WO2023098188A1 - 碳酸亚乙烯酯、制备方法及应用其的锂电池电解液 - Google Patents

碳酸亚乙烯酯、制备方法及应用其的锂电池电解液 Download PDF

Info

Publication number
WO2023098188A1
WO2023098188A1 PCT/CN2022/116179 CN2022116179W WO2023098188A1 WO 2023098188 A1 WO2023098188 A1 WO 2023098188A1 CN 2022116179 W CN2022116179 W CN 2022116179W WO 2023098188 A1 WO2023098188 A1 WO 2023098188A1
Authority
WO
WIPO (PCT)
Prior art keywords
crystallization
vinylene carbonate
barrier
section
tube
Prior art date
Application number
PCT/CN2022/116179
Other languages
English (en)
French (fr)
Inventor
王振一
王小龙
周龙
管晓东
周洋
Original Assignee
苏州华一新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州华一新能源科技股份有限公司 filed Critical 苏州华一新能源科技股份有限公司
Priority to KR1020227034094A priority Critical patent/KR20230084094A/ko
Publication of WO2023098188A1 publication Critical patent/WO2023098188A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D317/00Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D317/08Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3
    • C07D317/10Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings
    • C07D317/32Heterocyclic compounds containing five-membered rings having two oxygen atoms as the only ring hetero atoms having the hetero atoms in positions 1 and 3 not condensed with other rings with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D317/34Oxygen atoms
    • C07D317/40Vinylene carbonate; Substituted vinylene carbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • H01M2300/004Three solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the application relates to the technical field of lithium batteries, more specifically, it relates to vinylene carbonate, a preparation method and an electrolyte for lithium batteries using the same.
  • vinylene carbonate is used as an electrolyte additive, and the purity requirements of vinylene carbonate are relatively high. Usually, it needs to reach more than 99.95% to meet the requirements for application in lithium battery electrolytes. Therefore, how to prepare high-purity vinylene carbonate Vinyl ester is a more important link.
  • the application provides a preparation method of vinylene carbonate and a lithium battery electrolyte using the vinylene carbonate.
  • the application provides a kind of preparation method of vinylene carbonate, adopts following technical scheme:
  • a preparation method of vinylene carbonate comprising the following steps:
  • Separation by filtration separation of the first mixture by filtration to remove insoluble impurities to obtain the second mixture;
  • Decompression precipitation the second mixture is subjected to decompression treatment, and the organic solvent and other auxiliary agents are removed to obtain the crude product of vinylene carbonate;
  • Vacuum rectification carry out vacuum rectification to the crude product of vinylene carbonate, collect the fraction after rectification, and obtain vinylene carbonate after rectification;
  • Crystallization purification Dissolve the rectified vinylene carbonate in the auxiliary solvent, and control the mass ratio of the rectified vinylene carbonate to the auxiliary solvent to be (1.2 ⁇ 1.8):1, and then cool the system down to 19 Heat at ⁇ 21°C for 15-20 minutes, then cool down to 16-18°C and hold for 15-20 minutes, then continue to cool down to 13-15°C and hold for 15-20 minutes to obtain vinylene carbonate.
  • a mixed solution containing vinylene carbonate can be obtained after a dechlorination reaction; Rectification further removes impurities and solvents to obtain relatively pure vinylene carbonate.
  • vinylene carbonate is recrystallized. Due to the excessive amount of auxiliary solvent, it is easy to cause incomplete recrystallization of vinylene carbonate after dissolution or the precipitation rate is slow; and too little auxiliary solvent is easy to cause incomplete dissolution of vinylene carbonate, resulting in poor purification effect.
  • the mass ratio of the vinylene carbonate after the rectification and the auxiliary solvent is controlled to be (1.2 ⁇ 1.8): 1, which helps to improve the vinylene carbonate on the basis of completely dissolving the vinylene carbonate.
  • the precipitation efficiency and yield are controlled.
  • the method of multi-stage gradient cooling is used for recrystallization, respectively at 19-21°C, 16-18°C and 13-15°C for 15-20 minutes.
  • the content of vinylene carbonate precipitated in the above three temperature ranges is less. And the yield is higher.
  • each temperature range is kept warm for 15 to 20 minutes, which helps to keep the precipitation of vinylene carbonate in a state of dynamic equilibrium, thereby helping to optimize the crystal form of the precipitated vinylene carbonate, and helping to reduce the precipitation of vinylene carbonate.
  • the impurity wrapped in the vinyl ester crystal helps to improve the purity of the vinylene carbonate obtained.
  • the auxiliary solvent is a mixture of petroleum ether and methyl tert-butyl ether in a mass ratio (3-5):1.
  • sherwood oil and methyl tert-butyl ether all can dissolve more vinylene carbonate at higher temperatures, and can only dissolve very little vinylene carbonate at lower temperatures, thereby It helps to carry out recrystallization and purification of vinylene carbonate, and makes the recrystallization yield of vinylene carbonate higher.
  • the system is first cooled to 19-21°C for 18 minutes, then cooled to 16-18°C for 18 minutes, and then cooled to 13-15°C for 18 minutes to obtain vinylene carbonate.
  • the difference between the first holding temperature and the second holding temperature is 3°C
  • the difference between the second holding temperature and the third holding temperature is also 3°C.
  • the temperature difference of each cooling is controlled to be 3°C, which helps to make the transition interval for the precipitation of vinylene carbonate in the solution relatively moderate, that is, it helps to reduce the chance of crystal precipitation caused by excessive temperature changes.
  • the situation where the quality deteriorates, and it also helps to reduce the situation where the temperature change is too small and the further precipitation effect is not obvious.
  • the present application provides a vinylene carbonate, which is prepared according to the method described in the first aspect.
  • the application provides a lithium battery electrolyte using vinylene carbonate, which adopts the following technical scheme:
  • An electrolyte solution for a lithium battery using vinylene carbonate which comprises the following raw materials in mass percent: 1.5% to 2.8% of vinylene carbonate, 0.4% to 0.7% of anisole, and 10.2% of lithium salt in the electrolyte ⁇ 14.5%, the rest is electrolyte solvent.
  • anisole can react with RCO 3 Li, the reduction decomposition product of dimethyl carbonate and ethylene carbonate in the electrolyte solvent, and generate CH 3 OLi, which is deposited on the surface of the graphite electrode, and becomes a solid electrolyte together with the polyalkyl lithium carbonate compound
  • the components of the interface film help to improve the stability of the solid electrolyte interface film and help to reduce the irreversible capacity used to repair the solid electrolyte interface film during cycling.
  • the anisole contains a benzene ring and an electron-donating group is attached to the benzene ring, which can effectively reduce the self-copolymerization of vinylene carbonate, thereby helping to improve the stability of the electrolyte.
  • the vinylene carbonate in the electrolyte is too low, it is difficult to form a dense solid electrolyte interfacial film on the surface of the negative electrode, and it is easy to cause more side reactions in the electrolyte solvent, which easily leads to battery flatulence or increased internal resistance. If the content of vinylene carbonate is too high, the thickness of the solid electrolyte interfacial film formed is too thick, or the surplus of vinylene carbonate in the electrolyte is too much, which will easily increase the resistance of the battery , negatively affects battery performance.
  • controlling the mass fraction of vinylene carbonate in the electrolyte to be 1.5% to 2.8% helps to form a dense solid electrolyte interface film on the surface of the negative electrode, and can effectively reduce the occurrence of side reactions of the electrolyte solvent, helping to reduce the Small battery internal resistance, thus helping to optimize battery performance.
  • the anisole with a mass fraction of 0.4% to 0.7% has little effect on the properties of vinylene carbonate while reducing the self-polymerization of vinylene carbonate, and the anisole at this mass fraction helps to improve the performance of solid electrolytes.
  • the stability of the interfacial film helps to reduce the irreversible capacity used to repair the solid electrolyte interfacial film during cycling, thereby helping to optimize battery performance.
  • the electrolyte solvent is a mixture of ethyl methyl carbonate, dimethyl carbonate and ethylene carbonate in a mass ratio of (2.1-2.8):(3.4-4.5):1.
  • the present application adopts the method of gradient cooling to carry out recrystallization, which helps to reduce the impurities wrapped in the precipitated vinylene carbonate, thereby improving the purity of vinylene carbonate; and
  • the three crystallization temperatures are 19-21°C, 16-18°C and 13-15°C respectively, and the precipitation rate of vinylene carbonate and the purity of the precipitated crystals in the above three temperature ranges are both better.
  • the preferably consistent 18min of the heat preservation time of three crystallization temperatures of gradient cooling in the present application the precipitation effect of vinylene carbonate is better in this heat preservation time, and consistent heat preservation time has satisfied the requirement of dynamic crystallization device work, helps To realize the continuity of crystallization and purification, thus helping to improve the efficiency of crystallization and purification.
  • vinylene carbonate is used as the main additive for film formation
  • phenethyl ether is used as a supplementary additive for film formation. While helping to improve the stability of the solid electrolyte interface film, it can also Effectively inhibits self-polymerization of vinylene carbonate, thereby helping to optimize battery performance.
  • Figure 1 is a schematic structural view of the dynamic crystallization device used in Preparation Example 1 of the present application.
  • Fig. 2 is a cross-sectional view showing the structure of the switch assembly in Preparation Example 1 of the present application.
  • Fig. 3 is an enlarged view of A in Fig. 2 .
  • FIG. 4 is a schematic diagram showing the structures of the first barrier ring and the second barrier ring in Preparation Example 1 of the present application.
  • Fig. 5 is a schematic diagram showing the structure of the first barrier sheet in Preparation Example 1 of the present application.
  • the raw materials in the examples and comparative examples of the present application can be obtained commercially.
  • a preparation method of vinylene carbonate comprising the following steps:
  • S2 Filtration and separation cooling the first mixture to 40° C., filtering and separating insoluble impurities, and cleaning the filtered impurities with an organic solvent to obtain a cleaning solution, combining the cleaning solution and the filtrate to obtain a second mixture;
  • S5 crystallization purification Dissolve the rectified vinylene carbonate in the auxiliary solvent, and control the mass ratio of the rectified vinylene carbonate to the auxiliary solvent to be 1.5:1, then cool the system down to 20°C and keep it warm for 18 minutes , then lower the temperature to 17°C and keep it for 18 minutes, continue to cool down to 14°C and keep it for 18 minutes to obtain the primary crystallization product of vinylene carbonate, then repeat the above crystallization and purification operation for the primary crystallization product of vinylene carbonate, that is, carry out the second crystallization and purification to obtain Finished vinylene carbonate.
  • the dechlorination agent is a compound metal element, and the compound metal element is a mixture of iron element, aluminum element and zinc element in a mass ratio of 4:2:1, and the average particle size of the compound metal element is 6nm;
  • Organic solvent is dimethyl carbonate
  • the auxiliary solvent is a mixture of petroleum ether and methyl tert-butyl ether in a mass ratio of 4:1;
  • additives include catalyst 1.9g and polymerization inhibitor 0.6g, and catalyst is polyethylene glycol, and polymerization inhibitor is benzoquinone.
  • dynamic crystallization device 1 comprises one section crystallization tube 11, two section crystallization tube 12 and three section crystallization tube 13, one section crystallization tube 11, two section crystallization tube 12 and three sections of crystallization tubes 13 are connected successively, one section of crystallization tubes 11, two sections of crystallization tubes 12 and three sections of crystallization tubes 13 form a connecting tube, one section of crystallization tubes 11, two sections of crystallization tubes 12 and three sections of crystallization tubes 13 are all along the same The direction is tilted downwards.
  • Cooling chamber 14 and crystallization chamber 15 are all provided with in one section of crystallization tube 11, second section of crystallization tube 12 and three sections of crystallization tube 13, cooling chamber 14 is positioned at the outside of crystallization chamber 15, and the inner wall of cooling chamber 14 It is connected with the outer wall of the crystallization chamber.
  • the crystallization chambers 15 of the first crystallization tube 11 , the second crystallization tube 12 and the third crystallization tube 13 are connected in sequence, and the adjacent cooling chambers 14 are separated and sealed.
  • the first-stage crystallization tube 11 , the second-stage crystallization tube 12 and the third-stage crystallization tube 13 are all connected with a feeding pipe 6 and a feeding pipe 7 , and both the feeding pipe 6 and the feeding pipe 7 are in communication with the cooling chamber 14 .
  • the crystallization chamber 15 between the first-stage crystallization tube 11 and the second-stage crystallization tube 12 , and the crystallization chamber 15 between the second-stage crystallization tube 12 and the third-stage crystallization tube 13 are all provided with an opening and closing assembly 2 .
  • the cooling liquid is added through the feeding pipe 6, and the cooling liquid is circulated through the feeding pipe 7, and the temperature in the cooling chamber 14 can be adjusted by the circulation rate of the cooling liquid. Then pass the solution to be crystallized into one section of crystallization tube 11, and lower the temperature to 20°C. After keeping the temperature for 18 minutes, open the switch assembly 2 between the first section of crystallization tube 11 and the second section of crystallization tube 12, and transfer the solution in one section of crystallization tube 11 To the second-stage crystallization tube 12.
  • the opening and closing assembly 2 includes a first barrier ring 21, a second barrier ring 22, a first barrier piece 23 and a second barrier piece 24, the first barrier ring 21 and the second barrier ring 22 All slide along the axial direction of a section of crystallization tube 11 and are arranged on the inner wall of the crystallization chamber 15, and the ring outer walls of the first barrier ring 21 and the second barrier ring 22 are all in contact with the inner wall of the crystallization chamber 15; cooling A positioning member 5 for fixing the first blocking ring 21 and the second blocking ring 22 is fixedly connected to the inner wall of the chamber 14 .
  • the first blocking sheet 23 and the second blocking sheet 24 are provided with two, the two first blocking sheets 23 are all rotatably arranged on the first blocking ring 21, and the two second blocking sheets 24 are all rotatably arranged on the second blocking ring 22 ;
  • Two first barrier sheets 23 and two second barrier sheets 24 are all provided with sealing soft pads (not shown in the figure), and the ring inner wall of the first barrier ring 21 and the ring inner wall of the second barrier ring 22 are all in contact with the sealing soft pads.
  • the pads are tight.
  • One of the first barrier pieces 23 is provided with a first slot 25, and the other first barrier piece 23 is fixedly connected with a first plug 27, and the first plug 27 is inserted in the first slot 25 and is connected to the first slot 25.
  • a first control device 3 for controlling the rotation of the first blocking piece 23 is provided between the first blocking ring 21 and the first blocking piece 23 .
  • One of the second blocking sheets 24 is provided with a second slot 26, and the other second blocking sheet 24 is fixedly connected with a second insert block 28, and the second insert block 28 is inserted in the second slot 26 and is connected to the second slot 26.
  • the groove walls of the two slots 26 abut against each other; a second control device 31 for controlling the rotation of the second blocking piece 24 is provided between the second blocking ring 22 and the second blocking piece 24 .
  • the first barrier sheet 23 is controlled to open or close by the first control device 3
  • the second barrier sheet 24 is opened or closed by the second control device 31 .
  • Positioning member 5 comprises first electromagnet 51 and second electromagnet 52, and first electromagnet 51 and second electromagnet 52 are all fixedly connected on the outer wall of crystallization chamber 15, and first electromagnet 51 and first barrier ring 21 is opposite, and the second electromagnet 52 is opposite to the second blocking ring 22 .
  • the electromagnetic effects of the first electromagnet 51 and the second electromagnet 52 are canceled, and the first barrier sheet 23 and the second barrier sheet 24 are closed by the first control device 3 and the second control device 31 .
  • the first blocking ring 21 is fixed, and the magnetic force of the second electromagnet 52 is turned on. Under the action of gravity, the second blocking ring 22 slides to the second electromagnet 52, and the second blocking ring 22 and the first The two electromagnets 52 face each other, and the second blocking ring 22 can be fixed under the magnetic force of the second electromagnet 52 . Then turn on the magnetic force of the first electromagnet 51, under the action of gravity, the first barrier ring 21 slides to be opposite to the first electromagnet 51, and fix the first barrier ring 21 under the magnetic force of the first electromagnet 51, The next purification and crystallization can be carried out.
  • the auxiliary solvent is a mixture of petroleum ether and methyl tert-butyl ether in a mass ratio of 3:1.
  • the auxiliary solvent is a mixture of petroleum ether and methyl tert-butyl ether in a mass ratio of 5:1.
  • the auxiliary solvent is a mixture of petroleum ether and methyl tert-butyl ether in a mass ratio of 1:1.
  • the auxiliary solvent is a mixture of petroleum ether and methyl tert-butyl ether in a mass ratio of 7:1.
  • the auxiliary solvent is petroleum ether.
  • the auxiliary solvent is methyl tert-butyl ether.
  • a lithium battery electrolyte using vinylene carbonate comprising the following raw materials: 23g vinylene carbonate, 5.5g anisole, 120g electrolyte lithium salt, 852g electrolyte solvent.
  • the electrolyte solvent is a mixture of ethyl methyl carbonate, dimethyl carbonate and ethylene carbonate in a mass ratio of 2.5:4:1;
  • the electrolyte lithium salt is lithium hexafluorophosphate.
  • the preparation method of the lithium battery electrolyte comprises the following steps: under the protection of dry nitrogen, the lithium salt of the electrolyte is added to the electrode solution solvent for mixing, and then vinylene carbonate and anisole are added to continue mixing to obtain the electrolyte Liquid products.
  • Embodiment 1 The difference between this embodiment and Embodiment 1 is that the mass of vinylene carbonate is 15 g, and the balance is electrolyte solvent.
  • the electrolyte solvent is a mixture of ethyl methyl carbonate, dimethyl carbonate and ethylene carbonate in a mass ratio of 2.1:4.5:1.
  • the electrolyte solvent is a mixture of ethyl methyl carbonate, dimethyl carbonate and ethylene carbonate in a mass ratio of 2.8:3.4:1.
  • Example 8-21 The difference between Examples 8-21 and Example 1 is that vinylene carbonate is selected from different preparation examples, and the specific correspondence is as shown in Table 1:
  • Example 1 The difference between this comparative example and Example 1 is that no phenetole is added.
  • a lithium battery electrolyte in the related art comprises raw materials of the following quality: 10 g of vinylene carbonate, 30 g of heptafluorobutyric anhydride, 50 g of difluorooxalic acid phosphate, 210 g of electrolyte lithium salt, and 700 g of electrolyte solvent.
  • electrolyte lithium salt is lithium tetrafluoroborate
  • the electrolyte is a mixture of propylene carbonate and fluoroethylene carbonate in a mass ratio of 1:1;
  • the preparation method of vinylene carbonate comprises the following steps: first mix 100g monochloroethylene carbonate and 2g catalyst, and be heated to 40 °C, react 4 hours under nitrogen condition then; Filter reaction liquid again, and to the filtrate obtained Rectify and collect the fraction at 72°C/32mmHg; dissolve the fraction in ether and crystallize at a temperature of 10°C to obtain vinylene carbonate;
  • the catalyst is a mixture of iron oxide nanofibers, aluminum oxide nanofibers and titanium oxide nanofibers in a mass ratio of 3:6:1.
  • the preparation method of the lithium battery electrolyte is as follows: first dissolving the lithium salt of the electrolyte in the electrolyte solvent, then adding vinylene carbonate, heptafluorobutyric anhydride and difluorooxalate phosphate, and mixing to obtain the finished electrolyte.
  • the battery is designed as a square aluminum shell battery with a rated capacity of 13Ah, the positive electrode material is LiFePO 4 , and the negative electrode material is artificial graphite, and are matched with Examples 1-21 and Comparative Example 1 respectively Electrolyte solution prepared in ⁇ 11.
  • the 300-cycle capacity test equipment is CT-3008W-5V50A test cabinet, the battery internal resistance test equipment is HIOKI3554 battery internal resistance tester, and the test standard refers to the battery internal resistance and cycle in GB/T18287-2000 "Battery Industry Testing Standard" capacity testing standards.
  • Example 1 Combining the detection results of Example 1, Examples 4-5 and Comparative Example 10, it can be seen that the addition of phenetole can effectively improve the capacity retention rate of the battery using the electrolyte after 300 cycles.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本申请涉及锂电池技术领域,具体公开了一种碳酸亚乙烯酯的制备方法及应用其的锂电池电解液。本申请制备的碳酸亚乙烯酯纯度可以达到99.994%~99.998%,且该碳酸亚乙烯酯应用在锂电池电解液中的效果较佳,有助于优化锂电池的性能。

Description

碳酸亚乙烯酯、制备方法及应用其的锂电池电解液 技术领域
本申请涉及锂电池技术领域,更具体地说,它涉及碳酸亚乙烯酯、制备方法及应用其的锂电池电解液。
背景技术
由于传统能源储备随着工业发展快速消耗,并且传统能源使用过程中对环境的污染较为严重,因此人们一直在寻找可代替传统能源的持续可再生清洁能源。在汽车领域,随着各大汽车公司宣布停止研发燃油车,当下新能源汽车的研发含无疑问的成为了全球热点。
对于新能源汽车发展至关重要的是锂电池的研发,而对锂电池性能影响较大的有电解液和电极材料。目前研究发现在电解液中加入碳酸亚乙烯酯可以有效改善锂电池的充放电效率和循环寿命。
但是碳酸亚乙烯酯用作电解液添加剂,对碳酸亚乙烯酯的纯度要求较高,通常是需要达到99.95%以上才能够达到应用在锂电池电解液中的要求,因此如何制备高纯度的碳酸亚乙烯酯是较为重要的一环。
发明内容
为了制备高纯度的碳酸亚乙烯酯,从而优化应用该碳酸亚乙烯酯的电解液的性能,本申请提供一种碳酸亚乙烯酯的制备方法及应用其的锂电池电解液。
第一方面,本申请提供一种碳酸亚乙烯酯的制备方法,采用如下的技术方案:
一种碳酸亚乙烯酯的制备方法,包括以下步骤:
混合脱氯:混合二氯代碳酸乙烯酯、脱氯剂、有机溶剂和其他助剂,进行脱氯反应,得到第一混合物;
过滤分离:过滤分离第一混合物,除去不溶的杂质,得到第二混合物;
减压脱溶:对第二混合物进行减压处理,脱去有机溶剂和其他助剂,得到碳酸亚乙烯酯粗产物;
减压精馏:对碳酸亚乙烯酯粗产物进行减压精馏,收集精馏后的馏分,得到精馏后的碳酸亚乙烯酯;
结晶提纯:将精馏后的碳酸亚乙烯酯溶于辅助溶剂中,并控制精馏后的 碳酸亚乙烯酯和辅助溶剂的质量比为(1.2~1.8):1,然后先将体系降温至19~21℃保温15~20min,再降温至16~18℃保温15~20min,继续降温至13~15℃保温15~20min,得到碳酸亚乙烯酯。
通过采用上述技术方案,以二氯代碳酸乙烯酯作为制备碳酸亚乙烯酯的原料,经过脱氯反应后可以得到含碳酸亚乙烯酯的混合液;然后通过过滤分离、减压脱溶和减压精馏进一步脱去杂质和溶剂,得到较为纯净的碳酸亚乙烯酯。为了进一步提高碳酸亚乙烯酯的纯度,对碳酸亚乙烯酯进行重结晶。由于辅助溶剂用量过多,容易导致碳酸亚乙烯酯溶解后重结晶析出不完全或者析出速率较慢;而辅助溶剂过少则容易使得碳酸亚乙烯酯溶解不完全,从而导致提纯效果较差。因此本申请提纯结晶步骤中,控制精馏后的碳酸亚乙烯酯和辅助溶剂的质量比为(1.2~1.8):1,在完全溶解碳酸亚乙烯酯的基础上有助于提高碳酸亚乙烯酯的析出效率和收率。同时采用多段梯度降温的方式进行重结晶,分别在19~21℃、16~18℃和13~15℃各保温15~20min,上述三个温度区间内析出的碳酸亚乙烯酯杂质含量较少,并且收率较高。同时每个温度区间均保温15~20min,有助于使得碳酸亚乙烯酯的析出处于动态平衡状态,从而有助于优化析出的碳酸亚乙烯酯的晶体形态,并且有助于减少析出的碳酸亚乙烯酯晶体中包裹的杂物,进而有助于提高制得的碳酸亚乙烯酯的纯度。
优选的,所述结晶提纯步骤中,辅助溶剂为石油醚和甲基叔丁基醚按照质量比(3~5):1组成的混合物。
通过采用上述技术方案,由于石油醚和甲基叔丁基醚在较高温度时均能够溶解较多的碳酸亚乙烯酯,并且在较低温度时只能够溶解极少的碳酸亚乙烯酯,从而有助于对碳酸亚乙烯酯进行重结晶提纯,并且使得碳酸亚乙烯酯的重结晶收率较高。同时石油醚和甲基叔丁基醚的沸点较低,方便后续去除碳酸亚乙烯酯中残留的溶剂;并且控制石油醚和甲基叔丁基醚的质量比为(3~5):1,有助于提高对精馏后碳酸亚乙烯酯中的杂质的溶解效果,从而使得提纯结晶后的碳酸亚乙烯酯的纯度更高。
优选的,所述结晶提纯步骤中,先将体系降温至19~21℃保温18min,再降温至16~18℃保温18min,继续降温至13~15℃保温18min,得到碳酸 亚乙烯酯。
通过采用上述技术方案,优选在19~21℃、16~18℃和13~15℃三个温度下均保温18min,在碳酸亚乙烯酯析出效果较好的同时,方便对精馏后的碳酸亚乙烯酯进行动态结晶,即配合动态结晶装置进行重结晶的过程连续性较好,从而有助于提高重结晶效率。
优选的,所述结晶提纯步骤中,重复结晶提纯步骤至少两次。
优选的,所述结晶提纯步骤中,第一次保温温度和第二次保温温度的差值为3℃,第二次保温温度和第三次保温温度的差值也为3℃。
通过采用上述技术方案,控制每次降温的差值均为3℃,有助于使得溶液中的碳酸亚乙烯酯析出的过渡区间较为缓和,即有助于减少因温度变化过大导致析出晶体的质量变差的情况,并且也有助于减少温度变化过小导致进一步析出效果不明显的情况。
第二方面,本申请提供了一种碳酸亚乙烯酯,其是根据第一方面所述的方法制备的。
第三方面,本申请提供一种应用碳酸亚乙烯酯的锂电池电解液,采用如下的技术方案:
一种应用碳酸亚乙烯酯的锂电池电解液,按照质量百分之百计,包括以下质量百分比的原料:碳酸亚乙烯酯1.5%~2.8%、苯甲醚0.4%~0.7%、电解液锂盐10.2%~14.5%、余量为电解液溶剂。
通过采用上述技术方案,以碳酸亚乙烯酯作为电解液的成膜添加剂,由于碳酸亚乙烯酯可以在碳负极表面发生自由基聚合反应,并形成聚烷基碳酸锂化合物,从而在电极表面形成一层致密且较为稳定的固体电解质界面膜,该界面膜可以有效抑制电解液中的溶剂分子和溶剂化锂离子的插入,有助于降低电解液的分解程度,进而有助于提高锂电池的充放电效率和循环寿命。同时苯甲醚可以和电解液溶剂中的碳酸二甲酯和碳酸乙烯酯的还原分解产物RCO 3Li反应,并生成CH 3OLi沉积在石墨电极表面,与聚烷基碳酸锂化合物共同成为固体电解质界面膜的组分,有助于提高固体电解质界面膜的稳定性,并且有助于降低循环过程中用于修补固体电解质界面膜的不可逆容量。同时,由于碳酸亚乙烯酯容易发生自身聚合,自身聚合后的碳酸亚乙烯酯对电解液的 流动性影响较大,从而容易使得电解液的内阻增大,进而对锂电池的性能造成消极影响。而苯甲醚含有苯环并且苯环上连有供电子基团,可以有效降低碳酸亚乙烯酯发生自身共聚的情况,从而有助于提高电解液的稳定性。
另外,由于电解液中碳酸亚乙烯酯过低较难在负极表面形成致密的固体电解质界面膜,且容易使得电解液溶剂发生的副反应较多,从而容易导致电池胀气或内阻增大,进而影响电池性能;而碳酸亚乙烯酯的含量过高则会因为形成的固体电解质界面膜的厚度过厚,或者电解液中的碳酸亚乙烯酯的余量过多,进而容易使得电池的电阻变大,对电池的性能造成负面影响。而控制电解液中碳酸亚乙烯酯的质量分数为1.5%~2.8%,有助于在负极表面形成致密的固体电解质界面膜,且可以有效减少电解液溶剂发生副反应的情况,有助于减小电池的内阻,从而有助于优化电池性能。另外,质量分数为0.4%~0.7%的苯甲醚在减少碳酸亚乙烯酯自身聚合的同时对碳酸亚乙烯酯性质的影响较小,并且该质量分数下的苯甲醚有助于提高固体电解质界面膜的稳定性,有助于降低循环过程中用于修补固体电解质界面膜的不可逆容量,从而有助于优化电池性能。
优选的,所述电解液溶剂为碳酸甲乙酯、碳酸二甲酯和碳酸乙烯酯按照质量比(2.1~2.8):(3.4~4.5):1组成的混合物。
综上所述,本申请具有以下有益效果:
1、本申请在制备碳酸亚乙烯酯的提纯结晶步骤中,采用梯度降温的方式进行重结晶,有助于减少析出的碳酸亚乙烯酯中包裹的杂质,从而提高碳酸亚乙烯酯的纯度;并且三个结晶温度分别为19~21℃、16~18℃和13~15℃,上述三个温度区间内碳酸亚乙烯酯的析出速率和析出晶体的纯度均较佳。
2、本申请中梯度降温的三个结晶温度的保温时间优选一致的18min,该保温时间内碳酸亚乙烯酯的析出效果较好,并且一致的保温时间满足了动态结晶装置工作的要求,有助于实现结晶提纯的连续性,从而有助于提高结晶提纯的效率。
3、本申请中的锂电池电解液中以碳酸亚乙烯酯作为成膜主要的添加剂,并以苯乙醚作为成膜的补充添加剂,在有助于提高固体电解质界面膜稳定性的同时,还可以有效抑制碳酸亚乙烯酯发生自身聚合的情况,从而有 助于优化电池性能。
附图说明
图1是本申请制备例1中所使用的动态结晶装置的结构示意图。
图2是用以体现本申请制备例1中开闭组件结构的剖视图。
图3是图2中A处的放大图。
图4是用以体现本申请制备例1中第一阻隔环和第二阻隔环结构的示意图。
图5是用以体现本申请制备例1中第一阻隔片结构的示意图。
附图标记:1、动态结晶装置;11、一段结晶管;12、二段结晶管;13、三段结晶管;14、冷却腔室;15、结晶腔室;2、开闭组件;21、第一阻隔环;22、第二阻隔环;23、第一阻隔片;24、第二阻隔片;25、第一插槽;26、第二插槽;27、第一插块;28、第二插块;3、第一控制装置;31、第二控制装置;4、导向杆;5、定位件;51、第一电磁铁;52、第二电磁铁;6、进料管;7、下料管。
具体实施方式
以下结合附图、制备例和实施例对本申请作进一步详细说明。
本申请实施例和对比例中的原料均可通过市售获得。
碳酸亚乙烯酯制备例
制备例1
一种碳酸亚乙烯酯的制备方法,包括以下步骤:
S1混合脱氯:在干燥氮气的保护下,在反应釜中加入628g二氯代碳酸乙烯酯、392.5g脱氯剂、1200ml有机溶剂和2.5g其他助剂,搅拌升温至70℃边回流边反应5.5h,得到第一混合物;
S2过滤分离:将第一混合物降温至40℃,过滤分离不溶的杂质,并用有机溶剂清洗过滤出的杂质,得到清洗液,合并清洗液和滤液,得到第二混合物;
S3减压脱溶:对第二混合物进行减压处理,脱去有机溶剂和其他助剂,得到碳酸亚乙烯酯粗产物;
S4减压精馏:对碳酸亚乙烯酯粗产物进行减压精馏,收集61~63℃/20mmHg的馏分,得到精馏后的碳酸亚乙烯酯;
S5结晶提纯:将精馏后的碳酸亚乙烯酯溶于辅助溶剂中,并控制精馏后的碳酸亚乙烯酯和辅助溶剂的质量比为1.5:1,然后先将体系降温至20℃保温18min,再降温至17℃保温18min,继续降温至14℃保温18min,得到碳酸亚乙烯酯一次结晶产物,再对碳酸亚乙烯酯一次结晶产物重复上述结晶提纯操作,即进行第二次结晶提纯,得到成品碳酸亚乙烯酯。
其中脱氯剂为复合金属单质,且复合金属单质为铁单质、铝单质和锌单质按质量比4:2:1组成的混合物,复合金属单质的平均粒径为6nm;
有机溶剂为碳酸二甲酯;
辅助溶剂为石油醚和甲基叔丁基醚按照质量比4:1组成的混合物;
其他助剂包括催化剂1.9g和阻聚剂0.6g,且催化剂为聚己二醇,阻聚剂为苯醌。
其中S5结晶提纯步骤在动态结晶装置中进行,参照图1和图2,动态结晶装置1包括一段结晶管11、二段结晶管12和三段结晶管13,一段结晶管11、二段结晶管12和三段结晶管13依次连通,一段结晶管11、二段结晶管12和三段结晶管13组成一个连通管,一段结晶管11、二段结晶管12和三段结晶管13均沿同一方向向下倾斜设置。一段结晶管11、二段结晶管12和三段结晶管13内均设有冷却腔室14和结晶腔室15,冷却腔室14位于结晶腔室15的外侧,且冷却腔室14的室内壁与结晶腔室的室外壁连接。一段结晶管11、二段结晶管12和三段结晶管13的结晶腔室15依次连通,相邻冷却腔室14分隔密封设置。一段结晶管11、二段结晶管12和三段结晶管13上均连通有进料管6和下料管7,进料管6和下料管7均与冷却腔室14连通。一段结晶管11和二段结晶管12之间的结晶腔室15、二段结晶管12和三段结晶管13之间的结晶腔室15上均设置有开闭组件2。
在进行结晶提纯步骤的时候,通过进料管6加入冷却液,并通过下料管7实现冷却液循环,并可以通过冷却液的循环速率调节冷却腔室14内的温度。然后向一段结晶管11内通入待结晶溶液,并降温至20℃,保温18min后打开一段结晶管11与二段结晶管12之间的开闭组件2,将一段结晶管11内的溶液转移至二段结晶管12。然后,关闭一段结晶管11与二段结晶管12之间的开闭组件2,同时继续向一段结晶管11通入待结晶溶液,并调节二段结晶管12内溶 液的温度至17℃,保温18min。然后再打开二段结晶管12与三段结晶管13之间的开闭组件2,将二段结晶管12内的溶液转移至三段结晶管13,关闭二段结晶管12与三段结晶管13之间的开闭组件2,并调节三段结晶管13内的温度至14℃,保温18min。然后再打开一段结晶管11与二段结晶管12之间的开闭组件2,将一段结晶管11内的溶液转移至二段结晶管12,再向一段结晶管11通入待结晶溶液,重复上述步骤,从而实现三个温度区间的动态结晶,该方式下结晶提纯的效率较高,且制得的碳酸亚乙烯酯的纯度较高。
参照图2、图4和图5,开闭组件2包括第一阻隔环21、第二阻隔环22、第一阻隔片23和第二阻隔片24,第一阻隔环21和第二阻隔环22均沿一段结晶管11的轴线方向滑移设置在结晶腔室15的室内壁上,且第一阻隔环21和第二阻隔环22的环外壁均与结晶腔室15的室内壁相抵接;冷却腔室14的室内壁上固定连接有用于固定第一阻隔环21和第二阻隔环22的定位件5。第一阻隔片23和第二阻隔片24均设有两个,两第一阻隔片23均转动设置在第一阻隔环21上,两第二阻隔片24均转动设置在第二阻隔环22上;两第一阻隔片23和两第二阻隔片24上均设有密封软垫(图中未画出),第一阻隔环21的环内壁和第二阻隔环22的环内壁均与密封软垫相抵紧。其中一个第一阻隔片23上设置有第一插槽25,另外一第一阻隔片23上固定连接有第一插块27,第一插块27插嵌在第一插槽25内且与第一插槽25的槽壁相抵接;第一阻隔环21与第一阻隔片23之间设置有用于控制第一阻隔片23转动的第一控制装置3。其中一个第二阻隔片24上设置有第二插槽26,另外一个第二阻隔片24上固定连接有第二插块28,第二插块28插嵌在第二插槽26内且与第二插槽26的槽壁相抵接;第二阻隔环22和第二阻隔片24之间设有用于控制第二阻隔片24转动的第二控制装置31。
在需要打开或关闭开闭组件2的时候,通过第一控制装置3控制第一阻隔片23打开或关闭,通过第二控制装置31控制第二阻隔片24打开或关闭。
参照图2、图3和图4,一段结晶管11、二段结晶管12和三段结晶管13的结晶腔室15的室内壁上均固定连接有导向杆4,导向杆4设有两个,且两导向杆4关于一段结晶管11的轴线对称。第一阻隔环21和第二阻隔环22均沿一段结晶管11的轴线方向滑移设置在导向杆4上。定位件5包括第一电磁铁51 和第二电磁铁52,第一电磁铁51和第二电磁铁52均固定连接在结晶腔室15的室外壁上,第一电磁铁51与第一阻隔环21相对,第二电磁铁52与第二阻隔环22相对。
在提纯结晶步骤完成后,取消第一电磁铁51和第二电磁铁52的电磁效果,并且通过第一控制装置3和第二控制装置31关闭第一阻隔片23和第二阻隔片24。然后在三段结晶管13远离一段结晶管11一端的管口通入水流或气体,驱动第一阻隔环21和第二阻隔环22沿一段结晶管11的轴线方向在各结晶腔室15的室内壁上滑移;并通过导向杆4对第一阻隔环21和第二阻隔环22进行导向,利用第一阻隔环21和第二阻隔环22刮下结晶腔室15室内壁上的碳酸亚乙烯酯晶体。在清理完毕后,固定住第一阻隔环21,并开启第二电磁铁52磁力,在重力作用下,第二阻隔环22滑移至第二电磁铁52处,且第二阻隔环22与第二电磁铁52相对,即可在第二电磁铁52的磁力作用下将第二阻隔环22固定住。然后开启第一电磁铁51的磁力,在重力作用下,使得第一阻隔环21滑移至与第一电磁铁51相对,在第一电磁铁51的磁力作用下固定住第一阻隔环21,即可进行下一次提纯结晶。
制备例2
本制备例与制备例1的区别之处在于,S5结晶提纯步骤中,辅助溶剂为石油醚和甲基叔丁基醚按照质量比3:1组成的混合物。
制备例3
本制备例与制备例1的区别之处在于,S5结晶提纯步骤中,辅助溶剂为石油醚和甲基叔丁基醚按照质量比5:1组成的混合物。
制备例4
本制备例与制备例1的区别之处在于,S5结晶提纯步骤中,在20℃、17℃和14℃三个温度下均保温15min。
制备例5
本制备例与制备例1的区别之处在于,S5结晶提纯步骤中,在20℃、17℃和14℃三个温度下均保温20min。
制备例6
本制备例与制备例1的区别之处在于,S5结晶提纯步骤中,在19℃、 16℃和13℃三个温度下均保温18min。
制备例7
本制备例与制备例1的区别之处在于,S5结晶提纯步骤中,在21℃、18℃和15℃三个温度下均保温18min。
制备例8
本制备例与制备例1的区别之处在于,S5结晶提纯步骤中,只进行一次结晶提纯。
制备例9
本制备例与制备例1的区别之处在于,S5结晶提纯步骤中,共进行三次结晶提纯。
制备例10
本制备例与制备例1的区别之处在于,S5结晶提纯步骤中,辅助溶剂为石油醚和甲基叔丁基醚按照质量比1:1组成的混合物。
制备例11
本制备例与制备例1的区别之处在于,S5结晶提纯步骤中,辅助溶剂为石油醚和甲基叔丁基醚按照质量比7:1组成的混合物。
制备例12
本制备例与制备例1的区别之处在于,S5结晶提纯步骤中,辅助溶剂为石油醚。
制备例13
本制备例与制备例1的区别之处在于,S5结晶提纯步骤中,辅助溶剂为甲基叔丁基醚。
制备例14
本制备例与制备例1的区别之处在于,S5结晶提纯步骤中,在21℃、17℃和13℃三个温度下均保温18min。
制备例15
本制备例与制备例1的区别之处在于,S5结晶提纯步骤中,在19℃、18℃和15℃三个温度下均保温18min。
制备例16
本制备例与制备例1的区别之处在于,S5结晶提纯步骤中,在20℃、17℃和14℃三个温度下均保温10min。
制备例17
本制备例与制备例1的区别之处在于,S5结晶提纯步骤中,在20℃、17℃和14℃三个温度下均保温30min。
制备例18
本制备例与制备例1的区别之处在于,S5结晶提纯步骤中,在25℃、22℃和19℃三个温度下均保温18min。
制备例19
本制备例与制备例1的区别之处在于,S5结晶提纯步骤中,在15℃、12℃和9℃三个温度下均保温18min。
制备例20
本制备例与制备例1的区别之处在于,S5结晶提纯步骤中,在17℃温度下保温54min。
制备例21
本制备例与制备例1的区别之处在于,S5结晶提纯步骤中,在20℃温度下保温54min。
制备例22
本制备例与制备例1的区别之处在于,S5结晶提纯步骤中,在14℃温度下保温54min。
实施例
实施例1
一种应用碳酸亚乙烯酯的锂电池电解液,包括以下质量的原料:23g碳酸亚乙烯酯、5.5g苯甲醚、120g电解液锂盐、852g电解液溶剂。
其中碳酸亚乙烯酯为制备例1制得;
电解液溶剂为碳酸甲乙酯、碳酸二甲酯和碳酸乙烯酯按照质量比2.5:4:1组成的混合物;
电解液锂盐为六氟磷酸锂。
该锂电池电解液的制备方法,包括以下步骤:在干燥氮气的保护下,将电 解液锂盐加入到电极液溶剂中进行混合,然后再加入碳酸亚乙烯酯和苯甲醚继续混合,得到电解液成品。
实施例2
本实施例与实施例1的区别之处在于,碳酸亚乙烯酯的质量为15g,余量为电解液溶剂。
实施例3
本实施例与实施例1的区别之处在于,碳酸亚乙烯酯的质量为28g,余量为电解液溶剂。
实施例4
本实施例与实施例1的区别之处在于,苯乙醚的质量为4g。
实施例5
本实施例与实施例1的区别之处在于,苯乙醚的质量为7g。
实施例6
本实施例与实施例1的区别之处在于,电解液溶剂为碳酸甲乙酯、碳酸二甲酯和碳酸乙烯酯按照质量比2.1:4.5:1组成的混合物。
实施例7
本实施例与实施例1的区别之处在于,电解液溶剂为碳酸甲乙酯、碳酸二甲酯和碳酸乙烯酯按照质量比2.8:3.4:1组成的混合物。
实施例8~21与实施例1的区别之处在于,碳酸亚乙烯酯选自不同的制备例,具体的对应关系如表1所示:
表1 实施例中碳酸亚乙烯酯与制备例对应关系表
实施例 8 9 10 11 12 13 14 15 16 17 18 19 20 21
制备例 2 3 4 5 6 7 8 9 10 11 12 13 14 15
对比例
对比例1
本对比例与实施例1的区别之处在于,碳酸亚乙烯酯为制备例16制得。
对比例2
本对比例与实施例1的区别之处在于,碳酸亚乙烯酯为制备例17制得。
对比例3
本对比例与实施例1的区别之处在于,碳酸亚乙烯酯为制备例18制得。
对比例4
本对比例与实施例1的区别之处在于,碳酸亚乙烯酯为制备例19制得。
对比例5
本对比例与实施例1的区别之处在于,碳酸亚乙烯酯为制备例20制得。
对比例6
本对比例与实施例1的区别之处在于,碳酸亚乙烯酯为制备例21制得。
对比例7
本对比例与实施例1的区别之处在于,碳酸亚乙烯酯为制备例22制得。
对比例8
本对比例与实施例1的区别之处在于,碳酸亚乙烯酯的质量为40g。
对比例9
本对比例与实施例1的区别之处在于,碳酸亚乙烯酯的质量为10g。
对比例10
本对比例与实施例1的区别之处在于,不添加苯乙醚。
对比例11
相关技术中的一种锂电池电解液,包括以下质量的原料:碳酸亚乙烯酯10g、七氟丁酸酐30g、二氟草酸磷酸酯50g、电解液锂盐210g、电解液溶剂700g。
其中电解液锂盐为四氟硼酸锂;
电解液为碳酸丙烯酯和氟代碳酸乙烯酯按照质量比1:1组成的混合物;
碳酸亚乙烯酯的制备方法包括以下步骤:首先混合100g一氯代碳酸乙烯酯和2g催化剂,并加热至40℃,然后在氮气条件下反应4小时;再过滤反应液,并对得到的滤液进行精馏,收集72℃/32mmHg的馏分;将该馏分溶于乙醚中,并在10℃的温度下进行结晶,得到碳酸亚乙烯酯;
其中催化剂为氧化铁纳米纤维、氧化铝纳米纤维和氧化钛纳米纤维按照质量比3:6:1组成的混合物。
该锂电池电解液的制备方法为:先将电解液锂盐溶解在电解液溶剂中,然后再加入碳酸亚乙烯酯、七氟丁酸酐和二氟草酸磷酸酯,混合得到电解液成品。
性能检测试验
检测方法/试验方法
纯度检测:在相同条件下,利用GC1620气相色谱仪检测制备例1~22和对比例11中制得的碳酸亚乙烯酯的纯度。
电池内阻和循环300周容量保持率:将电池设计为额定容量为13Ah的方型铝壳电池,正极材料为LiFePO 4,负极材料为人造石墨,并分别匹配实施例1~21和对比例1~11中制得的电解液。循环300周容量测试设备为CT-3008W-5V50A测试柜,电池内阻检测设备为HIOKI3554电池内阻测试仪,且测试标准参照GB/T18287-2000《电池行业检测标准》中关于电池内阻和循环容量的检测标准。
表2 碳酸亚乙烯酯纯度检测数据表
Figure PCTCN2022116179-appb-000001
Figure PCTCN2022116179-appb-000002
表3 电池性能检测数据表
Figure PCTCN2022116179-appb-000003
Figure PCTCN2022116179-appb-000004
通过表2和表3的检测数据可知,结合制备例1、制备例4~7和制备例16~22的检测结果可知,在结晶提纯步骤中,以梯度降温的方式进行重结晶有助于提高碳酸亚乙烯酯的纯度,并且控制三个结晶温度分别为20℃、17℃和14℃,并且均保温18min的效果最佳。同时还满足了在动态结晶装置中进行结晶提纯,使得结晶提纯的效率较高。
结合制备例1和制备例8~9的检测结果可知,两次结晶提纯后碳酸亚乙烯酯的纯度明显高于一次结晶提纯后的纯度,但三次结晶提纯后碳酸亚乙烯酯的纯度相较于第二次结晶提纯的纯度已经趋于平稳,因此在考虑成本和效率的前提下,优选进行两次结晶提纯。
结合实施例1~3和对比例8~9的检测结果可知,将碳酸亚乙烯酯的百分含量控制在1.5%~2.8%,有助于降低应用该电解液的锂电池内阻,从而有助于优化该电池性能,其中在电池循环300周容量保持率上表现优异。
结合实施例1、实施例4~5和对比例10的检测结果可知,苯乙醚的加入可以有效提高应用该电解液的电池循环300周容量保持率。
本具体实施例仅仅是对本申请的解释,其并不是对本申请的限制,本领域 技术人员在阅读完本说明书后可以根据需要对本实施例做出没有创造性贡献的修改,但只要在本申请的权利要求范围内都受到专利法的保护。

Claims (10)

  1. 一种碳酸亚乙烯酯的制备方法,其特征在于:包括以下步骤:
    混合脱氯:混合二氯代碳酸乙烯酯、脱氯剂、和有机溶剂,进行脱氯反应,得到第一混合物;
    过滤分离:过滤分离第一混合物,除去不溶的杂质,得到第二混合物;
    减压脱溶:对第二混合物进行减压处理,脱去有机溶剂,得到碳酸亚乙烯酯粗产物;
    减压精馏:对碳酸亚乙烯酯粗产物进行减压精馏,收集精馏后的馏分,得到精馏后的碳酸亚乙烯酯;
    结晶提纯:将精馏后的碳酸亚乙烯酯溶于辅助溶剂中,并控制精馏后的碳酸亚乙烯酯和辅助溶剂的质量比为(1.2~1.8):1,然后先将体系降温至19~21℃保温15~20min,再降温至16~18℃保温15~20min,继续降温至13~15℃保温15~20min,得到碳酸亚乙烯酯。
  2. 根据权利要求1所述的一种碳酸亚乙烯酯的制备方法,其特征在于:所述结晶提纯步骤中,辅助溶剂为石油醚和甲基叔丁基醚按照质量比(3~5):1组成的混合物。
  3. 根据权利要求1所述的一种碳酸亚乙烯酯的制备方法,其特征在于:所述结晶提纯步骤中,先将体系降温至19~21℃保温18min,再降温至16~18℃保温18min,继续降温至13~15℃保温18min,得到碳酸亚乙烯酯。
  4. 根据权利要求1所述的一种碳酸亚乙烯酯的制备方法,其特征在于:所述结晶提纯步骤中,第一次保温温度和第二次保温温度的差值为3℃,第二次保温温度和第三次保温温度的差值也为3℃。
  5. 根据权利要求1所述的一种碳酸亚乙烯酯的制备方法,其特征在于:所述结晶提纯步骤在动态结晶装置(1)中进行,所述动态结晶装置(1)包括一段结晶管(11)、二段结晶管(12)和三段结晶管(13),所述一段结晶管(11)、二段结晶管(12)和三段结晶管(13)依次连通,所述一段结晶管(11)和二段结晶管(12)之间、二段结晶管(12)和三段结晶管(13)之间均设置有开闭组件(2),所述一段结晶管(11)、二段结晶管(12)和三段结晶管(13)均向下倾斜设置,所述一段结晶管(11)、二段结晶管(12)和三段结晶管(13)内均设有冷却腔室(14)和结晶腔室(15),所述一段结晶管(11)的结晶腔室(15)、二段结晶管(12)的结晶腔室(15)和三段结晶管 (13)的结晶腔室(15)依次连通,三所述冷却腔室(14)相互分隔密封设置。
  6. 根据权利要求5所述的一种碳酸亚乙烯酯的制备方法,其特征在于:所述开闭组件(2)包括第一阻隔环(21)、第二阻隔环(22)、第一阻隔片(23)和第二阻隔片(24),所述第一阻隔环(21)设置在一段结晶管(11)和二段结晶管(12)之间,所述第一阻隔环(21)的环外壁与结晶腔室(15)的室内壁相抵接,所述第一阻隔片(23)设有两个,两所述第一阻隔片(23)均转动设置在第一阻隔环(21)上,两所述第一阻隔片(23)密封第一阻隔环(21),其中一所述第一阻隔片(23)上设置有第一插槽(25),另外一所述第一阻隔片(23)上设置有第一插块(27),所述第一插块(27)插嵌在第一插槽(25)内且与第一插槽(25)的槽壁相抵接,所述第一阻隔环(21)与第一阻隔片(23)之间设置有用于控制第一阻隔片(23)转动的第一控制装置(3),所述第二阻隔环(22)设置在二段结晶管(12)和三段结晶管(13)之间,所述第二阻隔环(22)与结晶腔室(15)的室内壁相抵接,所述第二阻隔片(24)设有两个,两所述第二阻隔片(24)均转动设置在第二阻隔环(22)上,两所述第二阻隔片(24)密封第二阻隔环(22),其中一所述第二阻隔片(24)上设置有第二插槽(26),另外一所述第二阻隔片(24)上设置有第二插块(28),所述第二插块(28)插嵌在第二插槽(26)内且与第二插槽(26)的槽壁相抵接,第二阻隔环(22)和第二阻隔片(24)之间设有用于控制第二阻隔片(24)转动的第二控制装置(31)。
  7. 根据权利要求6所述的一种碳酸亚乙烯酯的制备方法,其特征在于:所述一段结晶管(11)、二段结晶管(12)和三段结晶管(13)的管内壁上均设置有导向杆(4),所述第一阻隔环(21)和第二阻隔环(22)均沿一段结晶管(11)的轴线方向滑移设置在导向杆(4)上,所述结晶腔室(15)的室外壁上设置有定位件(5),所述定位件(5)包括第一电磁铁(51)和第二电磁铁(52),所述第一电磁铁(51)和第二电磁铁(52)均设置在结晶腔室(15)的室外壁上,所述第一电磁铁(51)与第一阻隔环(21)相对,所述第二电磁铁(52)与第二阻隔环(22)相对。
  8. 一种根据权利要求1-7中任一项所述的方法制备的碳酸亚乙烯酯。
  9. 一种应用碳酸亚乙烯酯的锂电池电解液,其特征在于:按照质量百分之百计,包括以下质量百分比的原料:碳酸亚乙烯酯1.5%~2.8%、苯甲醚0.4%~0.7%、电解液锂盐10.2%~14.5%、余量为电解液溶剂。
  10. 根据权利要求9所述的一种应用碳酸亚乙烯酯的锂电池电解液,其特征 在于:所述电解液溶剂为碳酸甲乙酯、碳酸二甲酯和碳酸乙烯酯按照质量比(2.1~2.8):(3.4~4.5):1组成的混合物。
PCT/CN2022/116179 2021-11-30 2022-08-31 碳酸亚乙烯酯、制备方法及应用其的锂电池电解液 WO2023098188A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020227034094A KR20230084094A (ko) 2021-11-30 2022-08-31 비닐렌 카보네이트, 제조 방법 및 이를 적용한 리튬 배터리 전해액

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111450098.7A CN114149402B (zh) 2021-11-30 2021-11-30 一种碳酸亚乙烯酯的制备方法及应用其的锂电池电解液
CN202111450098.7 2021-11-30

Publications (1)

Publication Number Publication Date
WO2023098188A1 true WO2023098188A1 (zh) 2023-06-08

Family

ID=80455454

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/116179 WO2023098188A1 (zh) 2021-11-30 2022-08-31 碳酸亚乙烯酯、制备方法及应用其的锂电池电解液

Country Status (3)

Country Link
KR (1) KR20230084094A (zh)
CN (1) CN114149402B (zh)
WO (1) WO2023098188A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113845506B (zh) * 2021-10-18 2022-09-23 惠州市宙邦化工有限公司 一种碳酸乙烯酯的动态结晶提纯方法
CN114149402B (zh) * 2021-11-30 2023-04-07 苏州华一新能源科技股份有限公司 一种碳酸亚乙烯酯的制备方法及应用其的锂电池电解液
CN115448904A (zh) * 2022-08-30 2022-12-09 福建中盛宏业新材科技股份公司 一种高纯碳酸亚乙烯酯的制备方法及应用其的锂电池电解液
CN115819394A (zh) * 2022-11-28 2023-03-21 江苏恒盛药业有限公司 一种利用一氯代碳酸乙烯酯副产物再制备碳酸亚乙烯酯的合成工艺

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1326237A (zh) * 2000-05-26 2001-12-12 索尼株式会社 非水电解质二次电池
CN101771167A (zh) * 2010-02-05 2010-07-07 九江天赐高新材料有限公司 一种高容量锂离子电解液、电池以及电池的制备方法
CN105541782A (zh) * 2015-12-18 2016-05-04 苏州华一新能源科技有限公司 一种碳酸亚乙烯酯的纯化方法
CN107615550A (zh) * 2016-05-06 2018-01-19 深圳先进技术研究院 一种二次电池及其制备方法
CN110368712A (zh) * 2019-08-07 2019-10-25 南京师范大学 一种连续三段两级温度梯度式结晶精制均四甲苯的装置及方法
CN111072624A (zh) * 2019-12-16 2020-04-28 苏州华一新能源科技有限公司 一种碳酸亚乙烯酯的制备方法及应用
CN114149402A (zh) * 2021-11-30 2022-03-08 苏州华一新能源科技股份有限公司 一种碳酸亚乙烯酯的制备方法及应用其的锂电池电解液

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101826635A (zh) * 2010-04-09 2010-09-08 广州天赐高新材料股份有限公司 一种锂电池用聚合物电解液及其电池的制造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1326237A (zh) * 2000-05-26 2001-12-12 索尼株式会社 非水电解质二次电池
CN101771167A (zh) * 2010-02-05 2010-07-07 九江天赐高新材料有限公司 一种高容量锂离子电解液、电池以及电池的制备方法
CN105541782A (zh) * 2015-12-18 2016-05-04 苏州华一新能源科技有限公司 一种碳酸亚乙烯酯的纯化方法
CN107615550A (zh) * 2016-05-06 2018-01-19 深圳先进技术研究院 一种二次电池及其制备方法
CN110368712A (zh) * 2019-08-07 2019-10-25 南京师范大学 一种连续三段两级温度梯度式结晶精制均四甲苯的装置及方法
CN111072624A (zh) * 2019-12-16 2020-04-28 苏州华一新能源科技有限公司 一种碳酸亚乙烯酯的制备方法及应用
CN114149402A (zh) * 2021-11-30 2022-03-08 苏州华一新能源科技股份有限公司 一种碳酸亚乙烯酯的制备方法及应用其的锂电池电解液

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
DUAN, BIN ET AL.: "Study on Purification of Vinylene Carbonate by Recrystallization Method", HENAN CHEMICAL INDUSTRY, vol. 35, no. 6, 31 December 2018 (2018-12-31), XP009546837 *
HUANG, WENHUANG ET AL.: "Effect of Anisole as an Additive in Electrolyte on the Cycle Performance of Lithium-Ion Rechargeable Battery", CHINESE JOURNAL OF POWER SOURCES, vol. 25, no. 2, 30 April 2001 (2001-04-30), XP009546838 *
SONG, XIAOLI ET AL.: "Study on Purification of Vinylene Carbonate by Crystallization Control Method", CHINESE JOURNAL OF POWER SOURCES, vol. 37, no. 5, 31 May 2013 (2013-05-31), XP009546116 *

Also Published As

Publication number Publication date
CN114149402B (zh) 2023-04-07
CN114149402A (zh) 2022-03-08
KR20230084094A (ko) 2023-06-12

Similar Documents

Publication Publication Date Title
WO2023098188A1 (zh) 碳酸亚乙烯酯、制备方法及应用其的锂电池电解液
Zhang et al. Ionic liquid electrolyte with highly concentrated LiTFSI for lithium metal batteries
KR102242592B1 (ko) 리튬이온 배터리 비수전해액 및 리튬이온 배터리
WO2021110165A1 (zh) 一种低内阻的锂二次电池电解液及锂二次电池
TWI413289B (zh) Lithium battery for nonaqueous electrolytic solution and the use of its lithium battery
Yang et al. Preparation and application of PVDF-HFP composite polymer electrolytes in LiNi0. 5Co0. 2Mn0. 3O2 lithium-polymer batteries
CN110783627B (zh) 一种锂离子电池电解液及锂离子电池
WO2017113820A1 (zh) 高电压宽温锂离子电池电解液及其制备方法及应用
WO2018099091A1 (zh) 一种电解液及二次电池
WO2018006563A1 (zh) 一种锂离子电池非水电解液及锂离子电池
EP3187487A1 (en) Ionic liquid and plastic crystal
WO2019200656A1 (zh) 锂二次电池电解液及其锂二次电池
WO2018094818A1 (zh) 锂离子电池非水电解液及锂离子电池
WO2018099092A1 (zh) 一种非水电解液及锂离子电池
CN106410179B (zh) 一种防胀气添加剂及其适用的钛酸锂电池
WO2018214211A1 (zh) 锂离子电池非水电解液和锂离子电池
WO2021135922A1 (zh) 锂离子电池
Huang et al. A cerium-doped nasicon chemically coupled poly (vinylidene fluoride-hexafluoropropylene)-based polymer electrolyte for high-rate and high-voltage quasi-solid-state lithium metal batteries
WO2018218714A1 (zh) 锂离子电池非水电解液和锂离子电池
WO2018196139A1 (zh) 锂离子电池非水电解液和锂离子电池
WO2018196142A1 (zh) 锂离子电池非水电解液和锂离子电池
CN113979957A (zh) 一种自交联十字形的有机正极材料及其制备方法和应用
WO2022104710A1 (zh) 一种环状磺酸酯类锂离子电池电解液添加剂、其制备方法与应用
WO2018209752A1 (zh) 锂离子电池非水电解液及锂离子电池
WO2018196145A1 (zh) 锂离子电池非水电解液和锂离子电池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22900002

Country of ref document: EP

Kind code of ref document: A1