WO2024000815A1 - 高性能硬碳材料的制备方法及其应用 - Google Patents

高性能硬碳材料的制备方法及其应用 Download PDF

Info

Publication number
WO2024000815A1
WO2024000815A1 PCT/CN2022/118009 CN2022118009W WO2024000815A1 WO 2024000815 A1 WO2024000815 A1 WO 2024000815A1 CN 2022118009 W CN2022118009 W CN 2022118009W WO 2024000815 A1 WO2024000815 A1 WO 2024000815A1
Authority
WO
WIPO (PCT)
Prior art keywords
starch
preparation
temperature
phosphate
hard carbon
Prior art date
Application number
PCT/CN2022/118009
Other languages
English (en)
French (fr)
Inventor
范霞
李长东
冯茂华
郑爽
毛林林
阮丁山
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Priority to GB2319268.5A priority Critical patent/GB2625211A/en
Priority to HU2400055A priority patent/HUP2400055A1/hu
Priority to DE112022002540.9T priority patent/DE112022002540T5/de
Publication of WO2024000815A1 publication Critical patent/WO2024000815A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/054Accumulators with insertion or intercalation of metals other than lithium, e.g. with magnesium or aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of sodium-ion battery negative electrode materials, and specifically relates to a preparation method and application of a high-performance hard carbon material.
  • LiBs Lithium-ion batteries
  • LiBs Lithium-ion batteries
  • Sodium and lithium belong to the same family of elements, have similar chemical properties, and have high reserves in nature and low prices. For these reasons, sodium is currently the most ideal element to replace lithium in rechargeable batteries for energy storage systems, and advanced electrode materials are key to the development of sodium-ion batteries.
  • SiB cathode materials have been extensively studied, including layered oxides, tunnel oxides, polyanion sodium salts, and Prussian blue analogs.
  • the anode materials for sodium-ion batteries are very limited due to the large sodium ion radius. Due to the large ionic radius of sodium, the carbonate electrolyte in the sodium-based anode cannot be used in graphite (the interlayer spacing d is 0.335 nm), which is widely used in LiBS .
  • Other anode materials have been widely studied, including non-graphitized hard carbon. (HC), alloys, oxides and organic compounds. Most of them undergo huge volume expansion during the sodium ion insertion process, leading to irreversible capacity fading.
  • HC materials with randomly oriented graphite-like layers are the most promising SiB anode materials due to their high reversibility close to 350mAhg -1 , suitable average potential ⁇ 0.15V relative to Na/Na + , and their excellent cycle stability. one.
  • the present invention aims to solve at least one of the technical problems existing in the above-mentioned prior art. To this end, the present invention proposes a preparation method and application of high-performance hard carbon materials.
  • a preparation method of hard carbon material including the following steps:
  • S1 Mix starch, phosphate and water for impregnation, and dry the obtained impregnated material to obtain impregnated starch;
  • the phosphate is at least one of ammonium dihydrogen phosphate or diammonium hydrogen phosphate;
  • the starch is selected from one or more of corn starch, mung bean starch, potato starch, wheat starch, tapioca starch, lotus root starch, rice starch or sweet potato starch.
  • step S1 the particle size of the starch is 2-80 ⁇ m.
  • step S1 the mass ratio of the starch to the phosphate is (2-20):1.
  • step S1 the impregnation time is 6-24 hours.
  • step S1 the amount of water used is 2-4 times the total mass of the starch and phosphate.
  • the temperature of the heat treatment is 150-240°C. Further, the temperature is raised to the target temperature of the heat treatment at a heating rate of 0.5-15°C/min.
  • step S2 the heat treatment time is 4-16 hours.
  • the volume ratio of carbon dioxide and inert gas is 1: (4-30).
  • the volume ratio of carbon dioxide and inert gas is 1: (4-15). More preferably, the volume ratio of carbon dioxide and inert gas is 1: (8-12).
  • the specific surface area of hard carbon will increase accordingly.
  • a suitable specific surface area is conducive to the adsorption and storage of sodium ions, which is beneficial to increasing the capacity and first effect of hard carbon materials.
  • too large a specific surface area will also cause the SEI film The increase will lead to a decrease in specific capacity and first efficiency, so the gas flow rate of carbon dioxide needs to be controlled within an appropriate range.
  • the flow rate of carbon dioxide is 5-20 mL/min.
  • the flow rate of carbon dioxide is 5-10 mL/min.
  • step S3 the temperature of the carbonization reaction is 1100-1500°C.
  • step S3 the carbonization reaction time is 1-8 hours.
  • step S3 the process of the carbonization reaction is: put the starch-based carbon microspheres into a high-temperature furnace, first purge with inert gas for 30-120 minutes, and then raise the temperature to the target Carbonization temperature, when the target carbonization temperature is reached, the mixed gas is introduced to carry out the carbonization reaction. Further, the flow rate of the inert gas purge is 50-150 ml/min. Further, the temperature is raised to the target carbonization temperature at a heating rate of 0.5-10°C/min.
  • step S3 the specific surface area of the hard carbon material is 2-5 m 2 /g.
  • the invention also provides the application of the hard carbon material prepared by the preparation method in the preparation of sodium ion batteries.
  • the present invention mixes starch and phosphate for cross-linking reaction, which is mainly manifested in: heat treatment at a certain temperature under an inert atmosphere, the hydroxyl groups in the starch will undergo a dehydration reaction with hydrogen phosphate ions, and the ammonium ions will react with the starch. The hydroxyl group on the molecule undergoes a hydroxyl amination reaction. At the same time, during the heating process, some ammonium ions of ammonium dihydrogen phosphate or diammonium hydrogen phosphate will decompose to produce NH 3. NH 3 will also undergo a dehydration reaction with the hydroxyl group in the starch molecule.
  • the material is N-doped by introducing amino groups, which cross-links two or more starch molecules together to form a spatial network structure, making the molecular structure of the starch more stable and avoiding the direct heating of the starch. Decompose into small molecules, thereby reducing the carbon yield; at the same time, starch and phosphate undergo a cross-linking reaction and then carbonize.
  • the raw materials in the entire process remain spherical, avoiding the direct carbonization to produce foamed block carbon, thereby avoiding the SEI film increase, avoiding the reduction of specific capacity and first efficiency.
  • nitrogen doping enhances the conductivity of the material and increases the active sites of hard carbon materials, thereby further improving the specific capacity, rate performance and cycle life of hard carbon in sodium-ion batteries.
  • the present invention uses starch as raw material to prepare hard carbon materials, which has wide sources and low price.
  • the present invention introduces CO 2 as a pore-forming agent to create pores in the material during the carbonization process.
  • the resulting nanoscale pore structure is conducive to the storage of sodium ions, thereby improving the reversible capacity of the sodium-ion battery.
  • the preparation method of the present invention has fewer steps, simple process, low energy consumption, high operability, low production cost, and is suitable for large-scale production.
  • Figure 1 is an SEM image of the hard carbon material prepared in Example 1 of the present invention.
  • Figure 2 is an XRD pattern of the hard carbon material prepared in Example 1 of the present invention.
  • Figure 3 is a pore size distribution diagram of the hard carbon material prepared in Example 1 of the present invention.
  • Figure 4 is a cycle performance curve diagram of the hard carbon material prepared in Example 1 of the present invention when used as the negative electrode of a sodium ion battery.
  • This example prepares a hard carbon negative electrode material for sodium ion batteries.
  • the specific process is:
  • step (2) Put the impregnated starch obtained in step (1) into a tube furnace, and under the protection of N2 , heat it to 160°C at a heating rate of 5°C/min, perform constant temperature heat treatment for 10h, and cool to room temperature to obtain Starch-based carbon microspheres;
  • step (3) Put the starch-based carbon microspheres obtained in step (2) into a high-temperature furnace, pass in N 2 for purging, where the flow rate of N 2 is 100 mL/min, and continue to purge at 5°C/min for 30 minutes.
  • the heating rate is increased to the target carbonization temperature of 1400°C.
  • a mixture of carbon dioxide and N2 with a volume ratio of 1:10 is introduced, in which the flow rate of carbon dioxide is 10 mL/min, and the constant temperature heat treatment is performed at the target temperature for 2 hours. , and when cooled to room temperature, high-performance hard carbon materials can be prepared.
  • the C, N, O, and P contents are shown in Table 1.
  • Figure 1 is an SEM image of the hard carbon material. From the image, it can be seen that the material is in the form of spherical particles with smooth edges.
  • Figure 2 is the XRD pattern of the hard carbon material. It can be seen from the figure that approximately 24.5° corresponds to the diffraction peak (002) crystal plane. The half-peak width is larger and the angle is smaller, indicating that the hard carbon material has a higher degree of disorder. , the layer spacing is larger, which is beneficial to the storage and extraction of sodium ions.
  • Figure 3 shows the pore size distribution diagram of hard carbon materials. It can be seen from the figure that the pore size in the material is mainly concentrated below 5nm.
  • Figure 4 is a cycle performance curve of the battery when the obtained hard carbon material is used as the negative electrode of a sodium-ion battery.
  • the capacity retention rate after 50 cycles is 94%.
  • This example prepares a hard carbon negative electrode material for sodium ion batteries.
  • the specific process is:
  • step (2) Put the impregnated starch obtained in step (1) into a tube furnace, and under the protection of N2 , heat it to 180°C at a heating rate of 5°C/min, perform constant temperature heat treatment for 8 hours, and cool to room temperature to obtain Starch-based carbon microspheres;
  • step (3) Put the starch-based carbon microspheres obtained in step (2) into a high-temperature furnace, pass in N 2 for purging, where the flow rate of N 2 is 100 mL/min, and continue to purge at 5°C/min for 30 minutes.
  • the heating rate is increased to the target carbonization temperature of 1300°C.
  • a mixture of carbon dioxide and N2 with a volume ratio of 1:10 is introduced, in which the flow rate of carbon dioxide is 10 mL/min, and the constant temperature heat treatment is performed at the target temperature for 3 hours. , and when cooled to room temperature, high-performance hard carbon materials can be prepared.
  • This example prepares a hard carbon negative electrode material for sodium ion batteries.
  • the specific process is:
  • step (2) Put the impregnated starch obtained in step (1) into a tube furnace, and under the protection of N2 , heat it to 210°C at a heating rate of 5°C/min, perform constant temperature heat treatment for 6 hours, and cool to room temperature to obtain Starch-based carbon microspheres;
  • step (3) Put the starch-based carbon microspheres obtained in step (2) into a high-temperature furnace, and pass in N 2 for purging.
  • the flow rate of N 2 is 100 ml/min. After purging for 60 minutes, continue to purge at 5°C/min.
  • the heating rate is increased to the target carbonization temperature of 1200°C.
  • a mixture of carbon dioxide and N2 with a volume ratio of 1:10 is introduced, in which the flow rate of carbon dioxide is 10mL/min, and the constant temperature heat treatment is performed at the target temperature for 3 hours. After cooling to room temperature, high-performance hard carbon materials can be prepared.
  • This example prepares a hard carbon negative electrode material for sodium ion batteries.
  • the specific process is:
  • step (2) Put the impregnated starch obtained in step (1) into a tube furnace, and under the protection of N2 , heat it to 220°C at a heating rate of 5°C/min, perform constant temperature heat treatment for 5h, and cool to room temperature to obtain Starch-based carbon microspheres;
  • step (3) Put the starch-based carbon microspheres obtained in step (2) into a high-temperature furnace, and pass in N 2 for purging.
  • the flow rate of N 2 is 100 ml/min. After purging for 30 minutes, continue to purge at 5°C/min.
  • the heating rate is increased to the target carbonization temperature of 1100°C.
  • a mixture of carbon dioxide and N2 with a volume ratio of 1:10 is introduced, in which the flow rate of carbon dioxide is 10 mL/min, and the constant temperature heat treatment is performed at the target temperature for 4 hours. , and when cooled to room temperature, high-performance hard carbon materials can be prepared.
  • This example prepares a hard carbon negative electrode material for sodium ion batteries.
  • the specific process is:
  • step (2) Put the impregnated starch obtained in step (1) into a tube furnace, and under the protection of N2 , heat it to 160°C at a heating rate of 5°C/min, perform constant temperature heat treatment for 10h, and cool to room temperature to obtain Starch-based carbon microspheres;
  • step (3) Put the starch-based carbon microspheres obtained in step (2) into a high-temperature furnace, pass in N 2 for purging, where the flow rate of N 2 is 100 mL/min, and continue to purge at 5°C/min for 30 minutes.
  • the heating rate is increased to the target carbonization temperature of 1400°C.
  • a mixture of carbon dioxide and N2 with a volume ratio of 1:10 is introduced, in which the flow rate of carbon dioxide is 10 mL/min, and the constant temperature heat treatment is performed at the target temperature for 2 hours. , and when cooled to room temperature, high-performance hard carbon materials can be prepared.
  • This example prepares a hard carbon negative electrode material for sodium ion batteries.
  • the specific process is:
  • step (2) Put the impregnated starch obtained in step (1) into a tube furnace, and under the protection of N2 , heat it to 180°C at a heating rate of 5°C/min, perform constant temperature heat treatment for 8 hours, and cool to room temperature to obtain Starch-based carbon microspheres;
  • step (3) Put the starch-based carbon microspheres obtained in step (2) into a high-temperature furnace, pass in N 2 for purging, where the flow rate of N 2 is 100 mL/min, and continue to purge at 5°C/min for 30 minutes.
  • the heating rate is increased to the target carbonization temperature of 1300°C.
  • a mixture of carbon dioxide and N2 with a volume ratio of 1:10 is introduced, in which the flow rate of carbon dioxide is 10 mL/min, and the constant temperature heat treatment is performed at the target temperature for 3 hours. , and when cooled to room temperature, high-performance hard carbon materials can be prepared.
  • This comparative example prepares a hard carbon negative electrode material for sodium ion batteries.
  • the difference from Example 1 is that it is not impregnated with phosphate.
  • the specific process is:
  • step (2) Crush the starch-based monoburned product obtained in step (1) into millimeter-sized particles and put them into a high-temperature furnace.
  • N 2 for purging, where the flow rate of N 2 is 100 mL/min. After purging for 30 minutes, continue to The temperature is raised to the target carbonization temperature of 1400°C at a heating rate of 5°C/min. After reaching the target carbonization temperature, a mixture of carbon dioxide and N2 with a volume ratio of 1:10 is introduced, in which the flow rate of carbon dioxide is 10mL/min. After constant temperature heat treatment for 2 hours and cooling to room temperature, the hard carbon material can be prepared.
  • This comparative example prepares a hard carbon negative electrode material for sodium ion batteries.
  • the difference from Example 2 is that it is not impregnated with phosphate.
  • the specific process is:
  • step (2) Burn the starch base obtained in step (2) and break it into millimeter-sized particles, then put it into a high-temperature furnace, pass in N 2 for purging, where the flow rate of N 2 is 100/min, and continue to purge for 30 minutes.
  • the temperature is raised to the target carbonization temperature of 1300°C at a heating rate of 5°C/min.
  • a mixture of carbon dioxide and N2 with a volume ratio of 1:10 is introduced, in which the flow rate of carbon dioxide is 10mL/min.
  • the hard carbon material can be prepared.
  • This comparative example prepares a hard carbon negative electrode material for sodium ion batteries.
  • the difference from Example 3 is that carbon dioxide is not introduced during carbonization.
  • the specific process is:
  • step (2) Put the impregnated starch obtained in step (1) into a tube furnace, and under the protection of N2 , heat it to 210°C at a heating rate of 5°C/min, perform constant temperature heat treatment for 6 hours, and cool to room temperature to obtain Starch-based carbon microspheres;
  • step (3) Put the starch-based carbon microspheres obtained in step (2) into a high-temperature furnace, and pass in N 2 for purging.
  • the flow rate of N 2 is 100 ml/min. After purging for 60 minutes, continue to purge at 5°C/min.
  • the heating rate is increased to the target carbonization temperature of 1200°C.
  • the hard carbon material can be prepared by constant temperature heat treatment at the target temperature for 3 hours and cooling to room temperature.
  • Table 2 is a comparison of the specific surface areas of the hard carbon materials prepared in Examples 1-6 and Comparative Examples 1-3.
  • Comparative Examples 1 and 2 the hard carbon finished products were produced without adding phosphate to pre-crosslink the starch.
  • the specific surface area is very large;
  • Comparative Example 3 is based on Example 3 without introducing CO 2 as a pore-forming agent, and the specific area of the prepared hard carbon product is particularly small.
  • the hard carbon materials prepared in Examples 1-6 and Comparative Examples 1-3 were respectively made into batteries. Specifically, the hard carbon materials, sodium carboxymethyl cellulose, super P conductive agent, and polymer adhesive were mixed at 95: The ratio of 2:1:2 was dissolved in deionized water to form a slurry, and then coated on copper foil. The pole piece was placed in a drying box and dried at 80°C for 8 hours. Finally, a button cell was assembled in a glove box filled with argon atmosphere. The electrolyte used was NaClO 4 dissolved in ethylene carbonate and propylene carbonate with a volume ratio of 1:1. Sodium metal foil was used as the counter electrode and reference electrode. . Conduct electrical performance tests on button batteries. Test conditions: test voltage 0 ⁇ 2V, constant current charge and discharge, rate 0.05C. The results are shown in Table 3.
  • Comparative Examples 1 and 2 did not add phosphate to pre-crosslink the starch.
  • the prepared hard carbon products had a large increase in SEI film due to the excessive specific surface area, resulting in a reduction in specific capacity and first effect.
  • Comparative Example 3 did not add CO 2 to create pores, so the specific surface area of the material was too small, which was not conducive to the storage of sodium ions, so the specific capacity was low.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种高性能硬碳材料的制备方法及其应用,将淀粉、磷酸盐和水混合进行浸渍,所得浸渍物料烘干后得到浸渍后淀粉,将浸渍后淀粉置于惰性气氛下进行热处理,得到淀粉基碳微球,向淀粉基碳微球通入二氧化碳和惰性气体的混合气进行碳化反应,即得硬碳材料。本发明将淀粉和磷酸盐混合进行交联反应,且通过引入氨基对材料进行N掺杂,淀粉和磷酸盐发生交联反应后再碳化,整个过程中原料都保持圆球形,避免了直接碳化生产泡沫块状碳而导致SEI膜增加从而导致比容量和首效降低的问题。

Description

高性能硬碳材料的制备方法及其应用 技术领域
本发明属于钠离子电池负极材料技术领域,具体涉及一种高性能硬碳材料的制备方法及其应用。
背景技术
锂离子电池(LiBs)被广泛用作便携式电子产品和电动汽车的可充电电池。然而,锂资源越来越匮乏,价格昂贵,而且由于锂制成的电池也不安全,这抑制了LiBs在大规模能源存储系统中的使用。钠和锂属于同族元素,具有相似的化学性质,且在自然界的储量高,价格低。由于这些原因,钠是目前在储能系统的可充电电池中取代锂的最理想元素,而先进的电极材料是开发钠离子电池的关键。
在过去的几年中,许多SiB正极材料已经被广泛研究过,包括层状氧化物、隧道型氧化物、聚阴离子钠盐和普鲁士蓝类似物。然而,由于较大的钠离子半径,用于钠离子电池的负极材料非常有限。由于钠的离子半径较大,钠基阳极中的碳酸盐电解质不能使用在LiB S广泛使用的石墨(层间距d为0.335nm)中,其他负极材料已被广泛研究,包括非石墨化硬碳(HC)、合金、氧化物和有机化合物。其中大多数在钠离子插入过程中会出现巨大的体积膨胀,导致不可逆的容量衰减。目前,具有随机取向类石墨层HC材料由于其接近350mAhg -1的高可逆能力,相对Na/Na +合适的平均电位~0.15V,以及其优异的循环稳定性,是最有前途的SiB负极材料之一。
但是现有技术中报道的硬碳负极材料还存在首效低、容量低,倍率性能差、循环稳定性差等缺点,严重制约钠离子电池的发展和商业化应用。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种高性能硬碳材料的制备方法及其应用。
根据本发明的一个方面,提出了一种硬碳材料的制备方法,包括以下步骤:
S1:将淀粉、磷酸盐和水混合进行浸渍,所得浸渍物料烘干后得到浸渍后淀粉;所述磷酸盐为磷酸二氢铵或磷酸氢二铵中的至少一种;
S2:将所述浸渍后淀粉置于惰性气氛下进行热处理,得到淀粉基碳微球;
S3:向所述淀粉基碳微球通入二氧化碳和惰性气体的混合气进行碳化反应,即得所述硬碳材料。
在本发明的一些实施方式中,步骤S1中,所述淀粉选自玉米淀粉、绿豆淀粉、马铃薯淀粉、小麦淀粉、木薯淀粉、莲藕淀粉、水稻淀粉或红薯淀粉中的一种或几种。
在本发明的一些实施方式中,步骤S1中,所述淀粉的粒径为2-80μm。
在本发明的一些实施方式中,步骤S1中,所述淀粉与所述磷酸盐的质量比为(2-20):1。
在本发明的一些实施方式中,步骤S1中,所述浸渍的时间为6-24h。
在本发明的一些实施方式中,步骤S1中,所述水的用量为所述淀粉和磷酸盐总质量的2-4倍。
在本发明的一些实施方式中,步骤S2中,所述热处理的温度为150-240℃。进一步地,以0.5-15℃/min的升温速率升温到所述热处理的目标温度。
在本发明的一些实施方式中,步骤S2中,所述热处理的时间为4-16h。
在本发明的一些实施方式中,步骤S3中,所述二氧化碳和惰性气体的体积比为1:(4-30)。优选的,所述二氧化碳和惰性气体的体积比为1:(4-15)。更优选的,所述二氧化碳和惰性气体的体积比为1:(8-12)。二氧化碳的气流量增加,硬碳的比表面积会相应增加,合适的比表面积有利于钠离子的吸附和存储,对增加硬碳材料的容量和首效有利,但是比表面积过大也会导致SEI膜的增加,从而导致比容量及首效降低,因此需控制二氧化碳的气流量在合适范围。
在本发明的一些实施方式中,步骤S3中,所述二氧化碳的流速为5-20mL/min。优选的,所述二氧化碳的流速为5-10mL/min。
在本发明的一些实施方式中,步骤S3中,所述碳化反应的温度为1100-1500℃。
在本发明的一些实施方式中,步骤S3中,所述碳化反应的时间为1-8h。
在本发明的一些实施方式中,步骤S3中,所述碳化反应的过程为:将所述淀粉基碳微球 放入高温炉中,先通入惰性气体吹扫30-120min,再升温至目标碳化温度,当到达目标碳化温度之后,通入所述混合气进行所述碳化反应。进一步地,所述惰性气体吹扫的流速为50-150ml/min。进一步地,以0.5-10℃/min的升温速率升温到目标碳化温度。
在本发明的一些实施方式中,步骤S3中,所述硬碳材料的比表面积为2-5m 2/g。
本发明还提供所述的制备方法制备的硬碳材料在制备钠离子电池中的应用。
根据本发明的一种优选的实施方式,至少具有以下有益效果:
1、本发明将淀粉和磷酸盐混合进行交联反应,主要表现在:在惰性气氛下,在一定温度下热处理,淀粉中的羟基会和磷酸氢根离子进行脱水反应,铵根离子会和淀粉分子上的羟基发生羟氨基化反应,同时在加热过程中,磷酸二氢铵或磷酸氢二铵的部分铵根离子会分解产生NH 3,NH 3也会和淀粉分子中的羟基发生脱水反应,生成-NH 2,且通过引入氨基对材料进行N掺杂,这样使得两个或者两个以上的淀粉分子交联在一起而形成空间网络结构,使淀粉的分子结构更加稳定,避免了淀粉直接热解成小分子,从而降低碳产率;同时淀粉和磷酸盐发生交联反应后再碳化,整个过程中的原料都保持圆球形,避免了直接碳化生产泡沫块状碳,从而避免了SEI膜的增加,避免了比容量和首次效率的降低。此外氮掺杂增强了材料的导电性,增加了硬碳材料的活性位点,从而进一步提高硬碳在钠离子电池中的比容量、倍率性能和循环寿命。
2、本发明以淀粉为原料制备硬碳材料,原料来源广,价格低廉。
3、本发明引入了CO 2作为造孔剂,在碳化过程中对材料进行造孔,得到的纳米级孔结构有利于钠离子的存储,从而提高钠离子电池的可逆容量。
4、本发明的制备方法工序步骤少,工艺简单,能耗低,操作度高,生产成本低,适合规模化生产。
附图说明
下面结合附图和实施例对本发明做进一步的说明,其中:
图1为本发明实施例1制备的硬碳材料的SEM图;
图2为本发明实施例1制备的硬碳材料的XRD图;
图3为本发明实施例1制备的硬碳材料的孔径分布图;
图4为本发明实施例1制备的硬碳材料作为钠离子电池负极时的循环性能曲线图。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
本实施例制备了一种钠离子电池用硬碳负极材料,具体过程为:
(1)以粒径为2-80μm的玉米淀粉为原料,和磷酸氢二铵按照质量比为5:1进行混合,然后添加水进行混合浸渍,水的用量为玉米淀粉和磷酸氢二铵混合粉料总质量的3倍,浸渍12h后烘干水分得到磷酸氢二铵浸渍后的淀粉;
(2)将步骤(1)得到的浸渍后的淀粉放入管式炉中,在N 2的保护下,以5℃/min的升温速率升温到160℃,恒温热处理10h,冷却至室温,得到淀粉基碳微球;
(3)将步骤(2)得到的淀粉基碳微球放入高温炉中,通入N 2进行吹扫,其中N 2的流速为100mL/min,吹扫30min之后继续以5℃/min的升温速率升温到目标碳化温度1400℃,当到达目标碳化温度之后,通入体积比为1:10的二氧化碳和N 2的混合气,其中二氧化碳的流速为10mL/min,在目标温度下恒温热处理2h,冷却至室温,即可制备得到高性能硬碳材料,其C、N、O、P含量如表1所示。
表1实施例1硬碳材料的元素含量
Figure PCTCN2022118009-appb-000001
图1为硬碳材料的SEM图,从图中可以看出材料形貌呈边缘较为圆滑的类球形颗粒。
图2为硬碳材料的XRD图,从图中可以看出大约在24.5°对应于衍射峰(002)晶面,半峰宽较大,角度偏小,说明此硬碳材料无序度较高,层间距较大,利于钠离子的存储和脱出。
图3为硬碳材料的孔径分布图,从图中可以看出材料中孔隙大小主要集中在5nm以下。
图4为所得硬碳材料作为钠离子电池负极时电池的循环性能曲线图,循环50圈容量保持率为94%。
实施例2
本实施例制备了一种钠离子电池用硬碳负极材料,具体过程为:
(1)以粒径为2-80μm的玉米淀粉为原料,和磷酸氢二铵按照质量比为5:1进行混合,然后添加水进行混合浸渍,水的用量为玉米淀粉和磷酸氢二铵混合粉料总质量的2倍,浸渍12h后烘干水分得到磷酸氢二铵浸渍后的淀粉;
(2)将步骤(1)得到的浸渍后的淀粉放入管式炉中,在N 2的保护下,以5℃/min的升温速率升温到180℃,恒温热处理8h,冷却至室温,得到淀粉基碳微球;
(3)将步骤(2)得到的淀粉基碳微球放入高温炉中,通入N 2进行吹扫,其中N 2的流速为100mL/min,吹扫30min之后继续以5℃/min的升温速率升温到目标碳化温度1300℃,当到达目标碳化温度之后,通入体积比为1:10的二氧化碳和N 2的混合气,其中二氧化碳的流速为10mL/min,在目标温度下恒温热处理3h,冷却至室温,即可制备得到高性能硬碳材料。
实施例3
本实施例制备了一种钠离子电池用硬碳负极材料,具体过程为:
(1)以粒径为2-80μm的玉米淀粉为原料,和磷酸氢二铵按照质量比为5:1进行混合,然后添加水进行混合浸渍,水的用量为玉米淀粉和磷酸氢二铵混合粉料总质量的4倍,浸渍12h后烘干水分得到磷酸氢二铵浸渍后的淀粉;
(2)将步骤(1)得到的浸渍后的淀粉放入管式炉中,在N 2的保护下,以5℃/min的升温速率升温到210℃,恒温热处理6h,冷却至室温,得到淀粉基碳微球;
(3)将步骤(2)得到的淀粉基碳微球放入高温炉中,通入N 2进行吹扫,其中N 2的流速为100ml/min,吹扫60min之后继续以5℃/min的升温速率升温到目标碳化温度1200℃,当到达目标碳化温度之后,通入体积比为1:10二氧化碳和N 2的混合气,其中二氧化碳的流速为10mL/min,在目标温度下恒温热处理3h,冷却至室温,即可制备得到高性能硬碳材料。
实施例4
本实施例制备了一种钠离子电池用硬碳负极材料,具体过程为:
(1)以粒径为2-80μm的玉米淀粉为原料,和磷酸氢二铵按照质量比为10:1进行混合,然后添加水进行混合浸渍,水的用量为玉米淀粉和磷酸氢二铵混合粉料总质量的3倍,浸渍18h后烘干水分得到磷酸氢二铵浸渍后的淀粉;
(2)将步骤(1)得到的浸渍后的淀粉放入管式炉中,在N 2的保护下,以5℃/min的升温速率升温到220℃,恒温热处理5h,冷却至室温,得到淀粉基碳微球;
(3)将步骤(2)得到的淀粉基碳微球放入高温炉中,通入N 2进行吹扫,其中N 2的流速为100ml/min,吹扫30min之后继续以5℃/min的升温速率升温到目标碳化温度1100℃,当到达目标碳化温度之后,通入体积比为1:10的二氧化碳和N 2的混合气,其中二氧化碳的流速为10mL/min,在目标温度下恒温热处理4h,冷却至室温,即可制备得到高性能硬碳材料。
实施例5
本实施例制备了一种钠离子电池用硬碳负极材料,具体过程为:
(1)以粒径为2-80μm的玉米淀粉为原料,和磷酸二氢铵按照质量比为5:2进行混合,然后添加水进行混合浸渍,水的用量为玉米淀粉和磷酸二氢铵混合粉料总质量的3倍,浸渍12h后烘干水分得到磷酸二氢铵浸渍后的淀粉;
(2)将步骤(1)得到的浸渍后的淀粉放入管式炉中,在N 2的保护下,以5℃/min的升温速率升温到160℃,恒温热处理10h,冷却至室温,得到淀粉基碳微球;
(3)将步骤(2)得到的淀粉基碳微球放入高温炉中,通入N 2进行吹扫,其中N 2的流速为100mL/min,吹扫30min之后继续以5℃/min的升温速率升温到目标碳化温度1400℃,当到达目标碳化温度之后,通入体积比为1:10的二氧化碳和N 2的混合气,其中二氧化碳的流速为10mL/min,在目标温度下恒温热处理2h,冷却至室温,即可制备得到高性能硬碳材料。
实施例6
本实施例制备了一种钠离子电池用硬碳负极材料,具体过程为:
(1)以粒径为2-80μm的玉米淀粉为原料,和磷酸二氢铵按照质量比为5:1进行混合,然后添加水进行混合浸渍,水的用量为玉米淀粉和磷酸二氢铵混合粉料总质量的3倍,浸渍12h后烘干水分得到磷酸铵浸渍后的淀粉;
(2)将步骤(1)得到的浸渍后的淀粉放入管式炉中,在N 2的保护下,以5℃/min的升温速率升温到180℃,恒温热处理8h,冷却至室温,得到淀粉基碳微球;
(3)将步骤(2)得到的淀粉基碳微球放入高温炉中,通入N 2进行吹扫,其中N 2的流速为100mL/min,吹扫30min之后继续以5℃/min的升温速率升温到目标碳化温度1300℃,当到达目标碳化温度之后,通入体积比为1:10的二氧化碳和N 2的混合气,其中二氧化碳的流速为10mL/min,在目标温度下恒温热处理3h,冷却至室温,即可制备得到高性能硬碳材料。
对比例1
本对比例制备了一种钠离子电池用硬碳负极材料,与实施例1的区别在于,未经过磷酸盐浸渍,具体过程为:
(1)将粒径为2-80μm的玉米淀粉放入管式炉中,在N 2的保护下,以5℃/min的升温速率升温到160℃,恒温热处理10h,冷却至室温,得到淀粉基碳一烧产物;
(2)将步骤(1)得到的淀粉基一烧产物破碎成毫米级颗粒放入高温炉中,通入N 2进行吹扫,其中N 2的流速为100mL/min,吹扫30min之后继续以5℃/min的升温速率升温到目标碳化温度1400℃,当到达目标碳化温度之后,通入体积比为1:10的二氧化碳和N 2的混合气,其中二氧化碳的流速为10mL/min,在目标温度下恒温热处理2h,冷却至室温,即可制备得到硬碳材料。
对比例2
本对比例制备了一种钠离子电池用硬碳负极材料,与实施例2的区别在于,未经过磷酸盐浸渍,具体过程为:
(1)将粒径为2-80μm的玉米淀粉放入管式炉中,在N 2的保护下,以5℃/min的升温速率升温到180℃,恒温热处理8h,冷却至室温,得到淀粉基一烧产物;
(2)将步骤(2)得到的淀粉基一烧破碎成毫米级颗粒后放入高温炉中,通入N 2进行吹 扫,其中N 2的流速为100/min,吹扫30min之后继续以5℃/min的升温速率升温到目标碳化温度1300℃,当到达目标碳化温度之后,通入体积比为1:10的二氧化碳和N 2的混合气,其中二氧化碳的流速为10mL/min,在目标温度下恒温热处理3h,冷却至室温,即可制备得到硬碳材料。
对比例3
本对比例制备了一种钠离子电池用硬碳负极材料,与实施例3的区别在于,碳化时未通入二氧化碳,具体过程为:
(1)以粒径为2-80μm的玉米淀粉为原料,和磷酸氢二铵按照质量比为5:1进行混合,然后添加水进行混合浸渍,水的用量为玉米淀粉和磷酸氢二铵混合粉料总质量的4倍,浸渍12h后烘干水分得到磷酸氢二铵浸渍后的淀粉;
(2)将步骤(1)得到的浸渍后的淀粉放入管式炉中,在N 2的保护下,以5℃/min的升温速率升温到210℃,恒温热处理6h,冷却至室温,得到淀粉基碳微球;
(3)将步骤(2)得到的淀粉基碳微球放入高温炉中,通入N 2进行吹扫,其中N 2的流速为100ml/min,吹扫60min之后继续以5℃/min的升温速率升温到目标碳化温度1200℃,当到达目标碳化温度之后,在目标温度下恒温热处理3h,冷却至室温,即可制备得到硬碳材料。
理化性能
表2为实施例1-6与对比例1-3制备的硬碳材料的比表面积对比,其中对比例1和对比例2在没有添加磷酸盐对淀粉进行预交联的情况下,硬碳成品的比表面积很大;对比例3是在实施例3的基础上不通入CO 2作为造孔剂,所制备的硬碳成品比面积特别小。
表2比表面积测试数据
样品 比表面积(m 2/g)
实施例1 3.04
实施例2 3.35
实施例3 3.13
实施例4 2.98
实施例5 3.08
实施例6 3.26
对比例1 12.26
对比例2 11.58
对比例3 0.98
试验例
将实施例1-6、对比例1-3所制得的硬碳材料分别制成电池,具体将硬碳材料、羧甲基纤维素钠、super P导电剂、聚合物粘接剂以95:2:1:2的配比溶于去离子水中配成浆料,然后涂布在铜箔上,极片放于干燥箱中在80℃下干燥8h。最后在充满氩气气氛的手套箱中组装扣式电池,所用电解液为NaClO 4溶于体积比为1:1的碳酸乙烯酯和碳酸丙烯酯制成,钠金属箔作为对电极和参比电极。对扣式电池进行电性能测试,测试条件:测试电压0~2V,恒流充放电,倍率0.05C。其结果如表3所示。
表3电化学性能测试
样品 充电比容量(mAh/g) 首次库伦效率(%)
实施例1 328.3 85.75
实施例2 321.7 84.96
实施例3 323.1 84.68
实施例4 315.6 85.13
实施例5 326.5 85.68
实施例6 321.6 84.87
对比例1 278.2 77.8
对比例2 269.2 78.1
对比例3 310.3 83.25
由表3可见,对比例1和对比例2没有添加磷酸盐对淀粉进行预交联,所制备的硬碳产品由于比表面积过大导致SEI膜大量增加,从而导致比容量和首效降低。对比例3未加入通入CO 2造孔使得材料比表面积过小,不利于钠离子的存储,所以比容量较低。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (10)

  1. 一种硬碳材料的制备方法,其特征在于,包括以下步骤:
    S1:将淀粉、磷酸盐和水混合进行浸渍,所得浸渍物料烘干后得到浸渍后淀粉;所述磷酸盐为磷酸二氢铵或磷酸氢二铵中的至少一种;
    S2:将所述浸渍后淀粉置于惰性气氛下进行热处理,得到淀粉基碳微球;
    S3:向所述淀粉基碳微球通入二氧化碳和惰性气体的混合气进行碳化反应,即得所述硬碳材料。
  2. 根据权利要求1所述的制备方法,其特征在于,步骤S1中,所述淀粉的粒径为2-80μm。
  3. 根据权利要求1所述的制备方法,其特征在于,步骤S1中,所述淀粉与所述磷酸盐的质量比为(2-20):1。
  4. 根据权利要求1所述的制备方法,其特征在于,步骤S1中,所述浸渍的时间为6-24h。
  5. 根据权利要求1所述的制备方法,其特征在于,步骤S2中,所述热处理的温度为150-240℃。
  6. 根据权利要求1所述的制备方法,其特征在于,步骤S3中,所述二氧化碳和惰性气体的体积比为1:(4-30)。
  7. 根据权利要求1所述的制备方法,其特征在于,步骤S3中,所述二氧化碳的流速为5-20mL/min。
  8. 根据权利要求1所述的制备方法,其特征在于,步骤S3中,所述碳化反应的温度为1100-1500℃。
  9. 根据权利要求1所述的制备方法,其特征在于,步骤S3中,所述碳化反应的过程为:将所述淀粉基碳微球放入高温炉中,先通入惰性气体吹扫30-120min,再升温至目标碳化温度,当到达目标碳化温度之后,通入所述混合气进行所述碳化反应。
  10. 如权利要求1-9任一项所述的制备方法制备的硬碳材料在制备钠离子电池中的应用。
PCT/CN2022/118009 2022-06-30 2022-09-09 高性能硬碳材料的制备方法及其应用 WO2024000815A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
GB2319268.5A GB2625211A (en) 2022-06-30 2022-09-09 Preparation method for and use of high-performance hard carbon material
HU2400055A HUP2400055A1 (hu) 2022-06-30 2022-09-09 Eljárás nagy teljesítményû keményszén-anyag elõállítására és felhasználására
DE112022002540.9T DE112022002540T5 (de) 2022-06-30 2022-09-09 Verfahren zur Herstellung eines harten Kohlenstoffmaterials mit hoher Leistung und dessen Verwendung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210758315.7 2022-06-30
CN202210758315.7A CN114956043B (zh) 2022-06-30 2022-06-30 高性能硬碳材料的制备方法及其应用

Publications (1)

Publication Number Publication Date
WO2024000815A1 true WO2024000815A1 (zh) 2024-01-04

Family

ID=82968396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/118009 WO2024000815A1 (zh) 2022-06-30 2022-09-09 高性能硬碳材料的制备方法及其应用

Country Status (6)

Country Link
CN (1) CN114956043B (zh)
DE (1) DE112022002540T5 (zh)
FR (1) FR3137506A1 (zh)
GB (1) GB2625211A (zh)
HU (1) HUP2400055A1 (zh)
WO (1) WO2024000815A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118108211A (zh) * 2024-04-29 2024-05-31 浙江华宇钠电新能源科技有限公司 一种磷掺杂硬碳负极材料及其制备方法、车辆

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114956043B (zh) * 2022-06-30 2023-09-08 广东邦普循环科技有限公司 高性能硬碳材料的制备方法及其应用
CN115275190B (zh) * 2022-09-22 2023-05-16 中国科学院山西煤炭化学研究所 用于钠离子电池负极的自支撑软/硬炭膜及其制备与应用
CN115838165B (zh) * 2022-12-29 2024-05-17 赣州立探新能源科技有限公司 硬炭负极材料及其制备方法、二次电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102683661A (zh) * 2012-06-01 2012-09-19 中国东方电气集团有限公司 一种锂离子电池硬炭负极材料的制备方法
CN102956876A (zh) * 2012-11-30 2013-03-06 中国科学院物理研究所 热解硬炭材料及其制备方法和用途
CN110482545A (zh) * 2019-09-04 2019-11-22 中国科学院山西煤炭化学研究所 一种高交联度淀粉的制备方法及其用途
CN114141986A (zh) * 2021-11-05 2022-03-04 成都佰思格科技有限公司 一种负极材料、制备方法及钠离子电池
CN114956043A (zh) * 2022-06-30 2022-08-30 广东邦普循环科技有限公司 高性能硬碳材料的制备方法及其应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102683661A (zh) * 2012-06-01 2012-09-19 中国东方电气集团有限公司 一种锂离子电池硬炭负极材料的制备方法
CN102956876A (zh) * 2012-11-30 2013-03-06 中国科学院物理研究所 热解硬炭材料及其制备方法和用途
CN110482545A (zh) * 2019-09-04 2019-11-22 中国科学院山西煤炭化学研究所 一种高交联度淀粉的制备方法及其用途
CN114141986A (zh) * 2021-11-05 2022-03-04 成都佰思格科技有限公司 一种负极材料、制备方法及钠离子电池
CN114956043A (zh) * 2022-06-30 2022-08-30 广东邦普循环科技有限公司 高性能硬碳材料的制备方法及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHEN, MINGYAN: "Preparation of Porous Starch-based Carbon Microspheres and Application thereof in Double-electric-layer Capacitors", HUAXUE GONGYE YU GONGCHENG - CHEMICAL INDUSTRY AND ENGINEERING, XX, TIANJIN, CN, vol. 30, no. 6, 30 November 2013 (2013-11-30), CN , pages 56 - 61, XP009551890, ISSN: 1004-9533, DOI: 10.13353/j.issn.1004.9533.2013.06.004 *
DU SIHONG; FU XIAOTING; WANGCHENGYANG; QIAO ZHIJUN; CHEN MINGMING: "Preparation and Structure Analysis of Starch-based Carbon Microsphere Materials", CAI LIAO DAO BAO = MATERIALS REVIEW, GUO JIA KE WEI GONG YE KE JI SI, ZHONG GUO KE XUE JI SHU XIN XI YAN JIU SUO CHONG QING FEN SUO ZHU BAN, CN, vol. 27, no. 8, 31 August 2013 (2013-08-31), CN , pages 100 - 103, XP009551960, ISSN: 1005-023X *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118108211A (zh) * 2024-04-29 2024-05-31 浙江华宇钠电新能源科技有限公司 一种磷掺杂硬碳负极材料及其制备方法、车辆

Also Published As

Publication number Publication date
HUP2400055A1 (hu) 2024-07-28
DE112022002540T5 (de) 2024-03-14
GB2625211A (en) 2024-06-12
CN114956043B (zh) 2023-09-08
GB202319268D0 (en) 2024-01-31
GB2625211A8 (en) 2024-08-21
FR3137506A1 (fr) 2024-01-05
CN114956043A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
WO2024000815A1 (zh) 高性能硬碳材料的制备方法及其应用
WO2016074479A1 (zh) 一种热解无定型碳材料及其制备方法和用途
CN109148847B (zh) 一种具有高倍率性能的硼掺杂改性的硬碳包覆负极材料及其液相制备方法
CN106711461A (zh) 一种球形多孔硅碳复合材料及其制备方法与用途
WO2016201940A1 (zh) 一种炭/石墨复合负极材料的制备方法
Cui et al. An interlayer with architecture that limits polysulfides shuttle to give a stable performance Li-S battery
CN113659125B (zh) 一种硅碳复合材料及其制备方法
WO2016202164A1 (zh) 一种炭/石墨/锡复合负极材料的制备方法
WO2023173772A1 (zh) 硬碳负极材料的制备方法和应用
CN114639809B (zh) 一种复合硬碳负极材料、制备方法及应用
CN114497545A (zh) 一种硬碳负极材料及其制备方法与应用
CN113193183A (zh) 一种高振实密度双碳层硅碳复合材料及其制备方法
CN115714170A (zh) 一种高能量密度快充负极材料的制备方法
CN108807903B (zh) 一种锂电池用复合修饰锂电池负极材料的制备方法
CN113036097B (zh) 一种硫空位氮掺杂碳包覆硫化镍复合电极材料及其制备方法
KR20220083973A (ko) 석류 유사 구조 실리콘 기반 복합 재료 및 그 제조 방법 및 응용
CN115332507B (zh) 一种碳包覆磷酸铁钠复合电极材料及其制备和应用
CN117049505A (zh) 硬炭负极材料的制备方法及硬炭负极材料、钠离子电池
CN111933908A (zh) 一种γ辐照调控的爆米花硬碳/SnP3复合材料制备钠离子电池负极的方法
CN115692652A (zh) 氮掺杂碳纳米材料及其制备方法和作为负极材料的应用
CN114156471A (zh) 一种石墨负极材料及其制备方法和应用
CN111170294A (zh) 一种低成本磷酸铁锂复合材料的制备方法
CN118248874B (zh) 一种硬碳复合材料及其制备方法与应用
Lang et al. Study on the electrochemical performance of lead-acid battery with micro/nanostructure tetrabasic lead sulfate prepared via sol-gel method
CN115417399B (zh) 一种铜钽共掺杂硬碳复合材料,及其制备方法和应用

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 202319268

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20220909

WWE Wipo information: entry into national phase

Ref document number: 112022002540

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: P2400055

Country of ref document: HU

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22948905

Country of ref document: EP

Kind code of ref document: A1