極の所定の箇所にアルミニウムリード線を接続したのち、ケースの開口部を熱で封口し、リチウムイオン二次電池を得た。このリチウムイオン二次電池は、幅35mm、高さ60mm、厚さ5mmのパウチ形であり、電池の公称容量は700mAhであった。
 得られたリチウムイオン二次電池について、IV抵抗、サイクル特性及び高温保存特性を評価した。結果を表1に示す。
(実施例2~4,12,13)
 複合粒子調製時のスラリー調製工程における炭素源としてのポリビニルアルコールの量を、それぞれ6g(実施例2)、2.5g(実施例3)、10g(実施例4)、1.8g(実施例12)、14.5g(実施例13)に変更した以外は、実施例1と同様にして、正極活物質粒子、複合粒子、重合体A、正極用スラリー組成物、リチウムイオン二次電池用正極、リチウムイオン二次電池用負極及びリチウムイオン二次電池を準備し、各種評価を行った。結果を表1及び表2に示す。
(実施例5~8,14,15)
 複合粒子調製時の加熱工程における加熱温度及び加熱時間をそれぞれ下記のように変更した以外は、実施例1と同様にして、正極活物質粒子、複合粒子、重合体A、正極用スラリー組成物、リチウムイオン二次電池用正極、リチウムイオン二次電池用負極及びリチウムイオン二次電池を準備し、各種評価を行った。結果を表1及び表2に示す。
 実施例5  加熱温度:850℃、加熱時間:20分
 実施例6  加熱温度:700℃、加熱時間:80分
 実施例7  加熱温度:850℃、加熱時間:40分
 実施例8  加熱温度:700℃、加熱時間:60分
 実施例14 加熱温度:850℃、加熱時間:60分
 実施例15 加熱温度:700℃、加熱時間:40分
(実施例9~11,16,17)
 正極用スラリー組成物の調製に際し、重合体Aとしての水素化ニトリルゴムの量(固形分相当量)と、複合粒子の量をそれぞれ下記のように変更した以外は、実施例1と同様にして、正極活物質粒子、複合粒子、重合体A、正極用スラリー組成物、リチウムイオン二次電池用正極、リチウムイオン二次電池用負極及びリチウムイオン二次電池を準備し、各種評価を行った。結果を表1及び表2に示す。
 実施例9  重合体A:0.4部、複合粒子:95.6部
 実施例10 重合体A:0.1部、複合粒子:95.9部
 実施例11 重合体A:1.0部、複合粒子:95.0部
 実施例16 重合体A:0.05部、複合粒子:95.95部
 実施例17 重合体A:2.0部、複合粒子:94.0部
(比較例1~2)
 複合粒子調製時のスラリー調製工程における炭素源としてのポリビニルアルコールの量を、それぞれ1.2g(比較例1)、18g(比較例2)に変更した以外は、実施例1と同様にして、正極活物質粒子、複合粒子、重合体A、正極用スラリー組成物、リチウムイオン二次電池用正極、リチウムイオン二次電池用負極及びリチウムイオン二次電池を準備し、各種評価を行った。結果を表2に示す。
(比較例3~4)
 複合粒子調製時の加熱工程における加熱温度及び加熱時間をそれぞれ下記のように変更した以外は、実施例1と同様にして、正極活物質粒子、複合粒子、重合体A、正極用スラリー組成物、リチウムイオン二次電池用正極、リチウムイオン二次電池用負極及びリチウムイオン二次電池を準備し、各種評価を行った。結果を表2に示す。
 比較例3  加熱温度:850℃、加熱時間:90分
 比較例4  加熱温度:700℃、加熱時間:20分
(比較例5~6)
 正極用スラリー組成物の調製に際し、重合体Aとしての水素化ニトリルゴムの量(固形分相当量)と、複合粒子の量をそれぞれ下記のように変更した以外は、実施例1と同様にして、正極活物質粒子、複合粒子、重合体A、正極用スラリー組成物、リチウムイオン二次電池用正極、リチウムイオン二次電池用負極及びリチウムイオン二次電池を準備し、各種評価を行った。結果を表2に示す。
 比較例5  重合体A:0.03部、複合粒子:95.97部
 比較例6  重合体A:2.5部、複合粒子:93.5部
(比較例7)
 重合体Aを調製せず、正極用スラリー組成物の調製に際し、重合体Aに代えてポリビニルピロリドンを用いた以外は、実施例1と同様にして、正極活物質粒子、複合粒子、正極用スラリー組成物、リチウムイオン二次電池用正極、リチウムイオン二次電池用負極及びリチウムイオン二次電池を準備し、各種評価を行った。結果を表2に示す。
 なお、以下の表1及び表2中、
 「HNBR」は、水素化ニトリルゴムを示し、
 「PVDF」は、ポリフッ化ビニリデンを示し、
 「PVP」は、ポリビニルピロリドンを示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1及び表2より、所定のD/G比を有する炭素被膜で正極活物質粒子を被覆してなる複合粒子と、所定の重合体Aを含有する結着材と、分散媒とを含み、複合粒子中の正極活物質粒子を覆う炭素被膜の量が所定範囲内であり、全固形分中に占める重合体Aの割合が所定範囲内であるスラリー組成物を用いて正極合材層を形成した実施例1~17では、電気化学素子のIV抵抗の低下と、サイクル特性及び高温保存特性の向上とをバランス良く達成しうることが分かる。
 本発明によれば、電気化学素子のIV抵抗を低下させつつ、当該電気化学素子に優れたサイクル特性及び高温保存特性を発揮させうる正極を形成可能な電気化学素子正極用スラリー組成物を提供することができる。
 また、本発明によれば、電気化学素子のIV抵抗を低下させつつ、当該電気化学素子に優れたサイクル特性及び高温保存特性を発揮させうる電気化学素子用正極を提供することができる。
 そして、本発明によれば、IV抵抗が低く、且つサイクル特性及び高温保存特性に優れる電気化学素子を提供することができる。

Claims (9)

  1.  複合粒子、結着材、及び分散媒を含む電気化学素子正極用スラリー組成物であって、
     前記複合粒子は、正極活物質粒子と、前記正極活物質粒子の外表面の少なくとも一部を覆う炭素被膜とを備え、
     前記複合粒子が含有する前記炭素被膜の量が、前記正極活物質粒子100質量部当たり0.4質量部以上3.5質量部以下であり、
     前記炭素被膜のラマンスペクトルにおけるGバンドピーク強度に対するDバンドピーク強度の比が0.6以上1.7以下であり、
     前記結着材が、ニトリル基含有単量体単位とアルキレン構造単位を含む重合体Aを含有し、
     全固形分に占める前記重合体Aの割合が0.05質量%以上2.0質量%以下である、電気化学素子正極用スラリー組成物。
  2.  前記複合粒子の体積平均粒子径が20μm未満である、請求項1に記載の電気化学素子正極用スラリー組成物。
  3.  全固形分中に占める前記複合粒子の割合が90質量%以上99質量%以下である、請求項1又は2に記載の電気化学素子正極用スラリー組成物。
  4.  前記結着材が前記重合体A以外の重合体Bを含む、請求項1~3の何れかに記載の電気化学素子正極用スラリー組成物。
  5.  全固形分中に占める前記重合体Bの割合が0.1質量%以上5質量%以下である、請求項4に記載の電気化学素子正極用スラリー組成物。
  6.  更に導電材を含む、請求項1~5の何れかに記載の電気化学素子正極用スラリー組成物。
  7.  全固形分中に占める前記導電材の割合が0.4質量%以上5質量%以下である、請求項6に記載の電気化学素子正極用スラリー組成物。
  8.  請求項1~7の何れかに記載の電気化学素子正極用スラリー組成物を用いて形成した正極合材層を備える、電気化学素子用正極。
  9.  請求項8に記載の電気化学素子用正極を備える、電気化学素子。
PCT/JP2022/006235 2021-02-26 2022-02-16 電気化学素子正極用スラリー組成物、電気化学素子用正極及び電気化学素子 WO2022181424A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US18/264,115 US20240120467A1 (en) 2021-02-26 2022-02-16 Slurry composition for electrochemical device positive electrode, positive electrode for electrochemical device, and electrochemical device
KR1020237028172A KR20230148162A (ko) 2021-02-26 2022-02-16 전기 화학 소자 정극용 슬러리 조성물, 전기 화학 소자용정극 및 전기 화학 소자
EP22759463.7A EP4300625A1 (en) 2021-02-26 2022-02-16 Slurry composition for electrochemical element positive electrode, electrochemical element positive electrode, and electrochemical element
JP2023502322A JPWO2022181424A1 (ja) 2021-02-26 2022-02-16
CN202280015143.2A CN116848657A (zh) 2021-02-26 2022-02-16 电化学元件正极用浆料组合物、电化学元件用正极以及电化学元件

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-030959 2021-02-26
JP2021030959 2021-02-26

Publications (1)

Publication Number Publication Date
WO2022181424A1 true WO2022181424A1 (ja) 2022-09-01

Family

ID=83049312

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/006235 WO2022181424A1 (ja) 2021-02-26 2022-02-16 電気化学素子正極用スラリー組成物、電気化学素子用正極及び電気化学素子

Country Status (6)

Country Link
US (1) US20240120467A1 (ja)
EP (1) EP4300625A1 (ja)
JP (1) JPWO2022181424A1 (ja)
KR (1) KR20230148162A (ja)
CN (1) CN116848657A (ja)
WO (1) WO2022181424A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012204303A (ja) 2011-03-28 2012-10-22 Nippon Zeon Co Ltd 二次電池用電極、二次電池電極用バインダー、製造方法及び二次電池
WO2013129658A1 (ja) * 2012-03-02 2013-09-06 日本ゼオン株式会社 二次電池用正極及び二次電池
WO2015151501A1 (ja) * 2014-04-02 2015-10-08 日本ゼオン株式会社 二次電池用正極、二次電池用正極の製造方法および二次電池
JP2020030920A (ja) * 2018-08-21 2020-02-27 住友大阪セメント株式会社 リチウムイオン二次電池用正極材料、リチウムイオン二次電池用電極、及びリチウムイオン二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012204303A (ja) 2011-03-28 2012-10-22 Nippon Zeon Co Ltd 二次電池用電極、二次電池電極用バインダー、製造方法及び二次電池
WO2013129658A1 (ja) * 2012-03-02 2013-09-06 日本ゼオン株式会社 二次電池用正極及び二次電池
WO2015151501A1 (ja) * 2014-04-02 2015-10-08 日本ゼオン株式会社 二次電池用正極、二次電池用正極の製造方法および二次電池
JP2020030920A (ja) * 2018-08-21 2020-02-27 住友大阪セメント株式会社 リチウムイオン二次電池用正極材料、リチウムイオン二次電池用電極、及びリチウムイオン二次電池

Also Published As

Publication number Publication date
EP4300625A1 (en) 2024-01-03
KR20230148162A (ko) 2023-10-24
JPWO2022181424A1 (ja) 2022-09-01
US20240120467A1 (en) 2024-04-11
CN116848657A (zh) 2023-10-03

Similar Documents

Publication Publication Date Title
CN108780894B (zh) 电化学元件电极用粘结剂组合物、电化学元件电极用浆料组合物、电化学元件用电极以及电化学元件
US10964947B2 (en) Binder composition for secondary battery electrode, slurry composition for secondary battery electrode, electrode for secondary battery, and secondary battery
CN110383546B (zh) 电化学元件电极用导电材料分散液、浆料组合物及其制造方法、电极以及电化学元件
JP7218729B2 (ja) 二次電池正極用バインダー組成物、二次電池正極用スラリー組成物及びその製造方法、二次電池用正極、並びに二次電池
JP7264062B2 (ja) 電気化学素子用導電材ペースト、電気化学素子正極用スラリー組成物及びその製造方法、電気化学素子用正極、並びに電気化学素子
KR102489858B1 (ko) 비수계 2 차 전지 부극용 슬러리 조성물 및 그 제조 방법, 비수계 2 차 전지용 부극, 및 비수계 2 차 전지
WO2015151501A1 (ja) 二次電池用正極、二次電池用正極の製造方法および二次電池
KR20160082503A (ko) 리튬 이온 이차전지 정극용 슬러리 조성물, 리튬 이온 이차전지용 정극 및 리튬 이온 이차전지
CN111033833A (zh) 非水系二次电池电极用粘结剂组合物、非水系二次电池电极用浆料组合物、非水系二次电池用电极以及非水系二次电池
KR20170129732A (ko) 2차 전지 정극용 슬러리 조성물의 제조 방법, 2차 전지용 정극, 및 2차 전지
JP6911986B1 (ja) 電気化学素子用電極及び電気化学素子
JP6870770B1 (ja) 電気化学素子用導電材分散液、電気化学素子電極用スラリー、電気化学素子用電極及び電気化学素子
CN115298860A (zh) 导电材料分散液、二次电池正极用浆料、二次电池用正极以及二次电池
WO2020004526A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物及びその製造方法、非水系二次電池用電極、並びに非水系二次電池
CN116097467A (zh) 导电材料分散液、非水系二次电池正极用浆料的制造方法、非水系二次电池用正极的制造方法以及非水系二次电池的制造方法
JP7480704B2 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物及びその製造方法、非水系二次電池用電極、並びに非水系二次電池
WO2020137591A1 (ja) 二次電池電極用バインダー組成物、二次電池電極用導電材ペースト組成物、二次電池電極用スラリー組成物、二次電池用電極、及び二次電池
KR102554243B1 (ko) 전기 화학 소자용 도전재 분산액, 전기 화학 소자 전극용 슬러리, 전기 화학 소자용 전극 및 전기 화학 소자
WO2022181424A1 (ja) 電気化学素子正極用スラリー組成物、電気化学素子用正極及び電気化学素子
KR102455990B1 (ko) 전기 화학 소자용 바인더 조성물, 전기 화학 소자용 도전재 분산액, 전기 화학 소자 전극용 슬러리 조성물, 전기 화학 소자용 전극 및 전기 화학 소자
JP7218730B2 (ja) 二次電池正極用バインダー組成物、二次電池正極用スラリー組成物及びその製造方法、二次電池用正極、並びに二次電池
WO2021193665A1 (ja) 二次電池用正極及び二次電池
WO2024162181A1 (ja) 二次電池用導電材ペレット、二次電池正極用スラリー組成物、二次電池用正極、および二次電池
WO2023189189A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極および非水系二次電池
WO2024116796A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池正極用スラリー組成物、非水系二次電池用正極、および非水系二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22759463

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023502322

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18264115

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280015143.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022759463

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022759463

Country of ref document: EP

Effective date: 20230926