WO2023098191A1 - 一种硬碳负极材料及其制备方法与应用 - Google Patents

一种硬碳负极材料及其制备方法与应用 Download PDF

Info

Publication number
WO2023098191A1
WO2023098191A1 PCT/CN2022/116262 CN2022116262W WO2023098191A1 WO 2023098191 A1 WO2023098191 A1 WO 2023098191A1 CN 2022116262 W CN2022116262 W CN 2022116262W WO 2023098191 A1 WO2023098191 A1 WO 2023098191A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
hard carbon
electrode material
carbon negative
starch
Prior art date
Application number
PCT/CN2022/116262
Other languages
English (en)
French (fr)
Inventor
郑爽
李长东
阮丁山
蔡勇
毛林林
张振华
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Priority to GB2314132.8A priority Critical patent/GB2619456A/en
Priority to DE112022002661.8T priority patent/DE112022002661T5/de
Publication of WO2023098191A1 publication Critical patent/WO2023098191A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of battery negative electrode materials, and in particular relates to a hard carbon negative electrode material and a preparation method and application thereof.
  • Lithium-ion batteries have become the main energy storage devices in the field of consumer electronics due to their advantages such as high energy density, high voltage, low self-discharge and excellent cycle performance.
  • the lack of lithium resources on the earth, coupled with the wide application of lithium-ion batteries makes lithium resources more scarce, and the price remains high, which is not suitable for large-scale energy storage applications. Therefore, it is urgent to develop the next generation of energy storage with excellent comprehensive performance. battery system.
  • Sodium and lithium belong to the same group of elements, and have similar physical and chemical properties to lithium, with abundant reserves and low price (the basic raw material trona of sodium is about 30 to 40 times cheaper than lithium carbonate, the raw material of lithium), and its electrode potential (Na + /Na ) is 0.3V higher than (Li + /Li) of lithium ions, and has more stable electrochemical performance and safety performance.
  • a hard carbon negative electrode material Provided is a hard carbon negative electrode material.
  • the reasonable pore diameter and large interlayer spacing of the hard carbon negative electrode material are beneficial to the intercalation/extraction of sodium ions.
  • a preparation method of the hard carbon negative electrode material is provided.
  • the invention also proposes a hard carbon negative electrode.
  • the technical solution adopted in the present invention is:
  • a hard carbon negative electrode material, the base of the hard carbon negative electrode material is prepared from starch;
  • the diameter of the internal pores of the hard carbon negative electrode material is larger than the diameter of the surface pores.
  • the distance between layers of the hard carbon negative electrode material is greater than 0.34 nm.
  • the layered structure will affect the conduction of sodium ions to a certain extent.
  • the interlayer spacing of the negative electrode material reaches 0.34nm, it is still difficult for sodium ions to achieve free and reversible intercalation, so the interlayer spacing of the negative electrode material must be at least greater than 0.34nm.
  • the distance between layers of the hard carbon negative electrode material is about 3.828 nm.
  • the diameter of the internal pores is X, where 0 ⁇ X ⁇ 5nm.
  • the diameter of the internal pores of the hard carbon negative electrode material is between 0 and 5 nm, within this range, it is beneficial for the intercalation and extraction of sodium ions, so that the hard carbon negative electrode material has both Sodium storage capacity and cycle stability.
  • the internal pores of the hard carbon negative electrode material are mainly 2 nm.
  • the pore diameter of the surface of the hard carbon negative electrode material is smaller than the internal pores of the hard carbon negative electrode material, and the sodium ions can pass through the external pores of the hard carbon negative electrode material, but due to the surface pores
  • the pore diameter is very small, and it is difficult for substances larger than ions to pass through the external pores, avoiding unnecessary impurities from being doped into the hard carbon negative electrode material, thereby ensuring a good sodium storage environment inside the hard carbon negative electrode material.
  • there are a large number of irregular pores inside the spherical particles which can further enhance the sodium storage capacity inside the hard carbon negative electrode material.
  • the charge-discharge cycle test of the hard carbon negative electrode material is carried out through a blue electric test cabinet, and the average sodium intercalation capacity of the hard carbon negative electrode material is 330mAh/g.
  • the starch is amylose and/or amylopectin; preferably at least one of potato starch, corn starch, wheat starch, sweet potato starch and tapioca starch.
  • the hard carbon negative electrode material is spherical particles with a diameter of 15-20 ⁇ m.
  • the spherical particles are moderate in size.
  • the technical solution adopted in the present invention is:
  • a method for preparing the hard carbon negative electrode material comprising the following steps:
  • the hard carbon negative electrode material is obtained by subjecting the precursor to aromatic ring treatment and carbonization treatment.
  • the polymer includes at least one of polyethylene glycol, polyvinyl alcohol, sodium carboxymethylcellulose, and nitrogen-methylpyrrolidone.
  • the polymer may be a polymer powder or a polymer solution, and when the polymer solution is used, its mass percentage concentration is 0.5%-20%.
  • the selected polymer will form a stable chain segment structure with the starch, and further promote the crosslinking of the starch, and then, as the reaction system heats up, the chain segment of the polymer part in the system will decompose into volatile substances, thereby An irregular pore structure is formed inside the hard carbon negative electrode material. As the temperature rises, the hard carbon negative electrode material will perform self-repair and repair the pores on the surface without affecting the formation of the internal pore structure.
  • Starch is composed of amylose and amylopectin.
  • the cross-linking process of starch due to the poor thermal stability of amylopectin, the hydrogen bond between amylopectin and amylose breaks, and the amylopectin Starch breaks down.
  • the polymer is added, and the polymer and starch re-form a stable segment structure. As the temperature of the reaction system rises, the segments of the starch and the polymer move violently, and the segments break. Repolymerization forms an ether bond to connect two segments, which is equivalent to a process that further promotes starch crosslinking.
  • the volatile substances include water vapor, carbon monoxide, carbon dioxide, and alkanes.
  • the mass ratio of the polymer to the cross-linked starch is 0.05:1 ⁇ 0.5:1. Only at this mass ratio can the hard carbon negative electrode material be synthesized.
  • the mass ratio of the polymer to the cross-linked starch is 0.5:1 to 2:1; when the polymer is a powder
  • the mass ratio of the polymer to the cross-linked starch is 0.05:1-0.5:1.
  • the cross-linking treatment of the starch is under the protection of an inert gas, and the inert gas is at least one of nitrogen, argon, and helium.
  • the oxygen concentration is lower than 200ppm.
  • the cross-linking treatment of the starch is at 200-235°C for 8-60 hours, and the heating rate is 1-5°C/min; after the cross-linking treatment, it needs to be cooled. to below 50°C.
  • the cross-linked starch forms a spatial network structure.
  • a suitable cross-linking agent can be added to promote the hydroxyl reaction of the starch molecules, thereby cross-linking multiple starch molecules.
  • Starch that has not been cross-linked will swell under medium temperature conditions, and the structure will be destroyed, resulting in the inability to form pores.
  • the temperature of the aromatic cyclization treatment is 300-500°C
  • the time is 2-6h
  • the heating rate is 3-5°C/min
  • the aromatic cyclization treatment is carried out under the protection of an inert gas
  • the inert gas is at least one of nitrogen, argon, and helium.
  • the chain segments of the polymer part in the precursor will be decomposed into volatile substances, so that an irregular pore structure is formed inside the hard carbon negative electrode material.
  • the method of using polymer to create pores can not only be applied to hard carbon material systems, but also can be applied to other carbonaceous systems, and the applicability is very wide.
  • the temperature of the carbonization treatment is 1000-1400°C, the time is 0.5-3h, and the heating rate is 3-5°C/min; the carbonization treatment is under the protection of an inert gas, and the inert
  • the gas is at least one of nitrogen, argon, and helium.
  • the purpose of the carbonization treatment is to calcinate excess organic matter and easily decomposed substances on the one hand, and to make the hard carbon structure more stable on the other hand; when the unstable medium in the material is decomposed, the material simultaneously undergoes self- Repair, making the material structure more stable.
  • Starch biomass-based hard carbon materials were prepared by step-by-step sintering through a three-step pyrolysis method, whose disordered interlayer structure and large interlayer spacing facilitate the intercalation/extraction of Na ions, and exhibit excellent cycle stability.
  • Another aspect of the present invention also provides a hard carbon negative electrode, including copper foil and a slurry coated on the copper foil, the slurry includes a binder, a conductive agent and the hard carbon Negative material.
  • a sodium ion battery which includes a sodium sheet positive electrode and a hard carbon negative electrode, and the hard carbon negative electrode includes the above-mentioned hard carbon negative electrode material.
  • the average capacity of the hard carbon negative electrode remains at 83% after 100 cycles at a rate of 0.1C.
  • the pore diameter of the surface of the hard carbon negative electrode material is smaller than the internal pores of the hard carbon negative electrode material, and the sodium ion can pass through the external pores of the hard carbon negative electrode material, but because the pore diameter of the surface is very small, the ratio of ion It is difficult for large substances to pass through the external pores, avoiding unnecessary doping of impurities into the hard carbon negative electrode material, thereby ensuring a good sodium storage environment inside the hard carbon negative electrode material. In addition, there are a large number of irregular pores inside the spherical particles, which can further enhance the sodium storage capacity inside the hard carbon negative electrode material;
  • a starchy biomass-based hard carbon material was prepared by step-by-step sintering through a three-step pyrolysis method. Its disordered interlayer structure and large interlayer spacing are conducive to the intercalation/extraction of sodium ions, and exhibit excellent cycle stability .
  • Fig. 1 is a schematic diagram of the internal structure of a hard carbon negative electrode material in an embodiment
  • Fig. 2 is the SEM image of the hard carbon negative electrode material in the embodiment.
  • the hard carbon negative electrode used in the test example includes copper foil and a slurry coated on the copper foil, and the slurry includes a binder, a conductive agent and a hard carbon negative electrode material.
  • the battery used in the test example is a sodium ion button half-cell, the positive electrode is a sodium sheet, and the negative electrode is the above-mentioned hard carbon negative electrode.
  • a method for preparing the above-mentioned hard carbon negative electrode material comprising the following steps:
  • PEG-4000 polyethylene glycol 4000
  • step (3) Take 100ml of the 5% PEG-4000 polymer organic pore-forming solution in step (1) and 100g of the monocalcined product in step (2), and mix them uniformly to obtain the precursor;
  • step (3) Place the precursor obtained in step (3) in a sintering furnace, raise the temperature to 400° C. at a heating rate of 3° C./min under a nitrogen atmosphere, and perform aromatic cyclization treatment for 3 hours;
  • a method for preparing the above-mentioned hard carbon negative electrode material comprising the following steps:
  • step (3) Take 100ml of the 5% PEG-4000 polymer organic pore-forming solution in step (1) and 100g of the monocalcined product in step (2), and mix them uniformly to obtain the precursor;
  • step (3) Place the precursor obtained in step (3) in a sintering furnace, raise the temperature to 300° C. at a heating rate of 3° C./min under a nitrogen atmosphere, and perform aromatic cyclization treatment for 3 hours;
  • a method for preparing the above-mentioned hard carbon negative electrode material comprising the following steps:
  • step (3) Take 100ml of the 5% PEG-4000 polymer organic pore-forming solution in step (1) and 100g of the monocalcined product in step (2), and mix them uniformly to obtain the precursor;
  • step (3) Place the precursor obtained in step (3) in a sintering furnace, raise the temperature to 500° C. at a heating rate of 3° C./min under a nitrogen atmosphere, and perform aromatic annulation treatment for 3 hours;
  • Example 4 Compared with Example 1, the step (2) of Example 4 is: under the protection of nitrogen, the cornstarch is placed in a sintering furnace, and the temperature is raised to 215 ° C at a heating rate of 1 ° C / min for cross-linking treatment 6 After 1 hour, continue to heat up to 225°C at a heating rate of 1°C/min for 12 hours, and cool to 50°C to obtain the monocalcined product. The rest of the preparation steps are the same as in Example 1.
  • Example 5 Compared with Example 1, the step (2) of Example 5 is: under the protection of nitrogen, put the cornstarch in a sintering furnace, and raise the temperature to 230°C at a heating rate of 1°C/min for 8 cross-linking treatments. Hours, cooled to 50 ° C, that is, a burnt product. The rest of the preparation steps are the same as in Example 1.
  • Example 6 Compared with Example 1, the starch of Example 6 is potato starch.
  • the preparation method is the same as in Example 1.
  • Example 7 Compared with Example 1, the starch of Example 7 is wheat starch.
  • the preparation method is the same as in Example 1.
  • Example 8 Compared with Example 1, the polymer of Example 8 is polyvinyl alcohol.
  • the preparation method is the same as in Example 1.
  • Example 9 Compared with Example 1, the polymer of Example 9 is sodium carboxymethylcellulose.
  • the preparation method is the same as in Example 1.
  • Example 10 Compared to Example 1, Example 10 has a different polymer concentration.
  • a method for preparing the above-mentioned hard carbon negative electrode material comprising the following steps:
  • PEG-4000 polyethylene glycol 4000
  • step (3) Take 100ml of the 10% PEG-4000 polymer organic pore-forming solution of step (1) and 100g of the monocalcined product of step (2), and mix them uniformly to obtain the precursor;
  • step (3) Place the precursor obtained in step (3) in a sintering furnace, raise the temperature to 400° C. at a heating rate of 3° C./min under a nitrogen atmosphere, and perform aromatic cyclization treatment for 3 hours;
  • Example 11 Compared to Example 1, the polymer concentration of Example 11 is different.
  • a method for preparing the above-mentioned hard carbon negative electrode material comprising the following steps:
  • step (3) Take 100ml of the 15% PEG-4000 polymer organic pore-forming solution of step (1) and 100g of the monocalcined product of step (2), and mix them uniformly to obtain the precursor;
  • step (3) Place the precursor obtained in step (3) in a sintering furnace, raise the temperature to 400° C. at a heating rate of 3° C./min under a nitrogen atmosphere, and perform aromatic cyclization treatment for 3 hours;
  • Example 12 Compared to Example 1, Example 12 has a different polymer concentration.
  • a method for preparing the above-mentioned hard carbon negative electrode material comprising the following steps:
  • PEG-4000 polyethylene glycol 4000
  • step (3) Take 100ml of the 20% PEG-4000 polymer organic pore-forming solution of step (1) and 100g of the monocalcined product of step (2), and mix them uniformly to obtain the precursor;
  • step (3) Place the precursor obtained in step (3) in a sintering furnace, raise the temperature to 400° C. at a heating rate of 3° C./min under a nitrogen atmosphere, and perform aromatic cyclization treatment for 3 hours;
  • Example 2 Compared with Example 1, the polymer of Comparative Example 2 is phenolic resin 2123.
  • the preparation method is the same as in Example 1.
  • Comparative Example 2 because a polymer with better thermal stability is selected, there are almost no pores in the final hard carbon material.
  • FIG. 1 The schematic diagram of the internal structure of the above-mentioned hard carbon negative electrode material is shown in FIG. 1 , the interior of which is a disordered interlayer structure, and the exterior of which is distributed with a microporous structure.
  • the SEM image (scanning electron microscope image) of the hard carbon negative electrode material prepared in Example 1 above is shown in FIG. 2 , and the above hard carbon negative electrode material is spherical particles of 15-20 ⁇ m.
  • Table 1 shows the specific surface area of the hard carbon products prepared in Examples 1, 2, 3 and Comparative Example 1, and the specific data are obtained by testing with a Bester specific surface area tester.
  • the starch When the starch is not pore-forming, there are some natural defects on the surface, resulting in a larger specific surface area.
  • the polymer When the polymer is added to the starch for pore-forming, the structure of the starch changes to a certain extent, and voids appear inside, and the surface defects will automatically Repair, thereby reducing the specific surface area.
  • Examples 1-3 all prepared starchy biomass-based hard carbon materials by step-by-step sintering by three-step pyrolysis methods, due to different sintering temperatures, there are gaps in system reactions, resulting in differences in product structures, and hard carbon materials The size of the inner and outer pores is different.
  • Table 2 shows the electrochemical properties of hard carbon negative electrodes for sodium-ion batteries prepared in Examples 1, 2, 3 and Comparative Example 1. The specific data are obtained by testing in a blue electric test cabinet.

Abstract

本发明公开了一种硬碳负极材料及其制备方法与应用。所述硬碳负极材料的基底以淀粉为原料制备;所述硬碳负极材料的内部孔隙的直径大于表面孔隙的直径。所述硬碳负极材料合理的孔隙直径和大的层间距有利于钠离子的嵌入/脱出。

Description

一种硬碳负极材料及其制备方法与应用 技术领域
本发明属于电池负极材料技术领域,具体涉及一种硬碳负极材料及其制备方法与应用。
背景技术
随着传统化石能源的日益减少以及环境污染日益加剧,能源的开发和利用显得尤为重要。锂离子电池以高能量密度、高电压、低自放电以及优异的循环性能等优势成为消费电子领域的主要储能设备。然而,地球上锂资源很少,加上锂离子电池的广泛应用,使得锂资源更加短缺,价格居高不下,不适合用于大规模储能应用,因此急需开发下一代综合性能优异的储能电池体系。
钠与锂属于同族元素,和锂具有相似的物化性质,储量丰富,价格低廉(钠的基本原材料天然碱大约比锂的原材料碳酸锂便宜30~40倍),并且其电极电位(Na +/Na)较锂离子的(Li +/Li)高0.3V,具有更加稳定的电化学性能和安全性能。但钠离子的离子半径(r=0.113nm)较锂离子的(r=0.076)至少大35%以上,使得钠离子在刚性晶格中相对稳定,在规整的石墨结构中难于可逆脱嵌,几乎没有储钠容量。
发明内容
本发明所要解决的第一个技术问题是:
提供一种硬碳负极材料。所述硬碳负极材料合理的孔隙直径和大的层间距有利于钠离子的嵌入/脱出。
本发明所要解决的第二个技术问题是:
提供一种所述硬碳负极材料的制备方法。
本发明还提出一种硬碳负极。
为了解决所述第一个技术问题,本发明采用的技术方案为:
一种硬碳负极材料,所述硬碳负极材料的基底以淀粉为原料制备;
所述硬碳负极材料的内部孔隙的直径大于表面孔隙的直径。
根据本发明的一种实施方式,所述硬碳负极材料层间距大于0.34nm。
钠离子的离子直径约为R=0.226nm,即负极材料层间距至少要大于0.226nm,才能从理论上使得钠离子能够自由在负极材料层中嵌入和脱出,但实际上负极材料中相互交错的层状结构, 在一定程度上是会影响钠离子的传导的。当负极材料层间距达到0.34nm时,钠离子仍然难以实现自由地可逆脱嵌,因此负极材料层间距至少要大于0.34nm。
根据本发明的一种实施方式,所述硬碳负极材料层间距约3.828nm。
根据本发明的一种实施方式,所述内部孔隙的直径为X,0<X≤5nm。
根据本发明的一种实施方式,所述硬碳负极材料内部孔隙的直径在0~5nm之间,在此范围内,有利于钠离子的嵌入和脱出,从而使得所述硬碳负极材料兼具储钠容量与循环稳定性。
根据本发明的一种实施方式,所述硬碳负极材料的内部孔隙以2nm为主。
根据本发明的一种实施方式,所述硬碳负极材料的表面的孔隙直径小于所述硬碳负极材料的内部孔隙,所述钠离子能够通过所述硬碳负极材料外部孔隙,但由于表面的孔隙直径很小,比离子大的物质难以通过所述外部孔隙,避免了不必要的杂质掺杂进所述硬碳负极材料,从而保证所述硬碳负极材料内部良好的储钠环境。此外,在所述球形颗粒内部存在大量的无规则的孔隙,能进一步加强所述硬碳负极材料内部储钠容量。
根据本发明的一种实施方式,通过蓝电测试柜对所述硬碳负极材料进行充放电循环测试,得到所述硬碳负极材料的平均嵌钠容量为330mAh/g。
根据本发明的一种实施方式,所述淀粉为直链淀粉和或/支链淀粉;优选为土豆淀粉、玉米淀粉、小麦淀粉、红薯淀粉、木薯淀粉中的至少一种。
根据本发明的一种实施方式,所述硬碳负极材料为15~20μm的球形颗粒。所述球形颗粒大小适中。
为了解决所述第二个技术问题,本发明采用的技术方案为:
一种制备所述硬碳负极材料的方法,包括以下步骤:
将经过交联处理的淀粉与热不稳定聚合物混合,得到前驱体;
将所述前驱体经芳环化处理和碳化处理后,得到所述硬碳负极材料。
根据本发明的一种实施方式,所述聚合物包括聚乙二醇、聚乙烯醇、羧甲基纤维素钠、氮甲基吡咯烷酮中的至少一种。
根据本发明的一种实施方式,所述聚合物可以为聚合物粉末,也可以为聚合物溶液,当时聚合物溶液时,其质量百分比浓度为0.5%~20%。
所述选用的聚合物会与淀粉形成稳定的链段结构,并进一步促进淀粉交联,并在随后,随着反应体系的升温,体系中聚合物部分的链段会分解成挥发性物质,从而使得所述硬碳负极材料内部形成不规则的孔隙结构。随着温度升高,所述硬碳负极材料会进行自我修复,修复表面的孔隙,而不影响内部孔隙结构的形成。
淀粉是由直链淀粉和支链淀粉组成的,在淀粉的交联处理过程中,由于支链淀粉的热稳定性较差,支链淀粉与直链淀粉之间的氢键发生断裂,支链淀粉发生分解。在交联处理后,加入了所述聚合物,聚合物与淀粉重新形成稳定的链段结构,随着反应体系的升温,淀粉和聚合物的链段均发生剧烈运动,链段发生断裂,后重聚合形成醚键连接两个链段,这个过程相当于一个进一步促进淀粉交联的过程。
所述挥发性物质包括水蒸气、一氧化碳、二氧化碳、烷烃类物质。
根据本发明的一种实施方式,所述聚合物和所述经过交联处理的淀粉的质量比为0.05:1~0.5:1。在此质量比下,才能合成所述硬碳负极材料。
根据本发明的一种实施方式,当所述聚合物为溶液时候,所述聚合物与所述经过交联处理的淀粉质量比为0.5:1~2:1;当所述聚合物为粉体的时候,所述聚合物与所述经过交联处理的淀粉质量比为0.05:1~0.5:1。
根据本发明的一种实施方式,所述淀粉的交联处理在惰性气体保护下,所述的惰性气体为氮气、氩气、氦气中的至少一种,所述淀粉的交联处理过程中氧浓度低于200ppm。
根据本发明的一种实施方式,所述淀粉的交联处理为在200~235℃处理8~60h,升温速率为1~5℃/min;在交联处理后,还要进行冷却,需冷却至50℃以下。
所述经过交联处理的淀粉,其形成了空间网状结构,在交联过程中,可以加入合适的交联剂,促进淀粉分子发生羟基反应,从而将多个淀粉分子交叉连接起来。
未进行交联的淀粉在中温条件下会发生膨胀,结构会被破坏,从而导致无法进行造孔。
根据本发明的一种实施方式,所述芳环化处理的温度为300~500℃、时间为2~6h,升温速率为3~5℃/min,所述芳环化处理在惰性气体保护下,所述惰性气体为氮气、氩气、氦气中的至少一种。
在所述芳环化处理过程中,所述前驱体中聚合物部分的链段会分解成挥发性物质,从而使得所述硬碳负极材料内部形成不规则的孔隙结构。
所述利用聚合物造孔的方法不仅可以应用于硬碳材料体系中,也能够应用于碳质其他体系中,适用性十分广泛。
根据本发明的一种实施方式,所述碳化处理的温度为1000~1400℃、时间为0.5~3h,升温速率为3~5℃/min;所述碳化处理在惰性气体保护下,所述惰性气体为氮气、氩气、氦气中的至少一种。
所述碳化处理的目的一方面是为了煅烧掉多余的有机质和易分解的物质,另一方面是为了使硬碳结构更为稳定;当材料中的不稳定介质分解掉了之后,材料同时进行自我修复,使得材 料结构更为稳定。
通过三步热解法分步烧结制备出淀粉生物质基硬碳材料,其无序的层间结构和大的层间距有利于钠离子的嵌入/脱出,并表现出优异的循环稳定性。
本发明的再一个方面,还提供一种硬碳负极,包括铜箔和涂覆在所述铜箔上的浆料,所述浆料包括粘结剂、导电剂和所述的一种硬碳负极材料。
本发明的再一个方面,还提供一种钠离子电池,包括钠片正极和硬碳负极,所述硬碳负极包括所述的一种硬碳负极材料。
根据本发明的一种实施方式,所述硬碳负极在0.1C倍率下循环100圈后,平均容量保持在83%。
所述技术方案中的一个技术方案至少具有如下优点或有益效果之一:
1.所述硬碳负极材料的表面的孔隙直径小于所述硬碳负极材料的内部孔隙,所述钠离子能够通过所述硬碳负极材料外部孔隙,但由于表面的孔隙直径很小,比离子大的物质难以通过所述外部孔隙,避免了不必要的杂质掺杂进所述硬碳负极材料,从而保证所述硬碳负极材料内部良好的储钠环境。此外,在所述球形颗粒内部存在大量的无规则的孔隙,能进一步加强所述硬碳负极材料内部储钠容量;
2.通过三步热解法分步烧结制备出淀粉生物质基硬碳材料,其无序的层间结构和大的层间距有利于钠离子的嵌入/脱出,并表现出优异的循环稳定性。
附图说明
构成本发明的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。
图1为实施例中硬碳负极材料内部结构示意图;
图2为实施例中硬碳负极材料SEM图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明的范围。
测试例中所用的硬碳负极,包括铜箔和涂覆在上述铜箔上的浆料,上述浆料包括粘结剂、导电剂和硬碳负极材料。
测试例中所用的电池,为钠离子扣式半电池,正极为钠片,负极为上述硬碳负极。
实施例1
一种制备上述硬碳负极材料的方法,包括以下步骤:
(1)将50g的PEG-4000(聚乙二醇4000)溶于1000ml的去离子水中,配制成5%PEG-4000聚合物有机造孔溶液;
(2)在氮气的保护下,将玉米淀粉置于烧结炉中,以升温速率为1℃/min升温至220℃进行交联处理30个小时,冷却后至50℃,即得一烧产物;
(3)取100ml的步骤(1)的5%PEG-4000聚合物有机造孔溶液和100g步骤(2)的一烧产物,将其混合均匀,即可得到前驱体;
(4)将步骤(3)得到的前驱体置于烧结炉中,在氮气气氛下,以3℃/min的升温速率升温至400℃,芳环化处理3个小时;
(5)将步骤(4)芳环化造孔后的样品置于烧结炉中,在氮气气氛下,以5℃/min的升温速率从400℃升温至1100℃,高温碳化处理2个小时,即可得到上述硬碳负极材料。
实施例2
一种制备上述硬碳负极材料的方法,包括以下步骤:
(1)将50g的PEG-4000溶于1000ml的去离子水中,配制成5%PEG-4000聚合物有机造孔溶液;
(2)在氮气的保护下,将玉米淀粉置于烧结炉中,以升温速率为1℃/min升温至220℃进行交联处理30个小时,冷却后至50℃,即得一烧产物;
(3)取100ml的步骤(1)的5%PEG-4000聚合物有机造孔溶液和100g步骤(2)的一烧产物,将其混合均匀,即可得到前驱体;
(4)将步骤(3)得到的前驱体置于烧结炉中,在氮气气氛下,以3℃/min的升温速率升温至300℃,芳环化处理3个小时;
(5)将步骤(4)芳环化造孔后的样品置于烧结炉中,在氮气气氛下,以5℃/min的升温速率从400℃升温至1100℃,高温碳化处理2个小时,即可得到上述硬碳负极材料。
实施例3
一种制备上述硬碳负极材料的方法,包括以下步骤:
(1)将50g的PEG-4000溶于1000ml的去离子水中,配制成5%PEG-4000聚合物有机造孔溶液;
(2)在氮气的保护下,将玉米淀粉置于烧结炉中,以升温速率为1℃/min升温至220℃进 行交联处理30个小时,冷却后至50℃,即得一烧产物;
(3)取100ml的步骤(1)的5%PEG-4000聚合物有机造孔溶液和100g步骤(2)的一烧产物,将其混合均匀,即可得到前驱体;
(4)将步骤(3)得到的前驱体置于烧结炉中,在氮气气氛下,以3℃/min的升温速率升温至500℃,芳环化处理3个小时;
(5)将步骤(4)芳环化造孔后的样品置于烧结炉中,在氮气气氛下,以5℃/min的升温速率从400℃升温至1100℃,高温碳化处理2个小时,即可得到上述硬碳负极材料。
实施例4
与实施例1相比,实施例4的步骤(2)为:在氮气的保护下,将玉米淀粉置于烧结炉中,以升温速率为1℃/min升温至215℃进行交联处理6个小时,继续以1℃/min的升温速率升温至225℃保温12h,冷却后至50℃,即得一烧产物。其余制备步骤与实施例1相同。
实施例5
与实施例1相比,实施例5的步骤(2)为:在氮气的保护下,将玉米淀粉置于烧结炉中,以升温速率为1℃/min升温至230℃进行交联处理8个小时,冷却后至50℃,即得一烧产物。其余制备步骤与实施例1相同。
实施例6
与实施例1相比,实施例6的淀粉为土豆淀粉。制备方法与实施例1相同。
实施例7
与实施例1相比,实施例7的淀粉为小麦淀粉。制备方法与实施例1相同。
实施例8
与实施例1相比,实施例8的聚合物为聚乙烯醇。制备方法与实施例1相同。
实施例9
与实施例1相比,实施例9的聚合物为羧甲基纤维素钠。制备方法与实施例1相同。
实施例10
与实施例1相比,实施例10的聚合物浓度不同。
一种制备上述硬碳负极材料的方法,包括以下步骤:
(1)将100g的PEG-4000(聚乙二醇4000)溶于1000ml的去离子水中,配制成10%PEG-4000聚合物有机造孔溶液;
(2)在氮气的保护下,将玉米淀粉置于烧结炉中,以升温速率为1℃/min升温至220℃进 行交联处理30个小时,冷却后至50℃,即得一烧产物;
(3)取100ml的步骤(1)的10%PEG-4000聚合物有机造孔溶液和100g步骤(2)的一烧产物,将其混合均匀,即可得到前驱体;
(4)将步骤(3)得到的前驱体置于烧结炉中,在氮气气氛下,以3℃/min的升温速率升温至400℃,芳环化处理3个小时;
(5)将步骤(4)芳环化造孔后的样品置于烧结炉中,在氮气气氛下,以5℃/min的升温速率从400℃升温至1100℃,高温碳化处理2个小时,即可得到上述硬碳负极材料。
实施例11
与实施例1相比,实施例11的聚合物浓度不同。
一种制备上述硬碳负极材料的方法,包括以下步骤:
(1)将150g的PEG-4000(聚乙二醇4000)溶于1000ml的去离子水中,配制成15%PEG-4000聚合物有机造孔溶液;
(2)在氮气的保护下,将玉米淀粉置于烧结炉中,以升温速率为1℃/min升温至220℃进行交联处理30个小时,冷却后至50℃,即得一烧产物;
(3)取100ml的步骤(1)的15%PEG-4000聚合物有机造孔溶液和100g步骤(2)的一烧产物,将其混合均匀,即可得到前驱体;
(4)将步骤(3)得到的前驱体置于烧结炉中,在氮气气氛下,以3℃/min的升温速率升温至400℃,芳环化处理3个小时;
(5)将步骤(4)芳环化造孔后的样品置于烧结炉中,在氮气气氛下,以5℃/min的升温速率从400℃升温至1100℃,高温碳化处理2个小时,即可得到上述硬碳负极材料。
实施例12
与实施例1相比,实施例12的聚合物浓度不同。
一种制备上述硬碳负极材料的方法,包括以下步骤:
(1)将200g的PEG-4000(聚乙二醇4000)溶于1000ml的去离子水中,配制成20%PEG-4000聚合物有机造孔溶液;
(2)在氮气的保护下,将玉米淀粉置于烧结炉中,以升温速率为1℃/min升温至220℃进行交联处理30个小时,冷却后至50℃,即得一烧产物;
(3)取100ml的步骤(1)的20%PEG-4000聚合物有机造孔溶液和100g步骤(2)的一烧产物,将其混合均匀,即可得到前驱体;
(4)将步骤(3)得到的前驱体置于烧结炉中,在氮气气氛下,以3℃/min的升温速率升温至400℃,芳环化处理3个小时;
(5)将步骤(4)芳环化造孔后的样品置于烧结炉中,在氮气气氛下,以5℃/min的升温速率从400℃升温至1100℃,高温碳化处理2个小时,即可得到上述硬碳负极材料。
对比例1
将100g的玉米淀粉置于230℃中进行交联处理8小时,得到淀粉前驱体;将淀粉前驱体置于400℃进行2小时的芳环化处理,以及在1100℃的温度下进行高温碳化处理3小时,冷却至室温得到硬碳材料。
对比例1由于制备原料不含聚合物,使得最终产品硬碳材料中几乎不存在孔隙。
对比例2
与实施例1相比,对比例2的聚合物为酚醛树脂2123。制备方法与实施例1相同。
对比例2由于选用了热稳定性较好的聚合物,使得最终产品硬碳材料中几乎不存在孔隙。
性能测试:
上述硬碳负极材料的内部结构示意图如图1所示,其内部为无序的层间结构,其外部分布微孔结构。
上述实施例1制备的硬碳负极材料的SEM图(扫描电子显微镜图)如图2所示,上述硬碳负极材料为15~20μm的球形颗粒。
表1为实施例1、2、3与对比例1制备的硬碳产品的比表面积,具体数据是由贝士德比表面积测试仪测试得到。
表1硬碳产品的比表面积
Figure PCTCN2022116262-appb-000001
由表1可知,实施例1-3中制备得到硬碳产品的比表面积比对比例1要低,特别是实施例1,只有0.436m 2/g。
当淀粉没有进行造孔的时候,表面存在一些天然缺陷,导致比表面积偏大,当淀粉中加入了聚合物进行造孔之后,淀粉结构发生了一定的变化,内部出现空隙,而表面缺陷会自行修复,从而使得比表面积减小。
对比例1制备过程中,没有添加相应的聚合物,也就不存在淀粉与聚合物的结合,在更不存在升温过程中体系中聚合物部分的链段分解,从而形成孔隙结构的步骤。
而实施例1-3虽然都通过三步热解法分步烧结制备出淀粉生物质基硬碳材料,但由于烧结温度不同,体系反应有所差距,从而导致产品结构有差异,以及硬碳材料内外部孔隙的大小不同。
表2为实施例1、2、3与对比例1制备得到钠离子电池硬碳负极的电化学性能,具体数据是通过蓝电测试柜测试得到。
表2钠离子电池硬碳负极的电化学性能对比
Figure PCTCN2022116262-appb-000002
由表2可知,实施例中制备得到硬碳产品的电化学性能比对比例1要好,特别是实施例1。对比例1的硬碳产品,由于比表面积过大,会消耗一部分的钠离子去形成固体电解质薄膜,导致首次充放电效率和首次放电比容量较低。
以上仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书内容所作的等同变换,或直接或间接运用在相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种硬碳负极材料,其特征在于:
    所述硬碳负极材料的基底以淀粉为原料制备;
    所述硬碳负极材料的内部孔隙的直径大于表面孔隙的直径。
  2. 根据权利要求1所述的一种硬碳负极材料,其特征在于:所述淀粉为直链淀粉和或/支链淀粉;优选为土豆淀粉、玉米淀粉、小麦淀粉、红薯淀粉、木薯淀粉中的至少一种。
  3. 根据权利要求1所述的一种硬碳负极材料,其特征在于:所述硬碳负极材料为15~20μm的球形颗粒。
  4. 根据权利要求1所述的一种硬碳负极材料,其特征在于:所述内部孔隙的直径为X,0<X≤5nm。
  5. 一种制备如权利要求1至4任一项所述的一种硬碳负极材料的方法,其特征在于:包括以下步骤:
    将经过交联处理的淀粉与热不稳定聚合物混合,得到前驱体;
    将所述前驱体经芳环化处理和碳化处理后,得到所述硬碳负极材料。
  6. 根据权利要求5所述的方法,其特征在于:所述聚合物包括聚乙二醇、聚乙烯醇、羧甲基纤维素钠、氮甲基吡咯烷酮中的至少一种。
  7. 根据权利要求5所述的方法,其特征在于:所述聚合物和所述经过交联处理的淀粉的质量比为0.05:1~0.5:1。
  8. 根据权利要求5所述的方法,其特征在于:所述芳环化处理的温度为300~500℃、时间为2~6h。
  9. 根据权利要求5所述的方法,其特征在于:所述碳化处理的温度为1000~1400℃、时间为0.5~3h。
  10. 一种钠离子电池,其特征在于:包括钠片正极和硬碳负极,所述硬碳负极包括如权利要求1至4任一项所述的一种硬碳负极材料。
PCT/CN2022/116262 2021-12-01 2022-08-31 一种硬碳负极材料及其制备方法与应用 WO2023098191A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
GB2314132.8A GB2619456A (en) 2021-12-01 2022-08-31 Hard carbon negative electrode material, and preparation method therefor and use thereof
DE112022002661.8T DE112022002661T5 (de) 2021-12-01 2022-08-31 Negatives hartkohlenstoff-elektrodenmaterial und herstellungsverfahren dafür und verwendung davon

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111456775.6A CN114497545A (zh) 2021-12-01 2021-12-01 一种硬碳负极材料及其制备方法与应用
CN202111456775.6 2021-12-01

Publications (1)

Publication Number Publication Date
WO2023098191A1 true WO2023098191A1 (zh) 2023-06-08

Family

ID=81493002

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116262 WO2023098191A1 (zh) 2021-12-01 2022-08-31 一种硬碳负极材料及其制备方法与应用

Country Status (4)

Country Link
CN (1) CN114497545A (zh)
DE (1) DE112022002661T5 (zh)
GB (1) GB2619456A (zh)
WO (1) WO2023098191A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116553524A (zh) * 2023-07-04 2023-08-08 成都锂能科技有限公司 一种钠离子电池硬碳负极材料及其制备工艺、应用
CN117384323A (zh) * 2023-12-12 2024-01-12 成都锂能科技有限公司 一种淀粉基前驱体材料及其制备方法、应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114497545A (zh) * 2021-12-01 2022-05-13 广东邦普循环科技有限公司 一种硬碳负极材料及其制备方法与应用
CN115117339A (zh) * 2022-07-08 2022-09-27 广东邦普循环科技有限公司 一种硬碳材料及其制备方法与应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150333326A1 (en) * 2014-05-13 2015-11-19 Samsung Electronics Co., Ltd. Negative electrode active material for non-lithium secondary battery, method of preparing the same, negative electrode for non-lithium secondary battery including the same, and non-lithium secondary battery including the negative electrode
CN105098186A (zh) * 2014-11-11 2015-11-25 中国科学院物理研究所 一种热解无定型碳材料及其制备方法和用途
CN107425215A (zh) * 2016-05-23 2017-12-01 宁波杉杉新材料科技有限公司 一种淀粉基复合硬碳负极材料的制备方法及用途
CN110877908A (zh) * 2018-09-06 2020-03-13 天津大学 一种玉米淀粉热解硬碳电极材料的制备方法
CN111244407A (zh) * 2018-11-28 2020-06-05 上海杉杉科技有限公司 硬碳/石墨复合负极材料、锂离子电池及其制备方法和应用
CN113206246A (zh) * 2021-04-27 2021-08-03 天津理工大学 钠离子电池生物质硬碳负极材料及其制备方法
CN114497545A (zh) * 2021-12-01 2022-05-13 广东邦普循环科技有限公司 一种硬碳负极材料及其制备方法与应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150333326A1 (en) * 2014-05-13 2015-11-19 Samsung Electronics Co., Ltd. Negative electrode active material for non-lithium secondary battery, method of preparing the same, negative electrode for non-lithium secondary battery including the same, and non-lithium secondary battery including the negative electrode
CN105098186A (zh) * 2014-11-11 2015-11-25 中国科学院物理研究所 一种热解无定型碳材料及其制备方法和用途
CN107425215A (zh) * 2016-05-23 2017-12-01 宁波杉杉新材料科技有限公司 一种淀粉基复合硬碳负极材料的制备方法及用途
CN110877908A (zh) * 2018-09-06 2020-03-13 天津大学 一种玉米淀粉热解硬碳电极材料的制备方法
CN111244407A (zh) * 2018-11-28 2020-06-05 上海杉杉科技有限公司 硬碳/石墨复合负极材料、锂离子电池及其制备方法和应用
CN113206246A (zh) * 2021-04-27 2021-08-03 天津理工大学 钠离子电池生物质硬碳负极材料及其制备方法
CN114497545A (zh) * 2021-12-01 2022-05-13 广东邦普循环科技有限公司 一种硬碳负极材料及其制备方法与应用

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116553524A (zh) * 2023-07-04 2023-08-08 成都锂能科技有限公司 一种钠离子电池硬碳负极材料及其制备工艺、应用
CN116553524B (zh) * 2023-07-04 2023-09-15 成都锂能科技有限公司 一种钠离子电池硬碳负极材料及其制备工艺、应用
CN117384323A (zh) * 2023-12-12 2024-01-12 成都锂能科技有限公司 一种淀粉基前驱体材料及其制备方法、应用
CN117384323B (zh) * 2023-12-12 2024-03-08 成都锂能科技有限公司 一种淀粉基前驱体材料及其制备方法、应用

Also Published As

Publication number Publication date
CN114497545A (zh) 2022-05-13
DE112022002661T5 (de) 2024-03-07
GB202314132D0 (en) 2023-11-01
GB2619456A (en) 2023-12-06

Similar Documents

Publication Publication Date Title
WO2023098191A1 (zh) 一种硬碳负极材料及其制备方法与应用
Li et al. MOF‐derived metal oxide composites for advanced electrochemical energy storage
Wang et al. Application of carbon materials in aqueous zinc ion energy storage devices
Huang et al. A powder self‐healable hydrogel electrolyte for flexible hybrid supercapacitors with high energy density and sustainability
Liu et al. Oxygen‐deficient bismuth oxide/graphene of ultrahigh capacitance as advanced flexible anode for asymmetric supercapacitors
Wei et al. Phosphorization engineering on metal–organic frameworks for quasi‐solid‐state asymmetry supercapacitors
Yu et al. Ultrathin MoS2 nanosheets supported on N‐doped carbon nanoboxes with enhanced lithium storage and electrocatalytic properties
CN107240680B (zh) 一种硬碳-金属氧化物-软碳复合材料及其制备方法和应用
Ruan et al. Respective Roles of Inner and Outer Carbon in Boosting the K+ Storage Performance of Dual‐Carbon‐Confined ZnSe
Landman et al. High performance core/shell Ni/Ni (OH) 2 electrospun nanofiber anodes for decoupled water splitting
CN110247037B (zh) 一种氟磷酸钒氧钠/石墨烯复合物的制备方法和用途
CN106299367A (zh) 一种动力锂离子电池负极用多孔炭材料及其制备方法
CN107516732B (zh) 一种用作锂电池阳极的SnO&MoS2复合材料的制备方法
Li et al. Hetero-structured NiS2/CoS2 nanospheres embedded on N/S co-doped carbon nanocages with ultra-thin nanosheets for hybrid supercapacitors
WO2021143855A1 (zh) 微米硅碳复合负极材料、制备方法、负极极片以及锂离子电池
WO2024000815A1 (zh) 高性能硬碳材料的制备方法及其应用
CN112125295A (zh) 一种酚醛树脂/蔗糖基硬炭微球材料及其制备方法和钠离子电池
CN111446086B (zh) 一种镍钴锰氢氧化物纳米片/泡沫镍@氮掺杂碳电极材料的制备方法
CN110808374B (zh) 一种氮掺硒化钼的合成方法、氮掺硒化钼及其应用
Ma et al. Highly Dispersive Co@ N‐C Catalyst as Freestanding Bifunctional Cathode for Flexible and Rechargeable Zinc–air Batteries
CN109360961B (zh) 一种锂硫电池正极材料用中空复合微球及其制备方法
Chen et al. Freestanding film formed with Sb-nanoplates embedded in flexible porous carbon nanofibers as a binder-free anode for high-performance wearable potassium-ion battery
Niu et al. Biomass‐Derived Bifunctional Cathode Electrocatalyst and Multiadaptive Gel Electrolyte for High‐Performance Flexible Zn–Air Batteries in Wide Temperature Range
CN110993365A (zh) 泡沫镍上自生长双金属mof及其衍生物电极材料
Zhou et al. Cellulose filter papers derived separator featuring effective ion transferring channels for sodium-ion batteries

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22900005

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202314132

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20220831

WWE Wipo information: entry into national phase

Ref document number: P202390210

Country of ref document: ES

WWE Wipo information: entry into national phase

Ref document number: 112022002661

Country of ref document: DE