WO2021182893A1 - 유기 발광 소자 - Google Patents

유기 발광 소자 Download PDF

Info

Publication number
WO2021182893A1
WO2021182893A1 PCT/KR2021/003037 KR2021003037W WO2021182893A1 WO 2021182893 A1 WO2021182893 A1 WO 2021182893A1 KR 2021003037 W KR2021003037 W KR 2021003037W WO 2021182893 A1 WO2021182893 A1 WO 2021182893A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
mmol
added
organic layer
water
Prior art date
Application number
PCT/KR2021/003037
Other languages
English (en)
French (fr)
Inventor
김민준
이동훈
차용범
서상덕
김영석
오중석
김서연
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202180003824.2A priority Critical patent/CN113994496A/zh
Priority to US17/617,111 priority patent/US20230086039A1/en
Priority to EP21768508.0A priority patent/EP3972001B1/en
Priority to JP2021569475A priority patent/JP7293565B2/ja
Priority claimed from KR1020210031954A external-priority patent/KR102360903B1/ko
Publication of WO2021182893A1 publication Critical patent/WO2021182893A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/54Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to two or three six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/57Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton
    • C07C211/61Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton with at least one of the condensed ring systems formed by three or more rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/77Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D307/91Dibenzofurans; Hydrogenated dibenzofurans
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/50Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D333/76Dibenzothiophenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/04Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/02Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
    • C07D405/10Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D405/00Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
    • C07D405/14Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/12Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/656Aromatic compounds comprising a hetero atom comprising two or more different heteroatoms per ring
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/06Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members
    • C07C2603/10Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings
    • C07C2603/12Ortho- or ortho- and peri-condensed systems containing three rings containing at least one ring with less than six ring members containing five-membered rings only one five-membered ring
    • C07C2603/18Fluorenes; Hydrogenated fluorenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/22Ortho- or ortho- and peri-condensed systems containing three rings containing only six-membered rings
    • C07C2603/26Phenanthrenes; Hydrogenated phenanthrenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/40Ortho- or ortho- and peri-condensed systems containing four condensed rings
    • C07C2603/42Ortho- or ortho- and peri-condensed systems containing four condensed rings containing only six-membered rings
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1011Condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1014Carbocyclic compounds bridged by heteroatoms, e.g. N, P, Si or B
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/10Triplet emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2101/00Properties of the organic materials covered by group H10K85/00
    • H10K2101/90Multiple hosts in the emissive layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium

Definitions

  • R 1 is hydrogen; heavy hydrogen; substituted or unsubstituted C 6-60 aryl; Or substituted or unsubstituted C 2-60 heteroaryl comprising any one or more selected from the group consisting of N, O and S,
  • Ar 4 and Ar 5 are each independently, substituted or unsubstituted C 6-60 aryl; Or substituted or unsubstituted C 2-60 heteroaryl comprising any one or more selected from the group consisting of N, O and S,
  • L 4 to L 6 are each independently, a single bond; substituted or unsubstituted C 6-60 arylene; Or substituted or unsubstituted C 2-60 heteroarylene comprising any one or more selected from the group consisting of N, O and S,
  • FIG. 1 shows an example of an organic light emitting device including a substrate 1 , an anode 2 , a light emitting layer 3 , and a cathode 4 .
  • the alkenyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 2 to 40. According to an exemplary embodiment, the carbon number of the alkenyl group is 2 to 20. According to another exemplary embodiment, the carbon number of the alkenyl group is 2 to 10. According to another exemplary embodiment, the alkenyl group has 2 to 6 carbon atoms.
  • Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1- Butenyl, 1,3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2,2-diphenylvinyl-1-yl, 2-phenyl-2-( Naphthyl-1-yl)vinyl-1-yl, 2,2-bis(diphenyl-1-yl)vinyl-1-yl, stilbenyl group, styrenyl group, and the like, but are not limited thereto.
  • the hole injection material examples include metal porphyrin, oligothiophene, arylamine-based organic material, hexanitrile hexaazatriphenylene-based organic material, quinacridone-based organic material, and perylene-based organic material. of organic substances, anthraquinones, polyaniline and polythiophene-based conductive polymers, and the like, but are not limited thereto.
  • the organic light emitting diode according to the present invention may include a hole transport layer on the anode (or on the hole injection layer if the hole injection layer is present) if necessary.
  • the light emitting layer used in the present invention refers to a layer capable of emitting light in the visible ray region by combining holes and electrons transferred from the anode and the cathode.
  • the emission layer includes a host material and a dopant material, and in the present invention, the compound represented by Formula 1 and the compound represented by Formula 2 are included as hosts.
  • Ar 1 and Ar 2 may each independently be phenyl, biphenylyl, terphenylyl, naphthyl, phenanthrenyl, dibenzofuranyl, or dibenzothiophenyl,
  • each R 1 is independently hydrogen; heavy hydrogen; substituted or unsubstituted C 6-20 aryl; Or it may be a C 2-20 heteroaryl comprising at least one selected from the group consisting of substituted or unsubstituted N, O and S,
  • At least one of Ar 1 , Ar 2 and R 1 is naphthyl, phenyl naphthyl, naphthyl phenyl, phenanthrenyl, fluoranthenyl, dibenzofuranyl, dibenzothiophenyl, benzonaphthofuranyl, or benzonaphthothiophenyl.
  • the Suzuki coupling reaction in Scheme 1 is preferably performed in the presence of a palladium catalyst and a base, and the reactor for the Suzuki coupling reaction can be changed as known in the art.
  • the manufacturing method may be more specific in Preparation Examples to be described later.
  • Ar 4 and Ar 5 are each independently selected from substituted or unsubstituted C 6-20 aryl; Or it may be a C 2-20 heteroaryl comprising at least one selected from the group consisting of substituted or unsubstituted N, O and S,
  • Ar 4 and Ar 5 are each independently phenyl, phenyl substituted with 5 deuterium, biphenylyl, biphenylyl substituted with 4 deuterium, biphenylyl substituted with 9 deuterium, ter Phenylyl, terphenylyl substituted with 4 deuterium, quaterphenylyl, naphthyl, phenanthrenyl, triphenylenyl, dimethylfluorenyl, diphenylfluorenyl, carbazolyl, phenylcarbazolyl, dibenzofuranyl , dibenzothiophenyl, or phenyl dibenzofuranyl,
  • L 4 to L 6 are each independently a single bond, phenylene, phenylene substituted with four deuterium, biphenyllylene, naphthylene, phenyl naphthylene, carbazolylene, phenyl carbazolylene, phenyl carbazolylene substituted with 4 deuterium, dibenzofuranylene, phenyl dibenzofuranylene, phenyl dibenzofuranylene substituted with 4 deuterium, or dimethylfluorenylene,
  • L 4 is a single bond
  • L 5 and L 6 are each independently a single bond; substituted or unsubstituted C 6-20 arylene; Or it may be a C 2-20 heteroarylene comprising at least one selected from the group consisting of substituted or unsubstituted N, O and S,
  • L 4 is a single bond
  • L 5 and L 6 may each independently be a single bond or any one selected from the group consisting of:
  • L 7 may be a substituted or unsubstituted C 6-20 arylene
  • L 7 may be phenylene, phenylene substituted with 4 deuterium, biphenylrylene, or naphthylene.
  • the compound represented by Formula 2 may be represented by the following Formula 2-1:
  • Ar 3 to Ar 5 and L 4 to L 6 are as defined in Formula 2 above,
  • b is an integer from 0 to 4.
  • Ar 3 to Ar 5 and L 4 to L 7 are as defined in Formula 2, X 2 is halogen, and preferably X 2 is chloro or bromo.
  • the weight ratio of the compound represented by Formula 1 and the compound represented by Formula 2 in the emission layer is 10:90 to 90:10, more preferably 20:80 to 80:20, 30:70 to 70:30 or 40:60 to 60:40.
  • the light emitting layer may further include a dopant in addition to the host.
  • the dopant material is not particularly limited as long as it is a material used in an organic light emitting device. Examples include an aromatic amine derivative, a strylamine compound, a boron complex, a fluoranthene compound, and a metal complex.
  • the aromatic amine derivative is a condensed aromatic ring derivative having a substituted or unsubstituted arylamino group, and includes pyrene, anthracene, chrysene, and periflanthene having an arylamino group.
  • styrylamine compound a substituted or unsubstituted It is a compound in which at least one arylvinyl group is substituted in the arylamine, and one or two or more substituents selected from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group and an arylamino group are substituted or unsubstituted.
  • substituents selected from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group and an arylamino group are substituted or unsubstituted.
  • the metal complex includes an iridium complex, a platinum complex, and the like, but is not limited thereto.
  • the electron transport layer is a layer that receives electrons from the electron injection layer formed on the cathode or the cathode, transports electrons to the light emitting layer, and suppresses the transfer of holes in the light emitting layer.
  • an electron transport material electrons are well injected from the cathode
  • a material that can receive and transfer to the light emitting layer a material with high electron mobility is suitable.
  • the electron transport material include an Al complex of 8-hydroxyquinoline; complexes containing Alq 3 ; organic radical compounds; hydroxyflavone-metal complexes, and the like, but are not limited thereto.
  • the electron transport layer may be used with any desired cathode material as used in accordance with the prior art.
  • suitable cathode materials are conventional materials having a low work function and followed by a layer of aluminum or silver. Specifically cesium, barium, calcium, ytterbium and samarium, followed in each case by an aluminum layer or a silver layer.
  • the electron injection layer is a layer that injects electrons from the electrode, has the ability to transport electrons, has an electron injection effect from the cathode, an excellent electron injection effect on the light emitting layer or the light emitting material, and hole injection of excitons generated in the light emitting layer. It is preferable to use a compound which prevents movement to a layer and is excellent in the ability to form a thin film.
  • the material that can be used as the electron injection layer include fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, preole nylidene methane, anthrone, and the like, derivatives thereof, metal complex compounds, nitrogen-containing 5-membered ring derivatives, and the like, but are not limited thereto.
  • the "electron injection and transport layer” is a layer that performs both the role of the electron injection layer and the electron transport layer, and the materials serving the respective layers may be used alone or in combination, but limited thereto. doesn't happen
  • FIG. 1 shows an example of an organic light emitting device including a substrate 1 , an anode 2 , a light emitting layer 3 , and a cathode 4 .
  • Figure 2 is a substrate (1), anode (2), hole injection layer (5), hole transport layer (6), electron blocking layer (7), light emitting layer (3), hole blocking layer (8), electron injection and transport layer
  • An example of an organic light emitting device composed of (9) and a cathode (4) is shown.
  • the light emitting layer may be formed by a solution coating method as well as a vacuum deposition method for the host and the dopant.
  • the solution application method refers to spin coating, dip coating, doctor blading, inkjet printing, screen printing, spray method, roll coating, and the like, but is not limited thereto.
  • compound 1-A 15 g, 60.9 mmol
  • compound Trz27 (19.3 g, 60.9 mmol) were added to 300 ml of THF, stirred and refluxed. Thereafter, potassium carbonate (16.8 g, 121.7 mmol) was dissolved in 50 ml of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After the reaction for 12 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • compound sub1-A-1 15 g, 31 mmol
  • compound sub1 6 g, 62 mmol
  • potassium carbonate 8.6 g, 62 mmol
  • bis(tri-tert-butylphosphine)palladium(0) 0.2 g, 0.3 mmol
  • compound sub1-A-3 15 g, 31 mmol
  • compound sub3 7 g, 31 mmol
  • potassium carbonate 8.6 g, 62 mmol
  • bis(tri-tert-butylphosphine)palladium(0) 0.2 g, 0.3 mmol
  • compound sub1-A-4 15 g, 24.6 mmol
  • compound sub4 5.6 g, 24.6 mmol
  • potassium carbonate 6.8 g, 49.2 mmol
  • bis(tri-tert-butylphosphine)palladium(0) 0.1 g, 0.2 mmol
  • compound sub1-B-1 15 g, 26.8 mmol
  • compound sub5 3.3 g, 26.8 mmol
  • potassium carbonate 7.4 g, 53.6 mmol
  • bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol) was added.
  • the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • compound 1-B 15 g, 60.9 mmol
  • compound Trz3 (19.3 g, 60.9 mmol) were added to 300 ml of THF, followed by stirring and reflux. Thereafter, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After the reaction for 11 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • compound sub1-B-2 15 g, 31 mmol
  • compound sub6 7.6 g, 31 mmol
  • potassium carbonate 8.6 g, 62 mmol
  • bis(tri-tert-butylphosphine)palladium(0) 0.2 g, 0.3 mmol
  • compound sub1-B-3 15 g, 34.6 mmol
  • compound sub7 8.6 g, 34.6 mmol
  • potassium carbonate 9.6 g, 69.1 mmol
  • bis(tri-tert-butylphosphine)palladium(0) 0.2 g, 0.3 mmol
  • compound sub1-B-4 15 g, 28.1 mmol
  • compound sub9 6 g, 28.1 mmol
  • potassium carbonate 7.8 g, 56.2 mmol
  • bis(tri-tert-butylphosphine)palladium(0) 0.1 g, 0.3 mmol
  • compound sub1-B-5 15 g, 23.6 mmol
  • compound sub5 2.9 g, 23.6 mmol
  • potassium carbonate 6.5 g, 47.2 mmol
  • bis(tri-tert-butylphosphine)palladium(0) 0.1 g, 0.2 mmol
  • compound sub1-B-6 15 g, 28.6 mmol
  • compound sub10 4.9 g, 28.6 mmol
  • potassium carbonate 7.9 g, 57.3 mmol
  • bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol) was added.
  • the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • compound 1-C 15 g, 60.9 mmol
  • compound Trz3 (19.3 g, 60.9 mmol) were added to 300 ml of THF, followed by stirring and reflux.
  • potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After the reaction for 11 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • compound sub1-C-3 15 g, 29.4 mmol
  • compound sub11 7 g, 29.4 mmol
  • potassium carbonate 8 g, 58.8 mmol
  • bis(tri-tert-butylphosphine)palladium(0) 0.2 g, 0.3 mmol
  • compound sub1-C-3 (15 g, 26.8 mmol) and compound sub13 (7.4 g, 26.8 mmol) were added to 300 ml of THF, stirred and refluxed. After that, potassium carbonate (7.4 g, 53.6 mmol) was dissolved in 22 ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • compound sub1-C-4 15 g, 34.6 mmol
  • compound sub14 7.7 g, 34.6 mmol
  • potassium carbonate 9.6 g, 69.1 mmol
  • bis(tri-tert-butylphosphine)palladium(0) 0.2 g, 0.3 mmol
  • compound sub1-C-5 15 g, 28.1 mmol
  • compound sub15 6 g, 28.1 mmol
  • potassium carbonate 7.8 g, 56.2 mmol
  • bis(tri-tert-butylphosphine)palladium(0) 0.1 g, 0.3 mmol
  • compound sub1-C-7 15 g, 26.8 mmol
  • compound sub5 3.3 g, 26.8 mmol
  • potassium carbonate 11.1 g, 80.3 mmol
  • bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol) was added.
  • the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • compound 1-D 15 g, 60.9 mmol
  • compound Trz14 (19.3 g, 60.9 mmol) were added to 300 ml of THF, stirred and refluxed. Thereafter, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After the reaction for 11 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • compound sub1-D-1 15 g, 25.6 mmol
  • compound sub5 3 g, 25.6 mmol
  • potassium carbonate 10.6 g, 76.8 mmol
  • bis(tri-tert-butylphosphine)palladium(0) 0.1 g, 0.3 mmol
  • compound sub1-D-3 15 g, 29.4 mmol
  • compound sub17 7.7 g, 29.4 mmol
  • potassium carbonate 12.2 g, 88.2 mmol
  • bis(tri-tert-butylphosphine)palladium(0) 0.2 g, 0.3 mmol
  • compound sub1-D-4 15 g, 28.6 mmol
  • compound sub10 4.9 g, 28.6 mmol
  • potassium carbonate 11.9 g, 85.9 mmol
  • bis(tri-tert-butylphosphine)palladium(0) 0.1 g, 0.3 mmol
  • compound sub1-D-3 15 g, 29.4 mmol
  • compound sub18 6.2 g, 29.4 mmol
  • potassium carbonate 12.2 g, 88.2 mmol
  • bis(tri-tert-butylphosphine)palladium(0) 0.2 g, 0.3 mmol
  • compound sub1-D-5 15 g, 24.6 mmol
  • compound sub9 5.2 g, 24.6 mmol
  • potassium carbonate 10.2 g, 73.8 mmol
  • bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • compound sub1-E-2 (15 g, 26.8 mmol) and compound sub19 (7 g, 26.8 mmol) were added to 300 ml of THF, stirred and refluxed. Thereafter, potassium carbonate (11.1 g, 80.3 mmol) was dissolved in 33 ml of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol) was added. After the reaction for 11 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • compound sub1-E-3 15 g, 28.1 mmol
  • compound sub20 7.8 g, 28.1 mmol
  • potassium carbonate (11.6 g, 84.3 mmol) was dissolved in 35 ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • compound sub1-E-1 15 g, 34.6 mmol
  • compound sub21 7.7 g, 34.6 mmol
  • potassium carbonate (14.3 g, 103.7 mmol) was dissolved in 43 ml of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • compound sub1-E-4 15 g, 28.6 mmol
  • compound sub10 4.9 g, 28.6 mmol
  • potassium carbonate 11.9 g, 85.9 mmol
  • bis(tri-tert-butylphosphine)palladium(0) 0.1 g, 0.3 mmol
  • compound 1-E 15 g, 60.9 mmol
  • compound Trz3 (19.3 g, 60.9 mmol) were added to 300 ml of THF, stirred and refluxed. Thereafter, potassium carbonate (25.2 g, 182.6 mmol) was dissolved in 76 ml of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After the reaction for 11 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • compound sub1-E-6 (15 g, 29.4 mmol) and compound sub22 (7.7 g, 29.4 mmol) were added to 300 ml of THF, stirred and refluxed. After that, potassium carbonate (12.2 g, 88.2 mmol) was dissolved in 37 ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • compound sub1-E-8 (15 g, 26.8 mmol) and compound sub5 (3.3 g, 26.8 mmol) were added to 300 ml of THF, stirred and refluxed. Thereafter, potassium carbonate (11.1 g, 80.3 mmol) was dissolved in 33 ml of water, and after sufficient stirring, bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol) was added. After the reaction for 11 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • compound sub1-F-2 15 g, 29.4 mmol
  • compound sub1 5.8 g, 29.4 mmol
  • potassium carbonate 12.2 g, 88.2 mmol
  • bis(tri-tert-butylphosphine)palladium(0) 0.2 g, 0.3 mmol
  • compound sub1-G-2 15 g, 31 mmol
  • compound sub9 6 g, 31 mmol
  • potassium carbonate 12.9 g, 93 mmol
  • bis(tri-tert-butylphosphine)palladium(0) 0.2 g, 0.3 mmol
  • compound sub1-G-3 15 g, 31 mmol
  • compound sub9 6.6 g, 31 mmol
  • 300 ml of THF stirred and refluxed.
  • potassium carbonate (12.9 g, 93 mmol) was dissolved in 39 ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added.
  • the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • compound sub1-G-4 15 g, 28.8 mmol
  • compound sub9 6.1 g, 28.8 mmol
  • potassium carbonate (12 g, 86.5 mmol) was dissolved in 36 ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • compound sub1-G-5 15 g, 31 mmol
  • compound sub9 6 g, 31 mmol
  • potassium carbonate 12.9 g, 93 mmol
  • bis(tri-tert-butylphosphine)palladium(0) 0.2 g, 0.3 mmol
  • compound sub1-G-6 15 g, 31 mmol
  • compound sub9 6.6 g, 31 mmol
  • THF 300 ml
  • potassium carbonate 12.9 g, 93 mmol
  • bis(tri-tert-butylphosphine)palladium(0) 0.2 g, 0.3 mmol
  • compound sub1-G-1 15 g, 33.8 mmol
  • compound 1-E 8.3 g, 33.8 mmol
  • potassium carbonate 14 g, 101.4 mmol
  • bis(tri-tert-butylphosphine)palladium(0) 0.2 g, 0.3 mmol
  • compound sub1-B-7 15 g, 26.8 mmol
  • compound sub10 3.3 g, 26.8 mmol
  • potassium carbonate 11.1 g, 80.3 mmol
  • bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol) was added.
  • compound sub1-G-8 (15 g, 30 mmol) and compound sub9 (6.4 g, 30 mmol) were added to 300 ml of THF, stirred and refluxed. After that, potassium carbonate (12.4 g, 90 mmol) was dissolved in 37 ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol) was added. After 10 hours of reaction, the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • compound sub1-G-9 15 g, 31 mmol
  • compound 1-F 7.6 g, 31 mmol
  • potassium carbonate (12.9 g, 93 mmol) was dissolved in 39 ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.2 g, 0.3 mmol) was added. After the reaction for 9 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • compound sub1-F-3 (15 g, 23.1 mmol) and compound sub10 (2.8 g, 23.1 mmol) were added to 300 ml of THF, followed by stirring and reflux. After that, potassium carbonate (9.6 g, 69.2 mmol) was dissolved in 29 ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.2 mmol) was added. After the reaction for 11 hours, it was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • compound sub1-D-7 15 g, 21.9 mmol
  • compound sub10 2.7 g, 21.9 mmol
  • potassium carbonate 9.1 g, 65.6 mmol
  • bis(tri-tert-butylphosphine)palladium(0) 0.1 g, 0.2 mmol
  • compound sub1-G-11 15 g, 28.8 mmol
  • compound 1-F 7.1 g, 28.8 mmol
  • potassium carbonate (12 g, 86.5 mmol) was dissolved in 36 ml of water and thoroughly stirred, and then bis(tri-tert-butylphosphine)palladium(0) (0.1 g, 0.3 mmol) was added.
  • the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • compound sub1-F-4 15 g, 23.1 mmol
  • compound sub10 2.8 g, 23.1 mmol
  • potassium carbonate 9.6 g, 69.2 mmol
  • bis(tri-tert-butylphosphine)palladium(0) 0.1 g, 0.2 mmol
  • compound sub1-D-8 15 g, 25 mmol
  • compound sub10 4.3 g, 25 mmol
  • potassium carbonate 10.4 g, 75 mmol
  • bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol) was added.
  • the mixture was cooled to room temperature, the organic layer and the water layer were separated, and the organic layer was distilled.
  • compound 2-A 15 g, 58.3 mmol
  • compound 2-B 10 g, 64.2 mmol
  • potassium carbonate 16.1 g, 116.7 mmol
  • Tetrakis(triphenylphosphine)palladium(0) 1.3 g, 1.2 mmol
  • compound sub2-A-1 (10 g, 34.6 mmol), compound sub2-1 (12.9 g, 34.6 mmol), and sodium tert-butoxide (4.3 g, 45 mmol) were added to 200 ml of Xylene, stirred and refluxed. . Thereafter, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol) was added thereto. After 5 hours, the reaction was completed, the mixture was cooled to room temperature, and the solvent was removed under reduced pressure.
  • compound sub2-A-1 (10 g, 34.6 mmol), compound sub2-3 (14.3 g, 34.6 mmol), and sodium tert-butoxide (4.3 g, 45 mmol) were added to 200 ml of Xylene, and stirred and refluxed. . Thereafter, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol) was added thereto. After 5 hours, the reaction was completed, the mixture was cooled to room temperature, and the solvent was removed under reduced pressure.
  • compound sub2-A-1 (10 g, 34.6 mmol), compound sub2-4 (13.9 g, 34.6 mmol), and sodium tert-butoxide (4.3 g, 45 mmol) were added to 200 ml of Xylene, and stirred and refluxed. . Thereafter, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol) was added thereto. After 5 hours, the reaction was completed, the mixture was cooled to room temperature, and the solvent was removed under reduced pressure.
  • compound sub2-A-1 (10 g, 34.6 mmol), compound sub2-5 (13.8 g, 34.6 mmol), and sodium tert-butoxide (4.3 g, 45 mmol) were added to 200 ml of Xylene, stirred and refluxed. . Thereafter, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol) was added thereto. After 5 hours, the reaction was completed, the mixture was cooled to room temperature, and the solvent was removed under reduced pressure.
  • compound sub2-A-1 (10 g, 34.6 mmol), compound sub2-6 (14.8 g, 34.6 mmol), and sodium tert-butoxide (4.3 g, 45 mmol) were added to 200 ml of Xylene, stirred and refluxed. . Thereafter, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol) was added thereto. After 5 hours, the reaction was completed, the mixture was cooled to room temperature, and the solvent was removed under reduced pressure.
  • compound sub2-A-1 (10 g, 34.6 mmol), compound sub2-8 (13.9 g, 34.6 mmol), and sodium tert-butoxide (4.3 g, 45 mmol) were added to 200 ml of Xylene, stirred and refluxed. . Thereafter, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol) was added thereto. After 5 hours, the reaction was completed, the mixture was cooled to room temperature, and the solvent was removed under reduced pressure.
  • compound sub2-A-1 (10 g, 34.6 mmol), compound sub2-9 (9.3 g, 34.6 mmol), and sodium tert-butoxide (4.3 g, 45 mmol) were added to 200 ml of Xylene, stirred and refluxed. . Thereafter, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol) was added thereto. After 5 hours, the reaction was completed, the mixture was cooled to room temperature, and the solvent was removed under reduced pressure.
  • compound sub2-A-1 (10 g, 34.6 mmol), compound sub2-10 (14.5 g, 34.6 mmol), and sodium tert-butoxide (4.3 g, 45 mmol) were added to 200 ml of Xylene, stirred and refluxed. . Thereafter, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol) was added thereto. After 5 hours, the reaction was completed, the mixture was cooled to room temperature, and the solvent was removed under reduced pressure.
  • compound sub2-A-1 (10 g, 34.6 mmol), compound sub2-11 (13.4 g, 34.6 mmol), and sodium tert-butoxide (4.3 g, 45 mmol) were added to 200 ml of Xylene, and stirred and refluxed. . Thereafter, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol) was added thereto. After 5 hours, the reaction was completed, the mixture was cooled to room temperature, and the solvent was removed under reduced pressure.
  • compound sub2-A-1 (10 g, 34.6 mmol), compound sub2-12 (12 g, 34.6 mmol), and sodium tert-butoxide (4.3 g, 45 mmol) were added to 200 ml of Xylene, stirred and refluxed. . Thereafter, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol) was added thereto. After 5 hours, the reaction was completed, the mixture was cooled to room temperature, and the solvent was removed under reduced pressure.
  • compound sub2-A-1 (10 g, 34.6 mmol), compound sub2-13 (14.3 g, 34.6 mmol), and sodium tert-butoxide (4.3 g, 45 mmol) were added to 200 ml of Xylene, stirred and refluxed. . Thereafter, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol) was added thereto. After 5 hours, the reaction was completed, the mixture was cooled to room temperature, and the solvent was removed under reduced pressure.
  • compound sub2-A-1 (10 g, 34.6 mmol), compound sub2-14 (13.3 g, 34.6 mmol), and sodium tert-butoxide (4.3 g, 45 mmol) were added to 200 ml of Xylene, and stirred and refluxed. . Thereafter, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol) was added thereto. After 5 hours, the reaction was completed, the mixture was cooled to room temperature, and the solvent was removed under reduced pressure.
  • compound sub2-A-1 (10 g, 34.6 mmol), compound sub2-15 (13.9 g, 34.6 mmol), and sodium tert-butoxide (3.7 g, 38.1 mmol) were added to 200 ml of Xylene, stirred and refluxed. . Thereafter, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol) was added thereto. After 5 hours, the reaction was completed, the mixture was cooled to room temperature, and the solvent was removed under reduced pressure.
  • compound sub2-A-1 (10 g, 34.6 mmol), compound sub2-16 (12.7 g, 34.6 mmol), and sodium tert-butoxide (4.3 g, 45 mmol) were added to 200 ml of Xylene, stirred and refluxed. . Thereafter, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol) was added thereto. After 5 hours, the reaction was completed, the mixture was cooled to room temperature, and the solvent was removed under reduced pressure.
  • compound sub2-A-1 (10 g, 34.6 mmol), compound sub2-17 (12.1 g, 34.6 mmol), and sodium tert-butoxide (4.3 g, 45 mmol) were added to 200 ml of Xylene, stirred and refluxed. . Thereafter, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol) was added thereto. After 5 hours, the reaction was completed, the mixture was cooled to room temperature, and the solvent was removed under reduced pressure.
  • compound sub2-A-1 (10 g, 34.6 mmol), compound sub2-18 (12.1 g, 34.6 mmol), and sodium tert-butoxide (4.3 g, 45 mmol) were added to 200 ml of Xylene, and stirred and refluxed. . Thereafter, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol) was added thereto. After 5 hours, the reaction was completed, the mixture was cooled to room temperature, and the solvent was removed under reduced pressure.
  • compound sub2-A-1 (10 g, 34.6 mmol), compound sub2-19 (13.2 g, 34.6 mmol), and sodium tert-butoxide (4.3 g, 45 mmol) were added to 200 ml of Xylene, stirred and refluxed. . Thereafter, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol) was added thereto. After 5 hours, the reaction was completed, the mixture was cooled to room temperature, and the solvent was removed under reduced pressure.
  • compound sub2-A-1 (10 g, 34.6 mmol), compound sub2-21 (14.3 g, 34.6 mmol), and sodium tert-butoxide (4.3 g, 45 mmol) were added to 200 ml of Xylene, stirred and refluxed. . Thereafter, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol) was added thereto. After 5 hours, the reaction was completed, the mixture was cooled to room temperature, and the solvent was removed under reduced pressure.
  • compound sub2-A-1 (10 g, 34.6 mmol), compound sub2-22 (12 g, 34.6 mmol), and sodium tert-butoxide (4.3 g, 45 mmol) were added to 200 ml of Xylene, stirred and refluxed. . Thereafter, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol) was added thereto. After 5 hours, the reaction was completed, the mixture was cooled to room temperature, and the solvent was removed under reduced pressure.
  • compound sub2-A-1 (10 g, 34.6 mmol), compound sub2-23 (11.1 g, 34.6 mmol), and sodium tert-butoxide (4.3 g, 45 mmol) were added to 200 ml of Xylene, and stirred and refluxed. . Thereafter, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol) was added thereto. After 5 hours, the reaction was completed, the mixture was cooled to room temperature, and the solvent was removed under reduced pressure.
  • compound sub2-A-1 (10 g, 34.6 mmol), compound sub2-24 (12.9 g, 34.6 mmol), and sodium tert-butoxide (4.3 g, 45 mmol) were added to 200 ml of Xylene, stirred and refluxed. . Thereafter, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol) was added thereto. After 5 hours, the reaction was completed, the mixture was cooled to room temperature, and the solvent was removed under reduced pressure.
  • compound sub2-A-1 (10 g, 34.6 mmol), compound sub2-26 (12.5 g, 34.6 mmol), and sodium tert-butoxide (4.3 g, 45 mmol) were added to 200 ml of Xylene, stirred and refluxed. . Thereafter, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol) was added thereto. After 5 hours, the reaction was completed, the mixture was cooled to room temperature, and the solvent was removed under reduced pressure.
  • compound sub2-A-1 (10 g, 34.6 mmol), compound sub2-27 (14.6 g, 34.6 mmol), and sodium tert-butoxide (4.3 g, 45 mmol) were added to 200 ml of Xylene, and stirred and refluxed. . Thereafter, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol) was added thereto. After 5 hours, the reaction was completed, the mixture was cooled to room temperature, and the solvent was removed under reduced pressure.
  • compound sub2-A-1 (10 g, 34.6 mmol), compound sub2-28 (13.8 g, 34.6 mmol), and sodium tert-butoxide (4.3 g, 45 mmol) were added to 200 ml of Xylene, and stirred and refluxed. . Thereafter, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol) was added thereto. After 5 hours, the reaction was completed, the mixture was cooled to room temperature, and the solvent was removed under reduced pressure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 구동 전압, 효율 및 수명이 개선된 유기발광 소자를 제공한다.

Description

유기 발광 소자
본 발명은 구동 전압, 효율 및 수명이 개선된 유기 발광 소자에 관한 것이다.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기 에너지를 빛 에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 넓은 시야각, 우수한 콘트라스트, 빠른 응답 시간을 가지며, 휘도, 구동 전압 및 응답 속도 특성이 우수하여 많은 연구가 진행되고 있다.
유기 발광 소자는 일반적으로 양극과 음극 및 상기 양극과 음극 사이에 유기물 층을 포함하는 구조를 가진다. 상기 유기물 층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루어질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다.
상기와 같은 유기 발광 소자에서, 구동 전압, 효율 및 수명이 개선된 유기 발광 소자의 개발이 지속적으로 요구되고 있다.
선행기술문헌
특허문헌
(특허문헌 1) 한국특허 공개번호 제10-2000-0051826호
본 발명은 구동 전압, 효율 및 수명이 개선된 유기 발광 소자에 관한 것이다.
본 발명은 하기의 유기 발광 소자를 제공한다:
양극, 음극 및 상기 양극과 음극 사이의 발광층을 포함하고,
상기 발광층은 하기 화학식 1로 표시되는 화합물 및 하기 화학식 2로 표시되는 화합물을 포함하는,
유기 발광 소자:
[화학식 1]
Figure PCTKR2021003037-appb-img-000001
상기 화학식 1에서,
Ar 1 및 Ar 2는 각각 독립적으로, 치환 또는 비치환된 C 6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C 2-60 헤테로아릴이고,
L 1 내지 L 3는 각각 독립적으로, 단일결합; 또는 치환 또는 비치환된 C 6-60 아릴렌이고,
R 1은 수소; 중수소; 치환 또는 비치환된 C 6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C 2-60 헤테로아릴이고,
a은 0 내지 7의 정수이고,
[화학식 2]
Figure PCTKR2021003037-appb-img-000002
상기 화학식 2에서,
Ar 3는 수소; 치환 또는 비치환된 C 6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C 2-60 헤테로아릴이고,
Ar 4 및 Ar 5는 각각 독립적으로, 치환 또는 비치환된 C 6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C 2-60 헤테로아릴이고,
L 4 내지 L 6는 각각 독립적으로, 단일결합; 치환 또는 비치환된 C 6-60 아릴렌; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C 2-60 헤테로아릴렌이고,
L 7은 치환 또는 비치환된 C 6-60 아릴렌이다.
상술한 유기 발광 소자는 발광층에 상기 화학식 1로 표시되는 화합물 및 상기 화학식 2로 표시되는 화합물을 포함함으로써, 유기 발광 소자에서 효율의 향상, 낮은 구동전압 및/또는 수명 특성을 향상시킬 수 있다.
도 1은, 기판(1), 양극(2), 발광층(3), 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
도 2는, 기판(1), 양극(2), 정공주입층(5), 정공수송층(6), 전자차단층(7), 발광층(3), 정공저지층(8), 전자 주입 및 수송층(9) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
이하, 본 발명의 이해를 돕기 위하여 보다 상세히 설명한다.
본 명세서에서,
Figure PCTKR2021003037-appb-img-000003
또는
Figure PCTKR2021003037-appb-img-000004
는 다른 치환기에 연결되는 결합을 의미한다.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 할로겐기; 니트릴기; 니트로기; 히드록시기; 카보닐기; 에스테르기; 이미드기; 아미노기; 포스핀옥사이드기; 알콕시기; 아릴옥시기; 알킬티옥시기; 아릴티옥시기; 알킬술폭시기; 아릴술폭시기; 실릴기; 붕소기; 알킬기; 사이클로알킬기; 알케닐기; 아릴기; 아르알킬기; 아르알케닐기; 알킬아릴기; 알킬아민기; 아랄킬아민기; 헤테로아릴아민기; 아릴아민기; 아릴포스핀기; 또는 N, O 및 S 원자 중 1개 이상을 포함하는 헤테로고리기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환 또는 비치환된 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 비페닐기일 수 있다. 즉, 비페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수 있다.
본 명세서에서 카보닐기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 40인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2021003037-appb-img-000005
본 명세서에 있어서, 에스테르기는 에스테르기의 산소가 탄소수 1 내지 25의 직쇄, 분지쇄 또는 고리쇄 알킬기 또는 탄소수 6 내지 25의 아릴기로 치환될 수 있다. 구체적으로, 하기 구조식의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2021003037-appb-img-000006
본 명세서에 있어서, 이미드기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 25인 것이 바람직하다. 구체적으로 하기와 같은 구조의 화합물이 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2021003037-appb-img-000007
본 명세서에 있어서, 실릴기는 구체적으로 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나 이에 한정되지 않는다.
본 명세서에 있어서, 붕소기는 구체적으로 트리메틸붕소기, 트리에틸붕소기, t-부틸디메틸붕소기, 트리페닐붕소기, 페닐붕소기 등이 있으나 이에 한정되지 않는다.
본 명세서에 있어서, 할로겐기의 예로는 불소, 염소, 브롬 또는 요오드가 있다.
본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 6이다. 알킬기의 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸-부틸, 1-에틸-부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 헥실, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸헥실, 사이클로펜틸메틸, 사이클로헥실메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸-프로필, 1,1-디메틸-프로필, 이소헥실, 2-메틸펜틸, 4-메틸헥실, 5-메틸헥실 등이 있으나, 이들에 한정되지 않는다.
본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 6이다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸-1-부테닐, 1,3-부타디에닐, 알릴, 1-페닐비닐-1-일, 2-페닐비닐-1-일, 2,2-디페닐비닐-1-일, 2-페닐-2-(나프틸-1-일)비닐-1-일, 2,2-비스(디페닐-1-일)비닐-1-일, 스틸베닐기, 스티레닐기 등이 있으나 이들에 한정되지 않는다.
본 명세서에 있어서, 사이클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 일 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 30이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 20이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 6이다. 구체적으로 사이클로프로필, 사이클로부틸, 사이클로펜틸, 3-메틸사이클로펜틸, 2,3-디메틸사이클로펜틸, 사이클로헥실, 3-메틸사이클로헥실, 4-메틸사이클로헥실, 2,3-디메틸사이클로헥실, 3,4,5-트리메틸사이클로헥실, 4-tert-부틸사이클로헥실, 사이클로헵틸, 사이클로옥틸 등이 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나 탄소수 6 내지 60인 것이 바람직하며, 단환식 아릴기 또는 다환식 아릴기일 수 있다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 20이다. 상기 아릴기가 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트릴기, 파이레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 플루오레닐기는 치환될 수 있고, 치환기 2개가 서로 결합하여 스피로 구조를 형성할 수 있다. 상기 플루오레닐기가 치환되는 경우,
Figure PCTKR2021003037-appb-img-000008
등이 될 수 있다. 다만, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 헤테로고리기는 이종 원소로 O, N, Si 및 S 중 1개 이상을 포함하는 헤테로고리기로서, 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 60인 것이 바람직하다. 헤테로고리기의 예로는 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤조옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기, 페난쓰롤린기(phenanthroline), 이소옥사졸릴기, 티아디아졸릴기, 페노티아지닐기 및 디벤조퓨라닐기 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서에 있어서, 아르알킬기, 아르알케닐기, 알킬아릴기, 아릴아민기 중의 아릴기는 전술한 아릴기의 예시와 같다. 본 명세서에 있어서, 아르알킬기, 알킬아릴기, 알킬아민기 중 알킬기는 전술한 알킬기의 예시와 같다. 본 명세서에 있어서, 헤테로아릴아민 중 헤테로아릴은 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 아르알케닐기 중 알케닐기는 전술한 알케닐기의 예시와 같다. 본 명세서에 있어서, 아릴렌은 2가기인 것을 제외하고는 전술한 아릴기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로아릴렌은 2가기인 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 탄화수소 고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 아릴기 또는 사이클로알킬기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다.
이하, 각 구성 별로 본 발명을 상세히 설명한다.
양극 및 음극
본 발명에서 사용되는 양극 및 음극은, 유기 발광 소자에서 사용되는 전극을 의미한다.
상기 양극 물질로는 통상 유기물 층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 상기 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO 2:Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 상기 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO 2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.
정공주입층
본 발명에 따른 유기 발광 소자는, 필요에 따라 상기 양극 상에 정공주입층을 추가로 포함할 수 있다.
상기 정공주입층은 전극으로부터 정공을 주입하는 층으로, 정공 주입 물질로는 정공을 수송하는 능력을 가져 양극에서의 정공 주입효과, 발광층 또는 발광재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층에서 생성된 여기자의 전자주입층 또는 전자주입재료에의 이동을 방지하며, 또한, 박막 형성 능력이 우수한 화합물이 바람직하다. 또한, 정공 주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물 층의 HOMO 사이인 것이 바람직하다.
정공 주입 물질의 구체적인 예로는 금속 포피린(porphyrin), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone)계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정 되는 것은 아니다.
정공수송층
본 발명에 따른 유기 발광 소자는, 필요에 따라 상기 양극 상에(또는 정공주입층이 존재하는 경우 정공주입층 상에) 정공수송층을 포함할 수 있다.
상기 정공수송층은 양극 또는 정공주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 층으로, 정공 수송 물질로 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다.
상기 정공 수송 물질의 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다.
전자차단층
상기 전자차단층은 음극에서 주입된 전자가 발광층에서 재결합되지 않고 정공수송층으로 넘어가는 것을 방지하기 위해 정공수송층과 발광층의 사이에 두는 층으로, 전자억제층, 전자저지층으로 불리기도 한다. 전자차단층에는 전자수송층보다 전자 친화력이 작은 물질이 바람직하다.
발광층
본 발명에서 사용되는 발광층은, 양극과 음극으로부터 전달받은 정공과 전자를 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 층을 의미한다. 일반적으로, 발광층은 호스트 재료와 도펀트 재료를 포함하며, 본 발명에는 상기 화학식 1로 표시되는 화합물 및 상기 화학식 2로 표시되는 화합물을 호스트로 포함한다.
바람직하게는, 상기 화학식 1로 표시되는 화합물은 하기 화학식 1-1 내지 화학식 1-3 중 어느 하나로 표시될 수 있다:
[화학식 1-1]
Figure PCTKR2021003037-appb-img-000009
[화학식 1-2]
Figure PCTKR2021003037-appb-img-000010
[화학식 1-3]
Figure PCTKR2021003037-appb-img-000011
상기 화학식 1-1 내지 1-3에서,
Ar 1 및 Ar 2, L 1 내지 L 3 및 R 1은 화학식 1에서 정의한 바와 같다.
바람직하게는, Ar 1 및 Ar 2는 각각 독립적으로, 치환 또는 비치환된 C 6-20 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C 2-20 헤테로아릴일 수 있고,
보다 바람직하게는, Ar 1 및 Ar 2는 각각 독립적으로, 페닐, 비페닐릴, 터페닐릴, 나프틸, 페난트레닐, 디벤조퓨라닐, 또는 디벤조티오페닐일 수 있고,
가장 바람직하게는, Ar 1 및 Ar 2는 각각 독립적으로, 하기로 구성되는 군으로부터 선택되는 어느 하나일 수 있다:
Figure PCTKR2021003037-appb-img-000012
바람직하게는, L 1 내지 L 3는 각각 독립적으로, 단일결합; 또는 치환 또는 비치환된 C 6-20 아릴렌일 수 있고,
보다 바람직하게는, L 1 내지 L 3는 각각 독립적으로, 단일결합, 페닐렌, 비페닐릴렌, 또는 나프틸렌일 수 있고,
가장 바람직하게는, L 1 내지 L 3는 각각 독립적으로, 단일결합 또는 하기로 구성되는 군으로부터 선택되는 어느 하나일 수 있다:
Figure PCTKR2021003037-appb-img-000013
.
바람직하게는, R 1은 각각 독립적으로, 수소; 중수소; 치환 또는 비치환된 C 6-20 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C 2-20 헤테로아릴일 수 있고,
보다 바람직하게는, R 1은 각각 독립적으로, 수소, 중수소, 페닐, 비페닐릴, 터페닐릴, 나프틸, 페난트레닐, 트리페닐레닐, 나프틸 페닐, 페닐 나프틸, 플루오란테닐, 디하이드로인데닐, 디벤조퓨라닐, 디벤조티오페닐, 벤조나프토퓨라닐, 또는 벤조나프토티오페닐일 수 있다.
바람직하게는, a는 0 또는 1일 수 있다. 보다 바람직하게는, a는 1일 수 있다.
바람직하게는, Ar 1, Ar 2 및 R 1 중 적어도 하나는 나프틸, 페닐 나프틸, 나프틸 페닐, 페난트레닐, 플루오란테닐, 디벤조퓨라닐, 디벤조티오페닐, 벤조나프토퓨라닐, 또는 벤조나프토티오페닐일 수 있다.
보다 바람직하게는, Ar 1, Ar 2 및 R 1 중 적어도 하나는 나프틸, 페닐 나프틸, 나프틸 페닐, 플루오란테닐, 디벤조퓨라닐, 벤조나프토퓨라닐, 또는 벤조나프토티오페닐일 수 있다.
상기 화학식 1로 표시되는 화합물의 대표적인 예는 하기와 같다:
Figure PCTKR2021003037-appb-img-000014
Figure PCTKR2021003037-appb-img-000015
Figure PCTKR2021003037-appb-img-000016
Figure PCTKR2021003037-appb-img-000017
Figure PCTKR2021003037-appb-img-000018
Figure PCTKR2021003037-appb-img-000019
Figure PCTKR2021003037-appb-img-000020
Figure PCTKR2021003037-appb-img-000021
Figure PCTKR2021003037-appb-img-000022
Figure PCTKR2021003037-appb-img-000023
Figure PCTKR2021003037-appb-img-000024
Figure PCTKR2021003037-appb-img-000025
Figure PCTKR2021003037-appb-img-000026
Figure PCTKR2021003037-appb-img-000027
Figure PCTKR2021003037-appb-img-000028
Figure PCTKR2021003037-appb-img-000029
Figure PCTKR2021003037-appb-img-000030
Figure PCTKR2021003037-appb-img-000031
Figure PCTKR2021003037-appb-img-000032
Figure PCTKR2021003037-appb-img-000033
Figure PCTKR2021003037-appb-img-000034
Figure PCTKR2021003037-appb-img-000035
Figure PCTKR2021003037-appb-img-000036
Figure PCTKR2021003037-appb-img-000037
Figure PCTKR2021003037-appb-img-000038
Figure PCTKR2021003037-appb-img-000039
Figure PCTKR2021003037-appb-img-000040
Figure PCTKR2021003037-appb-img-000041
Figure PCTKR2021003037-appb-img-000042
Figure PCTKR2021003037-appb-img-000043
Figure PCTKR2021003037-appb-img-000044
Figure PCTKR2021003037-appb-img-000045
Figure PCTKR2021003037-appb-img-000046
Figure PCTKR2021003037-appb-img-000047
Figure PCTKR2021003037-appb-img-000048
Figure PCTKR2021003037-appb-img-000049
Figure PCTKR2021003037-appb-img-000050
Figure PCTKR2021003037-appb-img-000051
Figure PCTKR2021003037-appb-img-000052
Figure PCTKR2021003037-appb-img-000053
Figure PCTKR2021003037-appb-img-000054
Figure PCTKR2021003037-appb-img-000055
Figure PCTKR2021003037-appb-img-000056
Figure PCTKR2021003037-appb-img-000057
Figure PCTKR2021003037-appb-img-000058
Figure PCTKR2021003037-appb-img-000059
Figure PCTKR2021003037-appb-img-000060
Figure PCTKR2021003037-appb-img-000061
Figure PCTKR2021003037-appb-img-000062
Figure PCTKR2021003037-appb-img-000063
Figure PCTKR2021003037-appb-img-000064
Figure PCTKR2021003037-appb-img-000065
Figure PCTKR2021003037-appb-img-000066
Figure PCTKR2021003037-appb-img-000067
Figure PCTKR2021003037-appb-img-000068
Figure PCTKR2021003037-appb-img-000069
Figure PCTKR2021003037-appb-img-000070
Figure PCTKR2021003037-appb-img-000071
Figure PCTKR2021003037-appb-img-000072
Figure PCTKR2021003037-appb-img-000073
Figure PCTKR2021003037-appb-img-000074
Figure PCTKR2021003037-appb-img-000075
Figure PCTKR2021003037-appb-img-000076
Figure PCTKR2021003037-appb-img-000077
Figure PCTKR2021003037-appb-img-000078
Figure PCTKR2021003037-appb-img-000079
Figure PCTKR2021003037-appb-img-000080
Figure PCTKR2021003037-appb-img-000081
Figure PCTKR2021003037-appb-img-000082
Figure PCTKR2021003037-appb-img-000083
Figure PCTKR2021003037-appb-img-000084
Figure PCTKR2021003037-appb-img-000085
Figure PCTKR2021003037-appb-img-000086
Figure PCTKR2021003037-appb-img-000087
Figure PCTKR2021003037-appb-img-000088
Figure PCTKR2021003037-appb-img-000089
Figure PCTKR2021003037-appb-img-000090
Figure PCTKR2021003037-appb-img-000091
Figure PCTKR2021003037-appb-img-000092
Figure PCTKR2021003037-appb-img-000093
Figure PCTKR2021003037-appb-img-000094
Figure PCTKR2021003037-appb-img-000095
Figure PCTKR2021003037-appb-img-000096
Figure PCTKR2021003037-appb-img-000097
Figure PCTKR2021003037-appb-img-000098
Figure PCTKR2021003037-appb-img-000099
Figure PCTKR2021003037-appb-img-000100
Figure PCTKR2021003037-appb-img-000101
Figure PCTKR2021003037-appb-img-000102
Figure PCTKR2021003037-appb-img-000103
Figure PCTKR2021003037-appb-img-000104
Figure PCTKR2021003037-appb-img-000105
Figure PCTKR2021003037-appb-img-000106
Figure PCTKR2021003037-appb-img-000107
Figure PCTKR2021003037-appb-img-000108
Figure PCTKR2021003037-appb-img-000109
Figure PCTKR2021003037-appb-img-000110
Figure PCTKR2021003037-appb-img-000111
Figure PCTKR2021003037-appb-img-000112
Figure PCTKR2021003037-appb-img-000113
Figure PCTKR2021003037-appb-img-000114
Figure PCTKR2021003037-appb-img-000115
Figure PCTKR2021003037-appb-img-000116
Figure PCTKR2021003037-appb-img-000117
Figure PCTKR2021003037-appb-img-000118
Figure PCTKR2021003037-appb-img-000119
Figure PCTKR2021003037-appb-img-000120
Figure PCTKR2021003037-appb-img-000121
Figure PCTKR2021003037-appb-img-000122
Figure PCTKR2021003037-appb-img-000123
Figure PCTKR2021003037-appb-img-000124
Figure PCTKR2021003037-appb-img-000125
Figure PCTKR2021003037-appb-img-000126
Figure PCTKR2021003037-appb-img-000127
Figure PCTKR2021003037-appb-img-000128
Figure PCTKR2021003037-appb-img-000129
Figure PCTKR2021003037-appb-img-000130
Figure PCTKR2021003037-appb-img-000131
Figure PCTKR2021003037-appb-img-000132
Figure PCTKR2021003037-appb-img-000133
Figure PCTKR2021003037-appb-img-000134
Figure PCTKR2021003037-appb-img-000135
Figure PCTKR2021003037-appb-img-000136
Figure PCTKR2021003037-appb-img-000137
Figure PCTKR2021003037-appb-img-000138
Figure PCTKR2021003037-appb-img-000139
Figure PCTKR2021003037-appb-img-000140
Figure PCTKR2021003037-appb-img-000141
Figure PCTKR2021003037-appb-img-000142
Figure PCTKR2021003037-appb-img-000143
Figure PCTKR2021003037-appb-img-000144
Figure PCTKR2021003037-appb-img-000145
Figure PCTKR2021003037-appb-img-000146
Figure PCTKR2021003037-appb-img-000147
Figure PCTKR2021003037-appb-img-000148
Figure PCTKR2021003037-appb-img-000149
Figure PCTKR2021003037-appb-img-000150
Figure PCTKR2021003037-appb-img-000151
Figure PCTKR2021003037-appb-img-000152
Figure PCTKR2021003037-appb-img-000153
Figure PCTKR2021003037-appb-img-000154
Figure PCTKR2021003037-appb-img-000155
Figure PCTKR2021003037-appb-img-000156
Figure PCTKR2021003037-appb-img-000157
Figure PCTKR2021003037-appb-img-000158
Figure PCTKR2021003037-appb-img-000159
Figure PCTKR2021003037-appb-img-000160
Figure PCTKR2021003037-appb-img-000161
Figure PCTKR2021003037-appb-img-000162
Figure PCTKR2021003037-appb-img-000163
Figure PCTKR2021003037-appb-img-000164
Figure PCTKR2021003037-appb-img-000165
Figure PCTKR2021003037-appb-img-000166
Figure PCTKR2021003037-appb-img-000167
Figure PCTKR2021003037-appb-img-000168
Figure PCTKR2021003037-appb-img-000169
.
상기 화학식 1로 표시되는 화합물은 일례로 하기 반응식 1과 같은 제조 방법으로 제조할 수 있으며, 그 외 나머지 화합물도 유사하게 제조할 수 있다.
[반응식 1]
Figure PCTKR2021003037-appb-img-000170
상기 반응식 1에서, Ar 1, Ar 2, L 1 내지 L 3, R 1 및 a는 상기 화학식 1에서 정의한 바와 같으며, X 1은 할로겐이고, 바람직하게는 X 1은 클로로 또는 브로모이다.
상기 반응식 1은 스즈키 커플링 반응으로서, 팔라듐 촉매와 염기 존재 하에 수행하는 것이 바람직하며, 스즈키 커플링 반응을 위한 반응기는 당업계에 알려진 바에 따라 변경이 가능하다. 상기 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다.
바람직하게는, Ar 3는 수소; 치환 또는 비치환된 C 6-20 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C 2-20 헤테로아릴일 수 있고,
보다 바람직하게는, Ar 3는 수소 또는 페닐일 수 있다.
바람직하게는, Ar 4 및 Ar 5는 각각 독립적으로, 치환 또는 비치환된 C 6-20 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C 2-20 헤테로아릴일 수 있고,
보다 바람직하게는, Ar 4 및 Ar 5는 각각 독립적으로, 페닐, 5개의 중수소로 치환된 페닐, 비페닐릴, 4개의 중수소로 치환된 비페닐릴, 9개의 중수소로 치환된 비페닐릴, 터페닐릴, 4개의 중수소로 치환된 터페닐릴, 쿼터페닐릴, 나프틸, 페난트레닐, 트리페닐레닐, 디메틸플루오레닐, 디페닐플루오레닐, 카바졸릴, 페닐카바졸릴, 디벤조퓨라닐, 디벤조티오페닐, 또는 페닐 디벤조퓨라닐일 수 있고,
가장 바람직하게는, Ar 4 및 Ar 5는 각각 독립적으로, 하기로 구성되는 군으로부터 선택되는 어느 하나일 수 있다:
Figure PCTKR2021003037-appb-img-000171
.
바람직하게는, L 4 내지 L 6는 각각 독립적으로, 단일결합; 치환 또는 비치환된 C 6-20 아릴렌; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C 2-20 헤테로아릴렌일 수 있고,
보다 바람직하게는, L 4 내지 L 6는 각각 독립적으로, 단일결합, 페닐렌, 4개의 중수소로 치환된 페닐렌, 비페닐릴렌, 나프틸렌, 페닐 나프틸렌, 카바졸일렌, 페닐 카바졸일렌, 4개의 중수소로 치환된 페닐 카바졸일렌, 디벤조퓨라닐렌, 페닐 디벤조퓨라닐렌, 4개의 중수소로 치환된 페닐 디벤조퓨라닐렌, 또는 디메틸플루오레닐렌일 수 있고,
가장 바람직하게는, L 4 내지 L 6는 각각 독립적으로, 단일결합 또는 하기로 구성되는 군으로부터 선택되는 어느 하나일 수 있다:
Figure PCTKR2021003037-appb-img-000172
.
바람직하게는, L 4는 단일결합이고, L 5 및 L 6는 각각 독립적으로, 단일결합; 치환 또는 비치환된 C 6-20 아릴렌; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C 2-20 헤테로아릴렌일 수 있고,
보다 바람직하게는, L 4는 단일결합이고, L 5 및 L 6는 각각 독립적으로, 단일결합, 페닐렌, 4개의 중수소로 치환된 페닐렌, 비페닐릴렌, 나프틸렌, 페닐 나프틸렌, 카바졸일렌, 페닐 카바졸일렌, 4개의 중수소로 치환된 페닐 카바졸일렌, 디벤조퓨라닐렌, 페닐 디벤조퓨라닐렌, 4개의 중수소로 치환된 페닐 디벤조퓨라닐렌, 또는 디메틸플루오레닐렌일 수 있고,
가장 바람직하게는, L 4는 단일결합이고, L 5 및 L 6는 각각 독립적으로, 단일결합 또는 하기로 구성되는 군으로부터 선택되는 어느 하나일 수 있다:
Figure PCTKR2021003037-appb-img-000173
.
바람직하게는, L 7은 치환 또는 비치환된 C 6-20 아릴렌일 수 있고,
보다 바람직하게는, L 7은 치환 또는 비치환된 페닐렌, 치환 또는 비치환된 비페닐릴렌, 또는 치환 또는 비치환된 나프틸렌일 수 있고,
가장 바람직하게는, L 7은 페닐렌, 4 개의 중수소로 치환된 페닐렌, 비페닐릴렌, 또는 나프틸렌일 수 있다.
바람직하게는, 화학식 2로 표시되는 화합물은 하기 화학식 2-1로 표시될 수 있다:
[화학식 2-1]
Figure PCTKR2021003037-appb-img-000174
상기 화학식 2-1에서,
Ar 3 내지 Ar 5 및 L 4 내지 L 6는 상기 화학식 2에서 정의한 바와 같고,
R 2는 수소; 중수소; 또는 치환 또는 비치환된 C 6-60 아릴이고,
b는 0 내지 4의 정수이다.
바람직하게는, R 2는 수소; 중수소; 또는 치환 또는 비치환된 C 6-20 아릴일 수 있고,
보다 바람직하게는, R 2는 수소 또는 중수소일 수 있다.
상기 화학식 2로 표시되는 화합물의 대표적인 예는 하기와 같다:
Figure PCTKR2021003037-appb-img-000175
Figure PCTKR2021003037-appb-img-000176
Figure PCTKR2021003037-appb-img-000177
Figure PCTKR2021003037-appb-img-000178
Figure PCTKR2021003037-appb-img-000179
Figure PCTKR2021003037-appb-img-000180
Figure PCTKR2021003037-appb-img-000181
Figure PCTKR2021003037-appb-img-000182
Figure PCTKR2021003037-appb-img-000183
Figure PCTKR2021003037-appb-img-000184
Figure PCTKR2021003037-appb-img-000185
Figure PCTKR2021003037-appb-img-000186
Figure PCTKR2021003037-appb-img-000187
Figure PCTKR2021003037-appb-img-000188
Figure PCTKR2021003037-appb-img-000189
Figure PCTKR2021003037-appb-img-000190
Figure PCTKR2021003037-appb-img-000191
Figure PCTKR2021003037-appb-img-000192
Figure PCTKR2021003037-appb-img-000193
Figure PCTKR2021003037-appb-img-000194
Figure PCTKR2021003037-appb-img-000195
Figure PCTKR2021003037-appb-img-000196
Figure PCTKR2021003037-appb-img-000197
Figure PCTKR2021003037-appb-img-000198
Figure PCTKR2021003037-appb-img-000199
Figure PCTKR2021003037-appb-img-000200
Figure PCTKR2021003037-appb-img-000201
Figure PCTKR2021003037-appb-img-000202
Figure PCTKR2021003037-appb-img-000203
Figure PCTKR2021003037-appb-img-000204
Figure PCTKR2021003037-appb-img-000205
Figure PCTKR2021003037-appb-img-000206
Figure PCTKR2021003037-appb-img-000207
Figure PCTKR2021003037-appb-img-000208
Figure PCTKR2021003037-appb-img-000209
Figure PCTKR2021003037-appb-img-000210
Figure PCTKR2021003037-appb-img-000211
Figure PCTKR2021003037-appb-img-000212
Figure PCTKR2021003037-appb-img-000213
Figure PCTKR2021003037-appb-img-000214
Figure PCTKR2021003037-appb-img-000215
Figure PCTKR2021003037-appb-img-000216
Figure PCTKR2021003037-appb-img-000217
Figure PCTKR2021003037-appb-img-000218
Figure PCTKR2021003037-appb-img-000219
Figure PCTKR2021003037-appb-img-000220
Figure PCTKR2021003037-appb-img-000221
Figure PCTKR2021003037-appb-img-000222
.
상기 화학식 2로 표시되는 화합물은 일례로 하기 반응식 2와 같은 제조 방법으로 제조할 수 있으며, 그 외 나머지 화합물도 유사하게 제조할 수 있다.
[반응식 2]
Figure PCTKR2021003037-appb-img-000223
상기 반응식 2에서, Ar 3 내지 Ar 5 및 L 4 내지 L 7은 상기 화학식 2에서 정의한 바와 같으며, X 2는 할로겐이고, 바람직하게는 X 2는 클로로 또는 브로모이다.
상기 반응식 2는 아민 치환 반응으로서, 팔라듐 촉매와 염기 존재 하에 수행하는 것이 바람직하며, 아민 치환 반응을 위한 반응기는 당업계에 알려진 바에 따라 변경이 가능하다. 상기 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다.
바람직하게는, 상기 발광층에서 상기 화학식 1로 표시되는 화합물 및 상기 화학식 2로 표시되는 화합물의 중량비는 10:90 내지 90:10이고, 보다 바람직하게는 20:80 내지 80:20, 30:70 내지 70:30 또는 40:60 내지 60:40이다.
한편, 상기 발광층은 호스트 외에 도펀트를 추가로 포함할 수 있다. 상기 도펀트 재료로는 유기 발광 소자에 사용되는 물질이면 특별히 제한되지 않는다. 일례로, 방향족 아민 유도체, 스트릴아민 화합물, 붕소 착체, 플루오란텐 화합물, 금속 착체 등이 있다. 구체적으로 방향족 아민 유도체로는 치환 또는 비치환된 아릴아미노기를 갖는 축합 방향족환 유도체로서, 아릴아미노기를 갖는 피렌, 안트라센, 크리센, 페리플란텐 등이 있으며, 스티릴아민 화합물로는 치환 또는 비치환된 아릴아민에 적어도 1개의 아릴비닐기가 치환되어 있는 화합물로, 아릴기, 실릴기, 알킬기, 사이클로알킬기 및 아릴아미노기로 이루어진 군에서 1 또는 2 이상 선택되는 치환기가 치환 또는 비치환된다. 구체적으로 스티릴아민, 스티릴디아민, 스티릴트리아민, 스티릴테트라아민 등이 있으나, 이에 한정되지 않는다. 또한, 금속 착체로는 이리듐 착체, 백금 착체 등이 있으나, 이에 한정되지 않는다.
정공저지층
상기 정공저지층은 양극에서 주입된 정공이 발광층에서 재결합되지 않고 전자수송층으로 넘어가는 것을 방지하기 위해 전자수송층과 발광층의 사이에 두는 층으로, 정공억제층, 정공차단층으로 불리기도 한다. 정공저지층에는 이온화에너지가 큰 물질이 바람직하다.
전자수송층
본 발명에 따른 유기 발광 소자는, 필요에 따라 상기 발광층 상에 전자수송층을 포함할 수 있다.
상기 전자수송층은, 음극 또는 음극 상에 형성된 전자주입층으로부터 전자를 수취하여 발광층까지 전자를 수송하고, 또한 발광층에서 정공이 전달되는 것을 억제하는 층으로, 전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다.
상기 전자 수송 물질의 구체적인 예로는 8-히드록시퀴놀린의 Al 착물; Alq 3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다. 전자 수송층은 종래기술에 따라 사용된 바와 같이 임의의 원하는 캐소드 물질과 함께 사용할 수 있다. 특히, 적절한 캐소드 물질의 예는 낮은 일함수를 가지고 알루미늄층 또는 실버층이 뒤따르는 통상적인 물질이다. 구체적으로 세슘, 바륨, 칼슘, 이테르븀 및 사마륨이고, 각 경우 알루미늄 층 또는 실버층이 뒤따른다.
전자주입층
본 발명에 따른 유기 발광 소자는, 필요에 따라 상기 발광층 상에(또는 전자주송층이 존재하는 경우 전자수송층 상에) 전자주입층을 추가로 포함할 수 있다.
상기 전자주입층은 전극으로부터 전자를 주입하는 층으로, 전자를 수송하는 능력을 갖고, 음극으로부터의 전자 주입 효과, 발광층 또는 발광 재료에 대하여 우수한 전자주입 효과를 가지며, 발광층에서 생성된 여기자의 정공주입층에의 이동을 방지하고, 또한, 박막형성능력이 우수한 화합물을 사용하는 것이 바람직하다.
상기 전자주입층으로 사용될 수 있는 물질의 구체적인 예로는, 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 질소 함유 5원환 유도체 등이 있으나, 이에 한정되지 않는다.
상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스(8-하이드록시퀴놀리나토)아연, 비스(8-하이드록시퀴놀리나토)구리, 비스(8-하이드록시퀴놀리나토)망간, 트리스(8-하이드록시퀴놀리나토)알루미늄, 트리스(2-메틸-8-하이드록시퀴놀리나토)알루미늄, 트리스(8-하이드록시퀴놀리나토)갈륨, 비스(10-하이드록시벤조[h]퀴놀리나토)베릴륨, 비스(10-하이드록시벤조[h]퀴놀리나토)아연, 비스(2-메틸-8-퀴놀리나토)클로로갈륨, 비스(2-메틸-8-퀴놀리나토)(o-크레졸라토)갈륨, 비스(2-메틸-8-퀴놀리나토)(1-나프톨라토)알루미늄, 비스(2-메틸-8-퀴놀리나토)(2-나프톨라토)갈륨 등이 있으나, 이에 한정되지 않는다.
한편, 본 발명에 있어서 "전자 주입 및 수송층"은 상기 전자주입층과 상기 전자수송층의 역할을 모두 수행하는 층으로 상기 각 층의 역할을 하는 물질을 단독으로, 혹은 혼합하여 사용할 수 있으나, 이에 한정되지 않는다.
유기 발광 소자
본 발명에 따른 유기 발광 소자의 구조를 도 1 및 도 2에 예시하였다. 도 1은, 기판(1), 양극(2), 발광층(3), 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 도 2는, 기판(1), 양극(2), 정공주입층(5), 정공수송층(6), 전자차단층(7), 발광층(3), 정공저지층(8), 전자 주입 및 수송층(9) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
본 발명에 따른 유기 발광 소자는 상술한 구성을 순차적으로 적층시켜 제조할 수 있다. 이때, 스퍼터링법(sputtering)이나 전자빔 증발법(e-beam evaporation)과 같은 PVD(physical Vapor Deposition)방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 상술한 각 층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시켜 제조할 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질부터 상술한 구성의 역순으로 양극 물질까지 차례로 증착시켜 유기 발광 소자를 만들 수 있다(WO 2003/012890). 또한, 발광층은 호스트 및 도펀트를 진공 증착법 뿐만 아니라 용액 도포법에 의하여 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.
한편, 본 발명에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 이에 의해 본 발명의 내용이 한정되는 것은 아니다.
[제조예]
제조예 1-1: 화합물 1-1의 제조
Figure PCTKR2021003037-appb-img-000224
질소 분위기에서 화합물 1-A(15 g, 60.9 mmol)와 화합물 Trz27(19.3 g, 60.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(16.8 g, 121.7 mmol)를 물 50 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 12 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-A-1를 20.9 g 제조하였다. (수율 71%, MS: [M+H]+= 484)
Figure PCTKR2021003037-appb-img-000225
질소 분위기에서 화합물 sub1-A-1(15 g, 31 mmol)와 화합물 sub1(6.1 g, 31 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(8.6 g, 62 mmol)를 물 26 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-1를 12.3 g을 제조하였다.(수율 66 %, MS: [M+H]+= 602)
제조예 1-2: 화합물 1-2의 제조
Figure PCTKR2021003037-appb-img-000226
질소 분위기에서 화합물 1-A(15 g, 60.9 mmol)와 화합물 Trz2(16.3 g, 60.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-A-2를 19.5 g을 제조하였다.(수율 74 %, MS: [M+H]+= 434)
Figure PCTKR2021003037-appb-img-000227
질소 분위기에서 화합물 sub1-A-2(15 g, 34.6 mmol)와 화합물 sub2(9.4 g, 34.6 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.6 g, 69.1 mmol)를 물 29 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-2를 14.3 g을 제조하였다.(수율 66 %, MS: [M+H]+= 626)
제조예 1-3: 화합물 1-3의 제조
Figure PCTKR2021003037-appb-img-000228
질소 분위기에서 화합물 1-A(15 g, 60.9 mmol)와 화합물 Trz3(19.3 g, 60.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-A-3를 23.2 g을 제조하였다.(수율 79 %, MS: [M+H]+= 484)
Figure PCTKR2021003037-appb-img-000229
질소 분위기에서 화합물 sub1-A-3(15 g, 31 mmol)와 화합물 sub3(7.1 g, 31 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(8.6 g, 62 mmol)를 물 26 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-3를 12.9 g을 제조하였다.(수율 66 %, MS: [M+H]+= 632)
제조예 1-4: 화합물 1-4의 제조
Figure PCTKR2021003037-appb-img-000230
질소 분위기에서 화합물 1-A(15 g, 60.9 mmol)와 화합물 Trz4(27 g, 60.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-A-4를 26 g을 제조하였다.(수율 70 %, MS: [M+H]+= 610)
Figure PCTKR2021003037-appb-img-000231
질소 분위기에서 화합물 sub1-A-4(15 g, 24.6 mmol)와 화합물 sub4(5.6 g, 24.6 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(6.8 g, 49.2 mmol)를 물 20 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-4를 11.2 g을 제조하였다.(수율 60 %, MS: [M+H]+= 758)
제조예 1-5: 화합물 1-5의 제조
Figure PCTKR2021003037-appb-img-000232
질소 분위기에서 화합물 1-B(15 g, 60.9 mmol)와 화합물 Trz5(24 g, 60.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-B-1를 26.2 g을 제조하였다.(수율 77 %, MS: [M+H]+= 560)
Figure PCTKR2021003037-appb-img-000233
질소 분위기에서 화합물 sub1-B-1(15 g, 26.8 mmol)와 화합물 sub5(3.3 g, 26.8 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(7.4 g, 53.6 mmol)를 물 22 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-5를 12.9 g을 제조하였다.(수율 80 %, MS: [M+H]+= 602)
제조예 1-6: 화합물 1-6의 제조
Figure PCTKR2021003037-appb-img-000234
질소 분위기에서 화합물 1-B(15 g, 60.9 mmol)와 화합물 Trz3(19.3 g, 60.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-B-2를 18.2 g을 제조하였다.(수율 62 %, MS: [M+H]+= 484)
Figure PCTKR2021003037-appb-img-000235
질소 분위기에서 화합물 sub1-B-2(15 g, 31 mmol)와 화합물 sub6(7.6 g, 31 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(8.6 g, 62 mmol)를 물 26 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-6를 15.3 g을 제조하였다.(수율 76 %, MS: [M+H]+= 650)
제조예 1-7: 화합물 1-7의 제조
Figure PCTKR2021003037-appb-img-000236
질소 분위기에서 화합물 1-B(15 g, 60.9 mmol)와 화합물 Trz2(16.3 g, 60.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-B-3를 20.8 g을 제조하였다.(수율 79 %, MS: [M+H]+= 434)
Figure PCTKR2021003037-appb-img-000237
질소 분위기에서 화합물 sub1-B-3(15 g, 34.6 mmol)와 화합물 sub7(8.6 g, 34.6 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.6 g, 69.1 mmol)를 물 29 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-7를 15.4 g을 제조하였다.(수율 74 %, MS: [M+H]+= 602)
제조예 1-8: 화합물 1-8의 제조
Figure PCTKR2021003037-appb-img-000238
질소 분위기에서 화합물 sub1-B-2(15 g, 31 mmol)와 화합물 sub8(8.1 g, 31 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(8.6 g, 62 mmol)를 물 26 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-8를 15.5 g을 제조하였다.(수율 75 %, MS: [M+H]+= 666)
제조예 1-9: 화합물 1-9의 제조
Figure PCTKR2021003037-appb-img-000239
질소 분위기에서 화합물 1-B(15 g, 60.9 mmol)와 화합물 Trz6(22.4 g, 60.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-B-4를 23.7 g을 제조하였다.(수율 73 %, MS: [M+H]+= 534)
Figure PCTKR2021003037-appb-img-000240
질소 분위기에서 화합물 sub1-B-4(15 g, 28.1 mmol)와 화합물 sub9(6 g, 28.1 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(7.8 g, 56.2 mmol)를 물 23 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-9를 11.6 g을 제조하였다.(수율 62 %, MS: [M+H]+= 666)
제조예 1-10: 화합물 1-10의 제조
Figure PCTKR2021003037-appb-img-000241
질소 분위기에서 화합물 1-B(15 g, 60.9 mmol)와 화합물 Trz7(28.6 g, 60.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-B-5를 28.6 g을 제조하였다.(수율 74 %, MS: [M+H]+= 636)
Figure PCTKR2021003037-appb-img-000242
질소 분위기에서 화합물 sub1-B-5(15 g, 23.6 mmol)와 화합물 sub5(2.9 g, 23.6 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(6.5 g, 47.2 mmol)를 물 20 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-10를 10.4 g을 제조하였다.(수율 65 %, MS: [M+H]+= 678)
제조예 1-11: 화합물 1-11의 제조
Figure PCTKR2021003037-appb-img-000243
질소 분위기에서 화합물 1-B(15 g, 60.9 mmol)와 화합물 Trz8(21.8 g, 60.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-B-6를 20.1 g을 제조하였다.(수율 63 %, MS: [M+H]+= 524)
Figure PCTKR2021003037-appb-img-000244
질소 분위기에서 화합물 sub1-B-6(15 g, 28.6 mmol)와 화합물 sub10(4.9 g, 28.6 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(7.9 g, 57.3 mmol)를 물 24 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-11를 11.4 g을 제조하였다.(수율 65 %, MS: [M+H]+= 616)
제조예 1-12: 화합물 1-12의 제조
Figure PCTKR2021003037-appb-img-000245
질소 분위기에서 화합물 1-C(15 g, 60.9 mmol)와 화합물 Trz3(19.3 g, 60.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-C-1를 17.6 g을 제조하였다.(수율 60 %, MS: [M+H]+= 484)
Figure PCTKR2021003037-appb-img-000246
질소 분위기에서 화합물 sub1-C-1(15 g, 31 mmol)와 화합물 sub10(5.3 g, 31 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(8.6 g, 62 mmol)를 물 26 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-12를 12.8 g을 제조하였다.(수율 72 %, MS: [M+H]+= 576)
제조예 1-13: 화합물 1-13의 제조
Figure PCTKR2021003037-appb-img-000247
질소 분위기에서 화합물 1-C(15 g, 60.9 mmol)와 화합물 Trz9(24 g, 60.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-C-2를 23.5 g을 제조하였다.(수율 69 %, MS: [M+H]+= 560
Figure PCTKR2021003037-appb-img-000248
질소 분위기에서 화합물 sub1-C-2(15 g, 26.8 mmol)와 화합물 sub10(4.6 g, 26.8 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(7.4 g, 53.6 mmol)를 물 22 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-13를 14 g을 제조하였다.(수율 80 %, MS: [M+H]+= 652)
제조예 1-14: 화합물 1-14의 제조
Figure PCTKR2021003037-appb-img-000249
질소 분위기에서 화합물 1-C(15 g, 60.9 mmol)와 화합물 Trz10(20.9 g, 60.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-C-3를 20.5 g을 제조하였다.(수율 66 %, MS: [M+H]+= 510)
Figure PCTKR2021003037-appb-img-000250
질소 분위기에서 화합물 sub1-C-3(15 g, 29.4 mmol)와 화합물 sub11(7.3 g, 29.4 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(8.1 g, 58.8 mmol)를 물 24 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-14를 15.3 g을 제조하였다.(수율 77 %, MS: [M+H]+= 678)
제조예 1-15: 화합물 1-15의 제조
Figure PCTKR2021003037-appb-img-000251
질소 분위기에서 화합물 1-C(15 g, 60.9 mmol)와 화합물 Trz2(16.3 g, 60.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-C-4를 18.7 g을 제조하였다.(수율 71 %, MS: [M+H]+= 434)
Figure PCTKR2021003037-appb-img-000252
질소 분위기에서 화합물 sub1-C-4(15 g, 37.1 mmol)와 화합물 sub12(9.7 g, 37.1 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(10.3 g, 74.3 mmol)를 물 31 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-15를 14.6 g을 제조하였다.(수율 64 %, MS: [M+H]+= 616)
제조예 1-16: 화합물 1-16의 제조
Figure PCTKR2021003037-appb-img-000253
질소 분위기에서 화합물 sub1-C-3(15 g, 26.8 mmol)와 화합물 sub13(7.4 g, 26.8 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(7.4 g, 53.6 mmol)를 물 22 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-16를 16.2 g을 제조하였다.(수율 80 %, MS: [M+H]+= 758)
제조예 1-17: 화합물 1-17의 제조
Figure PCTKR2021003037-appb-img-000254
질소 분위기에서 화합물 sub1-C-4(15 g, 34.6 mmol)와 화합물 sub14(7.7 g, 34.6 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.6 g, 69.1 mmol)를 물 29 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-17를 12.3 g을 제조하였다.(수율 62 %, MS: [M+H]+= 576)
제조예 1-18: 화합물 1-18의 제조
Figure PCTKR2021003037-appb-img-000255
질소 분위기에서 화합물 sub1-C-1(15 g, 31 mmol)와 화합물 sub9(6.6 g, 31 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(8.6 g, 62 mmol)를 물 26 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-18를 12 g을 제조하였다.(수율 63 %, MS: [M+H]+= 616)
제조예 1-19: 화합물 1-19의 제조
Figure PCTKR2021003037-appb-img-000256
질소 분위기에서 화합물 1-C(15 g, 60.9 mmol)와 화합물 Trz11(22.4 g, 60.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-C-5를 22.4 g을 제조하였다.(수율 69 %, MS: [M+H]+= 534)
Figure PCTKR2021003037-appb-img-000257
질소 분위기에서 화합물 sub1-C-5(15 g, 28.1 mmol)와 화합물 sub15(6 g, 28.1 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(7.8 g, 56.2 mmol)를 물 23 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-19를 13.3 g을 제조하였다.(수율 71 %, MS: [M+H]+= 666)
제조예 1-20: 화합물 1-20의 제조
Figure PCTKR2021003037-appb-img-000258
질소 분위기에서 화합물 1-C(15 g, 60.9 mmol)와 화합물 Trz12(21.8 g, 60.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-C-6를 21 g을 제조하였다.(수율 66 %, MS: [M+H]+= 524)
Figure PCTKR2021003037-appb-img-000259
질소 분위기에서 화합물 sub1-C-6(15 g, 28.6 mmol)와 화합물 sub10(4.9 g, 28.6 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(11.9 g, 85.9 mmol)를 물 36 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-20를 12.3 g을 제조하였다.(수율 70 %, MS: [M+H]+= 616)
제조예 1-21: 화합물 1-21의 제조
Figure PCTKR2021003037-appb-img-000260
질소 분위기에서 화합물 1-C(15 g, 60.9 mmol)와 화합물 Trz13(24 g, 60.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-C-7를 26.2 g을 제조하였다.(수율 77 %, MS: [M+H]+= 560)
Figure PCTKR2021003037-appb-img-000261
질소 분위기에서 화합물 sub1-C-7(15 g, 26.8 mmol)와 화합물 sub5(3.3 g, 26.8 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(11.1 g, 80.3 mmol)를 물 33 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-21를 10.5 g을 제조하였다.(수율 65 %, MS: [M+H]+= 602)
제조예 1-22: 화합물 1-22의 제조
Figure PCTKR2021003037-appb-img-000262
질소 분위기에서 화합물 1-D(15 g, 60.9 mmol)와 화합물 Trz14(19.3 g, 60.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-D-1를 23.9 g을 제조하였다.(수율 67 %, MS: [M+H]+= 586)
Figure PCTKR2021003037-appb-img-000263
질소 분위기에서 화합물 sub1-D-1(15 g, 25.6 mmol)와 화합물 sub5(3.1 g, 25.6 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(10.6 g, 76.8 mmol)를 물 32 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-22를 10.3 g을 제조하였다.(수율 64 %, MS: [M+H]+= 628)
제조예 1-23: 화합물 1-23의 제조
Figure PCTKR2021003037-appb-img-000264
질소 분위기에서 화합물 1-D(15 g, 60.9 mmol)와 화합물 Trz2(16.3 g, 60.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-D-2를 20 g을 제조하였다.(수율 76 %, MS: [M+H]+= 434)
Figure PCTKR2021003037-appb-img-000265
질소 분위기에서 화합물 sub1-D-2(15 g, 34.6 mmol)와 화합물 sub16(9.1 g, 34.6 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14.3 g, 103.7 mmol)를 물 43 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-23를 14 g을 제조하였다.(수율 66 %, MS: [M+H]+= 616)
제조예 1-24: 화합물 1-24의 제조
Figure PCTKR2021003037-appb-img-000266
질소 분위기에서 화합물 1-D(15 g, 60.9 mmol)와 화합물 Trz10(20.9 g, 60.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-D-3를 20.8 g을 제조하였다.(수율 67 %, MS: [M+H]+= 510)
Figure PCTKR2021003037-appb-img-000267
질소 분위기에서 화합물 sub1-D-3(15 g, 29.4 mmol)와 화합물 sub17(7.7 g, 29.4 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(12.2 g, 88.2 mmol)를 물 37 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-24를 12.4 g을 제조하였다.(수율 61 %, MS: [M+H]+= 692)
제조예 1-25: 화합물 1-25의 제조
Figure PCTKR2021003037-appb-img-000268
질소 분위기에서 화합물 1-D(15 g, 60.9 mmol)와 화합물 Trz15(21.8 g, 60.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-D-4를 21.3 g을 제조하였다.(수율 67 %, MS: [M+H]+= 524)
Figure PCTKR2021003037-appb-img-000269
질소 분위기에서 화합물 sub1-D-4(15 g, 28.6 mmol)와 화합물 sub10(4.9 g, 28.6 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(11.9 g, 85.9 mmol)를 물 36 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-25를 10.7 g을 제조하였다.(수율 61 %, MS: [M+H]+= 616)
제조예 1-26: 화합물 1-26의 제조
Figure PCTKR2021003037-appb-img-000270
질소 분위기에서 화합물 sub1-D-3(15 g, 29.4 mmol)와 화합물 sub18(6.2 g, 29.4 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(12.2 g, 88.2 mmol)를 물 37 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-26를 14.3 g을 제조하였다.(수율 76 %, MS: [M+H]+= 642)
제조예 1-27: 화합물 1-27의 제조
Figure PCTKR2021003037-appb-img-000271
질소 분위기에서 화합물 1-D(15 g, 60.9 mmol)와 화합물 Trz16(27 g, 60.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-D-5를 27.1 g을 제조하였다.(수율 73 %, MS: [M+H]+= 610)
Figure PCTKR2021003037-appb-img-000272
질소 분위기에서 화합물 sub1-D-5(15 g, 24.6 mmol)와 화합물 sub9(5.2 g, 24.6 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(10.2 g, 73.8 mmol)를 물 31 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-27를 12.8 g을 제조하였다.(수율 70 %, MS: [M+H]+= 742)
제조예 1-28: 화합물 1-28의 제조
Figure PCTKR2021003037-appb-img-000273
질소 분위기에서 화합물 1-D(15 g, 60.9 mmol)와 화합물 Trz13(24 g, 60.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-D-6를 20.8 g을 제조하였다.(수율 61 %, MS: [M+H]+= 560)
Figure PCTKR2021003037-appb-img-000274
질소 분위기에서 화합물 sub1-D-6(15 g, 26.8 mmol)와 화합물 sub10(4.6 g, 26.8 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(11.1 g, 80.3 mmol)를 물 33 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-28를 12.2 g을 제조하였다.(수율 70 %, MS: [M+H]+= 652)
제조예 1-29: 화합물 1-29의 제조
Figure PCTKR2021003037-appb-img-000275
질소 분위기에서 화합물 1-E(15 g, 60.9 mmol)와 화합물 Trz2(16.3 g, 60.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-E-1를 17.1 g을 제조하였다.(수율 65 %, MS: [M+H]+= 434)
Figure PCTKR2021003037-appb-img-000276
질소 분위기에서 화합물 sub1-E-1(15 g, 34.6 mmol)와 화합물 sub2(9.4 g, 34.6 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14.3 g, 103.7 mmol)를 물 43 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-29를 14.5 g을 제조하였다.(수율 67 %, MS: [M+H]+= 626)
제조예 1-30: 화합물 1-30의 제조
Figure PCTKR2021003037-appb-img-000277
질소 분위기에서 화합물 1-E(15 g, 60.9 mmol)와 화합물 Trz9(24 g, 60.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-E-2를 26.9 g을 제조하였다.(수율 79 %, MS: [M+H]+= 560)
Figure PCTKR2021003037-appb-img-000278
질소 분위기에서 화합물 sub1-E-2(15 g, 26.8 mmol)와 화합물 sub19(7 g, 26.8 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(11.1 g, 80.3 mmol)를 물 33 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-30를 15.9 g을 제조하였다.(수율 80 %, MS: [M+H]+= 742)
제조예 1-31: 화합물 1-31의 제조
Figure PCTKR2021003037-appb-img-000279
질소 분위기에서 화합물 1-E(15 g, 60.9 mmol)와 화합물 Trz17(22.4 g, 60.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-E-3를 25.3 g을 제조하였다.(수율 78 %, MS: [M+H]+= 534)
Figure PCTKR2021003037-appb-img-000280
질소 분위기에서 화합물 sub1-E-3(15 g, 28.1 mmol)와 화합물 sub20(7.8 g, 28.1 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(11.6 g, 84.3 mmol)를 물 35 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-31를 14.8 g을 제조하였다.(수율 72 %, MS: [M+H]+= 732)
제조예 1-32: 화합물 1-32의 제조
Figure PCTKR2021003037-appb-img-000281
질소 분위기에서 화합물 sub1-E-1(15 g, 34.6 mmol)와 화합물 sub21(7.7 g, 34.6 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14.3 g, 103.7 mmol)를 물 43 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-32를 12.9 g을 제조하였다.(수율 65 %, MS: [M+H]+= 576)
제조예 1-33: 화합물 1-33의 제조
Figure PCTKR2021003037-appb-img-000282
질소 분위기에서 화합물 1-E(15 g, 60.9 mmol)와 화합물 Trz15(21.8 g, 60.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-E-4를 25.5 g을 제조하였다.(수율 80 %, MS: [M+H]+= 524)
Figure PCTKR2021003037-appb-img-000283
질소 분위기에서 화합물 sub1-E-4(15 g, 28.6 mmol)와 화합물 sub10(4.9 g, 28.6 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(11.9 g, 85.9 mmol)를 물 36 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-33를 10.6 g을 제조하였다.(수율 60 %, MS: [M+H]+= 616)
제조예 1-34: 화합물 1-34의 제조
Figure PCTKR2021003037-appb-img-000284
질소 분위기에서 화합물 1-E(15 g, 60.9 mmol)와 화합물 Trz3(19.3 g, 60.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-E-5를 17.6 g을 제조하였다.(수율 60 %, MS: [M+H]+= 484)
Figure PCTKR2021003037-appb-img-000285
질소 분위기에서 화합물 sub1-E-5(15 g, 31 mmol)와 화합물 sub9(6.6 g, 31 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(12.9 g, 93 mmol)를 물 39 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-34를 11.4 g을 제조하였다.(수율 60 %, MS: [M+H]+= 616)
제조예 1-35: 화합물 1-35의 제조
Figure PCTKR2021003037-appb-img-000286
질소 분위기에서 화합물 1-E(15 g, 60.9 mmol)와 화합물 Trz10(20.9 g, 60.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-E-6를 21.7 g을 제조하였다.(수율 70 %, MS: [M+H]+= 510)
Figure PCTKR2021003037-appb-img-000287
질소 분위기에서 화합물 sub1-E-6(15 g, 29.4 mmol)와 화합물 sub22(7.7 g, 29.4 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(12.2 g, 88.2 mmol)를 물 37 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-35를 14.6 g을 제조하였다.(수율 72 %, MS: [M+H]+= 692)
제조예 1-36: 화합물 1-36의 제조
Figure PCTKR2021003037-appb-img-000288
질소 분위기에서 화합물 sub1-E-5(15 g, 31 mmol)와 화합물 sub23(8.1 g, 31 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(12.9 g, 93 mmol)를 물 39 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-36를 12.4 g을 제조하였다.(수율 60 %, MS: [M+H]+= 666)
제조예 1-37: 화합물 1-37의 제조
Figure PCTKR2021003037-appb-img-000289
질소 분위기에서 화합물 sub1-E-5(15 g, 31 mmol)와 화합물 sub10(5.3 g, 31 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(12.9 g, 93 mmol)를 물 39 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-37를 14.1 g을 제조하였다.(수율 79 %, MS: [M+H]+= 576)
제조예 1-38: 화합물 1-38의 제조
Figure PCTKR2021003037-appb-img-000290
질소 분위기에서 화합물 1-E(15 g, 60.9 mmol)와 화합물 Trz18(27 g, 60.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-E-7를 24.1 g을 제조하였다.(수율 65 %, MS: [M+H]+= 610)
Figure PCTKR2021003037-appb-img-000291
질소 분위기에서 화합물 sub1-E-7(15 g, 24.6 mmol)와 화합물 sub5(3 g, 24.6 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(10.2 g, 73.8 mmol)를 물 31 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-38를 10.1 g을 제조하였다.(수율 63 %, MS: [M+H]+= 652)
제조예 1-39: 화합물 1-39의 제조
Figure PCTKR2021003037-appb-img-000292
질소 분위기에서 화합물 1-E(15 g, 60.9 mmol)와 화합물 Trz13(24 g, 60.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-E-8를 26.2 g을 제조하였다.(수율 77 %, MS: [M+H]+= 560)
Figure PCTKR2021003037-appb-img-000293
질소 분위기에서 화합물 sub1-E-8(15 g, 26.8 mmol)와 화합물 sub5(3.3 g, 26.8 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(11.1 g, 80.3 mmol)를 물 33 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-39를 10.9 g을 제조하였다.(수율 68 %, MS: [M+H]+= 602)
제조예 1-40: 화합물 1-40의 제조
Figure PCTKR2021003037-appb-img-000294
질소 분위기에서 화합물 1-F(15 g, 60.9 mmol)와 화합물 Trz2(16.3 g, 60.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-F-1를 19.2 g을 제조하였다.(수율 73 %, MS: [M+H]+= 434)
Figure PCTKR2021003037-appb-img-000295
질소 분위기에서 화합물 sub 1-F-1(15 g, 34.6 mmol)와 화합물 sub6(8.5 g, 34.6 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14.3 g, 103.7 mmol)를 물 43 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-40를 14.7 g을 제조하였다.(수율 71 %, MS: [M+H]+= 600)
제조예 1-41: 화합물 1-41의 제조
Figure PCTKR2021003037-appb-img-000296
질소 분위기에서 화합물 1-F(15 g, 60.9 mmol)와 화합물 Trz10(20.9 g, 60.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-F-2를 21.1 g을 제조하였다.(수율 68 %, MS: [M+H]+= 510)
Figure PCTKR2021003037-appb-img-000297
질소 분위기에서 화합물 sub1-F-2(15 g, 29.4 mmol)와 화합물 sub1(5.8 g, 29.4 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(12.2 g, 88.2 mmol)를 물 37 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-41를 14.2 g을 제조하였다.(수율 77 %, MS: [M+H]+= 628)
제조예 1-42: 화합물 1-42의 제조
Figure PCTKR2021003037-appb-img-000298
질소 분위기에서 화합물 Trz7(15 g, 31.9 mmol)와 화합물 sub9(6.8 g, 31.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(13.2 g, 95.8 mmol)를 물 40 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-42를 15.2 g을 제조하였다.(수율 79 %, MS: [M+H]+= 602)
제조예 1-43: 화합물 1-43의 제조
Figure PCTKR2021003037-appb-img-000299
질소 분위기에서 화합물 Trz16(15 g, 33.8 mmol)와 화합물 sub9(7.2 g, 33.8 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14 g, 101.4 mmol)를 물 42 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-43를 15 g을 제조하였다.(수율 77 %, MS: [M+H]+= 576)
제조예 1-44: 화합물 1-44의 제조
Figure PCTKR2021003037-appb-img-000300
질소 분위기에서 화합물 Trz4(15 g, 33.8 mmol)와 화합물 sub9(7.2 g, 33.8 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14 g, 101.4 mmol)를 물 42 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-44를 14.2 g을 제조하였다.(수율 73 %, MS: [M+H]+= 576)
제조예 1-45: 화합물 1-45의 제조
Figure PCTKR2021003037-appb-img-000301
질소 분위기에서 화합물 Trz1(15 g, 35.7 mmol)와 화합물 sub9(7.6 g, 35.7 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14.8 g, 107.2 mmol)를 물 44 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-45를 12.2 g을 제조하였다.(수율 62 %, MS: [M+H]+= 552)
제조예 1-46: 화합물 1-46의 제조
Figure PCTKR2021003037-appb-img-000302
질소 분위기에서 화합물 Trz19(15 g, 33.8 mmol)와 화합물 sub9(7.2 g, 33.8 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14 g, 101.4 mmol)를 물 42 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-46를 13.6 g을 제조하였다.(수율 70 %, MS: [M+H]+= 576)
제조예 1-47: 화합물 1-47의 제조
Figure PCTKR2021003037-appb-img-000303
질소 분위기에서 화합물 Trz20(15 g, 35.9 mmol)와 화합물 sub9(7.6 g, 35.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14.9 g, 107.7 mmol)를 물 45 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-47를 15 g을 제조하였다.(수율 76 %, MS: [M+H]+= 550)
제조예 1-48: 화합물 1-48의 제조
Figure PCTKR2021003037-appb-img-000304
질소 분위기에서 화합물 Trz3(15 g, 47.2 mmol)와 화합물 sub24(9.7 g, 47.2 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(19.6 g, 141.6 mmol)를 물 59 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-G-1를 13 g을 제조하였다.(수율 62 %, MS: [M+H]+= 444)
Figure PCTKR2021003037-appb-img-000305
질소 분위기에서 화합물 sub1-G-1(15 g, 33.8 mmol)와 화합물 sub9(7.2 g, 33.8 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14 g, 101.4 mmol)를 물 42 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-48를 15.2 g을 제조하였다.(수율 78 %, MS: [M+H]+= 576)
제조예 1-49: 화합물 1-49의 제조
Figure PCTKR2021003037-appb-img-000306
질소 분위기에서 화합물 Trz15(15 g, 41.9 mmol)와 화합물 sub25(8.7 g, 41.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(17.4 g, 125.8 mmol)를 물 52 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-G-2를 12.6 g을 제조하였다.(수율 62 %, MS: [M+H]+= 484)
Figure PCTKR2021003037-appb-img-000307
질소 분위기에서 화합물 sub1-G-2(15 g, 31 mmol)와 화합물 sub9(6.6 g, 31 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(12.9 g, 93 mmol)를 물 39 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-49를 13.7 g을 제조하였다.(수율 72 %, MS: [M+H]+= 616)
제조예 1-50: 화합물 1-50의 제조
Figure PCTKR2021003037-appb-img-000308
질소 분위기에서 화합물 Trz21(15 g, 36.8 mmol)와 화합물 sub26(5.8 g, 36.8 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(15.2 g, 110.3 mmol)를 물 46 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-G-3를 12.8 g을 제조하였다.(수율 72 %, MS: [M+H]+= 484)
Figure PCTKR2021003037-appb-img-000309
질소 분위기에서 화합물 sub1-G-3(15 g, 31 mmol)와 화합물 sub9(6.6 g, 31 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(12.9 g, 93 mmol)를 물 39 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-50를 13.2 g을 제조하였다.(수율 69 %, MS: [M+H]+= 616)
제조예 1-51: 화합물 1-51의 제조
Figure PCTKR2021003037-appb-img-000310
질소 분위기에서 화합물 Trz16(15 g, 33.8 mmol)와 화합물 sub27(5.3 g, 33.8 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14 g, 101.4 mmol)를 물 42 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-G-4를 13.3 g을 제조하였다.(수율 76 %, MS: [M+H]+= 520)
Figure PCTKR2021003037-appb-img-000311
질소 분위기에서 화합물 sub1-G-4(15 g, 28.8 mmol)와 화합물 sub9(6.1 g, 28.8 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(12 g, 86.5 mmol)를 물 36 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-51를 13.3 g을 제조하였다.(수율 71 %, MS: [M+H]+= 652)
제조예 1-52: 화합물 1-52의 제조
Figure PCTKR2021003037-appb-img-000312
질소 분위기에서 화합물 Trz22(15 g, 36.8 mmol)와 화합물 sub28(5.8 g, 36.8 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(15.2 g, 110.3 mmol)를 물 46 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-G-5를 12.8 g을 제조하였다.(수율 72 %, MS: [M+H]+= 484)
Figure PCTKR2021003037-appb-img-000313
질소 분위기에서 화합물 sub1-G-5(15 g, 31 mmol)와 화합물 sub9(6.6 g, 31 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(12.9 g, 93 mmol)를 물 39 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-52를 13 g을 제조하였다.(수율 68 %, MS: [M+H]+= 616)
제조예 1-53: 화합물 1-53의 제조
Figure PCTKR2021003037-appb-img-000314
질소 분위기에서 화합물 Trz23(15 g, 34.6 mmol)와 화합물 sub27(5.4 g, 34.6 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14.3 g, 103.7 mmol)를 물 43 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-G-6를 11.3 g을 제조하였다.(수율 64 %, MS: [M+H]+= 510)
Figure PCTKR2021003037-appb-img-000315
질소 분위기에서 화합물 sub1-G-6(15 g, 31 mmol)와 화합물 sub9(6.6 g, 31 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(12.9 g, 93 mmol)를 물 39 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-53를 13 g을 제조하였다.(수율 68 %, MS: [M+H]+= 616)
제조예 1-54: 화합물 1-54의 제조
Figure PCTKR2021003037-appb-img-000316
질소 분위기에서 화합물 sub1-G-1(15 g, 33.8 mmol)와 화합물 1-E(8.3 g, 33.8 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14 g, 101.4 mmol)를 물 42 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 8시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-E-9를 14.4 g을 제조하였다.(수율 70 %, MS: [M+H]+= 610)
Figure PCTKR2021003037-appb-img-000317
질소 분위기에서 화합물 sub1-E-9(15 g, 24.6 mmol)와 화합물 sub10(3 g, 24.6 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(10.2 g, 73.8 mmol)를 물 31 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-54를 12.2 g을 제조하였다.(수율 76 %, MS: [M+H]+= 652)
제조예 1-55: 화합물 1-55의 제조
Figure PCTKR2021003037-appb-img-000318
질소 분위기에서 화합물 Trz2(15 g, 56 mmol)와 화합물 sub24(11.6 g, 56 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(23.2 g, 168.1 mmol)를 물 70 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-G-7를 15.6 g을 제조하였다.(수율 71 %, MS: [M+H]+= 394)
Figure PCTKR2021003037-appb-img-000319
질소 분위기에서 화합물 sub1-G-7(15 g, 38.1 mmol)와 화합물1-B(9.4 g, 38.1 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(15.8 g, 114.3 mmol)를 물 47 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-B-7를 13.8 g을 제조하였다.(수율 65 %, MS: [M+H]+= 560)
Figure PCTKR2021003037-appb-img-000320
질소 분위기에서 화합물 sub1-B-7(15 g, 26.8 mmol)와 화합물 sub10(3.3 g, 26.8 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(11.1 g, 80.3 mmol)를 물 33 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-55를 12.9 g을 제조하였다.(수율 80 %, MS: [M+H]+= 602)
제조예 1-56: 화합물 1-56의 제조
Figure PCTKR2021003037-appb-img-000321
질소 분위기에서 화합물 Trz24(15 g, 38.1 mmol)와 화합물 sub25(9.4 g, 38.1 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(15.8 g, 114.3 mmol)를 물 47 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-G-8를 13.8 g을 제조하였다.(수율 65 %, MS: [M+H]+= 560)
Figure PCTKR2021003037-appb-img-000322
질소 분위기에서 화합물 sub1-G-8(15 g, 30 mmol)와 화합물 sub9(6.4 g, 30 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(12.4 g, 90 mmol)를 물 37 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-56를 13.4 g을 제조하였다.(수율 71 %, MS: [M+H]+= 632)
제조예 1-57: 화합물 1-57의 제조
Figure PCTKR2021003037-appb-img-000323
질소 분위기에서 화합물 Trz25(15 g, 41.9 mmol)와 화합물 sub24(8.7 g, 41.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(17.4 g, 125.8 mmol)를 물 52 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-G-9를 12.4 g을 제조하였다.(수율 61 %, MS: [M+H]+= 484)
Figure PCTKR2021003037-appb-img-000324
질소 분위기에서 화합물 sub1-G-9(15 g, 31 mmol)와 화합물1-F(7.6 g, 31 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(12.9 g, 93 mmol)를 물 39 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-F-3를 12.5 g을 제조하였다.(수율 62 %, MS: [M+H]+= 650)
Figure PCTKR2021003037-appb-img-000325
질소 분위기에서 화합물 sub1-F-3(15 g, 23.1 mmol)와 화합물 sub10(2.8 g, 23.1 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.6 g, 69.2 mmol)를 물 29 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-57를 12.8 g을 제조하였다.(수율 80 %, MS: [M+H]+= 692)
제조예 1-58: 화합물 1-58의 제조
Figure PCTKR2021003037-appb-img-000326
질소 분위기에서 화합물 Trz26(15 g, 33.8 mmol)와 화합물 sub26(5.3 g, 33.8 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14 g, 101.4 mmol)를 물 42 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-G-10를 10.5 g을 제조하였다.(수율 60 %, MS: [M+H]+= 520)
Figure PCTKR2021003037-appb-img-000327
질소 분위기에서 화합물 sub1-G-10(15 g, 28.8 mmol)와 화합물 1-D(7.1 g, 28.8 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(12 g, 86.5 mmol)를 물 36 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-D-7를 15 g을 제조하였다.(수율 76 %, MS: [M+H]+= 686)
Figure PCTKR2021003037-appb-img-000328
질소 분위기에서 화합물 sub1-D-7(15 g, 21.9 mmol)와 화합물 sub10(2.7 g, 21.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.1 g, 65.6 mmol)를 물 27 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입하였다. 12시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-58를 9.9 g을 제조하였다.(수율 62 %, MS: [M+H]+= 728)
제조예 1-59: 화합물 1-59의 제조
Figure PCTKR2021003037-appb-img-000329
질소 분위기에서 화합물 Trz15(15 g, 41.9 mmol)와 화합물 sub24(8.7 g, 41.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(17.4 g, 125.8 mmol)를 물 52 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 11시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-G-11를 12.4 g을 제조하였다.(수율 61 %, MS: [M+H]+= 484)
Figure PCTKR2021003037-appb-img-000330
질소 분위기에서 화합물 sub1-G-11(15 g, 28.8 mmol)와 화합물 1-F(7.1 g, 28.8 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(12 g, 86.5 mmol)를 물 36 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-F-7를 15 g을 제조하였다.(수율 76 %, MS: [M+H]+= 686)
Figure PCTKR2021003037-appb-img-000331
질소 분위기에서 화합물 sub1-F-4(15 g, 23.1 mmol)와 화합물 sub10(2.8 g, 23.1 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.6 g, 69.2 mmol)를 물 29 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-59를 12.1 g을 제조하였다.(수율 76 %, MS: [M+H]+= 692)
제조예 1-60: 화합물 1-60의 제조
Figure PCTKR2021003037-appb-img-000332
질소 분위기에서 화합물 Trz12(15 g, 41.9 mmol)와 화합물 sub28(6.6 g, 41.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(17.4 g, 125.8 mmol)를 물 52 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-G-12를 11.1 g을 제조하였다.(수율 61 %, MS: [M+H]+= 434)
Figure PCTKR2021003037-appb-img-000333
질소 분위기에서 화합물 sub1-G-12(15 g, 34.6 mmol)와 화합물1-D(8.5 g, 34.6 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(14.3 g, 103.7 mmol)를 물 43 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입하였다. 9시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-D-8를 13.6 g을 제조하였다.(수율 79 %, MS: [M+H]+= 500)
Figure PCTKR2021003037-appb-img-000334
질소 분위기에서 화합물 sub1-D-8(15 g, 25 mmol)와 화합물 sub10(4.3 g, 25 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(10.4 g, 75 mmol)를 물 31 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입하였다. 10시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-60를 13.3 g을 제조하였다.(수율 77 %, MS: [M+H]+= 692)
제조예 2-1: 화합물 2-1의 제조
Figure PCTKR2021003037-appb-img-000335
질소 분위기에서 화합물 2-A(15 g, 58.3 mmol)와 화합물 2-B(10 g, 64.2 mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(16.1 g, 116.7 mmol)를 물 48ml에 녹여 투입하고 충분히 교반한 후 Tetrakis(triphenylphosphine)palladium(0)(1.3 g, 1.2 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub2-A-1를 12.6g 제조하였다.(수율 75%, MS: [M+H]+= 289)
Figure PCTKR2021003037-appb-img-000336
질소 분위기에서 화합물 sub2-A-1(10 g, 34.6 mmol), 화합물 sub2-1(12.9 g, 34.6 mmol), sodium tert-butoxide(4.3 g, 45 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-1 12.7 g을 얻었다.(수율 59%, MS: [M+H]+= 624)
제조예 2-2: 화합물 2-2의 제조
Figure PCTKR2021003037-appb-img-000337
질소 분위기에서 화합물 sub2-A-1(10 g, 34.6 mmol), 화합물 sub2-2(11.1 g, 34.6 mmol), sodium tert-butoxide(4.3 g, 45 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-2 10.1 g을 얻었다.(수율 51%, MS: [M+H]+= 574)
제조예 2-3: 화합물 2-3의 제조
Figure PCTKR2021003037-appb-img-000338
질소 분위기에서 화합물 sub2-A-1(10 g, 34.6 mmol), 화합물 sub2-3(14.3 g, 34.6 mmol), sodium tert-butoxide(4.3 g, 45 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-3 12.2 g을 얻었다.(수율 53%, MS: [M+H]+= 664)
제조예 2-4: 화합물 2-4의 제조
Figure PCTKR2021003037-appb-img-000339
질소 분위기에서 화합물 sub2-A-1(10 g, 34.6 mmol), 화합물 sub2-4(13.9 g, 34.6 mmol), sodium tert-butoxide(4.3 g, 45 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-4 14 g을 얻었다.(수율 62%, MS: [M+H]+= 654)
제조예 2-5: 화합물 2-5의 제조
Figure PCTKR2021003037-appb-img-000340
질소 분위기에서 화합물 sub2-A-1(10 g, 34.6 mmol), 화합물 sub2-5(13.8 g, 34.6 mmol), sodium tert-butoxide(4.3 g, 45 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-5 11.2 g을 얻었다.(수율 50%, MS: [M+H]+= 650)
제조예 2-6: 화합물 2-6의 제조
Figure PCTKR2021003037-appb-img-000341
질소 분위기에서 화합물 sub2-A-1(10 g, 34.6 mmol), 화합물 sub2-6(14.8 g, 34.6 mmol), sodium tert-butoxide(4.3 g, 45 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-6 12.2 g을 얻었다.(수율 52%, MS: [M+H]+= 680)
제조예 2-7: 화합물 2-7의 제조
Figure PCTKR2021003037-appb-img-000342
질소 분위기에서 화합물 sub2-A-1(10 g, 34.6 mmol), 화합물 sub2-7(12.2 g, 34.6 mmol), sodium tert-butoxide(4.3 g, 45 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-7 1 g을 얻었다.(수율 50%, MS: [M+H]+= 61)
제조예 2-8: 화합물 2-8의 제조
Figure PCTKR2021003037-appb-img-000343
질소 분위기에서 화합물 sub2-A-1(10 g, 34.6 mmol), 화합물 sub2-8(13.9 g, 34.6 mmol), sodium tert-butoxide(4.3 g, 45 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-8 13.3 g을 얻었다.(수율 59%, MS: [M+H]+= 654)
제조예 2-9: 화합물 2-9의 제조
Figure PCTKR2021003037-appb-img-000344
질소 분위기에서 화합물 sub2-A-1(10 g, 34.6 mmol), 화합물 sub2-9(9.3 g, 34.6 mmol), sodium tert-butoxide(4.3 g, 45 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-9 11.2 g을 얻었다.(수율 62%, MS: [M+H]+= 522)
제조예 2-10: 화합물 2-10의 제조
Figure PCTKR2021003037-appb-img-000345
질소 분위기에서 화합물 sub2-A-1(10 g, 34.6 mmol), 화합물 sub2-10(14.5 g, 34.6 mmol), sodium tert-butoxide(4.3 g, 45 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-10 14.4 g을 얻었다.(수율 62%, MS: [M+H]+= 672)
제조예 2-11: 화합물 2-11의 제조
Figure PCTKR2021003037-appb-img-000346
질소 분위기에서 화합물 sub2-A-1(10 g, 34.6 mmol), 화합물 sub2-11(13.4 g, 34.6 mmol), sodium tert-butoxide(4.3 g, 45 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-11 12.4 g을 얻었다.(수율 56%, MS: [M+H]+= 638)
제조예 2-12: 화합물 2-12의 제조
Figure PCTKR2021003037-appb-img-000347
질소 분위기에서 화합물 sub2-A-1(10 g, 34.6 mmol), 화합물 sub2-12(12 g, 34.6 mmol), sodium tert-butoxide(4.3 g, 45 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-12 11 g을 얻었다.(수율 53%, MS: [M+H]+= 598)
제조예 2-13: 화합물 2-13의 제조
Figure PCTKR2021003037-appb-img-000348
질소 분위기에서 화합물 sub2-A-1(10 g, 34.6 mmol), 화합물 sub2-13(14.3 g, 34.6 mmol), sodium tert-butoxide(4.3 g, 45 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-13 15.6 g을 얻었다.(수율 68%, MS: [M+H]+= 664)
제조예 2-14: 화합물 2-14의 제조
Figure PCTKR2021003037-appb-img-000349
질소 분위기에서 화합물 sub2-A-1(10 g, 34.6 mmol), 화합물 sub2-14(13.3 g, 34.6 mmol), sodium tert-butoxide(4.3 g, 45 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-14 13.2 g을 얻었다.(수율 60%, MS: [M+H]+= 638)
제조예 2-15: 화합물 2-15의 제조
Figure PCTKR2021003037-appb-img-000350
질소 분위기에서 화합물 sub2-A-1(10 g, 34.6 mmol), 화합물 sub2-15(13.9 g, 34.6 mmol), sodium tert-butoxide(3.7 g, 38.1 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-15 12 g을 얻었다. (수율 53%, MS: [M+H]+= 654)
제조예 2-16: 화합물 2-16의 제조
Figure PCTKR2021003037-appb-img-000351
질소 분위기에서 화합물 sub2-A-1(10 g, 34.6 mmol), 화합물 sub2-16(12.7 g, 34.6 mmol), sodium tert-butoxide(4.3 g, 45 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-16 13.7 g을 얻었다.(수율 64%, MS: [M+H]+= 618)
제조예 2-17: 화합물 2-17의 제조
Figure PCTKR2021003037-appb-img-000352
질소 분위기에서 화합물 sub2-A-1(10 g, 34.6 mmol), 화합물 sub2-17(12.1 g, 34.6 mmol), sodium tert-butoxide(4.3 g, 45 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-17 11.5 g을 얻었다.(수율 55%, MS: [M+H]+= 602)
제조예 2-18: 화합물 2-18의 제조
Figure PCTKR2021003037-appb-img-000353
질소 분위기에서 화합물 sub2-A-1(10 g, 34.6 mmol), 화합물 sub2-18(12.1 g, 34.6 mmol), sodium tert-butoxide(4.3 g, 45 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-18 14.4 g을 얻었다.(수율 69%, MS: [M+H]+= 602)
제조예 2-19: 화합물 2-19의 제조
Figure PCTKR2021003037-appb-img-000354
질소 분위기에서 화합물 sub2-A-1(10 g, 34.6 mmol), 화합물 sub2-19(13.2 g, 34.6 mmol), sodium tert-butoxide(4.3 g, 45 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-19 11.4 g을 얻었다.(수율 52%, MS: [M+H]+= 634)
제조예 2-20: 화합물 2-20의 제조
Figure PCTKR2021003037-appb-img-000355
질소 분위기에서 화합물 sub2-A-1(10 g, 34.6 mmol), 화합물 sub2-20(12.5 g, 34.6 mmol), sodium tert-butoxide(4.3 g, 45 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-20 13.2 g을 얻었다.(수율 62%, MS: [M+H]+= 614)
제조예 2-21: 화합물 2-21의 제조
Figure PCTKR2021003037-appb-img-000356
질소 분위기에서 화합물 sub2-A-1(10 g, 34.6 mmol), 화합물 sub2-21(14.3 g, 34.6 mmol), sodium tert-butoxide(4.3 g, 45 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-21 14.2 g을 얻었다.(수율 62%, MS: [M+H]+= 664)
제조예 2-22: 화합물 2-22의 제조
Figure PCTKR2021003037-appb-img-000357
질소 분위기에서 화합물 sub2-A-1(10 g, 34.6 mmol), 화합물 sub2-22(12 g, 34.6 mmol), sodium tert-butoxide(4.3 g, 45 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-22 11.2 g을 얻었다.(수율 54%, MS: [M+H]+= 598
제조예 2-23: 화합물 2-23의 제조
Figure PCTKR2021003037-appb-img-000358
질소 분위기에서 화합물 sub2-A-1(10 g, 34.6 mmol), 화합물 sub2-23(11.1 g, 34.6 mmol), sodium tert-butoxide(4.3 g, 45 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-23 11.9 g을 얻었다.(수율 60%, MS: [M+H]+= 572)
제조예 2-24: 화합물 2-24의 제조
Figure PCTKR2021003037-appb-img-000359
질소 분위기에서 화합물 sub2-A-1(10 g, 34.6 mmol), 화합물 sub2-24(12.9 g, 34.6 mmol), sodium tert-butoxide(4.3 g, 45 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-24 13.6 g을 얻었다.(수율 63%, MS: [M+H]+= 624)
제조예 2-25: 화합물 2-25의 제조
Figure PCTKR2021003037-appb-img-000360
질소 분위기에서 화합물 sub2-A-1(10 g, 34.6 mmol), 화합물 sub2-25(13.3 g, 34.6 mmol), sodium tert-butoxide(4.3 g, 45 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-25 14.3 g을 얻었다.(수율 65%, MS: [M+H]+= 638)
제조예 2-26: 화합물 2-26의 제조
Figure PCTKR2021003037-appb-img-000361
질소 분위기에서 화합물 sub2-A-1(10 g, 34.6 mmol), 화합물 sub2-26(12.5 g, 34.6 mmol), sodium tert-butoxide(4.3 g, 45 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-26 10.8 g을 얻었다.(수율 51%, MS: [M+H]+= 614)
제조예 2-27: 화합물 2-27의 제조
Figure PCTKR2021003037-appb-img-000362
질소 분위기에서 화합물 sub2-A-1(10 g, 34.6 mmol), 화합물 sub2-27(14.6 g, 34.6 mmol), sodium tert-butoxide(4.3 g, 45 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-27 16.1 g을 얻었다.(수율 69%, MS: [M+H]+= 674)
제조예 2-28: 화합물 2-28의 제조
Figure PCTKR2021003037-appb-img-000363
질소 분위기에서 화합물 sub2-A-1(10 g, 34.6 mmol), 화합물 sub2-28(13.8 g, 34.6 mmol), sodium tert-butoxide(4.3 g, 45 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-28 11.2 g을 얻었다.(수율 50%, MS: [M+H]+= 650)
제조예 2-29: 화합물 2-29의 제조
Figure PCTKR2021003037-appb-img-000364
질소 분위기에서 화합물 sub2-A-1(10 g, 34.6 mmol), 화합물 sub2-29(16.4 g, 34.6 mmol), sodium tert-butoxide(4.3 g, 45 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-29 17.1 g을 얻었다.(수율 68%, MS: [M+H]+= 726)
제조예 2-30: 화합물 2-30의 제조
Figure PCTKR2021003037-appb-img-000365
질소 분위기에서 화합물 sub2-A-1(10 g, 34.6 mmol), 화합물 sub2-30(13.8 g, 34.6 mmol), sodium tert-butoxide(4.3 g, 45 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-30 14.4 g을 얻었다.(수율 64%, MS: [M+H]+= 650)
제조예 2-31: 화합물 2-31의 제조
Figure PCTKR2021003037-appb-img-000366
질소 분위기에서 화합물 2-A(15 g, 58.3 mmol)와 화합물 2-C(10 g, 64.2 mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(16.1 g, 116.7 mmol)를 물 48ml에 녹여 투입하고 충분히 교반한 후 Tetrakis(triphenylphosphine)palladium(0)(1.3 g, 1.2 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub2-A-2를 10.6g 제조하였다.(수율 63%, MS: [M+H]+= 289)
Figure PCTKR2021003037-appb-img-000367
질소 분위기에서 화합물 sub2-A-2(10 g, 34.6 mmol), 화합물 sub2-31(15.1 g, 34.6 mmol), sodium tert-butoxide(4.3 g, 45 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-31 16.7 g을 얻었다.(수율 70%, MS: [M+H]+= 688)
제조예 2-32: 화합물 2-32의 제조
Figure PCTKR2021003037-appb-img-000368
질소 분위기에서 화합물 sub2-A-2(10 g, 34.6 mmol), 화합물 sub2-32(17.7 g, 34.6 mmol), sodium tert-butoxide(4.3 g, 45 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-32 16.6 g을 얻었다.(수율 63%, MS: [M+H]+= 763)
제조예 2-33: 화합물 2-33의 제조
Figure PCTKR2021003037-appb-img-000369
질소 분위기에서 화합물 sub2-A-2(10 g, 34.6 mmol), 화합물 sub2-33(14.6 g, 34.6 mmol), sodium tert-butoxide(4.3 g, 45 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-33 12.6 g을 얻었다.(수율 54%, MS: [M+H]+= 674)
제조예 2-34: 화합물 2-34의 제조
Figure PCTKR2021003037-appb-img-000370
질소 분위기에서 화합물 2-A(15 g, 58.3 mmol)와 화합물 2-D(14.9 g, 64.2 mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(16.1 g, 116.7 mmol)를 물 48ml에 녹여 투입하고 충분히 교반한 후 Tetrakis(triphenylphosphine)palladium(0)(1.3 g, 1.2 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub2-A-3를 16.8g 제조하였다.(수율 79%, MS: [M+H]+= 365)
Figure PCTKR2021003037-appb-img-000371
질소 분위기에서 화합물 sub2-A-3(10 g, 27.4 mmol), 화합물 sub2-34(8.8 g, 27.4 mmol), sodium tert-butoxide(3.4 g, 35.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-34 11.2 g을 얻었다.(수율 63%, MS: [M+H]+= 650)
제조예 2-35: 화합물 2-35의 제조
Figure PCTKR2021003037-appb-img-000372
질소 분위기에서 화합물 sub2-A-3(10 g, 27.4 mmol), 화합물 sub2-35(8.1 g, 27.4 mmol), sodium tert-butoxide(3.4 g, 35.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-35 8.7 g을 얻었다.(수율 51%, MS: [M+H]+= 624)
제조예 2-36: 화합물 2-36의 제조
Figure PCTKR2021003037-appb-img-000373
질소 분위기에서 화합물 sub2-A-3(10 g, 27.4 mmol), 화합물 sub2-36(9.6 g, 27.4 mmol), sodium tert-butoxide(3.4 g, 35.6 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-36 12.1 g을 얻었다.(수율 65%, MS: [M+H]+= 680)
제조예 2-37: 화합물 2-37의 제조
Figure PCTKR2021003037-appb-img-000374
질소 분위기에서 화합물 2-A(15 g, 58.3 mmol)와 화합물 2-E(14.9 g, 64.2 mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(16.1 g, 116.7 mmol)를 물 48ml에 녹여 투입하고 충분히 교반한 후 Tetrakis(triphenylphosphine)palladium(0)(1.3 g, 1.2 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub2-A-4를 14.2g 제조하였다.(수율 67%, MS: [M+H]+= 365)
Figure PCTKR2021003037-appb-img-000375
질소 분위기에서 화합물 sub2-A-4(10 g, 27.4 mmol), 화합물 sub2-37(10.9 g, 27.4 mmol), sodium tert-butoxide(3.4 g, 35.6 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-37 13.9 g을 얻었다.(수율 70%, MS: [M+H]+= 726)
제조예 2-38: 화합물 2-38의 제조
Figure PCTKR2021003037-appb-img-000376
질소 분위기에서 화합물 sub2-A-4(10 g, 27.4 mmol), 화합물 sub2-38(10.2 g, 27.4 mmol), sodium tert-butoxide(3.4 g, 35.6 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-38 10.7 g을 얻었다.(수율 56%, MS: [M+H]+= 700)
제조예 2-39: 화합물 2-39의 제조
Figure PCTKR2021003037-appb-img-000377
질소 분위기에서 화합물 sub2-A-4(10 g, 27.4 mmol), 화합물 sub2-39(10 g, 27.4 mmol), sodium tert-butoxide(3.4 g, 35.6 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-39 11.8 g을 얻었다.(수율 62%, MS: [M+H]+= 694)
제조예 2-40: 화합물 2-40의 제조
Figure PCTKR2021003037-appb-img-000378
질소 분위기에서 화합물 2-A(15 g, 58.3 mmol)와 화합물 2-F(14.9 g, 64.2 mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(16.1 g, 116.7 mmol)를 물 48ml에 녹여 투입하고 충분히 교반한 후 Tetrakis(triphenylphosphine)palladium(0)(1.3 g, 1.2 mmol)을 투입하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub2-A-5를 14.4g 제조하였다.(수율 68%, MS: [M+H]+= 365)
Figure PCTKR2021003037-appb-img-000379
질소 분위기에서 화합물 sub2-A-5(10 g, 27.4 mmol), 화합물 sub2-40(10.2 g, 27.4 mmol), sodium tert-butoxide(3.4 g, 35.6 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-40 10.7 g을 얻었다.(수율 56%, MS: [M+H]+= 700)
제조예 2-41: 화합물 2-41의 제조
Figure PCTKR2021003037-appb-img-000380
질소 분위기에서 화합물 sub2-A-5(10 g, 27.4 mmol), 화합물 sub2-41(10.2 g, 27.4 mmol), sodium tert-butoxide(3.4 g, 35.6 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-41 9.8 g을 얻었다.(수율 51%, MS: [M+H]+= 700)
제조예 2-42: 화합물 2-42의 제조
Figure PCTKR2021003037-appb-img-000381
질소 분위기에서 화합물 sub2-A-5(10 g, 27.4 mmol), 화합물 sub2-42(11.3 g, 27.4 mmol), sodium tert-butoxide(3.4 g, 35.6 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-42 11.5 g을 얻었다.(수율 57%, MS: [M+H]+= 740)
제조예 2-43: 화합물 2-43의 제조
Figure PCTKR2021003037-appb-img-000382
질소 분위기에서 화합물 2-A(15 g, 58.3 mmol)와 화합물 2-G(14.9 g, 64.2 mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(16.1 g, 116.7 mmol)를 물 48ml에 녹여 투입하고 충분히 교반한 후 Tetrakis(triphenylphosphine)palladium(0)(1.3 g, 1.2 mmol)을 투입하였다. 9 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub2-A-6를 14.7g 제조하였다.(수율 69%, MS: [M+H]+= 365)
Figure PCTKR2021003037-appb-img-000383
질소 분위기에서 화합물 sub2-A-6(10 g, 27.4 mmol), 화합물 sub2-43(8.1 g, 27.4 mmol), sodium tert-butoxide(3.4 g, 35.6 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-43 9.7 g을 얻었다.(수율 57%, MS: [M+H]+= 624)
제조예 2-44: 화합물 2-44의 제조
Figure PCTKR2021003037-appb-img-000384
질소 분위기에서 화합물 sub2-A-6(10 g, 27.4 mmol), 화합물 sub2-44(11.7 g, 27.4 mmol), sodium tert-butoxide(3.4 g, 35.6 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-44 12 g을 얻었다.(수율 58%, MS: [M+H]+= 756)
제조예 2-45: 화합물 2-45의 제조
Figure PCTKR2021003037-appb-img-000385
질소 분위기에서 화합물 sub45(10 g, 70.3 mmol), 화합물 sub2-A-2(42.6 g, 147.7 mmol), sodium tert-butoxide(16.9 g, 175.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.7 g, 1.4 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-45 31 g을 얻었다.(수율 68%, MS: [M+H]+= 648)
제조예 2-46: 화합물 2-46의 제조
Figure PCTKR2021003037-appb-img-000386
질소 분위기에서 화합물 sub46(10 g, 59.1 mmol), 화합물 sub2-A-2(35.8 g, 124.1 mmol), sodium tert-butoxide(14.2 g, 147.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.6 g, 1.2 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-46 26.7 g을 얻었다.(수율 67%, MS: [M+H]+= 674)
제조예 2-47: 화합물 2-47의 제조
Figure PCTKR2021003037-appb-img-000387
질소 분위기에서 화합물 sub47(10 g, 38.6 mmol), 화합물 sub2-A-2(23.4 g, 81 mmol), sodium tert-butoxide(9.3 g, 96.4 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.4 g, 0.8 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-47 15 g을 얻었다.(수율 51%, MS: [M+H]+= 764)
제조예 2-48: 화합물 2-48의 제조
Figure PCTKR2021003037-appb-img-000388
질소 분위기에서 화합물 sub2-A-6(10 g, 27.4 mmol), 화합물 sub48(6 g, 27.4 mmol), sodium tert-butoxide(2.9 g, 30.1 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 sub2-B-1 9 g을 얻었다.(수율 60%, MS: [M+H]+= 548)
Figure PCTKR2021003037-appb-img-000389
질소 분위기에서 화합물 sub2-B-1(10 g, 18.3 mmol), 화합물 sub2-A-1(5.3 g, 18.3 mmol), sodium tert-butoxide(2.3 g, 23.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-48 7.7 g을 얻었다.(수율 53%, MS: [M+H]+= 800)
제조예 2-49: 화합물 2-49의 제조
Figure PCTKR2021003037-appb-img-000390
질소 분위기에서 화합물 sub49(10 g, 59.1 mmol), 화합물 sub2-A-1(35.8 g, 124.1 mmol), sodium tert-butoxide(14.2 g, 147.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.6 g, 1.2 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-49 22.7 g을 얻었다.(수율 57%, MS: [M+H]+= 674)
제조예 2-50: 화합물 2-50의 제조
Figure PCTKR2021003037-appb-img-000391
질소 분위기에서 화합물 sub50(10 g, 47.8 mmol), 화합물 sub2-A-1(29 g, 100.3 mmol), sodium tert-butoxide(11.5 g, 119.5 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.5 g, 1 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-50 23.9 g을 얻었다.(수율 70%, MS: [M+H]+= 714)
제조예 2-51: 화합물 2-51의 제조
Figure PCTKR2021003037-appb-img-000392
질소 분위기에서 화합물 sub51(10 g, 38.7 mmol), 화합물 sub2-A-1(23.5 g, 81.3 mmol), sodium tert-butoxide(9.3 g, 96.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.4 g, 0.8 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-51 16.8 g을 얻었다.(수율 57%, MS: [M+H]+= 763)
제조예 2-52: 화합물 2-52의 제조
Figure PCTKR2021003037-appb-img-000393
질소 분위기에서 화합물 sub2-A-6(10 g, 27.4 mmol), 화합물 sub46(4.6 g, 27.4 mmol), sodium tert-butoxide(2.9 g, 30.1 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 sub2-B-2 9.4 g을 얻었다.(수율 69%, MS: [M+H]+= 498)
Figure PCTKR2021003037-appb-img-000394
질소 분위기에서 화합물 sub2-B-2(10 g, 20.1 mmol), 화합물 sub2-A-2(5.8 g, 20.1 mmol), sodium tert-butoxide(2.5 g, 26.1 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-52 8.3 g을 얻었다.(수율 55%, MS: [M+H]+= 750)
제조예 2-53: 화합물 2-53의 제조
Figure PCTKR2021003037-appb-img-000395
질소 분위기에서 화합물 sub2-A-6(10 g, 27.4 mmol), 화합물 sub52(2.6 g, 27.4 mmol), sodium tert-butoxide(2.9 g, 30.1 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 sub2-B-3 5.9 g을 얻었다.(수율 51%, MS: [M+H]+= 422)
Figure PCTKR2021003037-appb-img-000396
질소 분위기에서 화합물 sub2-B-3(10 g, 23.7 mmol), 화합물 sub2-A-1(6.9 g, 23.7 mmol), sodium tert-butoxide(3 g, 30.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-53 9.3 g을 얻었다.(수율 58%, MS: [M+H]+= 674)
제조예 2-54: 화합물 2-54의 제조
Figure PCTKR2021003037-appb-img-000397
질소 분위기에서 화합물 sub2-A-2(10 g, 34.6 mmol), 화합물 sub53(8.5 g, 34.6 mmol), sodium tert-butoxide(3.7 g, 38.1 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 sub2-B-4 11.5 g을 얻었다.(수율 67%, MS: [M+H]+= 498)
Figure PCTKR2021003037-appb-img-000398
질소 분위기에서 화합물 sub2-B-4(10 g, 20.1 mmol), 화합물 sub2-A-1(5.8 g, 20.1 mmol), sodium tert-butoxide(2.5 g, 26.1 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-54 7.5 g을 얻었다.(수율 50%, MS: [M+H]+= 750)
제조예 2-55: 화합물 2-55의 제조
Figure PCTKR2021003037-appb-img-000399
질소 분위기에서 화합물 sub2-A-2(10 g, 34.6 mmol), 화합물 sub45(5 g, 34.6 mmol), sodium tert-butoxide(3.7 g, 38.1 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 sub2-B-5 9.3 g을 얻었다.(수율 68%, MS: [M+H]+= 396)
Figure PCTKR2021003037-appb-img-000400
질소 분위기에서 화합물 sub2-B-5(10 g, 25.3 mmol), 화합물 sub2-A-1(7.3 g, 25.3 mmol), sodium tert-butoxide(3.2 g, 32.9 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-55 10 g을 얻었다.(수율 61%, MS: [M+H]+= 648)
제조예 2-56: 화합물 2-56의 제조
Figure PCTKR2021003037-appb-img-000401
질소 분위기에서 화합물 sub2-A-2(10 g, 34.6 mmol), 화합물 sub54(6.7 g, 34.6 mmol), sodium tert-butoxide(3.7 g, 38.1 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 sub2-B-6 8.6 g을 얻었다.(수율 56%, MS: [M+H]+= 446)
Figure PCTKR2021003037-appb-img-000402
질소 분위기에서 화합물 sub2-B-6(10 g, 22.4 mmol), 화합물 sub2-A-1(6.5 g, 22.4 mmol), sodium tert-butoxide(2.8 g, 29.2 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-56 8.8 g을 얻었다.(수율 56%, MS: [M+H]+= 698)
제조예 2-57: 화합물 2-57의 제조
Figure PCTKR2021003037-appb-img-000403
질소 분위기에서 화합물 sub2-A-2(10 g, 34.6 mmol), 화합물 sub55(11.5 g, 34.6 mmol), sodium tert-butoxide(3.7 g, 38.1 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 sub2-B-7 13.2 g을 얻었다.(수율 65%, MS: [M+H]+= 586)
Figure PCTKR2021003037-appb-img-000404
질소 분위기에서 화합물 sub2-B-7(10 g, 17.1 mmol), 화합물 sub2-A-1(4.9 g, 17.1 mmol), sodium tert-butoxide(2.1 g, 22.2 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-57 7.7 g을 얻었다.(수율 54%, MS: [M+H]+= 838)
제조예 2-58: 화합물 2-58의 제조
Figure PCTKR2021003037-appb-img-000405
질소 분위기에서 화합물 sub2-A-2(10 g, 34.6 mmol), 화합물 sub51(8.9 g, 34.6 mmol), sodium tert-butoxide(3.7 g, 38.1 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 sub2-B-8 10.8 g을 얻었다.(수율 61%, MS: [M+H]+= 511)
Figure PCTKR2021003037-appb-img-000406
질소 분위기에서 화합물 sub2-B-8(10 g, 19.6 mmol), 화합물 sub2-A-1(5.7 g, 19.6 mmol), sodium tert-butoxide(2.4 g, 25.5 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-58 7.6 g을 얻었다.(수율 51%, MS: [M+H]+= 763)
제조예 2-59: 화합물 2-59의 제조
Figure PCTKR2021003037-appb-img-000407
질소 분위기에서 화합물 sub2-A-6(10 g, 27.4 mmol), 화합물 sub56(5.5 g, 27.4 mmol), sodium tert-butoxide(2.9 g, 30.2 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 sub2-B-9 7.5 g을 얻었다.(수율 52%, MS: [M+H]+= 528)
Figure PCTKR2021003037-appb-img-000408
질소 분위기에서 화합물 sub2-B-9(10 g, 19 mmol), 화합물 sub2-A-1(5.5 g, 19 mmol), sodium tert-butoxide(2.4 g, 24.6 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-59 8.7 g을 얻었다.(수율 59%, MS: [M+H]+= 780)
제조예 2-60: 화합물 2-60의 제조
Figure PCTKR2021003037-appb-img-000409
질소 분위기에서 화합물 2-H(15 g, 45 mmol)와 화합물 2-B(7.7 g, 49.5 mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(12.4 g, 90 mmol)를 물 37ml에 녹여 투입하고 충분히 교반한 후 Tetrakis(triphenylphosphine)palladium(0)(1 g, 0.9 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub2-C-1를 12.3g 제조하였다.(수율 75%, MS: [M+H]+= 365)
Figure PCTKR2021003037-appb-img-000410
질소 분위기에서 화합물 sub2-C-1(10 g, 27.4 mmol), 화합물 sub2-57(9.5 g, 27.4 mmol), sodium tert-butoxide(3.4 g, 35.6 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-60 12.7 g을 얻었다.(수율 69%, MS: [M+H]+= 674)
제조예 2-61: 화합물 2-61의 제조
Figure PCTKR2021003037-appb-img-000411
질소 분위기에서 화합물 sub2-C-1(10 g, 27.4 mmol), 화합물 sub2-32(14 g, 27.4 mmol), sodium tert-butoxide(3.4 g, 35.6 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-61 12.6 g을 얻었다.(수율 55%, MS: [M+H]+= 839)
제조예 2-62: 화합물 2-62의 제조
Figure PCTKR2021003037-appb-img-000412
질소 분위기에서 화합물 sub2-C-1(10 g, 27.4 mmol), 화합물 sub2-58(10.3 g, 27.4 mmol), sodium tert-butoxide(3.4 g, 35.6 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-62 12.5 g을 얻었다.(수율 65%, MS: [M+H]+= 704)
제조예 2-63: 화합물 2-63의 제조
Figure PCTKR2021003037-appb-img-000413
질소 분위기에서 화합물 2-H(15 g, 45 mmol)와 화합물 2-C(7.7 g, 49.5 mmol)를 THF 300ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(12.4 g, 90 mmol)를 물 37ml에 녹여 투입하고 충분히 교반한 후 Tetrakis(triphenylphosphine)palladium(0)(1 g, 0.9 mmol)을 투입하였다. 11 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub2-C-2를 12.3g 제조하였다.(수율 75%, MS: [M+H]+= 365)
Figure PCTKR2021003037-appb-img-000414
질소 분위기에서 화합물 sub2-C-2(10 g, 27.4 mmol), 화합물 sub2-59(10.3 g, 27.4 mmol), sodium tert-butoxide(3.4 g, 35.6 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-63 13.5 g을 얻었다.(수율 70%, MS: [M+H]+= 704)
제조예 2-64: 화합물 2-64의 제조
Figure PCTKR2021003037-appb-img-000415
질소 분위기에서 화합물 sub52(10 g, 107.4 mmol), 화합물 sub2-C-1(82.3 g, 225.5 mmol), sodium tert-butoxide(25.8 g, 268.4 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(1.1 g, 2.1 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-64 41 g을 얻었다.(수율 51%, MS: [M+H]+= 750)
제조예 2-65: 화합물 2-65의 제조
Figure PCTKR2021003037-appb-img-000416
질소 분위기에서 화합물 sub46(10 g, 59.1 mmol), 화합물 sub2-C-1(45.3 g, 124.1 mmol), sodium tert-butoxide(14.2 g, 147.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.6 g, 1.2 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-65 31.2 g을 얻었다.(수율 64%, MS: [M+H]+= 826)
제조예 2-66: 화합물 2-66의 제조
Figure PCTKR2021003037-appb-img-000417
질소 분위기에서 화합물 sub60(10 g, 45.6 mmol), 화합물 sub2-C-1(34.9 g, 95.8 mmol), sodium tert-butoxide(11 g, 114 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.5 g, 0.9 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-66 26.7 g을 얻었다.(수율 67%, MS: [M+H]+= 876)
제조예 2-67: 화합물 2-67의 제조
Figure PCTKR2021003037-appb-img-000418
질소 분위기에서 화합물 sub61(10 g, 54.6 mmol), 화합물 sub2-C-1(41.8 g, 114.6 mmol), sodium tert-butoxide(13.1 g, 136.5 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.6 g, 1.1 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-67 32.1 g을 얻었다.(수율 70%, MS: [M+H]+= 840)
제조예 2-68: 화합물 2-68의 제조
Figure PCTKR2021003037-appb-img-000419
질소 분위기에서 sbub2-A-1(10 g, 34.6 mmol), 화합물 sub2-62(15.6 g, 38.1 mmol), potassium phosphate(22.1 g, 103.9 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.4 g, 0.7 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-68 12.6 g을 얻었다.(수율 55%, MS: [M+H]+= 663)
제조예 2-69: 화합물 2-69의 제조
Figure PCTKR2021003037-appb-img-000420
질소 분위기에서 sbub2-A-1(10 g, 34.6 mmol), 화합물 sub2-63(16.2 g, 38.1 mmol), potassium phosphate(22.1 g, 103.9 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0) (0.4 g, 0.7 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-69 12.6 g을 얻었다.(수율 54%, MS: [M+H]+= 677)
제조예 2-70: 화합물 2-70의 제조
Figure PCTKR2021003037-appb-img-000421
질소 분위기에서 화합물 sub2-C-1(10 g, 27.4 mmol), 화합물 sub2-64(7.8 g, 30.1 mmol), potassium phosphate(17.5 g, 82.2 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.5 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 sub2-B-10 11.2 g을 얻었다.(수율 70%, MS: [M+H]+= 587)
Figure PCTKR2021003037-appb-img-000422
질소 분위기에서 sbub2-B-10(10 g, 17 mmol), 화합물 sub2-A-1(5.4 g, 18.7 mmol), potassium phosphate(10.9 g, 51.1 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-70 8.7 g을 얻었다.(수율 61%, MS: [M+H]+= 839)
[실시예 및 비교예]
비교예 1
ITO(indium tin oxide)가 1000 Å의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척하였다. 이때, 세제로는 피셔사(Fischer Co.) 제품을 사용하였으며, 증류수로는 밀러포어사(Millipore Co.) 제품의 필터(Filter)로 2차로 걸러진 증류수를 사용하였다. ITO를 30 분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10 분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5 분간 세정한 후 진공 증착기로 기판을 수송시켰다.
이렇게 준비된 ITO 투명 전극 위에 정공주입층으로 하기 화합물 HI-1을 1150 Å의 두께로 형성하되 하기 화합물 A-1을 1.5 중량%로 p-doping 하였다. 상기 정공주입층 위에 하기 화합물 HT-1을 진공 증착하여 막 두께 800 Å의 정공수송층을 형성하였다. 이어서, 상기 정공수송층 위에 막 두께 150 Å으로 하기 화합물 EB-1을 진공 증착하여 전자차단층을 형성하였다. 이어서, 상기 EB-1 증착막 위에 하기 화합물 1-2 와 하기 Dp-7 화합물을 98:2의 중량비로 진공 증착하여 400 Å 두께의 적색 발광층을 형성하였다. 상기 발광층 위에 막 두께 30 Å으로 하기 화합물 HB-1을 진공 증착하여 정공저지층을 형성하였다. 이어서, 상기 정공저지층 위에 하기 화합물 ET-1과 하기 화합물 LiQ를 2:1의 중량비로 진공 증착하여 300 Å의 두께로 전자 주입 및 수송층을 형성하였다. 상기 전자 주입 및 수송층 위에 순차적으로 12 Å 두께로 리튬플로라이드(LiF)와 1000 Å 두께로 알루미늄을 증착하여 음극을 형성하였다.
Figure PCTKR2021003037-appb-img-000423
상기의 과정에서 유기물의 증착속도는 0.4 ~ 0.7 Å/sec를 유지하였고, 음극의 리튬플로라이드는 0.3 Å/sec, 알루미늄은 2 Å/sec의 증착 속도를 유지하였으며, 증착시 진공도는 2 * 10 -7 ~ 5 * 10 -6 torr를 유지하여, 유기 발광 소자를 제작하였다.
실시예 1 내지 실시예 145
호스트로 화합물 1-2 대신 표 1에 기재된 제1 호스트와 제2 호스트를 1:1의 중량비로 공증착하여 사용하는 것을 제외하고는, 상기 비교예 1과 동일한 방법으로 유기 발광 소자를 제조하였다.
비교예 2 내지 비교예 61
호스트로 화합물 1-2 대신 표 2에 기재된 호스트 물질을 사용하고, 전자차단층 물질로 화합물 EB-1 대신 표 2에 기재된 화합물을 사용하 것을 제외하고는, 상기 비교예 1과 동일한 방법으로 유기 발광 소자를 제조하였다.
비교예 62 내지 비교예 121
호스트로 화합물 1-2 대신 표 3에 기재된 제1 호스트와 제2 호스트를 1:1의 중량비로 공증착하여 사용하는 것을 제외하고는, 상기 비교예 1과 동일한 방법으로 유기 발광 소자를 제조하였다.
표 3의 화합물 B-1 내지 화합물 B-12는 아래와 같다.
Figure PCTKR2021003037-appb-img-000424
비교예 122 내지 비교예 227
호스트로 화합물 1-2 대신 표 4에 기재된 제1 호스트와 제2 호스트를 1:1의 중량비로 공증착하여 사용하는 것을 제외하고는, 상기 비교예 1과 동일한 방법으로 유기 발광 소자를 제조하였다.
표 4의 화합물 C-1 내지 화합물 C-12는 아래와 같다.
Figure PCTKR2021003037-appb-img-000425
[실험예]
상기 실시예 1 내지 실시예 145 및 비교예 1 내지 비교예 227에서 제조한 유기 발광 소자에 전류를 인가하였을 때, 전압, 효율 및 수명을 측정(15 mA/cm 2 기준)하고 그 결과를 하기 표 1 내지 표 4에 나타냈다. 수명 T95는 휘도가 초기 휘도(6,000 nit)에서 95%로 감소되는데 소요되는 시간을 의미한다.
구분 제1호스트 제2호스트 구동전압(V) 효율(cd/A) 수명 T95(hr) 발광색
실시예 1 화합물1-2 화합물2-1 3.96 19.6 203 적색
실시예 2 화합물1-2 화합물2-27 3.94 19.3 207 적색
실시예 3 화합물1-2 화합물2-39 3.97 19.8 198 적색
실시예 4 화합물1-2 화합물2-54 3.88 20.4 185 적색
실시예 5 화합물1-2 화합물2-60 3.93 19.1 193 적색
실시예 6 화합물1-3 화합물2-3 3.92 18.9 191 적색
실시예 7 화합물1-3 화합물2-10 3.88 19.2 208 적색
실시예 8 화합물1-3 화합물2-68 3.90 19.6 197 적색
실시예 9 화합물1-3 화합물2-44 3.89 18.7 191 적색
실시예 10 화합물1-3 화합물2-49 3.92 185 205 적색
실시예 11 화합물1-7 화합물2-5 3.86 19.3 213 적색
실시예 12 화합물1-7 화합물2-14 3.82 19.8 212 적색
실시예 13 화합물1-7 화합물2-23 3.86 18.1 207 적색
실시예 14 화합물1-7 화합물2-58 3.83 19.5 218 적색
실시예 15 화합물1-7 화합물2-64 3.81 18.7 195 적색
실시예 16 화합물1-9 화합물2-17 3.88 19.3 203 적색
실시예 17 화합물1-9 화합물2-20 3.80 19.7 210 적색
실시예 18 화합물1-9 화합물2-28 3.84 19.0 207 적색
실시예 19 화합물1-9 화합물2-35 3.89 18.6 201 적색
실시예 20 화합물1-9 화합물2-57 3.86 19.2 195 적색
실시예 21 화합물1-11 화합물2-1 3.85 18.4 203 적색
실시예 22 화합물1-11 화합물2-27 3.81 18.6 205 적색
실시예 23 화합물1-11 화합물2-39 3.80 18.7 197 적색
실시예 24 화합물1-11 화합물2-54 3.88 19.0 206 적색
실시예 25 화합물1-11 화합물2-60 3.83 18.9 194 적색
실시예 26 화합물1-14 화합물2-3 3.89 20.1 213 적색
실시예 27 화합물1-14 화합물2-10 3.87 20.3 215 적색
실시예 28 화합물1-14 화합물2-68 3.88 20.2 201 적색
실시예 29 화합물1-14 화합물2-44 3.86 19.5 217 적색
실시예 30 화합물1-14 화합물2-49 3.86 20.4 220 적색
실시예 31 화합물1-15 화합물2-5 3.79 19.3 208 적색
실시예 32 화합물1-15 화합물2-14 3.72 20.2 211 적색
실시예 33 화합물1-15 화합물2-23 3.74 20.7 210 적색
실시예 34 화합물1-15 화합물2-58 3.70 19.8 203 적색
실시예 35 화합물1-15 화합물2-64 3.77 20.6 215 적색
실시예 36 화합물1-16 화합물2-17 3.76 19.9 221 적색
실시예 37 화합물1-16 화합물2-20 3.78 20.3 216 적색
실시예 38 화합물1-16 화합물2-28 3.74 20.1 220 적색
실시예 39 화합물1-16 화합물2-35 3.79 20.6 208 적색
실시예 40 화합물1-16 화합물2-70 3.82 20.4 215 적색
실시예 41 화합물1-17 화합물2-1 3.81 20.1 203 적색
실시예 42 화합물1-17 화합물2-27 3.83 20.3 214 적색
실시예 43 화합물1-17 화합물2-39 3.80 20.8 209 적색
실시예 44 화합물1-17 화합물2-54 3.85 20.5 205 적색
실시예 45 화합물1-17 화합물2-60 3.84 21.0 215 적색
실시예 46 화합물1-20 화합물2-3 3.93 19.3 201 적색
실시예 47 화합물1-20 화합물2-10 3.90 20.0 228 적색
실시예 48 화합물1-20 화합물2-68 3.92 20.6 210 적색
실시예 49 화합물1-20 화합물2-44 3.88 19.7 224 적색
실시예 50 화합물1-20 화합물2-49 3.86 20.0 217 적색
실시예 51 화합물1-22 화합물2-5 3.80 20.9 234 적색
실시예 52 화합물1-22 화합물2-14 3.81 20.5 221 적색
실시예 53 화합물1-22 화합물2-23 3.87 19.9 216 적색
실시예 54 화합물1-22 화합물2-58 3.86 20.6 224 적색
실시예 55 화합물1-22 화합물2-64 3.93 20.4 225 적색
실시예 56 화합물1-24 화합물2-17 3.78 20.3 217 적색
실시예 57 화합물1-24 화합물2-20 3.84 21.1 230 적색
실시예 58 화합물1-24 화합물2-28 3.80 21.4 228 적색
실시예 59 화합물1-24 화합물2-35 3.83 20.7 233 적색
실시예 60 화합물1-24 화합물2-57 3.85 20.9 215 적색
실시예 61 화합물1-27 화합물2-1 3.76 20.5 238 적색
실시예 62 화합물1-27 화합물2-27 3.82 19.3 211 적색
실시예 63 화합물1-27 화합물2-39 3.79 19.6 223 적색
실시예 64 화합물1-27 화합물2-54 3.78 19.1 226 적색
실시예 65 화합물1-27 화합물2-60 3.82 20.3 230 적색
실시예 66 화합물1-28 화합물2-3 3.88 19.7 227 적색
실시예 67 화합물1-28 화합물2-10 3.84 20.8 218 적색
실시예 68 화합물1-28 화합물2-68 3.78 19.3 215 적색
실시예 69 화합물1-28 화합물2-44 3.82 19.5 220 적색
실시예 70 화합물1-28 화합물2-49 3.86 20.2 218 적색
실시예 71 화합물1-31 화합물2-5 3.98 20.3 256 적색
실시예 72 화합물1-31 화합물2-14 3.92 20.0 248 적색
실시예 73 화합물1-31 화합물2-23 3.95 20.5 251 적색
실시예 74 화합물1-31 화합물2-58 3.90 20.1 252 적색
실시예 75 화합물1-31 화합물2-64 3.93 19.8 265 적색
실시예 76 화합물1-33 화합물2-1 3.68 22.3 281 적색
실시예 77 화합물1-33 화합물2-27 3.65 22.0 277 적색
실시예 78 화합물1-33 화합물2-39 3.70 21.3 288 적색
실시예 79 화합물1-33 화합물2-54 3.69 22.7 270 적색
실시예 80 화합물1-33 화합물2-60 3.71 21.8 274 적색
실시예 81 화합물1-37 화합물2-17 3.76 22.2 263 적색
실시예 82 화합물1-37 화합물2-20 3.70 21.9 275 적색
실시예 83 화합물1-37 화합물2-28 3.74 22.0 279 적색
실시예 84 화합물1-37 화합물2-35 3.79 21.8 256 적색
실시예 85 화합물1-37 화합물2-70 3.74 21.5 275 적색
실시예 86 화합물1-38 화합물2-3 3.72 21.0 275 적색
실시예 87 화합물1-38 화합물2-10 3.70 22.1 271 적색
실시예 88 화합물1-38 화합물2-68 3.75 21.5 284 적색
실시예 89 화합물1-38 화합물2-44 3.74 21.3 268 적색
실시예 90 화합물1-38 화합물2-49 3.71 22.3 275 적색
실시예 91 화합물1-40 화합물2-5 3.73 20.7 225 적색
실시예 92 화합물1-40 화합물2-14 3.70 19.1 238 적색
실시예 93 화합물1-40 화합물2-23 3.76 19.7 231 적색
실시예 94 화합물1-40 화합물2-58 3.74 19.0 240 적색
실시예 95 화합물1-40 화합물2-64 3.80 19.4 234 적색
실시예 96 화합물1-41 화합물2-17 3.83 19.0 241 적색
실시예 97 화합물1-41 화합물2-20 3.87 19.5 236 적색
실시예 98 화합물1-41 화합물2-28 3.83 18.9 228 적색
실시예 99 화합물1-41 화합물2-35 3.86 19.8 234 적색
실시예 100 화합물1-41 화합물2-57 3.79 19.4 225 적색
실시예 101 화합물1-43 화합물2-1 3.81 19.5 197 적색
실시예 102 화합물1-43 화합물2-27 3.80 20.0 202 적색
실시예 103 화합물1-43 화합물2-39 3.84 19.4 213 적색
실시예 104 화합물1-43 화합물2-54 3.79 20.8 204 적색
실시예 105 화합물1-43 화합물2-60 3.85 19.7 195 적색
실시예 106 화합물1-45 화합물2-3 3.87 20.1 194 적색
실시예 107 화합물1-45 화합물2-10 3.91 18.8 203 적색
실시예 108 화합물1-45 화합물2-68 3.88 19.3 201 적색
실시예 109 화합물1-45 화합물2-44 3.93 20.7 198 적색
실시예 110 화합물1-45 화합물2-49 3.85 18.9 194 적색
실시예 101 화합물1-47 화합물2-5 3.79 20.1 209 적색
실시예 102 화합물1-47 화합물2-14 3.82 20.3 201 적색
실시예 103 화합물1-47 화합물2-23 3.84 20.0 197 적색
실시예 104 화합물1-47 화합물2-58 3.86 19.9 194 적색
실시예 105 화합물1-47 화합물2-64 3.80 19.6 205 적색
실시예 106 화합물1-48 화합물2-17 3.83 19.6 217 적색
실시예 107 화합물1-48 화합물2-20 3.87 18.8 214 적색
실시예 108 화합물1-48 화합물2-28 3.80 19.7 203 적색
실시예 109 화합물1-48 화합물2-35 3.88 19.4 198 적색
실시예 110 화합물1-48 화합물2-70 3.92 18.9 201 적색
실시예 111 화합물1-52 화합물2-1 3.91 19.6 197 적색
실시예 112 화합물1-52 화합물2-27 3.94 19.3 190 적색
실시예 113 화합물1-52 화합물2-39 3.92 19.2 203 적색
실시예 114 화합물1-52 화합물2-54 3.88 18.9 194 적색
실시예 115 화합물1-52 화합물2-60 3.94 19.7 191 적색
실시예 116 화합물1-53 화합물2-3 3.87 18.8 203 적색
실시예 117 화합물1-53 화합물2-10 3.90 19.1 209 적색
실시예 118 화합물1-53 화합물2-68 3.86 18.6 198 적색
실시예 119 화합물1-53 화합물2-44 3.93 19.0 204 적색
실시예 120 화합물1-53 화합물2-49 3.90 19.3 195 적색
실시예 121 화합물1-55 화합물2-5 3.87 20.3 223 적색
실시예 122 화합물1-55 화합물2-14 3.82 19.9 224 적색
실시예 123 화합물1-55 화합물2-23 3.83 20.6 218 적색
실시예 124 화합물1-55 화합물2-58 3.84 20.4 208 적색
실시예 125 화합물1-55 화합물2-64 3.90 19.7 225 적색
실시예 126 화합물1-56 화합물2-17 3.98 20.0 195 적색
실시예 127 화합물1-56 화합물2-20 3.94 20.7 192 적색
실시예 128 화합물1-56 화합물2-28 3.92 19.4 197 적색
실시예 129 화합물1-56 화합물2-35 3.95 20.3 203 적색
실시예 130 화합물1-56 화합물2-57 3.97 19.8 195 적색
실시예 131 화합물1-57 화합물2-1 3.91 18.1 213 적색
실시예 132 화합물1-57 화합물2-27 3.94 19.0 220 적색
실시예 133 화합물1-57 화합물2-39 3.88 18.5 229 적색
실시예 134 화합물1-57 화합물2-54 3.93 18.9 217 적색
실시예 135 화합물1-57 화합물2-60 3.90 19.4 224 적색
실시예 136 화합물1-58 화합물2-3 3.87 18.7 199 적색
실시예 137 화합물1-58 화합물2-10 3.90 18.5 201 적색
실시예 138 화합물1-58 화합물2-68 3.93 19.2 203 적색
실시예 139 화합물1-58 화합물2-44 3.87 19.4 195 적색
실시예 140 화합물1-58 화합물2-49 3.84 19.0 198 적색
실시예 141 화합물1-60 화합물2-5 3.94 18.9 203 적색
실시예 142 화합물1-60 화합물2-14 3.85 19.1 197 적색
실시예 143 화합물1-60 화합물2-23 3.88 18.5 211 적색
실시예 144 화합물1-60 화합물2-58 3.95 19.6 207 적색
실시예 145 화합물1-60 화합물2-64 3.91 19.4 208 적색
구분 호스트 전자차단층 구동전압(V) 효율(cd/A) 수명 T95(hr) 발광색
비교예 1 화합물1-2 화합물 EB-1 4.37 14.8 117 적색
비교예 2 화합물1-2 화합물2-1 4.39 14.0 101 적색
비교예 3 화합물1-2 화합물2-27 4.48 14.1 103 적색
비교예 4 화합물1-2 화합물2-39 4.49 14.8 98 적색
비교예 5 화합물1-2 화합물2-54 4.40 15.5 92 적색
비교예 6 화합물1-2 화합물2-60 4.43 15.1 111 적색
비교예 7 화합물1-11 화합물2-3 4.36 15.2 114 적색
비교예 8 화합물1-11 화합물2-10 4.39 15.0 103 적색
비교예 9 화합물1-11 화합물2-68 4.41 15.3 104 적색
비교예 10 화합물1-11 화합물2-44 4.42 14.4 107 적색
비교예 11 화합물1-11 화합물2-49 4.39 14.9 106 적색
비교예 12 화합물1-15 화합물2-5 4.40 15.2 138 적색
비교예 13 화합물1-15 화합물2-14 4.45 15.6 127 적색
비교예 14 화합물1-15 화합물2-23 4.43 15.0 121 적색
비교예 15 화합물1-15 화합물2-58 4.48 15.3 114 적색
비교예 16 화합물1-15 화합물2-64 4.45 15.7 121 적색
비교예 17 화합물1-17 화합물2-17 4.43 15.3 105 적색
비교예 18 화합물1-17 화합물2-20 4.44 15.4 103 적색
비교예 19 화합물1-17 화합물2-28 4.46 15.4 110 적색
비교예 20 화합물1-17 화합물2-35 4.41 14.8 107 적색
비교예 21 화합물1-17 화합물2-70 4.44 14.9 111 적색
비교예 22 화합물1-27 화합물2-1 4.38 15.0 108 적색
비교예 23 화합물1-27 화합물2-27 4.37 14.8 103 적색
비교예 24 화합물1-27 화합물2-39 4.36 14.1 100 적색
비교예 25 화합물1-27 화합물2-54 4.39 14.4 101 적색
비교예 26 화합물1-27 화합물2-60 4.38 14.7 111 적색
비교예 27 화합물1-37 화합물2-3 4.37 15.3 106 적색
비교예 28 화합물1-37 화합물2-10 4.39 15.4 108 적색
비교예 29 화합물1-37 화합물2-68 4.38 15.3 117 적색
비교예 30 화합물1-37 화합물2-44 4.37 15.0 104 적색
비교예 31 화합물1-37 화합물2-49 4.36 15.1 111 적색
비교예 32 화합물1-41 화합물2-5 4.42 14.6 109 적색
비교예 33 화합물1-41 화합물2-14 4.45 14.0 91 적색
비교예 34 화합물1-41 화합물2-23 4.36 14.2 95 적색
비교예 35 화합물1-41 화합물2-58 4.39 14.3 108 적색
비교예 36 화합물1-41 화합물2-64 4.35 14.0 94 적색
비교예 37 화합물1-45 화합물2-17 4.38 14.1 92 적색
비교예 38 화합물1-45 화합물2-20 4.39 14.5 98 적색
비교예 39 화합물1-45 화합물2-28 4.37 14.3 95 적색
비교예 40 화합물1-45 화합물2-35 4.36 14.7 91 적색
비교예 41 화합물1-45 화합물2-57 4.38 14.0 89 적색
비교예 42 화합물1-53 화합물2-1 4.38 15.1 97 적색
비교예 43 화합물1-53 화합물2-27 4.39 15.3 101 적색
비교예 44 화합물1-53 화합물2-39 4.42 15.0 96 적색
비교예 45 화합물1-53 화합물2-54 4.40 14.8 98 적색
비교예 46 화합물1-53 화합물2-60 4.34 14.9 94 적색
비교예 47 화합물1-55 화합물2-3 4.46 14.7 104 적색
비교예 48 화합물1-55 화합물2-10 4.38 15.0 107 적색
비교예 49 화합물1-55 화합물2-68 4.39 14.8 106 적색
비교예 50 화합물1-55 화합물2-44 4.47 15.3 104 적색
비교예 51 화합물1-55 화합물2-49 4.42 15.0 112 적색
비교예 52 화합물1-57 화합물2-5 4.41 14.1 101 적색
비교예 53 화합물1-57 화합물2-14 4.40 14.9 107 적색
비교예 54 화합물1-57 화합물2-23 4.43 14.6 108 적색
비교예 55 화합물1-57 화합물2-58 4.39 14.7 99 적색
비교예 56 화합물1-57 화합물2-64 4.45 15.0 101 적색
비교예 57 화합물1-60 화합물2-17 4.40 14.5 91 적색
비교예 58 화합물1-60 화합물2-20 4.41 15.0 99 적색
비교예 59 화합물1-60 화합물2-28 4.42 14.3 104 적색
비교예 60 화합물1-60 화합물2-35 4.44 15.1 96 적색
비교예 61 화합물1-60 화합물2-70 4.39 14.5 93 적색
구분 제1호스트 제2호스트 구동전압(V) 효율(cd/A) 수명 T95(hr) 발광색
비교예 62 화합물B-1 화합물2-1 4.31 13.1 91 적색
비교예 63 화합물B-1 화합물2-27 4.36 13.8 103 적색
비교예 64 화합물B-1 화합물2-39 4.34 13.6 97 적색
비교예 65 화합물B-1 화합물2-54 4.39 14.0 102 적색
비교예 66 화합물B-1 화합물2-60 4.36 13.9 95 적색
비교예 67 화합물B-2 화합물2-3 4.33 13.3 84 적색
비교예 68 화합물B-2 화합물2-10 4.40 13.8 93 적색
비교예 69 화합물B-2 화합물2-68 4.38 13.6 95 적색
비교예 70 화합물B-2 화합물2-44 4.31 13.9 87 적색
비교예 71 화합물B-2 화합물2-49 4.36 14.1 95 적색
비교예 72 화합물B-3 화합물2-5 4.40 13.2 108 적색
비교예 73 화합물B-3 화합물2-14 4.43 14.0 97 적색
비교예 74 화합물B-3 화합물2-23 4.41 13.4 101 적색
비교예 75 화합물B-3 화합물2-58 4.39 14.3 104 적색
비교예 76 화합물B-3 화합물2-64 4.42 14.2 101 적색
비교예 77 화합물B-4 화합물2-17 4.35 13.8 90 적색
비교예 78 화합물B-4 화합물2-20 4.38 14.2 97 적색
비교예 79 화합물B-4 화합물2-28 4.36 13.6 91 적색
비교예 80 화합물B-4 화합물2-35 4.40 14.1 92 적색
비교예 81 화합물B-4 화합물2-57 4.42 13.7 89 적색
비교예 82 화합물B-5 화합물2-1 4.27 15.0 128 적색
비교예 83 화합물B-5 화합물2-27 4.29 14.8 127 적색
비교예 84 화합물B-5 화합물2-39 4.30 15.3 124 적색
비교예 85 화합물B-5 화합물2-54 4.27 14.9 121 적색
비교예 86 화합물B-5 화합물2-60 4.29 14.7 128 적색
비교예 87 화합물B-6 화합물2-3 4.30 15.3 114 적색
비교예 88 화합물B-6 화합물2-10 4.28 15.0 124 적색
비교예 89 화합물B-6 화합물2-68 4.26 15.5 117 적색
비교예 90 화합물B-6 화합물2-44 4.31 15.8 124 적색
비교예 91 화합물B-6 화합물2-49 4.27 14.6 111 적색
비교예 92 화합물B-7 화합물2-5 4.29 15.6 129 적색
비교예 93 화합물B-7 화합물2-14 4.31 14.7 131 적색
비교예 94 화합물B-7 화합물2-23 4.27 15.0 125 적색
비교예 95 화합물B-7 화합물2-58 4.24 14.9 117 적색
비교예 96 화합물B-7 화합물2-64 4.28 14.6 124 적색
비교예 97 화합물B-8 화합물2-17 4.21 14.0 112 적색
비교예 98 화합물B-8 화합물2-20 4.29 15.3 116 적색
비교예 99 화합물B-8 화합물2-28 4.25 14.1 120 적색
비교예 100 화합물B-8 화합물2-35 4.23 15.2 109 적색
비교예 101 화합물B-8 화합물2-57 4.20 15.0 124 적색
비교예 102 화합물B-9 화합물2-1 4.11 15.5 143 적색
비교예 103 화합물B-9 화합물2-27 4.10 15.7 139 적색
비교예 104 화합물B-9 화합물2-39 4.13 15.8 137 적색
비교예 105 화합물B-9 화합물2-54 4.15 14.9 130 적색
비교예 106 화합물B-9 화합물2-60 4.09 15.1 141 적색
비교예 107 화합물B-10 화합물2-3 4.13 15.6 137 적색
비교예 108 화합물B-10 화합물2-10 4.15 16.1 126 적색
비교예 109 화합물B-10 화합물2-68 4.17 16.0 134 적색
비교예 110 화합물B-10 화합물2-44 4.10 15.7 126 적색
비교예 111 화합물B-10 화합물2-49 4.14 15.4 129 적색
비교예 112 화합물B-11 화합물2-5 4.10 15.8 142 적색
비교예 113 화합물B-11 화합물2-14 4.09 16.3 137 적색
비교예 114 화합물B-11 화합물2-23 4.17 15.9 130 적색
비교예 115 화합물B-11 화합물2-58 4.16 16.4 124 적색
비교예 116 화합물B-11 화합물2-64 4.18 16.1 132 적색
비교예 117 화합물B-12 화합물2-17 4.09 16.0 147 적색
비교예 118 화합물B-12 화합물2-20 4.12 16.5 129 적색
비교예 119 화합물B-12 화합물2-28 4.08 16.3 144 적색
비교예 120 화합물B-12 화합물2-35 4.17 15.7 136 적색
비교예 121 화합물B-12 화합물2-70 4.13 15.4 141 적색
구분 제1호스트 제2호스트 구동전압(V) 효율(cd/A) 수명 T95(hr) 발광색
비교예 122 화합물1-2 화합물C-1 4.21 15.0 131 적색
비교예 123 화합물1-11 화합물C-1 4.26 14.8 123 적색
비교예 124 화합물1-15 화합물C-1 4.17 15.3 117 적색
비교예 125 화합물1-28 화합물C-1 4.25 14.9 128 적색
비교예 126 화합물1-33 화합물C-1 4.16 14.7 105 적색
비교예 127 화합물1-40 화합물C-1 4.23 15.3 122 적색
비교예 128 화합물1-43 화합물C-1 4.30 15.8 111 적색
비교예 129 화합물1-55 화합물C-1 4.28 14.6 130 적색
비교예 130 화합물1-3 화합물C-2 4.20 14.0 114 적색
비교예 131 화합물1-7 화합물C-2 4.16 14.8 105 적색
비교예 132 화합물1-17 화합물C-2 4.30 15.3 109 적색
비교예 133 화합물1-24 화합물C-2 4.13 14.9 102 적색
비교예 134 화합물1-37 화합물C-2 4.21 15.7 123 적색
비교예 135 화합물1-47 화합물C-2 4.19 16.0 127 적색
비교예 136 화합물1-48 화합물C-2 4.22 15.4 120 적색
비교예 137 화합물1-58 화합물C-2 4.31 15.1 114 적색
비교예 138 화합물1-9 화합물C-3 4.18 14.3 135 적색
비교예 139 화합물1-16 화합물C-3 4.26 15.1 134 적색
비교예 140 화합물1-22 화합물C-3 4.20 14.7 129 적색
비교예 141 화합물1-38 화합물C-3 4.12 14.0 135 적색
비교예 142 화합물1-41 화합물C-3 4.17 14.9 124 적색
비교예 143 화합물1-45 화합물C-3 4.24 15.1 132 적색
비교예 144 화합물1-53 화합물C-3 4.22 14.8 127 적색
비교예 145 화합물1-57 화합물C-3 4.22 15.6 121 적색
비교예 146 화합물1-2 화합물C-4 4.19 17.0 141 적색
비교예 147 화합물1-14 화합물C-4 4.20 16.8 135 적색
비교예 148 화합물1-20 화합물C-4 4.21 15.7 149 적색
비교예 149 화합물1-27 화합물C-4 4.16 17.9 136 적색
비교예 150 화합물1-31 화합물C-4 4.11 16.3 148 적색
비교예 151 화합물1-52 화합물C-4 4.17 17.3 152 적색
비교예 152 화합물1-56 화합물C-4 4.19 16.8 134 적색
비교예 153 화합물1-60 화합물C-4 4.15 17.6 141 적색
비교예 154 화합물1-2 화합물C-5 4.37 13.0 81 적색
비교예 155 화합물1-11 화합물C-5 4.34 13.9 92 적색
비교예 156 화합물1-15 화합물C-5 4.38 13.1 89 적색
비교예 157 화합물1-28 화합물C-5 4.41 12.8 93 적색
비교예 158 화합물1-33 화합물C-5 4.39 13.3 95 적색
비교예 159 화합물1-40 화합물C-5 4.31 13.8 87 적색
비교예 160 화합물1-43 화합물C-5 4.33 13.2 84 적색
비교예 161 화합물1-55 화합물C-5 4.34 13.0 80 적색
비교예 162 화합물1-3 화합물C-6 4.31 14.1 86 적색
비교예 163 화합물1-7 화합물C-6 4.30 14.4 80 적색
비교예 164 화합물1-17 화합물C-6 4.35 15.1 93 적색
비교예 165 화합물1-24 화합물C-6 4.33 14.7 92 적색
비교예 166 화합물1-37 화합물C-6 4.31 14.6 95 적색
비교예 167 화합물1-47 화합물C-6 4.29 15.3 97 적색
비교예 168 화합물1-48 화합물C-6 4.32 14.8 92 적색
비교예 169 화합물1-58 화합물C-6 4.30 15.3 86 적색
비교예 170 화합물1-9 화합물C-7 4.29 16.6 129 적색
비교예 171 화합물1-16 화합물C-7 4.23 16.1 131 적색
비교예 172 화합물1-22 화합물C-7 4.27 16.5 134 적색
비교예 173 화합물1-38 화합물C-7 4.28 15.8 140 적색
비교예 174 화합물1-41 화합물C-7 4.20 15.9 137 적색
비교예 175 화합물1-45 화합물C-7 4.29 16.3 143 적색
비교예 176 화합물1-53 화합물C-7 4.30 16.8 129 적색
비교예 177 화합물1-57 화합물C-7 4.27 16.2 143 적색
비교예 178 화합물1-2 화합물C-8 4.15 17.2 132 적색
비교예 179 화합물1-14 화합물C-8 4.13 17.3 124 적색
비교예 180 화합물1-20 화합물C-8 4.21 16.9 126 적색
비교예 181 화합물1-27 화합물C-8 4.18 16.2 119 적색
비교예 182 화합물1-31 화합물C-8 4.12 16.1 137 적색
비교예 183 화합물1-52 화합물C-8 4.17 16.7 124 적색
비교예 184 화합물1-56 화합물C-8 4.20 17.2 130 적색
비교예 185 화합물1-60 화합물C-8 4.19 17.5 142 적색
비교예 186 화합물1-2 화합물C-9 4.21 15.3 102 적색
비교예 187 화합물1-11 화합물C-9 4.16 15.6 107 적색
비교예 188 화합물1-15 화합물C-9 4.24 15.1 105 적색
비교예 189 화합물1-28 화합물C-9 4.27 16.0 94 적색
비교예 190 화합물1-33 화합물C-9 4.19 15.3 103 적색
비교예 201 화합물1-40 화합물C-9 4.22 15.8 98 적색
비교예 202 화합물1-43 화합물C-9 4.26 14.7 91 적색
비교예 203 화합물1-55 화합물C-9 4.27 14.9 97 적색
비교예 204 화합물1-3 화합물C-10 4.20 16.9 106 적색
비교예 205 화합물1-7 화합물C-10 4.21 15.4 100 적색
비교예 206 화합물1-17 화합물C-10 4.19 16.8 109 적색
비교예 207 화합물1-24 화합물C-10 4.22 15.0 98 적색
비교예 208 화합물1-37 화합물C-10 4.17 16.2 112 적색
비교예 209 화합물1-47 화합물C-10 4.26 16.7 101 적색
비교예 210 화합물1-48 화합물C-10 4.28 16.0 94 적색
비교예 211 화합물1-58 화합물C-10 4.26 15.4 110 적색
비교예 212 화합물1-9 화합물C-11 4.31 17.2 116 적색
비교예 213 화합물1-16 화합물C-11 4.30 16.6 121 적색
비교예 214 화합물1-22 화합물C-11 4.35 17.1 108 적색
비교예 215 화합물1-38 화합물C-11 4.35 16.4 129 적색
비교예 216 화합물1-41 화합물C-11 4.34 17.8 120 적색
비교예 217 화합물1-45 화합물C-11 4.31 17.8 113 적색
비교예 218 화합물1-53 화합물C-11 4.32 16.5 114 적색
비교예 219 화합물1-57 화합물C-11 4.39 16.9 109 적색
비교예 220 화합물1-2 화합물C-12 4.18 16.7 103 적색
비교예 221 화합물1-14 화합물C-12 4.21 17.0 92 적색
비교예 222 화합물1-20 화합물C-12 4.23 17.4 99 적색
비교예 223 화합물1-27 화합물C-12 4.20 16.8 108 적색
비교예 224 화합물1-31 화합물C-12 4.27 17.2 96 적색
비교예 225 화합물1-52 화합물C-12 4.26 17.3 91 적색
비교예 226 화합물1-56 화합물C-12 4.24 17.5 105 적색
비교예 227 화합물1-60 화합물C-12 4.19 16.1 112 적색
실시예 1 내지 145 및 비교예 1 내지 227에 의해 제조된 유기 발광 소자에 전류를 인가하였을 때, 상기 표 1 내지 표 4의 결과를 얻었다. 상기 비교예 1의 유기 발광 소자는 종래 널리 사용되고 있는 물질을 사용하였다.
비교예 2 내지 비교예 61은 전자차단층으로 본 발명의 화학식 2로 표시되는 화합물을 사용하고, 발광층에는 비교예 1과 동일하게 단일 호스트를 사용하여 유기 발광 소자를 제조하였다. 표 1의 일 실시예와 같이 화학식 1로 표시되는 화합물과 화학식 2로 표시되는 화합물을 공증착하여 발광층으로 사용한 경우 표 2의 비교예 대비 구동 전압이 감소하고 효율 및 수명이 증가하는 것을 확인하였다.
또한 표 3에서와 같이 비교예 화합물 B-1 내지 B-12와 본 발명의 화학식2로 표시되는 화합물을 공증착하여 발광층으로 사용했을 때, 본 발명의 조합보다 대체적으로 구동전압은 상승하고 효율과 수명이 떨어지는 결과를 보였고 표 4에서와 같이 비교예 화합물 C-1 내지 C-12와 본 발명의 화학식 1로 표시되는 화합물을 공증착하여 발광층으로 사용했을 때에도 구동전압은 상승하고 효율과 수명이 감소하는 결과를 나타냈다.
이러한 결과로부터 제1 호스트인 화학식 1로 표시되는 화합물과 제2 호스트인 화학식 2로 표시되는 화합물의 조합 시 발광층내의 적색 도판트로의 에너지 전달이 잘 이루어져 구동 전압이 개선되고 효율 및 수명이 상승한다는 것을 알 수 있었다. 또한, 비교예의 화합물 간 조합 보다 일 실시예의 화합물 조합이 발광층 내에 더 안정적인 균형을 이루어 전자와 정공의 결합으로 엑시톤을 형성하여 제조된 유기 발광 소자의 효율 및 수명이 보다 향상됨을 유추할 수 있다.
즉, 본 발명의 화학식 1로 표시되는 화합물과 화학식 2로 표시되는 화합물을 조합하여 발광층의 호스트로 사용하였을 때 유기 발광 소자의 구동전압, 발광 효율 및 수명 특성을 개선할 수 있었다.
부호의 설명
1: 기판 2: 양극
3: 발광층 4: 음극
5: 정공주입층 6: 정공수송층
7: 전자차단층 8: 정공저지층
9: 전자 주입 및 수송층

Claims (17)

  1. 양극;
    음극; 및
    상기 양극과 음극 사이의 발광층을 포함하고,
    상기 발광층은 하기 화학식 1로 표시되는 화합물 및 하기 화학식 2로 표시되는 화합물을 포함하는,
    유기 발광 소자:
    [화학식 1]
    Figure PCTKR2021003037-appb-img-000426
    상기 화학식 1에서,
    Ar 1 및 Ar 2는 각각 독립적으로, 치환 또는 비치환된 C 6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C 2-60 헤테로아릴이고,
    L 1 내지 L 3는 각각 독립적으로, 단일결합; 또는 치환 또는 비치환된 C 6-60 아릴렌이고,
    R 1은 수소; 중수소; 치환 또는 비치환된 C 6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C 2-60 헤테로아릴이고,
    a은 0 내지 7의 정수이고,
    [화학식 2]
    Figure PCTKR2021003037-appb-img-000427
    상기 화학식 2에서,
    Ar 3는 수소; 치환 또는 비치환된 C 6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C 2-60 헤테로아릴이고,
    Ar 4 및 Ar 5는 각각 독립적으로, 치환 또는 비치환된 C 6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C 2-60 헤테로아릴이고,
    L 4 내지 L 6는 각각 독립적으로, 단일결합; 치환 또는 비치환된 C 6-60 아릴렌; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C 2-60 헤테로아릴렌이고,
    L 7은 치환 또는 비치환된 C 6-60 아릴렌이다.
  2. 제1항에 있어서,
    화학식 1로 표시되는 화합물은 하기 화학식 1-1 내지 화학식 1-3 중 어느 하나로 표시되는,
    유기 발광 소자:
    [화학식 1-1]
    Figure PCTKR2021003037-appb-img-000428
    [화학식 1-2]
    Figure PCTKR2021003037-appb-img-000429
    [화학식 1-3]
    Figure PCTKR2021003037-appb-img-000430
    상기 화학식 1-1 내지 1-3에서,
    Ar 1 및 Ar 2, L 1 내지 L 3 및 R 1은 제1항에서 정의한 바와 같다.
  3. 제1항에 있어서,
    Ar 1 및 Ar 2는 각각 독립적으로, 페닐, 비페닐릴, 터페닐릴, 나프틸, 페난트레닐, 디벤조퓨라닐, 또는 디벤조티오페닐인,
    유기 발광 소자.
  4. 제1항에 있어서,
    L 1 내지 L 3는 각각 독립적으로, 단일결합 또는 하기로 구성되는 군으로부터 선택되는 어느 하나인,
    유기 발광 소자:
    Figure PCTKR2021003037-appb-img-000431
    .
  5. 제1항에 있어서,
    R 1은 각각 독립적으로, 수소, 중수소, 페닐, 비페닐릴, 터페닐릴, 나프틸, 페난트레닐, 트리페닐레닐, 나프틸 페닐, 페닐 나프틸, 플루오란테닐, 디하이드로인데닐, 디벤조퓨라닐, 디벤조티오페닐, 벤조나프토퓨라닐, 또는 벤조나프토티오페닐인,
    유기 발광 소자.
  6. 제1항에 있어서,
    Ar 1, Ar 2 및 R 1 중 적어도 하나는 나프틸, 페닐 나프틸, 나프틸 페닐, 페난트레닐, 플루오란테닐, 디벤조퓨라닐, 디벤조티오페닐, 벤조나프토퓨라닐, 또는 벤조나프토티오페닐인,
    유기 발광 소자.
  7. 제1항에 있어서,
    a는 0 또는 1인,
    유기 발광 소자.
  8. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 하기로 구성되는 군으로부터 선택되는 어느 하나인,
    유기 발광 소자:
    Figure PCTKR2021003037-appb-img-000432
    Figure PCTKR2021003037-appb-img-000433
    Figure PCTKR2021003037-appb-img-000434
    Figure PCTKR2021003037-appb-img-000435
    Figure PCTKR2021003037-appb-img-000436
    Figure PCTKR2021003037-appb-img-000437
    Figure PCTKR2021003037-appb-img-000438
    Figure PCTKR2021003037-appb-img-000439
    Figure PCTKR2021003037-appb-img-000440
    Figure PCTKR2021003037-appb-img-000441
    Figure PCTKR2021003037-appb-img-000442
    Figure PCTKR2021003037-appb-img-000443
    Figure PCTKR2021003037-appb-img-000444
    Figure PCTKR2021003037-appb-img-000445
    Figure PCTKR2021003037-appb-img-000446
    Figure PCTKR2021003037-appb-img-000447
    Figure PCTKR2021003037-appb-img-000448
    Figure PCTKR2021003037-appb-img-000449
    Figure PCTKR2021003037-appb-img-000450
    Figure PCTKR2021003037-appb-img-000451
    Figure PCTKR2021003037-appb-img-000452
    Figure PCTKR2021003037-appb-img-000453
    Figure PCTKR2021003037-appb-img-000454
    Figure PCTKR2021003037-appb-img-000455
    Figure PCTKR2021003037-appb-img-000456
    Figure PCTKR2021003037-appb-img-000457
    Figure PCTKR2021003037-appb-img-000458
    Figure PCTKR2021003037-appb-img-000459
    Figure PCTKR2021003037-appb-img-000460
    Figure PCTKR2021003037-appb-img-000461
    Figure PCTKR2021003037-appb-img-000462
    Figure PCTKR2021003037-appb-img-000463
    Figure PCTKR2021003037-appb-img-000464
    Figure PCTKR2021003037-appb-img-000465
    Figure PCTKR2021003037-appb-img-000466
    Figure PCTKR2021003037-appb-img-000467
    Figure PCTKR2021003037-appb-img-000468
    Figure PCTKR2021003037-appb-img-000469
    Figure PCTKR2021003037-appb-img-000470
    Figure PCTKR2021003037-appb-img-000471
    Figure PCTKR2021003037-appb-img-000472
    Figure PCTKR2021003037-appb-img-000473
    Figure PCTKR2021003037-appb-img-000474
    Figure PCTKR2021003037-appb-img-000475
    Figure PCTKR2021003037-appb-img-000476
    Figure PCTKR2021003037-appb-img-000477
    Figure PCTKR2021003037-appb-img-000478
    Figure PCTKR2021003037-appb-img-000479
    Figure PCTKR2021003037-appb-img-000480
    Figure PCTKR2021003037-appb-img-000481
    Figure PCTKR2021003037-appb-img-000482
    Figure PCTKR2021003037-appb-img-000483
    Figure PCTKR2021003037-appb-img-000484
    Figure PCTKR2021003037-appb-img-000485
    Figure PCTKR2021003037-appb-img-000486
    Figure PCTKR2021003037-appb-img-000487
    Figure PCTKR2021003037-appb-img-000488
    Figure PCTKR2021003037-appb-img-000489
    Figure PCTKR2021003037-appb-img-000490
    Figure PCTKR2021003037-appb-img-000491
    Figure PCTKR2021003037-appb-img-000492
    Figure PCTKR2021003037-appb-img-000493
    Figure PCTKR2021003037-appb-img-000494
    Figure PCTKR2021003037-appb-img-000495
    Figure PCTKR2021003037-appb-img-000496
    Figure PCTKR2021003037-appb-img-000497
    Figure PCTKR2021003037-appb-img-000498
    Figure PCTKR2021003037-appb-img-000499
    Figure PCTKR2021003037-appb-img-000500
    Figure PCTKR2021003037-appb-img-000501
    Figure PCTKR2021003037-appb-img-000502
    Figure PCTKR2021003037-appb-img-000503
    Figure PCTKR2021003037-appb-img-000504
    Figure PCTKR2021003037-appb-img-000505
    Figure PCTKR2021003037-appb-img-000506
    Figure PCTKR2021003037-appb-img-000507
    Figure PCTKR2021003037-appb-img-000508
    Figure PCTKR2021003037-appb-img-000509
    Figure PCTKR2021003037-appb-img-000510
    Figure PCTKR2021003037-appb-img-000511
    Figure PCTKR2021003037-appb-img-000512
    Figure PCTKR2021003037-appb-img-000513
    Figure PCTKR2021003037-appb-img-000514
    Figure PCTKR2021003037-appb-img-000515
    Figure PCTKR2021003037-appb-img-000516
    Figure PCTKR2021003037-appb-img-000517
    Figure PCTKR2021003037-appb-img-000518
    Figure PCTKR2021003037-appb-img-000519
    Figure PCTKR2021003037-appb-img-000520
    Figure PCTKR2021003037-appb-img-000521
    Figure PCTKR2021003037-appb-img-000522
    Figure PCTKR2021003037-appb-img-000523
    Figure PCTKR2021003037-appb-img-000524
    Figure PCTKR2021003037-appb-img-000525
    Figure PCTKR2021003037-appb-img-000526
    Figure PCTKR2021003037-appb-img-000527
    Figure PCTKR2021003037-appb-img-000528
    Figure PCTKR2021003037-appb-img-000529
    Figure PCTKR2021003037-appb-img-000530
    Figure PCTKR2021003037-appb-img-000531
    Figure PCTKR2021003037-appb-img-000532
    Figure PCTKR2021003037-appb-img-000533
    Figure PCTKR2021003037-appb-img-000534
    Figure PCTKR2021003037-appb-img-000535
    Figure PCTKR2021003037-appb-img-000536
    Figure PCTKR2021003037-appb-img-000537
    Figure PCTKR2021003037-appb-img-000538
    Figure PCTKR2021003037-appb-img-000539
    Figure PCTKR2021003037-appb-img-000540
    Figure PCTKR2021003037-appb-img-000541
    Figure PCTKR2021003037-appb-img-000542
    Figure PCTKR2021003037-appb-img-000543
    Figure PCTKR2021003037-appb-img-000544
    Figure PCTKR2021003037-appb-img-000545
    Figure PCTKR2021003037-appb-img-000546
    Figure PCTKR2021003037-appb-img-000547
    Figure PCTKR2021003037-appb-img-000548
    Figure PCTKR2021003037-appb-img-000549
    Figure PCTKR2021003037-appb-img-000550
    Figure PCTKR2021003037-appb-img-000551
    Figure PCTKR2021003037-appb-img-000552
    Figure PCTKR2021003037-appb-img-000553
    Figure PCTKR2021003037-appb-img-000554
    Figure PCTKR2021003037-appb-img-000555
    Figure PCTKR2021003037-appb-img-000556
    Figure PCTKR2021003037-appb-img-000557
    Figure PCTKR2021003037-appb-img-000558
    Figure PCTKR2021003037-appb-img-000559
    Figure PCTKR2021003037-appb-img-000560
    Figure PCTKR2021003037-appb-img-000561
    Figure PCTKR2021003037-appb-img-000562
    Figure PCTKR2021003037-appb-img-000563
    Figure PCTKR2021003037-appb-img-000564
    Figure PCTKR2021003037-appb-img-000565
    Figure PCTKR2021003037-appb-img-000566
    Figure PCTKR2021003037-appb-img-000567
    Figure PCTKR2021003037-appb-img-000568
    Figure PCTKR2021003037-appb-img-000569
    Figure PCTKR2021003037-appb-img-000570
    Figure PCTKR2021003037-appb-img-000571
    Figure PCTKR2021003037-appb-img-000572
    Figure PCTKR2021003037-appb-img-000573
    Figure PCTKR2021003037-appb-img-000574
    Figure PCTKR2021003037-appb-img-000575
    Figure PCTKR2021003037-appb-img-000576
    Figure PCTKR2021003037-appb-img-000577
    Figure PCTKR2021003037-appb-img-000578
    Figure PCTKR2021003037-appb-img-000579
    Figure PCTKR2021003037-appb-img-000580
    Figure PCTKR2021003037-appb-img-000581
    Figure PCTKR2021003037-appb-img-000582
    Figure PCTKR2021003037-appb-img-000583
    Figure PCTKR2021003037-appb-img-000584
    Figure PCTKR2021003037-appb-img-000585
    Figure PCTKR2021003037-appb-img-000586
    Figure PCTKR2021003037-appb-img-000587
    .
  9. 제1항에 있어서,
    Ar 3는 수소 또는 페닐인,
    유기 발광 소자.
  10. 제1항에 있어서,
    Ar 4 및 Ar 5는 각각 독립적으로, 페닐, 5개의 중수소로 치환된 페닐, 비페닐릴, 4개의 중수소로 치환된 비페닐릴, 9개의 중수소로 치환된 비페닐릴, 터페닐릴, 4개의 중수소로 치환된 터페닐릴, 쿼터페닐릴, 나프틸, 페난트레닐, 트리페닐레닐, 디메틸플루오레닐, 디페닐플루오레닐, 카바졸릴, 페닐카바졸릴, 디벤조퓨라닐, 디벤조티오페닐, 또는 페닐 디벤조퓨라닐인,
    유기 발광 소자.
  11. 제1항에 있어서,
    Ar 4 및 Ar 5는 각각 독립적으로, 하기로 구성되는 군으로부터 선택되는 어느 하나인,
    유기 발광 소자:
    Figure PCTKR2021003037-appb-img-000588
    .
  12. 제1항에 있어서,
    L 4 내지 L 6는 각각 독립적으로, 단일결합, 페닐렌, 4개의 중수소로 치환된 페닐렌, 비페닐릴렌, 나프틸렌, 페닐 나프틸렌, 카바졸일렌, 페닐 카바졸일렌, 4개의 중수소로 치환된 페닐 카바졸일렌, 디벤조퓨라닐렌, 페닐 디벤조퓨라닐렌, 4개의 중수소로 치환된 페닐 디벤조퓨라닐렌, 또는 디메틸플루오레닐렌인,
    유기 발광 소자.
  13. 제1항에 있어서,
    L 4 내지 L 6는 각각 독립적으로, 단일결합 또는 하기로 구성되는 군으로부터 선택되는 어느 하나인,
    유기 발광 소자:
    Figure PCTKR2021003037-appb-img-000589
    .
  14. 제1항에 있어서,
    L 7은 치환 또는 비치환된 페닐렌, 치환 또는 비치환된 비페닐릴렌, 또는 치환 또는 비치환된 나프틸렌인,
    유기 발광 소자:
  15. 제1항에 있어서,
    화학식 2로 표시되는 화합물은 하기 화학식 2-1로 표시되는,
    유기 발광 소자:
    [화학식 2-1]
    Figure PCTKR2021003037-appb-img-000590
    상기 화학식 2-1에서,
    Ar 3 내지 Ar 5 및 L 4 내지 L 6는 제1항에서 정의한 바와 같고,
    R 2는 수소; 중수소; 또는 치환 또는 비치환된 C 6-60 아릴이고,
    b는 0 내지 4의 정수이다.
  16. 제15항에 있어서,
    R 2는 수소 또는 중수소인,
    유기 발광 소자.
  17. 제1항에 있어서,
    상기 화학식 2로 표시되는 화합물은 하기로 구성되는 군으로부터 선택되는 어느 하나인,
    유기 발광 소자:
    Figure PCTKR2021003037-appb-img-000591
    Figure PCTKR2021003037-appb-img-000592
    Figure PCTKR2021003037-appb-img-000593
    Figure PCTKR2021003037-appb-img-000594
    Figure PCTKR2021003037-appb-img-000595
    Figure PCTKR2021003037-appb-img-000596
    Figure PCTKR2021003037-appb-img-000597
    Figure PCTKR2021003037-appb-img-000598
    Figure PCTKR2021003037-appb-img-000599
    Figure PCTKR2021003037-appb-img-000600
    Figure PCTKR2021003037-appb-img-000601
    Figure PCTKR2021003037-appb-img-000602
    Figure PCTKR2021003037-appb-img-000603
    Figure PCTKR2021003037-appb-img-000604
    Figure PCTKR2021003037-appb-img-000605
    Figure PCTKR2021003037-appb-img-000606
    Figure PCTKR2021003037-appb-img-000607
    Figure PCTKR2021003037-appb-img-000608
    Figure PCTKR2021003037-appb-img-000609
    Figure PCTKR2021003037-appb-img-000610
    Figure PCTKR2021003037-appb-img-000611
    Figure PCTKR2021003037-appb-img-000612
    Figure PCTKR2021003037-appb-img-000613
    Figure PCTKR2021003037-appb-img-000614
    Figure PCTKR2021003037-appb-img-000615
    Figure PCTKR2021003037-appb-img-000616
    Figure PCTKR2021003037-appb-img-000617
    Figure PCTKR2021003037-appb-img-000618
    Figure PCTKR2021003037-appb-img-000619
    Figure PCTKR2021003037-appb-img-000620
    Figure PCTKR2021003037-appb-img-000621
    Figure PCTKR2021003037-appb-img-000622
    Figure PCTKR2021003037-appb-img-000623
    Figure PCTKR2021003037-appb-img-000624
    Figure PCTKR2021003037-appb-img-000625
    Figure PCTKR2021003037-appb-img-000626
    Figure PCTKR2021003037-appb-img-000627
    Figure PCTKR2021003037-appb-img-000628
    Figure PCTKR2021003037-appb-img-000629
    Figure PCTKR2021003037-appb-img-000630
    Figure PCTKR2021003037-appb-img-000631
    Figure PCTKR2021003037-appb-img-000632
    Figure PCTKR2021003037-appb-img-000633
    Figure PCTKR2021003037-appb-img-000634
    Figure PCTKR2021003037-appb-img-000635
    Figure PCTKR2021003037-appb-img-000636
    Figure PCTKR2021003037-appb-img-000637
    Figure PCTKR2021003037-appb-img-000638
    .
PCT/KR2021/003037 2020-03-11 2021-03-11 유기 발광 소자 WO2021182893A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180003824.2A CN113994496A (zh) 2020-03-11 2021-03-11 有机发光器件
US17/617,111 US20230086039A1 (en) 2020-03-11 2021-03-11 Organic light emitting device
EP21768508.0A EP3972001B1 (en) 2020-03-11 2021-03-11 Organic light emitting device
JP2021569475A JP7293565B2 (ja) 2020-03-11 2021-03-11 有機発光素子

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2020-0030232 2020-03-11
KR20200030232 2020-03-11
KR1020210031954A KR102360903B1 (ko) 2020-03-11 2021-03-11 유기 발광 소자
KR10-2021-0031954 2021-03-11

Publications (1)

Publication Number Publication Date
WO2021182893A1 true WO2021182893A1 (ko) 2021-09-16

Family

ID=77670804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/003037 WO2021182893A1 (ko) 2020-03-11 2021-03-11 유기 발광 소자

Country Status (3)

Country Link
US (1) US20230086039A1 (ko)
JP (1) JP7293565B2 (ko)
WO (1) WO2021182893A1 (ko)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022114114A1 (ja) * 2020-11-27 2022-06-02 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2022181508A1 (ja) * 2021-02-26 2022-09-01 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2022230963A1 (ja) * 2021-04-28 2022-11-03 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2023112915A1 (ja) * 2021-12-14 2023-06-22 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
WO2023219337A1 (ko) * 2022-05-11 2023-11-16 주식회사 엘지화학 신규한 화합물 및 이를 포함하는 유기발광 소자

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113497198A (zh) * 2020-04-06 2021-10-12 罗门哈斯电子材料韩国有限公司 有机电致发光化合物、多种主体材料和包含其的有机电致发光装置
CN114621198A (zh) * 2020-12-11 2022-06-14 北京夏禾科技有限公司 有机电致发光材料及其器件

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000051826A (ko) 1999-01-27 2000-08-16 성재갑 신규한 착물 및 그의 제조 방법과 이를 이용한 유기 발광 소자
WO2003012890A2 (de) 2001-07-20 2003-02-13 Novaled Gmbh Lichtemittierendes bauelement mit organischen schichten
KR20190005522A (ko) * 2017-07-07 2019-01-16 에스에프씨 주식회사 저전압 구동이 가능하며, 고효율 및 장수명 특성을 가지는 유기 발광 소자
KR20190008073A (ko) * 2017-07-14 2019-01-23 주식회사 엘지화학 유기 발광 소자
KR20190008035A (ko) * 2017-07-14 2019-01-23 주식회사 엘지화학 유기 발광 소자
KR20200009971A (ko) * 2018-07-18 2020-01-30 주식회사 동진쎄미켐 신규 화합물 및 이를 포함하는 유기발광 소자
KR20200018229A (ko) * 2018-08-09 2020-02-19 덕산네오룩스 주식회사 유기전기 소자용 화합물을 포함하는 유기전기소자 및 그 전자 장치

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101849747B1 (ko) * 2016-07-20 2018-05-31 주식회사 엘지화학 신규한 헤테로 고리 화합물 및 이를 이용한 유기발광 소자
EP3312166B1 (en) * 2016-10-21 2019-11-27 Samsung Display Co., Ltd. Monoamine compound and organic electroluminescence device including the same
WO2019093649A1 (ko) * 2017-11-10 2019-05-16 주식회사 엘지화학 신규한 화합물 및 이를 이용한유기 발광 소자
KR102240075B1 (ko) * 2018-02-28 2021-04-13 주식회사 엘지화학 유기 발광 소자
WO2020013448A1 (en) * 2018-07-13 2020-01-16 Rohm And Haas Electronic Materials Korea Ltd. A plurality of host materials and organic electroluminescent device comprising the same
KR20200007644A (ko) * 2018-07-13 2020-01-22 롬엔드하스전자재료코리아유한회사 복수 종의 호스트 재료 및 이를 포함하는 유기 전계 발광 소자

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000051826A (ko) 1999-01-27 2000-08-16 성재갑 신규한 착물 및 그의 제조 방법과 이를 이용한 유기 발광 소자
WO2003012890A2 (de) 2001-07-20 2003-02-13 Novaled Gmbh Lichtemittierendes bauelement mit organischen schichten
KR20190005522A (ko) * 2017-07-07 2019-01-16 에스에프씨 주식회사 저전압 구동이 가능하며, 고효율 및 장수명 특성을 가지는 유기 발광 소자
KR20190008073A (ko) * 2017-07-14 2019-01-23 주식회사 엘지화학 유기 발광 소자
KR20190008035A (ko) * 2017-07-14 2019-01-23 주식회사 엘지화학 유기 발광 소자
KR20200009971A (ko) * 2018-07-18 2020-01-30 주식회사 동진쎄미켐 신규 화합물 및 이를 포함하는 유기발광 소자
KR20200018229A (ko) * 2018-08-09 2020-02-19 덕산네오룩스 주식회사 유기전기 소자용 화합물을 포함하는 유기전기소자 및 그 전자 장치

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022114114A1 (ja) * 2020-11-27 2022-06-02 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2022181508A1 (ja) * 2021-02-26 2022-09-01 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2022230963A1 (ja) * 2021-04-28 2022-11-03 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子及び電子機器
WO2023112915A1 (ja) * 2021-12-14 2023-06-22 出光興産株式会社 化合物、有機エレクトロルミネッセンス素子用材料、有機エレクトロルミネッセンス素子、及び電子機器
WO2023219337A1 (ko) * 2022-05-11 2023-11-16 주식회사 엘지화학 신규한 화합물 및 이를 포함하는 유기발광 소자

Also Published As

Publication number Publication date
US20230086039A1 (en) 2023-03-23
JP7293565B2 (ja) 2023-06-20
JP2022534887A (ja) 2022-08-04

Similar Documents

Publication Publication Date Title
WO2021182893A1 (ko) 유기 발광 소자
WO2022015084A1 (ko) 유기 발광 소자
WO2021096228A1 (ko) 유기 발광 소자
WO2021221475A1 (ko) 유기 발광 소자
WO2021230714A1 (ko) 유기 발광 소자
WO2021261977A1 (ko) 유기 발광 소자
WO2022131869A1 (ko) 신규한 화합물 및 이를 포함하는 유기발광 소자
WO2022211498A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2022086296A1 (ko) 유기 발광 소자
WO2021230715A1 (ko) 유기 발광 소자
WO2021261962A1 (ko) 유기 발광 소자
WO2022019535A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2022019536A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2022086171A1 (ko) 유기 발광 소자
WO2020263000A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2020189984A1 (ko) 유기 발광 소자
WO2022182171A1 (ko) 유기 발광 소자
WO2022182165A1 (ko) 유기 발광 소자
WO2022216018A1 (ko) 유기 발광 소자
WO2022177385A1 (ko) 유기 발광 소자
WO2023085878A1 (ko) 유기 발광 소자
WO2022177374A1 (ko) 유기 발광 소자
WO2022216019A1 (ko) 유기 발광 소자
WO2023085908A1 (ko) 유기 발광 소자
WO2022231322A1 (ko) 유기 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21768508

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021569475

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021768508

Country of ref document: EP

Effective date: 20211214

NENP Non-entry into the national phase

Ref country code: DE