WO2023096210A1 - 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치 - Google Patents

유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치 Download PDF

Info

Publication number
WO2023096210A1
WO2023096210A1 PCT/KR2022/017265 KR2022017265W WO2023096210A1 WO 2023096210 A1 WO2023096210 A1 WO 2023096210A1 KR 2022017265 W KR2022017265 W KR 2022017265W WO 2023096210 A1 WO2023096210 A1 WO 2023096210A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
ring
sub
independently
Prior art date
Application number
PCT/KR2022/017265
Other languages
English (en)
French (fr)
Inventor
박형근
조민지
이선희
문성윤
박용욱
신진우
이중근
Original Assignee
덕산네오룩스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020210178806A external-priority patent/KR102373387B1/ko
Application filed by 덕산네오룩스 주식회사 filed Critical 덕산네오룩스 주식회사
Priority to CN202280074782.6A priority Critical patent/CN118251377A/zh
Publication of WO2023096210A1 publication Critical patent/WO2023096210A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/54Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/54Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings
    • C07C211/56Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings the carbon skeleton being further substituted by halogen atoms or by nitro or nitroso groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/57Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton
    • C07C211/61Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton with at least one of the condensed ring systems formed by three or more rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C255/00Carboxylic acid nitriles
    • C07C255/49Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C255/58Carboxylic acid nitriles having cyano groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton containing cyano groups and singly-bound nitrogen atoms, not being further bound to other hetero atoms, bound to the carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/91Dibenzofurans; Hydrogenated dibenzofurans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/76Dibenzothiophenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a compound for an organic electric device, an organic electric device using the same, and an electronic device thereof.
  • the organic light emitting phenomenon refers to a phenomenon in which electrical energy is converted into light energy using an organic material.
  • An organic electric device using an organic light emitting phenomenon usually has a structure including an anode, a cathode, and an organic material layer therebetween.
  • the organic material layer is often composed of a multi-layer structure composed of different materials in order to increase the efficiency and stability of the organic electric device, and may include, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer.
  • Materials used as organic layers in organic electric devices may be classified into light emitting materials and charge transport materials, such as hole injection materials, hole transport materials, electron transport materials, and electron injection materials, depending on their functions.
  • An object of the present invention is to provide a compound capable of improving luminous efficiency, stability and lifetime of a device, an organic electric device using the same, and an electronic device thereof.
  • 1 to 3 are exemplary views of an organic electroluminescent device according to the present invention.
  • 5 is an exemplary diagram of HOMO DOS.
  • first hole transport layer 340 first light emitting layer
  • second charge generation layer 420 second hole injection layer
  • halo or halogen is fluorine (F), bromine (Br), chlorine (Cl), or iodine (I) unless otherwise specified.
  • alkenyl group has a double bond or triple bond of 2 to 60 carbon atoms, respectively, and includes a straight or branched chain group, unless otherwise specified. , but is not limited thereto.
  • cycloalkyl refers to an alkyl forming a ring having 3 to 60 carbon atoms, but is not limited thereto.
  • alkoxyl group refers to an alkyl group to which an oxygen radical is attached, and has 1 to 60 carbon atoms, unless otherwise specified, and is limited thereto. It is not.
  • aryloxyl group refers to an aryl group to which an oxygen radical is attached, and has 6 to 60 carbon atoms unless otherwise specified, but is not limited thereto.
  • aryl group and arylene group used herein have 6 to 60 carbon atoms, respectively, unless otherwise specified, but are not limited thereto.
  • an aryl group or an arylene group refers to a single-ring or multi-ring aromatic ring, and includes an aromatic ring formed by bonding or reacting with adjacent substituents.
  • the aryl group may be a phenyl group, a biphenyl group, a fluorene group, or a spirofluorene group.
  • an arylalkoxy group means an alkoxy group substituted with an aryl group
  • an alkoxylcarbonyl group means a carbonyl group substituted with an alkoxyl group
  • an arylcarbonylalkenyl group means an alkenyl group substituted with an arylcarbonyl group.
  • the arylcarbonyl group is a carbonyl group substituted with an aryl group.
  • heterocyclic group includes at least one heteroatom, has 2 to 60 carbon atoms, includes at least one of a single ring and multiple rings, and includes a heteroaliphatic ring and a heterocyclic group, unless otherwise specified. Contains an aromatic ring. It may also be formed by combining adjacent functional groups.
  • heteroatom refers to N, O, S, P or Si unless otherwise specified.
  • heterocyclic group may include a ring containing SO 2 instead of carbon forming the ring.
  • heterocyclic group includes the following compounds.
  • fluorenyl group or “fluorenylene group” means a monovalent or divalent functional group in which R, R' and R" are all hydrogen in the following structure, respectively, unless otherwise specified, " Substituted fluorenyl group” or “substituted fluorenyl group” means that at least one of the substituents R, R', R" is a substituent other than hydrogen, and R and R' are bonded to each other to form a This includes cases where they form a spy compound together.
  • spiro compound has a 'spiro union', which means a connection formed by two rings sharing only one atom. At this time, the atoms shared by the two rings are called 'spiro atoms', and according to the number of spiro atoms in a compound, they are called 'monospiro-', 'dispiro-', and 'trispiro-', respectively. ' It's called a compound.
  • aliphatic as used herein means an aliphatic hydrocarbon ring having 1 to 60 carbon atoms
  • aliphatic ring means an aliphatic hydrocarbon ring having 3 to 60 carbon atoms.
  • ring refers to a fused ring composed of an aliphatic ring having 3 to 60 carbon atoms, an aromatic ring having 6 to 60 carbon atoms, a heterocyclic ring having 2 to 60 carbon atoms, or a combination thereof, Contains saturated or unsaturated rings.
  • hetero compounds or heteroradicals other than the aforementioned hetero compounds include, but are not limited to, one or more heteroatoms.
  • substituted in the term “substituted or unsubstituted” as used herein means deuterium, halogen, amino group, nitrile group, nitro group, C 1 ⁇ C 20 alkyl group, C 1 ⁇ C 20 alkoxyl group, C 1 ⁇ C 20 alkylamine group, C 1 ⁇ C 20 alkylthiophene group, C 6 ⁇ C 20 arylthiophene group, C 2 ⁇ C 20 alkenyl group, C 2 ⁇ C 20 alkynyl group, C 3 ⁇ C 20 cycloalkyl group, C 6 ⁇ C 20 aryl group, deuterium-substituted C 6 ⁇ C 20 aryl group, C 8 ⁇ C 20 arylalkenyl group, silane group, boron group, germanium group, and C 2 ⁇ C 20 means substituted with one or more substituents selected from the group consisting of heterocyclic groups, but is not limited
  • substituent R 1 when a is an integer of 0, substituent R 1 does not exist, and when a is an integer of 1, one substituent R 1 is bonded to any one of the carbon atoms forming the benzene ring, and when a is an integer of 2 or 3
  • R 1 may be the same or different from each other, and when a is an integer of 4 to 6, it is bonded to the carbon of the benzene ring in a similar manner, while indicating the hydrogen bonded to the carbon forming the benzene ring. is omitted.
  • R' and R” are independently hydrogen; C 6 ⁇ C 60 aryl group; A C 2 ⁇ C 60 heterocyclic group containing at least one heteroatom selected from O, N, S, Si, and P; C 3 ⁇ C 60 aliphatic ring and C 6 ⁇ C 60 aromatic ring fused ring group; C 1 ⁇ C 50 Alkyl group; A C 2 ⁇ C 20 alkenyl group; A C 2 ⁇ C 20 alkynyl group; C 1 ⁇ C 30 alkoxy group; And C 6 ⁇ C 30 aryloxy group; is selected from the group consisting of, or R' and R” may be bonded to each other to form a ring with a spiro.
  • R' and R” are heterocyclic groups, they may be preferably C 2 ⁇ C 30 heterocyclic groups, more preferably C 2 ⁇ C 24 heterocyclic groups, and examples include pyrazine, pyridine, and pyrimido. Indole, 5-phenyl-5H-pyrimido [5,4-b] indole, quinazoline, benzoquinazoline, carbazole, dibenzoquinazole, dibenzofuran, dibenzothiophene, benzothienopyrimidine, benzofuropyrimidine, phenothiazine, phenylphenothiazine and the like.
  • R' and R” are fused ring groups, preferably C 3 ⁇ C 30 aliphatic ring and C 6 ⁇ C 30 aromatic ring fused ring group, more preferably C 3 ⁇ C 24 aliphatic ring and It may be a fused ring group of C 6 ⁇ C 24 aromatic rings.
  • R' and R” are alkoxy groups, they may preferably be C 1 to C 24 alkoxy groups.
  • R 1 and R 2 are each independently a C 6 ⁇ C 60 aryl group; fluorenyl group; A C 2 ⁇ C 60 heterocyclic group containing at least one heteroatom selected from O, N, S, Si, and P; C 3 ⁇ C 60 aliphatic ring and C 6 ⁇ C 60 aromatic ring fused ring group; C 1 ⁇ C 60 Alkyl group; A C 2 ⁇ C 20 alkenyl group; A C 2 ⁇ C 20 alkynyl group; C 1 ⁇ C 30 alkoxy group; C 6 ⁇ C 30 aryloxy group; And a C 3 ⁇ C 60 cycloalkyl group; is selected from the group consisting of.
  • R 1 and R 2 are aryl groups, they are preferably C 6 -C 30 aryl groups, more preferably C 6 -C 25 aryl groups, such as phenyl, biphenyl, naphthalene, and terphenyl.
  • R 1 and R 2 are alkyl groups, they may be preferably C 1 to C 30 alkyl groups, more preferably C 1 to C 24 alkyl groups.
  • R 1 and R 2 are alkoxy groups, they may preferably be C 1 to C 24 alkoxy groups.
  • R 1 and R 2 are cycloalkyl groups, they may be preferably C 3 -C 30 cycloalkyl groups, more preferably C 3 -C 24 cycloalkyl groups.
  • R a and R b are the same or different, and each independently hydrogen; heavy hydrogen; halogen; C 6 ⁇ C 60 aryl group; fluorenyl group; A C 2 ⁇ C 60 heterocyclic group containing at least one heteroatom selected from O, N, S, Si, and P; C 3 ⁇ C 60 aliphatic ring and C 6 ⁇ C 60 aromatic ring fused ring group; C 1 ⁇ C 50 Alkyl group; A C 2 ⁇ C 20 alkenyl group; A C 2 ⁇ C 20 alkynyl group; C 1 ⁇ C 30 alkoxy group; C 6 ⁇ C 30 aryloxy group; And a C 3 ⁇ C 60 cycloalkyl group; selected from the group consisting of, or a plurality of adjacent R a or a plurality of R b may be bonded to each other to form a ring.
  • R a and R b are aryl groups, they are preferably C 6 -C 30 aryl groups, more preferably C 6 -C 25 aryl groups, such as phenyl, biphenyl, naphthalene, and terphenyl.
  • R a and R b are heterocyclic groups, they may be preferably C 2 ⁇ C 30 heterocyclic groups, more preferably C 2 ⁇ C 24 heterocyclic groups, and examples include pyrazine, pyridine, and pyrimido.
  • R a and R b are fused ring groups, preferably C 3 ⁇ C 30 aliphatic ring and C 6 ⁇ C 30 aromatic ring fused ring group, more preferably C 3 ⁇ C 24 aliphatic ring and It may be a fused ring group of C 6 ⁇ C 24 aromatic rings.
  • R a and R b are alkyl groups, they may be preferably C 1 -C 30 alkyl groups, more preferably C 1 -C 24 alkyl groups.
  • R a and R b are alkoxy groups, they may preferably be C 1 to C 24 alkoxy groups.
  • R a and R b are aryloxy groups, they may be preferably C 6 -C 24 aryloxy groups.
  • R a and R b are cycloalkyl groups, they may be preferably C 3 -C 30 cycloalkyl groups, more preferably C 3 -C 24 cycloalkyl groups.
  • n is an integer from 0 to 4
  • the aryl group, heterocyclic group, fluorenyl group, aliphatic ring group, fused ring group, alkyl group, alkenyl group, alkynyl group, alkoxy group, aryloxy group and cycloalkyl group are each deuterium; halogen; silane group; Siloxane group; boron group; Germanium group; cyano group; nitro group; C 1 ⁇ C 20 Alkylthio group; A C 1 ⁇ C 20 alkoxy group; C 1 ⁇ C 20 Alkyl group; A C 2 ⁇ C 20 alkenyl group; A C 2 ⁇ C 20 alkynyl group; C 6 ⁇ C 20 aryl group; A deuterium-substituted C 6 ⁇ C 20 aryl group; fluorenyl group; C 2 ⁇ C 20 heterocyclic group; A C 3 ⁇ C 20 cycloalkyl group; C 7 ⁇ C 20 arylalkyl group; And a
  • the present invention provides a compound in which the compound represented by Formula 1 is represented by any one of the following formulas.
  • R 1 , R 2 , R a , R b , m and n are as defined above,
  • X is O or S
  • R a and R b are each independently hydrogen; or deuterium; provides a phosphorus compound.
  • the present invention provides a compound wherein R 1 and R 2 are each independently a C 6 ⁇ C 25 aryl group.
  • the present invention provides a compound in which the compound represented by Formula 1 is represented by any one of the following formulas.
  • the present invention provides a compound wherein both R 1 and R 2 are C 6 aryl groups.
  • the present invention is characterized in that the compound represented by Formula 1 is for the hole transport layer (HTL) of the hole transport region.
  • HTL hole transport layer
  • the compound represented by Formula 1 may be any one of the following compounds.
  • the present invention provides an organic electric device including an anode, a cathode, and an organic material layer formed between the anode and the cathode, wherein the organic material layer includes a single compound or two or more compounds represented by Formula 1 above.
  • the present invention provides an organic electric device including at least one of the compounds represented by Chemical Formulas 12 to 14 as the light emitting layer.
  • X 1 , X 2 and X 3 are each independently C(R 3 ) or N, provided that at least two of X 1 , X 2 and X 3 are N,
  • R 3 is an aryl group, it may be preferably a C 6 -C 30 aryl group, more preferably a C 6 -C 25 aryl group, such as phenyl, biphenyl, naphthalene, terphenyl, and the like.
  • R 3 When R 3 is a heterocyclic group, it may be preferably a C 2 ⁇ C 30 heterocyclic group, more preferably a C 2 ⁇ C 24 heterocyclic group, and examples thereof include pyrazine, thiophene, pyridine, and pyrimido. Indole, 5-phenyl-5H-pyrimido[5,4-b]indole, quinazoline, benzoquinazoline, carbazole, dibenzoquinazole, dibenzofuran, benzothienopyrimidine, benzofuropyrimidine , phenothiazine, phenylphenothiazine, and the like.
  • R 3 is an aryloxy group, it may be preferably a C 6 -C 24 aryloxy group.
  • W is O, N, S, CR e R f or N-L'-Ar 8 ;
  • R e and R f are each independently hydrogen; heavy hydrogen; C 6 ⁇ C 60 aryl group; fluorenyl group; A C 2 ⁇ C 60 heterocyclic group containing at least one heteroatom selected from O, N, S, Si, and P; C 3 ⁇ C 60 aliphatic ring and C 6 ⁇ C 60 aromatic ring fused ring group; C 1 ⁇ C 50 Alkyl group; A C 2 ⁇ C 20 alkenyl group; A C 2 ⁇ C 20 alkynyl group; C 1 ⁇ C 30 alkoxy group; And a C 6 ⁇ C 30 aryloxy group; is selected from the group consisting of, or R e and R f may be bonded to each other to form a spiro ring.
  • R e and R f are aryl groups, they are preferably C 6 -C 30 aryl groups, more preferably C 6 -C 25 aryl groups, such as phenyl, biphenyl, naphthalene, and terphenyl.
  • R e and R f are heterocyclic groups, they are preferably C 2 ⁇ C 30 heterocyclic groups, more preferably C 2 ⁇ C 24 heterocyclic groups, and examples include pyrazine, thiophene, and pyridine.
  • pyrimidoindole 5-phenyl-5H-pyrimido[5,4-b]indole, quinazoline, benzoquinazoline, carbazole, dibenzoquinazole, dibenzofuran, benzothienopyrimidine, benzofuran ropyrimidine, phenothiazine, phenylphenothiazine and the like.
  • R e and R f are fused ring groups, preferably C 3 ⁇ C 30 aliphatic ring and C 6 ⁇ C 30 aromatic ring fused ring group, more preferably C 3 ⁇ C 24 aliphatic ring and It may be a fused ring group of C 6 ⁇ C 24 aromatic rings.
  • R e and R f are alkyl groups, they may be preferably C 1 to C 30 alkyl groups, more preferably C 1 to C 24 alkyl groups.
  • R e and R f are alkoxyl groups, they are preferably C 1 to C 24 alkoxyl groups.
  • R e and R f are aryloxy groups, they may be preferably C 6 -C 24 aryloxy groups.
  • L 1 , L 2 , L 3 , L 4 , L 5 , L 6 and L' are each independently a single bond; C 6 ⁇ C 60 arylene group; and a C 2 ⁇ C 60 heterocyclic group containing at least one heteroatom selected from O, N, S, Si, and P;
  • L 1 , L 2 , L 3 , L 4 , L 5 , L 6 and L' are arylene groups, preferably a C 6 to C 30 arylene group, more preferably a C 6 to C 24 aryl group It may be a rene group, for example, phenylene, biphenyl, naphthalene, terphenyl, and the like.
  • L 1 , L 2 , L 3 , L 4 , L 5 , L 6 and L' are heterocyclic groups, preferably C 2 ⁇ C 30 heterocyclic groups, more preferably C 2 ⁇ C 24
  • It may be a heterocyclic group, exemplarily pyrazine, thiophene, pyridine, pyrimidoindole, 5-phenyl-5H-pyrimido[5,4-b]indole, quinazoline, benzoquinazoline, carbazole, dibenzoquine Nazol, dibenzofuran, benzothienopyrimidine, benzofuropyrimidine, phenothiazine, phenylphenothiazine and the like may be used.
  • Ar 3 , Ar 4 , Ar 5 , Ar 6 , Ar 7 and Ar 8 may each independently represent a C 6 to C 60 aryl group; fluorenyl group; A C 2 ⁇ C 60 heterocyclic group containing at least one heteroatom selected from O, N, S, Si, and P; C 3 ⁇ C 60 aliphatic ring and C 6 ⁇ C 60 aromatic ring fused ring group; C 1 ⁇ C 60 Alkyl group; A C 2 ⁇ C 20 alkenyl group; A C 2 ⁇ C 20 alkynyl group; C 1 ⁇ C 30 alkoxy group; And a C 6 ⁇ C 30 aryloxy group; is selected from the group consisting of.
  • Ar 3 , Ar 4 , Ar 5 , Ar 6 , Ar 7 and Ar 8 are aryl groups, preferably C 6 -C 30 aryl groups, more preferably C 6 -C 25 aryl groups such as phenyl , biphenyl, naphthalene, terphenyl, and the like.
  • Ar 3 , Ar 4 , Ar 5 , Ar 6 , Ar 7 and Ar 8 are heterocyclic groups, they are preferably C 2 to C 30 heterocyclic groups, more preferably C 2 to C 24 heterocyclic groups.
  • Ar 3 , Ar 4 , Ar 5 , Ar 6 , Ar 7 and Ar 8 are fused ring groups, preferably a fused ring group of a C 3 ⁇ C 30 aliphatic ring and a C 6 ⁇ C 30 aromatic ring; Preferably, it may be a fused ring group of a C 3 ⁇ C 24 aliphatic ring and a C 6 ⁇ C 24 aromatic ring.
  • Ar 3 , Ar 4 , Ar 5 , Ar 6 , Ar 7 and Ar 8 are alkyl groups, they may be preferably C 1 to C 30 alkyl groups, more preferably C 1 to C 24 alkyl groups. there is.
  • Ar 3 , Ar 4 , Ar 5 , Ar 6 , Ar 7 and Ar 8 are alkoxyl groups, they may preferably be C 1 to C 24 alkoxyl groups.
  • Ar 3 , Ar 4 , Ar 5 , Ar 6 , Ar 7 and Ar 8 are aryloxy groups, they may preferably be C 6 -C 24 aryloxy groups.
  • a ring, B ring and C ring are each independently a C 6 ⁇ C 14 aryl group; or, A ring, B ring and C ring may be substituted with R 1 ;
  • E ring, F ring, G ring and H ring are each independently a C 6 ⁇ C 20 aryl group; Or a C 2 ⁇ C 20 heterocyclic group; or, E ring, F ring, G ring and H ring may be substituted with R 2 ;
  • R 1 and R 2 are each independently hydrogen; heavy hydrogen; halogen; cyano group; C 6 ⁇ C 60 aryl group; A C 2 ⁇ C 60 heterocyclic group containing at least one heteroatom selected from O, N, S, Si, and P; C 3 ⁇ C 60 aliphatic ring and C 6 ⁇ C 60 aromatic ring fused ring group; C 1 ⁇ C 50 Alkyl group; A C 2 ⁇ C 20 alkenyl group; A C 2 ⁇ C 20 alkynyl group; C 1 ⁇ C 30 alkoxy group; C 6 ⁇ C 30 aryloxy group; And -L"-N (R m ) (R n ); selected from the group consisting of, adjacent groups may be bonded to form a ring.
  • R 1 and R 2 are aryl groups, they are preferably C 6 -C 30 aryl groups, more preferably C 6 -C 25 aryl groups, such as phenyl, biphenyl, naphthalene, and terphenyl.
  • R 1 and R 2 are heterocyclic groups, they may be preferably C 2 ⁇ C 30 heterocyclic groups, more preferably C 2 ⁇ C 24 heterocyclic groups, and examples include pyrazine, thiophene, and pyridine.
  • pyrimidoindole 5-phenyl-5H-pyrimido[5,4-b]indole, quinazoline, benzoquinazoline, carbazole, dibenzoquinazole, dibenzofuran, benzothienopyrimidine, benzofuran ropyrimidine, phenothiazine, phenylphenothiazine and the like.
  • R 1 and R 2 are fused ring groups, preferably C 3 ⁇ C 30 aliphatic ring and C 6 ⁇ C 30 aromatic ring fused ring group, more preferably C 3 ⁇ C 24 aliphatic ring and It may be a fused ring group of C 6 ⁇ C 24 aromatic rings.
  • R 1 and R 2 are alkyl groups, they may be preferably C 1 to C 30 alkyl groups, more preferably C 1 to C 24 alkyl groups.
  • R 1 and R 2 are alkoxyl groups, they are preferably C 1 to C 24 alkoxyl groups.
  • R 1 and R 2 are aryloxy groups, they may be preferably C 6 -C 24 aryloxy groups.
  • L" is a single bond; C 6 ⁇ C 60 arylene group; fluorenylene group; C 3 ⁇ C 60 aliphatic ring group; includes at least one heteroatom selected from O, N, S, Si and P It is selected from the group consisting of a C 2 ⁇ C 60 heterocyclic group; and combinations thereof, wherein R m and R n are each independently a C 6 ⁇ C 60 aryl group; a fluorenyl group; a C 3 ⁇ C 60 It is selected from the group consisting of: an aliphatic ring group; a C 2 ⁇ C 60 heterocyclic group containing at least one heteroatom of O, N, S, Si and P; and combinations thereof.
  • L′′ is an aliphatic ring group, it is preferably a C 3 to C 30 aliphatic ring group, more preferably a C 3 to C 24 aliphatic ring group.
  • L is a heterocyclic group
  • it may be preferably a C 2 ⁇ C 30 heterocyclic group, more preferably a C 2 ⁇ C 24 heterocyclic group, and examples thereof include pyrazine, thiophene, pyridine, and pyrimido.
  • R m and R n are aryl groups, they are preferably C 6 -C 30 aryl groups, more preferably C 6 -C 25 aryl groups, such as phenyl, biphenyl, naphthalene, and terphenyl.
  • R m and R n are aliphatic groups, they are preferably C 3 to C 30 aliphatic groups, more preferably C 3 to C 24 aliphatic groups.
  • R m and R n are heterocyclic groups, they may be preferably C 2 ⁇ C 30 heterocyclic groups, more preferably C 2 ⁇ C 24 heterocyclic groups, and examples include pyrazine, thiophene, and pyridine.
  • pyrimidoindole 5-phenyl-5H-pyrimido[5,4-b]indole, quinazoline, benzoquinazoline, carbazole, dibenzoquinazole, dibenzofuran, benzothienopyrimidine, benzofuran ropyrimidine, phenothiazine, phenylphenothiazine and the like.
  • b and c are independently 0 or 1, provided that b+c ⁇ 1,
  • the aryl group, arylene group, heterocyclic group, fluorenyl group, fluorenylene group, aliphatic ring group, fused ring group, alkyl group, alkenyl group, alkoxyl group, and aryloxy group are each deuterium; halogen; silane group; Siloxane group; boron group; Germanium group; cyano group; nitro group; C 1 ⁇ C 20 Alkylthio group; A C 1 ⁇ C 20 alkoxy group; C 1 ⁇ C 20 Alkyl group; A C 2 ⁇ C 20 alkenyl group; A C 2 ⁇ C 20 alkynyl group; C 6 ⁇ C 20 aryl group; A deuterium-substituted C 6 ⁇ C 20 aryl group; fluorenyl group; C 2 ⁇ C 20 heterocyclic group; A C 3 ⁇ C 20 cycloalkyl group; C 7 ⁇ C 20 arylalkyl group; And a C
  • the present invention provides an organic electric device in which the compound represented by Chemical Formula 1 is represented by any one of Chemical Formulas 2-1 to 2-3 below.
  • ring A, ring C, Y, Y', b, c, Ar 3 , L 1 and R 1 are as defined above;
  • a is an integer from 0 to 2 ⁇
  • the present invention provides an organic electronic device in which Chemical Formula 13 is represented by any one of Chemical Formulas 3-1 to 3-5 below.
  • the compound represented by Chemical Formula 13 may be any one of the following compounds.
  • the present invention provides an organic electric device in which the compound represented by Chemical Formula 14 is represented by any one of Chemical Formulas 4-1 to 4-6 below.
  • X 21 , X 25 and X 27 are each independently NAr 11 , O, S or C(R 10 )(R 11 );
  • X 24 , X 26 and X 28 are each independently NAr 12 , O, S, C(R 20 )(R 21 ) or a single bond;
  • Ar 11 and Ar 12 have the same definition as Ar 3 ,
  • a', d' and f' are independently integers from 0 to 4
  • b', c', e' and ta' are independently integers from 0 to 3
  • L 4 , L 5 , L 6 , Ar 6 and Ar 7 are as defined above;
  • ta and tb are independently integers from 0 to 4, te is an integer from 0 to 7, tf is an integer from 0 to 5,
  • R 3 , R 4 , R 10 , R 11 , R 12 , R 13 , R 14 , R 15 , R 16 , R 17 , R 18 , R 19 , R 20 and R 21 are the same as or different from each other, hydrogen independently of each other; heavy hydrogen; halogen; A silane group unsubstituted or substituted with a C 1 ⁇ C 20 alkyl group or a C 6 ⁇ C 20 aryl group; cyano group; nitro group; A C 1 ⁇ C 20 alkoxy group; C 6 -C 20 aryloxy group; C 1 ⁇ C 20 Alkyl group; A C 2 ⁇ C 20 alkenyl group; A C 2 ⁇ C 20 alkynyl group; C 6 ⁇ C 20 aryl group; fluorenyl group; A C 2 ⁇ C 20 heterocyclic group containing at least one heteroatom selected from the group consisting of O, N, S, Si and P; And C 3 ⁇ C 20 It is selected from the group consist
  • the compound represented by Chemical Formula 14 may be any one of the following compounds.
  • the organic electric element 100 has a first electrode 110, a second electrode 170, and a chemical formula 1 between the first electrode 110 and the second electrode 170.
  • the first electrode 110 may be an anode or an anode
  • the second electrode 170 may be a cathode or a cathode
  • the first electrode may be a cathode and the second electrode may be an anode.
  • the organic material layer may sequentially include a hole injection layer 120 , a hole transport layer 130 , a light emitting layer 140 , an electron transport layer 150 , and an electron injection layer 160 on the first electrode 110 . At this time, other layers except for the light emitting layer 140 may not be formed.
  • a hole blocking layer, an electron blocking layer, a light emitting auxiliary layer 220, a buffer layer 210, and the like may be further included, and the electron transport layer 150 may serve as a hole blocking layer. (See Fig. 2)
  • the organic electric element according to an embodiment of the present invention may further include a protective layer or a light efficiency improvement layer 180 .
  • the light efficiency improving layer may be formed on a surface of both surfaces of the first electrode not in contact with the organic material layer or on a surface of both surfaces of the second electrode not in contact with the organic material layer.
  • the compound according to an embodiment of the present invention applied to the organic layer is a hole injection layer 120, a hole transport layer 130, a light emitting auxiliary layer 220, an electron transport auxiliary layer, an electron transport layer 150, an electron injection layer ( 160), a host or dopant of the light emitting layer 140, or a material of a light efficiency improving layer.
  • the compound according to Formula 1 of the present invention may be used as a hole transport layer material.
  • the organic material layer may include two or more stacks including a hole transport layer, a light emitting layer, and an electron transport layer sequentially formed on the anode, and may further include a charge generation layer formed between the two or more stacks. (See Fig. 3)
  • the selection of the core and the combination of sub-substituents bonded thereto are also very important. It is important, especially when the optimal combination of the energy level and T1 value between each organic material layer and the intrinsic properties of the material (mobility, interfacial properties, etc.) is achieved, long life and high efficiency can be achieved at the same time.
  • An organic electroluminescent device may be manufactured using a physical vapor deposition (PVD) method.
  • PVD physical vapor deposition
  • an anode is formed by depositing a metal or a metal oxide having conductivity or an alloy thereof on a substrate, and a hole injection layer 120, a hole transport layer 130, a light emitting layer 140, an electron transport layer 150 and After forming an organic material layer including the electron injection layer 160, it can be manufactured by depositing a material that can be used as a cathode thereon.
  • the organic material layer is formed by any one of a spin coating process, a nozzle printing process, an inkjet printing process, a slot coating process, a dip coating process, and a roll-to-roll process, and the organic material layer is a hole transport layer containing the compound. It provides an organic electric element characterized in that.
  • the present invention provides an organic electric device characterized in that a compound of the same type or a different type of the compound represented by Formula 1 is mixed and used in the organic material layer.
  • the present invention provides a hole transport layer composition including the compound represented by Formula 1, and provides an organic electric device including the hole transport layer.
  • the present invention is a display device including the above organic electric element; and a controller for driving the display device.
  • the present invention provides an electronic device characterized in that the organic electric device is at least one of an organic light emitting device, an organic solar cell, an organic photoreceptor, an organic transistor, and a device for monochromatic or white lighting.
  • the electronic device may be a current or future wired/wireless communication terminal, and includes all electronic devices such as a mobile communication terminal such as a mobile phone, a PDA, an electronic dictionary, a PMP, a remote control, a navigation device, a game machine, various TVs, and various computers.
  • the compound represented by Formula 1 of the present invention can be used as a hole transport layer between the light emitting layer and the hole injection layer, and when used as the hole transport layer, it is easy to control the speed and amount of hole injection into the light emitting layer or the light emitting auxiliary layer, and the efficiency and lifetime By improving it, it is possible to exhibit excellent device characteristics.
  • the fluorenyl group is a major substituent that determines the highest occupied molecular orbital (HOMO) and packing between molecules when forming a thin film.
  • HOMO highest occupied molecular orbital
  • the triplet bond dissociation energy (T1-BDE) of the molecule has a value exceeding 15.0 kcal/mol, preferably 17.0 kcal/mol, more preferably exceeding 17.5 kcal/mol
  • the lifetime of the device can be maximized due to the increase in stability of the compound itself.
  • the triplet bond dissociation energy at the first triplet excited state is a value calculated through the bond dissociation energy in a single molecule, and the bond-dissociation energy (BDE) is the intramolecular This is the calculation of the binding energy for non-cyclic bonds.
  • the electrical potential energy of the target molecule is calculated, and the electrical potential energy for each is calculated by dividing into two radical molecules based on the acyclic bond, and the bond dissociation energy can be expressed by the following formula.
  • the certain time means the time for the amorphous solid structure to reach a sufficient equilibrium state, and may be preferably several hundred nanoseconds to several thousand nanoseconds, more preferably 100 nanoseconds to 150 nanoseconds, and even more preferably At most, it may be 120 nanoseconds.
  • structural data at the final time point is extracted and some single molecules are extracted (sampled) from the structure.
  • Single-point energy calculation for single molecules extracted through quantum mechanics simulation is performed, and bond-dissociation energy (BDE) for acyclic bonds in molecules is calculated.
  • BDE bond-dissociation energy
  • the unit of the average bond dissociation energy value in the amorphous solid phase is eV, and it can be converted into kcal/mol by multiplying the eV value by 23.061.
  • the average distance between molecules in amorphous solid is expressed by the following equation, assuming that the molecules in the amorphous solid state are sufficiently uniformly distributed.
  • V is the volume of the amorphous solid
  • N is the number of molecules in the amorphous solid.
  • the molecular dynamics simulation was performed by arranging a certain number [128] of single molecules in a unit cell with a periodic repetition boundary condition (PBC), so the volume and number of molecules in the above equation are the volume in the PBC area, respectively ( It can be set with the volume volume; Bulk volume) and the number of molecules present in it [128].
  • PBC periodic repetition boundary condition
  • the charge mobility for a uniform medium can be obtained from the analytical solution of the master equation according to the effective medium approximation, and the equation is It is expressed as
  • the charge mobility has an exponential decay proportional to the intermolecular distance, and the shorter the intermolecular distance, the higher the charge mobility.
  • Density of the highest occupied molecular orbital states obtains an amorphous solid structure in an equilibrium state through molecular dynamics simulation. After that, a single molecule in the final state is extracted and the HOMO level of each molecule is calculated by proceeding to single-point energy (SPE) calculation. The calculated HOMO levels are plotted on a histogram to obtain a HOMO distribution, and the distribution is fitted with a Gaussian function to obtain a median value and a full width at half maximum value.
  • HOMO and LUMO levels of each molecule also exist in a Gaussian distribution instead of a single value, and in particular, the HOMO level distribution is defined as Density of the highest occupied molecular orbital states (HOMO DOS). Therefore, the HOMO level of a molecule in an amorphous solid state is defined as the full-width at half-maximum (FWHM) of normalized HOMO DOS and the median value (see FIG. 5).
  • FWHM full-width at half-maximum
  • CTR charge transfer rate
  • ⁇ G the site energy difference (SED)
  • k B the Boltzmann constant
  • T the absolute temperature
  • ⁇ G approximately corresponds to the difference in ionization potential of each molecule, which can be expressed as the difference in absolute value of the HOMO level of each molecule according to Koopmans' theorem.
  • the width of the overlapping region has a minimum value of 0 and a maximum value of 1, and it can be seen that the charge injection characteristics between different layers improve as this value increases.
  • the wider the full width at half maximum of DOS the wider the overlapping area with other layers, so the injection characteristics are advantageous.
  • Sub 1 An example of Sub 1 is as follows, but is not limited thereto.
  • Table 1 below shows FD-MS (Field Desorption-Mass Spectrometry) values of some compounds belonging to Sub 1.
  • Sub 2 of Scheme 1 may be synthesized as shown in Scheme 2 below, but is not limited thereto.
  • the Sub 2-I may be synthesized by Reaction Scheme 3 below, but is not limited thereto.
  • Sub 2-I-34 (20 g, 53.6 mmol) to Sub 2-II-34 (9.5 g, 56.3 mmol), Pd 2 (dba) 3 (0.03 equiv), P( t -Bu) 3 (0.06 equiv) , NaO t -Bu (3 equivalents), and Toluene (550 ml) were added, and 19.3 g of Sub 2-34 (yield: 71%) was obtained using the Sub 2-1 synthesis method.
  • Sub 2-I-53 (20 g, 46.4 mmol) to Sub 2-II-53 (13.2 g, 46.4 mmol), Pd 2 (dba) 3 (0.03 equiv), P( t -Bu) 3 (0.06 equiv) , NaO t -Bu (3 equivalents), and Toluene (235 ml) were added, and 21.8 g of Sub 2-53 (yield: 69%) was obtained using the Sub 2-1 synthesis method.
  • Sub 2-I-87 (20 g, 63.5 mmol) to Sub 2-II-87 (9.5 g, 63.5 mmol), Pd 2 (dba) 3 (0.03 equiv), P( t -Bu) 3 (0.06 equiv) , NaO t -Bu (3 equivalents), and Toluene (320 ml) were added, and 32.0 g of Sub 2-87 (yield: 74%) was obtained using the Sub 2-1 synthesis method.
  • Sub 2-I-93 (20 g, 53.6 mmol) to Sub 2-II-93 (10.0 g, 53.6 mmol), Pd 2 (dba) 3 (0.03 eq.), P( t -Bu) 3 (0.06 eq.) , NaO t -Bu (3 equivalents), and Toluene (270 ml) were added, and 20.2 g of Sub 2-93 (yield: 72%) was obtained using the Sub 2-1 synthesis method.
  • the compound belonging to Sub 2 may be, but is not limited to, the following compounds, and Table 2 below shows the FD-MS values of the compounds belonging to Sub 2.
  • Table 3 shows the FD-MS values of some compounds belonging to Final Product.
  • CBP 4,4'-N,N'-dicarbazole-biphenyl
  • Ir(ppy)3 tris(2-phenylpyridine)-iridium
  • BAlq (1,1'-biphenyl-4-olato)bis(2-methyl-8-quinolinolato)aluminum
  • BAlq (1,1'-biphenyl-4-olato)bis(2-methyl-8-quinolinolato)aluminum
  • BAlq3 Tris (8-quinolinol) aluminum
  • Alq3 Tris (8-quinolinol) aluminum
  • LiF was deposited to a thickness of 0.2 nm to form an electron injection layer, and then Al was deposited to a thickness of 150 nm to form a cathode, thereby manufacturing an organic light emitting device.
  • An organic electroluminescent device was manufactured in the same manner as in Example 1, except that the compound of the present invention shown in Table 4 was used instead of the compound P-1 of the present invention as a material for the hole transport layer.
  • NPB N,N'-Bis(1-naphthalenyl)-N,N'-bis-phenyl-(1,1'-biphenyl)-4,4'-diamine
  • An organic light emitting device was manufactured in the same manner as in Example 1, except that one of Comparative Compounds 1 to 5 was used as the hole transport layer material.
  • Comparative Compound 1 to Comparative Compound 6 having a similar basic skeleton to the compound of the present invention It is possible to improve the driving voltage, luminous efficiency and lifetime of the organic electric element compared to the comparative examples using. That is, Comparative Examples 2 to 6 prepared using Comparative Compounds 1 to 5 in which an amine group is substituted in the fluorenyl group core rather than the device of Comparative Example 1 prepared using NPB, which is mainly used as a hole transport layer material.
  • Comparative Compounds 1 to 5 are the same as the compounds of the present invention in that the tertiary amine compound is substituted with a fluorenyl group as a core, but Comparative Compounds 1 to 5 have components 1 and 2 of Formula 1 of the present invention There is a difference in that the structure is not the same as or does not have R 1 and R 2 substituents at a specific substitution position based on structures 1 and 2 at the same time.
  • the compounds of Examples of the present invention present components 1 and 2 as substituents of the amine group on the fluorenyl group and the monoamine basic skeleton, and have substituents at specific substituent positions such as R 1 and R 2 in configurations 1 and 2, respectively. it is a compound
  • Table 5 shows data obtained by measuring quantum mechanical triplet bond dissociation energies (hereinafter, T1-BDE) of amorphous solid phase molecules of the compounds of the present invention and comparative compounds 1 to 5 having similar compound structures using molecular simulation. .
  • T1-BDE quantum mechanical triplet bond dissociation energies
  • the average distance between molecules of Compound P-1 of the present invention is smaller than the average distance between molecules of Comparative Compounds 1, 3 to 5, and moreover, Comparative Compounds having the same molecular weight as Compound P-1 It can be seen that the average distance between molecules is 9.956 ⁇ , which is smaller than that of 3.
  • R 1 and R 2 are substituted at specific positions in structures 1 and 2 in Formula 1 of the present invention, so that the intermolecular distance is closer than the comparative compounds when the compound of the present invention is in an amorphous solid state, thereby preventing charge transfer. Since it becomes relatively fast, it is judged that the efficiency and driving of the device are significantly improved because the charge balance of the entire device is improved.
  • the HOMO dos w of the compound P-1 of the present invention shows a value of 0.172 eV
  • the comparative compound 1 shows a value of 0.119 eV.
  • the higher the value the better the charge injection characteristics between different layers. it means.
  • R 1 is substituted at the Para position of Structure 1 and Ortho of Structure 2 It can be seen that having an optional structure in which R 2 is substituted at an ortho position can further improve the performance of the device.
  • the compound of the present invention may be applied to the light emitting auxiliary layer or applied to both the hole transport layer and the light emitting auxiliary layer.
  • the preferred use layer of the compound of the present invention is a hole transport layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 소자의 발광효율, 안정성 및 수명을 향상시킬 수 있는 신규 화합물 및 이를 이용한 유기전기소자, 그 전자 장치를 제공한다.

Description

유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
본 발명은 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치에 관한 것이다.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛 에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기전기소자는 통상 양극과 음극 및 이 사이에 유기물층을 포함하는 구조를 가진다. 여기서 유기물 층은 유기전기소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층 및 전자주입층 등으로 이루어질 수 있다.
유기전기소자에서 유기물층으로 사용되는 재료는 기능에 따라, 발광 재료와 전하 수송 재료, 예컨대 정공주입재료, 정공수송 재료, 전자수송 재료, 전자주입 재료 등으로 분류될 수 있다.
현재 휴대용 디스플레이 시장은 대면적 디스플레이로 그 크기가 증가하고 있는 추세이며, 이로 인해 기존 휴대용 디스플레이에서 요구하던 소비전력보다 더 큰 소비전력이 요구되고 있다. 따라서, 배터리라는 제한적인 전력 공급원을 가지고 있는 휴대용 디스플레이 입장에서는 소비전력이 매우 중요한 요소가 되었고, 효율과 수명 문제 또한 반드시 해결해야 되는 상황이다.
효율과 수명, 구동전압 등은 서로 연관이 있으며, 효율이 증가되면 상대적으로 구동전압이 떨어지고, 구동전압이 떨어지면서 구동시 발생하는 주울열(Joule heating)에 의한 유기물질의 결정화가 적어져 결과적으로 수명이 늘어나는 경향을 나타낸다.
하지만 상기 유기물층을 단순히 개선한다고 하여 효율을 극대화시킬 수는 없다. 왜냐하면 각 유기물층 간의 에너지 준위 및 T1 값, 물질의 고유특성(이동도, 계면특성 등) 등이 최적의 조합을 이루었을 때 긴 수명과 높은 효율을 동시에 달성할 수 있기 때문이다.
즉, 유기전기소자가 갖는 우수한 특징들을 충분히 발휘하기 위해서는 소자 내 유기물층을 이루는 물질, 예컨대 정공주입 물질, 정공수송 물질, 발광 물질, 전자수송 물질, 전자주입 물질, 발광보조층 물질 등이 안정하고 효율적인 재료에 의하여 뒷받침되는 것이 선행되어야 하나, 아직까지 안정되고 효율적인 유기전기소자용 유기물층 재료의 개발이 충분히 이루어지지 않은 상태이다. 따라서, 새로운 재료의 개발이 계속 요구되고 있다.
상술한 배경기술의 문제점을 해결하기 위해 본 발명은, 신규한 구조를 갖는 화합물을 밝혀내었으며, 또한 이 화합물을 유기전기소자에 적용시 소자의 구동전압, 효율 및 수명 등을 현저히 개선시킬 수 있다는 사실을 밝혀내었다.
이에 본 발명은 소자 제작 시 화합물의 안정성을 향상시킬 수 있으며, 정공수송층에 사용되어 전하 이동도를 미세하게 조절 가능한 신규한 화합물, 이를 이용한 유기전기소자 및 그 전자 장치를 제공하는 것을 목적으로 한다.
본 발명은 소자의 발광효율, 안정성 및 수명을 향상시킬 수 있는 화합물, 이를 이용한 유기전기소자 및 그 전자 장치를 제공하는 것을 목적으로 한다.
화학식 1
Figure PCTKR2022017265-appb-img-000001
본 발명에 따른 화합물을 이용함으로써 소자의 높은 발광효율, 낮은 구동전압 및 고내열성을 달성할 수 있으며, 소자의 색순도 및 수명을 크게 향상시킬 수 있다.
도 1 내지 도 3은 본 발명에 따른 유기전기발광소자의 예시도이다.
도 4는 본 발명의 일 측면에 따른 화학식을 나타낸다.
도 5는 HOMO DOS의 예시도이다.
도 6은 상태에너지 예시도이다.
100, 200, 300 : 유기전기소자 110 : 제1 전극
120 : 정공주입층 130 : 정공수송층
140 : 발광층 150 : 전자수송층
160 : 전자주입층 170 : 제2 전극
180 : 광효율 개선층 210 : 버퍼층
220 : 발광보조층 320 : 제1 정공주입층
330 : 제1 정공수송층 340 : 제1 발광층
350 : 제1 전자수송층 360 : 제1 전하생성층
361 : 제2 전하생성층 420 : 제2 정공주입층
430 : 제2 정공수송층 440 : 제2 발광층
450 : 제2 전자수송층 CGL : 전하생성층
ST1 : 제1 스택 ST2 : 제2 스택
이하, 본 발명의 실시예를 참조하여 상세하게 설명한다. 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
또한, 본 발명의 구성 요소를 설명하는 데 있어서, 제 1, 제 2, A, B, (a), (b) 등의 용어를 사용할 수 있다. 이러한 용어는 그 구성 요소를 다른 구성 요소와 구별하기 위한 것일 뿐, 그 용어에 의해 해당 구성 요소의 본질이나 차례 또는 순서 등이 한정되지 않는다. 어떤 구성 요소가 다른 구성 요소에 "연결", "결합" 또는 "접속"된다고 기재된 경우, 그 구성 요소는 그 다른 구성 요소에 직접적으로 연결되거나 또는 접속될 수 있지만, 각 구성 요소 사이에 또 다른 구성 요소가 "연결", "결합" 또는 "접속"될 수도 있다고 이해되어야 할 것이다.
본 명세서 및 첨부된 청구의 범위에서 사용된 바와 같이, 달리 언급하지 않는 한, 하기 용어의 의미는 하기와 같다:
본 명세서에서 사용된 용어 "할로" 또는 "할로겐"은 다른 설명이 없는 한 불소(F), 브롬(Br), 염소(Cl) 또는 요오드(I)이다.
본 발명에 사용된 용어 "알킬" 또는 "알킬기"는 다른 설명이 없는 한 1 내지 60의 탄소수의 단일결합을 가지며, 직쇄 알킬기, 분지쇄 알킬기, 사이클로알킬(지환족)기, 알킬-치환된 사이클로알킬기, 사이클로알킬-치환된 알킬기를 비롯한 포화 지방족 작용기의 라디칼을 의미한다.
본 발명에 사용된 용어 "알켄일기", "알케닐기" 또는 "알킨일기"는 다른 설명이 없는 한 각각 2 내지 60의 탄소수의 이중결합 또는 삼중결합을 가지며, 직쇄형 또는 측쇄형 사슬기를 포함하며, 여기에 제한되는 것은 아니다.
본 발명에 사용된 용어 "시클로알킬"은 다른 설명이 없는 한 3 내지 60의 탄소수를 갖는 고리를 형성하는 알킬을 의미하며, 여기에 제한되는 것은 아니다.
본 발명에 사용된 용어 "알콕실기", "알콕시기", 또는 "알킬옥시기"는 산소 라디칼이 부착된 알킬기를 의미하며, 다른 설명이 없는 한 1 내지 60의 탄소수를 가지며, 여기에 제한되는 것은 아니다.
본 발명에 사용된 용어 "아릴옥실기" 또는 "아릴옥시기"는 산소 라디칼이 부착된 아릴기를 의미하며, 다른 설명이 없는 한 6 내지 60의 탄소수를 가지며, 여기에 제한되는 것은 아니다.
본 발명에 사용된 용어 "아릴기" 및 "아릴렌기"는 다른 설명이 없는 한 각각 6 내지 60의 탄소수를 가지며, 이에 제한되는 것은 아니다. 본 발명에서 아릴기 또는 아릴렌기는 단일 고리 또는 다중 고리의 방향족을 의미하며, 이웃한 치환기가 결합 또는 반응에 참여하여 형성된 방향족 고리를 포함한다. 예컨대, 아릴기는 페닐기, 비페닐기, 플루오렌기, 스파이로플루오렌기일 수 있다.
접두사 "아릴" 또는 "아르"는 아릴기로 치환된 라디칼을 의미한다. 예를 들어 아릴알킬기는 아릴기로 치환된 알킬기이며, 아릴알켄일기는 아릴기로 치환된 알켄일기이며, 아릴기로 치환된 라디칼은 본 명세서에서 설명한 탄소수를 가진다.
또한 접두사가 연속으로 명명되는 경우 먼저 기재된 순서대로 치환기가 나열되는 것을 의미한다. 예를 들어, 아릴알콕시기의 경우 아릴기로 치환된 알콕시기를 의미하며, 알콕실카르보닐기의 경우 알콕실기로 치환된 카르보닐기를 의미하며, 또한 아릴카르보닐알켄일기의 경우 아릴카르보닐기로 치환된 알켄일기를 의미하며 여기서 아릴카르보닐기는 아릴기로 치환된 카르보닐기이다.
본 발명에 사용된 용어 "헤테로고리기"는 다른 설명이 없는 한 하나 이상의 헤테로원자를 포함하고, 2 내지 60의 탄소수를 가지며, 단일 고리 및 다중 고리 중 적어도 하나를 포함하며, 헤테로지방족 고리 및 헤테로방향족 고리를 포함한다. 이웃한 작용기가 결합하여 형성될 수도 있다.
본 명세서에서 사용된 용어 "헤테로원자"는 다른 설명이 없는 한 N, O, S, P 또는 Si를 나타낸다.
또한 "헤테로고리기"는 고리를 형성하는 탄소 대신 SO2를 포함하는 고리도 포함할 수 있다. 예컨대, "헤테로고리기"는 다음 화합물을 포함한다.
Figure PCTKR2022017265-appb-img-000002
본 발명에 사용된 용어 "플루오렌일기" 또는 "플루오렌일렌기"는 다른 설명이 없는 한 각각 하기 구조에서 R, R' 및 R"이 모두 수소인 1가 또는 2가 작용기를 의미하며, "치환된 플루오렌일기" 또는 "치환된 플루오렌일렌기"는 치환기 R, R', R" 중 적어도 하나가 수소 이외의 치환기인 것을 의미하며, R과 R'이 서로 결합되어 이들이 결합된 탄소와 함께 스파이로 화합물을 형성한 경우를 포함한다.
Figure PCTKR2022017265-appb-img-000003
본 발명에서 사용된 용어 "스파이로 화합물"은 '스파이로 연결(spiro union)'을 가지며, 스파이로 연결은 2개의 고리가 오로지 1개의 원자를 공유함으로써 이루어지는 연결을 의미한다. 이때, 두 고리에 공유된 원자를 '스파이로 원자'라 하며, 한 화합물에 들어 있는 스파이로 원자의 수에 따라 이들을 각각 '모노스파이로-', '다이스파이로-', '트라이스파이로-' 화합물이라 한다.
다른 설명이 없는 한, 본 발명에 사용된 용어 "지방족"은 탄소수 1 내지 60의 지방족 탄화수소를 의미하며, "지방족고리"는 탄소수 3 내지 60의 지방족 탄화수소 고리를 의미한다.
다른 설명이 없는 한, 본 발명에 사용된 용어 "고리"는 탄소수 3 내지 60의 지방족고리 또는 탄소수 6 내지 60의 방향족고리 또는 탄소수 2 내지 60의 헤테로고리 또는 이들의 조합으로 이루어진 융합 고리를 말하며, 포화 또는 불포화고리를 포함한다.
전술한 헤테로화합물 이외의 그 밖의 다른 헤테로화합물 또는 헤테로라디칼은 하나 이상의 헤테로원자를 포함하며, 여기에 제한되는 것은 아니다.
또한 명시적인 설명이 없는 한, 본 발명에서 사용된 용어 "치환 또는 비치환된"에서 "치환"은 중수소, 할로겐, 아미노기, 니트릴기, 니트로기, C1~C20의 알킬기, C1~C20의 알콕실기, C1~C20의 알킬아민기, C1~C20의 알킬티오펜기, C6~C20의 아릴티오펜기, C2~C20의 알켄일기, C2~C20의 알킨일기, C3~C20의 시클로알킬기, C6~C20의 아릴기, 중수소로 치환된 C6~C20의 아릴기, C8~C20의 아릴알켄일기, 실란기, 붕소기, 게르마늄기, 및 C2~C20의 헤테로고리기로 이루어진 군으로부터 선택되는 1개 이상의 치환기로 치환됨을 의미하며, 이들 치환기에 제한되는 것은 아니다.
또한 명시적인 설명이 없는 한, 본 발명에서 사용되는 화학식은 하기 화학식의 지수 정의에 의한 치환기 정의와 동일하게 적용된다.
Figure PCTKR2022017265-appb-img-000004
여기서, a가 0의 정수인 경우 치환기 R1은 부존재하며, a가 1의 정수인 경우 하나의 치환기 R1은 벤젠 고리를 형성하는 탄소 중 어느 하나의 탄소에 결합하며, a가 2 또는 3의 정수인 경우 각각 다음과 같이 결합하며 이때 R1은 서로 동일하거나 다를 수 있으며, a가 4 내지 6의 정수인 경우 이와 유사한 방식으로 벤젠 고리의 탄소에 결합하며, 한편 벤젠 고리를 형성하는 탄소에 결합된 수소의 표시는 생략한다.
Figure PCTKR2022017265-appb-img-000005
이하, 본 발명의 일 측면에 따른 화합물 및 이를 포함하는 유기전기소자에 대하여 설명한다.
본 발명은 하기 화학식 1로 표시되는 화합물을 제공한다.
화학식 1
Figure PCTKR2022017265-appb-img-000006
상기 화학식 1에서, 각 기호는 하기와 같이 정의될 수 있다.
1) R’ 및 R”은 서로 독립적으로 수소; C6~C60의 아릴기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; C3~C60의 지방족고리와 C6~C60의 방향족고리의 융합고리기; C1~C50의 알킬기; C2~C20의 알켄일기; C2~C20의 알킨일기; C1~C30의 알콕시기; 및 C6~C30의 아릴옥시기;로 이루어진 군에서 선택되며, 또는 R’ 및 R”은 서로 결합하여 스파이로 고리를 형성할 수 있다.
상기 R’ 및 R”이 아릴기인 경우, 바람직하게는 C6~C30의 아릴기, 더욱 바람직하게는 C6~C25의 아릴기, 예컨대 페닐, 바이페닐, 나프탈렌, 터페닐 등일 수 있다.
상기 R’ 및 R”이 헤테로고리기인 경우, 바람직하게는 C2~C30의 헤테로고리기, 더욱 바람직하게는 C2~C24의 헤테로고리기일 수 있으며, 예시적으로 피라진, 피리딘, 피리미도인돌, 5-페닐-5H-피리미도[5,4-b]인돌, 퀴나졸린, 벤조퀴나졸린, 카바졸, 다이벤조퀴나졸, 다이벤조퓨란, 다이벤조싸이오펜, 벤조싸이에노피리미딘, 벤조퓨로피리미딘, 페노싸이아진, 페닐페노싸이아진 등일 수 있다.
상기 R’ 및 R”이 융합고리기인 경우, 바람직하게는 C3~C30의 지방족고리와 C6~C30의 방향족고리의 융합고리기, 더욱 바람직하게는 C3~C24의 지방족고리와 C6~C24의 방향족고리의 융합고리기일 수 있다.
상기 R’ 및 R”이 알킬기인 경우, 바람직하게는 C1~C30의 알킬기일 수 있으며, 더욱 바람직하게는 C1~C24의 알킬기일 수 있다.
상기 R’ 및 R”이 알콕시기인 경우, 바람직하게는 C1~C24의 알콕시기일 수 있다.
상기 R’ 및 R”이 아릴옥시기인 경우, 바람직하게는 C6~C24의 아릴옥시기일 수 있다.
2) R1 및 R2는 서로 독립적으로 C6~C60의 아릴기; 플루오렌일기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; C3~C60의 지방족고리와 C6~C60의 방향족고리의 융합고리기; C1~C60의 알킬기; C2~C20의 알켄일기; C2~C20의 알킨일기; C1~C30의 알콕시기; C6~C30의 아릴옥시기; 및 C3~C60의 사이클로알킬기;로 이루어진 군에서 선택된다.
상기 R1 및 R2가 아릴기인 경우, 바람직하게는 C6~C30의 아릴기, 더욱 바람직하게는 C6~C25의 아릴기, 예컨대 페닐, 바이페닐, 나프탈렌, 터페닐 등일 수 있다.
상기 R1 및 R2가 헤테로고리기인 경우, 바람직하게는 C2~C30의 헤테로고리기, 더욱 바람직하게는 C2~C24의 헤테로고리기일 수 있으며, 예시적으로 피라진, 피리딘, 피리미도인돌, 5-페닐-5H-피리미도[5,4-b]인돌, 퀴나졸린, 벤조퀴나졸린, 카바졸, 다이벤조퀴나졸, 다이벤조퓨란, 다이벤조싸이오펜, 벤조싸이에노피리미딘, 벤조퓨로피리미딘, 페노싸이아진, 페닐페노싸이아진 등일 수 있다.
상기 R1 및 R2가 융합고리기인 경우, 바람직하게는 C3~C30의 지방족고리와 C6~C30의 방향족고리의 융합고리기, 더욱 바람직하게는 C3~C24의 지방족고리와 C6~C24의 방향족고리의 융합고리기일 수 있다.
상기 R1 및 R2가 알킬기인 경우, 바람직하게는 C1~C30의 알킬기일 수 있으며, 더욱 바람직하게는 C1~C24의 알킬기일 수 있다.
상기 R1 및 R2가 알콕시기인 경우, 바람직하게는 C1~C24의 알콕시기일 수 있다.
상기 R1 및 R2가 아릴옥시기인 경우, 바람직하게는 C6~C24의 아릴옥시기일 수 있다.
상기 R1 및 R2가 사이클로알킬기인 경우, 바람직하게는 C3~C30의 사이클로알킬기, 더욱 바람직하게는 C3~C24의 사이클로알킬기일 수 있다.
3) Ra 및 Rb는 각각 동일하거나 상이하고, 서로 독립적으로 수소; 중수소; 할로겐; C6~C60의 아릴기; 플루오렌일기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; C3~C60의 지방족고리와 C6~C60의 방향족고리의 융합고리기; C1~C50의 알킬기; C2~C20의 알켄일기; C2~C20의 알킨일기; C1~C30의 알콕시기; C6~C30의 아릴옥시기; 및 C3~C60의 사이클로알킬기;로 이루어진 군에서 선택되며, 또는 이웃한 복수의 Ra끼리 혹은 복수의 Rb끼리 서로 결합하여 고리를 형성할 수 있다.
상기 Ra 및 Rb가 아릴기인 경우, 바람직하게는 C6~C30의 아릴기, 더욱 바람직하게는 C6~C25의 아릴기, 예컨대 페닐, 바이페닐, 나프탈렌, 터페닐 등일 수 있다.
상기 Ra 및 Rb가 헤테로고리기인 경우, 바람직하게는 C2~C30의 헤테로고리기, 더욱 바람직하게는 C2~C24의 헤테로고리기일 수 있으며, 예시적으로 피라진, 피리딘, 피리미도인돌, 5-페닐-5H-피리미도[5,4-b]인돌, 퀴나졸린, 벤조퀴나졸린, 카바졸, 다이벤조퀴나졸, 다이벤조퓨란, 다이벤조싸이오펜, 벤조싸이에노피리미딘, 벤조퓨로피리미딘, 페노싸이아진, 페닐페노싸이아진 등일 수 있다.
상기 Ra 및 Rb가 융합고리기인 경우, 바람직하게는 C3~C30의 지방족고리와 C6~C30의 방향족고리의 융합고리기, 더욱 바람직하게는 C3~C24의 지방족고리와 C6~C24의 방향족고리의 융합고리기일 수 있다.
상기 Ra 및 Rb가 알킬기인 경우, 바람직하게는 C1~C30의 알킬기일 수 있으며, 더욱 바람직하게는 C1~C24의 알킬기일 수 있다.
상기 Ra 및 Rb가 알콕시기인 경우, 바람직하게는 C1~C24의 알콕시기일 수 있다.
상기 Ra 및 Rb가 아릴옥시기인 경우, 바람직하게는 C6~C24의 아릴옥시기일 수 있다.
상기 Ra 및 Rb가 사이클로알킬기인 경우, 바람직하게는 C3~C30의 사이클로알킬기, 더욱 바람직하게는 C3~C24의 사이클로알킬기일 수 있다.
4) m은 0 내지 3의 정수이며, n은 0 내지 4의 정수이고,
5) 여기서, 상기 아릴기, 헤테로고리기, 플루오렌일기, 지방족고리기, 융합고리기, 알킬기, 알켄일기, 알킨일기, 알콕시기, 아릴옥시기 및 사이클로알킬기는 각각 중수소; 할로겐; 실란기; 실록산기; 붕소기; 게르마늄기; 시아노기; 니트로기; C1~C20의 알킬싸이오기; C1~C20의 알콕시기; C1~C20의 알킬기; C2~C20의 알켄일기; C2~C20의 알킨일기; C6~C20의 아릴기; 중수소로 치환된 C6~C20의 아릴기; 플루오렌일기; C2~C20의 헤테로고리기; C3~C20의 시클로알킬기; C7~C20의 아릴알킬기; 및 C8~C20의 아릴알켄일기;로 이루어진 군에서 선택된 하나 이상의 치환기로 더욱 치환될 수 있으며, 또한 이들 치환기들은 서로 결합하여 고리를 형성할 수도 있으며, 여기서 '고리'란 C3~C60의 지방족고리 또는 C6~C60의 방향족고리 또는 C2~C60의 헤테로고리 또는 이들의 조합으로 이루어진 융합 고리를 말하며, 포화 또는 불포화 고리를 포함한다.
또한, 본 발명은 상기 화학식 1로 나타낸 화합물이 하기 화학식들 중 어느 하나로 표시되는 화합물을 제공한다.
화학식 2-1 화학식 2-2 화학식 2-3
Figure PCTKR2022017265-appb-img-000007
화학식 3-1 화학식 3-2 화학식 3-3
Figure PCTKR2022017265-appb-img-000008
화학식 4-1 화학식 4-2 화학식 4-3
Figure PCTKR2022017265-appb-img-000009
화학식 5-1 화학식 5-2 화학식 5-3
Figure PCTKR2022017265-appb-img-000010
{상기 화학식 2-1 내지 화학식 2-3, 화학식 3-1 내지 화학식 3-3, 화학식 4-1 내지 화학식 4-3 및 화학식 5-1 내지 화학식 5-3에서,
1) R1, R2, Ra, Rb, m 및 n은 상기에서 정의된 바와 동일하며,
2) X는 O 또는 S이고,
2) Rc 및 Rd는 상기 Ra의 정의와 동일하며,
3) o 및 p는 서로 독립적으로 0 내지 5의 정수이고, q 및 r은 서로 독립적으로 0 내지 4의 정수이다.}
또한, 본 발명은 상기 Ra 및 Rb는 서로 독립적으로 수소; 또는 중수소;인 화합물을 제공한다.
또한, 본 발명은 상기 R1 및 R2는 서로 독립적으로 C6~C25의 아릴기인 화합물을 제공한다.
또한, 본 발명은 상기 화학식 1로 나타낸 화합물이 하기 화학식들 중 어느 하나로 표시되는 화합물을 제공한다.
화학식 8-1 화학식 8-2 화학식 8-3
Figure PCTKR2022017265-appb-img-000011
화학식 9-1 화학식 9-2 화학식 9-3
Figure PCTKR2022017265-appb-img-000012
화학식 10-1 화학식 10-2 화학식 10-3
Figure PCTKR2022017265-appb-img-000013
화학식 11-1 화학식 11-2 화학식 11-3
Figure PCTKR2022017265-appb-img-000014
{상기 화학식 8-1 내지 화학식 8-3, 화학식 9-1 내지 화학식 9-3, 화학식 10-1 내지 화학식 10-3 및 화학식 11-1 내지 화학식 11-3에서, R1, R2 및 X는 상기에서 정의된 바와 동일하다.}
또한, 본 발명은 상기 R1 및 R2가 모두 C6의 아릴기인 화합물을 제공한다.
또한, 본 발명은 화학식 1로 표시되는 화합물이 정공수송영역의 정공수송층(HTL)용인 것을 특징으로 한다.
구체적으로, 상기 화학식 1로 표시되는 화합물은 하기 화합물들 중 어느 하나일 수 있다.
Figure PCTKR2022017265-appb-img-000015
Figure PCTKR2022017265-appb-img-000016
Figure PCTKR2022017265-appb-img-000017
Figure PCTKR2022017265-appb-img-000018
Figure PCTKR2022017265-appb-img-000019
Figure PCTKR2022017265-appb-img-000020
Figure PCTKR2022017265-appb-img-000021
Figure PCTKR2022017265-appb-img-000022
Figure PCTKR2022017265-appb-img-000023
Figure PCTKR2022017265-appb-img-000024
Figure PCTKR2022017265-appb-img-000025
Figure PCTKR2022017265-appb-img-000026
Figure PCTKR2022017265-appb-img-000027
Figure PCTKR2022017265-appb-img-000028
Figure PCTKR2022017265-appb-img-000029
Figure PCTKR2022017265-appb-img-000030
Figure PCTKR2022017265-appb-img-000031
Figure PCTKR2022017265-appb-img-000032
Figure PCTKR2022017265-appb-img-000033
Figure PCTKR2022017265-appb-img-000034
Figure PCTKR2022017265-appb-img-000035
Figure PCTKR2022017265-appb-img-000036
Figure PCTKR2022017265-appb-img-000037
Figure PCTKR2022017265-appb-img-000038
Figure PCTKR2022017265-appb-img-000039
Figure PCTKR2022017265-appb-img-000040
Figure PCTKR2022017265-appb-img-000041
Figure PCTKR2022017265-appb-img-000042
Figure PCTKR2022017265-appb-img-000043
Figure PCTKR2022017265-appb-img-000044
Figure PCTKR2022017265-appb-img-000045
Figure PCTKR2022017265-appb-img-000046
Figure PCTKR2022017265-appb-img-000047
Figure PCTKR2022017265-appb-img-000048
Figure PCTKR2022017265-appb-img-000049
Figure PCTKR2022017265-appb-img-000050
Figure PCTKR2022017265-appb-img-000051
Figure PCTKR2022017265-appb-img-000052
Figure PCTKR2022017265-appb-img-000053
Figure PCTKR2022017265-appb-img-000054
Figure PCTKR2022017265-appb-img-000055
Figure PCTKR2022017265-appb-img-000056
Figure PCTKR2022017265-appb-img-000057
Figure PCTKR2022017265-appb-img-000058
Figure PCTKR2022017265-appb-img-000059
Figure PCTKR2022017265-appb-img-000060
Figure PCTKR2022017265-appb-img-000061
Figure PCTKR2022017265-appb-img-000062
또한, 다른 측면에서 본 발명은 양극, 음극 및 상기 양극과 음극 사이에 형성된 유기물층을 포함하는 유기전기소자에 있어서, 상기 유기물층은 상기 화학식 1로 표시되는 단독화합물 또는 2 이상의 화합물을 포함하는 것을 유기전기소자를 제공한다.
또한, 본 발명은 상기 유기물층으로 정공주입층, 정공수송층, 발광보조층, 발광층, 전자수송보조층, 전자수송층 및 전자주입층 중 적어도 하나를 포함하는 유기전기소자를 제공한다.
또한, 본 발명은 상기 발광층으로 하기 화학식 12 내지 화학식 14로 표시되는 화합물 중 적어도 하나를 포함하는 유기전기소자를 제공한다.
화학식 12 화학식 13
Figure PCTKR2022017265-appb-img-000063
Figure PCTKR2022017265-appb-img-000064
화학식 14
Figure PCTKR2022017265-appb-img-000065
상기 화학식 12 내지 화학식 14에서, 각 기호는 하기와 같이 정의될 수 있다.
1) X1, X2 및 X3은 서로 독립적으로 C(R3) 또는 N이며, 단, X1, X2 및 X3 중 적어도 2개는 N이고,
2) R3은 수소; 중수소; 할로겐; C6~C60의 아릴기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; C3~C60의 지방족고리와 C6~C60의 방향족고리의 융합고리기; C1~C50의 알킬기; C2~C20의 알켄일기; C2~C20의 알킨일기; C1~C30의 알콕시기; 및 C6~C30의 아릴옥시기;로 이루어진 군에서 선택된다.
상기 R3이 아릴기인 경우, 바람직하게는 C6~C30의 아릴기, 더욱 바람직하게는 C6~C25의 아릴기, 예컨대 페닐, 바이페닐, 나프탈렌, 터페닐 등일 수 있다.
상기 R3이 헤테로고리기인 경우, 바람직하게는 C2~C30의 헤테로고리기, 더욱 바람직하게는 C2~C24의 헤테로고리기일 수 있고, 예시적으로 피라진, 싸이오펜, 피리딘, 피리미도인돌, 5-페닐-5H-피리미도[5,4-b]인돌, 퀴나졸린, 벤조퀴나졸린, 카바졸, 다이벤조퀴나졸, 다이벤조퓨란, 벤조싸이에노피리미딘, 벤조퓨로피리미딘, 페노싸이아진, 페닐페노싸이아진 등일 수 있다.
상기 R3이 융합고리기인 경우, 바람직하게는 C3~C30의 지방족고리와 C6~C30의 방향족고리의 융합고리기, 더욱 바람직하게는 C3~C24의 지방족고리와 C6~C24의 방향족고리의 융합고리기일 수 있다.
상기 R3이 알킬기인 경우, 바람직하게는 C1~C30의 알킬기일 수 있으며, 더욱 바람직하게는 C1~C24의 알킬기일 수 있다.
상기 R3이 알콕실기인 경우, 바람직하게는 C1~C24의 알콕실기일 수 있다.
상기 R3이 아릴옥시기인 경우, 바람직하게는 C6~C24의 아릴옥시기일 수 있다.
3) Y 및 Y'은 서로 독립적으로 O, S, CReRf 또는 N-L'-Ar8이고,
4) W는 O, N, S, CReRf 또는 N-L'-Ar8이며,
5) 상기 Re 및 Rf는 서로 독립적으로 수소; 중수소; C6~C60의 아릴기; 플루오렌일기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; C3~C60의 지방족고리와 C6~C60의 방향족고리의 융합고리기; C1~C50의 알킬기; C2~C20의 알켄일기; C2~C20의 알킨일기; C1~C30의 알콕시기; 및 C6~C30의 아릴옥시기;로 이루어진 군에서 선택되고, 또는 Re 및 Rf는 서로 결합하여 스파이로 고리를 형성할 수 있다.
상기 Re 및 Rf가 아릴기인 경우, 바람직하게는 C6~C30의 아릴기, 더욱 바람직하게는 C6~C25의 아릴기, 예컨대 페닐, 바이페닐, 나프탈렌, 터페닐 등일 수 있다.
상기 Re 및 Rf가 헤테로고리기인 경우, 바람직하게는 C2~C30의 헤테로고리기, 더욱 바람직하게는 C2~C24의 헤테로고리기일 수 있고, 예시적으로 피라진, 싸이오펜, 피리딘, 피리미도인돌, 5-페닐-5H-피리미도[5,4-b]인돌, 퀴나졸린, 벤조퀴나졸린, 카바졸, 다이벤조퀴나졸, 다이벤조퓨란, 벤조싸이에노피리미딘, 벤조퓨로피리미딘, 페노싸이아진, 페닐페노싸이아진 등일 수 있다.
상기 Re 및 Rf가 융합고리기인 경우, 바람직하게는 C3~C30의 지방족고리와 C6~C30의 방향족고리의 융합고리기, 더욱 바람직하게는 C3~C24의 지방족고리와 C6~C24의 방향족고리의 융합고리기일 수 있다.
상기 Re 및 Rf가 알킬기인 경우, 바람직하게는 C1~C30의 알킬기일 수 있으며, 더욱 바람직하게는 C1~C24의 알킬기일 수 있다.
상기 Re 및 Rf가 알콕실기인 경우, 바람직하게는 C1~C24의 알콕실기일 수 있다.
상기 Re 및 Rf가 아릴옥시기인 경우, 바람직하게는 C6~C24의 아릴옥시기일 수 있다.
6) L1, L2, L3, L4, L5, L6 및 상기 L'은 서로 독립적으로 단일결합; C6~C60의 아릴렌기; 및 O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기;로 이루어진 군에서 선택된다.
상기 L1, L2, L3, L4, L5, L6 및 L'이 아릴렌기인 경우, 바람직하게는 C6~C30의 아릴렌기, 더욱 바람직하게는 C6~C24의 아릴렌기일 수 있으며, 예컨대, 페닐렌, 바이페닐, 나프탈렌, 터페닐 등일 수 있다.
상기 L1, L2, L3, L4, L5, L6 및 L'이 헤테로고리기인 경우, 바람직하게는 C2~C30의 헤테로고리기, 더욱 바람직하게는 C2~C24의 헤테로고리기일 수 있고, 예시적으로 피라진, 싸이오펜, 피리딘, 피리미도인돌, 5-페닐-5H-피리미도[5,4-b]인돌, 퀴나졸린, 벤조퀴나졸린, 카바졸, 다이벤조퀴나졸, 다이벤조퓨란, 벤조싸이에노피리미딘, 벤조퓨로피리미딘, 페노싸이아진, 페닐페노싸이아진 등일 수 있다.
7) Ar3, Ar4, Ar5, Ar6, Ar7 및 상기 Ar8은 서로 독립적으로 C6~C60의 아릴기; 플루오렌일기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; C3~C60의 지방족고리와 C6~C60의 방향족고리의 융합고리기; C1~C60의 알킬기; C2~C20의 알켄일기; C2~C20의 알킨일기; C1~C30의 알콕시기; 및 C6~C30의 아릴옥시기;로 이루어진 군에서 선택된다.
상기 Ar3, Ar4, Ar5, Ar6, Ar7 및 Ar8이 아릴기인 경우, 바람직하게는 C6~C30의 아릴기, 더욱 바람직하게는 C6~C25의 아릴기, 예컨대 페닐, 바이페닐, 나프탈렌, 터페닐 등일 수 있다.
상기 Ar3, Ar4, Ar5, Ar6, Ar7 및 Ar8이 헤테로고리기인 경우, 바람직하게는 C2~C30의 헤테로고리기, 더욱 바람직하게는 C2~C24의 헤테로고리기일 수 있고, 예시적으로 피라진, 싸이오펜, 피리딘, 피리미도인돌, 5-페닐-5H-피리미도[5,4-b]인돌, 퀴나졸린, 벤조퀴나졸린, 카바졸, 다이벤조퀴나졸, 다이벤조퓨란, 벤조싸이에노피리미딘, 벤조퓨로피리미딘, 페노싸이아진, 페닐페노싸이아진 등일 수 있다.
상기 Ar3, Ar4, Ar5, Ar6, Ar7 및 Ar8이 융합고리기인 경우, 바람직하게는 C3~C30의 지방족고리와 C6~C30의 방향족고리의 융합고리기, 더욱 바람직하게는 C3~C24의 지방족고리와 C6~C24의 방향족고리의 융합고리기일 수 있다.
상기 Ar3, Ar4, Ar5, Ar6, Ar7 및 Ar8이 알킬기인 경우, 바람직하게는 C1~C30의 알킬기일 수 있으며, 더욱 바람직하게는 C1~C24의 알킬기일 수 있다.
상기 Ar3, Ar4, Ar5, Ar6, Ar7 및 Ar8이 알콕실기인 경우, 바람직하게는 C1~C24의 알콕실기일 수 있다.
상기 Ar3, Ar4, Ar5, Ar6, Ar7 및 Ar8이 아릴옥시기인 경우, 바람직하게는 C6~C24의 아릴옥시기일 수 있다.
8) A환, B환 및 C환은 서로 독립적으로 C6~C14의 아릴기;이고, 또는 A환, B환 및 C환은 R1로 치환될 수 있으며,
9) E환, F환, G환 및 H환은 서로 독립적으로 C6~C20의 아릴기; 또는 C2~C20의 헤테로고리기;이고, 또는 E환, F환, G환 및 H환은 R2로 치환될 수 있으며,
10) 상기 R1 및 R2는 서로 독립적으로 수소; 중수소; 할로겐; 시아노기; C6~C60의 아릴기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; C3~C60의 지방족고리와 C6~C60의 방향족고리의 융합고리기; C1~C50의 알킬기; C2~C20의 알켄일기; C2~C20의 알킨일기; C1~C30의 알콕시기; C6~C30의 아릴옥시기; 및 -L"-N(Rm)(Rn);으로 이루어진 군에서 선택되고, 이웃한 기끼리 결합하여 고리를 형성할 수 있다.
상기 R1 및 R2가 아릴기인 경우, 바람직하게는 C6~C30의 아릴기, 더욱 바람직하게는 C6~C25의 아릴기, 예컨대 페닐, 바이페닐, 나프탈렌, 터페닐 등일 수 있다.
상기 R1 및 R2가 헤테로고리기인 경우, 바람직하게는 C2~C30의 헤테로고리기, 더욱 바람직하게는 C2~C24의 헤테로고리기일 수 있고, 예시적으로 피라진, 싸이오펜, 피리딘, 피리미도인돌, 5-페닐-5H-피리미도[5,4-b]인돌, 퀴나졸린, 벤조퀴나졸린, 카바졸, 다이벤조퀴나졸, 다이벤조퓨란, 벤조싸이에노피리미딘, 벤조퓨로피리미딘, 페노싸이아진, 페닐페노싸이아진 등일 수 있다.
상기 R1 및 R2가 융합고리기인 경우, 바람직하게는 C3~C30의 지방족고리와 C6~C30의 방향족고리의 융합고리기, 더욱 바람직하게는 C3~C24의 지방족고리와 C6~C24의 방향족고리의 융합고리기일 수 있다.
상기 R1 및 R2가 알킬기인 경우, 바람직하게는 C1~C30의 알킬기일 수 있으며, 더욱 바람직하게는 C1~C24의 알킬기일 수 있다.
상기 R1 및 R2가 알콕실기인 경우, 바람직하게는 C1~C24의 알콕실기일 수 있다.
상기 R1 및 R2가 아릴옥시기인 경우, 바람직하게는 C6~C24의 아릴옥시기일 수 있다.
11) 상기 L"은 단일결합; C6~C60의 아릴렌기; 플루오렌일렌기; C3~C60의 지방족고리기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; 및 이들의 조합으로 이루어진 군에서 선택되고, 상기 Rm 및 Rn은 서로 독립적으로 C6~C60의 아릴기; 플루오렌일기; C3~C60의 지방족고리기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; 및 이들의 조합으로 이루어진 군에서 선택된다.
상기 L"이 아릴렌기인 경우, 바람직하게는 C6~C30의 아릴렌기, 더욱 바람직하게는 C6~C24의 아릴렌기일 수 있으며, 예컨대, 페닐렌, 바이페닐, 나프탈렌, 터페닐 등일 수 있다.
상기 L"이 지방족고리기인 경우, 바람직하게는 C3~C30의 지방족고리기, 더욱 바람직하게는 C3~C24의 지방족고리기일 수 있다.
상기 L"이 헤테로고리기인 경우, 바람직하게는 C2~C30의 헤테로고리기, 더욱 바람직하게는 C2~C24의 헤테로고리기일 수 있고, 예시적으로 피라진, 싸이오펜, 피리딘, 피리미도인돌, 5-페닐-5H-피리미도[5,4-b]인돌, 퀴나졸린, 벤조퀴나졸린, 카바졸, 다이벤조퀴나졸, 다이벤조퓨란, 벤조싸이에노피리미딘, 벤조퓨로피리미딘, 페노싸이아진, 페닐페노싸이아진 등일 수 있다.
상기 Rm 및 Rn이 아릴기인 경우, 바람직하게는 C6~C30의 아릴기, 더욱 바람직하게는 C6~C25의 아릴기, 예컨대 페닐, 바이페닐, 나프탈렌, 터페닐 등일 수 있다.
상기 Rm 및 Rn이 지방족고리기인 경우, 바람직하게는 C3~C30의 지방족고리기, 더욱 바람직하게는 C3~C24의 지방족고리기일 수 있다.
상기 Rm 및 Rn이 헤테로고리기인 경우, 바람직하게는 C2~C30의 헤테로고리기, 더욱 바람직하게는 C2~C24의 헤테로고리기일 수 있고, 예시적으로 피라진, 싸이오펜, 피리딘, 피리미도인돌, 5-페닐-5H-피리미도[5,4-b]인돌, 퀴나졸린, 벤조퀴나졸린, 카바졸, 다이벤조퀴나졸, 다이벤조퓨란, 벤조싸이에노피리미딘, 벤조퓨로피리미딘, 페노싸이아진, 페닐페노싸이아진 등일 수 있다.
12) b 및 c는 서로 독립적으로 0 또는 1이고, 단, b+c≥1이며,
13) 여기서, 상기 아릴기, 아릴렌기, 헤테로고리기, 플루오렌일기, 플루오렌일렌기, 지방족고리기, 융합고리기, 알킬기, 알켄일기, 알콕실기 및 아릴옥시기는 각각 중수소; 할로겐; 실란기; 실록산기; 붕소기; 게르마늄기; 시아노기; 니트로기; C1~C20의 알킬싸이오기; C1~C20의 알콕시기; C1~C20의 알킬기; C2~C20의 알켄일기; C2~C20의 알킨일기; C6~C20의 아릴기; 중수소로 치환된 C6~C20의 아릴기; 플루오렌일기; C2~C20의 헤테로고리기; C3~C20의 시클로알킬기; C7~C20의 아릴알킬기; 및 C8~C20의 아릴알켄일기;로 이루어진 군에서 선택된 하나 이상의 치환기로 더욱 치환될 수 있으며, 또한 이들 치환기들은 서로 결합하여 고리를 형성할 수도 있으며, 여기서 '고리'란 C3~C60의 지방족고리 또는 C6~C60의 방향족고리 또는 C2~C60의 헤테로고리 또는 이들의 조합으로 이루어진 융합 고리를 말하며, 포화 또는 불포화 고리를 포함한다.
또한, 본 발명은 상기 화학식 1로 나타낸 화합물이 하기 화학식 2-1 내지 화학식 2-3 중 어느 하나로 표시되는 것을 유기전기소자를 제공한다.
화학식 2-1 화학식 2-2 화학식 2-3
Figure PCTKR2022017265-appb-img-000066
{상기 화학식 2-1 내지 화학식 2-3에서,
1) A환, C환, Y, Y', b, c, Ar3, L1 및 R1은 상기에서 정의된 바와 동일하며,
2) a는 0 내지 2의 정수이다.}
구체적으로, 상기 화학식 12로 표시되는 화합물은 하기 화합물들 중 어느 하나일 수 있다.
Figure PCTKR2022017265-appb-img-000067
Figure PCTKR2022017265-appb-img-000068
Figure PCTKR2022017265-appb-img-000069
Figure PCTKR2022017265-appb-img-000070
Figure PCTKR2022017265-appb-img-000071
Figure PCTKR2022017265-appb-img-000072
Figure PCTKR2022017265-appb-img-000073
Figure PCTKR2022017265-appb-img-000074
Figure PCTKR2022017265-appb-img-000075
Figure PCTKR2022017265-appb-img-000076
Figure PCTKR2022017265-appb-img-000077
Figure PCTKR2022017265-appb-img-000078
Figure PCTKR2022017265-appb-img-000079
Figure PCTKR2022017265-appb-img-000080
Figure PCTKR2022017265-appb-img-000081
Figure PCTKR2022017265-appb-img-000082
Figure PCTKR2022017265-appb-img-000083
Figure PCTKR2022017265-appb-img-000084
Figure PCTKR2022017265-appb-img-000085
Figure PCTKR2022017265-appb-img-000086
Figure PCTKR2022017265-appb-img-000087
Figure PCTKR2022017265-appb-img-000088
Figure PCTKR2022017265-appb-img-000089
Figure PCTKR2022017265-appb-img-000090
Figure PCTKR2022017265-appb-img-000091
Figure PCTKR2022017265-appb-img-000092
Figure PCTKR2022017265-appb-img-000093
Figure PCTKR2022017265-appb-img-000094
Figure PCTKR2022017265-appb-img-000095
Figure PCTKR2022017265-appb-img-000096
Figure PCTKR2022017265-appb-img-000097
Figure PCTKR2022017265-appb-img-000098
Figure PCTKR2022017265-appb-img-000099
Figure PCTKR2022017265-appb-img-000100
Figure PCTKR2022017265-appb-img-000101
Figure PCTKR2022017265-appb-img-000102
Figure PCTKR2022017265-appb-img-000103
Figure PCTKR2022017265-appb-img-000104
Figure PCTKR2022017265-appb-img-000105
Figure PCTKR2022017265-appb-img-000106
Figure PCTKR2022017265-appb-img-000107
Figure PCTKR2022017265-appb-img-000108
Figure PCTKR2022017265-appb-img-000109
Figure PCTKR2022017265-appb-img-000110
Figure PCTKR2022017265-appb-img-000111
Figure PCTKR2022017265-appb-img-000112
Figure PCTKR2022017265-appb-img-000113
Figure PCTKR2022017265-appb-img-000114
Figure PCTKR2022017265-appb-img-000115
Figure PCTKR2022017265-appb-img-000116
Figure PCTKR2022017265-appb-img-000117
Figure PCTKR2022017265-appb-img-000118
Figure PCTKR2022017265-appb-img-000119
Figure PCTKR2022017265-appb-img-000120
Figure PCTKR2022017265-appb-img-000121
Figure PCTKR2022017265-appb-img-000122
Figure PCTKR2022017265-appb-img-000123
Figure PCTKR2022017265-appb-img-000124
Figure PCTKR2022017265-appb-img-000125
Figure PCTKR2022017265-appb-img-000126
Figure PCTKR2022017265-appb-img-000127
Figure PCTKR2022017265-appb-img-000128
Figure PCTKR2022017265-appb-img-000129
Figure PCTKR2022017265-appb-img-000130
Figure PCTKR2022017265-appb-img-000131
Figure PCTKR2022017265-appb-img-000132
Figure PCTKR2022017265-appb-img-000133
Figure PCTKR2022017265-appb-img-000134
Figure PCTKR2022017265-appb-img-000135
Figure PCTKR2022017265-appb-img-000136
Figure PCTKR2022017265-appb-img-000137
Figure PCTKR2022017265-appb-img-000138
Figure PCTKR2022017265-appb-img-000139
Figure PCTKR2022017265-appb-img-000140
Figure PCTKR2022017265-appb-img-000141
Figure PCTKR2022017265-appb-img-000142
또한, 본 발명은 상기 화학식 13이 하기 화학식 3-1 내지 화학식 3-5 중 어느 하나로 표시되는 유기전자소자를 제공한다.
화학식 3-1 화학식 3-2
Figure PCTKR2022017265-appb-img-000143
화학식 3-3 화학식 3-4
Figure PCTKR2022017265-appb-img-000144
화학식 3-5
Figure PCTKR2022017265-appb-img-000145
{상기 화학식 3-1 내지 화학식 3-5에서, E환, F환, G환, H환, Ar4, Ar8, L2, L3, L', Re 및 Rf은 상기에서 정의한 바와 동일하다.}
구체적으로, 상기 화학식 13으로 표시되는 화합물은 하기 화합물들 중 어느 하나일 수 있다.
Figure PCTKR2022017265-appb-img-000146
Figure PCTKR2022017265-appb-img-000147
Figure PCTKR2022017265-appb-img-000148
Figure PCTKR2022017265-appb-img-000149
Figure PCTKR2022017265-appb-img-000150
Figure PCTKR2022017265-appb-img-000151
Figure PCTKR2022017265-appb-img-000152
Figure PCTKR2022017265-appb-img-000153
Figure PCTKR2022017265-appb-img-000154
Figure PCTKR2022017265-appb-img-000155
Figure PCTKR2022017265-appb-img-000156
Figure PCTKR2022017265-appb-img-000157
Figure PCTKR2022017265-appb-img-000158
Figure PCTKR2022017265-appb-img-000159
Figure PCTKR2022017265-appb-img-000160
Figure PCTKR2022017265-appb-img-000161
Figure PCTKR2022017265-appb-img-000162
Figure PCTKR2022017265-appb-img-000163
또한, 본 발명은 상기 화학식 14로 나타낸 화합물이 하기 화학식 4-1 내지 화학식 4-6 중 어느 하나로 표시되는 것을 유기전기소자를 제공한다.
화학식 4-1 화학식 4-2
Figure PCTKR2022017265-appb-img-000164
화학식 4-3 화학식 4-4
Figure PCTKR2022017265-appb-img-000165
화학식 4-5 화학식 4-6
Figure PCTKR2022017265-appb-img-000166
{상기 화학식 4-1 내지 4-6에서,
1) X21, X25 및 X27은 서로 독립적으로 NAr11, O, S 또는 C(R10)(R11)이며,
2) X24, X26 및 X28은 서로 독립적으로 NAr12, O, S, C(R20)(R21) 또는 단일결합이고,
3) 상기 Ar11 및 Ar12는 상기 Ar3의 정의와 동일하며,
4) a', d' 및 f'은 서로 독립적으로 0 내지 4의 정수이고, b', c', e' 및 ta'은 서로 독립적으로 0 내지 3의 정수이며,
5) L4, L5, L6, Ar6 및 Ar7은 상기에서 정의된 바와 동일하고,
6) ta 및 tb는 서로 독립적으로 0 내지 4의 정수이며, te는 0 내지 7의 정수이고, tf는 0 내지 5의 정수이며,
7) R3, R4, R10, R11, R12, R13, R14, R15, R16, R17, R18, R19, R20 및 R21은 서로 동일하거나 상이하고, 서로 독립적으로 수소; 중수소; 할로겐; C1~C20의 알킬기 또는 C6~C20의 아릴기로 치환 또는 비치환된 실란기; 시아노기; 니트로기; C1~C20의 알콕시기; C6-C20의 아릴옥시기; C1~C20의 알킬기; C2~C20의 알켄일기; C2~C20의 알킨일기; C6~C20의 아릴기; 플루오렌일기; O, N, S, Si 및 P로 이루어진 군에서 선택된 적어도 하나의 헤테로원자를 포함하는 C2~C20의 헤테로고리기; 및 C3~C20의 지방족고리기;로 이루어진 군에서 선택되며, 또는 이웃한 기끼리 서로 결합하여 고리를 형성할 수 있고, 또는 인접한 치환기와 결합하여 고리를 형성할 수 있다.}
구체적으로, 상기 화학식 14로 표시되는 화합물은 하기 화합물들 중 어느 하나일 수 있다.
Figure PCTKR2022017265-appb-img-000167
Figure PCTKR2022017265-appb-img-000168
Figure PCTKR2022017265-appb-img-000169
Figure PCTKR2022017265-appb-img-000170
Figure PCTKR2022017265-appb-img-000171
Figure PCTKR2022017265-appb-img-000172
Figure PCTKR2022017265-appb-img-000173
Figure PCTKR2022017265-appb-img-000174
Figure PCTKR2022017265-appb-img-000175
Figure PCTKR2022017265-appb-img-000176
Figure PCTKR2022017265-appb-img-000177
Figure PCTKR2022017265-appb-img-000178
Figure PCTKR2022017265-appb-img-000179
Figure PCTKR2022017265-appb-img-000180
Figure PCTKR2022017265-appb-img-000181
Figure PCTKR2022017265-appb-img-000182
Figure PCTKR2022017265-appb-img-000183
Figure PCTKR2022017265-appb-img-000184
Figure PCTKR2022017265-appb-img-000185
Figure PCTKR2022017265-appb-img-000186
Figure PCTKR2022017265-appb-img-000187
Figure PCTKR2022017265-appb-img-000188
Figure PCTKR2022017265-appb-img-000189
Figure PCTKR2022017265-appb-img-000190
Figure PCTKR2022017265-appb-img-000191
Figure PCTKR2022017265-appb-img-000192
Figure PCTKR2022017265-appb-img-000193
Figure PCTKR2022017265-appb-img-000194
Figure PCTKR2022017265-appb-img-000195
Figure PCTKR2022017265-appb-img-000196
Figure PCTKR2022017265-appb-img-000197
Figure PCTKR2022017265-appb-img-000198
Figure PCTKR2022017265-appb-img-000199
Figure PCTKR2022017265-appb-img-000200
Figure PCTKR2022017265-appb-img-000201
Figure PCTKR2022017265-appb-img-000202
Figure PCTKR2022017265-appb-img-000203
Figure PCTKR2022017265-appb-img-000204
Figure PCTKR2022017265-appb-img-000205
Figure PCTKR2022017265-appb-img-000206
Figure PCTKR2022017265-appb-img-000207
Figure PCTKR2022017265-appb-img-000208
Figure PCTKR2022017265-appb-img-000209
Figure PCTKR2022017265-appb-img-000210
Figure PCTKR2022017265-appb-img-000211
Figure PCTKR2022017265-appb-img-000212
Figure PCTKR2022017265-appb-img-000213
Figure PCTKR2022017265-appb-img-000214
Figure PCTKR2022017265-appb-img-000215
Figure PCTKR2022017265-appb-img-000216
Figure PCTKR2022017265-appb-img-000217
Figure PCTKR2022017265-appb-img-000218
Figure PCTKR2022017265-appb-img-000219
Figure PCTKR2022017265-appb-img-000220
Figure PCTKR2022017265-appb-img-000221
Figure PCTKR2022017265-appb-img-000222
Figure PCTKR2022017265-appb-img-000223
Figure PCTKR2022017265-appb-img-000224
Figure PCTKR2022017265-appb-img-000225
Figure PCTKR2022017265-appb-img-000226
Figure PCTKR2022017265-appb-img-000227
Figure PCTKR2022017265-appb-img-000228
Figure PCTKR2022017265-appb-img-000229
Figure PCTKR2022017265-appb-img-000230
Figure PCTKR2022017265-appb-img-000231
Figure PCTKR2022017265-appb-img-000232
Figure PCTKR2022017265-appb-img-000233
Figure PCTKR2022017265-appb-img-000234
도 1을 참조하여 설명하면, 본 발명에 따른 유기전기소자(100)는 제 1전극(110), 제 2전극(170) 및 제 1전극(110)과 제 2전극(170) 사이에 화학식 1로 표시되는 단독화합물 또는 2종 이상의 화합물을 포함하는 유기물층을 구비한다. 이때, 제 1전극(110)은 애노드 또는 양극이고, 제 2전극(170)은 캐소드 또는 음극일 수 있으며, 인버트형의 경우에는 제 1전극이 캐소드이고 제 2전극이 애노드일 수 있다.
유기물층은 제 1전극(110) 상에 순차적으로 정공주입층(120), 정공수송층(130), 발광층(140), 전자수송층(150) 및 전자주입층(160)을 포함할 수 있다. 이때, 발광층(140)을 제외한 나머지 층들이 형성되지 않을 수 있다. 정공저지층, 전자저지층, 발광보조층(220), 버퍼층(210) 등을 더 포함할 수도 있고, 전자수송층(150) 등이 정공저지층의 역할을 할 수도 있을 것이다. (도 2 참조)
또한, 본 발명의 일 실시예에 따른 유기전기소자는 보호층 또는 광효율 개선층(180)을 더 포함할 수 있다. 이러한 광효율 개선층은 제 1전극의 양면 중 유기물층과 접하지 않는 면 또는 제 2전극의 양면 중 유기물층과 접하지 않는 면에 형성될 수 있다. 상기 유기물층에 적용되는 본 발명의 일 실시예에 따른 화합물은 정공주입층(120), 정공수송층(130), 발광보조층(220), 전자수송보조층, 전자수송층(150), 전자주입층(160), 발광층(140)의 호스트 또는 도펀트, 또는 광효율 개선층의 재료로 사용될 수 있을 것이다. 바람직하게는 예컨대, 본 발명의 화학식 1에 따른 화합물은 정공수송층 재료로 사용될 수 있다.
상기 유기물층은 상기 양극 상에 순차적으로 형성된 정공수송층, 발광층 및 전자수송층을 포함하는 스택을 둘 이상 포함할 수 있으며, 상기 둘 이상의 스택 사이에 형성된 전하생성층을 더 포함할 수 있다. (도 3 참조)
한편, 동일한 코어일지라도 어느 위치에 어느 치환기를 결합시키냐에 따라 밴드갭(band gap), 전기적 특성, 계면 특성 등이 달라질 수 있으므로, 코어의 선택 및 이에 결합된 서브(sub)-치환체의 조합도 아주 중요하며, 특히 각 유기물층 간의 에너지 level 및 T1 값, 물질의 고유특성(mobility, 계면특성 등) 등이 최적의 조합을 이루었을 때 긴 수명과 높은 효율을 동시에 달성할 수 있다.
본 발명의 일 실시예에 따른 유기전기발광소자는 PVD(physical vapor deposition) 방법을 이용하여 제조될 수 있다. 예컨대, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공주입층(120), 정공수송층(130), 발광층(140), 전자수송층(150) 및 전자주입층(160)을 포함하는 유기물층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시킴으로써 제조될 수 있다.
또한, 본 발명에서 상기 유기물층은 스핀코팅 공정, 노즐 프린팅 공정, 잉크젯 프린팅 공정, 슬롯코팅 공정, 딥코팅 공정 및 롤투롤 공정 중 어느 하나에 의해 형성되며, 상기 유기물층은 정공수송층으로 상기 화합물을 포함하는 것을 특징으로 하는 유기전기소자를 제공한다.
또 다른 구체적인 예로서, 본 발명은 상기 유기물층에 상기 화학식 1로 표시되는 화합물의 동종 또는 이종의 화합물이 혼합되어 사용되는 것을 특징으로 하는 유기전기소자를 제공한다.
또한, 본 발명은 상기 화학식 1로 표시되는 화합물을 포함하는 정공수송층 조성물을 제공하고, 상기 정공수송층을 포함하는 유기전기소자를 제공한다.
또한, 본 발명은 상기한 유기전기소자를 포함하는 디스플레이장치; 및 상기 디스플레이장치를 구동하는 제어부;를 포함하는 전자 장치를 제공한다.
또 다른 측면에서 상기 유기전기소자는 유기전기발광소자, 유기태양전지, 유기감광체, 유기트랜지스터, 및 단색 또는 백색 조명용 소자 중 적어도 하나인 것을 특징으로 하는 전자 장치를 본 발명에서 제공한다. 이때, 전자 장치는 현재 또는 장래의 유무선 통신단말기일 수 있으며, 휴대폰 등의 이동 통신 단말기, PDA, 전자사전, PMP, 리모콘, 네비게이션, 게임기, 각종 TV, 각종 컴퓨터 등 모든 전자 장치를 포함한다.
이하, 하기 화학식 1 구조를 참고하여 본 발명 화합물의 골격 구성에 따른 효과를 보다 상세히 설명한다.
화학식 1
Figure PCTKR2022017265-appb-img-000235
본 발명의 화학식 1로 표시되는 화합물은 발광층과 정공주입층 사이의 정공수송층으로 사용될 수 있으며, 정공수송층으로 사용될 때, 발광층 또는 발광보조층으로의 정공주입 속도 및 양 조절이 용이하고, 효율과 수명을 개선하여 우수한 소자 특성을 나타낼 수 있다.
본 발명의 화학식 1로 표시되는 화합물에 있어서, 플루오렌일기는 HOMO (highest occupied molecular orbital)와 박막 형성 시 분자 간 패킹(packing)성을 결정짓는 주요 치환체이다.
또한, 본 발명의 화학식 1에서, 구성 1의 파라(para) 위치의 치환기 및 구성 2의 오쏘(ortho) 위치의 치환기는, 바람직하게는 C6~C25의 아릴기, 더욱 바람직하게는 C6의 아릴기(페닐)일 수 있고, 이로 인해 화합물 구조의 미세한 성질(HOMO 준위, 입체성, 분자간 거리, T1-BDE)을 조절할 수 있다.
보다 상세하게는, 분자의 삼중항 결합해리에너지(T1-BDE) 값이 15.0 kcal/mol을 상회하는 값, 바람직하게는 17.0 kcal/mol, 더욱 바람직하게는 17.5 kcal/mol을 상회하는 값을 가짐으로써, 화합물 자체의 안정성 증가로 인하여 소자의 수명을 극대화 시킬 수 있다.
또한, 유사 코어 비교에서 분자간 평균거리가 비교화합물 대비 하회하는 값을 가지게 함으로써 전하이동도를 증가시켜 소자의 발광효율 및 구동전압을 개선시킬 수 있다.
이는 플루오렌일기 코어를 갖는 모노아민 화합물에서 치환위치가 한정된 R1, R2 치환기를 통해 정송수송층으로서 최적의 효율을 낼 수 있도록 화합물의 성질을 미세하게 조절함으로써, 소자의 전기적 특성을 향상시킬 수 있다.
삼중항 결합 해리 에너지(Weakest bond dissociation energy at the first triplet excited state, T1-BDE)는 단분자에서의 결합해리에너지를 통해 계산되는 값이며, 결합해리에너지(Bond-Dissociation Energy, BDE)는 분자 내 비순환결합에 대한 결합에너지를 계산한 것이다. 이를 위해 대상 분자의 전기적 퍼텐셜 에너지(Electric potential energy)를 계산하고 비순환결합을 기준으로 2개의 래디컬 분자로 나누어 각각에 대한 전기적 퍼텐셜 에너지를 계산하며, 결합해리에너지는 하기와 같은 식으로 표현할 수 있다.
Figure PCTKR2022017265-appb-img-000236
여기서 삼중항 결합해리에너지를 얻기 위한 모든 계산은 전기적으로 중성인 삼중항 여기 상태로 진행한다. 이때, 분자 구조를 삼중항 여기 상태로 최적화하기 위해 시간에 의존하는 밀도범함수 이론(Time dependent density functional theory; TD-DFT)을 적용하여 계산하였다.
분자동역학 시뮬레이션은 총 4단계로 진행되었으며, 첫 단계는 Brownian 역학에 따라 일정한 부피를 갖는 조건에서 10 켈빈의 온도로 진행한다. 두 번째 단계도 마찬가지로 Brownian 역학에 따라 진행하되, 일정한 대기압(1.01325 bar) 조건에서 100 켈빈의 온도로 진행한다. 이후 세 번째 단계에서 역장(Force Field)에 따른 분자동역학을 계산하며, 마찬가지로 일정한 압력(대기압)과 온도(상온)에서 0.1나노초(ns) 만큼 진행시킨다. 마지막으로 세 번째 단계와 같은 조건(대기압, 상온)에서 2펨토초(fs) 단위로 분자동역학 과정을 진행시키며, 일정 시간이 소요될 때까지 시뮬레이션을 진행한다. 이때 일정 시간은 비결정질 고체 구조가 충분히 평형상태(Equilibrium state)에 이르는 시간을 의미하며, 바람직하게는 수백 나노초 내지 수천 나노초일 수 있으며, 더욱 바람직하게는 100나노초 내지 150나노초 일 수 있고, 더욱 더 바람직하게는 120나노초 일 수 있다. 이후 최종 시점에서의 구조 데이터를 추출하고 해당 구조에서 일부 단분자들을 추출(샘플링)한다. 양자역학(Quantum Mechanics) 시뮬레이션을 통해 추출한 단분자에 대한 단일시점 에너지 계산(Single-point energy calculation)을 진행하고, 분자 내 비순환결합(Acyclic bond)에 대한 결합해리에너지(Bond-dissociation energy; BDE)를 계산한다. 얻어낸 모든 결합해리에너지 값을 취하여 결합해리에너지 집합 G={E1 … EN}을 구성하고 결합해리에너지 집합의 평균값을 고체 상태 물질의 결합해리에너지 지표로 사용한다.
본 발명에서 비결정질 고체상에서의 평균 결합해리에너지 값의 단위는 eV이며, eV 값에 23.061을 곱하여 kcal/mol 단위로 환산할 수 있다.
비결정질 고체 내 분자간 평균거리(Average distance between molecules in amorphous solid)는 비결정질 고체상태의 분자들이 충분히 균일하게 분포되어 있다고 가정할 경우, 다음과 같은 식으로 표현된다.
Figure PCTKR2022017265-appb-img-000237
여기서,
Figure PCTKR2022017265-appb-img-000238
는 분자간 평균 거리, V는 비결정질 고체의 부피, N은 비결정질 고체 내 분자의 개수이다.
여기서 분자동역학 시뮬레이션은 주기 반복 경계 조건(PBC)을 가진 단위 정(Unit cell) 내 일정한 개수[128개]의 단분자를 배치하여 진행하였으므로, 위의 식에서 부피와 분자 개수는 각각 PBC 영역 내 부피(체적 부피; Bulk volume)와 그 안에 존재하는 분자 개수[128개]로 설정할 수 있다.
분자간 거리와 전하 이동도(Charge Mobility)는 본 발명의 화학식 1의 화합물의 진보됨을 설명하기 위한 중요 상관관계 요소로서, 이하, 전하이동도에 대해 설명하기로 한다.
일반화된 유효매질모델(Generalized effective medium model, GEMM)에서 균일한 매질에 대한 전하이동도는 유효매질근사(Effective medium approximation)에 따른 마스터 방정식(Master equation)의 해석적 해로부터 구할 수 있으며, 그 식은 다음과 같이 표현된다.
Figure PCTKR2022017265-appb-img-000239
여기서 e는 전하량, β는 볼츠만 상수와 온도의 역수(1/kBT)로 주어지는 열역학적 상수, M은 평균 이웃분자(Nearest-neighbor molecules) 개수, Hab는 전하 전달 행렬 요소(Charge transfer matrix element), n은 전하 전달 차원(3차원계에서 n=3),
Figure PCTKR2022017265-appb-img-000240
는 플랑크 상수, λ는 재배치 에너지(Reorganization energy), σ는 무질서도 지표(disorder parameter), C는 보정상수이다. 따라서 전하이동도는 다음과 같은 비례관계를 갖는다.
Figure PCTKR2022017265-appb-img-000241
비결정질 고체상태의 분자들이 충분히 균일하게 분포되어 있다고 가정할 경우(σ≪1), 각 이분자(Dimer) 사이의 전하 전달 행렬 요소(Hab)는 일정하므로 위 비례식은 다음과 같이 나타낼 수 있다.
Figure PCTKR2022017265-appb-img-000242
이때, 전하 전달 행렬 요소는 선험적으로 분자간 거리와 아래와 같은 비례 관계를 가지고 있음이 알려져 있다.
Figure PCTKR2022017265-appb-img-000243
여기서 η는 감쇠상수(decay constant), r은 분자간 거리이다. 따라서 균일한 매질에 대해 전하이동도는 분자간 거리에 대해 지수적 감쇠 비례하는 관계를 가지고 있으며, 분자간 거리가 짧을수록 전하이동도는 증가하는 추세를 보이게 된다.
HOMO 상태 밀도(Density of the highest occupied molecular orbital states)는 분자동역학 시물레이션을 진행하여 평형상태에서의 비결정질 고체 구조를 얻는다. 그 후 마지막 상태에서의 단분자를 추출하여 단일점 에너지(Single-point energy, SPE) 계산으로 진행하여 각 분자의 HOMO 레벨을 계산한다. 계산된 HOMO 레벨을 히스토그램 플롯하여 HOMO 분포를 얻고, 이 분포를 가우스 함수로 피팅(fitting)하여 중앙값과 반치전폭값을 얻는다.
자세하게 설명하면, 이상적인 기체 상태와는 달리 비결정질 고체 상태를 이루고 있는 분자는 서로 다른 분자간 상호 작용으로 인해 그 형태(conformation)가 변형된다. 이로 인해 분자가 가질 수 있는 형태는 가우스 분포 함수(Gaussian distribution function)로 주어지게 된다. 이에 따라 각 분자가 가지는 HOMO 및 LUMO 레벨 또한 단일값 대신 가우스 분포로 존재하게 되며, 특히 HOMO 레벨 분포를 Density of the highest occupied molecular orbital states (HOMO DOS)라고 정의한다. 따라서 비결정질 고체 상태의 분자의 HOMO 레벨은 정규화된 HOMO DOS의 반치전폭(Full-width at half-maximum; FWHM)과 중앙값으로 정의된다(도 5 참고).
한편, 마커스 이론(Marcus theory)에 따르면 서로 다른 두 분자 간의 전하 전달률(charge transfer rate; CTR)은 다음과 같은 비례 관계를 갖는다.
Figure PCTKR2022017265-appb-img-000244
여기서, k는 전하 전달률, λ는 재배치 에너지, △G는 상태 에너지 차(site energy difference; SED), kB는 볼츠만 상수, T는 절대온도이다. 여기서 △G가 작을수록 전하 전달률이 높아지게 되는데, 만약 정공(hole)을 전달하는 경우 △G는 이분자를 구성하는 단분자가 각각 양이온 상태로 존재하는 두 상태 사이의 에너지 차이에 해당한다(도 6 참고).
즉, △G는 근사적으로 각 분자의 이온화 에너지(Ionization potential)의 차이에 해당하며, 이는 코프만스 정리(Koopmans' theorem)에 따라 각 분자의 HOMO 레벨의 절대값 차로 나타낼 수 있다.
따라서 서로 다른 비결정질 고체의 HOMO DOS를 비교하여 서로 겹치는 영역은 △G=0이 되는, 다시 말해 전하 전달률이 최대가 되는 영역이다. 이때 HOMO DOS는 정규화된 가우스 분포를 따르므로 겹침 영역의 넓이는 최소 0에서 최대 1의 값을 가지게 되며, 이 값이 클수록 서로 다른 레이어 간의 전하 주입 특성이 향상된다고 볼 수 있다. 일반적으로 DOS의 반치전폭이 넓을수록 다른 레이어와 겹침 영역이 넓어지므로 주입 특성이 유리하다고 볼 수 있다.
상기의 모든 계산은 분자 시뮬레이션(Gaussian09 Rev. C.01, Schrodinger Materials Science Suite 4.1.161)을 통해 이루어졌으며, 분자동역학 시뮬레이션을 위해 Desmond 패키지를 사용하였다. 분자동역학 시뮬레이션을 통해 얻어진 구조에서 단분자를 추출하여 제1원리에 입각한 양자화학적 특성을 B3LYP/6-31G(d) 또는 B3LYP/6-31G* 조건하에 계산하였으며, 이 과정에서 Gaussian과 Jaguar 패키지를 사용하였다.
이하에서, 본 발명의 상기 화학식 1로 표시되는 화합물의 합성예 및 본 발명의 유기전기소자의 제조예에 관하여 실시예를 들어 구체적으로 설명하지만, 본 발명의 하기 실시예로 한정되는 것은 아니다.
[합성예 1]
화학식 1의 합성
본 발명에 따른 화학식 1로 표시되는 화합물(final product)은 하기 반응식 1과 같이 합성되며 이에 한정되는 것은 아니다. 여기서, Hal은 I, Br 또는 Cl이다.
<반응식 1>
Figure PCTKR2022017265-appb-img-000245
{상기 반응식 1에서, R1, R2, R′, R″, Ra, Rb, m 및 n은 상기에서 정의된 바와 동일하다.}
Sub 1의 예시는 다음과 같으나, 이에 한정되는 것은 아니다. 하기 표 1은 Sub 1에 속하는 일부 화합물의 FD-MS (Field Desorption-Mass Spectrometry) 값을 나타낸 것이다.
Figure PCTKR2022017265-appb-img-000246
Figure PCTKR2022017265-appb-img-000247
Figure PCTKR2022017265-appb-img-000248
Figure PCTKR2022017265-appb-img-000249
Figure PCTKR2022017265-appb-img-000250
Figure PCTKR2022017265-appb-img-000251
Figure PCTKR2022017265-appb-img-000252
Figure PCTKR2022017265-appb-img-000253
Figure PCTKR2022017265-appb-img-000254
Figure PCTKR2022017265-appb-img-000255
Figure PCTKR2022017265-appb-img-000256
Figure PCTKR2022017265-appb-img-000257
화합물 FD-MS 화합물 FD-MS
Sub 1-1 m/z=272.02(C15H13Br=273.17) Sub 1-2 m/z=272.02(C15H13Br=273.17)
Sub 1-3 m/z=272.02(C15H13Br=273.17) Sub 1-4 m/z=272.02(C15H13Br=273.17)
Sub 1-5 m/z=348.05(C21H17Br=349.27) Sub 1-6 m/z=348.05(C21H17Br=349.27)
Sub 1-7 m/z=348.05(C21H17Br=349.27) Sub 1-8 m/z=279.06(C15H6D7Br=280.22)
Sub 1-9 m/z=278.06(C15H7D6Br=279.21) Sub 1-10 m/z=276.05(C15H9D4Br=277.2)
Sub 1-11 m/z=374.07(C23H19Br=375.31) Sub 1-12 m/z=373.05(C22H16BrN=374.28)
Sub 1-13 m/z=514.13(C34H27Br=515.49) Sub 1-14 m/z=408.15(C25H29Br=409.41)
Sub 1-15 m/z=396.05(C25H17Br=397.32) Sub 1-16 m/z=396.05(C25H17Br=397.32)
Sub 1-17 m/z=396.05(C25H17Br=397.32) Sub 1-18 m/z=396.05(C25H17Br=397.32)
Sub 1-19 m/z=401.08(C25H12D5Br=402.35) Sub 1-20 m/z=340.08(C20H21Br=341.29)
Sub 1-21 m/z=352.08(C21H21Br=353.3) Sub 1-22 m/z=334.04(C20H15Br=335.24)
Sub 1-23 m/z=400.08(C25H13D4Br=401.34) Sub 1-24 m/z=512.11(C34H25Br=513.48)
Sub 1-25 m/z=554.16(C37H31Br=555.56) Sub 1-26 m/z=394.04(C25H15Br=395.3)
Sub 1-27 m/z=394.04(C25H15Br=395.3) Sub 1-28 m/z=394.04(C25H15Br=395.3)
Sub 1-29 m/z=394.04(C25H15Br=395.3) Sub 1-30 m/z=528.15(C35H29Br=529.52)
Sub 1-31 m/z=410.03(C25H15BrO=411.3) Sub 1-32 m/z=410.03(C25H15BrO=411.3)
Sub 1-33 m/z=410.03(C25H15BrO=411.3) Sub 1-34 m/z=410.03(C25H15BrO=411.3)
Sub 1-35 m/z=410.03(C25H15BrO=411.3) Sub 1-36 m/z=426.01(C25H15BrS=427.36)
Sub 1-37 m/z=426.01(C25H15BrS=427.36) Sub 1-38 m/z=426.01(C25H15BrS=427.36)
Sub 1-39 m/z=426.01(C25H15BrS=427.36) Sub 1-40 m/z=348.05(C21H17Br=349.27)
Sub 1-41 m/z=328.08(C19H21Br=329.28) Sub 1-42 m/z=348.05(C21H17Br=349.27)
Sub 1-43 m/z=424.08(C27H21Br=425.37) Sub 1-44 m/z=279.06(C15H6D7Br=280.22)
Sub 1-45 m/z=464.11(C30H25Br=465.43) Sub 1-46 m/z=354.10(C21H23Br=355.32)
Sub 1-47 m/z=328.08(C19H21Br=329.28) Sub 1-48 m/z=424.08(C27H21Br=425.37)
Sub 1-49 m/z=302.03(C16H15BrO=303.2) Sub 1-50 m/z=328.08(C19H21Br=329.28)
Sub 1-51 m/z=348.05(C21H17Br=349.27) Sub 1-52 m/z=472.08(C31H21Br=473.41)
Sub 1-53 m/z=522.10(C35H23Br=523.47) Sub 1-54 m/z=512.11(C34H25Br=513.48)
Sub 1-55 m/z=452.11(C29H25Br=453.42) Sub 1-56 m/z=548.11(C37H25Br=549.51)
Sub 1-57 m/z=508.18(C33H33Br=509.53) Sub 1-58 m/z=406.11(C25H7D10Br=407.38)
Sub 1-59 m/z=506.16(C33H31Br=507.51) Sub 1-60 m/z=470.07(C31H19Br=471.40)
Sub 1-61 m/z=576.05(C37H21BrS=577.54) Sub 1-62 m/z=470.07(C31H19Br=471.40)
Sub 1-63 m/z=482.07(C29H23BrS=483.47) Sub 1-64 m/z=486.06(C31H19BrO=487.4)
Sub 1-65 m/z=486.06(C31H19BrO=487.40) Sub 1-66 m/z=482.07(C29H23BrS=483.47)
Sub 1-67 m/z=486.06(C31H19BrO=487.40) Sub 1-68 m/z=466.09(C29H23BrO=467.41)
II. Sub 2의 예시
반응식 1의 Sub 2는 하기 반응식 2와 같이 합성될 수 있으나, 이에 한정되는 것은 아니다.
<반응식 2>
Figure PCTKR2022017265-appb-img-000258
상기 Sub 2-I는 하기 반응식 3에 의해 합성될 수 있으나, 이에 한정되는 것은 아니다.
<반응식 3>
Figure PCTKR2022017265-appb-img-000259
1. Sub 2-1 합성예
Figure PCTKR2022017265-appb-img-000260
Figure PCTKR2022017265-appb-img-000261
(1) Sub 2-1-c 합성예시
Sub 2-1-a (35 g, 122.4 mmol)에 Sub 2-1-b (14.9 g, 122.4 mmol), Pd(PPh3)4 (0.05 당량), K2CO3 (3 당량), THF/H2O (408 ml/204 ml)을 넣고, 12시간 환류시킨다. 반응이 종료되면 반응물의 온도를 상온으로 식히고, THF를 제거한다. MC로 추출하고 물로 닦아주었다. 유기층을 MgSO4로 건조하고 농축한 후 생성된 유기물을 silicagel column을 이용하여 분리하여 Sub 2-1-c 29.5 g을 얻었다. (수율 : 85.1%)
(2) Sub 2-I-1 합성예시
상기 합성예로 합성된 Sub 2-1-c (29.5 g, 104.2 mmol)에 Sub 2-1-d (16.3 g, 104.2 mmol), Pd(PPh3)4 (0.05 당량), K2CO3 (3 당량), THF/H2O (347 ml/174 ml)을 넣고 상기 합성법을 사용하여 Sub 2-I-1 26.7 g을 얻었다. (수율 : 81.4%)
(3) Sub 2-1 합성예시
Sub 2-I-1 (26.7 g, 84.8 mmol)을 toluene (869 ml)에 넣고 Sub 2-II-1 (15.1 g, 89.1 mmol), Pd2(dba)3 (0.03 당량), P(t-Bu)3 (0.06 당량), NaOt-Bu (3 당량)을 첨가하고 100℃에서 교반하였다. 반응이 완료되면 CH2Cl2와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 Sub 2-1 31.2 g을 얻었다. (수율 : 82.3%)
2. Sub 2-4 합성예
Figure PCTKR2022017265-appb-img-000262
Sub 2-I-4 (25 g, 67 mmol)에 Sub 2-II-4 (15.4 g, 70.4 mmol), Pd2(dba)3 (0.03 당량), P(t-Bu)3 (0.06 당량), NaOt-Bu (3 당량), Toluene (687 ml)을 첨가하고 상기 Sub 2-1 합성법을 사용하여 Sub 2-4 30.1 g (수율: 80.7%)를 얻었다.
3. Sub 2-5 합성예
Figure PCTKR2022017265-appb-img-000263
Sub 2-I-5 (22 g, 68.8 mmol)에 Sub 2-II-5 (12.6 g, 72.2 mmol), Pd2(dba)3 (0.03 당량), P(t-Bu)3 (0.06 당량), NaOt-Bu (3 당량), Toluene (705 ml)을 첨가하고 상기 Sub 2-1 합성법을 사용하여 Sub 2-5 25.5 g (수율: 81%)를 얻었다.
4. Sub 2-19 합성예
Figure PCTKR2022017265-appb-img-000264
Sub 2-I-19 (23 g, 73.1 mmol)에 Sub 2-II-19 (20.6 g, 76.7 mmol), Pd2(dba)3 (0.03 당량), P(t-Bu)3 (0.06 당량), NaOt-Bu (3 당량), Toluene (749 ml)을 첨가하고 상기 Sub 2-1 합성법을 사용하여 Sub 2-19 32.2 g (수율: 80.5%)를 얻었다.
5. Sub 2-28 합성예
Figure PCTKR2022017265-appb-img-000265
Sub 2-I-28 (19 g, 51.5 mmol)에 Sub 2-II-28 (9.2 g, 54.1 mmol), Pd2(dba)3 (0.03 당량), P(t-Bu)3 (0.06 당량), NaOt-Bu (3 당량), Toluene (528 ml)을 첨가하고 상기 Sub 2-1 합성법을 사용하여 Sub 2-28 19.5 g (수율: 75.6%)를 얻었다.
6. Sub 2-34 합성예
Figure PCTKR2022017265-appb-img-000266
Sub 2-I-34 (20 g, 53.6 mmol)에 Sub 2-II-34 (9.5 g, 56.3 mmol), Pd2(dba)3 (0.03 당량), P(t-Bu)3 (0.06 당량), NaOt-Bu (3 당량), Toluene (550 ml)을 첨가하고 상기 Sub 2-1 합성법을 사용하여 Sub 2-34 19.3 g (수율: 71%)를 얻었다.
7. Sub 2-39 합성예
Figure PCTKR2022017265-appb-img-000267
Sub 2-I-39 (20 g, 67.8 mmol)에 Sub 2-II-39 (11.9 g, 67.8 mmol), Pd2(dba)3 (0.03 당량), P(t-Bu)3 (0.06 당량), NaOt-Bu (3 당량), Toluene (340 ml)을 첨가하고 상기 Sub 2-1 합성법을 사용하여 Sub 2-39 21.5 g (수율: 71%)를 얻었다.
8. Sub 2-53 합성예
Figure PCTKR2022017265-appb-img-000268
Sub 2-I-53 (20 g, 46.4 mmol)에 Sub 2-II-53 (13.2 g, 46.4 mmol), Pd2(dba)3 (0.03 당량), P(t-Bu)3 (0.06 당량), NaOt-Bu (3 당량), Toluene (235 ml)을 첨가하고 상기 Sub 2-1 합성법을 사용하여 Sub 2-53 21.8 g (수율: 69%)를 얻었다.
9. Sub 2-87 합성예
Figure PCTKR2022017265-appb-img-000269
Sub 2-I-87 (20 g, 63.5 mmol)에 Sub 2-II-87 (9.5 g, 63.5 mmol), Pd2(dba)3 (0.03 당량), P(t-Bu)3 (0.06 당량), NaOt-Bu (3 당량), Toluene (320 ml)을 첨가하고 상기 Sub 2-1 합성법을 사용하여 Sub 2-87 32.0 g (수율: 74%)를 얻었다.
10. Sub 2-93 합성예
Figure PCTKR2022017265-appb-img-000270
Sub 2-I-93 (20 g, 53.6 mmol)에 Sub 2-II-93 (10.0 g, 53.6 mmol), Pd2(dba)3 (0.03 당량), P(t-Bu)3 (0.06 당량), NaOt-Bu (3 당량), Toluene (270 ml)을 첨가하고 상기 Sub 2-1 합성법을 사용하여 Sub 2-93 20.2 g (수율: 72%)를 얻었다.
11. Sub 2-105 합성예
Figure PCTKR2022017265-appb-img-000271
Sub 2-I-105 (20 g, 62.3 mmol)에 Sub 2-II-105 (20.8 g, 62.3 mmol), Pd2(dba)3 (0.03 당량), P(t-Bu)3 (0.06 당량), NaOt-Bu (3 당량), Toluene (320 ml)을 첨가하고 상기 Sub 2-1 합성법을 사용하여 Sub 2-105 26.2 g (수율: 68%)를 얻었다.
한편, Sub 2에 속하는 화합물은 아래와 같은 화합물일 수 있으나 이에 한정되는 것은 아니며, 하기 표 2는 Sub 2에 속하는 화합물의 FD-MS 값을 나타낸 것이다.
Figure PCTKR2022017265-appb-img-000272
Figure PCTKR2022017265-appb-img-000273
Figure PCTKR2022017265-appb-img-000274
Figure PCTKR2022017265-appb-img-000275
Figure PCTKR2022017265-appb-img-000276
Figure PCTKR2022017265-appb-img-000277
Figure PCTKR2022017265-appb-img-000278
Figure PCTKR2022017265-appb-img-000279
Figure PCTKR2022017265-appb-img-000280
Figure PCTKR2022017265-appb-img-000281
Figure PCTKR2022017265-appb-img-000282
Figure PCTKR2022017265-appb-img-000283
Figure PCTKR2022017265-appb-img-000284
Figure PCTKR2022017265-appb-img-000285
Figure PCTKR2022017265-appb-img-000286
Figure PCTKR2022017265-appb-img-000287
Figure PCTKR2022017265-appb-img-000288
Figure PCTKR2022017265-appb-img-000289
Figure PCTKR2022017265-appb-img-000290
Figure PCTKR2022017265-appb-img-000291
Figure PCTKR2022017265-appb-img-000292
Figure PCTKR2022017265-appb-img-000293
Figure PCTKR2022017265-appb-img-000294
Figure PCTKR2022017265-appb-img-000295
Figure PCTKR2022017265-appb-img-000296
Figure PCTKR2022017265-appb-img-000297
Figure PCTKR2022017265-appb-img-000298
화합물 FD-MS 화합물 FD-MS
Sub 2-1 m/z=447.2(C34H25N=447.58) Sub 2-2 m/z=453.25(C34H31N=453.63)
Sub 2-3 m/z=501.25(C38H31N=501.67) Sub 2-4 m/z=555.29(C42H37N=555.77)
Sub 2-5 m/z=457.26(C34H15D10N=457.64) Sub 2-6 m/z=427.23(C32H29N=427.59)
Sub 2-7 m/z=523.23(C40H29N=523.68) Sub 2-8 m/z=427.23(C32H29N=427.59)
Sub 2-9 m/z=453.25(C34H31N=453.63) Sub 2-10 m/z=563.26(C43H33N=563.74)
Sub 2-11 m/z=465.25(C35H31N=465.64) Sub 2-12 m/z=397.18(C30H23N=397.52)
Sub 2-13 m/z=477.21(C35H27NO=477.61) Sub 2-14 m/z=451.18(C30H21N5=451.53)
Sub 2-15 m/z=553.19(C40H27NS=553.72) Sub 2-16 m/z=537.21(C40H27NO=537.66)
Sub 2-17 m/z=537.21(C40H27NO=537.66) Sub 2-18 m/z=553.19(C40H27NS=553.72)
Sub 2-19 m/z=547.23(C42H29N=547.7) Sub 2-20 m/z=547.23(C42H29N=547.70)
Sub 2-21 m/z=525.25(C40H31N=525.7) Sub 2-22 m/z=567.29(C43H37N=567.78)
Sub 2-23 m/z=537.15(C34H20F5N=537.53) Sub 2-24 m/z=527.26(C40H33N=527.71)
Sub 2-25 m/z=443.21(C31H29NSi=443.67) Sub 2-26 m/z=453.25(C34H31N=453.63)
Sub 2-27 m/z=563.26(C43H33N=563.74) Sub 2-28 m/z=501.25(C38H31N=501.67)
Sub 2-29 m/z=475.23(C36H29N=475.64) Sub 2-30 m/z=503.26(C38H33N=503.69)
Sub 2-31 m/z=467.22(C34H29NO=467.61) Sub 2-32 m/z=473.21(C36H27N=473.62)
Sub 2-33 m/z=473.21(C36H27N=473.62) Sub 2-34 m/z=505.28(C38H35N=505.71)
Sub 2-35 m/z=505.28(C38H35N=505.71) Sub 2-36 m/z=449.21(C34H27N=449.60)
Sub 2-37 m/z=453.25(C34H31N=453.63) Sub 2-38 m/z=427.23(C32H29N=427.59)
Sub 2-39 m/z=433.28(C32H35N=433.64) Sub 2-40 m/z=465.25(C35H31N=465.64)
Sub 2-41 m/z=465.25(C35H31N=465.64) Sub 2-42 m/z=505.28(C38H35N=505.70)
Sub 2-43 m/z=457.26(C34H15D10N=457.64) Sub 2-44 m/z=503.26(C38H33N=503.69)
Sub 2-45 m/z=427.23(C32H29N=427.59) Sub 2-46 m/z=547.23(C42H29N=547.70)
Sub 2-47 m/z=495.29(C37H37N=495.71) Sub 2-48 m/z=503.17(C36H25NS=503.66)
Sub 2-49 m/z=466.24(C34H30N2=466.63) Sub 2-50 m/z=613.24(C46H31NO=613.76)
Sub 2-51 m/z=603.2(C44H29NS=603.78) Sub 2-52 m/z=523.32(C39H41N=523.76)
Sub 2-53 m/z=679.32(C52H41N=679.91) Sub 2-54 m/z=477.25(C36H31N=477.65)
Sub 2-55 m/z=612.26(C46H32N2=612.78) Sub 2-56 m/z=447.20(C34H25N=447.58)
Sub 2-57 m/z=599.26(C46H33N=599.78) Sub 2-58 m/z=595.23(C38H30F5N=595.66)
Sub 2-59 m/z=391.23(C29H29N=391.56) Sub 2-60 m/z=503.26(C38H33N=503.69)
Sub 2-61 m/z=549.34(C41H43N=549.8) Sub 2-62 m/z=541.28(C41H35N=541.74)
Sub 2-63 m/z=365.21(C27H27N=365.52) Sub 2-64 m/z=485.31(C36H39N=485.71)
Sub 2-65 m/z=563.36(C42H45N=563.83) Sub 2-66 m/z=603.2(C44H29NS=603.78)
Sub 2-67 m/z=536.23(C40H28N2=536.68) Sub 2-68 m/z=390.21(C29H18D5N=390.54)
Sub 2-69 m/z=586.34(C44H34D5N=586.83) Sub 2-70 m/z=505.28(C38H35N=505.70)
Sub 2-71 m/z=471.29(C35H37N=471.69) Sub 2-72 m/z=471.29(C35H37N=471.69)
Sub 2-73 m/z=547.23(C42H29N=547.7) Sub 2-74 m/z=501.25(C38H31N=501.67)
Sub 2-75 m/z=503.26(C38H33N=503.69) Sub 2-76 m/z=510.31(C38H30D5N=510.74)
Sub 2-77 m/z=443.26(C33H33N=443.63) Sub 2-78 m/z=407.26(C30H33N=407.60)
Sub 2-79 m/z=501.25(C38H31N=501.67) Sub 2-80 m/z=487.19(C36H25NO=487.60)
Sub 2-81 m/z=459.29(C34H37N=459.68) Sub 2-82 m/z=503.26(C38H33N=503.69)
Sub 2-83 m/z=503.17(C36H25NS=503.66) Sub 2-84 m/z=483.29(C36H37N=483.70)
Sub 2-85 m/z=578.28(C44H26D5N=578.77) Sub 2-86 m/z=623.26(C48H33N=623.80)
Sub 2-87 m/z=447.20(C34H25N=447.58) Sub 2-88 m/z=453.25(C34H31N=453.63)
Sub 2-89 m/z=427.23(C32H29N=427.59) Sub 2-90 m/z=458.28(C34H26D5N=458.66)
Sub 2-91 m/z=529.28(C40H35N=529.73) Sub 2-92 m/z=465.25(C35H31N=465.64)
Sub 2-93 m/z=523.32(C39H41N=523.76) Sub 2-94 m/z=432.26(C32H24D5N=432.62)
Sub 2-95 m/z=579.29(C44H37N=579.79) Sub 2-96 m/z=547.23(C42H29N=547.70)
Sub 2-97 m/z=543.29(C41H37N=543.75) Sub 2-98 m/z=688.29(C52H36N2=688.87)
Sub 2-99 m/z=527.26(C40H33N=527.71) Sub 2-100 m/z=413.21(C31H27N=413.56)
Sub 2-101 m/z=587.22(C44H29NO=587.72) Sub 2-102 m/z=523.32(C39H41N=523.76)
Sub 2-103 m/z=537.21(C40H27NO=537.66) Sub 2-104 m/z=407.26(C30H33N=407.6)
Sub 2-105 m/z=618.30(C46H38N2=618.82) Sub 2-106 m/z=505.28(C38H35N=505.70)
Sub 2-107 m/z=541.28(C41H35N=541.74) Sub 2-108 m/z=441.25(C33H31N=441.62)
Sub 2-109 m/z=365.21(C27H27N=365.52) Sub 2-110 m/z=485.31(C36H39N=485.71)
Sub 2-111 m/z=503.26(C38H33N=503.69) Sub 2-112 m/z=605.31(C46H39N=605.82)
Sub 2-113 m/z=571.23(C41H33NS=571.78) Sub 2-114 m/z=503.26(C38H33N=503.69)
Sub 2-115 m/z=581.31(C44H39N=581.80) Sub 2-116 m/z=542.27(C40H34N2=542.73)
Sub 2-117 m/z=517.24(C38H31NO=517.67) Sub 2-118 m/z=547.23(C42H29N=547.70)
Sub 2-119 m/z=523.32(C39H41N=523.76) Sub 2-120 m/z=485.31(C36H39N=485.71)
Sub 2-121 m/z=453.25(C34H31N=453.63) Sub 2-122 m/z=577.28(C44H35N=577.77)
Sub 2-123 m/z=501.25(C38H31N=501.67) Sub 2-124 m/z=432.26(C32H24D5N=432.62)
Sub 2-125 m/z=523.32(C39H41N=523.76) Sub 2-126 m/z=427.23(C32H29N=427.59)
Sub 2-127 m/z=505.28(C38H35N=505.7) Sub 2-128 m/z=453.25(C34H31N=453.63)
Sub 2-129 m/z=547.23(C42H29N=547.7) Sub 2-130 m/z=523.23(C40H29N=523.68)
Sub 2-131 m/z=523.32(C39H41N=523.76) Sub 2-132 m/z=503.26(C38H33N=503.69)
Sub 2-133 m/z=563.26(C43H33N=563.74) Sub 2-134 m/z=595.29(C44H37NO=595.79)
Sub 2-135 m/z=433.28(C32H35N=433.64)
II. Final products 합성 예시
1. P-2 합성예
Figure PCTKR2022017265-appb-img-000299
Sub 1-2 (30 g, 109.8 mmol)를 toluene (1126 ml)에 넣고 Sub 2-1 (51.6 g, 115.3 mmol), Pd2(dba)3 (0.03 당량), P(t-Bu)3 (0.06 당량), NaOt-Bu (3 당량)을 첨가하고 100℃에서 교반하였다. 반응이 완료되면 CH2Cl2와 물로 추출한 후 유기층을 MgSO4로 건조하고 농축한 후 생성된 화합물을 silicagel column 및 재결정하여 생성물 P-2 59.7 g을 얻었다. (수율 : 85%)
2. P-6 합성예
Figure PCTKR2022017265-appb-img-000300
Sub 1-2 (21 g, 76.9 mmol)에 Sub 2-3 (40.5 g, 80.7 mmol), Pd2(dba)3 (0.03 당량), P(t-Bu)3 (0.06 당량), NaOt-Bu (3 당량), Toluene (788 ml)을 첨가하고 상기 P-2 합성법을 사용하여 생성물 P-6 42.1 g (수율: 79%)를 얻었다.
3. P-18 합성예
Figure PCTKR2022017265-appb-img-000301
Sub 1-8 (25 g, 89.2 mmol)에 Sub 2-5 (42.9 g, 96.7 mmol), Pd2(dba)3 (0.03 당량), P(t-Bu)3 (0.06 당량), NaOt-Bu (3 당량), Toluene (914 ml)을 첨가하고 상기 P-2 합성법을 사용하여 생성물 P-18 48.1 g (수율: 82%)를 얻었다.
4. P-23 합성예
Figure PCTKR2022017265-appb-img-000302
Sub 1-2 (15 g, 54.9 mmol)에 Sub 2-14 (26 g, 57.7 mmol), Pd2(dba)3 (0.03 당량), P(t-Bu)3 (0.06 당량), NaOt-Bu (3 당량), Toluene (563 ml)을 첨가하고 상기 P-2 합성법을 사용하여 생성물 P-23 25.5 g (수율: 72%)를 얻었다.
5. P-26 합성예
Figure PCTKR2022017265-appb-img-000303
Sub 1-2 (17 g, 62.2 mmol)에 Sub 2-17 (35.1 g, 65.3 mmol), Pd2(dba)3 (0.03 당량), P(t-Bu)3 (0.06 당량), NaOt-Bu (3 당량), Toluene (638 ml)을 첨가하고 상기 P-2 합성법을 사용하여 생성물 P-26 32.3 g (수율: 71%)를 얻었다.
6. P-29 합성예
Figure PCTKR2022017265-appb-img-000304
Sub 1-2 (20 g, 73.2 mmol)에 Sub 2-20 (42 g, 76.9 mmol), Pd2(dba)3 (0.03 당량), P(t-Bu)3 (0.06 당량), NaOt-Bu (3 당량), Toluene (750 ml)을 첨가하고 상기 P-2 합성법을 사용하여 생성물 P-29 40.9 g (수율: 74%)를 얻었다.
7. P-44 합성예
Figure PCTKR2022017265-appb-img-000305
Sub 1-15 (19 g, 47.8 mmol)에 Sub 2-27 (28.3 g, 50.2 mmol), Pd2(dba)3 (0.03 당량), P(t-Bu)3 (0.06 당량), NaOt-Bu (3 당량), Toluene (490 ml)을 첨가하고 상기 P-2 합성법을 사용하여 생성물 P-44 31 g (수율: 73.5%)를 얻었다.
8. P-56 합성예
Figure PCTKR2022017265-appb-img-000306
Sub 1-24 (13 g, 25.3 mmol)에 Sub 2-1 (12 g, 26.6 mmol), Pd2(dba)3 (0.03 당량), P(t-Bu)3 (0.06 당량), NaOt-Bu (3 당량), Toluene (260 ml)을 첨가하고 상기 P-2 합성법을 사용하여 생성물 P-56 15.4 g (수율: 69%)를 얻었다.
9. P-61 합성예
Figure PCTKR2022017265-appb-img-000307
Sub 1-26 (16 g, 40.5 mmol)에 Sub 2-34 (21.5 g, 42.5 mmol), Pd2(dba)3 (0.03 당량), P(t-Bu)3 (0.06 당량), NaOt-Bu (3 당량), Toluene (415 ml)을 첨가하고 상기 P-2 합성법을 사용하여 생성물 P-61 24 g (수율: 72.4%)를 얻었다.
10. P-64 합성예
Figure PCTKR2022017265-appb-img-000308
Sub 1-31 (18.5 g, 36.5 mmol)에 Sub 2-1 (17.1 g, 38.3 mmol), Pd2(dba)3 (0.03 당량), P(t-Bu)3 (0.06 당량), NaOt-Bu (3 당량), Toluene (374 ml)을 첨가하고 상기 P-2 합성법을 사용하여 생성물 P-64 25.5 g (수율: 80%)를 얻었다.
11. P-69 합성예
Figure PCTKR2022017265-appb-img-000309
Sub 1-36 (11.5 g, 26.9 mmol)에 Sub 2-1 (12.7 g, 28.3 mmol), Pd2(dba)3 (0.03 당량), P(t-Bu)3 (0.06 당량), NaOt-Bu (3 당량), Toluene (276 ml)을 첨가하고 상기 P-2 합성법을 사용하여 생성물 P-69 14.6 g (수율: 68.5%)를 얻었다.
12. P-76 합성예
Figure PCTKR2022017265-appb-img-000310
Sub 1-2 (20.0 g, 73.2 mmol)에 Sub 2-39 (31.7 g, 73.2 mmol), Pd2(dba)3 (0.03 당량), P(t-Bu)3 (0.06 당량), NaOt-Bu (3 당량), Toluene (366 ml)을 첨가하고 상기 P-2 합성법을 사용하여 생성물 P-76 32.0 g (수율: 69.8%)를 얻었다.
13. P-103 합성예
Figure PCTKR2022017265-appb-img-000311
Sub 1-57 (20.0 g, 42.2 mmol)에 Sub 2-64 (20.5 g, 42.2 mmol), Pd2(dba)3 (0.03 당량), P(t-Bu)3 (0.06 당량), NaOt-Bu (3 당량), Toluene (211 ml)을 첨가하고 상기 P-2 합성법을 사용하여 생성물 P-103 24.0 g (수율: 64.6%)를 얻었다.
14. P-129 합성예
Figure PCTKR2022017265-appb-img-000312
Sub 1-34 (20.0 g, 48.6 mmol)에 Sub 2-84 (23.5 g, 48.6 mmol), Pd2(dba)3 (0.03 당량), P(t-Bu)3 (0.06 당량), NaOt-Bu (3 당량), Toluene (243 ml)을 첨가하고 상기 P-2 합성법을 사용하여 생성물 P-129 26.6 g (수율: 67.3%)를 얻었다.
15. P-133 합성예
Figure PCTKR2022017265-appb-img-000313
Sub 1-2 (20.0 g, 73.2 mmol)에 Sub 2-87 (32.8 g, 73.2 mmol), Pd2(dba)3 (0.03 당량), P(t-Bu)3 (0.06 당량), NaOt-Bu (3 당량), Toluene (366 ml)을 첨가하고 상기 P-2 합성법을 사용하여 생성물 P-133 33.4 g (수율: 71.2%)를 얻었다.
16. P-139 합성예
Figure PCTKR2022017265-appb-img-000314
Sub 1-2 (20.0 g, 73.2 mmol)에 Sub 2-93 (38.3 g, 73.2 mmol), Pd2(dba)3 (0.03 당량), P(t-Bu)3 (0.06 당량), NaOt-Bu (3 당량), Toluene (366 ml)을 첨가하고 상기 P-2 합성법을 사용하여 생성물 P-139 37.0 g (수율: 70.5%)를 얻었다.
17. P-167 합성예
Figure PCTKR2022017265-appb-img-000315
Sub 1-58 (20.0 g, 49.1 mmol)에 Sub 2-87 (22.0 g, 49.1 mmol), Pd2(dba)3 (0.03 당량), P(t-Bu)3 (0.06 당량), NaOt-Bu (3 당량), Toluene (245 ml)을 첨가하고 상기 P-2 합성법을 사용하여 생성물 P-167 27.9 g (수율: 73.3%)를 얻었다.
18. P-177 합성예
Figure PCTKR2022017265-appb-img-000316
Sub 1-36 (20.0 g, 50.6 mmol)에 Sub 2-94 (21.9 g, 50.6 mmol), Pd2(dba)3 (0.03 당량), P(t-Bu)3 (0.06 당량), NaOt-Bu (3 당량), Toluene (253 ml)을 첨가하고 상기 P-2 합성법을 사용하여 생성물 P-177 26.7 g (수율: 70.7%)를 얻었다.
19. P-191 합성예
Figure PCTKR2022017265-appb-img-000317
Sub 1-32 (20.0 g, 48.6 mmol)에 Sub 2-134 (29.0 g, 48.6 mmol), Pd2(dba)3 (0.03 당량), P(t-Bu)3 (0.06 당량), NaOt-Bu (3 당량), Toluene (243 ml)을 첨가하고 상기 P-2 합성법을 사용하여 생성물 P-191 31.0 g (수율: 68.9%)를 얻었다.
하기 표 3은 Final Product에 속하는 일부 화합물의 FD-MS 값을 나타낸 것이다.
화합물 FD-MS 화합물 FD-MS
P-1 m/z=639.29(C49H37N=639.84) P-2 m/z=639.29(C49H37N=639.84)
P-3 m/z=639.29(C49H37N=639.84) P-4 m/z=639.29(C49H37N=639.84)
P-5 m/z=645.34(C49H43N=645.89) P-6 m/z=693.34(C53H43N=693.93)
P-7 m/z=747.39(C57H49N=748.03) P-8 m/z=649.36(C49H27D10N=649.9)
P-9 m/z=619.32(C47H41N=619.85) P-10 m/z=715.32(C55H41N=715.94)
P-11 m/z=715.32(C55H41N=715.94) P-12 m/z=715.32(C55H41N=715.94)
P-13 m/z=715.32(C55H41N=715.94) P-14 m/z=619.32(C47H41N=619.85)
P-15 m/z=645.34(C49H43N=645.89) P-16 m/z=755.36(C58H45N=756.01)
P-17 m/z=657.34(C50H43N=657.9) P-18 m/z=656.4(C49H20D17N=656.95)
P-19 m/z=589.28(C45H35N=589.78) P-20 m/z=669.3(C50H39NO=669.87)
P-21 m/z=645.33(C49H31D6N=645.88) P-22 m/z=643.32(C49H33D4N=643.87)
P-23 m/z=643.27(C45H33N5=643.79) P-24 m/z=729.3(C55H39NO=729.92)
P-25 m/z=745.28(C55H39NS=745.98) P-26 m/z=729.3(C55H39NO=729.92)
P-27 m/z=729.3(C55H39NO=729.92) P-28 m/z=739.32(C57H41N=739.96)
P-29 m/z=739.32(C57H41N=739.96) P-30 m/z=717.34(C55H43N=717.96)
P-31 m/z=729.25(C49H32F5N=729.79) P-32 m/z=741.34(C57H43N=741.98)
P-33 m/z=741.34(C57H43N=741.98) P-34 m/z=740.32(C56H40N2=740.95)
P-35 m/z=881.4(C68H51N=882.16) P-36 m/z=855.48(C65H61N=856.21)
P-37 m/z=763.32(C59H41N=763.98) P-38 m/z=763.32(C59H41N=763.98)
P-39 m/z=813.34(C63H43N=814.04) P-40 m/z=763.32(C59H41N=763.98)
P-41 m/z=759.33(C56H45NSi=760.07) P-42 m/z=768.36(C59H36D5N=769.01)
P-43 m/z=769.37(C59H47N=770.03) P-44 m/z=879.39(C68H49N=880.15)
P-45 m/z=707.36(C54H45N=707.96) P-46 m/z=719.36(C55H45N=719.97)
P-47 m/z=755.36(C58H45N=756.01) P-48 m/z=729.34(C56H43N=729.97)
P-49 m/z=819.39(C63H49N=820.09) P-50 m/z=781.31(C59H40FN=781.97)
P-51 m/z=783.35(C59H45NO=784.02) P-52 m/z=863.36(C67H45N=864.1)
P-53 m/z=767.35(C59H37D4N=768.01) P-54 m/z=921.43(C71H55N=922.23)
P-55 m/z=789.34(C61H43N=790.02) P-56 m/z=879.39(C68H49N=880.15)
P-57 m/z=761.31(C59H39N=761.97) P-58 m/z=761.31(C59H39N=761.97)
P-59 m/z=761.31(C59H39N=761.97) P-60 m/z=761.31(C59H39N=761.97)
P-61 m/z=819.39(C63H49N=820.09) P-62 m/z=819.39(C63H49N=820.09)
P-63 m/z=895.42(C69H53N=896.19) P-64 m/z=873.43(C67H55N=874.18)
P-65 m/z=777.3(C59H39NO=777.97) P-66 m/z=777.3(C59H39NO=777.97)
P-67 m/z=777.3(C59H39NO=777.97) P-68 m/z=777.3(C59H39NO=777.97)
P-69 m/z=793.28(C59H39NS=794.03) P-70 m/z=793.28(C59H39NS=794.03)
P-71 m/z=793.28(C59H39NS=794.03) P-72 m/z=793.28(C59H39NS=794.03)
P-73 m/z=639.29(C49H37N=639.84) P-74 m/z=645.34(C49H43N=645.89)
P-75 m/z=619.32(C47H41N=619.85) P-76 m/z=625.37(C47H47N=625.9)
P-77 m/z=657.34(C50H43N=657.9) P-78 m/z=657.34(C50H43N=657.9)
P-79 m/z=701.4(C53H43D4N=701.99) P-80 m/z=649.36(C49H27D10N=649.9)
P-81 m/z=771.39(C59H49N=772.05) P-82 m/z=695.36(C53H45N=695.95)
P-83 m/z=795.39(C61H49N=796.07) P-84 m/z=687.39(C52H49N=687.97)
P-85 m/z=669.3(C50H39NO=669.87) P-86 m/z=695.26(C51H37NS=695.92)
P-87 m/z=734.37(C55H46N2=734.99) P-88 m/z=957.4(C73H51NO=958.22)
P-89 m/z=802.34(C59H34D7NS=803.09) P-90 m/z=715.42(C54H53N=716.02)
P-91 m/z=871.42(C67H53N=872.17) P-92 m/z=861.43(C66H55N=862.17)
P-93 m/z=804.35(C61H44N2=805.04) P-94 m/z=721.37(C55H47N=721.99)
P-95 m/z=791.36(C61H45N=792.04) P-96 m/z=843.39(C57H50F5N=844.03)
P-97 m/z=763.32(C59H41N=763.98) P-98 m/z=707.36(C54H45N=707.96)
P-99 m/z=819.39(C63H49N=820.09) P-100 m/z=865.46(C66H59N=866.2)
P-101 m/z=857.4(C66H51N=858.14) P-102 m/z=681.34(C52H43N=681.92)
P-103 m/z=877.46(C67H59N=878.22) P-104 m/z=1005.53(C77H67N=1006.39)
P-105 m/z=1035.39(C78H53NS=1036.35) P-106 m/z=852.35(C65H44N2=853.08)
P-107 m/z=762.4(C58H42D5N=763.05) P-108 m/z=902.46(C69H50D5N=903.24)
P-109 m/z=819.39(C63H49N=820.09) P-110 m/z=819.39(C63H49N=820.09)
P-111 m/z=785.4(C60H51N=786.07) P-112 m/z=761.31(C59H39N=761.97)
P-113 m/z=873.43(C67H55N=874.18) P-114 m/z=817.37(C63H47N=818.08)
P-115 m/z=785.4(C60H51N=786.07) P-116 m/z=861.34(C67H43N=862.09)
P-117 m/z=815.36(C63H45N=816.06) P-118 m/z=817.37(C63H47N=818.08)
P-119 m/z=761.31(C59H39N=761.97) P-120 m/z=824.42(C63H44D5N=825.12)
P-121 m/z=845.41(C62H55NS=846.19) P-122 m/z=737.37(C55H47NO=737.99)
P-123 m/z=831.35(C63H45NO=832.06) P-124 m/z=833.28(C61H39NOS=834.05)
P-125 m/z=865.43(C65H55NO=866.16) P-126 m/z=849.34(C63H47NS=850.14)
P-127 m/z=911.41(C69H53NO=912.19) P-128 m/z=849.25(C61H39NS2=850.11)
P-129 m/z=813.4(C61H51NO=814.08) P-130 m/z=924.36(C69H40D5NS=925.22)
P-131 m/z=835.38(C63H49NO=836.09) P-132 m/z=969.34(C73H47NS=970.25)
P-133 m/z=639.29(C49H37N=639.84) P-134 m/z=645.34(C49H43N=645.89)
P-135 m/z=619.32(C47H41N=619.85) P-136 m/z=650.37(C49H38D5N=650.92)
P-137 m/z=721.37(C55H47N=721.99) P-138 m/z=661.36(C50H39D4N=661.93)
P-139 m/z=715.42(C54H53N=716.02) P-140 m/z=624.36(C47H36D5N=624.88)
P-141 m/z=923.45(C71H57N=924.24) P-142 m/z=649.33(C48H43NO=649.88)
P-143 m/z=795.39(C61H49N=796.07) P-144 m/z=735.39(C56H49N=736.01)
P-145 m/z=639.29(C49H37N=639.84) P-146 m/z=880.38(C67H48N2=881.13)
P-147 m/z=795.39(C61H49N=796.07) P-148 m/z=605.31(C46H39N=605.82)
P-149 m/z=786.36(C59H34D7NO=787.03) P-150 m/z=722.46(C54H46D7N=723.07)
P-151 m/z=729.3(C55H39NO=729.92) P-152 m/z=599.36(C45H45N=599.86)
P-153 m/z=810.4(C61H50N2=811.08) P-154 m/z=697.37(C53H47N=697.97)
P-155 m/z=733.37(C56H47N=734) P-156 m/z=633.34(C48H43N=633.88)
P-157 m/z=763.32(C59H41N=763.98) P-158 m/z=681.34(C52H43N=681.92)
P-159 m/z=953.5(C73H63N=954.31) P-160 m/z=931.51(C71H65N=932.31)
P-161 m/z=921.43(C71H55N=922.23) P-162 m/z=887.36(C66H49NS=888.18)
P-163 m/z=819.39(C63H49N=820.09) P-164 m/z=897.43(C69H55N=898.21)
P-165 m/z=858.4(C65H50N2=859.13) P-166 m/z=833.37(C63H47NO=834.07)
P-167 m/z=773.39(C59H31D10N=774.05) P-168 m/z=863.36(C67H45N=864.1)
P-169 m/z=837.43(C64H55N=838.15) P-170 m/z=943.33(C71H45NS=944.21)
P-171 m/z=799.42(C61H53N=800.1) P-172 m/z=837.34(C65H43N=838.07)
P-173 m/z=879.48(C67H61N=880.23) P-174 m/z=891.39(C69H49N=892.16)
P-175 m/z=761.31(C59H39N=761.97) P-176 m/z=815.36(C63H45N=816.06)
P-177 m/z=746.37(C57H38D5N=747.01) P-178 m/z=837.43(C64H55N=838.15)
P-179 m/z=761.31(C59H39N=761.97) P-180 m/z=741.34(C57H43N=741.98)
P-181 m/z=777.3(C59H39NO=777.97) P-182 m/z=849.34(C63H47NS=850.14)
P-183 m/z=911.41(C69H53NO=912.19) P-184 m/z=799.33(C59H45NS=800.08)
P-185 m/z=933.4(C71H51NO=934.19) P-186 m/z=869.31(C65H43NS=870.13)
P-187 m/z=853.43(C64H55NO=854.15) P-188 m/z=849.34(C63H47NS=850.14)
P-189 m/z=777.3(C59H39NO=777.97) P-190 m/z=909.34(C68H47NS=910.19)
P-191 m/z=925.39(C69H51NO2=926.17) P-192 m/z=779.36(C57H49NS=780.09)
유기전기소자의 제조평가
[실시예 1] 녹색유기전계발광소자 (정공수송층)
유리 기판에 형성된 ITO층(양극) 상에 N1-(naphthalen-2-yl)-N4,N4-bis(4-(naphthalen-2-yl(phenyl)amino)phenyl)-N1-phenylbenzene-1,4-diamine (이하, 2-TNATA로 약기함)을 60 nm 두께로 진공증착하여 정공주입층을 형성한 후, 상기 정공주입층 상에 화학식 1로 표시되는 본 발명의 화합물 P-1을 60 nm 두께로 진공증착하여 정공수송층을 형성하였다.
이어서, 상기 정공수송층 상에 호스트로 4,4'-N,N'-dicarbazole-biphenyl (이하, CBP로 약기함)을, 도펀트로 tris(2-phenylpyridine)-iridium (이하, Ir(ppy)3로 약기함)을 90:10 중량비로 사용하여 30 nm 두께의 발광층을 형성하였다.
이어서, 상기 발광층 상에 (1,1'-biphenyl-4-olato)bis(2-methyl-8-quinolinolato)aluminum (이하, BAlq로 약기함)를 5 nm 두께로 증착하여 정공저지층을 형성하고, 상기 정공저지층 상에 트리스(8-퀴놀리놀)알루미늄(이하 Alq3로 약기함)을 40 nm 두께로 증착하여 전자수송층을 형성하였다.
이후, LiF를 0.2 nm 두께로 증착하여 전자주입층을 형성하고, 이어서 Al을 150 nm의 두께로 증착하여 음극을 형성함으로써 유기전기발광소자를 제조하였다.
[실시예 2] 내지 [실시예 35]
정공수송층 물질로 본 발명의 화합물 P-1 대신 하기 표 4에 기재된 본 발명의 화합물을 사용한 점을 제외하고는 상기 실시예 1과 동일한 방법으로 유기전기발광소자를 제작하였다.
[비교예 1]
정공수송층 물질로 N,N'-Bis(1-naphthalenyl)-N,N'-bis-phenyl-(1,1'-biphenyl)-4,4'-diamine (이하 NPB로 약기함)를 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 유기전기발광소자를 제작하였다.
[비교예 2] 내지 [비교예 6]
정공수송층 물질로 하기 비교화합물 1 내지 비교화합물 5 중 하나를 사용한 점을 제외하고는 상기 실시예 1과 동일한 방법으로 유기전기발광소자를 제작하였다.
비교화합물 1 비교화합물 2 비교화합물 3
Figure PCTKR2022017265-appb-img-000318
비교화합물 4 비교화합물 5
Figure PCTKR2022017265-appb-img-000319
이와 같이 제조된 실시예 1 내지 실시예 35 및 비교예 1 내지 비교예 6의 유기전기발광소자들에 순바이어스 직류전압을 가하여 포토리서치(photoresearch)사의 PR-650으로 전기발광(EL) 특성을 측정하였으며, 그 측정 결과 5000cd/m2 기준 휘도에서 맥사이언스사에서 제조된 수명 측정 장비를 통해 T95 수명을 측정하였다. 하기 표 4는 소자제작 및 평가한 결과를 나타낸다.
이하, 하기 화학식 1 구조를 참고하여 소자데이터와 본 발명 화합물의 골격 구성에 따른 진보성을 함께 설명하기로 한다.
화학식 1
Figure PCTKR2022017265-appb-img-000320
  화합물 구동전압 전류
(mA/cm2)
휘도
(cd/m2)
효율
(cd/A)
T(95) CIE
X Y
비교예(1) NPB 6.0 24.5 5000 20.4 58.9 0.31 0.61
비교예(2) 비교화합물 1 5.2 17.4 5000 28.8 85.0 0.32 0.61
비교예(3) 비교화합물 2 5.3 18.2 5000 27.5 80.9 0.32 0.61
비교예(4) 비교화합물 3 5.4 18.9 5000 26.4 80.3 0.32 0.60
비교예(5) 비교화합물 4 5.3 18.5 5000 27.1 81.8 0.32 0.60
비교예(6) 비교화합물 5 5.3 17.9 5000 28.0 82.6 0.32 0.60
실시예(1) P-1 5.1 11.7 5000 42.7 108.3 0.32 0.61
실시예(2) P-2 5.0 11.2 5000 44.8 110.4 0.32 0.61
실시예(3) P-3 5.1 11.9 5000 41.9 107.9 0.33 0.60
실시예(4) P-4 5.1 12.2 5000 41.0 107.2 0.33 0.61
실시예(5) P-7 5.2 13.8 5000 36.3 101.3 0.33 0.61
실시예(6) P-8 5.0 11.3 5000 44.1 109.5 0.33 0.60
실시예(7) P-11 5.2 13.6 5000 36.7 101.8 0.33 0.61
실시예(8) P-18 5.1 12.5 5000 40.0 106.4 0.33 0.61
실시예(9) P-21 5.0 11.5 5000 43.6 109.0 0.33 0.63
실시예(10) P-23 5.2 13.3 5000 37.5 102.7 0.33 0.62
실시예(11) P-28 5.1 12.9 5000 38.7 104.6 0.33 0.63
실시예(12) P-37 5.1 13.2 5000 37.9 103.3 0.33 0.62
실시예(13) P-56 5.2 14.9 5000 33.5 98.4 0.33 0.63
실시예(14) P-57 5.2 14.0 5000 35.6 100.5 0.33 0.62
실시예(15) P-61 5.2 15.1 5000 33.1 97.8 0.33 0.62
실시예(16) P-64 5.2 14.2 5000 35.2 100.1 0.33 0.63
실시예(17) P-66 5.2 14.5 5000 34.4 99.2 0.33 0.63
실시예(18) P-69 5.2 14.8 5000 33.8 98.9 0.33 0.62
실시예(19) P-73 5.1 12.5 5000 40.1 108.9 0.32 0.61
실시예(20) P-75 5.1 12.6 5000 39.7 109.1 0.33 0.61
실시예(21) P-78 5.1 12.7 5000 39.5 109.6 0.33 0.61
실시예(22) P-89 5.2 13.4 5000 37.2 106.1 0.33 0.61
실시예(23) P-103 5.2 14.2 5000 35.3 101.1 0.33 0.60
실시예(24) P-117 5.2 14.3 5000 35.0 99.6 0.33 0.63
실시예(25) P-121 5.2 14.7 5000 34.0 97.9 0.33 0.60
실시예(26) P-133 5.0 11.2 5000 44.6 109.9 0.32 0.62
실시예(27) P-135 5.1 11.6 5000 43.0 108.8 0.33 0.63
실시예(28) P-139 5.0 11.5 5000 43.6 108.9 0.32 0.61
실시예(29) P-148 5.2 12.2 5000 41.1 105.6 0.33 0.61
실시예(30) P-153 5.2 11.8 5000 42.4 106.0 0.33 0.62
실시예(31) P-160 5.1 13.3 5000 37.5 103.3 0.32 0.63
실시예(32) P-166 5.2 13.7 5000 36.6 102.7 0.33 0.61
실시예(33) P1-69 5.1 14.0 5000 35.8 100.2 0.32 0.62
실시예(34) P-179 5.2 14.7 5000 34.1 99.6 0.32 0.62
실시예(35) P-187 5.2 14.7 5000 33.9 98.7 0.32 0.63
상기 표 4로부터 알 수 있듯이, 본 발명의 화학식 1로 표시되는 화합물을 정공수송층 재료로 사용하여 녹색유기전기발광소자를 제작한 경우, 본 발명의 화합물과 기본 골격이 유사한 비교화합물 1 내지 비교화합물 6을 사용한 비교예들보다 유기전기소자의 구동전압, 발광 효율 및 수명을 개선시킬 수 있다. 즉, 정공수송층 물질로 주로 사용되는 NPB를 사용하여 제작된 비교예 1의 소자보다는 플루오렌일기 코어에 아민그룹이 치환되는 비교화합물 1 내지 비교화합물 5를 사용하여 제작된 비교예 2 내지 비교예 6의 소자의 전기적 특성이 개선되었으며, 비교예 1 내지 비교예 6에 비해 본 발명의 화학식 1에 따른 화합물을 정공수송층 재료로 사용한 경우 유기발광소자의 발광효율과 수명이 증가하고, 구동전압이 소폭 낮아지면서 소자의 전기적 특성이 더욱 개선되었다. 비교화합물 1 내지 비교화합물 5는 3차 아민 화합물에서 코어로 플루오렌일기가 치환되어 있다는 점에서 본 발명의 화합물과 동일하지만, 비교화합물 1 내지 비교화합물 5는 본 발명의 화학식 1의 구성 1 및 2와 구성이 동일하지 않거나, 구성 1 및 2를 기준으로 특정 치환위치에 R1 및 R2 치환기를 동시에 가지지 않는 점에 차이가 있다. 즉, 본 발명 실시예의 화합물들은 플루오렌일기와 모노아민 기본 골격에 아민기의 치환기로 구성 1 및 2를 제시하며, 구성 1 및 2 각각에서 R1, R2와 같이 특정 치환위치에 치환기를 갖는 화합물이다.
하기, 표 5는 화합물 구조가 유사한 본 발명의 화합물과 비교화합물 1 내지 비교화합물 5의 비결정질 고체상 분자의 양자역학적 삼중항 결합해리에너지(이하, T1-BDE)를 분자시뮬레이션을 이용하여 측정한 데이터이다.
T1-BDE (Kcal/mol)
P-1 17.698
P-37 17.630
P-57 18.362
비교화합물 1 9.043
비교화합물 2 10.284
비교화합물 3 14.187
비교화합물 4 14.725
비교화합물 5 13.939
상기 표 5로부터 비교화합물 1 내지 비교화합물 5보다 본 발명의 화합물 P-1, P-37 및 P-57의 T1-BDE 값이 상회하는 것을 확인할 수 있다. 유기전기소자에서는 박막의 결정화도가 낮을수록 비결정질 상태를 만들 수 있으며, 이러한 비결정질 상태는 등방성(isotropic)과 균등질(homogeneous) 특성을 통해 결정립의 경계(Grain Boundary)를 줄이고 전하와 정공의 이동도를 빨라지게 할 수 있다. 그러나 분자의 구조에 따라 동일한 비결정질 상태라 하더라도 비결정질 상태의 고체상 분자의 양자역학적 평균 결합해리에너지는 고체상일 때의 분자간 상호작용에 의해 차이가 날 수 있으며, 높은 값을 가질수록 화합물 자체의 안정성이 증가한다. 따라서, 본 발명의 화합물을 유기전기소자의 정공수송층으로 사용할 경우, 본 발명의 화합물과 기본골격이 유사한 비교화합물 1 내지 비교화합물 5를 사용한 비교예들보다 발광층에서 넘어오는 전자에 대한 안정성이 현저하게 증가하여 소자의 수명이 극대화된 것으로 판단된다. 또한, 하기 표 6 및 표 7로부터 동일 구성이더라도 본 발명의 화학식 1의 구성 1, 2에 해당하는 치환기의 한정사항에 따른 효과의 차이를 확인할 수 있다. 표 6은 본 발명 화합물 P-1과 비교화합물 1, 3 내지 5의 분자간 평균거리를 나타내는 표이며, 표 7은 본 발명 화합물 P-37과 비교화합물 2의 분자간 평균거리를 비교한 데이터이다.
분자간 평균거리 (Å)
P-1 9.956
비교화합물 1 10.359
비교화합물 3 9.965
비교화합물 4 10.476
비교화합물 5 10.352
분자간 평균거리 (Å)
P-37 10.507
비교화합물 2 10.553
상기 표 6을 보면, 본 발명의 화합물 P-1의 분자간 평균거리가 비교화합물 1, 3 내지 5의 분자간 평균거리보다 작은 값을 나타내는 것을 확인할 수 있으며, 더욱이 화합물 P-1과 분자량이 동일한 비교화합물 3에 비해 분자간 평균거리가 9.956 Å으로 작은 값을 나타내는 것을 확인할 수 있다. 이를 통해 본 발명의 화학식 1에서 구성 1 및 2에 R1, R2가 각각 특정 위치에 치환됨으로써 비교화합물들보다 본 발명의 화합물이 비결정질 고체상 상태일 때 분자간 거리가 더욱 가깝고, 이에 전하의 이동이 상대적으로 빨라지게 되므로 소자 전체의 전하 균형(Charge balance)이 향상되어 소자의 효율 및 구동이 현저하게 개선된 것으로 판단된다. 상기와 마찬가지로 표 7을 보면, 본 발명 화합물 P-37의 분자간 평균거리가 비교화합물 2에 대해 작은 값을 내는 것을 확인할 수 있으며, 이에 상기 서술한 효과를 본 발명의 실시예 화합물을 통해 얻을 수 있다. 추가적으로, 하기 표 8은 본 발명 화합물 P-1 및 비교화합물 1의 HOMO dos w를 비교한 데이터이다.
HOMO dos w (eV)
P-1 0.172
비교화합물 1 0.119
상기 표 8을 보면, 본 발명 화합물 P-1의 HOMO dos w는 0.172 eV의 값을 나타내고, 비교화합물 1은 0.119 eV의 값을 나타내는데, 상기 값이 클수록 서로 다른 레이어 간의 전하 주입 특성이 향상되는 것을 의미한다. 이를 통해, 본 발명 화합물 P-1과 비교화합물 1의 화합물 골격이 매우 유사하고 분자량이 동일하더라도, 본 발명의 화학식 1과 같이 구성 1의 파라(Para) 위치에 R1이 치환되고 구성 2의 오르쏘(ortho) 위치에 R2가 치환되는 선택적 구조를 갖는 것이 소자의 성능을 보다 향상시킬 수 있는 것을 확인할 수 있다. 아울러, 전술한 소자 제작의 평가 결과에서는 본 발명의 화합물을 정공수송층에만 적용한 소자 특성을 설명하였으나, 본 발명의 화합물을 발광보조층에 적용하거나 정공수송층과 발광보조층 모두 적용하여 사용할 수 있다. 단, 본 발명의 화합물의 바람직한 사용층은 정공수송층임을 소자결과를 통해 설명한 것이다.
이상의 설명은 본 발명을 예시적으로 설명한 것에 불과한 것으로, 본 발명에 속하는 기술분야에서 통상의 지식을 가지는 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 변형이 가능할 것이다. 따라서, 본 명세서에 개시된 실시예들은 본 발명을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예에 의하여 본 발명의 사상과 범위가 한정되는 것은 아니다. 본 발명의 보호범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 모든 기술은 본 발명의 권리범위에 포함하는 것으로 해석되어야 할 것이다.
본 발명에 따르면, 고휘도, 고발광 및 장수명의 우수한 소자특성을 갖는 유기소자를 제조할 수 있어 산업상 이용가능성이 있다.

Claims (23)

  1. 하기 화학식 1로 표시되는 화합물
    화학식 1
    Figure PCTKR2022017265-appb-img-000321
    {상기 화학식 1에서,
    1) R’ 및 R”은 서로 독립적으로 수소; C6~C60의 아릴기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; C3~C60의 지방족고리와 C6~C60의 방향족고리의 융합고리기; C1~C50의 알킬기; C2~C20의 알켄일기; C2~C20의 알킨일기; C1~C30의 알콕시기; 및 C6~C30의 아릴옥시기;로 이루어진 군에서 선택되며, 또는 R’ 및 R”은 서로 결합하여 스파이로 고리를 형성할 수 있고,
    2) R1 및 R2는 서로 독립적으로 C6~C60의 아릴기; 플루오렌일기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; C3~C60의 지방족고리와 C6~C60의 방향족고리의 융합고리기; C1~C60의 알킬기; C2~C20의 알켄일기; C2~C20의 알킨일기; C1~C30의 알콕시기; C6~C30의 아릴옥시기; 및 C3~C60의 사이클로알킬기;로 이루어진 군에서 선택되며,
    3) Ra 및 Rb는 각각 동일하거나 상이하고, 서로 독립적으로 수소; 중수소; 할로겐; C6~C60의 아릴기; 플루오렌일기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; C3~C60의 지방족고리와 C6~C60의 방향족고리의 융합고리기; C1~C50의 알킬기; C2~C20의 알켄일기; C2~C20의 알킨일기; C1~C30의 알콕시기; C6~C30의 아릴옥시기; 및 C3~C60의 사이클로알킬기;로 이루어진 군에서 선택되며, 또는 이웃한 복수의 Ra끼리 혹은 복수의 Rb끼리 서로 결합하여 고리를 형성할 수 있고,
    4) m은 0 내지 3의 정수이며, n은 0 내지 4의 정수이고,
    5) 여기서, 상기 아릴기, 헤테로고리기, 플루오렌일기, 지방족고리기, 융합고리기, 알킬기, 알켄일기, 알킨일기, 알콕시기, 아릴옥시기 및 사이클로알킬기는 각각 중수소; 할로겐; 실란기; 실록산기; 붕소기; 게르마늄기; 시아노기; 니트로기; C1~C20의 알킬싸이오기; C1~C20의 알콕시기; C1~C20의 알킬기; C2~C20의 알켄일기; C2~C20의 알킨일기; C6~C20의 아릴기; 중수소로 치환된 C6~C20의 아릴기; 플루오렌일기; C2~C20의 헤테로고리기; C3~C20의 시클로알킬기; C7~C20의 아릴알킬기; 및 C8~C20의 아릴알켄일기;로 이루어진 군에서 선택된 하나 이상의 치환기로 더욱 치환될 수 있으며, 또한 이들 치환기들은 서로 결합하여 고리를 형성할 수도 있으며, 여기서 '고리'란 C3~C60의 지방족고리 또는 C6~C60의 방향족고리 또는 C2~C60의 헤테로고리 또는 이들의 조합으로 이루어진 융합 고리를 말하며, 포화 또는 불포화 고리를 포함한다.}
  2. 제1항에 있어서, 상기 화학식 1은 하기 화학식들 중 어느 하나로 표시되는 것을 특징으로 하는 화합물
    화학식 2-1 화학식 2-2 화학식 2-3
    Figure PCTKR2022017265-appb-img-000322
    화학식 3-1 화학식 3-2 화학식 3-3
    Figure PCTKR2022017265-appb-img-000323
    화학식 4-1 화학식 4-2 화학식 4-3
    Figure PCTKR2022017265-appb-img-000324
    화학식 5-1 화학식 5-2 화학식 5-3
    Figure PCTKR2022017265-appb-img-000325
    {상기 화학식 2-1 내지 화학식 2-3, 화학식 3-1 내지 화학식 3-3, 화학식 4-1 내지 화학식 4-3 및 화학식 5-1 내지 화학식 5-3에서,
    1) R1, R2, Ra, Rb, m 및 n은 상기 청구항 1에서 정의된 바와 동일하며,
    2) X는 O 또는 S이고,
    2) Rc 및 Rd는 상기 청구항 1의 Ra의 정의와 동일하며,
    3) o 및 p는 서로 독립적으로 0 내지 5의 정수이고, q 및 r은 서로 독립적으로 0 내지 4의 정수이다.}
  3. 제1항에 있어서, 상기 Ra 및 Rb는 서로 독립적으로 수소; 또는 중수소;인 것을 특징으로 하는 화합물
  4. 제1항에 있어서, 상기 R1 및 R2는 서로 독립적으로 C6~C25의 아릴기인 것을 특징으로 하는 화합물
  5. 제1항에 있어서, 상기 화학식 1은 하기 화학식들 중 어느 하나로 표시되는 것을 특징으로 하는 화합물
    화학식 8-1 화학식 8-2 화학식 8-3
    Figure PCTKR2022017265-appb-img-000326
    화학식 9-1 화학식 9-2 화학식 9-3
    Figure PCTKR2022017265-appb-img-000327
    화학식 10-1 화학식 10-2 화학식 10-3
    Figure PCTKR2022017265-appb-img-000328
    화학식 11-1 화학식 11-2 화학식 11-3
    Figure PCTKR2022017265-appb-img-000329
    {상기 화학식 8-1 내지 화학식 8-3, 화학식 9-1 내지 화학식 9-3, 화학식 10-1 내지 화학식 10-3 및 화학식 11-1 내지 화학식 11-3에서,
    1) R1 및 R2는 상기 청구항 1에서 정의된 바와 동일하며,
    2) X는 상기 청구항 2에서 정의된 바와 동일하다.}
  6. 제1항에 있어서, 상기 R1 및 R2는 C6의 아릴기인 것을 특징으로 하는 화합물
  7. 제1항에 있어서, 상기 화학식 1로 표시되는 화합물은 정공수송영역의 정공수송층(HTL)용인 것을 특징으로 하는 화합물
  8. 제1항에 있어서, 상기 화학식 1로 표시되는 화합물은 하기 화합물들 중 어느 하나인 것을 특징으로 하는 화합물
    Figure PCTKR2022017265-appb-img-000330
    Figure PCTKR2022017265-appb-img-000331
    Figure PCTKR2022017265-appb-img-000332
    Figure PCTKR2022017265-appb-img-000333
    Figure PCTKR2022017265-appb-img-000334
    Figure PCTKR2022017265-appb-img-000335
    Figure PCTKR2022017265-appb-img-000336
    Figure PCTKR2022017265-appb-img-000337
    Figure PCTKR2022017265-appb-img-000338
    Figure PCTKR2022017265-appb-img-000339
    Figure PCTKR2022017265-appb-img-000340
    Figure PCTKR2022017265-appb-img-000341
    Figure PCTKR2022017265-appb-img-000342
    Figure PCTKR2022017265-appb-img-000343
    Figure PCTKR2022017265-appb-img-000344
    Figure PCTKR2022017265-appb-img-000345
    Figure PCTKR2022017265-appb-img-000346
    Figure PCTKR2022017265-appb-img-000347
    Figure PCTKR2022017265-appb-img-000348
    Figure PCTKR2022017265-appb-img-000349
    Figure PCTKR2022017265-appb-img-000350
    Figure PCTKR2022017265-appb-img-000351
    Figure PCTKR2022017265-appb-img-000352
    Figure PCTKR2022017265-appb-img-000353
    Figure PCTKR2022017265-appb-img-000354
    Figure PCTKR2022017265-appb-img-000355
    Figure PCTKR2022017265-appb-img-000356
    Figure PCTKR2022017265-appb-img-000357
    Figure PCTKR2022017265-appb-img-000358
    Figure PCTKR2022017265-appb-img-000359
    Figure PCTKR2022017265-appb-img-000360
    Figure PCTKR2022017265-appb-img-000361
    Figure PCTKR2022017265-appb-img-000362
    Figure PCTKR2022017265-appb-img-000363
    Figure PCTKR2022017265-appb-img-000364
    Figure PCTKR2022017265-appb-img-000365
    Figure PCTKR2022017265-appb-img-000366
    Figure PCTKR2022017265-appb-img-000367
    Figure PCTKR2022017265-appb-img-000368
    Figure PCTKR2022017265-appb-img-000369
    Figure PCTKR2022017265-appb-img-000370
    Figure PCTKR2022017265-appb-img-000371
    Figure PCTKR2022017265-appb-img-000372
    Figure PCTKR2022017265-appb-img-000373
    Figure PCTKR2022017265-appb-img-000374
    Figure PCTKR2022017265-appb-img-000375
    Figure PCTKR2022017265-appb-img-000376
    Figure PCTKR2022017265-appb-img-000377
  9. 양극, 음극 및 상기 양극과 음극 사이에 형성된 유기물층을 포함하는 유기전기소자에 있어서, 상기 유기물층은 제1항의 화학식 1로 표시되는 단독화합물 또는 2 이상의 화합물을 포함하는 것을 특징으로 하는 유기전기소자
  10. 제9항에 있어서, 상기 유기물층은 정공주입층, 정공수송층, 발광보조층, 발광층, 전자수송보조층, 전자수송층 및 전자주입층 중 적어도 하나를 포함하는 것을 특징으로 하는 유기전기소자
  11. 제9항에 있어서, 상기 유기물층은 정공수송층인 것을 특징으로 하는 유기전기소자
  12. 제10항에 있어서, 상기 발광층은 하기 화학식 12 내지 화학식 14로 표시되는 화합물 중 적어도 하나를 포함하는 것을 특징으로 하는 유기전기소자
    화학식 12 화학식 13
    Figure PCTKR2022017265-appb-img-000378
    Figure PCTKR2022017265-appb-img-000379
    화학식 14
    Figure PCTKR2022017265-appb-img-000380
    {상기 화학식 12 내지 화학식 14에서,
    1) X1, X2 및 X3은 서로 독립적으로 C(R3) 또는 N이며, 단, X1, X2 및 X3 중 적어도 2개는 N이고,
    2) R3은 수소; 중수소; 할로겐; C6~C60의 아릴기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; C3~C60의 지방족고리와 C6~C60의 방향족고리의 융합고리기; C1~C50의 알킬기; C2~C20의 알켄일기; C2~C20의 알킨일기; C1~C30의 알콕시기; 및 C6~C30의 아릴옥시기;로 이루어진 군에서 선택되며,
    3) Y 및 Y'은 서로 독립적으로 O, S, CReRf 또는 N-L'-Ar8이고,
    4) W는 O, N, S, CReRf 또는 N-L'-Ar8이며,
    5) 상기 Re 및 Rf는 서로 독립적으로 수소; 중수소; C6~C60의 아릴기; 플루오렌일기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; C3~C60의 지방족고리와 C6~C60의 방향족고리의 융합고리기; C1~C50의 알킬기; C2~C20의 알켄일기; C2~C20의 알킨일기; C1~C30의 알콕시기; 및 C6~C30의 아릴옥시기;로 이루어진 군에서 선택되고, 또는 Re 및 Rf는 서로 결합하여 스파이로 고리를 형성할 수 있으며,
    6) L1, L2, L3, L4, L5, L6 및 상기 L'은 서로 독립적으로 단일결합; C6~C60의 아릴렌기; 및 O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기;로 이루어진 군에서 선택되고,
    7) Ar3, Ar4, Ar5, Ar6, Ar7 및 상기 Ar8은 서로 독립적으로 C6~C60의 아릴기; 플루오렌일기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; C3~C60의 지방족고리와 C6~C60의 방향족고리의 융합고리기; C1~C60의 알킬기; C2~C20의 알켄일기; C2~C20의 알킨일기; C1~C30의 알콕시기; 및 C6~C30의 아릴옥시기;로 이루어진 군에서 선택되며,
    8) A환, B환 및 C환은 서로 독립적으로 C6~C14의 아릴기;이고, 또는 A환, B환 및 C환은 R1로 치환될 수 있으며,
    9) E환, F환, G환 및 H환은 서로 독립적으로 C6~C20의 아릴기; 또는 C2~C20의 헤테로고리기;이고, 또는 E환, F환, G환 및 H환은 R2로 치환될 수 있으며,
    10) 상기 R1 및 R2는 서로 독립적으로 수소; 중수소; 할로겐; 시아노기; C6~C60의 아릴기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; C3~C60의 지방족고리와 C6~C60의 방향족고리의 융합고리기; C1~C50의 알킬기; C2~C20의 알켄일기; C2~C20의 알킨일기; C1~C30의 알콕시기; C6~C30의 아릴옥시기; 및 -L"-N(Rm)(Rn);으로 이루어진 군에서 선택되고, 이웃한 기끼리 결합하여 고리를 형성할 수 있으며,
    11) 상기 L"은 단일결합; C6~C60의 아릴렌기; 플루오렌일렌기; C3~C60의 지방족고리기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; 및 이들의 조합으로 이루어진 군에서 선택되고, 상기 Rm 및 Rn은 서로 독립적으로 C6~C60의 아릴기; 플루오렌일기; C3~C60의 지방족고리기; O, N, S, Si 및 P 중 적어도 하나의 헤테로원자를 포함하는 C2~C60의 헤테로고리기; 및 이들의 조합으로 이루어진 군에서 선택되며,
    12) b 및 c는 서로 독립적으로 0 또는 1이고, 단, b+c≥1이며,
    13) 여기서, 상기 아릴기, 아릴렌기, 헤테로고리기, 플루오렌일기, 플루오렌일렌기, 지방족고리기, 융합고리기, 알킬기, 알켄일기, 알콕실기 및 아릴옥시기는 각각 중수소; 할로겐; 실란기; 실록산기; 붕소기; 게르마늄기; 시아노기; 니트로기; C1~C20의 알킬싸이오기; C1~C20의 알콕시기; C1~C20의 알킬기; C2~C20의 알켄일기; C2~C20의 알킨일기; C6~C20의 아릴기; 중수소로 치환된 C6~C20의 아릴기; 플루오렌일기; C2~C20의 헤테로고리기; C3~C20의 시클로알킬기; C7~C20의 아릴알킬기; 및 C8~C20의 아릴알켄일기;로 이루어진 군에서 선택된 하나 이상의 치환기로 더욱 치환될 수 있으며, 또한 이들 치환기들은 서로 결합하여 고리를 형성할 수도 있으며, 여기서 '고리'란 C3~C60의 지방족고리 또는 C6~C60의 방향족고리 또는 C2~C60의 헤테로고리 또는 이들의 조합으로 이루어진 융합 고리를 말하며, 포화 또는 불포화 고리를 포함한다.}
  13. 제12항에 있어서, 상기 화학식 12가 하기 화학식 2-1 내지 화학식 2-3 중 어느 하나로 표시되는 것을 특징으로 하는 유기전기소자
    화학식 2-1 화학식 2-2 화학식 2-3
    Figure PCTKR2022017265-appb-img-000381
    {상기 화학식 2-1 내지 화학식 2-3에서,
    1) A환, C환, Y, Y', b, c, Ar3, L1 및 R1은 상기 청구항 12에 정의된 바와 동일하며,
    2) a는 0 내지 2의 정수이다.}
  14. 제12항에 있어서, 상기 화학식 12로 나타내는 화합물이 하기 화합물들 중 어느 하나로 표시되는 것을 특징으로 하는 유기전기소자
    Figure PCTKR2022017265-appb-img-000382
    Figure PCTKR2022017265-appb-img-000383
    Figure PCTKR2022017265-appb-img-000384
    Figure PCTKR2022017265-appb-img-000385
    Figure PCTKR2022017265-appb-img-000386
    Figure PCTKR2022017265-appb-img-000387
    Figure PCTKR2022017265-appb-img-000388
    Figure PCTKR2022017265-appb-img-000389
    Figure PCTKR2022017265-appb-img-000390
    Figure PCTKR2022017265-appb-img-000391
    Figure PCTKR2022017265-appb-img-000392
    Figure PCTKR2022017265-appb-img-000393
    Figure PCTKR2022017265-appb-img-000394
    Figure PCTKR2022017265-appb-img-000395
    Figure PCTKR2022017265-appb-img-000396
    Figure PCTKR2022017265-appb-img-000397
    Figure PCTKR2022017265-appb-img-000398
    Figure PCTKR2022017265-appb-img-000399
    Figure PCTKR2022017265-appb-img-000400
    Figure PCTKR2022017265-appb-img-000401
    Figure PCTKR2022017265-appb-img-000402
    Figure PCTKR2022017265-appb-img-000403
    Figure PCTKR2022017265-appb-img-000404
    Figure PCTKR2022017265-appb-img-000405
    Figure PCTKR2022017265-appb-img-000406
    Figure PCTKR2022017265-appb-img-000407
    Figure PCTKR2022017265-appb-img-000408
    Figure PCTKR2022017265-appb-img-000409
    Figure PCTKR2022017265-appb-img-000410
    Figure PCTKR2022017265-appb-img-000411
    Figure PCTKR2022017265-appb-img-000412
    Figure PCTKR2022017265-appb-img-000413
    Figure PCTKR2022017265-appb-img-000414
    Figure PCTKR2022017265-appb-img-000415
    Figure PCTKR2022017265-appb-img-000416
    Figure PCTKR2022017265-appb-img-000417
    Figure PCTKR2022017265-appb-img-000418
    Figure PCTKR2022017265-appb-img-000419
    Figure PCTKR2022017265-appb-img-000420
    Figure PCTKR2022017265-appb-img-000421
    Figure PCTKR2022017265-appb-img-000422
    Figure PCTKR2022017265-appb-img-000423
    Figure PCTKR2022017265-appb-img-000424
    Figure PCTKR2022017265-appb-img-000425
    Figure PCTKR2022017265-appb-img-000426
    Figure PCTKR2022017265-appb-img-000427
    Figure PCTKR2022017265-appb-img-000428
    Figure PCTKR2022017265-appb-img-000429
    Figure PCTKR2022017265-appb-img-000430
    Figure PCTKR2022017265-appb-img-000431
    Figure PCTKR2022017265-appb-img-000432
    Figure PCTKR2022017265-appb-img-000433
    Figure PCTKR2022017265-appb-img-000434
    Figure PCTKR2022017265-appb-img-000435
    Figure PCTKR2022017265-appb-img-000436
    Figure PCTKR2022017265-appb-img-000437
    Figure PCTKR2022017265-appb-img-000438
    Figure PCTKR2022017265-appb-img-000439
    Figure PCTKR2022017265-appb-img-000440
    Figure PCTKR2022017265-appb-img-000441
    Figure PCTKR2022017265-appb-img-000442
    Figure PCTKR2022017265-appb-img-000443
    Figure PCTKR2022017265-appb-img-000444
    Figure PCTKR2022017265-appb-img-000445
    Figure PCTKR2022017265-appb-img-000446
    Figure PCTKR2022017265-appb-img-000447
    Figure PCTKR2022017265-appb-img-000448
    Figure PCTKR2022017265-appb-img-000449
    Figure PCTKR2022017265-appb-img-000450
    Figure PCTKR2022017265-appb-img-000451
    Figure PCTKR2022017265-appb-img-000452
    Figure PCTKR2022017265-appb-img-000453
    Figure PCTKR2022017265-appb-img-000454
    Figure PCTKR2022017265-appb-img-000455
    Figure PCTKR2022017265-appb-img-000456
    Figure PCTKR2022017265-appb-img-000457
  15. 제12항에 있어서, 상기 화학식 13이 하기 화학식 3-1 내지 화학식 3-5 중 어느 하나로 표시되는 것을 특징으로 하는 유기전자소자
    화학식 3-1 화학식 3-2
    Figure PCTKR2022017265-appb-img-000458
    화학식 3-3 화학식 3-4
    Figure PCTKR2022017265-appb-img-000459
    화학식 3-5
    Figure PCTKR2022017265-appb-img-000460
    {상기 화학식 3-1 내지 화학식 3-5에서, E환, F환, G환, H환, Ar4, Ar8, L2, L3, L', Re 및 Rf은 상기 청구항 12에서 정의한 바와 동일하다.}
  16. 제12항에 있어서, 상기 화학식 13으로 나타내는 화합물이 하기 화합물들 중 어느 하나로 표시되는 것을 특징으로 하는 유기전기소자
    Figure PCTKR2022017265-appb-img-000461
    Figure PCTKR2022017265-appb-img-000462
    Figure PCTKR2022017265-appb-img-000463
    Figure PCTKR2022017265-appb-img-000464
    Figure PCTKR2022017265-appb-img-000465
    Figure PCTKR2022017265-appb-img-000466
    Figure PCTKR2022017265-appb-img-000467
    Figure PCTKR2022017265-appb-img-000468
    Figure PCTKR2022017265-appb-img-000469
    Figure PCTKR2022017265-appb-img-000470
    Figure PCTKR2022017265-appb-img-000471
    Figure PCTKR2022017265-appb-img-000472
    Figure PCTKR2022017265-appb-img-000473
    Figure PCTKR2022017265-appb-img-000474
    Figure PCTKR2022017265-appb-img-000475
    Figure PCTKR2022017265-appb-img-000476
    Figure PCTKR2022017265-appb-img-000477
    Figure PCTKR2022017265-appb-img-000478
  17. 제12항에 있어서, 상기 화학식 14가 하기 화학식 4-1 내지 화학식 4-6 중 어느 하나로 표시되는 것을 특징으로 하는 유기전기소자
    화학식 4-1 화학식 4-2
    Figure PCTKR2022017265-appb-img-000479
    화학식 4-3 화학식 4-4
    Figure PCTKR2022017265-appb-img-000480
    화학식 4-5 화학식 4-6
    Figure PCTKR2022017265-appb-img-000481
    {상기 화학식 4-1 내지 4-6에서,
    1) X21, X25 및 X27은 서로 독립적으로 NAr11, O, S 또는 C(R10)(R11)이며,
    2) X24, X26 및 X28은 서로 독립적으로 NAr12, O, S, C(R20)(R21) 또는 단일결합이고,
    3) 상기 Ar11 및 Ar12는 상기 청구항 12의 Ar3의 정의와 동일하며,
    4) a', d' 및 f'은 서로 독립적으로 0 내지 4의 정수이고, b', c', e' 및 ta'은 서로 독립적으로 0 내지 3의 정수이며,
    5) L4, L5, L6, Ar6 및 Ar7은 상기 청구항 12에서 정의된 바와 동일하고,
    6) ta 및 tb는 서로 독립적으로 0 내지 4의 정수이며, te는 0 내지 7의 정수이고, tf는 0 내지 5의 정수이며,
    7) R3, R4, R10, R11, R12, R13, R14, R15, R16, R17, R18, R19, R20 및 R21은 서로 동일하거나 상이하고, 서로 독립적으로 수소; 중수소; 할로겐; C1~C20의 알킬기 또는 C6~C20의 아릴기로 치환 또는 비치환된 실란기; 시아노기; 니트로기; C1~C20의 알콕시기; C6-C20의 아릴옥시기; C1~C20의 알킬기; C2~C20의 알켄일기; C2~C20의 알킨일기; C6~C20의 아릴기; 플루오렌일기; O, N, S, Si 및 P로 이루어진 군에서 선택된 적어도 하나의 헤테로원자를 포함하는 C2~C20의 헤테로고리기; 및 C3~C20의 지방족고리기;로 이루어진 군에서 선택되며, 또는 이웃한 기끼리 서로 결합하여 고리를 형성할 수 있고, 또는 인접한 치환기와 결합하여 고리를 형성할 수 있다.}
  18. 제12항에 있어서, 상기 화학식 14로 나타내는 화합물이 하기 화합물들 중 어느 하나로 표시되는 것을 특징으로 하는 유기전기소자
    Figure PCTKR2022017265-appb-img-000482
    Figure PCTKR2022017265-appb-img-000483
    Figure PCTKR2022017265-appb-img-000484
    Figure PCTKR2022017265-appb-img-000485
    Figure PCTKR2022017265-appb-img-000486
    Figure PCTKR2022017265-appb-img-000487
    Figure PCTKR2022017265-appb-img-000488
    Figure PCTKR2022017265-appb-img-000489
    Figure PCTKR2022017265-appb-img-000490
    Figure PCTKR2022017265-appb-img-000491
    Figure PCTKR2022017265-appb-img-000492
    Figure PCTKR2022017265-appb-img-000493
    Figure PCTKR2022017265-appb-img-000494
    Figure PCTKR2022017265-appb-img-000495
    Figure PCTKR2022017265-appb-img-000496
    Figure PCTKR2022017265-appb-img-000497
    Figure PCTKR2022017265-appb-img-000498
    Figure PCTKR2022017265-appb-img-000499
    Figure PCTKR2022017265-appb-img-000500
    Figure PCTKR2022017265-appb-img-000501
    Figure PCTKR2022017265-appb-img-000502
    Figure PCTKR2022017265-appb-img-000503
    Figure PCTKR2022017265-appb-img-000504
    Figure PCTKR2022017265-appb-img-000505
    Figure PCTKR2022017265-appb-img-000506
    Figure PCTKR2022017265-appb-img-000507
    Figure PCTKR2022017265-appb-img-000508
    Figure PCTKR2022017265-appb-img-000509
    Figure PCTKR2022017265-appb-img-000510
    Figure PCTKR2022017265-appb-img-000511
    Figure PCTKR2022017265-appb-img-000512
    Figure PCTKR2022017265-appb-img-000513
    Figure PCTKR2022017265-appb-img-000514
    Figure PCTKR2022017265-appb-img-000515
    Figure PCTKR2022017265-appb-img-000516
    Figure PCTKR2022017265-appb-img-000517
    Figure PCTKR2022017265-appb-img-000518
    Figure PCTKR2022017265-appb-img-000519
    Figure PCTKR2022017265-appb-img-000520
    Figure PCTKR2022017265-appb-img-000521
    Figure PCTKR2022017265-appb-img-000522
    Figure PCTKR2022017265-appb-img-000523
    Figure PCTKR2022017265-appb-img-000524
    Figure PCTKR2022017265-appb-img-000525
    Figure PCTKR2022017265-appb-img-000526
    Figure PCTKR2022017265-appb-img-000527
    Figure PCTKR2022017265-appb-img-000528
    Figure PCTKR2022017265-appb-img-000529
    Figure PCTKR2022017265-appb-img-000530
    Figure PCTKR2022017265-appb-img-000531
    Figure PCTKR2022017265-appb-img-000532
    Figure PCTKR2022017265-appb-img-000533
    Figure PCTKR2022017265-appb-img-000534
    Figure PCTKR2022017265-appb-img-000535
    Figure PCTKR2022017265-appb-img-000536
    Figure PCTKR2022017265-appb-img-000537
    Figure PCTKR2022017265-appb-img-000538
    Figure PCTKR2022017265-appb-img-000539
    Figure PCTKR2022017265-appb-img-000540
    Figure PCTKR2022017265-appb-img-000541
    Figure PCTKR2022017265-appb-img-000542
    Figure PCTKR2022017265-appb-img-000543
    Figure PCTKR2022017265-appb-img-000544
    Figure PCTKR2022017265-appb-img-000545
    Figure PCTKR2022017265-appb-img-000546
    Figure PCTKR2022017265-appb-img-000547
    Figure PCTKR2022017265-appb-img-000548
    Figure PCTKR2022017265-appb-img-000549
  19. 제9항에 있어서, 상기 양극과 음극의 일면 중 상기 유기물층과 반대되는 적어도 일면에 형성되는 광효율 개선층을 더 포함하는 유기전기소자
  20. 제9항에 있어서, 상기 유기물층은 양극 상에 순차적으로 형성된 정공수송층, 발광층 및 전자수송층을 포함하는 스택을 둘 이상 포함하는 것을 특징으로 하는 유기전기소자
  21. 제9항에 있어서, 상기 유기물층은 상기 둘 이상의 스택 사이에 형성된 전하생성층을 더 포함하는 것을 특징으로 하는 유기전기소자
  22. 제9항의 유기전기소자를 포함하는 디스플레이장치; 및 상기 디스플레이장치를 구동하는 제어부;를 포함하는 전자 장치
  23. 제22항에 있어서, 상기 유기전기소자는 유기전기발광소자(OLED), 유기태양전지, 유기감광체(OPC), 유기트랜지스터(유기 TFT), 및 단색 또는 백색 조명용 소자 중 적어도 하나인 것을 특징으로 하는 전자 장치
PCT/KR2022/017265 2021-11-26 2022-11-04 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치 WO2023096210A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280074782.6A CN118251377A (zh) 2021-11-26 2022-11-04 用于有机电气元件的化合物、使用所述化合物的有机电气元件及其电子装置

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR1020210165118 2021-11-26
KR10-2021-0165118 2021-11-26
KR10-2022-0031281 2021-11-26
KR1020210178806A KR102373387B1 (ko) 2021-11-26 2021-12-14 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR10-2021-0178806 2021-12-14
KR1020220031281A KR102431755B1 (ko) 2021-11-26 2022-03-14 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR1020220139480A KR20230078931A (ko) 2021-11-26 2022-10-26 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR10-2022-0139480 2022-10-26

Publications (1)

Publication Number Publication Date
WO2023096210A1 true WO2023096210A1 (ko) 2023-06-01

Family

ID=86540491

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/017265 WO2023096210A1 (ko) 2021-11-26 2022-11-04 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치

Country Status (1)

Country Link
WO (1) WO2023096210A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102611998B1 (ko) * 2023-10-05 2023-12-11 덕산네오룩스 주식회사 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
CN117486817A (zh) * 2024-01-02 2024-02-02 吉林奥来德光电材料股份有限公司 一种有机电致发光材料及其制备方法与应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170080432A (ko) * 2015-12-31 2017-07-10 머티어리얼사이언스 주식회사 유기 전계 발광 소자
KR20170083765A (ko) * 2016-01-11 2017-07-19 덕산네오룩스 주식회사 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR20190091409A (ko) * 2018-01-26 2019-08-06 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 모노아민 화합물
KR20200018229A (ko) * 2018-08-09 2020-02-19 덕산네오룩스 주식회사 유기전기 소자용 화합물을 포함하는 유기전기소자 및 그 전자 장치
WO2021107736A1 (ko) * 2019-11-29 2021-06-03 주식회사 엘지화학 유기 발광 소자

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170080432A (ko) * 2015-12-31 2017-07-10 머티어리얼사이언스 주식회사 유기 전계 발광 소자
KR20170083765A (ko) * 2016-01-11 2017-07-19 덕산네오룩스 주식회사 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
KR20190091409A (ko) * 2018-01-26 2019-08-06 삼성디스플레이 주식회사 유기 전계 발광 소자 및 유기 전계 발광 소자용 모노아민 화합물
KR20200018229A (ko) * 2018-08-09 2020-02-19 덕산네오룩스 주식회사 유기전기 소자용 화합물을 포함하는 유기전기소자 및 그 전자 장치
WO2021107736A1 (ko) * 2019-11-29 2021-06-03 주식회사 엘지화학 유기 발광 소자

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102611998B1 (ko) * 2023-10-05 2023-12-11 덕산네오룩스 주식회사 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
CN117486817A (zh) * 2024-01-02 2024-02-02 吉林奥来德光电材料股份有限公司 一种有机电致发光材料及其制备方法与应用
CN117486817B (zh) * 2024-01-02 2024-05-28 吉林奥来德光电材料股份有限公司 一种有机电致发光材料及其制备方法与应用

Similar Documents

Publication Publication Date Title
WO2019151682A1 (ko) 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2018004187A1 (ko) 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2019212289A1 (ko) 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2021261851A1 (ko) 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2021015555A1 (ko) 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2023003234A1 (ko) 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2023096210A1 (ko) 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2021101247A1 (ko) 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2019190101A1 (ko) 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2013105747A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2021182893A1 (ko) 유기 발광 소자
WO2021230651A1 (ko) 유기전기소자용 화합물을 포함하는 유기전기소자 및 그 전자 장치
WO2019172623A1 (ko) 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2021230714A1 (ko) 유기 발광 소자
WO2019013556A1 (ko) 고효율을 갖는 유기 발광 소자
WO2020071720A1 (ko) 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2021162384A1 (ko) 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2019212290A1 (ko) 유기전기소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2021020873A1 (ko) 유기전기 소자용 화합물, 이를 이용한 유기전기소자 및 그 전자 장치
WO2023003403A1 (ko) 유기 발광 소자
WO2023287228A1 (ko) 유기 발광 소자
WO2022216018A1 (ko) 유기 발광 소자
WO2022225340A1 (ko) 유기 광전자 소자용 화합물, 유기 광전자 소자용 조성물, 유기 광전자 소자 및 표시 장치
WO2022131869A1 (ko) 신규한 화합물 및 이를 포함하는 유기발광 소자
WO2022086296A1 (ko) 유기 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22898892

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280074782.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE