WO2023098219A1 - 散热模组及电子设备 - Google Patents

散热模组及电子设备 Download PDF

Info

Publication number
WO2023098219A1
WO2023098219A1 PCT/CN2022/117958 CN2022117958W WO2023098219A1 WO 2023098219 A1 WO2023098219 A1 WO 2023098219A1 CN 2022117958 W CN2022117958 W CN 2022117958W WO 2023098219 A1 WO2023098219 A1 WO 2023098219A1
Authority
WO
WIPO (PCT)
Prior art keywords
area
fan
heat dissipation
line
air
Prior art date
Application number
PCT/CN2022/117958
Other languages
English (en)
French (fr)
Other versions
WO2023098219A9 (zh
Inventor
张哲�
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Publication of WO2023098219A1 publication Critical patent/WO2023098219A1/zh
Publication of WO2023098219A9 publication Critical patent/WO2023098219A9/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20136Forced ventilation, e.g. by fans
    • H05K7/20172Fan mounting or fan specifications
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • G06F1/203Cooling means for portable computers, e.g. for laptops
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20136Forced ventilation, e.g. by fans
    • H05K7/20145Means for directing air flow, e.g. ducts, deflectors, plenum or guides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D10/00Energy efficient computing, e.g. low power processors, power management or thermal management

Definitions

  • the present application relates to the technical field related to heat dissipation, in particular to a heat dissipation module and electronic equipment.
  • the heat dissipation module composed of fans and fin radiators is the most important heat dissipation part.
  • the heat generated by the main heat source is conducted to the volute case and the heat sink, and then the airflow generated by the fan blows away the heat to achieve the purpose of reducing the temperature of the computer.
  • Existing fan heat dissipation modules are all composed of a fan and a heat dissipation fin set, the fan is used to provide the air volume required for heat dissipation, and the fin set is responsible for heat exchange.
  • the higher the flow rate of the heat dissipation fins the higher the heat transfer coefficient between the air and the heat dissipation fins, the more heat will be taken away per unit time, and the better the heat dissipation performance will be.
  • Due to the open design of the conventional heat dissipation shell there will be a high-speed zone and a low-velocity zone at the outlet of the heat dissipation shell. The thermal performance of the module is reduced.
  • the present application provides a heat dissipation module to solve the technical problem that the heat dissipation performance of the entire module is reduced due to the large difference in the outlet airflow velocity of the heat dissipation shell.
  • the present application also provides an electronic device.
  • the heat dissipation module described in the present application includes a volute, a fan, and a flow guide support;
  • the volute includes an air outlet through which the heat dissipation cavity communicates with the heat dissipation cavity;
  • the heat dissipation cavity includes a cavity side wall and a cavity bottom wall, The side wall of the cavity is arranged on the edge of the bottom wall of the cavity and has an arc section, the fan and the flow guide support are arranged in the heat dissipation cavity, and the flow guide support is protruded from the cavity bottom wall;
  • the area where the fan is located is the fan area, the first air duct is between the arc section and the fan area, and the second air duct is connected between the air outlet and the first air duct;
  • the second air passage includes a first area and a second area, the first area and the second area are arranged along the width direction of the air outlet, the first area and the second area are connected with the first air passage connect,
  • the air guiding support is located in the second air duct, the starting end of the air guiding supporting body is located in the second area, the length extending direction of the air guiding supporting body intersects the width direction of the air outlet,
  • the air guiding support is used to divide the airflow in the second area, and guide part of the airflow divided to the first area.
  • the volute of the heat dissipation module in this embodiment is provided with a thermally conductive support body, which can improve the velocity distribution of the airflow at the air outlet of the volute, make the flow velocity of the airflow discharged from the air outlet uniform, and improve the heat dissipation efficiency of the heat dissipation fin group.
  • a thermally conductive support body which can improve the velocity distribution of the airflow at the air outlet of the volute, make the flow velocity of the airflow discharged from the air outlet uniform, and improve the heat dissipation efficiency of the heat dissipation fin group.
  • the flow velocity of the partial airflow passing through the second area is greater than the flow velocity of the partial airflow passing through the first area, and the airflow can be divided by the flow guiding support, thereby increasing the airflow velocity in the first area, Uniform air outlet flow rate.
  • the heat dissipation cavity includes a cavity top wall, the cavity top wall is connected to the cavity side wall and is opposite to the cavity bottom wall; the flow guiding support is supported on the cavity top wall and the cavity bottom wall. between the cavity bottom walls.
  • the diversion support is used to replace the ordinary cylindrical support between the cover plate and the plate body, so as to prevent the fan from being damaged when the volute is subjected to external pressure, and can ensure the rigidity of the volute.
  • the flow guide support body is a plate body, and the cross-sectional shape of the plate body is an airfoil shape, a rectangle or an arc shape.
  • the airfoil-shaped plate body and the arc-shaped plate body of the air-guiding support body can be more suitable for the arc-shaped airflow generated by the rotation of the fan, and it is more convenient to control the flow direction of the diverted airflow.
  • the fan area has a first preset angle ⁇ 1 and a second preset angle ⁇ 2, and a straight line passing through the radius of the fan area and the minimum position of the first air duct width is the reference line,
  • the confirmation of the starting end and the end of the flow guiding support in this embodiment can better achieve the purpose of splitting the flow and ensure the flow of the airflow entering the first area.
  • the angle values of the first preset angle ⁇ 1 and the second preset angle ⁇ 2 are greater than 180 degrees and less than 360 degrees, and the angle of the first preset angle ⁇ 1 is smaller than the second preset angle ⁇ 1.
  • both K1 and K2 are greater than 1 and less than 10.
  • the first area is provided with flow guide supports, and the flow guide supports in the first area are arranged at intervals from the flow guide supports in the second area, and in the first area
  • the length extension direction of the air guiding support intersects with the width direction of the air outlet, and the air guiding supporting body is used to divide the airflow in the first region.
  • the air guide support in the first area can further divide the airflow in the first area, so that the airflow can evenly pass through the air outlet, so as to realize the uniform heat dissipation of the heat dissipation fins.
  • the volute further includes a baffle, the baffle protrudes from the bottom wall of the cavity and is located in the first air channel, and the baffle is along the length direction of the first air channel extending, and the profiled line of the partition is spaced from and opposite to the profiled line of the arc segment.
  • the baffle divides the first air duct into two sub-channels, diverting the accumulated air volume in the first air duct during the fan rotation, and avoiding the continuous accumulation of air flow in the first air duct to generate flow velocity If it is too large, the problem of uneven heat dissipation can improve the uniformity of the flow velocity of the airflow in the first air duct, avoid increasing the flow velocity in a local area when entering the second air duct, and make the flow velocity of the air outlet more uniform.
  • the profile of the partition is a circular arc, or a plurality of arcs with different curvatures connected in sequence, or a Bezier curve, or an unclosed spline curve. It is equivalent to having partitions that are partly the same as or similar to the profile of the side wall in the volute, ensuring smooth air flow and improving uniformity.
  • the arc segment includes a first arc segment and a second arc segment, and the profile of the separator has the same curvature as the profile of the second arc segment.
  • the profile of the baffle is the same as that of the arc section, so that the baffle, the fan area and the second air duct of the volute form a double volute structure, improving the uniformity of the air outlet.
  • the width of the first air channel gradually increases along the rotation direction of the fan, and the first arc segment and the second arc segment are arranged along the rotation direction of the fan.
  • the direction in which the width of the first air duct becomes larger is also the flow direction of the airflow, which avoids excessive flow velocity and uneven heat dissipation caused by the large amount of air accumulated during the rotation of the fan, and can increase the flow velocity of the airflow in the first air duct. Uniformity, thereby improving the uniformity of the flow velocity at the air outlet.
  • the width of the sub-air duct between the profile of the baffle and the fan area is the same as the width between the second arc segment and the fan area.
  • the fan area has a third preset angle ⁇ 3 and a fourth preset angle ⁇ 4, the angle of ⁇ 4 is K5* ⁇ 3, and K5 is greater than 1 and less than 5; the radius of the fan area and the fourth preset angle
  • the straight line at the minimum position of the air duct width is the reference line
  • the two sidelines forming the third preset angle ⁇ 3 are respectively the reference line and the third dividing line
  • the two sidelines forming the fourth preset angle ⁇ 4 are respectively the reference line and the fourth dividing line
  • the starting end of the partition is located on the line between the third boundary line and the fan area and the side wall of the chamber, and the end of the partition is located on the line between the fourth boundary line and the fan area. and the line between the side walls of the cavity.
  • the air flow in the first air duct is continuously accumulated and the flow velocity is too high, and by properly setting the positions of the partitions to divert the flow, a uniform flow velocity can be achieved, thereby realizing the purpose of uniform heat dissipation.
  • the third preset angle ⁇ 3 is greater than 30 degrees and less than 180 degrees; K3 is greater than 1 and less than 2, and K4 is greater than 1 and less than 2.
  • the arc section and the fan area are two walls of the air channel, the first air channel has a preset width, and the first air channel and the second air channel There is a port between the ducts, and the straight line where the port is located passes through the radius of the fan area; the starting end of the partition is located at the position where the width of the air duct is equal to the preset width, and the end of the partition is located at the The location of the above port.
  • the position of the start end and the end of the separator in the width direction of the first air channel is not limited, which is convenient for processing, and only needs to achieve flow splitting.
  • the side wall of the chamber includes two opposite first and second plate segments connected by the arc segment, and the first and second plate segments are respectively located at the outlet On the opposite sides in the width direction of the tuyere,
  • the arc section includes a connected first arc plate and a second arc plate, and the shape line in the length direction of the first arc section is an arc line or a plurality of arc connections with different curvatures;
  • the shape line in the length direction of the second arc segment is a circular arc line, or a plurality of arc connections with different curvatures.
  • the arc design of the arc segment of the volute facilitates the consistency of the air outlet direction at each position when the fan rotates.
  • the heat dissipation module further includes a heat conduction element, and the heat conduction element is connected to the outer surface of the volute.
  • the heat conduction element is used for transferring external heat to the volute for heat dissipation.
  • the heat dissipation module further includes a heat dissipation fin set, and the heat dissipation fin set is arranged outside the volute and connected to the air outlet.
  • the cooling fin group is used to dissipate the heat discharged from the volute.
  • the electronic equipment provided by the present application includes a main body and the heat dissipation module, the heat dissipation module is assembled in the main body, and the heat dissipation fin group is exposed from the main body.
  • the application adopts the heat dissipation module, which can realize uniform heat dissipation.
  • the heat dissipation module of the present application is equipped with a guide support body in the heat dissipation shell to support the gap between the cover plate and the plate body, so as to prevent the fan from being damaged when the volute is subjected to external pressure, and can ensure the rigidity of the volute;
  • the speed distribution of the airflow at the position of the air outlet of the volute can be improved, the flow velocity of the airflow discharged from the air outlet can be made uniform, the heat dissipation efficiency of the heat dissipation fin group can be improved, and the heat dissipation efficiency of the electronic equipment can be further improved.
  • FIG. 1 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of the heat dissipation module shown in FIG. 1;
  • Fig. 3 is a schematic structural view of the cooling module shown in Fig. 2 after the cover plate is removed;
  • Fig. 4 is a schematic top view of the cooling module shown in Fig. 3;
  • Figure 5 and Figure 6 are schematic diagrams of the process of forming the position of the flow guiding support body shown in Figure 3;
  • Fig. 7 is a schematic diagram of the heat dissipation module shown in Fig. 3 having a plurality of guide supports;
  • Fig. 8 is a velocity distribution diagram of the air outlet of the heat dissipation module of the present application provided with a guide support body;
  • FIG. 9 and FIG. 10 are schematic diagrams of the process of forming the positions of the partitions shown in FIG. 3 .
  • FIG. 1 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • the electronic device may be an electronic device that requires internal heat dissipation, such as a desktop computer or a notebook computer.
  • the notebook computer 200 is taken as an example for description.
  • the notebook computer 200 includes a main body 210 , a display screen rotatably mounted on the main body 210 and a cooling module 100 inside the main body 210 .
  • the main body 210 includes a housing and electronic components such as a processor and a circuit board installed inside the housing, as well as related structural components for realizing computer functions, and the processor and the circuit board are components with high heat generation.
  • the casing is provided with a heat dissipation air vent for communicating with the outside world, and the heat in the notebook computer 200 is dissipated through the heat dissipation air vent through the heat dissipation module.
  • Fig. 2 is the structure schematic diagram of the cooling module shown in Fig. Schematic diagram of the structure of the group after removing the cover plate; the heat dissipation module 100 includes a volute 10 , a fan 20 installed in the volute 10 , a flow guide support 30 and a cooling fin set 70 in the volute 10 .
  • the volute 10 includes a plate body 14 , a side wall 15 and a cover plate 16 .
  • the volute 10 includes a cooling cavity 11 and an air outlet 12 communicating with the cooling cavity 11 .
  • the fan 20 and the flow guiding support 30 are located in the heat dissipation cavity 11 , and the flow guiding support 30 is protruded from the wall of the heat dissipation cavity, and the flow guiding support 30 is used to support between the side wall 15 and the cover plate 16 .
  • the air outlet 12 is located on one side of the volute 10 for the hot air in the cooling cavity 11 to flow out.
  • the cooling fin group 70 is located at the position of the air outlet 12 and is used for cooling and dissipating the hot air coming out of the cooling chamber 11 .
  • the guide support body 30 prevents the fan 20 from being damaged when the volute 10 is subjected to external pressure, and can ensure the rigidity of the volute; it can also improve the velocity distribution of the airflow at the air outlet 12 of the volute 10, and improve the heat dissipation of the cooling fin group. efficiency.
  • the side wall 15 of the volute protrudes from the plate body 14 to form a body, and the cover plate 16 covers the side wall and faces the plate body 14 at intervals.
  • the body and the cover plate 16 form a cooling chamber 11 and an air outlet 12 .
  • the side wall of the side wall 15 facing the cooling cavity 11 is the cavity side wall of the cooling cavity 11, the surface of the plate body 14 facing the cooling cavity 11 is the bottom wall of the cavity; the surface of the cover plate 16 facing the cooling cavity is the cavity top wall, and the flow guide support body 30 It is convexly arranged on the bottom wall of the cavity and supported between the top wall and the bottom wall of the cavity.
  • the volute 10 of this embodiment has a volute shape as a whole, and has a heat dissipation chamber 11 with a volute outline and a side wall 15 extending along a volute shape.
  • the heat dissipation chamber 11 of the volute 10 includes a fan installation area, the plate body 14 is provided with a fan air inlet (not shown in the figure), and the cover plate 16 covering the body is provided with a fan air inlet corresponding to the fan air inlet (not shown in the figure) ;
  • the fan air inlet and the fan air inlet of the plate body 14 correspond to the fan installation area.
  • the fan 20 of this embodiment includes a fan shaft 21 and a plurality of fan blades 22, the plurality of fan blades 22 are spaced and evenly arranged around the fan shaft 21, and the gap between every two adjacent fan blades 22 is a flow channel (not shown in the figure) mark), a plurality of fan blades 22 are evenly spaced to ensure that the flow channel spacing between every two adjacent fan blades 22 is the same.
  • one end of each fan blade 22 is connected to the fan shaft, and the other end is a free end, and between the free ends of every two adjacent fan blades is an outlet of the flow channel for the air flow in the flow channel to flow out.
  • the ends away from the fan shaft 21 form a circular ring profile.
  • a plurality of fan blades 22 are evenly arranged around the fan shaft 21 to ensure that when the fan blades rotate, the air output of the flow channel between every two fan blades is the same, that is to say, when the fan 20 rotates, it blows out the fan through each flow channel.
  • the air volume outside is the same and uniform.
  • the fan 20 is installed in the heat dissipation cavity 11, and is connected to the plate body 14 through the fan shaft 21.
  • the axis of the fan shaft 21 of the fan 20 is perpendicular to the plate body 14, and the fan blades 22 are arranged at intervals from the side wall 15, that is, the fan blades 22 and the side wall 15 The distance between them should ensure the passage of airflow and the safe distance between the fan and the heat dissipation module when it rotates.
  • FIG. 4 is a schematic top view of the cooling module shown in FIG. 3 .
  • the plate body 14 includes an inner surface 141 (cavity bottom wall) and an end edge 142 ; the end edge 142 is an edge of the plate body 14 extending in a straight line, and can also be understood as a side edge of the inner surface 141 .
  • the length direction of the end edge 142 is the width direction of the heat dissipation module 100 and also the width direction of the air outlet.
  • the sidewall 15 includes a first end 151 and a second end 152 . The side wall 15 protrudes from the inner surface 141 and extends along a part of the edge of the inner surface 141.
  • the first end 151 of the side wall 15 is located at one end of the end edge 142, and the second end 152 is located at the other end of the end edge 142; An opening is formed between the first end 151 and the second end 152 , and the end edge 142 is located at the opening.
  • the side wall 15 is a strip-shaped thin plate, the side of which is connected to the inner surface, and extends from one end of the end edge 142 to the other end of the end edge 142 along the edge of the inner surface.
  • the profile of the cover plate 16 is the same as that of the plate body 14, the cover plate 16 is covered on the side wall 15, the heat dissipation cavity 11 is formed between the cover plate 16, the side wall 15 and the plate body 14, and at the opening position
  • the air outlet 12 is formed. It can also be understood that the side wall 15 is arranged around the edge of the inner surface of the plate body 14 , and the ventilation opening is opened on the side wall 15 .
  • the end side 142 is a side surrounding the air outlet 12 .
  • the length square of the end edge 142 is the width direction of the air outlet 12 .
  • the width direction of the volute 10 (the direction parallel to the end edge 142, that is, the width direction of the air outlet 12) as the X-axis direction
  • the length direction of the volute 10 (the direction perpendicular to the end edge 142, also That is, the direction perpendicular to the plane where the air outlet is located) is the Y-axis direction
  • the thickness direction of the volute 10 is the Z-axis direction
  • the X-axis direction, the Y-axis direction and the Z-axis direction are perpendicular to each other.
  • the heat dissipation module 100 is also provided with a heat conduction element (not shown in the figure), and the heat conduction element is installed on the outside of the volute 10, specifically on the outer surface of the plate body 14 opposite to the inner surface 141, for use with the notebook computer. contact with the heating element to transfer the heat in the notebook computer 200 to the volute 10, the volute 10 and the flow guide support in the volute 10 receive the heat transferred by the heat conduction element, and the airflow generated by the fan 20 The belt takes away the heat to dissipate heat, so as to achieve the purpose of cooling the computer.
  • the heat conducting member may be a metal plate body or a metal pipe body, and is directly connected to electronic components such as a processor and a circuit board of a notebook computer that generate a large amount of heat.
  • the heat conducting element is disposed along the outer peripheral surface of the side wall 15 , that is, the side wall 15 faces away from the outer surface of the heat dissipation cavity 11 .
  • FIG. 4 is a schematic top view of the cooling module shown in FIG. 3; Shape segment 154, the second arc segment 155, the arc connecting segment 159 and the second flat segment 156, the first flat segment 153, the first arc segment 154, the second arc segment 155, the arc connecting segment 159 and the second segment
  • the two flat plate segments 156 are connected in sequence to form the shape of the volute 10 , and the profile of the side wall 15 can be understood as the profile of the volute 10 .
  • the first arc segment 154 , the second arc segment 155 and the arc connection segment 159 are arc-shaped plates, and the first flat plate segment 153 and the second flat plate segment 156 are rectangular plate bodies.
  • the first flat section 153 is opposite to the second arc section 155 and the second flat section 156 connected by the arc connecting section 159, the first flat section 153 and the second flat section 156 Located on opposite sides of the air outlet 12.
  • the first arc segment 154 is opposite to the air outlet 12 .
  • the sidewalls 15 may also all be flat or arc-shaped, which is determined according to practical applications.
  • the side wall 15 is perpendicular to the inner surface 141, that is, the first flat section 153, the first arc section 154, the second arc section 155, the arc connecting section 159 and the second flat section 156 are all vertical on the inner surface 141 .
  • the first flat section 153 , the first arc section 154 , the second arc section 155 , the arc connecting section 159 and the second flat section 156 are thin plates with uniform thickness and dimension.
  • the first arc segment 154 and the second arc segment 155 are connected to form an arc segment.
  • the thickness dimensions of the first flat section 153 , the first arc section 154 , the second arc section 155 , the arc connecting section 159 and the second flat section 156 refer to the dimensions along the X-axis direction. It can be understood that the thicknesses of the first flat section 153, the first arc section 154, the second arc section 155, the arc connection section 159 and the second flat section 156 are consistent or different from each other, but the thickness of each section is average.
  • first flat section 153, the first arc section 154, the second arc section 155, the arc connecting section 159 and the second flat section 156 can directly form the side wall through in-mold integral molding, or can be the first A flat plate segment 153 , a first arc segment 154 , a second arc segment 155 , an arc connecting segment 159 and a second flat segment 156 are respectively formed and then connected.
  • the side wall 15 may also be a board with uneven thickness.
  • the thickness of the side wall 15 in this embodiment is uniformly set.
  • the volute 10 and the fan 20 are shown in the form of lines in the top view of FIG. , that is, the profiles of the first flat segment 153 , the first arc segment 154 , the second arc segment 155 , the arc connecting segment 159 and the second flat segment 156 .
  • the lines of the side wall 15 shown in the figure can be the connection of the respective profile lines of the first flat section 153, the first arc section 154, the second arc section 155, the arc connecting section 159 and the second flat section 156. Wire.
  • the profile line is the side contour line of the sidewall surface of the sidewall 15 facing the heat dissipation chamber 11 . It should be noted that the first arc segment 154 and the second arc segment 155 form the arc segment.
  • the molded line of the first flat plate section 153 is a line extending through the center of the first flat section 153 along its length direction (also forming the first flat section 153).
  • the center line of the overall outline of the flat plate section 153), the width and thickness of the first flat plate section 153 are all symmetrical lines with the molding line;
  • the contour line is parallel to the mold line and has the same bending direction and curvature.
  • the first plate section 153 actually has two sides extending in the lengthwise direction. One side faces the heat dissipation cavity, and the other side faces the outside of the volute. The two sides are arc-shaped surfaces.
  • the profile lines of the flow guide support body, the first arc segment 154 , the second arc segment 155 , the arc connection segment 159 and the second flat segment 156 are exactly the same as those of the first flat segment 153 .
  • the shape of the molded line described later may represent the shape of the flow guide support or the side wall corresponding to the molded line.
  • Both the first arc section 154 and the second arc section 155 are arc-shaped plates, and the first arc section 154 and the second arc section 155 are smoothly connected.
  • the profile lines of the first arc segment 154 and the second arc segment 155 in the length direction are a circular arc, or the profile lines of the first arc segment 154 and the second arc segment 155 are connected by multiple arcs with different curvatures .
  • the profile lines in the length direction of the first arc segment 154 and the second arc segment 155 are Bezier curves.
  • contour lines in the length direction of the first arc segment 154 and the second arc segment 155 can also be formed by sequentially connecting multiple arcs, and the arc bending direction of the first arc segment 154 and the second arc segment 155 faces fan.
  • the centers of one or more arcs constituting the profiles of the first arc segment 154 and the second arc segment 155 are located in the fan area 20A.
  • the first flat section 153 is a rectangular plate, which is smoothly connected with the end of the first arc section 154 away from the second arc section 155 , and the end of the first flat section 153 away from the first arc section 154 is the first end 151 .
  • the second flat section 156 is a rectangular plate connected to an end of the second arc section 155 away from the first arc section 154 , and the end of the second flat section 156 located at the air outlet 12 is the second end 152 .
  • the second flat section 156 and the second arc section 155 are connected through the arc connecting section 159, and the second flat section 156 is connected with the second arc section 155 through the arc connecting section 159 to realize a smooth transition, ensuring that the entire side The profile of the wall 15 is relatively smooth, thereby making the air flow in the cooling cavity 11 flow smoothly.
  • the arc bending direction of the arc connecting section 159 faces away from the fan area, and the profile of the arc connecting section 159 may be an arc with only one curvature. It can be understood that the arc connecting section 159 is formed by chamfering the connection between the second flat section 156 and the second arc section 155 . It can also be understood as an extension of the arc connecting segment 159 to the second flat segment 156 . In other embodiments, the second flat section 156 is directly connected to the second arc section 155 at an included angle.
  • the area where the fan 20 is located is named as the fan area 20A.
  • the outline and volume of the fan area are exactly the same as the outline and volume of the fan 20, that is, the fan area 20A is equivalent to the stereoscopic projection of the fan 20, which is similar to the fan 20. completely coincident.
  • the outer contour of the fan area 20A is also embodied in the form of lines, specifically a circle. When the fan blade 22 rotates, the end of the fan blade 22 away from the center O forms an annular surface with the fan 20 as the center O, and the annular surface is the outer contour surface of the fan area 20A.
  • the distance from the fan area 20A to the side wall or the partition 40 described below refers to the distance from the outer contour surface of the fan area 20A to the side wall 15 or the partition 40 .
  • the plane where the two radii of the fan area 20A are connected at an included angle is the interface F.
  • the interface F passes through the center O of the fan area 20A.
  • the interface F is actually a virtual surface, which is presented in the form of a line in the figure.
  • the interface F divides the fan area 20A into a first fan area 201A (the part corresponding to the included angle A1 in FIG. 4 ) and a second fan area 201B (the part corresponding to the included angle A2 in FIG. 4 ).
  • the second fan area 201B is close to the air outlet 12 ; the first fan area 201A is opposite to the first arc segment 154 and the second arc segment 155 at intervals.
  • the first plate segment 153 and the second plate segment 156 are located on opposite sides of the second fan area 201B.
  • the centers of the first arc segment 154 and the second arc segment 155 are located on a diameter passing through the interface F and spaced apart from the center O.
  • the included angle A1 is two connecting lines that pass through the center of the circle with the connection point of the first flat segment 153 and the first arc segment 154 as the starting point and the connection point of the second arc segment 155 and the arc segment 159 as the end point.
  • the included angle; the sum of the included angle A2 and the included angle A1 is 360 degrees, that is, the interface F passes through the starting point and the ending point.
  • the gap can be understood as an air duct.
  • the air duct communicates with the air outlet 12, and the overall outline of the air duct in this embodiment can be understood as a volute shape, which is actually arranged around the fan area 20A.
  • the gap between the first fan area 201A and the first arc section 154 and the second arc section 155 is the first air duct 50 .
  • the area between the second fan area 201B and the first flat section 153, the second flat section 156 (including the arc connecting section 159) and the air outlet 12 is the second air duct 60, and the second air duct 60 communicates with the air outlet 12 ;
  • the width direction of the volute 10 it is the length direction of the second air passage 60, and the length direction of the volute 10 is the width direction of the second air passage 60.
  • the two ports of the first air duct 50 are the first port 51 and the second port 52 respectively, and the first port 51 is located at the junction of the second arc section 155 and the arc connection section 159, that is, the interface F Pass through the fan area 20A to the position between the second arc segment 155 and the arc connection segment 159 .
  • the second port 52 is located at the junction of the first flat section 153 and the first arc section 154 ; that is, the interface F passes through the fan area 20A to the junction of the first flat section 153 and the first arc section 154 .
  • the first air passage 50 communicates with the second air passage 60 through the first port 51 and the second port 52 .
  • the length direction of the fan 20 is the length direction of the second air passage 60
  • the length direction of the fan 20 is the width direction of the second air passage 60 .
  • the first air duct 50 is between the arc segment and the fan area 20A
  • the second air duct 60 is connected between the air outlet 12 and the first air duct 50 .
  • the width of the first port 51 is smaller than the width of the second port 52, and along the first port 51 to the second In the direction of the port 52 , that is, the length direction of the first air duct 50 (clockwise direction ⁇ ), the width of the first air duct 50 gradually increases.
  • the fan rotates clockwise as an example for illustration.
  • the fan blades rotate clockwise, and the airflow generated at the first port 51 will flow along the first air duct 50 to the second port, and the first port between the first port 51 and the second port 52 In the air duct 50, because the fan blades 22 generate airflow at the same time, the flow of the airflow is constantly superimposed from the first port 51 to the second port 52.
  • the first air flow The width of the duct 50 gradually increases, which can control the uniformity of the flow velocity under the premise of the continuous increase of the flow rate during the flow of the air flow through the first air duct 50 .
  • the flow guiding support 30 is located in the second air duct 60 , and the second air duct 60 communicates with the air outlet 12 .
  • the second air duct 60 includes a first area 60A and a second area 60B, the first area 60A and the second area are arranged along the width direction of the air outlet, and the first area 60A and The second area 60B is connected to the first air duct 50 .
  • the width direction of the air outlet 12 refers to the X-axis direction.
  • a third area (not shown) is located on the other side of the first area 60A.
  • the second area 60B is arranged and connected along the width direction of the air outlet 12, the third area corresponds to and communicates with the first port 51 of the first air duct 50, and the second area 60B corresponds to and communicates with the second port 52 of the first air duct 50. connected.
  • the profile line of the interface F2 is arc-shaped, and the profile line starting end of the interface F2 is located between the interface F and the fan area 20A.
  • intersection point and is located at the second port 52 position of the first air channel 50, the profile line of the interface F2 has an intersection point with the air outlet 12 (end edge 142), and this intersection point is the end of the profile line of the interface F2, wherein for the convenience of distinguishing , the profile line of the interface F2 shown in the figure has a part that extends the air outlet 12 .
  • the airflow velocity in the first area 60A will be greater than the airflow velocity in the second area 60B.
  • the third area is located on the other side of the first area 60A, and the air flow velocity is different from the first area 60A, and is greater than the flow velocity of the first area 60A. It can be understood that the two sides of the interface F2 form areas with different flow rates, excluding third area.
  • the ratio of the first area 60A and the second area 60B can also be divided according to the measured actual air flow velocity of the second air duct 60 located on both sides of the intersection of the end edge 142 of the interface F2, the actual air flow velocity of the first area 60A greater than the actual airflow velocity in the second zone 60B.
  • the profile shape of the interface F2 is determined according to the air flow direction of the second port 52 of the first air duct 50 entering the second air duct and the air flow direction (arc) generated by the fan blades of the fan 20 in the second area near the second port.
  • the setting is mainly to adapt to the flow direction of the superimposed air volume of the first air duct 50 and the second air duct 60 .
  • the profile of the interface F2 can also be a straight line.
  • the starting end of the interface F2 whose profile is a straight line is located at the intersection of the interface F and the fan area 20A, and is located at the second port 52 of the first air duct 50.
  • the interface The profile line of F2 has an intersection point with the air outlet 12 (end side 142 ), and the intersection point is the end of the profile line of the interface F2.
  • the first region 60A and the second region 60B located on both sides of the interface F2 where the profile is a straight line have different airflow velocities.
  • the interface F2 is only a schematic boundary.
  • the boundary line between the third area and the first area 60A is also divided in the same way. Generally, the airflow velocity in the third area is higher than that in the first area 60A and flows directly out of the air outlet.
  • the air guiding support is located in the second air duct, the starting end of the air guiding supporting body is located in the second area 60B, and the length extension direction of the air guiding supporting body 30 is in line with the air outlet 12 (X axis direction), the air guide support 30 is used to divide the airflow in the second area 60B, and guide part of the airflow in the second area 60B to the first area 60A.
  • the air flow in the second area 60B includes the air flow generated by the fan 20 itself and the second port 52 of the first air duct 50 flowing into the second area, and the first air duct 50 can pass through the second port through the flow guiding support 30 52 and the air volume generated by the fan at the position of the second air duct 60 are divided to balance the flow velocity of the air flow in the width direction of the air outlet 12, avoiding the width direction of the air outlet 12, which is located in the roughly middle of the second air duct 60
  • the area (the first area 60A) is a lower wind speed area, which can avoid the lower flow velocity in this area and avoid the heat dissipation efficiency of the heat dissipation fins corresponding to this area, that is, improve the heat dissipation effect of the heat dissipation fins corresponding to this area.
  • the flow guide support 30 is an airfoil plate, wherein the cross-sectional shape of the flow guide support 30 is an airfoil shape, such as a low-speed airfoil: NACA-4, NACA-6 series airfoil, etc.
  • the flow guiding support body 30 may also be an arc-shaped plate or a flat plate, and the cross-sectional shape of the corresponding plate body is rectangular or arc-shaped.
  • the flow guiding support body 30 can be made of plastic material, so as to avoid excessively increasing the weight of the cooling module.
  • the conduction support body 30 can also be made of metal materials such as aluminum, so as to realize the functions of conduction and support and assist the heat conduction function at the same time.
  • the air guide support 30 includes a first air guide surface 301 and a second air guide surface 302, the first air guide surface 301 and the second air guide surface 302 are arranged opposite to each other, the first air guide surface 301 faces the fan 20, and the second air guide surface
  • the flow surface 302 faces the first plate segment 153 .
  • the first flow guide surface 301 and the second flow guide surface 302 realize the airflow guiding function.
  • the flow guide support 30 further includes a starting end 31 and an end 32 , both of which are connected to the first flow guiding surface 301 and the second flow guiding surface 302 .
  • the flow guide support 30 is roughly located in the second area 60B close to the first area 60A; the start end 31 and the end 32 of the flow guide support 30 are both located in the second area 60B.
  • the air guide support body 30 is an airfoil plate, and the first air guide surface 301 and the second air guide surface 302 are arc-shaped surfaces, which are more suitable for the flow direction of the airflow generated by the rotation of the fan 20, so that the airflow can flow smoothly.
  • the starting end 31 of the flow guide support body 30 is located in the second region 60B, and the end 32 is located in the first region 60A. Just start to be shunted, and enter the first region 60A along the length extension direction of the air guiding support 30, so that the direction of the airflow entering the first area 60A can be adjusted, and more targeted air guiding and heat dissipation can be achieved.
  • the length extension direction of the flow guide support 30 intersects the width direction of the air outlet 12 (X-axis direction), that is, the flow guide support 30 is inclined compared with the air outlet 12 (end edge 142 ), The inclined flow channel is generated, which can easily divide the air volume of the second area 60B to the first area 60A of the second air channel.
  • the extending direction of the length of the flow guiding support body is the extending direction of a straight line as shown by 303 in the figure, and the straight line passes through the flow guiding support body 30 to connect the starting end 31 and the end 32 .
  • FIG. 5 and FIG. 6 are schematic diagrams of the process of setting the position of the flow guide support shown in FIG. 3; 31 and the end 32 position, wherein the end 32 is close to the position of the air outlet 12, the length extension direction of the flow guiding support 30 intersects the width direction of the air outlet 12, that is, the flow guiding support 30 is inclined to the air outlet 12
  • the angle is an inclined angle with the end edge 142 ; the inclination angle of the air guiding support body 30 is greater than or equal to 90 degrees compared with the air outlet 12 (the end edge 142 ).
  • the fan area has a first preset angle ⁇ 1 and a second preset angle ⁇ 2, wherein the air volume of the first air duct 50 passing through the second port 52 is the same as that of the fan 20 in the second area 60B of the second air duct 60
  • the superposition of the generated air volume will increase the air volume and flow velocity at the positions on both sides of the second air duct 60.
  • the fan rotates after the airflow generated by the second air duct, the second area 60B and the first area
  • the value of the first preset angle ⁇ 1 and the second preset angle ⁇ 2 is determined by the ratio of the flow rate of 60A.
  • the first air duct 50 and the second air duct 60 it is located at the connection position between the second flat section 156 (arc connecting section 159) and the second arc section, that is, the position of the first port 51 is that the width of the first air duct 50 is the smallest
  • the position is also the position where the distance between the side wall 15 and the fan area 20A is the smallest, defining the connection position (the first port 51) passing through the radius and the second flat plate segment 156 (arc connecting segment 159) and the second arc segment 155
  • the straight line is the reference line F1
  • the reference line is located on the boundary surface F
  • the center O of the fan area 20A is taken as the starting point
  • the straight line passing through the radius is used as the first boundary line r1
  • the angle is a first preset angle ⁇ 1, and the value of the first preset angle ⁇ 1 is 180 degrees to 360 degrees. In this embodiment, the value of the first preset angle ⁇ 1 is
  • the first dividing line r1 has an intersection 1 with the fan area 20A, the first dividing line r1 has an intersection 2 with the first flat plate segment 153 , and the starting end 31 of the shape line of the flow guiding support body 30 is located between the intersection 1 and the intersection 2 .
  • the specific position of the starting end 31 can be determined according to the ratio of the required starting end 31 to the passing air volume between the fan area 20A and the side wall. After the intersection point 1 and intersection point 2 are confirmed, there is no need to do R1, directly according to The starting end 31 for determining the ratio is located on the line connecting the intersection point 1 and the intersection point 2 .
  • the end 32 of the molded line of the flow guiding support 30 is defined according to the second preset angle ⁇ 2 and the second coordinate line R2, specifically, the center O of the fan area 20A is taken as the starting point, and the straight line passing through the radius is used as the second dividing line r2
  • the angle between the second boundary line r2 and the reference line F1 is a second preset angle ⁇ 2, ⁇ 2 is greater than ⁇ 1, and the value of the second preset angle ⁇ 2 is 180 degrees to 360 degrees. In this embodiment, the value of the second preset angle ⁇ 2 is selected as 270 degrees.
  • the second boundary line r2 has an intersection point 3 with the fan area 20A, the second boundary line r2 has an intersection point 4 with the first flat plate section 153 or the position of the air outlet, and the end 32 of the shape line of the flow guiding support body 30 is located between the intersection point 3 and the intersection point 4 between.
  • FIG. 8 is a velocity distribution diagram of the air outlet of the heat dissipation module of the present application provided with the air guide support body 30 .
  • the darker curve in the figure is the wind speed distribution without the flow guide support 30 of the present application, the light colored curve is the distribution of the wind speed at the air outlet after the flow guide support 30 is set, and the two lines reflect the flow guide support
  • the position of the body 30 is different, and the wind speed distribution is different.
  • the middle part (the first zone 60A) There is a relatively large low-velocity zone in the first area 60A) of the second air duct 60 .
  • This low flow rate reduces the heat transfer efficiency of the fins.
  • the air guide support body 30 guides part of the air volume into the first area 60A of the second air duct 60. It can be seen that the air guide support body 30 using the airfoil shape can well improve the temperature of the air outlet 12 of the volute 10.
  • the speed of the first area 60A (low speed area) of the second air duct 60 can further improve the heat dissipation efficiency of the fins and enhance the heat dissipation effect of the entire heat dissipation module.
  • first air duct 50 and the second air duct 60 jointly surround the outer periphery of the fan area 20A, and when the fan 20 rotates, the air volume is continuously accumulated along the rotation direction (clockwise), and the first preset angle ⁇ 1 and the second preset angle ⁇ 2 is the preset angle, according to the flow distribution division of the airflow in the second air duct 60 to the air outlet, the flow velocity in the low-velocity area of the air outlet 12 can be increased.
  • the airflow of the second air duct 60 at the position of the first dividing line r1 starts to be divided at the starting end 31 of the air guiding support 30, the distance from the starting end 31 of the first coordinate line R1 to the fan area 20A and the first coordinate
  • the distance from the starting end 31 of the line R1 to the first plate section 153 can be determined according to the air volume required in the middle area of the second air duct 60 (the first area 60A of the second air duct 60), for example, the distance between the starting end 31 and the intersection point
  • the distance of 1 is smaller than the distance from the starting end 31 to the intersection point 2, and the flow channel with a smaller distance will have less flow distributed by the diversion support body 30, that is, the specific position of the starting end 31 can be determined according to the position of the first dividing line r1
  • the airflow is divided into two parts to design the air volume of the flow channel.
  • FIG. 7 is a schematic diagram of the heat dissipation module shown in FIG. 3 having multiple flow guide supports; in one embodiment, there are two flow guide supports 30, which are respectively the first flow guide support 30a
  • the length and shape of the second flow guiding support body 30b' may be the same or different.
  • the first flow guide support body 30a and the second flow guide support body 30b are arranged at intervals.
  • the length of the first flow guide support body 30a in this embodiment is greater than the length of the second flow guide support body 30b, and the second flow guide support body 30b is located at the second flow guide support body.
  • the inclination directions of the first flow guide support body 30a and the second flow guide support body 30b are the same or similar, and the flow guide support body in the first area can guide the first flow guide support body
  • the airflow in the area is further divided, so that the airflow can evenly pass through the air outlet, and the flow velocity distribution out of the air outlet 12 is more uniform, so as to realize uniform heat dissipation of the heat dissipation fins.
  • Both the start end and the end of the second flow guide support body 30b can be determined according to the way of determining the start end and the end end of the flow guide support body 30 in the above-mentioned embodiment.
  • FIG. 9 and FIG. 10 are schematic diagrams of the process of forming the positions of the partitions shown in FIG. 3 .
  • the heat dissipation module of this embodiment further includes a partition 40 , which is located in the first air duct 50 and protrudes from the inner surface 141 ( FIG. 3 ) of the plate body 14 , that is, the bottom wall of the cavity.
  • the partition 40 is an arc-shaped thin plate, and its length direction extends along the length direction of the first air duct 50; the partition 40 is arranged in parallel with some arc-shaped sections at intervals, and the curved direction of the profile of the partition 40 faces the fan 20, and the partition 40
  • the molded line of 40 is an arc line, or a plurality of arcs with different curvatures are sequentially connected, or a Bezier curve, or a smooth curve, or a non-closed spline curve.
  • partitions that are partly the same as or similar to the profile of the side wall to ensure smooth air flow and improve uniformity.
  • the partition 40 is less than or equal to the height of the side wall 15 (or the arc section).
  • the profiled line of the arc section has part of the same or close curvature to the profiled line of the dividing plate 40.
  • the profiled line of the second arcuate segment 155 in the arced segment is the same as that of the dividing plate 40, and the length can be Equal or unequal, it means that the volute 10 has part of the partition 40 with the same or similar profile as the side wall 15, so that the partition 40 forms a double volute structure with the fan area 20A and the side wall, improving the uniformity of the air outlet.
  • the profile line of the second arc section can be directly selected, and the smoothness of the air flow in the air duct can also be improved.
  • the partition plate 40 divides the first air passage 50 into two sub-channels, and divides the air volume accumulated in the first air passage 50 during the fan rotation, so as to prevent the air flow from continuously flowing in the first air passage. Accumulation results in excessive flow velocity, which leads to uneven heat dissipation in the first flow channel, and improves the uniformity of the flow velocity of the air flow in the first air channel.
  • the flow velocity of the air flow entering the second area 60B of the second air channel 60 from the first air channel can be adjusted to avoid excessive flow rate of this part of the air flow, and then the flow rate to the first area 60A in the second air channel 60 can be adjusted.
  • the sub-air duct between the profile of the partition 40 and the fan area 20A has the same width as the part of the first air duct 50 between the second arc segment 155 and the fan area 20A, in fact
  • the second arc segment 155 is rotated clockwise along the circle to the partition position, and the partition is formed with reference to the second arc segment 155 profile.
  • the fan area 20A includes a third preset angle ⁇ 3 and a fourth preset angle ⁇ 4;
  • the preset angle ⁇ 3 ranges from 30 degrees to 180 degrees, and the fourth preset angle ⁇ 4 is greater than the third preset angle ⁇ 3 .
  • the airflow in the first air passage 50 is continuously superimposed on the direction of fan rotation, according to the flow distribution ratio of the airflow generated in the first air passage under the same speed per unit area (to ensure the uniformity of heat dissipation in the first air passage and to avoid entering the second air flow).
  • the flow velocity of the channel is too large) to determine the angle values of the third preset angle ⁇ 3 and the fourth preset angle ⁇ 4.
  • the third dividing line r3 passes through the first air duct 50 and has an intersection 1 with the fan area 20A, and an intersection 2 with the molded line of the side wall 15; the starting end 401 of the molded line of the partition 40 is located on the line connecting the intersections 1 and 2 .
  • the value of K3 in this embodiment is 0.2. It can be understood that the length R3 from the starting end 401 of the separator 40 to the center O is larger than the radius of the fan area 20A, and smaller than the length of the third boundary r3.
  • the fourth dividing line r4 crosses the first air duct 50 and has an intersection 3 with the fan area 20A, and an intersection 4 with the molded line of the side wall 15 ;
  • the line connecting the end 402 of the partition 40-shaped line and the center O is the fourth coordinate line R4, and the end of R4 located on the fourth dividing line r4, that is, the end between the intersection point 3 and the intersection point 4 is the end 402.
  • the value of K4 in this embodiment is 1.2.
  • the fourth coordinate line R4 is located on the interface F and located at the position of the second port 52 . It can be understood that the length R4 from the end 402 of the separator 40 to the center O is greater than R3 and less than the length of the fourth dividing line r4.
  • the width of the first air duct 50 (the distance between the fan area 20A and the arc segment) gradually increases along the fan rotation direction. Further, the width of the sub-air passage between the profile of the partition plate 40 and the fan area 20A is the same as the width between the second arc segment 155 and the fan area 20A.
  • the direction in which the width of the first air duct 50 becomes larger is also the flow direction of the airflow, which avoids uneven distribution of flow velocity and uneven heat dissipation caused by the large amount of air accumulated during the rotation of the fan, and can improve the temperature in the first air duct 50.
  • the uniformity of the flow velocity of the airflow thereby improving the uniformity of the flow velocity of the air outlet.
  • the start end of the partition 40 is located on the line between the third boundary line r3 and the fan area 20A and the cavity side wall
  • the end of the partition 40 is located on the connection line between the fourth boundary r4 and the fan area 20A and the side wall of the cavity, and the partition is set according to the ratio of the actual airflow velocity that needs to be divided.
  • the specific positions of the start end and the end of the plate 40 can further divide the required width of the sub-air ducts located on both sides of the partition plate 40 . It can also be understood as confirming the specific positions of the start end and the end on the connection line according to the ratio of the flow velocity of the airflow that is to be divided into two parts.
  • the arc segment and the fan area 20A are two walls of the air duct, and the first air duct 50 has a preset width;
  • the starting end of the partition 40 is located at a position where the width of the first air channel 50 is equal to the preset width, and the end of the partition 40 is located at the position of the second port 52 .
  • the start end and the end of the partition plate 40 are set according to the proportion by which the flow velocity of the actual airflow needs to be divided, and then the required width of the sub-air ducts located on both sides of the partition plate 40 can be divided.
  • the volute 10 of the heat dissipation module in this embodiment is provided with a thermally conductive support 30 to replace the common cylindrical support between the cover plate 16 and the plate body 14, so as to prevent the fan 20 from being damaged when the volute 10 is subjected to external pressure, and The rigidity of the volute can be ensured; the velocity distribution of the airflow at the position of the air outlet 12 of the volute 10 can be improved, the flow velocity of the airflow discharged from the air outlet 12 can be made uniform, and the heat dissipation efficiency of the cooling fin group 70 can be improved.
  • the partition plate 40 is set in the first air duct 50, which can divide the airflow in the first air duct to achieve the effect of increasing the uniform flow velocity, and can regulate the first air duct 50 to enter the second air duct through the second port 52.
  • the air flow velocity in the second area in the channel 60, combined with the flow guide support 30, makes the air flow velocity of the second air channel uniform, thereby improving the uniformity of the air output from the air outlet.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

提供一种散热模组(100)及电子设备,包括蜗壳(10)、风扇(20)和导流支撑体(30);蜗壳(10)包括散热腔(11)与出风口(12),散热腔(11)包括腔侧壁和腔底壁,腔侧壁设于腔底壁边缘并具有弧形段,风扇(20)设于散热腔(11)内,且导流支撑体(30)凸设于腔底壁;风扇(20)所在区域为风扇区域(20A),弧形段与风扇区域(20A)之间为第一风道(50),连接出风口(12)与第一风道(50)之间的为第二风道(60);第二风道(60)包括第一区域(60A)和第二区域(60B),第一区域(60A)和第二区域(60B)沿着出风口(12)宽度方向排列,第二区域(60B)与第一风道(50)连接,风扇(20)旋转产生的气流,经过第二区域(60B)的部分气流流速大于经过第一区域(60A)的部分气流的流速;导流支撑体(30)位于第二风道(60)的第二区域(60B)内,导流支撑体(30)的长度延伸方向与出风口(12)的宽度方向相交,导流支撑体(30)用于将第二区域(60B)的气流分流,并导入第一区域(60A)。

Description

散热模组及电子设备
本申请要求2021年12月03日在中国提交的申请号为202111470698.X、名称为“散热模组及电子设备”的专利申请的优先权,本申请要求2022年01月05日在中国提交的申请号为202210010487.6、名称为“散热模组及电子设备”的专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及散热相关技术领域,尤其涉及一种散热模组及电子设备。
背景技术
在笔记本电脑等电子设备的热系统中,由风扇和翅片散热器组成的散热模组作为最重要的散热部分。比如笔记版电脑中,主要发热源产生的热量传导至蜗壳体和散热片,然后由风扇吹产生气流带走热量,实现降低电脑温度的目的。
现有的风扇散热模组都是由风扇和散热翅片组组成,风扇用来提供散热所需要的风量,翅片组负责换热。而流经散热翅片的流速越高,空气和散热翅片的换热系数就会越高,单位时间内带走的热量就会越多,散热性能就会越好。由于常规散热壳的敞口设计,导致在散热壳的出口会存在高速区和低速区,差异很大,而且如果低速区流速较低,会进一步降低翅片的换热效率,这就会导致整个模组的散热性能降低。
发明内容
本申请提供一种散热模组,解决因散热壳的出口气流速度较大差导致整个模组的散热性能降低的技术问题。
本申请还提供一种电子设备。
本申请所述的散热模组,包括蜗壳、风扇和导流支撑体;所述蜗壳包括散热腔与所述散热腔连通的出风口;所述散热腔包括腔侧壁和腔底壁,所述腔侧壁设于所述腔底壁边缘并具有弧形段,所述风扇和所述导流支撑体设于所述散热腔内,且所述导流支撑体凸设于所述腔底壁;
所述风扇所在区域为风扇区域,所述弧形段与所述风扇区域之间为第一风道,连接所述出风口与所述第一风道之间的为第二风道;所述第二风道包括第一区域和第二区域,所述第一区域和所述第二区域沿着所述出风口宽度方向排列,所述第一区域和第二区域与所述第一风道连接,
所述导流支撑体位于所述第二风道的,所述导流支撑体的起始端位于第二区域内,所述导流支撑体的长度延伸方向与所述出风口的宽度方向相交,所述导流支撑体用于将所述第二区域的气流分流,并将分流的部分气流导流至所述第一区域。
本实施例中的散热模组的蜗壳内设置有导热支撑体,可以改善蜗壳出风口位置气流的速度分布,使出风口排出的气流流速均匀,提高散热翅片组的散热效率。比如风扇旋转产生的气流,经过所述第二区域的部分气流流速大于经过所述第一区域的部分气流的流速,通过导流支撑体可以将气流进行分流,进而提升第一区域的气流流速,均匀出风口流速。
一种实施例中,所述散热腔包括腔顶壁,所述腔顶壁连接于所述腔侧壁并与所述腔底壁相对;所述导流支撑体支撑于所述腔顶壁和所述腔底壁之间。本事实例中采用导流支撑体来代替普通的圆柱体支撑盖板与板体之间,防止蜗壳受外界压力时损伤风扇,且可以保证蜗壳的刚度。
一种实施例中,所述导流支撑体为板体,所述板体的横截面形状为翼型、矩形或者弧形。具体的,所述导流支撑体翼型板体和弧形板体时可以更适应风扇旋转产生的弧形轨迹的气流,更便于控制分流气流的流向。
一种实施例中,所述风扇区域具有第一预设角θ1和第二预设角θ2,经过所述风扇区域的半径及所述第一风道宽度最小位置的直线为基准线,
构成所述第一预设角θ1的两个边线分别为所述基准线和第一坐标线R1,所述第一坐标线R1的长度满足R1=K1*D/2,D为风扇区域的直径,所述第一坐标线R1远离所述圆心的端部为所述导流支撑体的起始端;
构成所述第二预设角θ1的两个边线分别为所述基准线和第二坐标线R2,所述第二坐标线R2的长度满足R2=K2*D/2,D为风扇区域的半径,K2大于K1,所述第二坐标线R2远离所述圆心的端部为所述导流支撑体的末端。本实施例的导流支撑体的起始端和末端的确认,可以更好地达到分流的目的,保证进入第一区域的气流的流量。
一种实施例中,所述第一预设角θ1和所述第二预设角θ2的角度值大于180度小于360度,且所述第一预设角θ1的角度小于所述第二预设角θ2的角度。
一种实施例中,K1和K2均大于1小于10。
一种实施例中,所述第一区域设有导流支撑体,所述第一区域内的导流支撑体与所述第二区域内的导流支撑体间隔设置,所述第一区域内的导流支撑体的长度延伸方向与所述出风口的宽度方向相交,所述导流支撑体用于将所述第一区域的气流分流。所述第一区域内的导流支撑体可以将所述第一区域内的气流进行进一步分流,使气流可以均匀地通过出风口,实现散热翅片的均匀散热。
一种实施例中,所述蜗壳还包括隔板,所述隔板凸设于所述腔底壁并位于所述第一风道内,所述隔板沿着所述第一风道长度方向延伸,且所述隔板的型线与所述弧形段的型线间隔且相对。沿着风扇旋转方向,隔板将第一风道部分划分为两个子通道,将风扇旋转过程中在第一风道内不断积累的风量进行分流,可以避免气流在第一风道内不断累积而产生流速过大,散热不均的问题,提升第一风道内的气流的流速的均匀性,避免在进入第二风道时增加局部区域的流速,可以使出风口的流速分更加均匀。
一种实施例中,所述隔板的型线为圆弧线,或者多个不同曲率的弧形依次连接,或者是贝塞尔曲线,或者是非封闭的样条曲线。相当于蜗壳内具有部分与侧壁型线相同或相近的隔板,保证出风顺畅且提高均匀性。
一种实施例中,所述弧形段包括第一弧形段和第二弧形段,所述隔板的型线与所述第二弧形段的型线曲率相同。本实施例中所述隔板的型线与弧形段的型线相同,使隔板与风扇区域及蜗壳的第二风道构成双重蜗壳结构,提高出风均匀性。一种实施例中,所述第一风道的宽度沿风扇旋转方向逐渐变大,且所述第一弧形段和第二弧形段沿着所述风扇旋转方向排列。所述第一风道的宽度变大的方向也是气流的流动方向,避免风扇旋转过程中积 累的风量较多而导致的流速过大而散热不均,可以提升第一风道内的气流的流速的均匀性,进而提高出风口流速均匀性。
进一步的,所述隔板的型线与所述风扇区域之间的子风道的宽度,与所述第二弧形段与所述风扇区域之间的宽度相同。在设计隔板时可以直接选取第二弧形段的型线,也可以提子风道气流的流动顺畅性。
一种实施例中,所述风扇区域具有第三预设角θ3和第四预设角θ4,θ4的角度为K5*θ3,K5大于1小于5;过所述风扇区域的半径及所述第一风道宽度最小位置的直线为基准线,
构成所述第三预设角θ3的两个边线分别为所述基准线和第三分界线,构成所述第四预设角θ4的两个边线分别为所述基准线和第四分界线,
所述隔板的起始端位于所述第三分界线与所述风扇区域和所述腔侧壁之间的连线上,所述隔板的末端位于所述第四分界线与所述风扇区域和所述腔侧壁之间的连线上。第一风道内的气流不断累积而产生流速过大,通过适当设置隔板的位置进行分流,可以达到均匀流速,进而实现均匀散热的目的。
一种实施例中,在所述第三分界线上确定第三坐标线R3,所述第三坐标线R3的长度满足R3=K1*D/2,D为风扇区域的直径,所述第三坐标线R3远离所述圆心的端部为所述隔板的起始端;
在所述第三分界线上确定第四坐标线R4,所述第四坐标线R4的长度满足R4=K4**R3,K4大于K1,所述第四坐标线R4远离所述圆心的端部为所述隔板的末端。
一种实施例中,第三预设角θ3的角度为大于30度小于180度;K3大于1小于2,K4大于1小于2。
一种实施例中,所述弧形段和所述风扇区域为所述风道的两个壁,所述第一风道具有宽度预设值,所述第一风道与所述第二风道之间具有端口,所述端口所在直线过所述风扇区域半径;所述隔板的起始端位于所述风道的宽度等于所述宽度预设值的位置,所述隔板的末端位于所述端口所在位置。不限定隔板的起始端和末端在第一风道宽度方向的位置,便于加工,且只要实现分流即可。
一种实施例中,所述腔侧壁包括通过所述弧形段连接的两个相对的第一平板段和第二平板段,所述第一平板段和第二平板段分别位于所述出风口宽度方向的相对两侧,
所述弧形段包括连接的第一弧形板和第二弧形板,所述第一弧形段长度方向的型线为一个圆弧线,或者为多个不同曲率的弧形连接;所述第二弧形段长度方向的型线为一个圆弧线,或者为多个不同曲率的弧形连接。蜗壳的所述弧形段的弧形设计利于风扇旋转时每个位置的出风方向一致性。
一种实施例中,所述散热模组还包括导热件,所述导热件连接于所述蜗壳外表面。导热件用于将外界热量传递至蜗壳进行散热。
一种实施例中,所述散热模组还包括散热翅片组,所述散热翅片组设于所述蜗壳外部与所述出风口连接。散热翅片组用于对蜗壳内排出的热量进行散热。
本申请提供的电子设备包括主体和所述的散热模组,所述散热模组装于所述主体内,且所述散热翅片组露出所述主体。本申请采用所述散热模组,可以实现均匀散热。
综上所述,本申请的散热模组在散热壳内设置导流支撑体,来支撑盖板与板体之间, 防止蜗壳受外界压力时损伤风扇,且可以保证蜗壳的刚度;又可以改善蜗壳出风口位置气流的速度分布,使出风口排出的气流流速均匀,提高散热翅片组的散热效率,进而提高电子设备散热效率。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本申请实施例提供的电子设备的结构示意图;
图2是图1所示的散热模组的结构示意图;
图3是图2中所示的散热模组的去掉盖板后的结构示意图;
图4是图3中所示的散热模组的俯视示意图;
图5和图6是图3中所示的导流支撑体位置形成过程示意图;
图7是图3中所示的散热模组具有多个导流支撑体的示意图;
图8是本申请散热模组设置导流支撑体的出风口的速度分布图;
图9和图10是图3中所示的隔板位置形成过程示意图。
具体实施方式
请参阅图1,图1是本申请实施例提供的电子设备的结构示意图。电子设备可以为一体台式电脑、笔记本电脑等需要内部进行散热的电子设备。本申请实施例以笔记本电脑200为例进行说明。
笔记本电脑200包括主体210、转动装于主体210的显示屏及位于主体210内部的散热模组100。主体210包括壳体及装设于壳体内部的处理器、电路板等用于实现电脑功能的电子元件及相关的结构件,而且处理器和电路板为发热较大的元件。壳体上设有散热风口用于与外界连通,通过散热模组将笔记本电脑200内的热量经散热风口散出。
以下结合具体实施例对本申请所述的散热模组进行详细说明。
请一并参阅图2和图3,图2是图1所示的散热模组的结构示意图,其中散热翅片组70表示,且仅表示了轮廓;图3是图2中所示的散热模组的去掉盖板后的结构示意图;散热模组100包括蜗壳10、装于蜗壳10内的风扇20以及设于蜗壳10内的导流支撑体30以及散热翅片组70。蜗壳10包括板体14、侧壁15和盖板16。所述的蜗壳10包括散热腔11及与散热腔11连通的出风口12。具体的风扇20和导流支撑体30位于散热腔11内,导流支撑体30凸设于散热腔壁,导流支撑体30用于支撑侧壁15和盖板16之间。出风口12位于蜗壳10的一侧,用于散热腔11内的热风流出。散热翅片组70位于出风口12位置,用于对散热腔11内出来的热风进行降温散热。本申请中导流支撑体30防止蜗壳10受外界压力时损伤风扇20,且可以保证蜗壳的刚度;又可以改善蜗壳10出风口12位置气流的速度分布,提高散热翅片组的散热效率。
本实施例中,蜗壳侧壁15凸设于板体14形成本体,盖板16盖于侧壁上并与板体14间隔相对,本体和盖板16形成散热腔11及出风口12。侧壁15朝向散热腔11的侧面为散 热腔11的腔侧壁,板体14朝向散热腔11的面为腔底壁;盖板16朝向散热腔的面为腔顶壁,导流支撑体30凸设于腔底壁上支撑于腔顶壁和腔底壁之间。本实施例的蜗壳10的整体为蜗壳状,并具有蜗壳轮廓的散热腔11以及呈蜗壳型线延伸的侧壁15。
蜗壳10的散热腔11内包括风扇安装区,板体14上开设有风扇进风口(图未标),盖于本体上的盖板16对应风扇进风口设有风扇进风口(图未标);风扇进风口、板体14的风扇进风口与风扇安装区相对应。风扇位移风扇安装区内,风扇20转动时,外部气流经过板体14的风扇进风口、风扇进风口进入蜗壳10内部。本实施例的风扇20包括风扇轴21和多个风扇叶22,多个风扇叶22围绕风扇轴21间隔且均匀设置,每两个相邻的风扇叶22之间的间隙为流道(图未标),多个风扇叶22均匀间隔设置,保证每两个相邻的风扇叶22之间的流道间距相同。其中,每一个风扇叶22的一端与风扇轴连接,另一端为自由端,且每两个相邻的风扇叶的自由端之间为流道的风口,用于流道内的气流流出。
多个风扇叶22绕着风扇轴21转动时,远离风扇轴21的端部形成圆环轮廓。多个风扇叶22围绕风扇轴21均匀设置以保证在风扇叶转动时,每两个风扇叶之间的流道的出风量的相同,也就是说风扇20旋转时经过每个流道吹出去风扇外的风量是相同且均匀的。风扇20装于散热腔11内,通过风扇轴21连接板体14,风扇20的风扇轴21的轴线与板体14垂直,风扇叶22与侧壁15间隔设置,即风扇叶22与侧壁15之间的间隔距离要保证气流的通过以及风扇旋转时与散热模组之间的安全距离。
请一并参阅图4,图4是图3中所示的散热模组的俯视示意图。具体的,板体14包括内表面141(腔底壁)和端边142;所述端边142为呈直线延伸的板体14边缘,也可以理解为是内表面141的一侧边。端边142的长度方向为散热模组100的宽度方向,也是出风口的宽度方向。侧壁15包括第一端151和第二端152。侧壁15凸设于内表面141上且沿着内表面141部分边缘延伸,侧壁15的第一端151位于端边142一端,第二端152位于端边142另一端;侧壁15的第一端151和第二端152之间形成开口,端边142位于开口处。可以理解,侧壁15为条形薄板,其侧部与内表面连接,由端边142的一端沿着内表面的边缘延伸至端边142的另一端。所述盖板16外形轮廓与板体14的外形轮廓相同,盖板16盖于侧壁15上,盖板16、侧壁15及板体14之间形成所述散热腔11,且在开口位置形成所述出风口12。也可以理解为,侧壁15围绕板体14的内表面边缘设置,在侧壁15上开设所述通风口。端边142为围成出风口12的一个边。端边142的长度方形为出风口12的宽度方向。
为了便于描述,定义蜗壳10的宽度方向(平行于端边142的方向,也就是出风口12的宽度方向)为X轴方向,蜗壳10的长度方向(垂直于端边142的方向,也即是垂直出风口所在平面的方向)为Y轴方向,蜗壳10的厚度方向为Z轴方向;X轴方向、Y轴方向和Z轴方向两两相互垂直。需要说明的是,本申请以下所述的平行,是允许有一定的公差范围,本申请以下所述的直径值、半径值、间距值等数值均允许存在一定的公差范围。
所述散热模组100还设有导热件(图未示),导热件装于蜗壳10的外部,具体是装于板体14上与内表面141相对的外表面上,用于与笔记本电脑的发热元件接触,以将笔记本电脑200内的热量传递至蜗壳10上,蜗壳10和设于蜗壳10内的导流支撑体接收由导热件传递来的热量,经由风扇20产生的气流带带走热量来进行散热,以达到对电脑散热的目的。 具体的,导热件可以是金属板体或者金属管体,直接连接笔记本电脑的处理器、电路板等发热量较大的电子元件。在其它实施例中,导热件沿着侧壁15的外周面设置,也就是侧壁15背向散热腔11的外部表面。
请一并参阅图4,图4是图3中所示的散热模组的俯视示意图;本实施例中,侧壁15呈蜗壳型线延伸的薄板,包括第一平板段153、第一弧形段154、第二弧形段155、弧形连接段159及第二平板段156,第一平板段153、第一弧形段154、第二弧形段155、弧形连接段159及第二平板段156依次连接围成蜗壳10的外形,侧壁15的轮廓可以理解为蜗壳10的型线。第一弧形段154、第二弧形段155、弧形连接段159为弧形板体,第一平板段153和第二平板段156为矩形板体。沿着蜗壳10的宽度方向,第一平板段153与通过弧形连接段159相连接的第二弧形段155和第二平板段156相对设置,第一平板段153和第二平板段156位于出风口12相对两侧。沿着蜗壳10的长度方向,第一弧形段154与出风口12相对。在其他实施例中,侧壁15也可以均是平板状,或者是弧形状,根据实际应用而确定。
本实施例中,侧壁15与内表面141垂直设置,也就是第一平板段153、第一弧形段154、第二弧形段155、弧形连接段159及第二平板段156均垂直于内表面141。第一平板段153、第一弧形段154、第二弧形段155、弧形连接段159及第二平板段156均为厚度尺寸均匀的薄板。其中,所述的第一弧形段154和第二弧形段155连接后为弧形段。所述的第一平板段153、第一弧形段154、第二弧形段155、弧形连接段159及第二平板段156的厚度尺寸是指X轴方向上的尺寸。可以理解为第一平板段153、第一弧形段154、第二弧形段155、弧形连接段159及第二平板段156的厚度一致,也可以互不相同,但是每一段的厚度是均匀的。其中,第一平板段153、第一弧形段154、第二弧形段155、弧形连接段159及第二平板段156可以通过模内一体成型直接形成所述侧壁,也可以是第一平板段153、第一弧形段154、第二弧形段155、弧形连接段159及第二平板段156各自成型后再连接。在其它实施方式中,侧壁15也可以是厚度不均匀的板体。
本实施例中的侧壁15厚度均匀设置,为了便于描述,在图4俯视图中蜗壳10和风扇20均以线条形式显示,蜗壳10轮廓线统称为型线;比如侧壁15的型线,也即第一平板段153、第一弧形段154、第二弧形段155、弧形连接段159及第二平板段156的型线。当然,图中显示的侧壁15的线条可以为第一平板段153、第一弧形段154、第二弧形段155、弧形连接段159及第二平板段156各自的型线的连线。在侧壁15厚度不一致的情况下,型线即为侧壁15朝向所述散热腔11的侧壁面的侧部轮廓线。需要说明的是,第一弧形段154和第二弧形段155形成所述的弧形段。
对于上述的型线的说明,以第一平板段153为例,第一平板段153的型线是沿着其长度方向延伸的穿过第一平板段153的中心位置的线(也是形成第一平板段153整体轮廓的中心线),第一平板段153的宽度和厚度均以型线为对称线;且在第一平板段的长度方向上,第一平板段153在板体14的正投影的轮廓线与型线平行且弯曲方向及曲率相同。第一平板段153实际上有两个长度方向延伸的侧面。一个侧面朝向散热腔,另一个侧面朝向蜗壳外部,两个侧面为弧形面,型线所在的切面与两个侧面平行且弧形的曲率及弯曲方向完全一致。导流支撑体、第一弧形段154、第二弧形段155、弧形连接段159及第二平板段156的 型线与第一平板段153的型线定义完全相同。后续描述型线的形状既可以代表该型线所对应的导流支撑体或者侧壁的形状。
第一弧形段154和第二弧形段155均为弧形的板体,且第一弧形段154与第二弧形段155平滑连接。第一弧形段154与第二弧形段155长度方向的型线为一个圆弧线,或者第一弧形段154与第二弧形段155的型线为多个不同曲率的弧形连接。本实施例中,第一弧形段154与第二弧形段155长度方向的型线为贝塞尔曲线。当然,第一弧形段154与第二弧形段155长度方向的轮廓线也可以是多个弧形依次连接形成,第一弧形段154与第二弧形段155的弧形弯曲方向朝向风扇。本实施例中构成第一弧形段154与第二弧形段155的型线的一个或者多个弧形的圆心位于风扇区域20A内。
第一平板段153为矩形板体,其与第一弧形段154远离第二弧形段155的一端平滑连接,第一平板段153远离第一弧形段154的一端为第一端151。第二平板段156为矩形板体,其与第二弧形段155远离第一弧形段154的一端连接,且第二平板段156位于出风口12的一端为第二端152。本实施例的第二平板段156与第二弧形段155通过弧形连接段159,第二平板段156通过弧形连接段159与第二弧形段155连接可以实现平滑过渡,保证整个侧壁15轮廓比较顺滑,进而使位于散热腔11内的气流顺畅流动。
弧形连接段159的弧形弯曲方向背向风扇区域,且弧形连接段159的型线可以是只有一个曲率的弧形。可以理解为弧形连接段159为第二平板段156与第二弧形段155连接处呈倒角设置而形成。也可以理解为弧形连接段159位第二平板段156的延伸段。在其他实施方式中,第二平板段156与第二弧形段155直接呈夹角连接。
请一并参阅图4,将风扇20所在区域命名为风扇区域20A,可以理解,风扇区域轮廓及体积与风扇20轮廓及体积完全相同,即风扇区域20A相当于风扇20的立体投影,与风扇20完全重合。风扇区域20A的外轮廓也以线条形式体现,具体是圆形。风扇叶22在旋转时,风扇叶22的远离圆心O的端部形成以风扇20中心为圆心O的圆环形面,环形面为风扇区域20A的外轮廓面。以下所述的风扇区域20A到侧壁或者隔板40的距离均指风扇区域20A的外轮廓面到侧壁15或者隔板40的距离。
以风扇区域20A两个成夹角连接的半径所在平面为分界面F,分界面F经过风扇区域20A的圆心O,分界面F实际是虚设的面,在图中都以线的形式呈现。分界面F将风扇区域20A分为第一风扇区域201A(图4中夹角A1对应的部分)和第二风扇区域201B(图4中夹角A2对应的部分)。沿着蜗壳10的长度方向,即Y轴方向,第二风扇区域201B靠近出风口12;第一风扇区域201A与第一弧形段154及第二弧形段155间隔相对。沿着蜗壳10宽度方向,即X轴方向,第一平板段153和第二平板段156(包括弧形连接段159)位于第二风扇区域201B相对两侧。其中,第一弧形段154及第二弧形段155的圆心位于经过分界面F的直径上且与圆心O间隔设置。需要说明的是夹角A1是以第一平板段153和第一弧形段154连接点为起点,第二弧形段155与弧形连接段159的连接点为终点过圆心的两个连线的夹角;夹角A2与夹角A1之和为360度,也就是分界面F经过所述的起点和终点。
本实施例中,位于散热腔11内,风扇区域20A与侧壁15以及出风口12之间均具有间隙,该间隙可以理解为风道。风道与出风口12连通,本实施例的风道整体轮廓可以理解为 蜗壳形,实际上是围绕风扇区域20A设置。第一风扇区域201A与第一弧形段154及第二弧形段155之间的间隙为第一风道50。第二风扇区域201B与第一平板段153、第二平板段156(包括弧形连接段159)及出风口12之间的区域为第二风道60,第二风道60与出风口12连通;沿蜗壳10的宽度方向,为第二风道60的长度方向,蜗壳10的长度方向,为第二风道60的宽度方向。
本实施例中,第一风道50的两个端口分别为第一端口51和第二端口52,第一端口51位于第二弧形段155与弧形连接段159连接处,即分界面F过风扇区域20A到第二弧形段155与弧形连接段159连接处之间的位置。第二端口52位于第一平板段153与第一弧形段154连接处;即分界面F过风扇区域20A到第一平板段153与第一弧形段154连接处之间的位置。第一风道50通过第一端口51和第二端口52与第二风道60连通。沿着风扇20的宽度方向,为第二风道60的长度方向,风扇20的长度方向,为第二风道60的宽度方向。可以理解所述弧形段与所述风扇区域20A之间为第一风道50,连接所述出风口12与所述第一风道50之间的为第二风道60。
一种实施例中,沿着风扇区域20A的径向(以圆心O为圆点的直径方向),第一端口51的宽度小于第二端口52的宽度,且沿着第一端口51至第二端口52方向,即第一风道50的长度方向(顺时针方向ω),第一风道50的宽度逐渐增大。本实施例中,以风扇顺时针旋转为例进行说明。在风扇20启动后,风扇叶顺时针旋转,在第一端口51产生的气流会沿着第一风道50向第二端口流动,而在第一端口51到第二端口52之间的第一风道50内,因为风扇叶22是同时产生气流,因此,由第一端口51到第二端口52位置,气流的流量是不断叠加的,沿着第一风道50长度方向,将第一风道50的宽度逐渐增大,可以控制气流在经第一风道50流动的过程中,在流量不断增加的前提下可以控制流速的均匀性。
请一并参阅图4,导流支撑体30位于第二风道60内,第二风道60与出风口12连通。具体的,所述第二风道60包括第一区域60A和第二区域60B,所述第一区域60A和所述第二区域沿着所述出风口宽度方向排列,所述第一区域60A和第二区域60B与所述第一风道50连接。所述出风口12的宽度方向,是指X轴方向,实际上位于所述第一区域60A的另一侧还设有第三区域(图未标),第三区域、第一区域60A及第二区域60B沿着出风口12宽度方向一次排列并连通,第三区域与第一风道50的第一端口51对应并连通,第二区域60B与第一风道50的第二端口52对应并连通。
如图4所示,其中,第一区域60A和第二区域60B通过分界面F2划分,分界面F2的型线为弧形,分界面F2的型线起始端位于分界面F与风扇区域20A的交点,且位于第一风道50的第二端口52位置,分界面F2的型线与出风口12(端边142)具有交点,该交点为分界面F2的型线的末端,其中为了便于区分,图中所示的分界面F2的型线具有延长出出风口12的部分。
基于上述划分,实际上是为了在第二风道60内分界面F2的两侧形成不同流速的第一区域60A和第二区域60B;由于蜗壳10、第一风道50和第二风道60的轮廓和位置的设定,第一区域60A气流流速会大于第二区域60B气流流速。而第三区域位于第一区域60A另一侧,气流流速不同于第一区域60A,且大于第一区域60A的流速,可以理解所述的分界面F2的两侧形成不同流速的区域,不包括第三区域。
在其他实施方式中,也可以根据测量的第二风道60位于分界面F2端边142交点两侧的实际气流流速划分第一区域60A和第二区域60B的比例,第一区域60A实际气流流速大于第二区域60B实际气流流速。
分界面F2的型线形状根据第一风道50的第二端口52进入第二风道的气流流动方向以及第二区域风扇20靠近第二端口部分的扇叶产生的气流流向(弧形)来设定,主要是为了适应第一风道50和第二风道60的叠加的风量的流向。
当然分界面F2的型线也可以是直线,型线为直线的分界面F2的起始端位于分界面F与风扇区域20A的交点,且位于第一风道50的第二端口52位置,分界面F2的型线与出风口12(端边142)具有交点,该交点为分界面F2的型线的末端。位于型线为直线的分界面F2的两侧的第一区域60A和第二区域60B气流不同流速。分界面F2只是个示意性界限。同理第三区域与第一区域60A的分界线也是如此划分,通常第三区域的气流流速大于第一区域60A的气流流速且直接流出出风口。
所述导流支撑体位于所述第二风道,所述导流支撑体的起始端位于第二区域60B内,所述导流支撑体30的长度延伸方向与所述出风口12(X轴方向)的宽度方向相交,所述导流支撑体30用于将所述第二区域60B的气流分流,并将分流的部分气流导流至所述第一区域60A。
第二区域60B的气流流量包括风扇20自身产生的以及第一风道50的第二端口52流进第二区域的气流流量,通过导流支撑体30可以将第一风道50经过第二端口52流过来的风量以及第二风道60所在位置的风扇产生的风量进行分流,以均衡出风口12宽度方向的气流的流速,避免在出风口12宽度方向,位于第二风道60内大致中部区域(第一区域60A)为较低风速区,可以避免该区域流速较低,避免该区域对应的散热翅片的散热效率,也就是提升于该区域对应的散热翅片的散热效果。
本实施例中,导流支撑体30为翼型板,其中,导流支撑体30的截面形状为:翼型形状,比如低速翼型:NACA-4,NACA-6系列翼型等。在其它实施例中,导流支撑体30也可以是弧形板或者平板,对应的所述板体的横截面形状为矩形或者弧形。导流支撑体30可以为塑料材质制成,避免过多增加散热模组的重量。当然,导流支撑体30也可以使是铝等金属材质制成,实现导流和支撑功能的同时可以辅助导热功能。
导流支撑体30包括第一导流面301和第二导流面302,第一导流面301和第二导流面302背向设置,第一导流面301朝向风扇20,第二导流面302朝向第一平板段153。第一导流面301和第二导流面302实现气流导向作用。导流支撑体30还包括起始端31和末端32,起始端31和末端32均连接所述第一导流面301和第二导流面302。本实施例中导流支撑体30大致位于第二区域60B靠近第一区域60A的位置;导流支撑体30的起始端31和末端32均位于第二区域60B内。本实施例中,导流支撑体30为翼型板,第一导流面301和第二导流面302为弧形面,更适应风扇20旋转产生气流的流向,以便气流流动顺畅。
在其他实施例中,导流支撑体30的起始端31位于第二区域60B内,末端32位于第一区域60A内,第一风道50和第二风道60叠加的气流经过起始端31时就开始被分流,且沿着导流支撑体30长度延伸方向进入第一区域60A即可,如此可以调整进入第一区域60A内的气流的方向,更有针对性的导流和散热。
本实施例中,导流支撑体30的长度延伸方向与所述出风口12(X轴方向)的宽度方向相交,也就是导流支撑体30相较于出风口12(端边142)倾斜,产生倾斜的分流道,易于将第二区域60B的风量分流至第二风道的第一区域60A。需要说明的是,所述导流支撑体的长度延伸方向如图中303所示的直线的延伸方向,该直线穿过导流支撑体30连接起始端31和末端32。
请一并参阅图5和图6,图5和图6是图3中所示的导流支撑体位置设定过程示意图;以一个导流支撑体30为例说明导流支撑体30的起始端31和末端32位置,其中末端32靠近出风口12位置,所述导流支撑体30的长度延伸方向与所述出风口12的宽度方向相交,也就是导流支撑体30与出风口12呈倾斜角度,即与端边142呈倾斜角度;导流支撑体30相较于出风口12(端边142)倾斜的倾斜角大于等于90度。
所述风扇区域具有第一预设角θ1和第二预设角θ2,其中,第一风道50经过第二端口52流过来的风量与风扇20在第二风道60的第二区域60B内产生的风量叠加,会增加第二风道60两侧所在位置风量和流速,可以根据在单位面积内同样转速下,风扇旋转在第二风道产生的气流后,第二区域60B和第一区域60A的流速的比值来确定第一预设角θ1和第二预设角θ2的取值。
第一风道50和第二风道60中,位于第二平板段156(弧形连接段159)和第二弧形段连接位置,也就是第一端口51位置是第一风道50宽度最小的位置,也是侧壁15与风扇区域20A之间的距离最小的位置,定义经过半径和第二平板段156(弧形连接段159)和第二弧形段155连接位置(第一端口51)的直线为基准线F1,基准线位于分界面F上,然后以风扇区域20A圆心O为起点,以经过半径的直线作第一分界线r1,第一分界线r1与基准线F1之间的夹角为第一预设角θ1,第一预设角θ1的取值为180度至360度。本实施例选择第一预设角θ1的取值为210度。可以理解,实际上是根据第一预设角θ1来确定第一分界线r1的位置。
第一分界线r1与风扇区域20A具有交点1,第一分界线r1与第一平板段153具有交点2,导流支撑体30的型线的起始端31位于交点1和交点2之间。导流支撑体30的型线的起始端31与圆心O的连线为第一坐标线R1,R1位于第一分界线r1上的端部,也就是交点1和交点2之间的端即为起始端31,R1的长度满足R1=K1*D/2,K1大于1小于10。本实施例的中K1的值为2,D为风扇区域的直径。可以理解,实际上可以根据需要起始端31与风扇区域20A和侧壁之间的通过的风量的比值来确定起始端31的具体位置,交点1和交点2确认后,不需要做R1,直接根据比值确定起始端31位于交点1和交点2连线的位置。
导流支撑体30的型线的末端32根据第二预设角θ2和第二坐标线R2来限定,具体的,以风扇区域20A圆心O为起点,以经过半径的直线作第二分界线r2,第二分界线r2与基准线F1之间的夹角为第二预设角θ2,θ2大于θ1且第二预设角θ2的取值为180度至360度。本实施例选择第二预设角θ2的取值为270度。
第二分界线r2与风扇区域20A具有交点3,第二分界线r2与第一平板段153或者出风口位置具有交点4,导流支撑体30的型线的末端32位于交点3和交点4之间。导流支撑体30的型线的末端32与圆心O的连线为第二坐标线R2,R2位于第二分界线r2的端部, 也就是交点3和交点4之间的端即为末端32,R2的长度满足R2=K2*D/2,K2大于1小于10,并且R2。大于R1。本实施例中K2为4。
确认导流支撑体30的型线的起始端31和末端32后,在两者之间做翼型板。导流支撑体30一段朝向第一风道50,另一端朝向出风口12,第二端口52位置流过来的风量进入第二风道60后与第二风道60产的风量叠加,导流支撑体30将这部分风量进行分流,如图中箭头方向。
请一并参阅图8,图8是本申请散热模组设置导流支撑体30的出风口的速度分布图。图中颜色较深的曲线为没有设置本申请的导流支撑体30的风速分布,浅色曲线为设置了导流支撑体30后的出风口的风速的分布,两条线体现出导流支撑体30的位置不同,风速分布不同。通常在蜗壳10的出风口12会存在高速区和低速区(第二风道60的第一区域60A),差异很大,可以看出在蜗壳10的出风口12位置,中间部分(第二风道60的第一区域60A)存在一段较大的低速区。这种低流速会降低散热翅片的换热效率。如图8,导流支撑体30将部分风量导入第二风道60的第一区域60A,可以看出,采用翼型的导流支撑体30可以很好的提升蜗壳10的出风口12的第二风道60的第一区域60A(低速区)的速度,进而可以提升翅片的散热效率,增强整个散热模组的散热效果。
可以理解,第一风道50和第二风道60共同围绕风扇区域20A外周,风扇20旋转时沿着旋转方向(顺时针)风量不断累积,第一预设角θ1和第二预设角θ2为预设角,根据第二风道60内的气流流向出风口的流量分布划分,可以实现出风口12气流低速区的流速提升即可。或者说,第二风道60位于第一分界线r1位置的气流在导流支撑体30的起始端31开始被划分,第一坐标线R1的起始端31到风扇区域20A的距离和第一坐标线R1的起始端31到第一平板段153的距离,是可以根据第二风道60中部区域(第二风道60的第一区域60A)需要的风量来确定,比如,起始端31距离交点1的距离小于起始端31到交点2的距离,距离较小的流道,被导流支撑体30分配过去的流量就少,也就是起始端31的具体位置可以根据位于第一分界线r1位置的气流被划分两部分流道的风量的多少来设计。
请参阅图7,图7为图3所示的散热模组具有多个导流支撑体的示意图;一种实施例中,导流支撑体30为两个,分别为第一导流支撑体30a和第二导流支撑体30b,的长度可以相同也可以不同,形状可以相同也可以不同。第一导流支撑体30a和第二导流支撑体30b间隔设置,本实施例的第一导流支撑体30a长度大于第二导流支撑体30b的长度,第二导流支撑体30b位于第二风道60的第一区域60A内,第一导流支撑体30a和第二导流支撑体30b的倾斜方向相同或者相近,所述第一区域内的导流支撑体可以将所述第一区域内的气流进行进一步分流,使气流可以均匀地通过出风口,流出出风口12的流速分布更加均匀,实现散热翅片的均匀散热。第二导流支撑体30b的起始端和末端均可以根据上述实施例的导流支撑体30的起始端和末端的确定方式而定。
请参阅图9和图10,图9和图10是图3中所示的隔板位置形成过程示意图。本实施例的散热模组还包括隔板40,隔板40位于第一风道50内并凸设于板体14的内表面141(图3)上,也就是腔底壁上。隔板40为弧形薄板,其长度方向沿着第一风道50的长度方向延伸;隔板40与部分弧形段平行间隔设置,且隔板40的型线弯曲方向朝向风扇20,隔板40的型线为圆弧线,或者多个不同曲率的弧形依次连接,或者是贝塞尔曲线,或者是 光滑曲线,或者是非封闭式的样条曲线。蜗壳内具有部分与侧壁型线相同或相近的隔板,保证出风顺畅且提高均匀性。
隔板40小于等于侧壁15(或者弧形段)的高度。弧形段的型线有部分曲率与隔板40的型线曲率相同或者相近,本实施例中是弧形段中第二弧形段155的型线与隔板40的型线相同,长度可以相等或者不等,相当于蜗壳10内具有部分与侧壁15型线相同或相近的隔板40,使隔板40与风扇区域20A及侧壁构成双重蜗壳结构,提高出风均匀性。而且在设计隔板时可以直接选取第二弧形段的型线,也可以提子风道气流的流动顺畅性。沿着风扇旋转方向,隔板40将第一风道50部分划分为两个子通道,将风扇旋转过程中在第一风道50内不断积累的风量进行分流,可以避免气流在第一风道内不断累积而产生流速过大,导致第一流道内散热不均的问题,提升第一风道内的气流的流速的均匀性。而且可以调节第一风道进入第二风道60的第二区域60B的气流流速,避免这部分气流流速过大,进而可以调节流向第二风道60中第一区域60A的流速。所述隔板40的型线与所述风扇区域20A之间的子风道,与所述第二弧形段155与所述风扇区域20A之间的部分第一风道50宽度相同,实际上是将第二弧形段155型线沿着圆形顺时针旋转至隔板位置,参考第二弧形段155型线形成隔板。
确定隔板40起始端401和末端402后,做弧形线,即可得到隔板40的型线,具体的,风扇区域20A包括第三预设角θ3和第四预设角θ4;第三预设角θ3的角度为30度到180度,第四预设角θ4角度大于第三预设角θ3。第一风道50内的气流在风扇转动方向上不断叠加,可以根据在单位面积内同样转速下第一风道内产生气流的流量分配比例(保证第一风道散热均匀性以及避免进入第二风道的流速过大)来确定第三预设角θ3和第四预设角θ4的角度值。
然后以风扇区域20A圆心O为起点,以经过半径的直线作第三分界线r3,第三分界线r3与基准线F1之间的夹角为第三预设角θ3,进而可以确定第三分界线r3的位置。第三分界线r3过第一风道50并与风扇区域20A具有交点1,与侧壁15的型线具有交点2;隔板40型线的起始端401位于交点1和交点2的连线上。具体的,隔板40型线的起始端401与圆心O的连线为第三坐标线R3,R3位于第三分界线r3上的端部,也就是交点1和交点2之间的端即为起始端401,R3的长度满足R3=K3*D/2,K3大于1小于2。本实施例的中K3的值为0.2。可以理解,隔板40的起始端401到圆心O的长度R3大于风扇区域20A的半径,小于第三分界线r3的长度。
然后以风扇区域20A圆心O为起点,以经过半径的直线作第四分界线r4,第四分界线r4与基准线F1之间的夹角为第四预设角θ4,进而可以确定第四分界线r4的位置。第四分界线r4过第一风道50并与风扇区域20A具有交点3,与侧壁15的型线具有交点4;隔板40型线的末端402位于交点3和交点4的连线上。具体的,隔板40型线的末端402与圆心O的连线为第四坐标线R4,R4位于第四分界线r4上的端部,也就是交点3和交点4之间的端即为末端402,第四预设角θ4的角度值为K5*θ3,K5大于1小于5,R4的长度满足R4=K4*R3,K4大于1小于2。本实施例的中K4的值为1.2。本实施例中第四坐标线R4位于分界面F上且位于第二端口52位置。可以理解,隔板40的末端402到圆心O的长度R4大于R3小于第四分界线r4的长度。
所述第一风道50的宽度(风扇区域20A到弧形段之间的距离)沿风扇旋转方向逐渐变大。进一步的,所述隔板40的型线与所述风扇区域20A之间的子风道宽度,与所述第二弧形段155与所述风扇区域20A之间宽度相同。所述第一风道50的宽度变大的方向也是气流的流动方向,避免风扇旋转过程中积累的风量较多而导致的流速分布不均而散热不均,可以提升第一风道50内的气流的流速的均匀性,进而提高出风口的流速均匀性。
确定隔板40起始端401和末端402的一种实施方式中,所述隔板40的起始端位于所述第三分界线r3与所述风扇区域20A和所述腔侧壁之间的连线上,所述隔板40的末端位于所述第四分界线r4与所述风扇区域20A和所述腔侧壁之间的连线上,根据实际气流的流速需要被划分的比例进行设定隔板40的起始端和末端具体位置,进而可以划分需要的位于隔板40两侧的子风道宽度。也可以理解为根据想划分为两部分其气流的流速的比例来确认起始端和末端在连线上的具体位置。
确定隔板40起始端401和末端402的一种实施方式中,弧形段和所述风扇区域20A域为所述风道的两个壁,所述第一风道50具有宽度预设值;所述隔板40的起始端位于所述第一风道50的宽度等于所述宽度预设值的位置,所述隔板40的末端位于所述第二端口52所在位置。根据实际气流的流速需要被划分的比例进行设定隔板40的起始端和末端,进而可以划分需要的位于隔板40两侧的子风道宽度。
本实施例中的散热模组的蜗壳10内设置有导热支撑体30,来代替普通的圆柱体支撑盖板16与板体14之间,防止蜗壳10受外界压力时损伤风扇20,且可以保证蜗壳的刚度;又可以改善蜗壳10出风口12位置气流的速度分布,使出风口12排出的气流流速均匀,提高散热翅片组70的散热效率。进一步的,在第一风道50内设置隔板40,可以将第一风道内的气流进行分流,达到提高流速均匀的效果,而且可以调控第一风道50经第二端口52进入第二风道60内的第二区域的气流流速,再结合导流支撑体30,使第二风道气流流速均匀化,进而提高出风口出风均匀性。
以上,仅为本申请的部分实施例和实施方式,本申请的保护范围不局限于此,任何熟知本领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (17)

  1. 一种散热模组,其特征在于,
    包括蜗壳、风扇和导流支撑体;所述蜗壳包括散热腔与所述散热腔连通的出风口,所述散热腔包括腔侧壁和腔底壁,所述腔侧壁设于所述腔底壁边缘并具有弧形段,所述风扇和所述导流支撑体设于所述散热腔内,且所述导流支撑体凸设于所述腔底壁;
    所述风扇所在区域为风扇区域,所述弧形段与所述风扇区域之间为第一风道,连接所述出风口与所述第一风道之间的为第二风道;所述第二风道包括第一区域和第二区域,所述第一区域和所述第二区域沿着所述出风口宽度方向排列,所述第一区域和所述第二区域均与所述第一风道连通,
    所述导流支撑体位于所述第二风道内,所述导流支撑体的起始端位于所述第二区域内,所述导流支撑体的长度延伸方向与所述出风口的宽度方向相交,所述导流支撑体用于将所述第二区域的气流分流,并将分流的部分气流导流至所述第一区域。
  2. 根据权利要求1所述的散热模组,其特征在于,所述散热腔包括腔顶壁,所述腔顶壁连接于所述腔侧壁并与所述腔底壁相对;所述导流支撑体支撑于所述腔顶壁和所述腔底壁之间。
  3. 根据权利要求1或2所述的散热模组,其特征在于,所述导流支撑体为板体,所述板体的横截面形状为翼型、矩形或者弧形。
  4. 根据权利要求1-3任一项所述的散热模组,其特征在于,所述风扇区域具有第一预设角θ1和第二预设角θ2,经过所述风扇区域的半径及所述第一风道宽度最小位置的直线为基准线,
    构成所述第一预设角θ1的两个边线分别为所述基准线和第一坐标线R1,所述第一坐标线R1的长度满足R1=K1*D/2,D为风扇区域的直径,所述第一坐标线R1远离所述圆心的端部为所述导流支撑体的起始端;
    构成所述第二预设角θ2的两个边线分别为所述基准线和第二坐标线R2,所述第二坐标线R2的长度满足R2=K2*D/2,D为风扇区域的直径,K2大于K1,所述第二坐标线R2远离所述圆心的端部为所述导流支撑体的末端;
    其中,所述第一预设角θ1和所述第二预设角θ2的角度值大于180度小于360度,且所述第一预设角θ1的角度小于所述第二预设角θ2的角度;K1和K2均大于1小于10。
  5. 根据权利要求1-4任一项所述的散热模组,其特征在于,所述第一区域设有导流支撑体,所述第一区域内的导流支撑体与所述第二区域内的导流支撑体间隔设置,所述第一区域内的导流支撑体的长度延伸方向与所述出风口的宽度方向相交,所述导流支撑体用于将所述第一区域流向出风口的气流分流。
  6. 根据权利要求1-5任一项所述的散热模组,其特征在于,所述蜗壳还包括隔板,所述隔板凸设于所述腔底壁并位于所述第一风道内,所述隔板沿着所述第一风道长度方向延伸,且所述隔板的型线与所述弧形段的型线间隔相对。
  7. 根据权利要求6所述的散热模组,其特征在于,所述隔板的型线为圆弧线,或者多个不同曲率的弧形依次连接,或者是贝塞尔曲线,或者是非封闭式的样条曲线。
  8. 根据权利要求7所述的散热模组,其特征在于,所述弧形段包括第一弧形段和第二弧形段,所述隔板的型线与所述第二弧形段的型线曲率相同。
  9. 根据权利要求6-8所述的散热模组,其特征在于,所述第一风道的宽度沿风扇旋转方向逐渐变大。
  10. 根据权利要求8所述的散热模组,其特征在于,所述隔板的型线与所述风扇区域之间的子风道的宽度,与所述第二弧形段与所述风扇区域之间的宽度相同。
  11. 根据权利要求1-8任一项所述的散热模组,其特征在于,所述风扇区域具有第三预设角θ3和第四预设角θ4,θ4的角度为K5*θ3,所述第三预设角θ3的角度为大于30度小于180度;K5大于1小于2;
    经过所述风扇区域的半径及所述第一风道宽度最小位置的直线为基准线,
    构成所述第三预设角θ3的两个边线分别为所述基准线和第三分界线,构成所述第四预设角θ4的两个边线分别为所述基准线和第四分界线,
    所述隔板的起始端位于所述第三分界线与所述风扇区域和所述腔侧壁之间的连线上,所述隔板的末端位于所述第四分界线与所述风扇区域和所述腔侧壁之间的连线上。
  12. 根据权利要求11所述的散热模组,其特征在于,
    在所述第三分界线上确定第三坐标线R3,所述第三坐标线R3的长度满足R3=K1*D/2,D为风扇区域的半径,所述第三坐标线R3远离所述圆心的端部为所述隔板的起始端;
    在所述第三分界线上确定第四坐标线R4,所述第四坐标线R4的长度满足R4=K4**R3,K4大于K1,所述第四坐标线R4远离所述圆心的端部为所述隔板的末端其中,第三预设角θ3的角度为大于30度小于180度;K3大于1小于2,K4大于1小于2。
  13. 根据权利要求6-12任一项所述的散热模组,其特征在于,所述弧形段和所述风扇区域为所述风道的两个壁,所述第一风道具有宽度预设值,所述第一风道与所述第二风道之间具有端口,所述端口所在直线过所述风扇区域半径;
    所述隔板的起始端位于所述第一风道的宽度等于所述宽度预设值的位置,所述隔板的末端位于所述端口所在位置。
  14. 根据权利要求1-13任一项所述的散热模组,其特征在于,所述腔侧壁包括通过所述弧形段连接的两个相对的第一平板段和第二平板段,所述第一平板段和第二平板段分别位于所述出风口宽度方向的相对两侧,
    所述弧形段包括连接的第一弧形板和第二弧形板,所述第一弧形段长度方向的型线为一个圆弧线,或者为多个不同曲率的弧形连接;所述第二弧形段长度方向的型线为一个圆弧线,或者为多个不同曲率的弧形连接。
  15. 根据权利要求1所述的散热模组,其特征在于,所述散热模组还包括导热件,所述导热件连接于所述蜗壳外表面。
  16. 根据权利要求1所述的散热模组,其特征在于,所述散热模组还包括散热翅片组,所述散热翅片组设于所述蜗壳外部与所述出风口连接。
  17. 一种电子设备,其特征在于,包括主体和权利要求1-16任一项所述的散热模组,所述散热模组装于所述主体内,且所述散热翅片组露出所述主体。
PCT/CN2022/117958 2021-12-03 2022-09-08 散热模组及电子设备 WO2023098219A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202111470698 2021-12-03
CN202111470698.X 2021-12-03
CN202210010487.6 2022-01-05
CN202210010487.6A CN115066139B (zh) 2021-12-03 2022-01-05 散热模组及电子设备

Publications (2)

Publication Number Publication Date
WO2023098219A1 true WO2023098219A1 (zh) 2023-06-08
WO2023098219A9 WO2023098219A9 (zh) 2023-09-28

Family

ID=83024021

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2022/117958 WO2023098219A1 (zh) 2021-12-03 2022-09-08 散热模组及电子设备
PCT/CN2022/118157 WO2023098220A1 (zh) 2021-12-03 2022-09-09 散热模组及电子设备

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/118157 WO2023098220A1 (zh) 2021-12-03 2022-09-09 散热模组及电子设备

Country Status (2)

Country Link
CN (3) CN115066139B (zh)
WO (2) WO2023098219A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115066139B (zh) * 2021-12-03 2023-06-06 荣耀终端有限公司 散热模组及电子设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200510995A (en) * 2003-09-15 2005-03-16 Sen-Yung Lee Flow-guiding heat dissipation device of centrifugal fan
CN1956176A (zh) * 2005-10-27 2007-05-02 王训忠 整流装置
US20080011461A1 (en) * 2006-07-14 2008-01-17 Foxconn Technology Co., Ltd. Heat dissipation apparatus
CN102213237A (zh) * 2010-04-07 2011-10-12 富准精密工业(深圳)有限公司 散热装置及其采用的离心风扇
CN102213236A (zh) * 2010-04-09 2011-10-12 富准精密工业(深圳)有限公司 离心风扇
CN104948474A (zh) * 2014-03-24 2015-09-30 台达电子工业股份有限公司 风扇
CN107614887A (zh) * 2015-06-08 2018-01-19 日本电产株式会社 风扇组件
CN213064072U (zh) * 2020-09-09 2021-04-27 深圳市东维丰电子科技股份有限公司 具有导流降噪功能的涡轮风扇散热器
CN115066139A (zh) * 2021-12-03 2022-09-16 荣耀终端有限公司 散热模组及电子设备

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100531540C (zh) * 2006-09-15 2009-08-19 富准精密工业(深圳)有限公司 散热模组
JP3137874U (ja) * 2007-09-28 2007-12-13 能▲てぃー▼精密工業股▲分▼有限公司 風口構造を予め設計可能な放熱装置
TWI465009B (zh) * 2010-04-21 2014-12-11 Foxconn Tech Co Ltd 散熱裝置及其採用的離心風扇
CN202065249U (zh) * 2011-04-11 2011-12-07 深圳市卓怡恒通电脑科技有限公司 散热风扇
TW201315354A (zh) * 2011-09-19 2013-04-01 Hon Hai Prec Ind Co Ltd 散熱裝置
CN107734939B (zh) * 2017-11-20 2020-02-28 英业达科技有限公司 气流产生装置
CN208227548U (zh) * 2018-04-18 2018-12-11 哈曼国际工业有限公司 电子装置和用于电子装置的散热装置
CN112212488A (zh) * 2020-10-30 2021-01-12 广东美的制冷设备有限公司 导风板组件、导风机构及空调器
CN112628177A (zh) * 2020-12-30 2021-04-09 太仓欣华盈电子有限公司 分流式散热风扇

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200510995A (en) * 2003-09-15 2005-03-16 Sen-Yung Lee Flow-guiding heat dissipation device of centrifugal fan
CN1956176A (zh) * 2005-10-27 2007-05-02 王训忠 整流装置
US20080011461A1 (en) * 2006-07-14 2008-01-17 Foxconn Technology Co., Ltd. Heat dissipation apparatus
CN102213237A (zh) * 2010-04-07 2011-10-12 富准精密工业(深圳)有限公司 散热装置及其采用的离心风扇
CN102213236A (zh) * 2010-04-09 2011-10-12 富准精密工业(深圳)有限公司 离心风扇
CN104948474A (zh) * 2014-03-24 2015-09-30 台达电子工业股份有限公司 风扇
CN107614887A (zh) * 2015-06-08 2018-01-19 日本电产株式会社 风扇组件
CN213064072U (zh) * 2020-09-09 2021-04-27 深圳市东维丰电子科技股份有限公司 具有导流降噪功能的涡轮风扇散热器
CN115066139A (zh) * 2021-12-03 2022-09-16 荣耀终端有限公司 散热模组及电子设备

Also Published As

Publication number Publication date
CN115066139B (zh) 2023-06-06
CN115003103A (zh) 2022-09-02
CN115003103B (zh) 2023-03-31
CN116234231A (zh) 2023-06-06
CN116234231B (zh) 2024-03-29
CN115066139A (zh) 2022-09-16
WO2023098220A1 (zh) 2023-06-08
WO2023098219A9 (zh) 2023-09-28

Similar Documents

Publication Publication Date Title
EP0892431B1 (en) Heat radiating plate
RU2419558C2 (ru) Усовершенствованный узел радиатора
CN103327788B (zh) 电子装置
WO2014182124A1 (ko) 원심팬
US20080130226A1 (en) Centrifugal fan device and electronic apparatus having the same
WO2023098219A1 (zh) 散热模组及电子设备
JPH11201084A (ja) 送風装置
TW201314053A (zh) 電子裝置及其散熱模組及其離心風扇
TWI745928B (zh) 離心式散熱風扇與電子裝置的散熱系統
WO2021043047A1 (zh) 一种复合齿散热器及通讯基站
JP4631867B2 (ja) 遠心ファン装置及びそれを備えた電子機器
WO1999034118A1 (fr) Soufflante
TWI664353B (zh) 風扇模組及電子裝置
CN113915146B (zh) 离心风扇和电子设备
WO2021143952A1 (zh) 导流罩和具有其的服务器
TW201341664A (zh) 散熱模組
JP3403012B2 (ja) 発熱体冷却装置
EP3240376B1 (en) Cabinet
JP2005337118A (ja) 冷却ファン
CN114033746B (zh) 热回流消除装置及吹风式散热模组
TWI808563B (zh) 散熱裝置與顯示卡組件
CN207064280U (zh) 风扇面板、风机以及车辆
US20230349386A1 (en) Centrifugal heat dissipation fan
CN217787587U (zh) 散热装置及投影设备
WO2023226165A1 (zh) 一种动中通天线和载具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22900028

Country of ref document: EP

Kind code of ref document: A1