WO2023145655A1 - 電気化学素子正極用複合粒子およびその製造方法、電気化学素子用正極、ならびに、電気化学素子 - Google Patents

電気化学素子正極用複合粒子およびその製造方法、電気化学素子用正極、ならびに、電気化学素子 Download PDF

Info

Publication number
WO2023145655A1
WO2023145655A1 PCT/JP2023/001781 JP2023001781W WO2023145655A1 WO 2023145655 A1 WO2023145655 A1 WO 2023145655A1 JP 2023001781 W JP2023001781 W JP 2023001781W WO 2023145655 A1 WO2023145655 A1 WO 2023145655A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
carbon
composite particles
electrochemical element
electrochemical
Prior art date
Application number
PCT/JP2023/001781
Other languages
English (en)
French (fr)
Inventor
健太郎 早坂
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Publication of WO2023145655A1 publication Critical patent/WO2023145655A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/24Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to composite particles for an electrochemical element positive electrode, a method for producing the same, a positive electrode for an electrochemical element, and an electrochemical element.
  • Electrodes used in electrochemical devices such as lithium-ion secondary batteries usually include a current collector and an electrode mixture layer formed on the current collector.
  • the electrode mixture layer for example, a slurry composition obtained by dispersing an electrode active material, a conductive material, and a binder resin that serves to bind the electrode active material and the like in a solvent is applied onto the current collector. and dried.
  • composite particles for an electrochemical element electrode are prepared by spray-drying a slurry containing an electrode active material, a conductive material, a binder resin, and the like. ) and forming it into a sheet has been proposed.
  • composite particles are obtained by spray-drying a slurry containing an electrode active material, a binder resin, and a dispersion medium, and the composite particles are press-molded to form an electrode active material layer as an electrode mixture layer. It forms a material layer.
  • composite particles obtained by spray-drying a slurry composition containing an electrode active material, a conductive material, a binder resin, and the like have migration of components such as the conductive material and the binder resin inside the particles. As a result, it can be unevenly distributed on the surface side (outside) of the composite particles. Then, when a composite particle is produced using a positive electrode active material as an electrode active material and a conductive material (carbon-based conductive material) composed of a carbon material, the carbon-based conductive material migrates to the particle surface side. , it was found that the conductive path between the positive electrode active materials is reduced near the center of the composite particles, and the electrochemical properties of the obtained electrochemical device are deteriorated. Therefore, the conventional composite particles for an electrochemical element positive electrode have room for improvement in terms of imparting excellent electrochemical properties to the electrochemical element.
  • an object of the present invention is to provide composite particles for an electrochemical element positive electrode, which are capable of exhibiting excellent electrochemical properties in an electrochemical element, and a method for producing the same.
  • Another object of the present invention is to provide a positive electrode for an electrochemical device that allows the electrochemical device to exhibit excellent electrochemical properties, and an electrochemical device that exhibits excellent electrochemical properties.
  • the inventor of the present invention conducted intensive studies with the aim of solving the above problems. Then, the present inventors found that in composite particles for an electrochemical element positive electrode obtained by spray-drying a slurry composition containing a positive electrode active material, a carbon-based conductive material, and a binder resin, the ratio of the carbon atom weight of the central region to the carbon atom weight of the outer region is It has been found that the electrochemical properties of the electrochemical device can be enhanced by setting the carbon atom weight ratio within a predetermined range.
  • the present inventors have found that the composite particles for an electrochemical element positive electrode, in which the ratio of the carbon atom weight in the central region to the carbon atom weight in the outer region is within a predetermined range, is excellent in moldability and the resulting electrochemical element has an excellent appearance. It was found that it is possible to give The present invention has been made based on the above findings.
  • an object of the present invention is to advantageously solve the above-described problems.
  • Composite particles for use wherein the ratio of the carbon atomic weight of the central region to the carbon atomic weight of the outer region (the carbon atomic weight of the central region/the carbon atomic weight of the outer region), measured according to the following method, is 0.3 or more and 1.0 or less. It is composite particles for a certain electrochemical element positive electrode. [Measuring method] (1) In the cross-sectional image of the composite particle, align the center of a square with a side length of 15 ⁇ m with the center of the cross section of the composite particle, and divide the square into nine regions with a side length of 5 ⁇ m.
  • the carbon atom weight in each region is measured, and the average value is taken as the carbon atom weight in the central region.
  • the center of the square with a side length of 15 ⁇ m is aligned with the cross-sectional center of the composite particle, and the square is drawn from the center in each of the four directions of the cross-sectional image of the composite particle. is moved until it contacts the outer edge of the cross-section of the composite particle.
  • Each square is divided into 3 regions of 15 ⁇ m ⁇ 5 ⁇ m for a total of 12 regions. Then, the carbon atomic weight of each region is measured, and the average value is taken as the carbon atomic weight of the outer region.
  • the composite particles for an electrochemical element positive electrode if the ratio of the carbon atom weight in the central region to the carbon atom weight in the outer region is within the predetermined range, the electrochemical device can exhibit excellent electrochemical characteristics. Further, the composite particles for an electrochemical element positive electrode in which the ratio of the carbon atom weight in the central region to the carbon atom weight in the outer region is within the above-described predetermined range is excellent in formability.
  • the particle size distribution of the carbon-based conductive material preferably has a plurality of peaks.
  • the particle size distribution of the carbon-based conductive material can be measured by the method described in Examples.
  • Another object of the present invention is to advantageously solve the above-mentioned problems.
  • a method for producing composite particles for an electrochemical element positive electrode comprising the step of spray-drying a slurry composition containing a positive electrode active material, a carbon-based conductive material, a binder resin, and a solvent.
  • the slurry composition has a viscosity of 50 mP ⁇ s or more. If the viscosity of the slurry composition is 50 mP ⁇ s or more, the migration of the carbon-based conductive material to the particle surface side in the resulting composite particles can be satisfactorily suppressed. In addition, in the present invention, the viscosity of the slurry composition can be measured by the method described in Examples.
  • the positive electrode mixture layer is a positive electrode for an electrochemical element using the composite particles for an electrochemical element positive electrode of [1] or [2].
  • the positive electrode for an electrochemical element of the present invention is excellent in moldability and is formed by using the above-described composite particles for an electrochemical element positive electrode that can improve the electrochemical characteristics of the electrochemical element. It is excellent and can make the electrochemical device exhibit excellent electrochemical properties.
  • Another object of the present invention is to advantageously solve the above problems, and the present invention is [6] an electrochemical device comprising the positive electrode for an electrochemical device of [5] above.
  • the electrochemical device of the present invention is excellent in electrochemical characteristics because it includes the above-described electrochemical device positive electrode capable of exhibiting excellent electrochemical characteristics in the electrochemical device.
  • the composite particle for electrochemical element positive electrodes which can make an electrochemical element exhibit the outstanding electrochemical characteristic, and its manufacturing method can be provided. Further, according to the present invention, it is possible to provide a positive electrode for an electrochemical device that allows the electrochemical device to exhibit excellent electrochemical properties, and an electrochemical device that exhibits excellent electrochemical properties.
  • the composite particles for an electrochemical element positive electrode of the present invention can be suitably produced by the method for producing the composite particles for an electrochemical element positive electrode of the present invention.
  • the positive electrode for an electrochemical device of the present invention is obtained by using the composite particles for a positive electrode of an electrochemical device of the present invention.
  • the electrochemical device of the present invention comprises the positive electrode for an electrochemical device of the present invention.
  • composite particles for positive electrode of electrochemical device contain a positive electrode active material, a carbonaceous material, and a binder resin, and optionally a dispersant, a thickener, and the like. may further contain other components of
  • the ratio of the carbon atomic weight of the central region to the carbon atomic weight of the outer region is 0.3 or more and 1.0. It is characterized by the following.
  • Each square is divided into 3 regions of 15 ⁇ m ⁇ 5 ⁇ m for a total of 12 regions. Then, the carbon atomic weight of each region is measured, and the average value is taken as the carbon atomic weight of the outer region. (3) Divide the carbon atomic weight of the central region by the carbon atomic weight of the outer regions.
  • the method of obtaining an observation cross section of composite particles is not particularly limited, and for example, an ion milling method can be used.
  • the cross-sectional image of the composite particles is not particularly limited, and can be obtained with a scanning electron microscope (SEM) or the like.
  • the carbon atom weight is not particularly limited, and can be measured by energy dispersive X-ray spectroscopy (EDX) or the like.
  • the measurement can be preferably performed using, for example, SEM/EDX, which is an apparatus capable of performing elemental analysis of the region while observing with SEM.
  • the measurement is generally performed on composite particles having a particle diameter (maximum diameter) of 15 ⁇ m or more and 500 ⁇ m or less in a cross-sectional image of the composite particles.
  • the division direction of each square may be the vertical direction (that is, the square is vertically divided into thirds) or the horizontal direction (that is, the square is horizontally divided into thirds).
  • the ratio of the carbon atom weight in the central region to the carbon atom weight in the outer region is within the above-described predetermined range, so that the electrochemical device can exhibit excellent electrochemical properties.
  • the reason for this is not necessarily clear, but is presumed to be as follows. That is, in the composite particles in which the ratio of the carbon atom weight in the central region to the carbon atom weight in the outer region is within the above predetermined range, the carbon-based conductive material is not excessively unevenly distributed, and the conductive path is secured throughout the particle, resulting in , it is presumed that the electrochemical characteristics of the electrochemical device are improved.
  • composite particles having a ratio of the carbon atom weight in the central region to the carbon atom weight in the outer region within the above-specified range exhibits excellent moldability is not necessarily clear, but in such composite particles, the binder resin is It is presumed that the particles migrate to the surface side of the particles, and as a result, the moldability is improved.
  • the ratio of the carbon atomic weight in the central region to the carbon atomic weight in the outer region is preferably 0.4 or more. It is preferably 0.65 or more, further preferably 0.7 or more, particularly preferably 0.8 or more, and preferably 0.99 or less.
  • the ratio of the carbon atom weight in the central region to the carbon atom weight in the outer regions in the composite particles can be adjusted, for example, by adjusting the type of carbon-based conductive material used, the particle size distribution of the carbon-based conductive material, the viscosity of the slurry composition described later, and the like. can be controlled.
  • the positive electrode active material is not particularly limited, and can include known positive electrode active materials used in electrochemical devices.
  • the positive electrode active material that can be used in the positive electrode mixture layer of a lithium ion secondary battery as an example of an electrochemical device is not particularly limited, and examples include compounds containing transition metals, For example, transition metal oxides, transition metal sulfides, composite metal oxides of lithium and transition metals, and the like can be used. Examples of transition metals include Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Mo.
  • the positive electrode active material is not particularly limited, and lithium-containing cobalt oxide (LiCoO 2 ), lithium manganate (LiMn 2 O 4 ), lithium-containing nickel oxide (LiNiO 2 ), Co- Ni—Mn lithium-containing composite oxide, Ni—Mn—Al lithium-containing composite oxide, Ni—Co—Al lithium-containing composite oxide, olivine-type lithium iron phosphate (LiFePO 4 ), olivine-type manganese phosphate Lithium (LiMnPO 4 ), a lithium-rich spinel compound represented by Li 1+x Mn 2-x O 4 (0 ⁇ X ⁇ 2), Li[Ni 0.17 Li 0.2 Co 0.07 Mn 0.56 ] O 2 , LiNi 0.5 Mn 1.5 O 4 and the like.
  • lithium-containing cobalt oxide LiCoO 2
  • LiMn 2 O 4 lithium manganate
  • LiNiO 2 lithium-containing nickel oxide
  • Co- Ni—Mn lithium-containing composite oxide Ni—Mn—Al lithium-
  • olivine-type lithium iron phosphate (LiFePO 4 ) is preferable from the viewpoint of further enhancing the electrochemical properties of the electrochemical device.
  • the positive electrode active material mentioned above may be used individually by 1 type, and may be used in combination of 2 or more types.
  • the carbon-based conductive material is a carbon material that can ensure electrical contact between the positive electrode active materials in the positive electrode mixture layer.
  • the carbon-based conductive material is not particularly limited, but carbon black such as furnace black, acetylene black, and Ketjen Black (registered trademark); graphite such as natural graphite and artificial graphite; polyacrylonitrile-based carbon fiber, pitch-based carbon Fiber, VGCF (vapor-grown carbon fiber), carbon nanotube (hereinafter also simply referred to as "CNT”), graphene, and the like. These can be used individually by 1 type or in combination of 2 or more types.
  • the carbon-based conductive material preferably contains two or more types of carbon-based conductive materials from the viewpoint of allowing the electrochemical device to exhibit more excellent electrochemical properties.
  • the two or more types of carbon-based conductive materials two types of carbon black or a combination of CNT and carbon black is preferable, and a combination of CNT and carbon black is more preferable.
  • CNTs may be single-walled carbon nanotubes or multi-walled carbon nanotubes. Among them, the CNT is preferably a multi-walled carbon nanotube. As CNTs, single-walled CNTs and multi-walled CNTs may be used in combination. By using multi-layered CNTs, it is possible to improve the dispersibility of the CNTs in the dispersion while further suppressing an increase in internal resistance after cycling of the electrochemical device.
  • the CNT preferably has a BET specific surface area of 100 m 2 /g or more, more preferably 150 m 2 /g or more, and preferably 1000 m 2 /g or less, and 500 m 2 /g or less. is more preferable. If the BET specific surface area of CNT is within the above range, the electrochemical properties of the electrochemical device can be further improved.
  • BET specific surface area means the nitrogen adsorption specific surface area measured using the BET method.
  • CNTs are not particularly limited, and those synthesized using known CNT synthesis methods such as an arc discharge method, a laser ablation method, and a chemical vapor deposition method (CVD method) can be used.
  • the mass ratio of CNT to carbon black in the composite particles is preferably 0.01 or more, more preferably 0.05 or more, and preferably 100 or less, It is more preferably 50 or less. If the mass ratio of CNTs to carbon black is within the above range, the moldability of the composite particles can be further improved, and the electrochemical device can exhibit more excellent electrochemical properties.
  • the carbon-based conductive material preferably has a plurality of peaks in particle size distribution. That is, the particle size distribution is preferably multimodal. If the particle size distribution has a plurality of peaks, it is possible to further improve the moldability of the composite particles and allow the electrochemical device to exhibit more excellent electrochemical properties.
  • the particle size distribution of the carbon-based conductive material may have two peaks or three or more peaks. In addition, when the particle size distribution has two or more peaks, from the viewpoint of further improving the moldability of the composite particles and exhibiting more excellent electrochemical characteristics in the electrochemical device, the particle size distribution is on the smaller side.
  • the particle diameter of the peak appearing first from is preferably 0.05 ⁇ m or more, more preferably 0.5 ⁇ m or more, and 1 ⁇ m or less It is preferably 0.9 ⁇ m or less, more preferably 0.9 ⁇ m or less.
  • the particle size of the second peak appearing from the small size side is preferably more than 1 ⁇ m, more preferably 4 ⁇ m or more. It is preferably 6.5 ⁇ m or more, more preferably 40 ⁇ m or less, and more preferably 20 ⁇ m or less.
  • the number of peaks in the particle size distribution, the first particle size D1 and the second particle size D2 can be determined, for example, by the type and/or amount of the carbon-based conductive material, or by preparing a carbon-based conductive material dispersion described later. It can be controlled by appropriately changing the type and/or amount of the dispersing agent that can be used at the time of dispersing and the dispersing conditions.
  • the content of the carbon-based conductive material in the composite particles of the present invention is preferably 0.1 parts by mass or more, more preferably 0.5 parts by mass or more, relative to 100 parts by mass of the positive electrode active material. Also, it is preferably 10 parts by mass or less, more preferably 5 parts by mass or less. If the content of the carbon-based conductive material is within the above range, it is possible to suppress an increase in the electrical resistance of the obtained positive electrode for an electrochemical device, thereby allowing the electrochemical device to exhibit more excellent electrochemical properties. can.
  • the binder resin is a component that functions as a binder that adheres the positive electrode mixture layer to the current collector and can suppress detachment of components such as the positive electrode active material and the carbon-based conductive material from the positive electrode mixture layer. .
  • the shape of the binder resin is not particularly limited, but may be particulate.
  • the binder resin is not particularly limited, and for example, a polymer containing an acidic group-containing monomer unit, a (meth)acrylic acid ester monomer unit, or a nitrile group-containing monomer unit can be used. Among them, it is preferable to use an acrylic polymer containing a (meth)acrylic acid ester monomer unit.
  • (meth)acryl means acryl and/or methacryl.
  • acidic group-containing monomer unit examples include monomers having a carboxylic acid group, monomers having a sulfonic acid group, and monomers having a phosphoric acid group. mentioned. Examples of the monomer having a carboxylic acid group, the monomer having a sulfonic acid group, and the monomer having a phosphoric acid group include those described in JP-A-2017-069108. Among these, monomers having a carboxylic acid group are preferred, and methacrylic acid is more preferred.
  • the acidic group-containing monomers may be used singly or in combination of two or more.
  • the ratio of the acidic group-containing monomer unit is preferably 0.1% by mass or more, and 0.5% by mass or more, when the amount of all repeating units contained in the polymer is 100% by mass. more preferably 0.8% by mass or more, preferably 30% by mass or less, more preferably 20% by mass or less, and 10% by mass or less More preferred.
  • (meth)acrylate monomers capable of forming (meth)acrylate monomer units include those described in JP-A-2017-050112. Among these, 2-ethylhexyl acrylate is preferred.
  • the (meth)acrylate monomers may be used singly or in combination of two or more.
  • the ratio of the (meth)acrylic acid ester monomer unit is preferably 50% by mass or more, and is 55% by mass or more when the amount of all repeating units contained in the polymer is 100% by mass. It is more preferably 58% by mass or more, more preferably 98% by mass or less, more preferably 97% by mass or less, and even more preferably 96% by mass or less.
  • Nitrile group-containing monomers capable of forming nitrile group-containing monomer units include ⁇ , ⁇ -ethylenically unsaturated nitrile monomers.
  • the ⁇ , ⁇ -ethylenically unsaturated nitrile monomer is not particularly limited as long as it is an ⁇ , ⁇ -ethylenically unsaturated compound having a nitrile group.
  • nitrile group-containing monomers can be used singly or in combination of two or more.
  • the proportion of the nitrile group-containing monomer unit is preferably 1% by mass or more, more preferably 2% by mass or more, when the amount of all repeating units contained in the polymer is 100% by mass. It is preferably 5% by mass or more, more preferably 90% by mass or less, more preferably 80% by mass or less, and even more preferably 70% by mass or less.
  • the average particle diameter of the binder resin should be 0.05 ⁇ m or more from the viewpoint of facilitating the migration of the binder resin to the surface side of the composite particles and further improving moldability. , more preferably 0.08 ⁇ m or more, still more preferably 0.23 ⁇ m or more, and preferably 5 ⁇ m or less, more preferably 10 ⁇ m or less.
  • the average particle size of the binder resin is the particle size D50 at which the cumulative volume is 50% calculated from the small diameter side by a laser diffraction method, and can be measured by the method described in Examples.
  • the content of the binder resin in the composite particles of the present invention is preferably 0.2 parts by mass or more, more preferably 0.5 parts by mass or more, relative to 100 parts by mass of the positive electrode active material. Moreover, it is preferably 10 parts by mass or less, and more preferably 5 parts by mass or less. If the content of the carbon-based conductive material is within the above range, the electrochemical device can exhibit even better electrochemical properties.
  • the mass ratio of the binder resin to the carbon-based conductive material is preferably 0.2 or more, more preferably 0.5 or more, and 5 or less. is preferred, and 3 or less is more preferred.
  • the binder resin is used more in the outer portion of the composite particle (outer than the center portion) than in the center portion of the composite particle (range from the center of the particle to 50% of the radius). It is preferable that there is a large amount in
  • the method for producing the polymer as the binder resin described above is not particularly limited.
  • a polymer can be obtained, for example, by polymerizing a monomer composition containing the monomers described above.
  • the content ratio of each monomer in the monomer composition used for producing the polymer can be determined according to the content ratio of each repeating unit in the polymer.
  • the polymerization mode is not particularly limited, and any method such as a solution polymerization method, a suspension polymerization method, a bulk polymerization method, and an emulsion polymerization method can be used.
  • As the polymerization reaction any reaction such as ionic polymerization, radical polymerization, and living radical polymerization can be used.
  • the ratio of other components in the composite particles of the present invention is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more, and 10 parts by mass with respect to 100 parts by mass of the positive electrode active material. parts by mass or less, and more preferably 5 parts by mass or less.
  • the ratio of other components in the composite particles of the present invention is preferably 0.01 parts by mass or more, and 0.5 parts by mass or more, with respect to the total of 100 parts by mass of the carbon-based conductive material and the binder resin. It is more preferably 5 parts by mass or less, and more preferably 3 parts by mass or less.
  • the composite particles of the present invention preferably have an average particle size of 5 ⁇ m or more, more preferably 15 ⁇ m or more, still more preferably 20 ⁇ m or more, even more preferably 55 ⁇ m or more, and even more preferably 65 ⁇ m or more. It is particularly preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less, and even more preferably 200 ⁇ m or less.
  • the average particle diameter of the composite particles is within the above range, the fluidity of the particles is good, so that the powder can be easily fed during molding.
  • the average particle size of the composite particles can be measured by the method described in Examples.
  • the volume resistivity of the composite particles of the present invention is preferably 30 ⁇ cm or less, more preferably 20 ⁇ cm or less.
  • the lower limit of the volume resistivity of the composite particles is not particularly limited, but can be, for example, 1 ⁇ cm or more. If the volume resistivity of the composite particles is equal to or less than the above upper limit, the electrochemical properties of the resulting electrochemical device can be enhanced.
  • the volume resistivity of the composite particles is measured by pressure-molding to produce pellets having a diameter of 25.4 mm and a density of 3.2 g/cm 2 , and measuring the electrical resistance of the pellets with a digital LCR meter. It is a value obtained by converting the obtained electrical resistance value into a volume resistivity ( ⁇ cm).
  • the angle of repose of the composite particles of the present invention is preferably 45 degrees or less, more preferably 40 degrees or less. If the angle of repose is equal to or less than the above upper limit, the flowability of the composite particles is excellent, so that moldability can be further improved.
  • the angle of repose is the angle of the ridge line formed when the powder is dropped and deposited, and is defined in JIS R9301-2-2 "Alumina powder-Part 2: Physical property measurement method-2: Angle of repose". means the value (°) measured by the method specified in Specific measuring devices that can be used include a powder property evaluation device such as Powder Tester PT-X (manufactured by Hosokawa Micron Corporation).
  • the area circularity of the composite particles of the present invention is preferably 0.80 or more, and preferably 0.90 or less.
  • the area circularity of the composite particles is equal to or higher than the above lower limit, cracking of the positive electrode active material in the positive electrode formed using the composite particles can be suppressed. Further, when the areal circularity of the composite particles is equal to or less than the above upper limit, the rate characteristics of the resulting electrochemical device can be enhanced.
  • the area circularity of the composite particles was analyzed by binarizing the images of 4000 composite particles based on the image analysis method according to JIS Z 8827-1. /P2 (A: projected area, P: perimeter).
  • the perimeter length envelopment of the composite particles of the present invention is preferably 0.5 or more, and preferably 0.97 or less. If the perimeter envelopment of the composite particles is equal to or less than the above upper limit, the resulting electrochemical device can have improved cycle characteristics.
  • the perimeter envelopment of the composite particles is analyzed by binarizing the images of 4000 composite particles based on the image analysis method according to JIS Z 8827-1, and the convexity of all particles in the observation field of view. It is the average value obtained by dividing the perimeter of the shape circumscribed figure (minimum convex hull) by the perimeter P.
  • the bulk density of the composite particles of the present invention is preferably 0.3 g/cm 3 or more and 3.5 g/cm 3 or less.
  • the bulk density of composite particles can be measured based on the constant volume measurement method described in JIS R 1628-1997.
  • the density coefficient of the composite particles of the present invention is preferably 1.3 or more and 3.5 or less. If the density coefficient is at least the above lower limit, the flexibility of the obtained positive electrode and the cycle characteristics of the electrochemical device provided with such a positive electrode can be improved. If the density coefficient is equal to or less than the above upper limit, it is possible to satisfactorily suppress cracking of the positive electrode active material in the obtained positive electrode.
  • the density coefficient can be obtained by dividing the compressed density by the bulk density.
  • the compression density can be determined by pressing 4.00 g of the composite particles at 50 MPa to prepare a cylindrical pellet having a base area of 2 cm 2 (diameter: 15.97 mm) and measuring the thickness of the pellet.
  • a method for producing composite particles for an electrochemical element positive electrode of the present invention includes a step of spray drying a slurry composition containing a positive electrode active material, a carbon-based conductive material, a binder resin, and a solvent (spray drying step). and, optionally, other steps such as a step of classifying the obtained composite particles (classification step). Each step will be described below.
  • the slurry composition is spray-dried to produce composite particles.
  • Spray drying is a method of spraying and drying a slurry composition in hot air to obtain granules.
  • the device used for spraying the slurry composition is not particularly limited, and examples thereof include an atomizer.
  • the atomizer devices such as rotating disc type, cup type, two-fluid nozzle type, and pressurization type are exemplified.
  • the hot air temperature during spray drying is preferably 25 to 250°C, more preferably 50 to 220°C, still more preferably 80 to 200°C.
  • the method of blowing hot air is not particularly limited.
  • a contact method, a method in which the sprayed droplets first flow parallel to the hot air, then drop by gravity and contact in a countercurrent flow, and the like can be mentioned.
  • the temperature of the slurry composition to be sprayed is not limited, and may be room temperature or may be heated to a temperature higher than room temperature. Spray drying can be performed using a known spray dryer.
  • the slurry composition contains a positive electrode active material, a carbon-based conductive material, a binder resin, and a solvent, and optionally may further contain other components such as a dispersant and a thickener.
  • the positive electrode active material the carbon-based conductive material, and the binder resin, those described in the above item "The composite particles for the positive electrode of the electrochemical element of the present invention" can be used.
  • the solvent used for the slurry composition is not particularly limited, and both water and organic solvents can be used.
  • organic solvents include acetonitrile, N-methyl-2-pyrrolidone, tetrahydrofuran, acetone, acetylpyridine, cyclopentanone, dimethylformamide, dimethylsulfoxide, methylformamide, methylethylketone, furfural, ethylenediamine, dimethylbenzene (xylene), methyl Benzene (toluene), cyclopentyl methyl ether, isopropyl alcohol, and the like can be used.
  • water it is preferable to use water.
  • these solvents can be used individually by 1 type, or in mixture of 2 or more types by arbitrary mixing ratios.
  • Thickener - Thickeners include cellulosic polymers such as carboxymethyl cellulose, methyl cellulose, hydroxypropyl cellulose and ammonium salts thereof, alkali metal salts, (modified) poly(meth)acrylic acid and ammonium salts thereof, and alkali metal salts, (Modified) polyvinyl alcohol, copolymers of acrylic acid or acrylate and vinyl alcohol, polyvinyl alcohols such as maleic anhydride or copolymers of maleic acid or fumaric acid and vinyl alcohol, polyethylene glycol, polyethylene oxide, polyvinylpyrrolidone , modified polyacrylic acid, oxidized starch, phosphate starch, casein, and various modified starches. These thickeners can be used singly or in combination of two or more. Among them, it is preferable to use carboxymethyl cellulose.
  • the dispersant is not particularly limited, and polyvinylpyrrolidone and carboxymethylcellulose, which can also function as a thickening agent, naphthalenesulfonic acid formaldehyde condensate, and the like can be preferably used as the dispersant. These dispersants can be used singly or in combination of two or more. Among them, it is preferable to use carboxymethyl cellulose.
  • the viscosity of the slurry composition is preferably 50 mP s or more, more preferably 100 mP s or more, still more preferably 800 mP s or more, and preferably 10000 mP s or less. , 5000 mP ⁇ s or less, and more preferably 3000 mP ⁇ s or less. If the viscosity of the slurry composition is within the above range, the binder resin can be favorably migrated to the particle surface side while suppressing the carbon-based conductive material from migrating to the particle surface side. It is possible to make the resulting electrochemical device exhibit more excellent electrochemical properties while further improving the formability of the particles.
  • the viscosity of the slurry composition can be appropriately adjusted, for example, by changing the amount of solvent such as water in the slurry composition and the type and/or amount of the thickening agent.
  • the total solid content concentration of the slurry composition is preferably 45% by mass or more, more preferably 50% or more, and preferably 80% by mass or less, and 70% by mass or less. more preferred. If the total solid concentration of the slurry composition is within the above range, the viscosity of the slurry composition can be easily adjusted.
  • the slurry composition is not particularly limited. It can be prepared by adding in and mixing. The method and order of adding these components to the solvent are not particularly limited.
  • a mixing device for example, a ball mill, sand mill, bead mill, pigment disperser, crushing machine, ultrasonic disperser, homogenizer, homomixer, planetary mixer and the like can be used. Mixing is preferably carried out at room temperature to 80° C. for 10 minutes to several hours.
  • a dispersion (paste) containing the carbon-based conductive material is prepared in advance, and this dispersion is mixed with the positive electrode active material or the like to form a slurry composition. preferably prepared.
  • the method for preparing the dispersion containing the carbon-based conductive material (carbon-based conductive material dispersion) is not particularly limited, and the carbon-based conductive material and optionally the dispersant described above are added to a solvent such as water and mixed. and subjecting the resulting mixture to dispersion treatment using a known disperser.
  • the classification step is a step of classifying the composite particles obtained through the spray drying step.
  • Classification methods are not particularly limited, but dry classification methods such as gravity classification, inertial classification, and centrifugal classification; wet classification methods such as sedimentation classification, mechanical classification, and hydraulic classification; sieves, such as vibration sieves and in-plane motion sieves.
  • a classification method such as a sieving classification method using a screen can be employed. Among them, the sieving classification method is preferable.
  • Composite particles having a desired particle size can be easily obtained by performing the classification step.
  • a positive electrode for an electrochemical device of the present invention includes at least a positive electrode mixture layer and a current collector.
  • the composite particles of the present invention are used for the positive electrode mixture layer, so that the appearance is excellent and the electrochemical device can exhibit excellent electrochemical properties.
  • the positive electrode of the present invention may have the positive electrode mixture layer on only one side of the current collector, or may have the positive electrode mixture layer on both sides.
  • the positive electrode of the present invention includes a layer other than the positive electrode mixture layer and the current collector (hereinafter simply referred to as "other layers”) on the surface of the electrode (particularly, the surface on the side of the positive electrode mixture layer). good too.
  • the positive electrode mixture layer is formed using the composite particles of the present invention. That is, the positive electrode mixture layer contains the above-described positive electrode active material, carbon-based conductive material, and binder resin, and may optionally contain other components such as the above-described dispersant and thickener.
  • each component contained in the positive electrode mixture layer is contained in the composite particles of the present invention described above, and the preferred abundance ratio and attributes of each component in the positive electrode mixture layer are , the same as the preferred abundance ratio and attributes of each component in the composite particle
  • a material having electrical conductivity and electrochemical durability can be selected and used according to the type of the electrochemical device.
  • a current collector for a positive electrode for a lithium ion secondary battery a current collector made of iron, copper, aluminum, nickel, stainless steel, titanium, tantalum, gold, platinum, or the like can be used.
  • aluminum foil is particularly preferable as the current collector used for the positive electrode.
  • one type of the above materials may be used alone, or two or more types may be used in combination at an arbitrary ratio.
  • Other layers arbitrarily provided on the surface of the positive electrode are not particularly limited.
  • Known adhesive layers provided for the purpose of improving adhesiveness with other battery members can be mentioned.
  • the positive electrode of the present invention comprising the positive electrode mixture layer described above is not particularly limited, and can be produced, for example, by forming the composite particles of the present invention described above into a sheet and then laminating it on a current collector. . From the viewpoint of efficient production of the positive electrode, etc., a method in which the composite particles are directly pressure-molded on the current collector is preferable.
  • a method of pressure molding for example, a roll type pressure molding device equipped with a pair of rolls is used, and the composite particles are fed by a feeder such as a screw feeder while feeding the current collector with the roll type pressure molding device.
  • the electrochemical device of the present invention is not particularly limited, and includes, for example, secondary batteries such as lithium ion secondary batteries; primary batteries such as lithium batteries and lithium air batteries; and preferably a secondary battery (especially a lithium ion secondary battery).
  • An electrochemical device of the present invention is characterized by comprising the positive electrode of the present invention described above. Therefore, the electrochemical device of the present invention has excellent electrochemical properties.
  • a lithium ion secondary battery as an electrochemical device of the present invention usually comprises electrodes (a positive electrode and a negative electrode), an electrolytic solution, and a separator, and uses the positive electrode of the present invention as the positive electrode.
  • the negative electrode one provided with a current collector and a negative electrode mixture layer formed on the surface of the current collector is usually used.
  • the current collector for the negative electrode for example, the same current collector as the current collector for the positive electrode may be used. Among them, copper foil is preferable as the current collector for the negative electrode. Alternatively, a metal such as lithium or silicon or an alloy thereof may be used instead of using a current collector as the negative electrode.
  • the negative electrode mixture layer is not particularly limited, and for example, a known material described in JP-A-2021-061256 or the like can be used.
  • an organic electrolytic solution in which a supporting electrolyte is dissolved in an organic solvent is usually used.
  • a lithium salt for example, is used as the supporting electrolyte.
  • lithium salts include LiPF 6 , LiAsF 6 , LiBF 4 , LiSbF 6 , LiAlCl 4 , LiClO 4 , CF 3 SO 3 Li, C 4 F 9 SO 3 Li, CF 3 COOLi, (CF 3 CO) 2 NLi. , (CF 3 SO 2 ) 2 NLi, (C 2 F 5 SO 2 ) NLi and the like.
  • LiPF 6 , LiClO 4 and CF 3 SO 3 Li are preferable, and LiPF 6 is particularly preferable, because they are easily dissolved in a solvent and exhibit a high degree of dissociation.
  • one electrolyte may be used alone, or two or more electrolytes may be used in combination at an arbitrary ratio.
  • lithium ion conductivity tends to increase as a supporting electrolyte with a higher degree of dissociation is used, so the lithium ion conductivity can be adjusted depending on the type of supporting electrolyte.
  • the organic solvent used in the electrolytic solution is not particularly limited as long as it can dissolve the supporting electrolyte.
  • Examples include dimethyl carbonate (DMC), ethylene carbonate (EC), diethyl carbonate (DEC), propylene carbonate (PC), carbonates such as butylene carbonate (BC) and methyl ethyl carbonate (EMC); esters such as ⁇ -butyrolactone and methyl formate; ethers such as 1,2-dimethoxyethane and tetrahydrofuran; sulfur-containing compounds such as sulfolane and dimethylsulfoxide and the like are preferably used. A mixture of these solvents may also be used.
  • carbonates are preferably used because they have a high dielectric constant and a wide stable potential range, and a mixture of ethylene carbonate and ethyl methyl carbonate is more preferably used.
  • concentration of the electrolyte in the electrolytic solution can be adjusted as appropriate, for example, it is preferably 0.5 to 15% by mass, more preferably 2 to 13% by mass, and 5 to 10% by mass. is more preferred.
  • known additives such as fluoroethylene carbonate and ethyl methyl sulfone may be added to the electrolytic solution.
  • the separator is not particularly limited, and for example, those described in JP-A-2012-204303 can be used. Among these, the film thickness of the entire separator can be made thin, and as a result, the ratio of the electrode active material in the lithium ion secondary battery can be increased to increase the capacity per volume. Microporous membranes made of resins of the system (polyethylene, polypropylene, polybutene, polyvinyl chloride) are preferred.
  • the lithium-ion secondary battery according to the present invention can be produced, for example, by stacking a positive electrode and a negative electrode with a separator interposed therebetween, winding or folding this according to the shape of the battery, if necessary, and putting it into a battery container. It can be produced by injecting an electrolytic solution into the container and sealing it. In order to prevent an increase in internal pressure of the secondary battery and the occurrence of overcharge/discharge, etc., a fuse, an overcurrent protection element such as a PTC element, an expanded metal, a lead plate, or the like may be provided as necessary.
  • the shape of the secondary battery may be, for example, coin-shaped, button-shaped, sheet-shaped, cylindrical, rectangular, or flat.
  • the cross section of the obtained composite particles was analyzed using SEM/EDX (scanning electron microscope/energy dispersive X-ray spectroscopy; JSM-7800F manufactured by JEOL) at an acceleration voltage of 15 kV and an LED (lower detector).
  • SEM/EDX scanning electron microscope/energy dispersive X-ray spectroscopy
  • JSM-7800F manufactured by JEOL
  • the carbon atom weight was measured.
  • the carbon atomic weight of the central region and the outer region of the composite particles is measured by the following procedure, and the carbon atomic weight of the central region is divided by the carbon atomic weight of the outer region to obtain the ratio of the carbon atomic weight of the outer region to the carbon atomic weight of the outer region.
  • a carbon atom weight ratio was determined.
  • Amount of carbon atoms in the central region In the cross-sectional image of the composite particle, the center of the square with a side length of 15 ⁇ m was aligned with the center of the cross section of the composite particle, and the square was divided into 9 regions with a side length of 5 ⁇ m. . Then, the carbon atom weight in each region was measured, and the average value was taken as the carbon atom weight in the central region.
  • Carbon atom weight in the outer region In the cross-sectional image of the composite particle, the center of the square with a side length of 15 ⁇ m is aligned with the center of the cross section of the composite particle, and at least one corner of the square is in contact with the outer edge of the cross section of the composite particle.
  • the square was moved vertically upwards and divided horizontally into three 15 ⁇ m ⁇ 5 ⁇ m regions.
  • the center of the square with a side length of 15 ⁇ m is aligned with the center of the cross section of the composite particle, and the square is lowered until at least one corner of the square touches the outer edge of the cross section of the composite particle.
  • the square was divided horizontally into three 15 ⁇ m ⁇ 5 ⁇ m regions.
  • the center of the square with a side length of 15 ⁇ m is aligned with the center of the cross section of the composite particle, and the square is moved to the right until at least one corner of the square touches the outer edge of the cross section of the composite particle.
  • the square was divided vertically into three regions of 15 ⁇ m ⁇ 5 ⁇ m.
  • the center of the square with a side length of 15 ⁇ m is aligned with the center of the cross section of the composite particle, and the square is left until at least one corner of the square touches the outer edge of the cross section of the composite particle.
  • the square was divided vertically into three regions of 15 ⁇ m ⁇ 5 ⁇ m. A total of 12 regions thus obtained were measured for the carbon atom weight of each region, and the average value was taken as the carbon atom weight of the outer region.
  • the average particle size of the binder resin was measured by a laser diffraction method using the aqueous binder resin dispersion prepared in each of the examples and comparative examples. Specifically, a binder resin water dispersion (adjusted to a solid content concentration of 0.1% by mass) was used as a sample, and a laser diffraction particle size distribution analyzer (manufactured by Beckman Coulter, product name: LS-13 320) was used. In the particle size distribution (volume basis) measured using ), the particle size D50 at which the cumulative volume calculated from the small size side becomes 50% was taken as the average particle size of the binder resin.
  • ⁇ Particle size distribution of carbon-based conductive material> For the carbon-based conductive material dispersion prepared in each example and comparative example, a wet laser diffraction/scattering particle size distribution analyzer (manufactured by Microtrack Bell Co., Ltd.: Microtrac MT-3200 II) was used to measure the particle size distribution. (volume basis) was measured. Then, in the obtained particle size distribution, the particle size of the peak that appears first from the small size side (first particle size D1), and the particle size of the peak that appears second from the small size side (second particle size D2 ) was measured.
  • ⁇ Viscosity of slurry composition> The viscosity of the slurry composition prepared in each example and comparative example was measured at 25° C.
  • the positive electrode for a lithium ion secondary battery produced in each example and comparative example was cut into a rectangle with a length of 100 mm and a width of 10 mm to make a test piece, and the surface having the positive electrode mixture layer was turned down and the surface of the positive electrode mixture layer was cellophane.
  • a tape (specified in JISZ1522) was attached to the surface of the SUS substrate. After that, the stress (N/m) was measured when one end of the current collector was pulled in the vertical direction at a speed of 50 mm/min and peeled off (the cellophane tape was fixed to the surface of the SUS substrate).
  • ⁇ Moldability (electrode appearance)> The number of defective coating portions having a diameter of 0.5 mm or more was visually measured for a range of 10 cm ⁇ 10 cm of the positive electrode mixture layer of the positive electrode for a lithium ion secondary battery produced in each example and comparative example. Evaluation criteria are shown below. The fewer the coating defects, the better the appearance of the positive electrode and the better the moldability of the composite particles. A: There are no coating defects, and the surface of the positive electrode mixture layer is smooth B: 1 or more and less than 5 coating defects C: 5 or more coating defects and less than 10 D: Coating defects 10 or more locations ⁇ Rate characteristics> The lithium ion secondary batteries produced in each example and comparative example were allowed to stand at a temperature of 25° C.
  • the battery was charged to a cell voltage of 3.35 V by a constant current method at a temperature of 25° C. and 0.2 C, and then subjected to aging treatment at a temperature of 60° C. for 12 hours. Then, the battery was discharged to a cell voltage of 2.50 V by a constant current method at a temperature of 25° C. and 0.2 C. After that, CC-CV charging (upper limit cell voltage 3.80V) was performed by a 0.2C constant current method, and CC discharge was performed to 2.60V by a 0.2C constant current method. This charge/discharge at 0.2C was repeated three times.
  • the battery was charged to 3.80 V by the constant current method at 0.1 C and then discharged to 2.60 V at 0.1 C to obtain the 0.1 C discharge capacity. Further, the battery was charged at 0.1C to 3.80V and then discharged at 1C to 2.60V to obtain the 1C discharge capacity.
  • the lithium ion secondary batteries produced in each example and comparative example were allowed to stand at a temperature of 25° C. for 5 hours after electrolyte injection. Next, it was charged to a cell voltage of 3.35 V by a constant current method at a temperature of 25° C. and 0.2 C, and then subjected to aging treatment at a temperature of 60° C. for 12 hours. Then, the battery was discharged to a cell voltage of 2.50 V by a constant current method at a temperature of 25° C. and 0.2 C.
  • CC-CV charging upper limit cell voltage 4.20V
  • CC discharge was performed to 3.00V by a 0.2C constant current method. This charge/discharge at 0.2C was repeated three times.
  • 100 cycles of charge/discharge operation were performed at a cell voltage of 3.80 to 2.60 V and a charge/discharge rate of 0.5 C under an environment of a temperature of 45°C.
  • the discharge capacity of the first cycle was defined as X1
  • the discharge capacity of the 100th cycle was defined as X2.
  • a larger value of the capacity retention rate indicates that the lithium ion secondary battery is more excellent in cycle characteristics.
  • Example 1 Manufacture of binder resin
  • Polymerization can A, 10.75 parts of 2-ethylhexyl acrylate as a (meth) acrylic acid ester monomer, 1.25 parts of acrylonitrile as a nitrile group-containing monomer, 0.12 parts of sodium lauryl sulfate, ion-exchanged water Then, 0.2 parts of ammonium persulfate and 10 parts of ion-exchanged water were added as polymerization initiators, heated to 60° C., and stirred for 90 minutes.
  • Daicel was stirred using a disper (3000 rpm, 10 minutes) with 30 parts of solid content equivalent and 6225 parts of water as a solvent, and then a bead mill (LMZ015, Ashizawa Fine Tech Co., Ltd.) and mixed at a peripheral speed of 8 m/s for 1 hour to prepare a carbon-based conductive material dispersion.
  • a bead mill (LMZ015, Ashizawa Fine Tech Co., Ltd.) and mixed at a peripheral speed of 8 m/s for 1 hour to prepare a carbon-based conductive material dispersion.
  • the particle size distribution was measured using the obtained carbon-based conductive material dispersion.
  • Composite particles were obtained by spray-drying the slurry composition using a spray dryer (manufactured by Okawara Kakoki Co., Ltd.). The average particle size of the obtained composite particles was 70 ⁇ m.
  • ⁇ Preparation of positive electrode for lithium ion secondary battery> The prepared composite particles are fed to a press roll (roll temperature 100 ° C., A press line pressure of 500 kN/m) was supplied. An aluminum foil having a thickness of 20 ⁇ m is inserted between the press rolls, and the composite particles supplied from a quantitative feeder are adhered onto the aluminum foil, pressure-molded at a molding speed of 1.5 m / min, and a basis weight of 25 mg / cm. 2 was obtained.
  • This positive electrode raw material was rolled by a roll press to produce a sheet-like positive electrode comprising a positive electrode mixture layer having a density of 2.4 g/cm 3 and an aluminum foil. Using this positive electrode, moldability, peel strength and electrode resistance were measured. Table 1 shows the results.
  • ⁇ Preparation of negative electrode for lithium ion secondary battery 33 parts of 1,3-butadiene as an aliphatic conjugated diene monomer, 3.5 parts of itaconic acid as an acidic group-containing monomer, and 63 parts of styrene as an aromatic vinyl monomer were placed in a 5 MPa pressure vessel equipped with a stirrer. 5 parts, 0.4 parts of sodium dodecylbenzenesulfonate as an emulsifier, 150 parts of ion-exchanged water, and 0.5 parts of potassium persulfate as a polymerization initiator are added, thoroughly stirred, and then heated to 50°C. to initiate polymerization.
  • the mixture was cooled to terminate the polymerization reaction to obtain a mixture containing a particulate binder resin (styrene-butadiene copolymer).
  • a particulate binder resin styrene-butadiene copolymer
  • unreacted monomers were removed by heating under reduced pressure distillation.
  • the mixture was cooled to 30° C. or less to obtain an aqueous dispersion containing the negative electrode binder resin.
  • 48.75 parts of artificial graphite as a negative electrode active material, 48.75 parts of natural graphite, and 1 part of carboxymethyl cellulose as a thickener were put into a planetary mixer.
  • the mixture was diluted with ion-exchanged water to a solid content concentration of 60%, and then kneaded for 60 minutes at a rotational speed of 45 rpm. After that, 1.5 parts of the aqueous dispersion containing the negative electrode binder resin obtained as described above was added in terms of solid content, and kneaded at a rotation speed of 40 rpm for 40 minutes. Then, ion-exchanged water was added so that the viscosity was 3000 ⁇ 500 mPa ⁇ s (measured at 25° C. and 60 rpm using a Brookfield viscometer) to prepare a negative electrode mixture layer slurry. Next, a copper foil having a thickness of 15 ⁇ m was prepared as a current collector.
  • the negative electrode mixture layer slurry was applied to a copper foil so that the coating amount after drying was 13 mg/cm 2 , and dried at 60° C. for 20 minutes and 120° C. for 20 minutes. After that, heat treatment was performed at 150° C. for 2 hours to obtain a negative electrode original fabric.
  • This negative electrode material was rolled by a roll press to produce a sheet-like negative electrode comprising negative electrode mixture layers (both sides) having a density of 1.6 g/cm 3 and copper foil.
  • Examples 2-3 A positive electrode, a negative electrode, and a separator were prepared in the same manner as in Example 1, except that the viscosity of the slurry composition was changed as shown in Table 1 during the production of the composite particles, and a lithium ion secondary battery was produced. . Then, various measurements and evaluations were performed. Table 1 shows the results.
  • Example 4 When producing the composite particles, the blending amounts of the positive electrode active material, the thickener and the dispersant, and the first particle diameter D1 and the second particle diameter D2 of the carbon-based conductive material were changed as shown in Table 1. Except for this, a positive electrode, a negative electrode, and a separator were prepared in the same manner as in Example 2 to manufacture a lithium ion secondary battery. Then, various measurements and evaluations were performed. Table 1 shows the results.
  • Examples 5-6 Example except that the blending amount of the carbon-based conductive material and the first particle diameter D1 and/or the second particle diameter D2 of the carbon-based conductive material were changed as shown in Table 1 during the production of the composite particles. 2, a positive electrode, a negative electrode, and a separator were prepared to manufacture a lithium ion secondary battery. Then, various measurements and evaluations were performed. Table 1 shows the results.
  • Example 7 When manufacturing the composite particles, the blending amount of the positive electrode active material, the type and blending amount of the dispersant, and the first particle diameter D1 and the second particle diameter D2 of the carbon-based conductive material are changed as shown in Table 1.
  • a positive electrode, a negative electrode, and a separator were prepared in the same manner as in Example 2 except that the lithium ion secondary battery was manufactured. Then, various measurements and evaluations were performed. Table 1 shows the results.
  • Example 8 Except for changing the blending amount of the carbon-based conductive material, the type of dispersant, and the first particle diameter D1 and the second particle diameter D2 of the carbon-based conductive material as shown in Table 1 when producing the composite particles.
  • Example 9 A positive electrode was prepared in the same manner as in Example 2 except that the type and amount of the carbon-based conductive material and the second particle diameter D2 of the carbon-based conductive material were changed as shown in Table 1 during the production of the composite particles. , a negative electrode, and a separator were prepared to manufacture a lithium ion secondary battery. Then, various measurements and evaluations were performed. Table 1 shows the results.
  • the ratio of the carbon atomic weight in the central region to the carbon atomic weight in the outer region is in the range of 0.3 or more and 1.0 or less. It can be seen that the electrochemical properties of the electrochemical device are excellent in the cases of ⁇ 9.
  • the composite particle for electrochemical element positive electrodes which can make an electrochemical element exhibit the outstanding electrochemical characteristic, and its manufacturing method can be provided. Further, according to the present invention, it is possible to provide a positive electrode for an electrochemical device that allows the electrochemical device to exhibit excellent electrochemical properties, and an electrochemical device that exhibits excellent electrochemical properties.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本発明は、電気化学素子に優れた電気化学特性を発揮させることができる電気化学素子正極用複合粒子を提供することを目的とする。本発明の電気化学素子正極用複合粒子は、正極活物質と、炭素系導電材と、結着樹脂とを含む電気化学素子正極用複合粒子であって、外側領域の炭素原子量に対する中心領域の炭素原子量の比(中心領域の炭素原子量/外側領域の炭素原子量)が0.3以上1.0以下であることを特徴とする。

Description

電気化学素子正極用複合粒子およびその製造方法、電気化学素子用正極、ならびに、電気化学素子
 本発明は、電気化学素子正極用複合粒子およびその製造方法、電気化学素子用正極、ならびに、電気化学素子に関する。
 小型で軽量であり、エネルギー密度が高く、さらに繰り返し充放電が可能な特性を活かして、リチウムイオン二次電池、電気二重層キャパシタおよびリチウムイオンキャパシタなどの電気化学素子は、その需要を急速に拡大している。そのため、近年では、電気化学素子の更なる高性能化を目的として、電極などの電池部材の改良が検討されている。
 ここで、リチウムイオン二次電池などの電気化学素子に用いられる電極は、通常、集電体と、該集電体上に形成された電極合材層とを備えている。そして、電極合材層は、例えば、電極活物質、導電材、および、電極活物質等を結着させる役割を担う結着樹脂を溶媒に分散させてなるスラリー組成物を集電体上に塗布し、乾燥させることにより形成される。
 また近年、電極合材層の形成方法として、電極活物質、導電材、および結着樹脂等を含むスラリーを噴霧乾燥することにより電気化学素子電極用複合粒子(以下、単に「複合粒子」ともいう)を得て、これをシート状に成形する方法が提案されている。例えば、特許文献1では、電極活物質、結着樹脂、および分散媒を含むスラリーを噴霧乾燥することにより複合粒子を得て、この複合粒子をプレス成形することにより電極合材層としての電極活物質層を形成している。
特開2015-026432号公報
 本発明者が検討したところ、電極活物質、導電材、および結着樹脂等を含むスラリー組成物を噴霧乾燥して得た複合粒子では、粒子内部の導電材、結着樹脂等の成分がマイグレーションして複合粒子の表面側(外側)に偏在し得ることがわかった。そして、電極活物質として正極活物質を用い、かつ、炭素材料で構成される導電材(炭素系導電材)を用いて複合粒子を製造すると、炭素系導電材が粒子表面側にマイグレーションすることにより、複合粒子の中心付近で正極活物質間の導電パスが減少して、得られる電気化学素子の電気化学特性が悪化することがわかった。
 したがって、従来の電気化学素子正極用複合粒子は、電気化学素子に優れた電気化学特性を付与するという点において改善の余地があった。
 そこで本発明は、電気化学素子に優れた電気化学特性を発揮させることができる電気化学素子正極用複合粒子およびその製造方法を提供することを目的とする。
 また本発明は、電気化学素子に優れた電気化学特性を発揮させることができる電気化学素子用正極、および、電気化学特性に優れる電気化学素子を提供することを目的とする。
 本発明者は、上記課題を解決することを目的として鋭意検討を行った。そして、本発明者は、正極活物質、炭素系導電材、および結着樹脂を含むスラリー組成物を噴霧乾燥して得た電気化学素子正極用複合粒子において、外側領域の炭素原子量に対する中心領域の炭素原子量の比を所定の範囲内とすれば、電気化学素子の電気化学特性を高めることができることを見出した。さらに、本発明者は、外側領域の炭素原子量に対する中心領域の炭素原子量の比が所定の範囲内である電気化学素子正極用複合粒子は、成形性に優れ、得られる電気化学素子に優れた外観を付与することができることを見出した。本発明は上記知見に基づいてなされたものである。
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明は、[1]正極活物質と、炭素系導電材と、結着樹脂とを含む電気化学素子正極用複合粒子であって、下記方法に従って測定された、外側領域の炭素原子量に対する中心領域の炭素原子量の比(中心領域の炭素原子量/外側領域の炭素原子量)が0.3以上1.0以下である電気化学素子正極用複合粒子である。
[測定方法]
 (1)複合粒子の断面像において、一辺の長さが15μmの正方形の中心と複合粒子の断面の中心とを合わせ、該正方形を一辺の長さが5μmの9つの領域に分ける。そして、各領域中の炭素原子量を測定し、その平均値を中心領域の炭素原子量とする。
 (2)複合粒子の断面像において、一辺の長さが15μmの正方形の中心と複合粒子の断面の中心とを合わせ、該中心から複合粒子の断面像の上下左右の4方向のそれぞれに該正方形を複合粒子の断面の外縁に接触するまで移動させる。各正方形を15μm×5μmの3領域に分け、合計12個の領域を得る。そして、各領域の炭素原子量を測定し、その平均値を外側領域の炭素原子量とする。
 (3)中心領域の炭素原子量を外側領域の炭素原子量で除する。
 このように、電気化学素子正極用複合粒子において、外側領域の炭素原子量に対する中心領域の炭素原子量の比が上記所定の範囲内であれば、電気化学素子に優れた電気化学特性を発揮させ得る。また、外側領域の炭素原子量に対する中心領域の炭素原子量の比が上記所定の範囲内である電気化学素子正極用複合粒子は、成形性に優れる。
[2]上記[1]の電気化学素子正極用複合粒子において、前記炭素系導電材の粒子径分布が複数のピークを有することが好ましい。このように、炭素系導電材の粒子径分布が複数のピークを有すれば、電気化学素子正極用複合粒子の成形性を一層高めつつ、電気化学素子に一層優れた電気化学特性を発揮させ得る。
 なお、本明細書において、炭素系導電材の粒子径分布は、実施例に記載の方法により測定することができる。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明は、[3]上記[1]または[2]の電気化学素子正極用複合粒子の製造方法であって、正極活物質と、炭素系導電材と、結着樹脂と、溶媒とを含むスラリー組成物を噴霧乾燥する工程を含む電気化学素子正極用複合粒子の製造方法である。
 このように、正極活物質と、炭素系導電材と、結着樹脂と、溶媒とを含むスラリー組成物を噴霧乾燥することにより、成形性に優れ、かつ、電気化学素子に優れた電気化学特性を発揮させることができる電気化学素子正極用複合粒子を得ることができる。
[4]上記[3]の電気化学素子正極用複合粒子の製造方法において、前記スラリー組成物の粘度が50mP・s以上であることが好ましい。スラリー組成物の粘度が50mP・s以上であれば、得られる複合粒子において炭素系導電材が粒子表面側にマイグレーションするのを良好に抑制することができる。
 なお、本発明において、スラリー組成物の粘度は実施例に記載の方法により測定することができる。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明は、[5]集電体と、前記集電体の上に形成された正極合材層とを備え、前記正極合材層は上記[1]または[2]の電気化学素子正極用複合粒子を用いてなる電気化学素子用正極である。このように、本発明の電気化学素子用正極は、成形性に優れ、かつ、電気化学素子の電気化学特性を高めることができる上述の電気化学素子正極用複合粒子を用いてなるため、外観に優れ、かつ、電気化学素子に優れた電気化学特性を発揮させ得る。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明は、[6]上記[5]の電気化学素子用正極を備える電気化学素子である。このように、本発明の電気化学素子は、電気化学素子に優れた電気化学特性を発揮させ得る上述の電気化学素子正極を備えるため、電気化学特性に優れる。
 本発明によれば、電気化学素子に優れた電気化学特性を発揮させることができる電気化学素子正極用複合粒子およびその製造方法を提供することができる。
 また本発明によれば、電気化学素子に優れた電気化学特性を発揮させることができる電気化学素子用正極、および、電気化学特性に優れる電気化学素子を提供することができる。
 以下、本発明の実施形態について詳細に説明する。
 ここで、本発明の電気化学素子正極用複合粒子は、本発明の電気化学素子正極用複合粒子の製造方法により好適に製造することができる。本発明の電気化学素子用正極は、本発明の電気化学素子正極用複合粒子を用いてなるものである。また、本発明の電気化学素子は、本発明の電気化学素子用正極を備えるものである。
(電気化学素子正極用複合粒子)
 本発明の電気化学素子正極用複合粒子(以下、単に「複合粒子」ともいう)は、正極活物質と、炭素系材料と、結着樹脂とを含み、任意に、分散剤や増粘剤等のその他の成分を更に含み得る。そして、本発明の複合素子は、下記方法に従って測定される、外側領域の炭素原子量に対する中心領域の炭素原子量の比(中心領域の炭素原子量/外側領域の炭素原子量)が0.3以上1.0以下であることを特徴とする。
 [測定方法]
 (1)複合粒子の断面像において、一辺の長さが15μmの正方形の中心と複合粒子の断面の中心とを合わせ、該正方形を一辺の長さが5μmの9つの領域に分ける。そして、各領域中の炭素原子量を測定し、その平均値を中心領域の炭素原子量とする。
 (2)複合粒子の断面像において、一辺の長さが15μmの正方形の中心と複合粒子の断面の中心とを合わせ、該中心から複合粒子の断面像の上下左右の4方向のそれぞれに該正方形を複合粒子の断面の外縁に接触するまで移動させる。各正方形を15μm×5μmの3領域に分け、合計12個の領域を得る。そして、各領域の炭素原子量を測定し、その平均値を外側領域の炭素原子量とする。
 (3)中心領域の炭素原子量を外側領域の炭素原子量で除する。
 複合粒子の観察断面を得る方法は、特に限定されず、例えば、イオンミリング法を用いることができる。また、複合粒子の断面像は、特に限定されず、走査型電子顕微鏡(SEM)等により得ることができる。さらに、炭素原子量は、特に限定されず、エネルギー分散型X線分光法(EDX)等により測定することができる。測定は、例えば、SEMで観察を行いながらその領域の元素分析を行うことができる装置であるSEM/EDXを用いて好適に行うことができる。なお、測定は、通常、複合粒子の断面像における粒子径(最大直径)が15μm以上500μm以下である複合粒子を対象とする。また、上記工程(2)において、各正方形の分割方向は、垂直方向でもよいし(すなわち、正方形を縦三分割)、水平方向でもよい(すなわち、正方形を横三分割)。
 本発明の複合粒子は、外側領域の炭素原子量に対する中心領域の炭素原子量の比が上記所定の範囲内にあることにより、電気化学素子に優れた電気化学特性を発揮させることができることができる。その理由は必ずしも定かではないが、以下のとおりであると推察される。
 すなわち、外側領域の炭素原子量に対する中心領域の炭素原子量の比が上記所定の範囲内の複合粒子では、炭素系導電材が過度に偏在しておらず、粒子全体で導電パスが確保され、その結果、電気化学素子の電気化学特性が向上するものと推察される。
 また、外側領域の炭素原子量に対する中心領域の炭素原子量の比が上記所定の範囲内の複合粒子が優れた成形性を示す理由は必ずしも定かではないが、このような複合粒子では、結着樹脂が粒子表面側にマイグレーションしており、その結果、成形性が向上するものと推察される。
 そして、成形性を一層高め、かつ、電気化学素子に一層優れた電気化学特性を発揮させる観点からは、外側領域の炭素原子量に対する中心領域の炭素原子量の比は、0.4以上であることが好ましく、0.65以上であることがより好ましく、0.7以上であることが更に好ましく、0.8以上であることが特に好ましく、また、0.99以下であることが好ましい。
 複合粒子における外側領域の炭素原子量に対する中心領域の炭素原子量の比は、例えば、用いる炭素系導電材の種類、炭素系導電材の粒子径分布、後述するスラリー組成物の粘度等を調節することにより制御することができる。
<正極活物質>
 正極活物質としては、特に限定されることなく、電気化学素子に用いられる既知の正極活物質活物質を挙げることができる。具体的には、例えば、電気化学素子の一例としてのリチウムイオン二次電池の正極合材層において使用し得る正極活物質としては、特に限定されることなく、例えば、遷移金属を含有する化合物、例えば、遷移金属酸化物、遷移金属硫化物、リチウムと遷移金属との複合金属酸化物などを用いることができる。なお、遷移金属としては、例えば、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo等が挙げられる。
 具体的には、正極活物質としては、特に限定されることなく、リチウム含有コバルト酸化物(LiCoO)、マンガン酸リチウム(LiMn)、リチウム含有ニッケル酸化物(LiNiO)、Co-Ni-Mnのリチウム含有複合酸化物、Ni-Mn-Alのリチウム含有複合酸化物、Ni-Co-Alのリチウム含有複合酸化物、オリビン型リン酸鉄リチウム(LiFePO)、オリビン型リン酸マンガンリチウム(LiMnPO)、Li1+xMn2-x(0<X<2)で表されるリチウム過剰のスピネル化合物、Li[Ni0.17Li0.2Co0.07Mn0.56]O、LiNi0.5Mn1.5等が挙げられる。
 これらの中でも、電気化学素子の電気化学特性を一層高める観点から、オリビン型リン酸鉄リチウム(LiFePO)が好ましい。
 なお、上述した正極活物質は、1種類を単独で使用してもよいし、2種類以上を組み合わせて用いてもよい。
<炭素系導電材>
 炭素系導電材は、正極合材層中で正極活物質同士の電気的接触を確保し得る炭素材料である。炭素系導電材としては、特に限定さないが、ファーネスブラック、アセチレンブラック、およびケッチェンブラック(登録商標)等のカーボンブラック;天然黒鉛、人造黒鉛等の黒鉛;ポリアクリロニトリル系炭素繊維、ピッチ系炭素繊維、VGCF(気相法炭素繊維)、カーボンナノチューブ(以下、単に「CNT」ともいう)、グラフェン等が挙げられる。これらは1種単独で、または2種以上を組み合わせて用いることができる。
 中でも、電気化学素子に一層優れた電気化学特性を発揮させる観点からは、炭素系導電材は、2種類以上の炭素系導電材を含むことが好ましい。2種類以上の炭素系導電材としては、2種類のカーボンブラック、または、CNTとカーボンブラックとの組み合わせが好ましく、CNTとカーボンブラックとの組み合わせがより好ましい。
 CNTは、単層カーボンナノチューブであっても、多層カーボンナノチューブであってもよい。中でも、CNTは多層カーボンナノチューブであることが好ましい。またCNTとしては、単層CNTと多層CNTを組み合わせて使用してもよい。多層CNTを用いれば、分散液中のCNTの分散性を向上させつつ、電気化学素子のサイクル後における内部抵抗の上昇を一層抑制することができる。
 また、CNTは、BET比表面積が100m/g以上であることが好ましく、150m/g以上であることがより好ましく、また、1000m/g以下であることが好ましく、500m/g以下であることがより好ましい。CNTのBET比表面積が上述した範囲内であれば、電気化学素子の電気化学特性を更に向上させることができる。
 本明細書において、「BET比表面積」とは、BET法を用いて測定した窒素吸着比表面積を意味する。
 CNTは、特に限定されることなく、アーク放電法、レーザーアブレーション法、化学的気相成長法(CVD法)などの既知のCNTの合成方法を用いて合成したものを使用することができる。
 複合粒子中のカーボンブラックに対するCNTの質量比(CNT/カーボンブラック)は、0.01以上であることが好ましく、0.05以上であることがより好ましく、また、100以下であることが好ましく、50以下であることがより好ましい。カーボンブラックに対するCNTの質量比が上記範囲内であれば、複合粒子の成形性を一層向上させつつ、電気化学素子に一層優れた電気化学特性を発揮させることができる。
[粒子径分布]
 炭素系導電材は、粒子径分布が複数のピークを有することが好ましい。すなわち、粒子径分布は多峰性であることが好ましい。粒子径分布が複数のピークを有すれば、複合粒子の成形性を一層向上させつつ、電気化学素子に一層優れた電気化学特性を発揮させることができる。炭素系導電材の粒子径分布は2つのピークを有していてもよいし、3つ以上のピークを有していてもよい。
 また、粒子径分布が2つ以上のピークを有する場合、複合粒子の成形性を一層向上させつつ、電気化学素子に一層優れた電気化学特性を発揮させる観点からは、粒子径分布において、小径側から1番目に現れるピークの粒子径(以下、「第1の粒子径D1」ともいう)は0.05μm以上であることが好ましく、0.5μm以上であることがより好ましく、また、1μm以下であることが好ましく、0.9μm以下であることがより好ましい。同じ理由から、粒子径分布において、小径側から2番目に現れるピークの粒子径(以下、「第2の粒子径D2」ともいう)は1μm超であることが好ましく、4μm以上であることがより好ましく、6.5μm以上であることが更に好ましく、また、40μm以下であることが好ましく、20μm以下であることがより好ましい。
 なお、粒子径分布におけるピークの数や、第1の粒子径D1および第2の粒子径D2は、例えば、炭素系導電材の種類および/または使用量、後述する炭素系導電材分散液を調製する際に使用し得る分散剤の種類および/または量や、分散条件を適宜変更することにより制御することができる。
[炭素系導電材の含有量]
 本発明の複合粒子中における炭素系導電材の含有量は、正極活物質100質量部に対して、0.1質量部以上であることが好ましく、0.5質量部以上であることがより好ましく、また、10質量部以下であることが好ましく、5質量部以下であることがより好ましい。炭素系導電材の含有量の含有量が上記範囲内であれば、得られる電気化学素子用正極の電気抵抗の増大を抑制して、電気化学素子に一層優れた電気化学特性を発揮させることができる。
<結着樹脂>
 結着樹脂は、正極合材層を集電体に密着させると共に、正極活物質および炭素系導電材等の成分が正極合材層から脱離することを抑制し得るバインダーとして機能する成分である。結着樹脂の形状は、特に限定されないが、粒子状であり得る。
 結着樹脂としては、特に限定されず、例えば、酸性基含有単量体単位、(メタ)アクリル酸エステル単量体単位、ニトリル基含有単量体単位を含む重合体を用いることができる。中でも、(メタ)アクリル酸エステル単量体単位を含むアクリル系重合体を用いることが好ましい。
 なお、本明細書において、「(メタ)アクリル」とは、アクリルおよび/またはメタクリルを意味する。
[酸性基含有単量体単位]
 酸性基含有単量体単位を形成しうる酸性基含有単量体としては、例えば、カルボン酸基を有する単量体、スルホン酸基を有する単量体、およびリン酸基を有する単量体が挙げられる。なお、カルボン酸基を有する単量体、スルホン酸基を有する単量体、およびリン酸基を有する単量体としては、特開2017-069108号公報に記載されたものが挙げられる。これらの中でも、カルボン酸基を有する単量体が好ましく、メタクリル酸がより好ましい。酸性基含有単量体は、1種を単独で、または、2種以上を組み合わせて用いることができる。
 酸性基含有単量体単位の割合は、重合体に含有される全繰り返し単位の量を100質量%としたときに、0.1質量%以上であることが好ましく、0.5質量%以上であることがより好ましく、0.8質量%以上であることが更に好ましく、また、30質量%以下であることが好ましく、20質量%以下であることがより好ましく、10質量%以下であることが更に好ましい。
[(メタ)アクリル酸エステル単量体単位]
 (メタ)アクリル酸エステル単量体単位を形成しうる(メタ)アクリル酸エステル単量体としては、特開2017-050112号公報に記載されたものが挙げられる。これらの中でも、2-エチルヘキシルアクリレートが好ましい。(メタ)アクリル酸エステル単量体は、1種を単独で、または、2種以上を組み合わせて用いることができる。
 (メタ)アクリル酸エステル単量体単位の割合は、重合体に含有される全繰り返し単位の量を100質量%としたときに、50質量%以上であることが好ましく、55質量%以上であることがより好ましく、58質量%以上であることが更に好ましく、また、98質量%以下であることが好ましく、97質量%以下であることがより好ましく、96質量%以下であることが更に好ましい。
[ニトリル基含有単量体単位]
 ニトリル基含有単量体単位を形成しうるニトリル基含有単量体としては、α,β-エチレン性不飽和ニトリル単量体が挙げられる。具体的には、α,β-エチレン性不飽和ニトリル単量体としては、ニトリル基を有するα,β-エチレン性不飽和化合物であれば特に限定されないが、例えば、アクリロニトリル;α-クロロアクリロニトリル、α-ブロモアクリロニトリルなどのα-ハロゲノアクリロニトリル;メタクリロニトリル、α-エチルアクリロニトリルなどのα-アルキルアクリロニトリル;などが挙げられる。これらの中でも、アクリロニトリルが好ましい。ニトリル基含有単量体は、1種を単独で、または、2種以上を組み合わせて用いることができる。
 ニトリル基含有単量体単位の割合は、重合体に含有される全繰り返し単位の量を100質量%としたときに、1質量%以上であることが好ましく、2質量%以上であることがより好ましく、5質量%以上であることが更に好ましく、また、90質量%以下であることが好ましく、80質量%以下であることがより好ましく、70質量%以下であることが更に好ましい。
[平均粒子径]
 結着樹脂が粒子状である場合、結着樹脂を複合粒子の表面側にマイグレーションし易くして成形性を一層向上させる観点からは、結着樹脂の平均粒子径は0.05μm以上であることが好ましく、0.08μm以上であることがより好ましく、0.23μm以上であることが更に好ましく、また、5μm以下であることが好ましく、10μm以下であることがより好ましい。
 なお、結着樹脂の平均粒子径は、レーザー回折法により小径側から計算した累積体積が50%となる粒子径D50をいい、実施例に記載の方法により測定することができる。
[結着樹脂の含有量]
 本発明の複合粒子中における結着樹脂の含有量は、正極活物質100質量部に対して、0.2質量部以上であることが好ましく、0.5質量部以上であることがより好ましく、また、10質量部以下であることが好ましく、5質量部以下であることがより好ましい。炭素系導電材の含有量の含有量が上記範囲内であれば、電気化学素子に一層優れた電気化学特性を発揮させることができる。
[炭素系導電材に対する結着樹脂の質量比]
 炭素系導電材に対する結着樹脂の質量比(結着樹脂/炭素系導電材)は、0.2以上であることが好ましく、0.5以上であることがより好ましく、また、5以下であることが好ましく、3以下であることがより好ましい。
 また、複合粒子の成形性の観点からは、結着樹脂は、複合粒子の中心部(粒子の中心から半径の50%までの範囲)よりも、複合粒子の外側部(中心部よりも外側)に多く存在していることが好ましい。
[製造方法]
 上述した結着樹脂としての重合体の製造方法は特に限定されない。重合体は、例えば、上述した単量体を含む単量体組成物を重合することにより得ることができる。ここで、重合体の製造に用いる単量体組成物中の各単量体の含有割合は、重合体中の各繰り返し単位の含有割合に準じて定めることができる。
 そして、重合様式は、特に制限なく、溶液重合法、懸濁重合法、塊状重合法、乳化重合法などのいずれの方法も用いることができる。また、重合反応としては、イオン重合、ラジカル重合、リビングラジカル重合などいずれの反応も用いることができる。
<その他の成分>
 その他の成分としては、後述するスラリー組成物の調製に用いられ得る増粘剤や分散剤が挙げられる。
 本発明の複合粒子中におけるその他の成分の割合は、正極活物質100質量部に対して0.5質量部以上であることが好ましく、1質量部以上であることがより好ましく、また、10質量部以下であることが好ましく、5質量部以下であることがより好ましい。
 また、本発明の複合粒子中におけるその他の成分の割合は、炭素系導電材および結着樹脂の合計100質量部に対して0.01質量部以上であることが好ましく、0.5質量部以上であることがより好ましく、また、5質量部以下であることが好ましく、3質量部以下であることがより好ましい。
<平均粒子径>
 本発明の複合粒子は、平均粒子径が5μm以上であることが好ましく、15μm以上であることがより好ましく、20μm以上であることが更に好ましく、55μm以上であることがより更に好ましく、65μm以上であることが特に好ましく、また、500μm以下であることが好ましく、300μm以下であることがより好ましく、200μm以下であることが更に好ましい。複合粒子の平均粒子径が上記範囲内であれば、粒子の流動性が良好なため、成形時の粉体供給がしやすくなる。
 なお、本発明において、複合粒子の平均粒子径は実施例に記載の方法により測定することができる。
<体積抵抗率>
 本発明の複合粒子の体積抵抗率は、30Ω・cm以下であることが好ましく、20Ω・cm以下であることがより好ましい。複合粒子の体積抵抗率の下限は、特に限定されないが、例えば、1Ω・cm以上であり得る。複合粒子の体積抵抗率が上記上限値以下であれば、得られる電気化学素子の電気化学特性を高めることができる。
 なお、複合粒子の体積抵抗率は、直径25.4mm、密度3.2g/cmとなるように加圧成形してペレットを作製し、このペレットの電気抵抗をデジタルLCRメーターにより測定し、測定した電気抵抗値を体積抵抗率(Ω・cm)に換算することにより求めた値である。
<安息角>
 本発明の複合粒子の安息角は45度以下であることが好ましく、40度以下であることがより好ましい。安息角が上記上限値以下であれば、複合粒子の流動性が優れるため、成形性を一層高めることができる。
 なお、安息角は、粉体を落下・堆積させたときに形成される山の稜線の角度であり、JIS R9301-2-2「アルミナ粉末-第2部:物性測定方法-2:安息角」に規定される方法により測定される値(°)を意味する。用い得る具体的な測定装置しては、粉体特性評価装置、例えばパウダテスタPT-X(ホソカワミクロン社製)が挙げられる。
<面積円形度>
 本発明の複合粒子の面積円形度は、0.80以上であることが好ましく、また、0.90以下であることが好ましい。複合粒子の面積円形度が上記下限値以上であれば、複合粒子を用いて形成した正極における正極活物質の割れを抑制することができる。また、複合粒子の面積円形度が上記上限値以下であれば、得られる電気化学素子のレート特性を高めることができる。
 なお、複合粒子の面積円形度は、JIS Z 8827-1に従う画像解析法に基づいて、4000個の複合粒子の画像を二値化処理して解析し、解析した粒子4000個について、式:4πA/P2(A:投影面積、P:周囲長)を用いて算出した面積円形度の平均値である。
<周囲長包絡度>
 本発明の複合粒子の周囲長包絡度は、0.5以上であることが好ましく、0.97以下であることが好ましい。複合粒子の周囲長包絡度が上記上限値以下であれば、得られる電気化学素子のサイクル特性を高めることができる。
 なお、複合粒子の周囲長包絡度は、JIS Z 8827-1に従う画像解析法に基づいて、4000個の複合粒子の画像を二値化処理して解析し、観察視野内の全粒子の、凸形外接図形(最小凸包)の周囲長を周囲長Pで除したものの平均値である。
<かさ密度>
 本発明の複合粒子のかさ密度は、0.3g/cm以上3.5g/cm以下であることが好ましい。かさ密度が上記下限値以上であれば、複合粒子を用いて形成した正極における正極活物質の割れを抑制することができる。また、かさ密度が上記上限値以下であれば得られる正極の柔軟性を高めることができる。
 なお、複合粒子のかさ密度は、JIS R 1628-1997に記載の定容積測定法に基づき測定することができる。
<密度係数>
 本発明の複合粒子の密度係数は、1.3以上3.5以下であることが好ましい。密度係数が上記下限値以上であれば、得られる正極の柔軟性およびかかる正極を備える電気化学素子のサイクル特性を向上させることができる。密度係数が上記上限値以下であれば、得られる正極中において正極活物質の割れが発生することを良好に抑制することができる。
 なお、密度係数は、圧縮密度をかさ密度で除することにより得ることができる。ここで、圧縮密度は、複合粒子4.00gを、50MPaで加圧し底面積2cm(直径:15.97mm)の円筒型ペレットを作製し、その厚みを測定することにより求めることができる。
(電気化学素子正極用複合粒子の製造方法)
 本発明の電気化学素子正極用複合粒子の製造方法は、正極活物質と、炭素系導電材と、結着樹脂と、溶媒とを含むスラリー組成物を噴霧乾燥する工程(噴霧乾燥工程)を含み、任意で、得られた複合粒子を分級する工程(分級工程)等のその他の工程を更に含み得る。以下、各工程について説明する。
<噴霧乾燥工程>
 噴霧工程では、上記スラリー組成物を噴霧乾燥して複合粒子を製造する。噴霧乾燥は、熱風中にスラリー組成物を噴霧および乾燥して造粒物を得る方法である。
 ここで、スラリー組成物の噴霧に用いられる装置としては、特に限定されず、アトマイザー等が挙げられる。アトマイザーとしては、回転円盤方式、カップ方式、二流体ノズル方式、および加圧方式などの装置が挙げられる。
 噴霧乾燥時の熱風温度は、好ましくは25~250℃、より好ましくは50~220℃、さらに好ましくは80~200℃である。噴霧乾燥法において、熱風の吹き込み方法は特に限定されず、たとえば、熱風と噴霧方向が横方向に並流する方式、乾燥塔頂部で噴霧され熱風と共に下降する方式、噴霧した滴と熱風が向流接触する方式、噴霧した滴が最初熱風と並流し次いで重力落下して向流接触する方式等が挙げられる。
 噴霧されるスラリー組成物の温度は、限定されず、室温としてもよいし、加温して室温より高い温度としてもよい。
 噴霧乾燥は、公知の噴霧乾燥機を用いて行うことができる。
[スラリー組成物]
 上記スラリー組成物は、正極活物質、炭素系導電材、結着樹脂、および溶媒を含み、任意で、分散剤、増粘剤等のその他の成分を更に含み得る。
 正極活物質、炭素系導電材、および結着樹脂としては、上述した「本発明の電気化学素子正極用複合粒子」の項目で説明したものを用いることができる。
‐溶媒‐
 スラリー組成物に用いる溶媒としては、特に限定されず、水および有機溶媒の何れも使用することができる。有機溶媒としては、例えば、アセトニトリル、N-メチル-2-ピロリドン、テトラヒドロフラン、アセトン、アセチルピリジン、シクロペンタノン、ジメチルホルムアミド、ジメチルスルホキシド、メチルホルムアミド、メチルエチルケトン、フルフラール、エチレンジアミン、ジメチルベンゼン(キシレン)、メチルベンゼン(トルエン)、シクロペンチルメチルエーテル、およびイソプロピルアルコールなどを用いることができる。中でも、水を用いることが好ましい。
 また、これらの溶媒は、1種単独で、または2種以上を任意の混合比率で混合して用いることができる。
‐増粘剤‐
 増粘剤としては、カルボキシメチルセルロース、メチルセルロース、ヒドロキシプロピルセルロースなどのセルロース系ポリマーおよびこれらのアンモニウム塩、ならびにアルカリ金属塩、(変性)ポリ(メタ)アクリル酸およびこれらのアンモニウム塩、ならびにアルカリ金属塩、(変性)ポリビニルアルコール、アクリル酸またはアクリル酸塩とビニルアルコールの共重合体、無水マレイン酸またはマレイン酸もしくはフマル酸とビニルアルコールの共重合体などのポリビニルアルコール類、ポリエチレングリコール、ポリエチレンオキシド、ポリビニルピロリドン、変性ポリアクリル酸、酸化スターチ、リン酸スターチ、カゼイン、各種変性デンプンなどが挙げられる。これらの増粘剤は、1種単独で、または2種以上を組み合わせて用いることができる。中でも、カルボキシメチルセルロースを用いることが好ましい。
‐分散剤‐
 分散剤としては、特に限定されず、上述した増粘剤としても機能し得るポリビニルピロリドンおよびカルボキシメチルセルロースや、ナフタレンスルホン酸ホルムアルデヒド縮合物等を好適に用いることができる。これらの分散剤は、1種単独で、または2種以上を組み合わせて用いることができる。中でも、カルボキシメチルセルロースを用いることが好ましい。
‐粘度‐
 スラリー組成物の粘度は、50mP・s以上であることが好ましく、100mP・s以上であることがより好ましく、800mP・s以上であることが更に好ましく、また、10000mP・s以下であることが好ましく、5000mP・s以下であることがより好ましく、3000mP・s以下であることが更に好ましい。
 スラリー組成物の粘度が上記範囲内であれば、炭素系導電材が粒子表面側へマイグレーションすることを良好に抑制しつつ、結着樹脂を粒子表面側に良好にマイグレーションさせることができるため、複合粒子の成形性を一層高めつつ、得られる電気化学素子に一層優れた電気化学特性を発揮させることができる。
 スラリー組成物の粘度は、例えば、スラリー組成物中の水等の溶媒の量や、増粘剤の種類および/または量を変更することにより適宜調節することができる。
‐全固形分濃度‐
 スラリー組成物の全固形分濃度は、45質量%以上であることが好ましく、50%以上であることがより好ましく、また、80質量%以下であることが好ましく、70質量%以下であることがより好ましい。
 スラリー組成物の全固形分濃度が上記範囲内であれば、スラリー組成物の粘度を容易に調節することができる。
‐調製方法‐
 上記スラリー組成物は、特に限定されることなく、例えば、上述した、正極活物質、炭素系導電材、結着樹脂、および任意に添加される分散剤や増粘剤等のその他の成分を溶媒中に添加して混合することにより調製することができる。これらの成分を溶媒に添加する方法や順番は特に限定されない。
 混合装置としては、例えば、ボールミル、サンドミル、ビーズミル、顔料分散機、らい潰機、超音波分散機、ホモジナイザー、ホモミキサー、プラネタリーミキサー等を用いることができる。混合は、好ましくは室温以上80℃以下で、10分間以上数時間以内で行う。
 複合粒子中において炭素系導電材を均一に分散させる観点からは、炭素系導電材を含む分散液(ペースト)を予め調製し、この分散液を正極活物質等と混合することによりスラリー組成物を調製することが好ましい。炭素系導電材を含む分散液(炭素系導電材分散液)の調製方法は、特に限定されず、炭素系導電材と、任意で上述した分散剤とを水等の溶媒中に添加して混合し、得られた混合液を公知の分散機で分散処理することにより得ることができる。
<分級工程>
 分級工程は、噴霧乾燥工程を経て得られた複合粒子を分級する工程である。分級方法としては特に限定されないが、重力分級、慣性分級、および遠心分級などの乾式分級法; 沈降分級、機械式分級、および水力分級などの湿式分級法; 振動篩いや面内運動篩いなどの篩い網を用いた、篩い分け分級法;などの分級法を採用することができる。中でも、篩い分け分級法が好ましい。分級工程を行うことにより、所望の粒子径の複合粒子を容易に得ることができる。
(電気化学素子用正極)
 本発明の電気化学素子用正極(以下、単に「正極」ともいう)は、正極合材層と、集電体とを少なくとも備える。そして、本発明の正極は、正極合材層が上述した本発明の複合粒子を用いてなるため、外観に優れると共に、電気化学素子に優れた電気化学特性を発揮させることができる。
 本発明の正極は、集電体の片面のみに正極合材層を備えていてもよいし、両面に正極合材層を備えていてもよい。また、本発明の正極は、電極の表面(特には、正極合材層側の表面)に正極合材層および集電体以外の層(以下、単に「その他の層」という)を備えていてもよい。
<正極合材層>
 正極合材層は、上述したとおり、本発明の複合粒子を用いてなるものである。すなわち、正極合材層は、上述した、正極活物質、炭素系導電材、および結着樹脂を含み、任意で、上述した分散剤や増粘剤等のその他の成分を含み得る。
 なお、正極合材層中に含まれている各成分は、上述した本発明の複合粒子中に含まれているものであり、正極合材層中におけるそれら各成分の好適な存在比や属性は、複合粒子中の各成分の好適な存在比や属性と同じである
<集電体>
 集電体としては、電気導電性を有し、かつ、電気化学的に耐久性のある材料を電気化学素子の種類に応じて選択して用いることができる。例えば、リチウムイオン二次電池用正極の集電体としては、鉄、銅、アルミニウム、ニッケル、ステンレス鋼、チタン、タンタル、金、白金などからなる集電体を用い得る。これらの中でも、正極に用いる集電体としては、アルミニウム箔が特に好ましい。なお、前記の材料は、1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。
<その他の層>
 正極の表面(特には、正極合材層側の表面)に任意に設けられるその他の層としては、特に限定されず、例えば、耐熱性向上を目的として設けられる既知の耐熱層や、セパレータ等の他の電池部材との接着性向上を目的として設けられる既知の接着層が挙げられる。
<製造方法>
 上述した正極合材層を備える本発明の正極は、特に限定されず、例えば、上述した本発明の複合粒子をシート状に成形し、次いで集電体上に積層することにより製造することができる。正極を効率よく製造する等の観点からは、集電体上で複合粒子を直接加圧成形する方法が好ましい。
 加圧成形する方法としては、例えば、一対のロールを備えたロール式加圧成形装置を用い、集電体をロールで送りながら、スクリューフィーダー等の供給装置で複合粒子をロール式加圧成形装置に供給することで、集電体上で、正極合材層を成形するロール加圧成形法;複合粒子を集電体上に散布し、複合粒子をブレード等でならして厚みを調整し、次いで加圧装置で成形する方法などが挙げられる。これらの中でも、ロール加圧成形法が好ましい。
(本発明の電気化学素子)
 本発明の電気化学素子は、特に限定されることなく、例えば、リチウムイオン二次電池などの二次電池;リチウム電池、リチウム空気電池などの一次電池;電気二重層キャパシタおよびリチウムイオンキャパシタなどのキャパシタであり、好ましくは、二次電池(特に、リチウムイオン二次電池)である。そして、本発明の電気化学素子は、上述した本発明の正極を備えることを特徴とする。そのため、本発明の電気化学素子は電気化学特性に優れる。
 ここで、以下では、一例として電気化学素子がリチウムイオン二次電池である場合について説明するが、本発明は下記の一例に限定されるものではない。本発明の電気化学素子としてのリチウムイオン二次電池は、通常、電極(正極および負極)、電解液、ならびに、セパレータを備え、正極として上述した本発明の正極を使用する。
<負極>
 負極としては、通常、集電体と、集電体の表面に形成された負極合材層とを備えるものを用いる。負極の集電体としては、例えば、正極の集電体と同様のものを用いてもよい。中でも、負極用の集電体としては、銅箔が好ましい。また、負極として集電体を用いず、例えばリチウム、シリコンなどの金属やそれらの合金を用いてもよい。負極合材層は、特に限定されず、例えば、特開2021‐061256号公報等に記載の公知のものを用いることができる。
<電解液>
 電解液としては、通常、有機溶媒に支持電解質を溶解した有機電解液が用いられる。支持電解質としては、例えば、リチウム塩が用いられる。リチウム塩としては、例えば、LiPF、LiAsF、LiBF、LiSbF、LiAlCl、LiClO、CFSOLi、CSOLi、CFCOOLi、(CFCO)NLi、(CFSONLi、(CSO)NLiなどが挙げられる。なかでも、溶媒に溶けやすく高い解離度を示すので、LiPF、LiClO、CFSOLiが好ましく、LiPFが特に好ましい。なお、電解質は1種類を単独で用いてもよく、2種類以上を任意の比率で組み合わせて用いてもよい。通常は、解離度の高い支持電解質を用いるほどリチウムイオン伝導度が高くなる傾向があるので、支持電解質の種類によりリチウムイオン伝導度を調節することができる。
 電解液に使用する有機溶媒としては、支持電解質を溶解できるものであれば特に限定されないが、例えば、ジメチルカーボネート(DMC)、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、メチルエチルカーボネート(EMC)等のカーボネート類;γ-ブチロラクトン、ギ酸メチル等のエステル類;1,2-ジメトキシエタン、テトラヒドロフラン等のエーテル類;スルホラン、ジメチルスルホキシド等の含硫黄化合物類;などが好適に用いられる。またこれらの溶媒の混合液を用いてもよい。中でも、誘電率が高く、安定な電位領域が広いのでカーボネート類を用いることが好ましく、エチレンカーボネートとエチルメチルカーボネートとの混合物を用いることが更に好ましい。
 なお、電解液中の電解質の濃度は適宜調整することができ、例えば0.5~15質量%することが好ましく、2~13質量%とすることがより好ましく、5~10質量%とすることが更に好ましい。また、電解液には、既知の添加剤、例えばフルオロエチレンカーボネートやエチルメチルスルホンなどを添加してもよい。
<セパレータ>
 セパレータとしては、特に限定されることなく、例えば特開2012-204303号公報に記載のものを用いることができる。これらの中でも、セパレータ全体の膜厚を薄くすることができ、これにより、リチウムイオン二次電池内の電極活物質の比率を高くして体積あたりの容量を高くすることができるという点より、ポリオレフィン系(ポリエチレン、ポリプロピレン、ポリブテン、ポリ塩化ビニル)の樹脂からなる微多孔膜が好ましい。
<リチウムイオン二次電池の製造方法>
 本発明に従うリチウムイオン二次電池は、例えば、正極と、負極とを、セパレータを介して重ね合わせ、これを必要に応じて電池形状に応じて巻く、折るなどして電池容器に入れ、電池容器に電解液を注入して封口することにより製造することができる。二次電池の内部の圧力上昇、過充放電等の発生を防止するために、必要に応じて、ヒューズ、PTC素子等の過電流防止素子、エキスパンドメタル、リード板などを設けてもよい。二次電池の形状は、例えば、コイン型、ボタン型、シート型、円筒型、角形、扁平型など、何れであってもよい。
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、以下の説明において、量を表す「%」および「部」は、特に断らない限り、質量基準である。
 実施例および比較例における各種の測定および評価については、以下の方法に従って行なった。
<複合粒子における外側領域の炭素原子量に対する中心領域の炭素原子量の比>
 日立ハイテク社製イオンミリング装置(E-3500)を用いて複合粒子の断面の加工を行った。そして、得られた複合粒子の断面について、SEM/EDX(走査型電子顕微鏡/エネルギー分散型X線分光法;JEOL社製JSM-7800F)を用いて、加速電圧15kV、LED(下方検出器)の条件下で、炭素原子量の測定を行った。
 具体的には、複合粒子の中心領域および外側領域の炭素原子量を下記の手順により測定し、中心領域の炭素原子量を外側領域の炭素原子量で除することにより、外側領域の炭素原子量に対する中心領域の炭素原子量の比を求めた。
 中心領域の炭素原子量:複合粒子の断面像において、一辺の長さが15μmの正方形の中心と複合粒子の断面の中心とを合わせ、該正方形を一辺の長さが5μmの9つの領域に分けた。そして、各領域中の炭素原子量を測定し、その平均値を中心領域の炭素原子量とした。
 外側領域の炭素原子量:複合粒子の断面像において、一辺の長さが15μmの正方形の中心と複合粒子の断面の中心とを合わせ、複合粒子の断面の外縁に正方形の角の少なくとも一方が接するまで正方形を上方向に垂直に移動させ、該正方形を水平方向に15μm×5μmの3つの領域に分けた。同様に、複合粒子の断面像において、一辺の長さが15μmの正方形の中心と複合粒子の断面の中心とを合わせ、複合粒子の断面の外縁に正方形の角の少なくとも一方が接するまで正方形を下方向に垂直に移動させ、該正方形を水平方向に15μm×5μmの3つの領域に分けた。また、複合粒子の断面像において、一辺の長さが15μmの正方形の中心と複合粒子の断面の中心とを合わせ、複合粒子の断面の外縁に正方形の角の少なくとも一方が接するまで正方形を右方向に水平に移動させ、該正方形を垂直方向に15μm×5μmの3つの領域に分けた。同様に、複合粒子の断面像において、一辺の長さが15μmの正方形の中心と複合粒子の断面の中心とを合わせ、複合粒子の断面の外縁に正方形の角の少なくとも一方が接するまで正方形を左方向に水平に移動させ、該正方形を垂直方向に15μm×5μmの3つの領域に分けた。このようにして得られた合計12個の領域について、各領域の炭素原子量を測定し、その平均値を外側領域の炭素原子量とした。
 なお、前記測定は、複合粒子の断面像(SEM像)において実測した粒子径(最大直径)が40μm以上100μm以下である複合粒子を対象とした。
<複合粒子の平均粒子径>
 乾式レーザー回折・散乱式粒度分布測定装置(マイクロトラック・ベル株式会社製:マイクロトラックMT-3200 II)を用いて、JIS Z 8825:2013に基づいて複合粒子の粒子径分布(体積基準)を測定した。そして、得られた粒子径分布に基づき、累積体積が小径側から50%となる粒子径(D50)の値を算出し、これを複合粒子の平均粒子径とした。
<結着樹脂の平均粒子径>
 各実施例および比較例で調製した結着樹脂水分散液を用いて、結着樹脂の平均粒子径をレーザー回折法にて測定した。具体的には、結着樹脂水分散液(固形分濃度0.1質量%に調整)を試料として、レーザー回折式粒子径分布測定装置(ベックマン・コールター社製、製品名「LS-13 320」)を用いて測定された粒子径分布(体積基準)において、小径側から計算した累積体積が50%となる粒子径D50を、結着樹脂の平均粒子径とした。
<炭素系導電材の粒子径分布>
 各実施例および比較例で調製した炭素系導電材分散液について、湿式レーザー回折・散乱式粒度分布測定装置(マイクロトラック・ベル株式会社製:マイクロトラックMT-3200 II)を用いて、粒子径分布(体積基準)の測定を行った。そして、得られた粒子径分布において、小径側から1番目に現れるピークの粒子径(第1の粒子径D1)、および、小径側から2番目に現れるピークの粒子径(第2の粒子径D2)を測定した。
<スラリー組成物の粘度>
 各実施例および比較例で調製したスラリー組成物の粘度を、B型粘度計を用いて、25℃、60rpmの条件で測定した。
<電極のピール強度>
 各実施例および比較例で製造したリチウムイオン二次電池用正極を長さ100mm、幅10mmの長方形に切り出して試験片とし、正極合材層を有する面を下にして正極合材層表面をセロハンテープ(JISZ1522に規定されるもの)でSUS製基板表面へ貼り付けた。その後、集電体の一端を垂直方向に引張り速度50mm/分で引っ張って剥がしたときの応力(N/m)を測定した(なお、セロハンテープはSUS製基板表面に固定されている)。上記と同様の測定を3回行い、その平均値を求めてこれをピール強度とし、以下の基準により評価した。ピール強度の値が大きいほど、正極合材層と集電体とが強固に密着し、正極(正極合材層)の接着性が優れることを示す。
 A:ピール強度が30N/m以上
 B:ピール強度が20N/m以上30N/m未満
 C:ピール強度が20N/m未満
<電極抵抗>
 各実施例および比較例で製造したリチウムイオン二次電池用正極(目付量:25g/cm、密度:2.4g/cm)について、25℃環境下において、電極抵抗測定システム(日置電機株式会社製、製品名「RM2610」)を用いて、正極合材層の抵抗(Ω・cm)を測定した。
<成形性(電極外観)>
 各実施例および比較例で製造したリチウムイオン二次電池用正極の正極合材層の10cm×10cmの範囲について、直径0.5mm以上の塗工不良部分の数を目視により測定した。評価基準を下記に示す。塗工不良が少ないほど正極の外観に優れ、複合粒子の成形性に優れることを示す。
 A:塗工不良部分がなく、正極合材層の表面が滑らか
 B:塗工不良部分が1ヶ所以上5ヶ所未満
 C:塗工不良部分が5ヶ所以上10ヶ所未満
 D:塗工不良部分が10ヶ所以上
<レート特性>
 各実施例および比較例で製造したリチウムイオン二次電池を、電解液注液後、温度25℃で5時間静置した。次に、温度25℃、0.2Cの定電流法にて、セル電圧3.35Vまで充電し、その後、温度60℃で12時間エージング処理を行った。そして、温度25℃、0.2Cの定電流法にて、セル電圧2.50Vまで放電した。その後、0.2Cの定電流法にて、CC-CV充電(上限セル電圧3.80V)を行い、0.2Cの定電流法にて2.60VまでCC放電した。この0.2Cにおける充放電を3回繰り返し実施した。
 次に、温度25℃の環境下、0.1Cの定電流法によって3.80Vまで充電しその後0.1Cにて2.60Vまで放電し、0.1C放電容量を求めた。さらに、0.1Cにて3.80Vまで充電しその後1Cにて2.60Vまで放電し、1C放電容量を求めた。これらの測定を作製したリチウムイオン二次電池10セルについて行い、各測定値の平均値を、0.1C放電容量a、1C放電容量bとした。そして、電気容量の比=b/a×100(%)を算出し、下記の基準で評価した。電気容量の比の値が大きいほど、リチウムイオン二次電池がレート特性に優れることを示す。
 A:電気容量の比が90%以上
 B:電気容量の比が80%以上90%未満
 C:電気容量の比が70%以上80%未満
 D:電気容量の比が70%未満
<サイクル特性>
 各実施例および比較例で製造したリチウムイオン二次電池を、電解液注液後、温度25℃で5時間静置した。次に、温度25℃、0.2Cの定電流法にて、セル電圧3.35Vまで充電し、その後、温度60℃で12時間エージング処理を行った。そして、温度25℃、0.2Cの定電流法にて、セル電圧2.50Vまで放電した。その後、0.2Cの定電流法にて、CC-CV充電(上限セル電圧4.20V)を行い、0.2Cの定電流法にて3.00VまでCC放電した。この0.2Cにおける充放電を3回繰り返し実施した。
 次に、温度45℃の環境下、セル電圧3.80-2.60V、0.5Cの充放電レートにて充放電の操作を100サイクル行った。その際、第1回目のサイクルの放電容量をX1,第100回目のサイクルの放電容量をX2と定義した。該放電容量X1および放電容量X2を用いて、容量維持率=(X2/X1)×100(%)を算出し、下記の基準で評価した。容量維持率の値が大きいほど、リチウムイオン二次電池がサイクル特性に優れることを示す。
 A:容量維持率が90%以上
 B:容量維持率が85%以上90%未満
 C:容量維持率が80%以上85%未満
 D:容量維持率が80%未満
(実施例1)
(結着樹脂の製造)
 重合缶Aに、(メタ)アクリル酸エステル単量体としての2-エチルヘキシルアクリレート10.75部、ニトリル基含有単量体としてのアクリロニトリル1.25部、ラウリル硫酸ナトリウム0.12部、イオン交換水79部を加え、重合開始剤として過硫酸アンモニウム0.2部、イオン交換水10部を加え60℃に加温し、90分間攪拌した。その後、別の重合缶Bに(メタ)アクリル酸エステル単量体としての2-エチルヘキシルアクリレート67部、ニトリル基含有単量体としてのアクリロニトリル19部、酸性基含有単量体としてのメタクリル酸2.0部、ラウリル硫酸ナトリウム0.7部、イオン交換水46部を加えて攪拌してエマルジョンを作製した。このエマルジョンを、約180分間かけて重合缶Bから重合缶Aに逐次添加した後、約120分間攪拌し、単量体消費量が95%になったところで冷却して反応を終了し、結着樹脂を含む水分散液(結着樹脂水分散液)を得た。得られた結着樹脂は粒子状であり、平均粒子径は230nmであった。
(炭素系導電材分散液の調製)
 炭素系導電材としてのカーボンブラック(SuperC65;TIMCAL社製)200部および多層カーボンナノチューブ(BET比表面積:200m/g)100部と、分散剤としてカルボキシメチルセルロースの8%水溶液(ダイセル2220;株式会社ダイセル製)を固形分換算量で30部と溶媒としての水6225部とをディスパーを用いて攪拌し(3000rpm、10分間)、その後、直径1mmのジルコニアビーズを用いたビーズミル(LMZ015、アシザワファインテック社製)を使用し、周速8m/sにて1時間混合することにより、炭素系導電材分散液を調製した。得られた炭素系導電材分散液を用いて、粒子径分布を測定した。
(スラリー組成物の製造)
 正極活物質としてLiFePOを97.0部、増粘剤としてカルボキシメチルセルロースの1%水溶液(ダイセル2200;株式会社ダイセル製)を固形分換算量で0.28部、上記炭素系導電材分散液を固形分換算量で1.32部、および、上記結着樹脂水分散液を固形分換算量で1.4部混合し、さらにイオン交換水を、得られるスラリー組成物の粘度が1,500mPa・sとなるように加え、次いでディスパーで混合することにより、スラリー組成物を得た。スラリー組成物の全固形分濃度は61質量%であった。
(複合粒子の製造)
 上記スラリー組成物を、噴霧乾燥機(大川原化工機社製)を用いて噴霧乾燥することにより複合粒子を得た。得られた複合粒子の平均粒子径は70μmであった。
<リチウムイオン二次電池用正極の作製>
 作製した複合粒子を、定量フィーダ(ニッカ社製「ニッカスプレーK-V」)を用いてロールプレス機(ヒラノ技研工業社製「押し切り粗面熱ロール」)のプレス用ロール(ロール温度100℃、プレス線圧500kN/m)に供給した。プレス用ロール間に、厚さ20μmのアルミニウム箔を挿入し、定量フィーダから供給された上記複合粒子をアルミニウム箔上に付着させ、成形速度1.5m/分で加圧成形し、目付25mg/cmの正極活物質層を有するリチウムイオン二次電池用正極原反を得た。この正極原反をロールプレスで圧延し、密度が2.4g/cmの正極合材層と、アルミニウム箔とからなるシート状の正極を作製した。この正極を用いて、成形性、ピール強度および電極抵抗を測定した。結果を表1に示す。
<リチウムイオン二次電池用負極の作製>
 攪拌機付き5MPa耐圧容器に、脂肪族共役ジエン単量体としての1,3-ブタジエン33部、酸性基含有単量体としてのイタコン酸3.5部、芳香族ビニル単量体としてのスチレン63.5部、乳化剤としてのドデシルベンゼンスルホン酸ナトリウム0.4部、イオン交換水150部、および、重合開始剤としての過硫酸カリウム0.5部を入れ、十分に攪拌した後、50℃に加温して重合を開始した。重合転化率が96%になった時点で冷却し重合反応を停止して、粒子状の結着樹脂(スチレン-ブタジエン共重合体)を含む混合物を得た。この混合物に、5%水酸化ナトリウム水溶液を添加してpH8に調整後、加熱減圧蒸留によって未反応単量体の除去を行った。その後、混合物を30℃以下まで冷却し、負極用結着樹脂を含む水分散液を得た。
 次にプラネタリーミキサーに、負極活物質としての人造黒鉛48.75部と、天然黒鉛48.75部と、増粘剤としてのカルボキシメチルセルロース1部とを投入した。さらに、イオン交換水を用いて固形分濃度が60%となるように希釈し、その後、回転速度45rpmで60分間混練した。その後、上記に従って得た負極用結着樹脂を含む水分散液を固形分相当で1.5部投入し、回転速度40rpmで40分間混練した。そして、粘度が3000±500mPa・s(B型粘度計を用いて、25℃、60rpmで測定)となるようにイオン交換水を加えることにより、負極合材層用スラリーを調製した。
 次に、集電体として、厚さ15μmの銅箔を準備した。上記負極合材層用スラリーを銅箔に乾燥後の塗布量が13mg/cmになるように塗布し、60℃で20分間、120℃で20分間乾燥した。その後、150℃で2時間加熱処理して、負極原反を得た。この負極原反をロールプレスで圧延し、密度が1.6g/cmの負極合材層(両面)と、銅箔とからなるシート状負極を作製した。
<リチウムイオン二次電池の作製>
 上記の正極、負極およびセパレータ(ポリエチレン製、厚み12μm)を用いて、単層ラミネートセル(放電容量250mAh相当)を作製し、アルミ包材内に配置した。その後、アルミ包材内に、電解液として濃度1.0MのLiPF溶液(溶媒:エチレンカーボネート(EC)/ジエチルカーボネート(DEC)=3/7(体積比)の混合溶媒、添加剤:ビニレンカーボネート2体積%(溶媒比)含有)を充填した。さらに、アルミ包材の開口を密封するために、温度150℃のヒートシールをしてアルミ包材を閉口し、リチウムイオン二次電池を作製した。このリチウムイオン二次電池を用いて、サイクル特性およびレート特性を評価した。結果を表1に示す。
(実施例2~3)
 複合粒子の製造の際に、スラリー組成物の粘度を表1のとおりに変更した以外は実施例1と同様にして、正極、負極、およびセパレータを準備して、リチウムイオン二次電池を製造した。そして、各種測定および評価を行なった。結果を表1に示す。
(実施例4)
 複合粒子の製造の際に、正極活物質、増粘剤および分散剤の配合量、ならびに、炭素系導電材の第1の粒子径D1および第2の粒子径D2を表1のとおりに変更した以外は実施例2と同様にして、正極、負極、およびセパレータを準備して、リチウムイオン二次電池を製造した。そして、各種測定および評価を行なった。結果を表1に示す。
(実施例5~6)
 複合粒子の製造の際に、炭素系導電材の配合量、および、炭素系導電材の第1の粒子径D1および/または第2の粒子径D2を表1のとおりに変更した以外は実施例2と同様にして、正極、負極、およびセパレータを準備して、リチウムイオン二次電池を製造した。そして、各種測定および評価を行なった。結果を表1に示す。
(実施例7)
 複合粒子の製造の際に、正極活物質の配合量、分散剤の種類および配合量、ならびに、炭素系導電材の第1の粒子径D1および第2の粒子径D2を表1のとおりに変更した以外は実施例2と同様にして、正極、負極、およびセパレータを準備して、リチウムイオン二次電池を製造した。そして、各種測定および評価を行なった。結果を表1に示す。
(実施例8)
 複合粒子の製造の際に、炭素系導電材の配合量、分散剤の種類、ならびに、炭素系導電材の第1の粒子径D1および第2の粒子径D2を表1のとおりに変更した以外は実施例2と同様にして、正極、負極、およびセパレータを準備して、リチウムイオン二次電池を製造した。そして、各種測定および評価を行なった。結果を表1に示す。
(実施例9)
 複合粒子の製造の際に、炭素系導電材の種類および配合量、ならびに、炭素系導電材の第2の粒子径D2を表1のとおりに変更した以外は実施例2と同様にして、正極、負極、およびセパレータを準備して、リチウムイオン二次電池を製造した。そして、各種測定および評価を行なった。結果を表1に示す。
(比較例1)
 複合粒子の製造の際に、正極活物質の配合量、およびスラリー組成物の粘度を表1のとおりに変更し、かつ、増粘剤を添加しなかった以外は実施例4と同様にして、正極、負極、およびセパレータを準備して、リチウムイオン二次電池を製造した。そして、各種測定および評価を行なった。結果を表1に示す。
(比較例2)
 複合粒子の製造の際に、正極活物質の配合量、分散剤の配合量、スラリー組成物の粘度、および、炭素系導電材の第1の粒子径D1を表1のとおりに変更した以外は実施例2と同様にして、正極、負極、およびセパレータを準備して、リチウムイオン二次電池を製造した。そして、各種測定および評価を行なった。結果を表1に示す。
(比較例3)
 複合粒子の製造における炭素系導電材分散液の調製の際に、ディスパーのみを用いて分散を行って炭素系導電材の第1の粒子径D1および第2の粒子径D2を表1のとおりに変更した以外は実施例7と同様にして、正極、負極、およびセパレータを準備して、リチウムイオン二次電池を製造した。そして、各種測定および評価を行なった。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1より、複合粒子において外側領域の炭素原子量に対する中心領域の炭素原子量の比(中心領域の炭素原子量/外側領域の炭素原子量)が0.3以上1.0以下の範囲内である実施例1~9では、電気化学素子の電気化学特性に優れることがわかる。
 本発明によれば、電気化学素子に優れた電気化学特性を発揮させることができる電気化学素子正極用複合粒子およびその製造方法を提供することができる。
 また本発明によれば、電気化学素子に優れた電気化学特性を発揮させることができる電気化学素子用正極、および、電気化学特性に優れる電気化学素子を提供することができる。

Claims (6)

  1.  正極活物質と、炭素系導電材と、結着樹脂とを含む電気化学素子正極用複合粒子であって、
     下記方法に従って測定された、外側領域の炭素原子量に対する中心領域の炭素原子量の比(中心領域の炭素原子量/外側領域の炭素原子量)が0.3以上1.0以下である、電気化学素子正極用複合粒子。
    [測定方法]
     (1)複合粒子の断面像において、一辺の長さが15μmの正方形の中心と複合粒子の断面の中心とを合わせ、該正方形を一辺の長さが5μmの9つの領域に分ける。そして、各領域中の炭素原子量を測定し、その平均値を中心領域の炭素原子量とする。
     (2)複合粒子の断面像において、一辺の長さが15μmの正方形の中心と複合粒子の断面の中心とを合わせ、該中心から複合粒子の断面像の上下左右の4方向のそれぞれに該正方形を複合粒子の断面の外縁に接触するまで移動させる。各正方形を15μm×5μmの3領域に分け、合計12個の領域を得る。そして、各領域の炭素原子量を測定し、その平均値を外側領域の炭素原子量とする。
     (3)中心領域の炭素原子量を外側領域の炭素原子量で除する。
  2.  前記炭素系導電材の粒子径分布は複数のピークを有する、請求項1に記載の電気化学素子正極用複合粒子。
  3.  正極活物質と、炭素系導電材と、結着樹脂と、溶媒とを含むスラリー組成物を噴霧乾燥する工程を含む、請求項1または2に記載の電気化学素子正極用複合粒子の製造方法。
  4.  前記スラリー組成物の粘度は50mP・s以上である、請求項3に記載の電気化学素子正極用複合粒子の製造方法。
  5.  集電体と、前記集電体の上に形成された正極合材層とを備え、
     前記正極合材層は請求項1または2に記載の電気化学素子正極用複合粒子を用いてなる、電気化学素子用正極。
  6.  請求項5に記載の電気化学素子用正極を備える、電気化学素子。
PCT/JP2023/001781 2022-01-31 2023-01-20 電気化学素子正極用複合粒子およびその製造方法、電気化学素子用正極、ならびに、電気化学素子 WO2023145655A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022013717 2022-01-31
JP2022-013717 2022-01-31

Publications (1)

Publication Number Publication Date
WO2023145655A1 true WO2023145655A1 (ja) 2023-08-03

Family

ID=87471883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001781 WO2023145655A1 (ja) 2022-01-31 2023-01-20 電気化学素子正極用複合粒子およびその製造方法、電気化学素子用正極、ならびに、電気化学素子

Country Status (1)

Country Link
WO (1) WO2023145655A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006303395A (ja) * 2005-04-25 2006-11-02 Nippon Zeon Co Ltd 電気化学素子電極用複合粒子の製造方法
JP2014132564A (ja) * 2012-12-05 2014-07-17 Nippon Zeon Co Ltd 正極用複合粒子用のスラリー組成物および正極用複合粒子の製造方法
WO2021172105A1 (ja) * 2020-02-28 2021-09-02 日本ゼオン株式会社 電気化学素子用複合粒子及びその製造方法、並びに、電気化学素子用電極及び電気化学素子

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006303395A (ja) * 2005-04-25 2006-11-02 Nippon Zeon Co Ltd 電気化学素子電極用複合粒子の製造方法
JP2014132564A (ja) * 2012-12-05 2014-07-17 Nippon Zeon Co Ltd 正極用複合粒子用のスラリー組成物および正極用複合粒子の製造方法
WO2021172105A1 (ja) * 2020-02-28 2021-09-02 日本ゼオン株式会社 電気化学素子用複合粒子及びその製造方法、並びに、電気化学素子用電極及び電気化学素子

Similar Documents

Publication Publication Date Title
EP3358651B1 (en) Conductive material paste composition for secondary battery electrodes, slurry composition for secondary battery electrodes, undercoat layer-including current collector for secondary battery electrodes, electrode for secondary batteries, and secondary battery
JP7054623B2 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、及び非水系二次電池
US9461308B2 (en) Electrode for lithium ion secondary battery, lithium ion secondary battery, slurry composition, and method for producing electrode for lithium ion secondary battery
JP5158396B2 (ja) 電極用バインダー組成物
JP6327249B2 (ja) 電気化学素子電極用バインダー、電気化学素子電極用粒子複合体、電気化学素子電極、電気化学素子及び電気化学素子電極の製造方法
KR102393257B1 (ko) 이차 전지 전극용 도전재 페이스트, 이차 전지 정극용 슬러리의 제조 방법, 이차 전지용 정극의 제조 방법 및 이차 전지
JP6217741B2 (ja) 電気化学素子電極用複合粒子、電気化学素子電極用複合粒子の製造方法、電気化学素子電極および電気化学素子
CN110383546B (zh) 电化学元件电极用导电材料分散液、浆料组合物及其制造方法、电极以及电化学元件
EP3678237B1 (en) Binder composition for a non-aqueous secondary battery electrode, slurry composition for a non-aqueous secondary battery electrode, electrode for a non-aqueous secondary battery, and non-aqueous secondary battery
WO2006038652A1 (ja) 電極組成物、電極および電池
JPWO2014192652A6 (ja) 電気化学素子電極用バインダー、電気化学素子電極用粒子複合体、電気化学素子電極、電気化学素子及び電気化学素子電極の製造方法
WO2017195784A1 (ja) 電気化学素子電極用バインダー粒子集合体、電気化学素子電極用スラリー組成物、およびそれらの製造方法、並びに、電気化学素子用電極および電気化学素子
WO2022045153A1 (ja) 電気化学素子用導電材分散液、電気化学素子電極用スラリー、電気化学素子用電極及び電気化学素子
JP2020145034A (ja) 正極スラリーの製造方法、正極の製造方法及び全固体電池の製造方法、並びに、正極及び全固体電池
JP6485359B2 (ja) 電気化学素子電極用複合粒子
JP7466981B2 (ja) 負極及びこれを含む二次電池
WO2020004332A1 (ja) 電気化学素子電極用バインダー組成物、電気化学素子電極用スラリー組成物、電気化学素子用電極、および電気化学素子
WO2017110654A1 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物、非水系二次電池用電極、および非水系二次電池
WO2022045217A1 (ja) 電気化学素子用電極及び電気化学素子
JP2016021391A (ja) 電気化学素子用導電材分散液、電気化学素子正極用スラリー、電気化学素子用正極および電気化学素子
JP7480704B2 (ja) 非水系二次電池電極用バインダー組成物、非水系二次電池電極用スラリー組成物及びその製造方法、非水系二次電池用電極、並びに非水系二次電池
WO2012144439A1 (ja) 蓄電デバイス用電極、および蓄電デバイス
WO2023145655A1 (ja) 電気化学素子正極用複合粒子およびその製造方法、電気化学素子用正極、ならびに、電気化学素子
WO2022045218A1 (ja) 電気化学素子用導電材分散液、電気化学素子電極用スラリー、電気化学素子用電極及び電気化学素子
WO2021193665A1 (ja) 二次電池用正極及び二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23746867

Country of ref document: EP

Kind code of ref document: A1