WO2023098176A1 - 一种显示屏、电子设备和显示屏的制造方法 - Google Patents

一种显示屏、电子设备和显示屏的制造方法 Download PDF

Info

Publication number
WO2023098176A1
WO2023098176A1 PCT/CN2022/115062 CN2022115062W WO2023098176A1 WO 2023098176 A1 WO2023098176 A1 WO 2023098176A1 CN 2022115062 W CN2022115062 W CN 2022115062W WO 2023098176 A1 WO2023098176 A1 WO 2023098176A1
Authority
WO
WIPO (PCT)
Prior art keywords
display area
driving
display screen
display
drive circuit
Prior art date
Application number
PCT/CN2022/115062
Other languages
English (en)
French (fr)
Inventor
张福阳
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Priority to EP22854449.0A priority Critical patent/EP4213137A1/en
Publication of WO2023098176A1 publication Critical patent/WO2023098176A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/03Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes specially adapted for displays having non-planar surfaces, e.g. curved displays
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0814Several active elements per pixel in active matrix panels used for selection purposes, e.g. logical AND for partial update
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0819Several active elements per pixel in active matrix panels used for counteracting undesired variations, e.g. feedback or autozeroing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • G09G2300/0861Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes
    • G09G2300/0866Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor with additional control of the display period without amending the charge stored in a pixel memory, e.g. by means of additional select electrodes by means of changes in the pixel supply voltage
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • G09G2320/045Compensation of drifts in the characteristics of light emitting or modulating elements

Definitions

  • the present application relates to the technical field of electronic equipment, in particular to a display screen, electronic equipment and a method for manufacturing the display screen.
  • the embodiment of the present application provides a display screen, and the current of the driving circuit can be designed to be different, so as to compensate for display differences caused by different display conditions.
  • an embodiment of the present application provides a display screen.
  • the display screen includes a first display area and a second display area with an included angle, and also includes a first drive circuit and a second drive circuit.
  • the first drive circuit is the first display area.
  • the area supplies current
  • the second drive circuit provides current for the second display area
  • both the first drive circuit and the second drive circuit are provided with drive transistors, and at least one of the drive transistor of the first drive circuit and the drive transistor of the second drive circuit
  • the structural parameters are different, so the first driving circuit and the second driving circuit can provide different currents.
  • the current provided by the drive circuit can be changed, so that the display areas with different included angles have different currents, thereby compensating for the display caused by the included angles of the display areas Changes in brightness or color shift, so that the display effect of the entire display area is consistent. It is worth noting that this adjustment method can realize the continuous adjustment of the brightness and color shift of the display screen, and has a large design and adjustment space. Moreover, the optimization and adjustment of the display can be achieved without increasing the manufacturing cost and without changing the main structure of the driving circuit.
  • the embodiment of this application also provides a first implementation manner of one aspect:
  • the structural parameters of the drive transistor include u, C ox , W, L, where L is the channel length, W is the channel width, u is the carrier mobility, and C ox is the gate capacitance per unit area.
  • the drive circuit provides The current is positively correlated with uC ox W/L. According to the principle of the driving circuit, the current of the driving circuit can be obtained, and the current of the driving circuit can be positively correlated with uC ox W/L. Then, different currents can be obtained by adjusting at least one parameter among u, C ox , W, and L.
  • the design Simple The design Simple.
  • the embodiment of this application also provides a second implementation in one aspect:
  • the straight-line distances between the two ends of the channel of the driving transistor of the first driving circuit and the driving transistor of the second driving circuit are the same, but the bending degree or number of bending of the channel is different, so as to have different channel lengths, such as more bending times
  • the channel length of will be longer than the channel length of less bending times. It can be seen that by designing the bending degree and the number of bending times of the driving transistor, the length of the semiconductor channel of the driving transistor can be changed, making the design of the semiconductor more flexible.
  • the embodiment of this application also provides a third implementation manner in one aspect:
  • the grain sizes of the semiconductor film layers of the driving transistors of the first driving circuit and the driving transistors of the second driving circuit are different so as to have different carrier mobility.
  • the grain size can be realized only by changing the processing parameters, and it is more convenient to implement.
  • the embodiment of this application also provides a fourth implementation manner in one aspect:
  • the embodiment of this application also provides a fifth implementation manner on the one hand:
  • the one with the lower display brightness in the first display area and the second display area the corresponding driving circuit The current provided can be greater than the current provided by the other drive circuit, so that the one with lower brightness can obtain a larger current, thereby compensating for the difference in display brightness and improving color cast.
  • the one with lower display brightness refers to the one with lower display brightness when the driving circuit designs of the first display area and the second display area are completely the same.
  • the embodiment of this application also provides a sixth implementation manner on the one hand:
  • the display screen is a curved screen
  • the curved screen includes a curved display area and a main display area
  • the main display area is the first display area
  • any bending angle area in the curved display area is the second display area.
  • Any bending angle area of the curved display area has an included angle with the main display area, and the driving transistor structure parameters of each bending angle area and the main display area are designed to be different to obtain different currents.
  • the embodiment of this application also provides a seventh implementation manner in one aspect:
  • the included angles between areas with different bending angles and the main display area are different.
  • the larger the bending angle the larger the included angle with the main display area, and the greater the difference in viewing angle. Therefore, not only the angles between each bending angle area
  • At least one structural parameter of the driving transistor in the corresponding second driving circuit is different from that of the driving transistor in the main display area, and the larger the bending angle of the curved display area is, the higher the current provided by the corresponding second driving circuit after adjusting the structural parameters. Larger to compensate for display differences caused by different included angles.
  • the embodiment of this application also provides an eighth implementation manner in one aspect:
  • the main display area of the curved screen is set as a flat display area, the structural parameters of the driving transistors are the same, the same current can be provided, and the same device array settings are sufficient.
  • the embodiment of this application also provides a ninth implementation manner on the one hand:
  • the display screen is an organic light emitting display screen or a liquid crystal display screen or a light emitting diode display screen.
  • This type of display uses drive transistors, and through the design of the transistors, it is easy to adjust and set the current.
  • an embodiment of the present application further provides an electronic device, including the display screen described in any one of the above implementation manners, and having the same technical effect as the above display screen.
  • the embodiment of the present application also provides a method for manufacturing a display screen.
  • the display screen includes a first display area and a second display area with an included angle.
  • the manufacturing method needs to process the first display area that supplies current to the first display area.
  • both the first drive circuit and the second drive circuit are provided with drive transistors, and the current of the first drive circuit or the second drive circuit is controlled by the drive transistors.
  • At least one structural parameter of the two driving transistors can be different to provide different currents, thereby compensating for display differences caused by the included angle between the display regions.
  • the embodiment of this application also provides the first implementation manner of the third aspect:
  • the structural parameters of the drive transistor include u, C ox , W, L, where L is the channel length, W is the channel width, u is the carrier mobility, and C ox is the gate capacitance per unit area.
  • the drive circuit provides The current is positively correlated with uC ox W/L.
  • the embodiment of this application also provides a second implementation manner of the third aspect:
  • the semiconductors of the drive transistors of the first drive circuit and the second drive circuit can be processed by a laser excimer annealing process, which converts amorphous silicon into polysilicon.
  • the process parameters of the laser excimer annealing process include laser scanning time, laser energy, When the number of laser scans and process parameters are different, it will affect the parameters of polysilicon, such as the grain size of the semiconductor film. Therefore, when processing the driving transistors of the first driving circuit and the second driving circuit, the semiconductor film layers of the driving transistors of the first driving circuit and the driving transistors of the second driving circuit can be adjusted by adjusting the process parameters of the laser excimer annealing process.
  • the grain size varies.
  • the embodiment of this application also provides a fourth implementation manner of the third aspect:
  • the display screen is a curved screen, and the curved screen includes a curved display area and a main display area, the main display area is the first display area, and any bending angle area in the curved display area is the second display area; the first drive circuit and the second drive circuit Uniform array design, each bending angle area of the curved display area corresponds to a row of second drive circuits.
  • each row of the first driver circuit and the second driver circuit can be scanned sequentially, and at least one process parameter is adjusted when scanning the driver transistor of the second driver circuit, so that the film layer of the driver transistor of each row of the second driver circuit
  • the grain sizes are different from each other.
  • FIG. 1 is a schematic diagram of a curved screen
  • Fig. 2 is an enlarged view of part A in Fig. 1;
  • Fig. 3 is the situation that the luminous brightness of the display screen changes with the change of the viewing angle
  • Fig. 4 is a schematic diagram of displaying brightness attenuation and color shift on a curved screen
  • FIG. 5 is a schematic diagram of a driving circuit of an OLED display
  • FIG. 6 is a cross-sectional view of the driving transistor T1 in FIG. 5;
  • Fig. 7 is a schematic diagram of comparison of channel lengths at different positions in the curved display area of the curved screen in embodiment 1;
  • Fig. 8 is a schematic diagram of comparison of channel length and width at different positions in the curved display area of the curved screen in embodiment 2;
  • Figure 9 is a schematic diagram of the comparison of channel shape changes at different positions
  • FIG. 10 is a schematic diagram showing the thickness comparison of the first gate insulating layer at different positions in the curved display area of the curved screen in Embodiment 3;
  • Fig. 11 is a schematic diagram showing the grain size comparison of the semiconductor film layer at different positions in the curved display area of the curved screen in embodiment 4;
  • FIG. 12 is a diagram showing the comparative relationship between the current change and the display brightness change at different bending positions of the display screen.
  • An embodiment of the present application provides a display screen of an electronic device, such as a display screen of a mobile phone.
  • the display screen includes a display layer and a driving circuit that supplies current to the display layer to drive the display layer to display.
  • the display layer has a plurality of pixel units, each Each pixel unit is equipped with a corresponding driving circuit.
  • all the driving circuits that drive the display of the entire display layer in the display screen adopt an array design with exactly the same device structure, that is, the driving circuits corresponding to any position in the display area of the display layer use the same device parameters, and accordingly, the display screen The current at any position in the display area is also the same.
  • the display screen is described by taking an organic light-emitting diode (OLED) display screen as an example.
  • OLED organic light-emitting diode
  • Figure 1 is a schematic diagram of a curved screen, that is, the display screen is a curved screen with a curved display area 200, Figure 2 is an enlarged view of part A in Figure 1; Figure 3 is the luminance of the display screen Changes with the change of viewing angle; Figure 4 is a schematic diagram of the display brightness attenuation and color shift of the curved screen.
  • the display area of the display layer in the curved screen includes a curved display area 200 and a main display area 100 other than the curved display area 200 .
  • the curved display area 200 extends from the edge of the main display area 100 to the borders 300 on both sides, and different positions of the curved display area 200 present different degrees of curvature.
  • different areas of the curved display area 200 Based on the plane where the main display area 100 is located, different areas of the curved display area 200 have different angles with the plane of the main display area 100, and the included angle is defined as the bending angle ⁇ , where the larger the bending angle ⁇ , the greater the curvature of the area. The greater the degree.
  • the embodiment of the present application defines the angle of view as the angle between the viewer's line of sight and the display area.
  • the line of sight is directly facing the main display area 100, that is, the angle of view is 90 degrees, and the angle of view of 90 degrees is the front view angle.
  • the included angle between the user's line of sight and the curved display areas 200 on both sides must be greater than or less than 90 degrees.
  • the method adopted in the embodiment of the present application is to set the structural parameters of the driving transistors in the driving circuit of the curved display region 200 to be different from those of the main display region 100, so that the current of the driving circuit of the curved display region 200 is different from that of the main display region 100.
  • the drive circuit current is used to compensate for the change in display brightness or color shift caused by different viewing angles due to bending.
  • FIG. 5 is a schematic diagram of the drive circuit of the OLED display, which has multiple transistors T1, T2, T3, T4, T5, T6 , T7, wherein T1 works in the saturation region and plays a driving role as a driving transistor, and T2-T7 works in a linear region and functions as a switch;
  • FIG. 6 is a cross-sectional view of the driving transistor T1 in FIG. 5 .
  • the drive circuit shown in Figure 5 is a commonly used drive circuit for OLED displays, with power supply voltage VDD, data voltage Data[m], scan signal SCAN[n], scan signal SCAN[n-1], initialization voltage VI, capacitor C1, Light emitting signal Em[n], light emitting diode OLED.
  • the transistors in the drive circuit in Figure 4 take PMOS transistors as an example. By controlling SCAN[n-1], SCAN[n], Em[n] to adjust the corresponding transistors to turn on and off with time, it mainly includes the following stages:
  • Transistor T7 is turned on to complete OLED anode reset, transistors T1, T2, and T3 are turned on, and the data signal voltage is written into capacitor C1 and maintained;
  • Transistors T5 and T6 are turned on, driven by the VDD voltage, and the current flows through the OLED device through the drive transistor T1 to complete light emission. Since the data signal voltage of the second stage is written into the capacitor C1 and maintained, this voltage is also the gate of the drive transistor T1 voltage, which is controlled by Vdata[m].
  • FIG. 6 shows a cross-section of the driving transistor T1 in the driving circuit, which includes a source (S pole, Source), a drain (D pole, Drain) 12 at both ends, a source 11 and a drain. There is a semiconductor between the poles 12, the semiconductor between the two is the channel 5, the semiconductor can be P-Si (Polysilicon), i.e.
  • the channel 5 is covered by the first gate insulating layer 4, the first gate insulating layer A gate (Gate) 6 is arranged on the top of the gate 4, and the gate 6 is covered by a second gate insulating layer 3, and an interlayer dielectric layer 2 (ILD, Interlayer dielectric) is arranged on the second gate insulating layer 3.
  • ILD interlayer dielectric
  • the length L of the channel 5 is the length of the semiconductor between the source 11 and the drain 12 of the drive transistor T1. Taking FIG.
  • the width W of the channel 5 is the vertical direction in FIG. 6 .
  • the drive circuit that supplies current to the main display area 100 can be defined as the first drive circuit
  • the drive circuit that supplies current to the curved display area 200 can be defined as the second drive circuit.
  • Each area 200 includes a plurality of pixel units, and thus includes a plurality of first driving circuits and a plurality of second driving circuits.
  • the structural parameters of the driving transistors of the second driving circuit can be adjusted to increase the current of the curved display region 200 to achieve the purpose of increasing brightness and improving color shift.
  • the embodiment of the present application can optimize and adjust the display on the display screen without increasing the manufacturing cost, without changing the main structure of the driving circuit, and without adjusting the circuit control.
  • the curved display region 200 has regions with different bending angles ⁇ , and the degrees of brightness attenuation and color shift are different, so the current design of the regions with different bending angles ⁇ in the curved display region 200 is also different, that is, different bending angles ⁇
  • the transistor structure parameter setting of the second drive circuit corresponding to the region is also different. It can be seen that this adjustment method can realize the continuous adjustment of the brightness and color shift of the display screen, and has a large design and adjustment space.
  • the current I flowing through the OLED display screen 1/2uC ox W/L(V power -V data ) 2
  • the current I in any bending angle ⁇ area of the curved display area 200 is related to uC ox W/L
  • any change in the structural parameters u, C ox , W, and L of the driving transistor can change the current flowing through the bending angle ⁇ region
  • FIG. 7 is a schematic diagram of the length comparison of the channel 5 in different bending angles ⁇ of the curved display region 200 of the curved screen in Embodiment 1.
  • FIG. 3 shows four regions of the curved display region 200.
  • the second area 2 and the third area 3 are successively the bending angles of ⁇ 2,
  • the region of ⁇ 3 is between the first region 1 and the fourth region 4, ⁇ 2 ⁇ 3.
  • Figure 7 corresponds to the channel length and width design of the four regions in Figure 3 .
  • the current I of the driving circuit is positively correlated with uC ox W/L, and under the same premise of u and C ox , the ratio of the width of the channel 5 of the driving transistor in the driving circuit to the length of the channel 5 W/L If it changes, the current provided will also change accordingly.
  • the driving transistors of the second driving circuit in different regions of the curved display region 200 can be designed according to different bending angles ⁇ .
  • Figure 7 shows the change of the length L of the channel 5 in four different regions, from top to bottom, corresponding to the first region 1 to the fourth region 4 respectively, the length of the channel 5 gradually decreases, so that W/L gradually increases , and the corresponding current increases continuously.
  • the bending angle ⁇ gradually increases from the first area 1 to the fourth area 4. If the same current is supplied, the display brightness will gradually decay and the color shift will gradually become obvious.
  • the first area 1 to the second area Gradually increasing the current in the four regions 4 can compensate for the difference in viewing angle, so that the display brightness of the regions with different bending angles ⁇ between the curved display region 200 and the main display region 100 can be consistent with that of the main display region 100 .
  • the length L of the channel 5 or the width W of the channel 5 in different regions can be changed independently.
  • Figure 7 shows that the length of the individual channel 5 changes, which can It is understood that the width can also be changed independently, and the width of the channel 5 can gradually increase from the first region 1 to the fourth region 4.
  • the length and width of the channel 50 can also be changed at the same time, as long as the change of the two causes a change in the ratio, and then a change in the current, so as to be able to adapt to the change in the bending angle ⁇ of the curved display region 200, and finally achieve the compensation caused by the change in viewing angle.
  • the display brightness changes and color cast phenomenon can be.
  • FIG. 8 is a schematic diagram of the channel length and width comparison of the curved display area 200 of the curved display area 200 in Embodiment 2 with different bending angles ⁇ .
  • the channel length is indicated, and the corresponding width is indicated on the right.
  • the channels are respectively channel 1a, channel 1b, channel 1c, and channel 1d
  • the length of the channel gradually decreases, and the width gradually increases, so W /L must gradually increase, and the corresponding current will also increase continuously, so as to achieve the above compensation purpose.
  • the bending angle ⁇ gradually increases, if the channel length and width both increase or decrease gradually, the goal of gradually increasing W/L can also be achieved, but at this time it is necessary to design the specific increase or decrease range to ensure that W The /L ratio varies as expected.
  • Embodiments 1 and 2 the change of the W/L ratio of the channel needs to be designed according to the change of the bending angle ⁇ of the corresponding area.
  • Different types of display screens, in the curved display area 200 due to the change in viewing angle Brightness changes or color shift problems may be different, and corresponding designs need to be combined with specific products to achieve the purpose of compensation.
  • FIG. 9 is a schematic diagram of a comparison of channel shape changes in different regions.
  • the three diagrams at the top are schematic diagrams of driving transistor channels of the first driving circuit in the main display area 100 , which can be respectively defined as the first channel a, the second channel b, and the third channel c; the lower part
  • the three figures in FIG. 1 and 2 are schematic diagrams of driving transistor channels of the driving circuit in the curved display region 200, which can be respectively defined as the fourth channel d, the fifth channel e, and the sixth channel f.
  • the first channel a has a bend, which is roughly Z-shaped, and the fourth channel d below it has two bends, which is roughly in the shape of an inverted "ji", so that the length of the fourth channel d is greater than
  • the length of the first channel a; the second channel b in the middle of Figure 9 is an inverted V-shaped structure, and the fifth channel e below it is an M-shaped structure, which is equivalent to increasing the number of bending times, then the fifth channel e
  • the length of the channel b is greater than the length of the second channel b; the third channel c on the far right in Fig.
  • the length of the sixth channel f is greater than the length of the third channel c.
  • the fifth channel f or the sixth channel g may serve as a channel for driving the driving transistor of the main display region 100 .
  • the increase or decrease of the channel length and width is not limited to the extension or shortening along the corresponding length and width directions, but can realize the change design of the length and width through the shape change, so that the design of the driving transistor can be More flexible, for example, under the premise that the size of the driving transistor is limited along the channel length direction, the purpose of extending the channel can be achieved by increasing the number of bending times or increasing the degree of bending, so it can be used according to the size conditions of the driving transistor and other circuit components The location distribution of the channel layout.
  • the morphological change itself is not limited to changing the length of the channel. Compared with the second channel b, the fifth channel e in Fig.
  • the three-channel c while the length increases, the width also decreases, that is, the shape change can realize the change of width and length at the same time.
  • FIG. 10 is a schematic diagram showing the thickness comparison of the first gate insulating layer 4 in different bending angles ⁇ of the curved display region 200 of the curved screen in the third embodiment.
  • the current I of the driving circuit is positively correlated with uC ox W/L, and under the condition of constant u and W/L, the gate capacitance C ox per unit area can be changed with different bending angles ⁇ , and the current can also be realized.
  • C ox ⁇ 0 ⁇ GI1 /d GI1 , where ⁇ 0 is the vacuum dielectric constant, ⁇ GI1 is the dielectric constant of the first gate insulating layer 4, and d GI1 is the thickness of the first gate insulating layer 4, according to According to the formula, C ox is inversely proportional to the thickness d GI1 of the first gate insulating layer 4 .
  • d1, d2, d3, and d4 gradually decrease to ensure that the current increases gradually, so that the current change meets the requirements for brightness and color shift changes, and the display quality of each area remains consistent.
  • the change of other parameters in the gate capacitance C ox per unit area can also change the current, such as changing the dielectric constant ⁇ GI1 of the first gate insulating layer 4
  • this embodiment only changes the dielectric constant ⁇ GI1 of the first gate insulating layer 4
  • the thickness can achieve the purpose of changing the current in the corresponding area, and the design is simple.
  • FIG. 11 is a schematic diagram showing the size comparison of semiconductor film grains 5 a in the curved display region 200 of the curved screen in embodiment 4 with different bending angles ⁇ .
  • the current I of the driving circuit is positively correlated with uC ox W/L.
  • the carrier mobility u changes with different bending angles ⁇ , and the display area The current in the area of bending angle ⁇ will also change accordingly.
  • the carrier mobility u of a semiconductor is affected by factors such as the grain size, doping concentration, and defect state of the semiconductor film. As shown in FIG. 11 , from left to right, corresponding to the semiconductor structure of the driving transistor in the driving circuit in the first region 1 to the fourth region 4 in FIG. 3 , the grain size of the semiconductor film gradually increases.
  • the semiconductor carrier mobility u makes the current in the corresponding area meet the requirements of brightness and color shift changes, and keeps the display quality of each area consistent.
  • the length and width of the channel can be changed independently or simultaneously.
  • the parameters u, C ox , W, L that affect the current they can be changed independently or at least two parameters can be changed synchronously.
  • the embodiment of the present application is not limited, as long as the comprehensive result after the change adapts to the change of the bending angle ⁇ , so that the display effect of the corresponding area is consistent with that under the front viewing angle.
  • FIG. 12 is a diagram showing the comparative relationship between the current change and the display brightness change at different bending angles ⁇ of the display screen.
  • the straight line A is the first current curve, which means that each area of the curved display area has the same current
  • the curve A' is the second current curve, which means that the current provided by each area of the curved display area 200 increases gradually with the increase of the bending angle ⁇
  • the straight line B is the first display brightness curve, which means that the display brightness of each area of the curved display area 200 is consistent
  • the dotted line B' is the second display brightness curve, which means that the display brightness gradually decreases with the increase of the bending angle ⁇ .
  • a and B illustrate the current existing drive circuit layout schemes.
  • the structural parameters of the drive transistor of the drive circuit are changed to adjust the current in the region of different bending angles ⁇ , which is provided according to the curve of A' current, so that the display brightness of the curved display area 200 can be consistent with that of the main display area 100 , which is presented as a straight line B′.
  • the embodiment of the present application mainly uses the curved screen shown in Figure 2 to illustrate the difference in viewing angle caused by bending, which in turn causes the problem of attenuation of display brightness and color shift in the curved display area, but the display screen of the embodiment of the present application Obviously not limited to the curved screen structure shown in Figure 2, as long as the display screen includes display areas with different angles, such as defined as the first display area and the second display area, then the user can view the first display area and the second display area at the same time When displaying an area, there will inevitably be a difference in viewing angle, and then there will be problems of display brightness attenuation and color shift of one display relative to the other display.
  • the display brightness attenuation and the position of the driving circuit that produces color shift can be changed.
  • the structural parameters of the transistor to adjust the current at the corresponding position to achieve the purpose of compensating for the difference in display effect.
  • the main display area 100 is the first display area
  • any bending angle ⁇ area in the curved display area 200 is the second display area.
  • the display screen in the embodiment of the present application is illustrated with an OLED screen, and it can be understood that it can also be other types of display screens, such as liquid crystal display (liquid crystal display, LCD), light-emitting diode (light-emitting diode, LED) display screen, etc., as long as it is driven by a driving circuit, the current can be adjusted by changing the structural parameters of the driving transistor in the driving circuit.
  • LCD liquid crystal display
  • LED light-emitting diode
  • the embodiment of the present application takes the display screen of a mobile phone as an example for illustration. It can be seen that the display screen can also be set on other electronic devices, and the electronic devices can also be wearable devices, vehicle-mounted devices, augmented reality (augmented reality, AR) virtual reality (VR) equipment, ultra-mobile personal computer (ultra-mobile personal computer, UMPC), netbook, personal digital assistant (personal digital assistant, PDA) and other mobile terminals, or digital cameras, SLR cameras/mirror cameras Professional shooting equipment such as cameras, sports cameras, pan-tilt cameras, and drones can be any electronic equipment with a display screen, and this embodiment of the present application does not make specific limitations.
  • augmented reality augmented reality, AR
  • VR virtual reality
  • UMPC ultra-mobile personal computer
  • PDA personal digital assistant
  • Professional shooting equipment such as cameras, sports cameras, pan-tilt cameras, and drones can be any electronic equipment with a display screen, and this embodiment of the present application does not make specific limitations.
  • an embodiment of the present application further provides a method for manufacturing a display screen, which is used for processing and manufacturing the display screen described in any of the foregoing embodiments.
  • a thin film of amorphous silicon or polysilicon can be formed by chemical vapor deposition or physical vapor deposition.
  • the drive transistor of the first drive circuit and the second drive circuit can be changed The shape of the corresponding deposition area, so as to obtain channels with different lengths or widths.
  • the shape of the deposition area can be pre-designed as a whole, so that driving circuits with different structural parameters can be processed as a whole, and the processing is simple.
  • Example 4 it is necessary to process semiconductors with different sizes of film grains 5a as an example.
  • the semiconductors for driving transistors can be processed by laser excimer annealing.
  • the semiconductor a-silicon i.e. non- Crystalline silicon
  • the laser scanning time, laser energy and laser scanning times will have an impact on the grain size of the semiconductor film layer. For example, increasing the laser energy and laser scanning time can increase the grain size.
  • each bending angle of the display area 200 corresponds to a row of driving circuits. At this time, when laser scanning is performed on a row of driving circuits of each bending angle in the curved display area 200, only the process parameters need to be adjusted, and the operation is relatively simple.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种显示屏,包括具有夹角的第一显示区域(100)和第二显示区域(200),第一驱动电路为第一显示区域(100)提供电流、第二驱动电路为第二显示区域(200)提供电流,第一驱动电路和第二驱动电路均设有驱动晶体管,第一驱动电路的驱动晶体管和第二驱动电路的驱动晶体管的至少一种结构参数不同,以提供不同的电流。通过改变驱动电路中驱动晶体管的结构参数提供不同的驱动电路电流,以补偿不同显示区域由于存在夹角而导致的显示亮度变化或者色偏现象,从而使整个显示区域的显示效果一致。

Description

一种显示屏、电子设备和显示屏的制造方法
本申请要求于2021年11月30日提交中国国家知识产权局、申请号为202111447500.6、发明名称为“一种显示屏、电子设备和显示屏的制造方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子设备技术领域,尤其涉及一种显示屏、电子设备和显示屏的制造方法。
背景技术
目前,市面上已经出现曲面屏,对产品的外观带来重要突破,最直观的感受就是缩小了边缘非显示区域,提高显示区域的屏占比,曲面的出现对显示屏也提出了更高的显示要求。但已有的曲面屏在使用过程中,屏幕两侧会出现显示强度衰减、屏幕色偏的问题。
发明内容
本申请实施例提供了一种显示屏,可以将驱动电路的电流设计为不同,以补偿由于显示条件不同而引起的显示差异。
一方面,本申请实施例提供一种显示屏,显示屏包括具有夹角的第一显示区域和第二显示区域,还包括第一驱动电路和第二驱动电路,第一驱动电路为第一显示区域提供电流、第二驱动电路为第二显示区域提供电流,第一驱动电路和第二驱动电路均设有驱动晶体管,且第一驱动电路的驱动晶体管和第二驱动电路的驱动晶体管的至少一种结构参数不同,如此,第一驱动电路和第二驱动电路可以提供不同的电流。通过改变具有夹角的不同显示区域驱动电路的驱动晶体管结构参数,可以改变驱动电路提供的电流,使具有不同夹角的显示区域具有不同的电流,从而补偿由于显示区域存在夹角而导致的显示亮度变化或者色偏现象,使整个显示区域的显示效果一致。值得注意的是,这种调整方式可实现显示屏的亮度及色偏进行连续性调整,具有较大的设计及调整空间。而且可以在不增加制造成本及不改变驱动电路的主要构造的前提下,即可达到对显示的优化、调整。
基于一方面,本申请实施例还提供了一方面的第一种实施方式:
驱动晶体管的结构参数包括u、C ox、W、L,其中,L为沟道长度,W为沟道宽度,u为载流子迁移率,C ox为单位面积栅电容,所述驱动电路提供的电流与uC oxW/L正相关。根据驱动电路的原理获得驱动驱动电路的电流,可得到驱动电路的电流与uC oxW/L正相关,则只要调整u、C ox、W、L中至少一个参数即可获得不同的电流,设计简单。
基于一方面的第一种实施方式,本申请实施例还提供了一方面的第二种实施方式:
第一驱动电路的驱动晶体管和第二驱动电路的驱动晶体管的沟道两端的直线距离相同,但沟道的弯折程度或弯折次数不同,以具有不同的沟道长度,比如弯折次数多的沟道长度会大于弯折次数少的沟道长度。可见,通过对驱动晶体管的弯折程度和弯折次数进行设计,即可改变驱动晶体管半导体沟道长度,使得半导体的设计更加灵活。
基于一方面的第一种实施方式,本申请实施例还提供了一方面的第三种实施方式:
第一驱动电路的驱动晶体管和第二驱动电路的驱动晶体管的半导体膜层晶粒大小不同,以具有不同的载流子迁移率。晶粒大小只要改变加工的工艺参数即可实现,实施起来也较为便利。
基于一方面的第一种实施方式,本申请实施例还提供了一方面的第四种实施方式:
驱动晶体管包括沟道和覆盖沟道的第一栅极绝缘层,单位面积栅电容C ox=λ ε0εGI1/d GI1,式中ε 0为真空介电常数,ε GI1为栅氧化层介电常数,d GI1为第一栅极绝缘层4的厚度,则可以将第一驱动电路的驱动晶体管和第二驱动电路的驱动晶体管的第一栅极绝缘层的厚度设计为不同,这样可以使第一驱动电路和第二驱动电路的驱动晶体管具有不同的单位面积栅电容,也就可以提供不同的电流,这样的设计也易于加工。
基于一方面以及一方面第一至第四种实施方式,本申请实施例还提供了一方面的第五种实施方式:
第一显示区域和第二显示区域由于角度不同,基于视角差异会形成亮度衰减或色偏,具体设计时,第一显示区域和第二显示区域中显示亮度较低的一者,对应的驱动电路提供的电流可以大于另一者驱动电路提供的电流,这样亮度较低的一者可以获得更大的电流,从而补偿显示亮度的差异,改善色偏。这里显示亮度较低的一者,是指第一显示区域和第二显示区域在驱动电路设计完全相同的情况下,显示亮度较低的一者。
基于一方面以及一方面第一至第五种实施方式,本申请实施例还提供了一方面的第六种实施方式:
显示屏为曲面屏,曲面屏包括弯曲显示区域和主显示区域,主显示区域为第一显示区域,弯曲显示区域中任一弯曲角度区域为第二显示区域。弯曲显示区域的任一弯曲角度区域与主显示区域都具有夹角,则每一个弯曲角度区域都与主显示区域的驱动晶体管结构参数设计为不同,以获得不同的电流。
基于一方面的第六种实施方式,本申请实施例还提供了一方面的第七种实施方式:
在弯曲显示区域中,不同弯曲角度区域与主显示区域的夹角均不相同,弯曲角度越大,与主显示区域的夹角越大,视角差异越大,因此,不仅每个弯曲角度区域所对应的第二驱动电路中驱动晶体管与主显示区域的驱动晶体管的至少一种结构参数不同,而且,弯曲显示区域的弯曲角度越大,结构参数调整后所对应的第二驱动电路提供的电流越大,以补偿夹角不同所导致的显示差异。
基于一方面的第六种实施方式,本申请实施例还提供了一方面的第八种实施方式:
主显示区域对应有多个第一驱动电路,多个第一驱动电路中驱动晶体管结构参数均相同。曲面屏的主显示区域设置为平直的显示区域,驱动晶体管结构参数相同,可以提供相同的电流,进行相同的器件阵列设置即可。
基于一方面以及一方面第一至第八种实施方式,本申请实施例还提供了一方面的第九种实施方式:
所述显示屏为有机发光显示屏或液晶显示屏或发光二极管显示屏。此类显示屏使用驱动晶体管,通过晶体管的设计,易于对电流进行调节设置。
第二方面,本申请实施例还提供一种电子设备,包括上述任一实施方式所述的显示屏,具有与上述显示屏相同的技术效果。
第三方面,本申请实施例还提供一种显示屏的制造方法,显示屏包括具有夹角的第一显示区域和第二显示区域,本制造方法需要加工为第一显示区域提供电流的第一驱动电路,以及加工为第二显示区域提供电流的第二驱动电路。其中,第一驱动电路和第二驱动电路均设有驱动晶体管,由驱动晶体管控制第一驱动电路或第二驱动电路的电流,加工第一驱动电路的驱动晶体管和第二驱动电路的驱动晶体管时,可使二者驱动晶体管的至少一种结构参数不同,以提供不同的电流,从而补偿由于显示区域存在夹角而导致的显示差异。
基于第三方面,本申请实施例还提供第三方面的第一种实施方式:
驱动晶体管的结构参数包括u、C ox、W、L,其中,L为沟道长度,W为沟道宽度,u为载流子迁移率,C ox为单位面积栅电容,所述驱动电路提供的电流与uC oxW/L正相关。
基于第三方面,本申请实施例还提供第三方面的第二种实施方式:
可以通过激光准分子退火工艺加工第一驱动电路和第二驱动电路的驱动晶体管的半导体,由该工艺使得非晶体硅转换为多晶硅,激光准分子退火工艺的工艺参数包括激光扫描时间、激光能量、激光扫描次数,工艺参数不同时,会影响多晶硅的参数,比如半导体的膜层晶粒尺寸。因此,在加工第一驱动电路和第二驱动电路的驱动晶体管时,可通过调整激光准分子退火工艺的工艺参数以使第一驱动电路的驱动晶体管和第二驱动电路的驱动晶体管的半导体膜层晶粒大小不同。
基于第三方面,本申请实施例还提供第三方面的第四种实施方式:
显示屏为曲面屏,曲面屏包括弯曲显示区域和主显示区域,主显示区域为第一显示区域,弯曲显示区域中任一弯曲角度区域为第二显示区域;第一驱动电路和第二驱动电路均阵列设计,弯曲显示区域的每一弯曲角度区域对应一列第二驱动电路。加工时,可依次扫描每一列第一驱动电路和第二驱动电路,在扫描第二驱动电路的驱动晶体管时,均调整至少一种工艺参数,使得每一列第二驱动电路的驱动晶体管的膜层晶粒大小互不相同。
附图说明
图1为一种曲面屏的示意图;
图2为图1中A部位的放大图;
图3为显示屏的发光亮度随观察角度变化而变化的情况;
图4为曲面屏显示亮度衰减和产生色偏的示意图;
图5为OLED显示屏的驱动电路原理图;
图6为图5中驱动晶体管T1的截面视图;
图7为实施例1中曲面屏的弯曲显示区域不同位置的沟道长度对比示意图;
图8为实施例2中曲面屏的弯曲显示区域不同位置的沟道长度、宽度对比示意图;
图9为不同位置的沟道形状变化对比示意图;
图10为实施例3中曲面屏的弯曲显示区域不同位置的第一栅极绝缘层厚度对比示意图;
图11为实施例4中曲面屏的弯曲显示区域不同位置的半导体膜层晶粒大小对比示意图;
图12为在显示屏不同弯折位置处电流变化和显示亮度变化的对比关系示意。
具体实施方式
本申请实施例提供一种电子设备的显示屏,例如是手机的显示屏,显示屏包括显示层和为显示层提供电流,以驱动显示层显示的驱动电路,显示层具有多个像素单元,每个像 素单元配设有相应的驱动电路。目前显示屏中驱动整个显示层显示的所有驱动电路,均采用器件结构完全相同的阵列设计,即显示层的显示区域的任何位置所对应的驱动电路均采用相同的器件参数,相应地,显示屏在显示区域任一位置的电流也均相同,本申请实施例中显示屏以有机发光(organic light-emitting diode,OLED)显示屏为例说明。
请参考图1-4,图1为一种曲面屏的示意图,即显示屏为曲面屏,具有弯曲显示区域200,图2为图1中A部位的放大图;图3为显示屏的发光亮度随观察角度变化而变化的情况;图4为曲面屏显示亮度衰减和产生色偏的示意图。
曲面屏中显示层的显示区域包括弯曲显示区域200以及除弯曲显示区域200以外的主显示区域100,主显示区域100为朝向用户的屏幕主体区域,弯曲显示区域200处于主显示区域100的两侧位置,如图4所示,弯曲显示区域200从主显示区域100的边沿延伸到两侧的边框300处,弯曲显示区域200不同位置呈现不同程度的弯曲。以主显示区域100所在平面为基准,弯曲显示区域200不同区域与主显示区域100平面具有不同的夹角,该夹角定义为弯曲角度θ,其中,弯曲角度θ越大,表明该区域的弯曲程度越大。
本申请实施例定义视角为观察者视线与显示区域的夹角,再看图1,用户在查看曲面屏时,视线正对主显示区域100,即视角为90度,90度视角为正视视角。而此时用户的视线与两侧的弯曲显示区域200的夹角必将大于或小于90度。弯曲角度θ越大,用户视线在该区域的视角与正视视角差异越大。
再请看图3,当视线与显示屏的夹角为90度时,即处于正视视角下,显示屏具有最大的亮度,而在其他视角下,随着视角变化,显示屏的亮度呈现不同程度的降低,与正视视角的偏差越大,显示亮度降低越多。由此可见,如果整个曲面屏显示区域各区域的器件参数相同,那么参照图3,由于视角差异,两侧弯曲显示区域200必然存在亮度衰减和出现色偏的现象,即如图4所示。可以理解,在弯曲显示区域200内,其不同弯曲角度θ区域与用户视线的夹角也不同,在用户视线正对主显示区域100时,弯曲程度越大区域的视角与正视视角差异越大,显示亮度也就越低,色偏也越严重。
为此,本申请实施例采取的方式是将弯曲显示区域200的驱动电路中驱动晶体管的结构参数设置为不同于主显示区域100,从而使弯曲显示区域200的驱动电路电流不同于主显示区域100的驱动电路电流,以补偿由于弯曲而导致视角不同继而引起的显示亮度变化或者色偏现象。
驱动晶体管的结构参数调整能够改变驱动电路电流的原理可继续参照图5、6理解,图5为OLED显示屏的驱动电路原理图,其具有多个晶体管T1、T2、T3、T4、T5、T6、T7,其中T1工作在饱和区,起到驱动作用,为驱动晶体管,T2-T7工作在线性区,起到开关的作用;图6为图5中驱动晶体管T1的截面视图。
图5显示的驱动电路为OLED显示屏常用的驱动电路,具有电源电压VDD、数据电压Data[m]、扫描信号SCAN[n]、扫描信号SCAN[n-1]、初始化电压VI、电容C1、发光信号Em[n]、发光二极管OLED。图4中驱动电路中的各晶体管以PMOS晶体管为例,通过控制SCAN[n-1]、SCAN[n]、Em[n]随时间变化调整相应晶体管开启与关闭,主要包括以下几个阶段:
一、初始化阶段:晶体管T4开启,电容C1存储的电荷经过晶体管T4流入VI,完成 初始化过程;
二、阳极复位机补偿阶段:晶体管T7开启,完成OLED阳极复位,晶体管T1、T2、T3开启,完成数据信号电压写入电容C1并保持;
三、发光阶段:晶体管T5、T6开启,VDD电压驱动,电流经驱动晶体管T1流过OLED器件完成发光,由于第二阶段数据信号电压写入电容C1并保持,此电压也是驱动晶体管T1的栅极电压,该电压由Vdata[m]控制。
此时,由驱动电路的驱动原理可得:流过OLED显示屏期间的电流I=1/2uC oxW/L(VDD-V data) 2,其中uC oxW/L为驱动晶体管T1的结构参数,具体地,其中V DD为功率信号、V data为数据电压信号,u为驱动晶体管T1的载流子迁移率,C ox为驱动晶体管T1的单位面积栅电容,W为驱动晶体管T1的沟道的宽度,L则为沟道的长度。
关于沟道可参照图6理解,图6显示驱动电路中驱动晶体管T1的截面,其包括位于两端的原极(S极、Source)、漏极(D极、Drain)12,源极11和漏极12之间具有半导体,二者之间的半导体即沟道5,半导体可以是P-Si(Polysilicon),即多晶硅,沟道5由第一栅极绝缘层4覆盖,第一栅极绝缘层4之上设有栅极(Gate)6,栅极6由第二栅极绝缘层3覆盖,第二栅极绝缘层3之上设有层间介电层2(ILD,Interlayer dielectric)。上述公式中沟道5的长度L也就是驱动晶体管T1源极11和漏级12之间的半导体长度,而以图6为视角,在俯视角度下与半导体长度垂直方向的半导体尺寸为沟道5的宽度W,图6中上下方向为沟道5的高度方向。
上述公式以图5所示驱动电路为例说明,当驱动电路发生变化时,该电流公式中的1/2(VDD-V data) 2可以发生变化,比如1/2的数值发生变化,或者(V power-V data)可以加入其它参数,但无论驱动电路如何变化,流过OLED显示屏的电流I必然与uC oxW/L正相关。
综上,本申请实施例为达到调节电流目的,仅对驱动电路中驱动晶体管T1的结构参数进行调整,只要对驱动电路中驱动晶体管的结构参数进行改变,就可以改变驱动电路提供给显示屏的电流。
对于曲面屏,可将为主显示区域100提供电流的驱动电路定义为第一驱动电路,为弯曲显示区域200提供电流的驱动电路定义为第二驱动电路,应当理解,主显示区域100和弯曲显示区域200都包括多个像素单元,故而包括多个第一驱动电路、多个第二驱动电路。在本申请实施例中,相对第一驱动电路,可以通过调整第二驱动电路的驱动晶体管结构参数,以增加弯曲显示区域200的电流,达到提升亮度、改善色偏的目的。可见,本申请实施例在不增加制造成本、不改变驱动电路的主要构造、不需调整电路控制的前提下,即可达到对显示屏显示的优化、调整。当然,如前所述,弯曲显示区域200具有不同弯曲角度θ区域,产生亮度衰减和色偏的程度不同,故弯曲显示区域200内不同弯曲角度θ区域的电流设计也不同,即不同弯曲角度θ区域对应的第二驱动电路的晶体管结构参数设置也不相同。可见,这种调整方式可实现显示屏的亮度及色偏的连续性调整,具有较大的设计及调整空间。
上述提到流过OLED显示屏的电流I=1/2uC oxW/L(V power-V data) 2,则弯曲显示区域200任一弯曲角度θ区域的电流I与uC oxW/L相关,可知,任一弯曲角度θ区域所对应的第二驱动电路中,其驱动晶体管的结构参数u、C ox、W、L中任一者的改变,都可以改变流经该弯 曲角度θ区域的电流的大小,以达到与该弯曲角度θ区域基于视角变化而导致的亮度衰减和色偏,具体可参照下述实施例。
实施例1
如图7所示,图7为实施例1中曲面屏的弯曲显示区域200不同弯曲角度θ区域的沟道5长度对比示意图。
可结合图3理解,图3中示意出弯曲显示区域200的四个区域,第一区域①为弯曲角度θ1=0的区域,该区域为弯曲显示区域200的开始,也是弯曲显示区域200与主显示区域100的分界区域,第四区域④为弯曲角度θ4=90度的区域,该区域为弯曲显示区域200弯曲程度最大的区域,第二区域②和第三区域③依次是弯曲角度为θ2、θ3的区域,处于第一区域①和第四区域④之间,θ2<θ3。图7中对应于图3中四处区域的沟道长、宽设计。
由上述原理描述可知,驱动电路的电流I和uC oxW/L正相关,在u、C ox相同的前提下,驱动电路中驱动晶体管的沟道5宽度与沟道5长度的比值W/L发生变化,则提供的电流也会随之变化。本实施例中,弯曲显示区域200不同区域处的第二驱动电路的驱动晶体管可根据不同弯曲角度θ进行设计。图7中展示四个不同区域的沟道5长度的L变化情况,由上至下,分别对应第一区域①到第四区域④,沟道5的长度逐渐减小,这样W/L逐渐增加,相应的电流也就不断增加。由图3可知,由第一区域①到第四区域④,弯曲角度θ逐渐增加,如果提供的电流相同,则显示亮度会逐渐衰减,色偏逐渐明显,实施例1中第一区域①到第四区域④的电流逐渐增加,则可以补偿视角角度的差异,从而使弯曲显示区域200与主显示区域100不同弯曲角度θ区域的显示亮度能够与主显示区域100保持一致。
需要注意的是,W/L比值的变化会导致电流的变化,则不同区域的沟道5的长度L或沟道5宽度W可以单独变化,图7示意出单独的沟道5长度变化,可以理解,也可以单独宽度变化,从第一区域①到第四区域④,沟道5的宽度可以逐渐增加。当然,沟道50的长度、宽度也可以同时变化,只要二者变化后引起比值的变化,继而引起电流变化,以能够适应弯曲显示区域200的弯曲角度θ变化,最终达到补偿视角角度变化所导致的显示亮度变化和色偏现象即可。
实施例2
如图8所示,图8为实施例2中曲面屏的弯曲显示区域200不同弯曲角度θ区域的沟道长度、宽度对比示意图,左侧四图为图3中四个区域处对应的驱动电路的沟道长度示意,右侧是相对应的宽度示意。
该实施例中,由第一区域①到第四区域④,沟道分别为沟道1a、沟道1b、沟道1c、沟道1d,沟道的长度逐渐减小,宽度逐渐增加,这样W/L必然逐渐增加,相应的电流也就不断增加,从而达到上述补偿目的。当然,随着弯曲角度θ逐渐增加,如果沟道长度和宽度都渐增或者都逐渐减小,也可以实现W/L逐渐增加的目的,但是此时需要设计具体增减的幅度,以确保W/L比值按照预期变化。
需要说明的是,实施例1、2中,沟道的W/L的比值变化具体需要根据相应区域的弯曲角度θ变化进行设计,不同显示屏类型,在弯曲显示区域200由于视角变化所产生的亮度变化或者色偏问题可能并不相同,需要结合具体的产品进行相应的设计,以达到补偿目的。
另外,请参考图9,图9为不同区域的沟道形状变化对比示意图。
图9中,位于上部的三张图为主显示区域100中第一驱动电路的驱动晶体管沟道示意图,可分别定义为第一沟道a、第二沟道b、第三沟道c;下部的三张图为弯曲显示区域200中驱动电路的驱动晶体管沟道示意图,可分别定义为第四沟道d、第五沟道e、第六沟道f。
图9中,具体在增加沟道长度时,沟道两端的直线距离并不改变,可以看出沟道a-f两端之间的直线距离相等,只是通过增加沟道弯折的程度和/或弯折的次数,以达到增加沟道长度的目的,沟道长度是由沟道一端向另一端延伸的总路径长度。图9中第一沟道a有一道折弯,大致为Z型,其下方的第四沟道d有两道折弯,大致为倒“几”字形,这样第四沟道d的长度就大于第一沟道a的长度;图9中间的第二沟道b为倒V型结构,而其下方的第五沟道e为M型结构,相当于增加折弯次数,则第五沟道e的长度大于第二沟道b的长度;图9中最右侧的第三沟道c为弧形,其下方的第六沟道f在弧形的中部又继续下凹,弯曲程度加深,则第六沟道f的长度大于第三沟道c的长度。
可见,图9中较短的第一沟道a、第二沟道b或第三沟道c可以作为驱动弯曲显示区域200的驱动晶体管的沟道,而较长的第四沟道e、第五沟道f或第六沟道g可以作为驱动主显示区域100的驱动晶体管的沟道。
据此可知,沟道长度、宽度的增减,并不限定于沿相应的长度、宽度方向的延长或缩短,而是可以通过形态变化,实现长度、宽度的变化设计,这样驱动晶体管的设计可以更加灵活,比如在驱动晶体管沿沟道长度方向尺寸有限的前提下,经过增加弯折次数或加大弯折程度即可达到延长沟道的目的,故可以根据驱动晶体管的尺寸条件、其他电路元件的位置分布进行沟道的布局。另外,形态变化本身也不仅限于改变沟道的长度,图10中第五沟道e相较于第二沟道b,在长度增加的同时宽度也减小,第六沟道f相较于第三沟道c,在长度增加的同时也是宽度减小,即形态变化可以同时实现宽度和长度的变化。
实施例3
如图10所示,图10为实施例3中曲面屏的弯曲显示区域200不同弯曲角度θ区域的第一栅极绝缘层4厚度对比示意图。
由上述原理描述可知,驱动电路的电流I和uC oxW/L正相关,在u、W/L不变的条件下,单位面积栅电容C ox随着不同弯曲角度θ发生变化也可以实现电流的变化。而C ox=λε 0ε GI1/d GI1,式中ε 0为真空介电常数,ε GI1为第一栅极绝缘层4介电常数,d GI1为第一栅极绝缘层4的厚度,根据公式可得,C ox与第一栅极绝缘层4的厚度d GI1成反比。如图10所示,对应于图3四个不同弯曲角度θ1、θ2、θ3、θ4区域,第一栅极绝缘层4的厚度分别为d1、d2、d3、d4,且随弯曲角度θ逐渐增加,d1、d2、d3、d4逐渐减小,以保障电流的逐渐增加,使电流变化满足亮度、色偏变化要求,使各区域的显示质量保持一致。可知,单位面积栅电容C ox中其他参数的改变也可以使电流发生变化,比如改变第一栅极绝缘层4的介电常数ε GI1,该实施例仅通过改变第一栅极绝缘层4的厚度即可达到改变相应区域电流的目的,设计简单。
实施例4
如图11所示,图11为实施例4中曲面屏的弯曲显示区域200不同弯曲角度θ区域的半导体膜层晶粒5a大小对比示意图。
由上述原理描述可知,驱动电路的电流I和uC oxW/L正相关,在C ox、W/L不变的条件下,载流子迁移率u随着不同弯曲角度θ发生变化,显示区域在弯曲角度θ区域的电流也会相应的变化。由半导体知识可知,半导体的载流子迁移率u受到半导体的膜层晶粒大小、掺杂浓度、缺陷状态等因素影响。如图11所示,从左至右,分别对应于图3中第一区域①至第四区域④的驱动电路中的驱动晶体管的半导体结构,半导体的膜层晶粒大小逐渐增加。半导体的膜层晶粒5a越大载流子迁移率u越高,则可通过工艺控制不同弯曲角度θ下对应的驱动电路中驱动晶体管的半导体的膜层晶粒5a大小,来控制对应区域的半导体载流子迁移率u,使对应区域的电流满足亮度、色偏变化要求,使各区域的显示质量保持一致。
上述实施例中,提到沟道的长度和宽度可以单独变化或同时变化,实际上对于影响电流的所有参数u、C ox、W、L而言,均可以单独变化或者至少两种参数同步变化,本申请实施例并不做限制,只要变化后综合的结果适应弯曲角度θ变化,以实现相应区域的显示效果和正视视角下保持一致即可。
请参考图12,图12为在显示屏不同弯曲角度θ区域处电流变化和显示亮度变化的对比关系示意。其中,直线A为第一电流曲线,表示弯曲显示区域各区域具有同样的电流,曲线A’为第二电流曲线,表示弯曲显示区域200各区域,随着弯曲角度θ的增加提供的电流逐渐增加,直线B为第一显示亮度曲线,表示弯曲显示区域200各区域的显示亮度一致,虚线B’为第二显示亮度曲线,表示显示亮度随弯曲角度θ的增加而逐渐降低。
A、B示意出目前已有的驱动电路布置方案,而本申请实施例中通过对驱动电路的驱动晶体管结构参数进行改变,以对不同弯曲角度θ区域的电流进行调节,按照A’的曲线提供电流,从而使得弯曲显示区域200的显示亮度和主显示区域100能够保持一致,呈现为直线B’。
另外,可以理解,本申请实施例主要以图2所示的曲面屏示意基于弯曲而导致视角差异,继而引起在弯曲显示区域显示亮度衰减、产生色偏的问题,但本申请实施例的显示屏显然不局限于图2所示的曲面屏结构,只要显示屏包括具有不同夹角的显示区域,比如定义为第一显示区域和第二显示区域,那么用户在同时查看第一显示区域和第二显示区域时,就必然会产生视角差异,继而产生一者显示相对另一者的显示具有显示亮度衰减、色偏的问题,此时都可以通过改变显示亮度衰减、产生色偏位置的驱动电路的驱动晶体管结构参数,以调节相应位置的电流大小,达到补偿显示效果差异的目的。实际上,上述实施例中,主显示区域100即第一显示区域,弯曲显示区域200中任一弯曲角度θ区域为第二显示区域。
需要说明的是,本申请实施例显示屏以OLED屏进行示例说明,可以理解,也可以是其他类型的显示屏,例如液晶显示屏(liquid crystal display,LCD)、发光二极管(light-emitting diode,LED)显示屏等,只要是利用驱动电路驱动,能够通过改变驱动电路中驱动晶体管的结构参数进行电流调节即可。
本申请实施例以手机的显示屏为例说明,可知,显示屏也可以设置在其他电子设备,电子设备例如还可以是可穿戴设备、车载设备、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本、个人数字助理(personal digital assistant,PDA)等移动终端,或者,也可以是数 码相机、单反相机/微单相机、运动摄像机、云台相机、无人机等专业的拍摄设备,只要具有显示屏的电子设备均可,本申请实施例不做具体限制。
此外,本申请实施例还提供一种显示屏的制造方法,用于加工制造上述任一实施例所述的显示屏。在加工驱动晶体管的沟道(即半导体)时,可以通过化学气相沉积或者物理气相沉积的工艺形成非晶硅或多晶硅的薄膜,沉积时,通过改变第一驱动电路、第二驱动电路的驱动晶体管所对应的沉积区域的形状,从而获得具有不同长度或宽度的沟道。对于显示屏而言,可以整体预先设计好沉积区域的形状,从而整体加工出具有不同结构参数的驱动电路,加工简单。
另外,以实施例4中需要加工出具有不同大小膜层晶粒5a的半导体为例,可以通过激光准分子退火工艺加工驱动晶体管的半导体,将通过上述沉积工艺形成的半导体a-硅(即非晶硅)加工为所需的多晶硅,在此工艺过程中,激光扫描时间、激光能量以及激光扫描次数都会对半导体的膜层晶粒大小产生影响,比如增加激光能量和激光扫描时间可以增加晶粒的粒径,在制造第一驱动电路和第二驱动电路的驱动晶体管的半导体时,只要调整上述至少一种参数,即可获得具有不同大小膜层晶粒的半导体。另外,如图2所示,对于具有显示屏,通常所有的驱动电路阵列设计,加工各驱动电路中驱动晶体管的半导体时,可以一列一列激光扫描,那么对于具有曲面屏的手机而言,其弯曲显示区域200的每一个弯曲角度即对应有一列驱动电路,此时对弯曲显示区域200内每一个弯曲角度的一列驱动电路进行激光扫描时,均进行工艺参数调整即可,操作较为简便。
本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以对本申请进行若干改进和修饰,这些改进和修饰也落入本申请权利要求的保护范围内。

Claims (15)

  1. 一种显示屏,其特征在于,所述显示屏包括具有夹角的第一显示区域和第二显示区域,第一驱动电路为所述第一显示区域提供电流、第二驱动电路为所述第二显示区域提供电流,所述第一驱动电路和所述第二驱动电路均设有驱动晶体管,所述第一驱动电路的驱动晶体管和所述第二驱动电路的驱动晶体管的至少一种结构参数不同,以提供不同的电流。
  2. 根据权利要求1所述的显示屏,其特征在于,所述结构参数包括u、C ox、W、L,其中,L为沟道长度,W为沟道宽度,u为载流子迁移率,C ox为单位面积栅电容,所述驱动电路提供的电流与uC oxW/L正相关。
  3. 根据权利要求2所述的显示屏,其特征在于,所述第一驱动电路的驱动晶体管和所述第二驱动电路的驱动晶体管的沟道两端的直线距离相同,所述沟道的弯折程度或弯折次数不同,以具有不同的沟道长度。
  4. 根据权利要求2所述的显示屏,其特征在于,所述第一驱动电路的驱动晶体管和所述第二驱动电路的驱动晶体管的半导体膜层晶粒大小不同,以具有不同的所述载流子迁移率。
  5. 根据权利要求2所述的显示屏,其特征在于,所述驱动晶体管包括沟道和覆盖所述沟道的第一栅极绝缘层;所述第一驱动电路的驱动晶体管和所述第二驱动电路的驱动晶体管的所述第一栅极绝缘层的厚度不同,以具有不同的所述单位面积栅电容。
  6. 根据权利要求1-5任一项所述的显示屏,其特征在于,所述第一显示区域和所述第二显示区域中显示亮度较低的一者,对应的驱动电路提供的电流大于另一者驱动电路提供的电流。
  7. 根据权利要求1-6任一项所述的显示屏,其特征在于,所述显示屏为曲面屏,所述曲面屏包括弯曲显示区域和主显示区域,所述主显示区域为所述第一显示区域,所述弯曲显示区域中任一弯曲角度区域为所述第二显示区域。
  8. 根据权利要求7所述的显示屏,其特征在于,所述弯曲显示区域中,不同弯曲角度区域所对应的第二驱动电路中驱动晶体管的至少一种结构参数不同,弯曲角度越大,所对应的所述第二驱动电路提供的电流越大。
  9. 根据权利要求7所述的显示屏,其特征在于,所述主显示区域对应有多个所述第一驱动电路,多个所述第一驱动电路中驱动晶体管结构参数均相同。
  10. 根据权利要求1-9任一项所述的显示屏,其特征在于,所述显示屏为有机发光显示屏或液晶显示屏或发光二级管显示屏。
  11. 一种电子设备,其特征在于,包括权利要求1-10任一项所述的显示屏。
  12. 一种显示屏的制造方法,其特征在于,显示屏包括具有夹角的第一显示区域和第二显示区域,加工为所述第一显示区域提供电流的第一驱动电路,以及为所述第二显示区域提供电流的第二驱动电路;所述第一驱动电路和所述第二驱动电路均设有驱动晶体管,加工所述第一驱动电路的驱动晶体管和所述第二驱动电路的驱动晶体管时,使二者驱动晶体管的至少一种结构参数不同,以提供不同的电流。
  13. 根据权利要求12所述的显示屏的制造方法,其特征在于,所述结构参数包括u、C ox、W、L,其中,L为沟道长度,W为沟道宽度,u为载流子迁移率,C ox为单位面积栅电容, 所述驱动电路提供的电流与uC oxW/L正相关。
  14. 根据权利要求13所述的显示屏的制造方法,其特征在于,通过激光准分子退火工艺加工所述第一驱动电路和所述第二驱动电路的驱动晶体管的半导体,在加工所述第一驱动电路和所述第二驱动电路的驱动晶体管时,通过调整工艺参数以使所述第一驱动电路的驱动晶体管和所述第二驱动电路的驱动晶体管的半导体膜层晶粒大小不同,所述工艺参数包括:激光扫描时间、激光能量、激光扫描次数。
  15. 根据权利要求14所述的显示屏的制造方法,其特征在于,所述显示屏为曲面屏,所述曲面屏包括弯曲显示区域和主显示区域,所述主显示区域为所述第一显示区域,所述弯曲显示区域中任一弯曲角度区域为所述第二显示区域;所述第一驱动电路和所述第二驱动电路均阵列设计,所述弯曲显示区域的每一弯曲角度区域对应一列第二驱动电路;
    加工时,依次扫描每一列所述第一驱动电路和所述第二驱动电路,扫描所述第二驱动电路的驱动晶体管时,均调整至少一种所述工艺参数。
PCT/CN2022/115062 2021-11-30 2022-08-26 一种显示屏、电子设备和显示屏的制造方法 WO2023098176A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22854449.0A EP4213137A1 (en) 2021-11-30 2022-08-26 Display screen, electronic device, and method for manufacturing display screen

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111447500.6 2021-11-30
CN202111447500.6A CN115064102A (zh) 2021-11-30 2021-11-30 一种显示屏、电子设备和显示屏的制造方法

Publications (1)

Publication Number Publication Date
WO2023098176A1 true WO2023098176A1 (zh) 2023-06-08

Family

ID=83196680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/115062 WO2023098176A1 (zh) 2021-11-30 2022-08-26 一种显示屏、电子设备和显示屏的制造方法

Country Status (3)

Country Link
EP (1) EP4213137A1 (zh)
CN (1) CN115064102A (zh)
WO (1) WO2023098176A1 (zh)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140097440A1 (en) * 2012-10-05 2014-04-10 Samsung Display Co., Ltd., Flexible display panel
CN106652902A (zh) * 2017-01-25 2017-05-10 上海天马有机发光显示技术有限公司 有机发光显示面板及其驱动方法、有机发光显示装置
CN107437400A (zh) * 2017-09-04 2017-12-05 上海天马有机发光显示技术有限公司 显示面板和显示装置
CN108305579A (zh) * 2018-01-26 2018-07-20 昆山国显光电有限公司 屏幕调节方法及显示装置
CN109659347A (zh) * 2018-12-19 2019-04-19 武汉华星光电半导体显示技术有限公司 柔性oled显示面板以及显示装置
CN110047914A (zh) * 2019-04-29 2019-07-23 厦门天马微电子有限公司 有机发光显示面板和显示装置
CN110648641A (zh) * 2019-09-27 2020-01-03 云谷(固安)科技有限公司 一种用于显示屏的驱动电路、显示屏及显示终端
CN111192528A (zh) * 2018-11-15 2020-05-22 三星显示有限公司 显示装置
CN111430377A (zh) * 2020-04-10 2020-07-17 武汉华星光电半导体显示技术有限公司 一种显示面板及其显示方法、显示设备
CN111754873A (zh) * 2020-06-24 2020-10-09 武汉华星光电半导体显示技术有限公司 显示面板及显示装置
CN112470286A (zh) * 2018-07-25 2021-03-09 三星显示有限公司 有机发光显示装置
CN113270078A (zh) * 2021-05-18 2021-08-17 昆山工研院新型平板显示技术中心有限公司 显示面板及其驱动控制方法、装置、设备及存储介质

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102111407B1 (ko) * 2013-08-19 2020-05-15 엘지전자 주식회사 디스플레이 장치 및 그 동작방법
KR20160061794A (ko) * 2014-11-24 2016-06-01 삼성전자주식회사 디스플레이 장치 및 이의 제어 방법
KR102364165B1 (ko) * 2017-06-30 2022-02-16 엘지디스플레이 주식회사 표시 장치 및 표시 장치의 구동 방법
CN110634932B (zh) * 2019-09-27 2022-08-16 京东方科技集团股份有限公司 一种可弯曲显示面板的设计方法及可弯曲显示面板

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140097440A1 (en) * 2012-10-05 2014-04-10 Samsung Display Co., Ltd., Flexible display panel
CN106652902A (zh) * 2017-01-25 2017-05-10 上海天马有机发光显示技术有限公司 有机发光显示面板及其驱动方法、有机发光显示装置
CN107437400A (zh) * 2017-09-04 2017-12-05 上海天马有机发光显示技术有限公司 显示面板和显示装置
CN108305579A (zh) * 2018-01-26 2018-07-20 昆山国显光电有限公司 屏幕调节方法及显示装置
CN112470286A (zh) * 2018-07-25 2021-03-09 三星显示有限公司 有机发光显示装置
CN111192528A (zh) * 2018-11-15 2020-05-22 三星显示有限公司 显示装置
CN109659347A (zh) * 2018-12-19 2019-04-19 武汉华星光电半导体显示技术有限公司 柔性oled显示面板以及显示装置
CN110047914A (zh) * 2019-04-29 2019-07-23 厦门天马微电子有限公司 有机发光显示面板和显示装置
CN110648641A (zh) * 2019-09-27 2020-01-03 云谷(固安)科技有限公司 一种用于显示屏的驱动电路、显示屏及显示终端
CN111430377A (zh) * 2020-04-10 2020-07-17 武汉华星光电半导体显示技术有限公司 一种显示面板及其显示方法、显示设备
WO2021203559A1 (zh) * 2020-04-10 2021-10-14 武汉华星光电半导体显示技术有限公司 一种显示面板及其显示方法、显示设备
CN111754873A (zh) * 2020-06-24 2020-10-09 武汉华星光电半导体显示技术有限公司 显示面板及显示装置
CN113270078A (zh) * 2021-05-18 2021-08-17 昆山工研院新型平板显示技术中心有限公司 显示面板及其驱动控制方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN115064102A (zh) 2022-09-16
EP4213137A1 (en) 2023-07-19

Similar Documents

Publication Publication Date Title
US11239332B2 (en) Semiconductor device and manufacturing method thereof
US10211270B2 (en) Thin film transistor and display panel using the same having serially connected gates
KR101058093B1 (ko) 유기전계발광 표시장치
US10714561B2 (en) Display device
US8913093B2 (en) Liquid crystal display device
CN104112399A (zh) 柔性显示设备及其控制方法
US20120153289A1 (en) Semiconductor device, active matrix substrate, and display device
CN102473736A (zh) 半导体装置、有源矩阵基板以及显示装置
KR20040029242A (ko) 유기 전계발광 구동 소자와 이를 갖는 유기 전계발광 표시패널
US20050236635A1 (en) Semiconductor device and method of manufacturing the same
JP4053040B2 (ja) 表示装置
US8593053B2 (en) Display device in which a sub-pixel has a plurality of apertures and electronic apparatus including the display device
CN111613643A (zh) 透明显示装置
KR20180135342A (ko) 표시장치 및 그 구동방법
JP2014222592A (ja) 表示装置
KR102387791B1 (ko) 유기전계 발광표시장치 및 그 제조방법
Shin et al. 52‐1: Invited Paper: Technical Progress of OLED Displays for Premium TVs
WO2023098176A1 (zh) 一种显示屏、电子设备和显示屏的制造方法
Wu et al. 10.1: Development of Ultra‐Large 95inch 8K 120Hz OLED Display
Wu et al. 64.3: development of 55‐inch UHD AMOLED TV
US10845639B2 (en) Display device
KR20200123314A (ko) 표시 장치
JP2013250319A (ja) アクティブマトリクス基板、製造方法、及び表示装置
KR20190002931A (ko) 표시장치
WO2024016165A1 (zh) 显示面板及显示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 18024560

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022854449

Country of ref document: EP

Effective date: 20230215