WO2023003403A1 - 유기 발광 소자 - Google Patents

유기 발광 소자 Download PDF

Info

Publication number
WO2023003403A1
WO2023003403A1 PCT/KR2022/010727 KR2022010727W WO2023003403A1 WO 2023003403 A1 WO2023003403 A1 WO 2023003403A1 KR 2022010727 W KR2022010727 W KR 2022010727W WO 2023003403 A1 WO2023003403 A1 WO 2023003403A1
Authority
WO
WIPO (PCT)
Prior art keywords
mmol
compound
added
organic layer
under reduced
Prior art date
Application number
PCT/KR2022/010727
Other languages
English (en)
French (fr)
Inventor
김민준
이동훈
서상덕
김영석
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202280009652.4A priority Critical patent/CN116670253A/zh
Priority to US18/273,021 priority patent/US20240147853A1/en
Priority claimed from KR1020220090385A external-priority patent/KR20230014671A/ko
Publication of WO2023003403A1 publication Critical patent/WO2023003403A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B2200/00Indexing scheme relating to specific properties of organic compounds
    • C07B2200/05Isotopically modified compounds, e.g. labelled

Definitions

  • the present invention relates to an organic light emitting diode having improved driving voltage, efficiency and lifetime.
  • the organic light emitting phenomenon refers to a phenomenon in which electrical energy is converted into light energy using an organic material.
  • An organic light emitting device using an organic light emitting phenomenon has a wide viewing angle, excellent contrast, and a fast response time, and has excellent luminance, driving voltage, and response speed characteristics, and thus many studies are being conducted.
  • An organic light emitting device generally has a structure including an anode, a cathode, and an organic material layer between the anode and the cathode.
  • the organic material layer is often composed of a multi-layered structure composed of different materials, and may include, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer.
  • a voltage is applied between the two electrodes, holes are injected from the anode and electrons from the cathode are injected into the organic material layer, and when the injected holes and electrons meet, excitons are formed. When it falls back to the ground state, it glows.
  • Patent Document 1 Korean Patent Publication No. 10-2000-0051826
  • the present invention relates to an organic light emitting diode having improved driving voltage, efficiency and lifetime.
  • the present invention provides the following organic light emitting device:
  • the light emitting layer includes a compound represented by Formula 1 and a compound represented by Formula 2 below.
  • R 1 is each independently hydrogen, deuterium, substituted or unsubstituted C 6-60 aryl, or substituted or unsubstituted C 2-60 including any one or more selected from the group consisting of N, O and S; Heteroaryl;
  • R 2 are each independently hydrogen or deuterium
  • Ar 1 and Ar 2 are each independently a substituted or unsubstituted C 6-60 aryl, or a substituted or unsubstituted C 2-60 hetero including any one or more selected from the group consisting of N, O and S; aryl,
  • At least one of Ar 1 and Ar 2 includes at least one selected from the group consisting of substituted or unsubstituted N, O and S C 2-60 Heteroaryl;
  • L 1 and L 2 are each independently a single bond or a substituted or unsubstituted C 6-60 arylene;
  • a is an integer from 1 to 7;
  • b is an integer from 1 to 6;
  • the compound represented by Formula 1 may not contain deuterium or may contain at least one deuterium,
  • A is a benzene ring or naphthalene ring fused with an adjacent ring
  • Ar 3 and Ar 4 are each independently a substituted or unsubstituted C 6-60 aryl, or a substituted or unsubstituted C 2-60 hetero including any one or more selected from the group consisting of N, O and S; aryl,
  • L 3 is a substituted or unsubstituted C 6-60 arylene
  • L 4 and L 5 are each independently a single bond, a substituted or unsubstituted C 6-60 arylene, or a substituted or unsubstituted C containing any one or more selected from the group consisting of N, O and S; 2-60 heteroarylene.
  • the organic light emitting device described above may improve efficiency, low driving voltage, and/or lifetime characteristics of the organic light emitting device by including the compound represented by Formula 1 and the compound represented by Formula 2 in the light emitting layer.
  • FIG. 1 shows an example of an organic light emitting device composed of a substrate 1, an anode 2, a light emitting layer 3 and a cathode 4.
  • FIG. 2 shows a substrate (1), an anode (2), a hole injection layer (5), a hole transport layer (6), an electron blocking layer (7), a light emitting layer (3), a hole blocking layer (8), an electron injection and transport layer ( 9) and an example of an organic light emitting element composed of a cathode 4 is shown.
  • substituted or unsubstituted means deuterium; halogen group; nitrile group; nitro group; hydroxy group; carbonyl group; ester group; imide group; amino group; phosphine oxide group; alkoxy group; aryloxy group; Alkyl thioxy group; Arylthioxy group; an alkyl sulfoxy group; aryl sulfoxy group; silyl group; boron group; an alkyl group; cycloalkyl group; alkenyl group; aryl group; aralkyl group; Aralkenyl group; Alkyl aryl group; Alkylamine group; Aralkylamine group; heteroarylamine group; Arylamine group; Arylphosphine group; Or substituted or unsubstituted with one or more substituents selected from the group consisting of a heteroaryl group containing one or more of N, O, and S atoms, or substituted or unsub
  • a substituent in which two or more substituents are connected may be a biphenyl group. That is, the biphenyl group may be an aryl group, and may be interpreted as a substituent in which two phenyl groups are connected.
  • the number of carbon atoms of the carbonyl group is not particularly limited, but is preferably 1 to 40 carbon atoms. Specifically, it may be a substituent having the following structure, but is not limited thereto.
  • the ester group may be substituted with an aryl group having 6 to 25 carbon atoms or a straight-chain, branched-chain or cyclic chain alkyl group having 1 to 25 carbon atoms in the ester group. Specifically, it may be a substituent of the following structural formula, but is not limited thereto.
  • the number of carbon atoms of the imide group is not particularly limited, but is preferably 1 to 25 carbon atoms. Specifically, it may be a substituent having the following structure, but is not limited thereto.
  • the silyl group is specifically a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, a propyldimethylsilyl group, a triphenylsilyl group, a diphenylsilyl group, a phenylsilyl group, and the like. but not limited to
  • the boron group specifically includes a trimethyl boron group, a triethyl boron group, a t-butyldimethyl boron group, a triphenyl boron group, a phenyl boron group, but is not limited thereto.
  • examples of the halogen group include fluorine, chlorine, bromine or iodine.
  • the alkyl group may be straight-chain or branched-chain, and the number of carbon atoms is not particularly limited, but is preferably 1 to 40. According to one embodiment, the number of carbon atoms of the alkyl group is 1 to 20. According to another embodiment, the number of carbon atoms of the alkyl group is 1 to 10. According to another exemplary embodiment, the alkyl group has 1 to 6 carbon atoms.
  • alkyl group examples include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n -pentyl, isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl , n-heptyl, 1-methylhexyl, cyclopentylmethyl, cyclohexylmethyl, octyl, n-octyl, tert-octyl, 1-methylheptyl, 2-ethylhexyl
  • the alkenyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 2 to 40. According to one embodiment, the alkenyl group has 2 to 20 carbon atoms. According to another exemplary embodiment, the alkenyl group has 2 to 10 carbon atoms. According to another exemplary embodiment, the alkenyl group has 2 to 6 carbon atoms.
  • Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1- Butenyl, 1,3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2,2-diphenylvinyl-1-yl, 2-phenyl-2-( naphthyl-1-yl)vinyl-1-yl, 2,2-bis(diphenyl-1-yl)vinyl-1-yl, stilbenyl group, styrenyl group, etc., but is not limited thereto.
  • the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms, and according to an exemplary embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another exemplary embodiment, the number of carbon atoms of the cycloalkyl group is 3 to 20. According to another exemplary embodiment, the number of carbon atoms of the cycloalkyl group is 3 to 6.
  • the aryl group is not particularly limited, but preferably has 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group. According to one embodiment, the number of carbon atoms of the aryl group is 6 to 30. According to one embodiment, the number of carbon atoms of the aryl group is 6 to 20.
  • the aryl group may be a phenyl group, a biphenyl group, a terphenyl group, etc. as a monocyclic aryl group, but is not limited thereto.
  • the polycyclic aryl group may be a naphthyl group, anthracenyl group, phenanthryl group, pyrenyl group, perylenyl group, chrysenyl group, fluorenyl group, and the like, but is not limited thereto.
  • the fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure.
  • the fluorenyl group is substituted, etc.
  • it is not limited thereto.
  • the heteroaryl group is a heteroaryl group containing one or more of O, N, Si, and S as heterogeneous elements, and the number of carbon atoms is not particularly limited, but preferably has 2 to 60 carbon atoms. According to one embodiment, the heteroaryl group has 6 to 30 carbon atoms. According to one embodiment, the carbon number of the heteroaryl group is 6 to 20.
  • heteroaryl group examples include a thiophene group, a furan group, a pyrrole group, an imidazole group, a thiazole group, an oxazole group, an oxadiazole group, a triazole group, a pyridyl group, a bipyridyl group, a pyrimidyl group, a triazine group, and an acridyl group.
  • pyridazine group pyrazinyl group, quinolinyl group, quinazoline group, quinoxalinyl group, phthalazinyl group, pyridopyrimidinyl group, pyridopyrazinyl group, pyrazinopyrazinyl group, isoquinoline group, indole group , carbazole group, benzoxazole group, benzoimidazole group, benzothiazole group, benzocarbazole group, benzothiophene group, dibenzothiophene group, benzofuranyl group, phenanthroline group, isoxazolyl group, thiadia A zolyl group, a phenothiazinyl group, and a dibenzofuranyl group, but are not limited thereto.
  • an aralkyl group, an aralkenyl group, an alkylaryl group, and an aryl group among arylamine groups are the same as the examples of the aryl group described above.
  • the alkyl group among the aralkyl group, the alkylaryl group, and the alkylamine group is the same as the examples of the above-mentioned alkyl group.
  • the description of the heteroaryl group described above may be applied to the heteroaryl of the heteroarylamine.
  • the alkenyl group among the aralkenyl groups is the same as the examples of the alkenyl group described above.
  • the description of the aryl group described above may be applied except that the arylene is a divalent group.
  • the description of the heteroaryl group described above may be applied except that heteroarylene is a divalent group.
  • the hydrocarbon ring is not a monovalent group, and the description of the aryl group or cycloalkyl group described above may be applied, except that the hydrocarbon ring is formed by combining two substituents.
  • heteroaryl is not a monovalent group, and the description of the above-described heteroaryl group may be applied, except that it is formed by combining two substituents.
  • deuterated or substituted with deuterium means that at least one available hydrogen in each formula is replaced with deuterium.
  • substituting with deuterium in each chemical formula or definition of a substituent means that at least one of hydrogen-bonding positions in a molecule is substituted with deuterium.
  • deuterium substitution rate means the percentage of the number of deuterium substituted with respect to the total number of hydrogens that may be present in each chemical formula.
  • An anode and a cathode used in the present invention refer to electrodes used in an organic light emitting device.
  • the cathode material a material having a high work function is generally preferred so that holes can be smoothly injected into the organic layer.
  • the cathode material include metals such as vanadium, chromium, copper, zinc, and gold or alloys thereof; metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); combinations of metals and oxides such as ZnO:Al or SnO 2 :Sb; Conductive polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene] (PEDOT), polypyrrole, and polyaniline, but are not limited thereto.
  • the cathode material is preferably a material having a small work function so as to easily inject electrons into the organic material layer.
  • Specific examples of the anode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin, and lead, or alloys thereof; There are multi-layered materials such as LiF/Al or LiO 2 /Al, but are not limited thereto.
  • the organic light emitting device according to the present invention may further include a hole injection layer on the anode, if necessary.
  • the hole injection layer is a layer for injecting holes from the electrode, and the hole injection material has the ability to transport holes and has a hole injection effect at the anode, an excellent hole injection effect for the light emitting layer or the light emitting material, and generated in the light emitting layer A compound that prevents migration of excitons to the electron injecting layer or electron injecting material and has excellent thin film formation ability is preferred.
  • the highest occupied molecular orbital (HOMO) of the hole injection material is between the work function of the anode material and the HOMO of the surrounding organic layer.
  • the hole injection material include metal porphyrins, oligothiophenes, arylamine-based organic materials, hexanitrilehexaazatriphenylene-based organic materials, quinacridone-based organic materials, and perylene-based organic materials. of organic materials, anthraquinone, polyaniline, and polythiophene-based conductive polymers, but are not limited thereto.
  • the organic light emitting device may include a hole transport layer on the anode (or on the hole injection layer if the hole injection layer exists), if necessary.
  • the hole transport layer is a layer that receives holes from the anode or the hole injection layer and transports the holes to the light emitting layer.
  • a hole transport material it is a material that receives holes from the anode or the hole injection layer and transfers them to the light emitting layer, and has hole mobility. Larger materials are suitable.
  • hole transport material examples include, but are not limited to, arylamine-based organic materials, conductive polymers, and block copolymers having both conjugated and non-conjugated parts.
  • the organic light emitting device may include an electron blocking layer between the hole transport layer and the light emitting layer, if necessary.
  • the electron blocking layer is formed on the hole transport layer, and is preferably provided in contact with the light emitting layer to control hole mobility and prevent excessive movement of electrons to increase the probability of hole-electron coupling, thereby increasing the efficiency of the organic light emitting device.
  • the electron blocking layer includes an electron blocking material, and an example of such an electron blocking material may be an arylamine-based organic material, but is not limited thereto.
  • the light emitting layer used in the present invention means a layer capable of emitting light in the visible ray region by combining holes and electrons transferred from the anode and the cathode.
  • the light emitting layer includes a host material and a dopant material, and in the present invention, the compound represented by Formula 1 and the compound represented by Formula 2 are included as hosts.
  • Chemical Formula 1 may be represented by any one of the following Chemical Formulas 1-1 to 1-11:
  • R 1 , R 2 , Ar 1 , Ar 2 , L 1 , L 2 , a and b are as defined in Chemical Formula 1.
  • R 1 is deuterium, substituted or unsubstituted C 6-60 aryl, or substituted or unsubstituted C 2- including any one or more selected from the group consisting of N, O and S.
  • Ar 1 and Ar 2 are each independently a substituted or unsubstituted C 6-60 aryl, or a substituted or unsubstituted N, O, and S, and any one or more selected from the group consisting of It may be C 2-60 heteroaryl.
  • R 1 is deuterium, phenyl, biphenylyl, terphenylyl, naphthyl, phenanthrenyl, naphthyl phenyl, phenyl naphthyl, dibenzofuranyl, or dibenzothiophenyl;
  • the phenyl, biphenylyl, terphenylyl, naphthyl, phenanthrenyl, naphthyl phenyl, phenyl naphthyl, dibenzofuranyl and dibenzothiophenyl may each independently be unsubstituted or substituted with one or more deuterium atoms.
  • Ar 1 and Ar 2 are each independently phenyl, biphenylyl, terphenylyl, naphthyl, phenanthrenyl, dibenzofuranyl, dibenzothiophenyl, or triphenylsilyl phenyl, wherein Ar 1 and The hydrogens of Ar 2 may each independently be unsubstituted or substituted with deuterium.
  • R 1 Each independently contains at least one selected from the group consisting of hydrogen, deuterium, substituted or unsubstituted C 6-20 aryl, or substituted or unsubstituted N, O and S C 2-20 It may be heteroaryl;
  • each R 1 is independently selected from hydrogen, deuterium, phenyl, biphenylyl, terphenylyl, naphthyl, phenanthrenyl, naphthylphenyl, phenyl naphthyl, dibenzofuranyl, or dibenzothio It may be phenyl, and the hydrogens of the phenyl, biphenylyl, terphenylyl, naphthyl, phenanthrenyl, naphthyl phenyl, phenyl naphthyl, dibenzofuranyl and dibenzothiophenyl are each independently unsubstituted or deuterium can be replaced with
  • each R 1 may independently be hydrogen, deuterium, or any one selected from the group consisting of:
  • Ar 1 and Ar 2 are each independently a substituted or unsubstituted C 6-20 aryl, or a substituted or unsubstituted C containing at least one selected from the group consisting of N, O and S 2-20 heteroaryl;
  • Ar 1 and Ar 2 may each independently be phenyl, biphenylyl, terphenylyl, naphthyl, phenanthrenyl, dibenzofuranyl, dibenzothiophenyl or triphenylsilyl phenyl;
  • the hydrogens of Ar 1 and Ar 2 may each independently be unsubstituted or substituted with deuterium.
  • Ar 1 and Ar 2 may each independently be any one selected from the group consisting of:
  • L 1 and L 2 may each independently be a single bond or a substituted or unsubstituted C 6-20 arylene group;
  • L 1 and L 2 may each independently be a single bond, phenylene, biphenyldiyl, or naphthalenediyl, and the hydrogens of the phenylene, biphenyldiyl, and naphthalenediyl are each independently unsubstituted. or can be substituted with deuterium.
  • the compound represented by Chemical Formula 1 may not contain deuterium or may contain at least one deuterium.
  • the deuterium substitution rate of the compound may be 1% to 100%.
  • the deuterium substitution rate of the compound is 5% or more, 10% or more, 20% or more, 30% or more, 40% or more, 50% or more, 60% or more, 70% or more, 75% or more, 80% or more, Alternatively, it may be 90% or more and 100% or less.
  • the deuterium substitution rate of these compounds is calculated as the number of substituted deuteriums relative to the total number of hydrogens that may exist in the formula. Spectrometer) analysis.
  • the compound represented by '[structural formula] Dn ' refers to a compound in which n hydrogens of the compound having the corresponding 'structural formula' are substituted with deuterium.
  • the compound represented by Chemical Formula 1 can be prepared by, for example, a manufacturing method such as the following Reaction Scheme 1, and other compounds can be prepared similarly.
  • R 1 , R 2 , Ar 1 , Ar 2 , L 1 , L 2 , descriptions of a and b are as defined in Formula 1, X is halogen, and preferably X is chloro or bromo.
  • Scheme 1 is a Suzuki coupling reaction, which is preferably carried out in the presence of a palladium catalyst and a base, and a reactor for the Suzuki coupling reaction may be modified as known in the art.
  • the manufacturing method may be more specific in Preparation Examples to be described later.
  • the compound represented by Chemical Formula 2 may be represented by any one of Chemical Formulas 2-1 to 2-4:
  • Ar 3 , Ar 4 and L 4 to L 6 are as defined in claim 1.
  • Ar 3 and Ar 4 are each independently a substituted or unsubstituted C 6-20 aryl, or a substituted or unsubstituted C containing at least one selected from the group consisting of N, O and S 2-20 heteroaryl;
  • Ar 3 and Ar 4 are each independently selected from phenyl, biphenylyl, terphenylyl, quaterphenylyl, triphenylmethylphenyl, triphenylsilylphenyl, naphthyl, phenanthrenyl, triphenylenyl, fluoranthenyl, chrysenyl, benzo[c]phenanthrenyl, carbazole, phenyl carbazole, dimethylfluorenyl, dibenzofuranyl, or dibenzothiophenyl.
  • Ar 3 and Ar 4 may each independently be any one selected from the group consisting of:
  • L 3 may be a substituted or unsubstituted C 6-60 arylene
  • L 3 may be phenylene, biphenyldiyl, terphenyldiyl, quaterphenyldiyl, naphthalenediyl, phenylnaphthalenediyl, or phenylnaphthalenediyl substituted with one phenyl.
  • L 3 can be any one selected from the group consisting of: .
  • L 4 and L 5 are each independently selected from the group consisting of a single bond, substituted or unsubstituted C 6-20 arylene, or substituted or unsubstituted N, O, and S; It may be a C 2-20 heteroarylene containing
  • L 4 and L 5 may each independently represent a single bond, phenylene, biphenyldiyl, naphthalenediyl, phenylnaphthalenediyl, or carbazoldiyl.
  • L 4 and L 5 may each independently be a single bond or any one selected from the group consisting of:
  • the compound represented by '[structural formula] Dn ' refers to a compound in which n hydrogens of the compound having the corresponding 'structural formula' are substituted with deuterium.
  • the compound represented by Chemical Formula 2 can be prepared by, for example, a manufacturing method such as the following Reaction Scheme 2, and other compounds can be prepared similarly.
  • Ar 3 , Ar 4 and L 4 to L 6 are as defined in Formula 2, X' is halogen, and preferably X' is chloro or bromo.
  • Reaction Scheme 2 is an amine substitution reaction, which is preferably carried out in the presence of a palladium catalyst and a base, and the reactor for the amine substitution reaction can be changed as known in the art.
  • the manufacturing method may be more specific in Preparation Examples to be described later.
  • the weight ratio of the compound represented by Formula 1 and the compound represented by Formula 2 in the light emitting layer is 10:90 to 90:10, more preferably 20:80 to 80:20, 30:70 to 70:30 or 40:60 to 60:40.
  • the light emitting layer may further include a dopant in addition to a host.
  • the dopant material is not particularly limited as long as it is a material used in an organic light emitting device.
  • aromatic amine derivatives are condensed aromatic ring derivatives having a substituted or unsubstituted arylamino group, such as pyrene, anthracene, chrysene, periplanthene, etc.
  • styrylamine compounds include substituted or unsubstituted arylamine is substituted with at least one arylvinyl group, wherein one or two or more substituents selected from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group, and an arylamino group are substituted or unsubstituted.
  • substituents selected from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group, and an arylamino group are substituted or unsubstituted.
  • metal complexes include, but are not limited to, iridium complexes and platinum complexes.
  • any one from the group consisting of the dopant material may be used, but is not limited thereto:
  • the organic light emitting device may include a hole blocking layer between the light emitting layer and the electron transport layer to be described later, if necessary.
  • the hole blocking layer is formed on the light emitting layer, preferably provided in contact with the light emitting layer, to improve the efficiency of the organic light emitting device by controlling electron mobility and preventing excessive movement of holes to increase the probability of hole-electron coupling layers that play a role.
  • the hole blocking layer includes a hole blocking material, and examples of the hole blocking material include azine derivatives including triazine; triazole derivatives; oxadiazole derivatives; phenanthroline derivatives; A compound having an electron withdrawing group such as a phosphine oxide derivative may be used, but is not limited thereto.
  • the organic light emitting device may include an electron transport layer on the light emitting layer, if necessary.
  • the electron transport layer is a layer that receives electrons from the cathode or an electron injection layer formed on the cathode, transports electrons to the light emitting layer, and suppresses the transfer of holes in the light emitting layer.
  • an electron transport material electrons are well injected from the cathode.
  • a material that can be received and transferred to the light emitting layer a material having high electron mobility is suitable.
  • the electron transport material include Al complexes of 8-hydroxyquinoline; Complexes containing Alq 3 ; organic radical compounds; hydroxyflavone-metal complexes and the like, but are not limited thereto.
  • the electron transport layer can be used with any desired cathode material as used according to the prior art.
  • suitable cathode materials are conventional materials having a low work function followed by a layer of aluminum or silver. Specifically cesium, barium, calcium, ytterbium and samarium, followed in each case by a layer of aluminum or silver.
  • the organic light emitting device may further include an electron injection layer on the light emitting layer (or on the electron transport layer when the electron transport layer is present), if necessary.
  • the electron injection layer is a layer for injecting electrons from an electrode, has the ability to transport electrons, has an excellent electron injection effect from a cathode, an excellent electron injection effect for a light emitting layer or a light emitting material, and injects holes of excitons generated in the light emitting layer. It is preferable to use a compound that prevents migration to a layer and has excellent thin film forming ability.
  • materials that can be used as the electron injection layer include fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, preore nylidene methane, anthrone, etc. and their derivatives, metal complex compounds, nitrogen-containing 5-membered ring derivatives, etc., but are not limited thereto.
  • Examples of the metal complex compound include 8-hydroxyquinolinato lithium, bis(8-hydroxyquinolinato)zinc, bis(8-hydroxyquinolinato)copper, bis(8-hydroxyquinolinato)manganese, Tris(8-hydroxyquinolinato) aluminum, tris(2-methyl-8-hydroxyquinolinato) aluminum, tris(8-hydroxyquinolinato) gallium, bis(10-hydroxybenzo[h] Quinolinato) beryllium, bis(10-hydroxybenzo[h]quinolinato)zinc, bis(2-methyl-8-quinolinato)chlorogallium, bis(2-methyl-8-quinolinato)( There are o-cresolato) gallium, bis(2-methyl-8-quinolinato)(1-naphtolato)aluminum, and bis(2-methyl-8-quinolinato)(2-naphtolato)gallium. Not limited to this.
  • the "electron injection and transport layer” is a layer that performs both the roles of the electron injection layer and the electron transport layer, and materials that play the role of each layer may be used alone or in combination, but are limited thereto. It doesn't work.
  • FIGS. 1 and 2 The structure of the organic light emitting device according to the present invention is illustrated in FIGS. 1 and 2 .
  • 1 shows an example of an organic light emitting device composed of a substrate 1, an anode 2, a light emitting layer 3, and a cathode 4.
  • 2 shows a substrate (1), an anode (2), a hole injection layer (5), a hole transport layer (6), an electron blocking layer (7), a light emitting layer (3), a hole blocking layer (8), an electron injection and transport layer ( 9) and an example of an organic light emitting element composed of a cathode 4 is shown.
  • the organic light emitting device according to the present invention can be manufactured by sequentially stacking the above-described components. At this time, by using a physical vapor deposition (PVD) method such as sputtering or e-beam evaporation, depositing a metal or a metal oxide having conductivity or an alloy thereof on the substrate to form an anode And, after forming each of the above-mentioned layers thereon, it can be manufactured by depositing a material that can be used as a cathode thereon.
  • PVD physical vapor deposition
  • an organic light emitting device may be manufactured by sequentially depositing a cathode material on a substrate and an anode material in the reverse order of the above configuration (WO 2003/012890).
  • the light emitting layer may be formed by a solution coating method as well as a vacuum deposition method of a host and a dopant.
  • the solution coating method means spin coating, dip coating, doctor blading, inkjet printing, screen printing, spraying, roll coating, etc., but is not limited to these.
  • the organic light emitting device according to the present invention may be a bottom emission device, a top emission device, or a double-sided light emitting device, and in particular, may be a bottom emission device requiring relatively high light emitting efficiency.
  • Trifluoromethanesulfonic anhydride (95.9 g, 340 mmol) and Deuterium oxide (34 g, 1699.8 mmol) were added and stirred for 5 hours to form a solution at 0 °C.
  • 1-bromodibenzo[b,d]furan (15 g, 60.7 mmol) was added to 120 ml of 1,2,4-trichlorobenzene and stirred. After that, the prepared mixed solution of Trifluoromethanesulfonic anhydride and Deuterium oxide was slowly added dropwise to the mixed solution of 1-bromodibenzo[b,d]furan and 1,2,4-trichlorobenzene, and the temperature was raised to 140 °C and stirred while maintaining.
  • Trifluoromethanesulfonic anhydride (119.9 g, 424.9 mmol) and Deuterium oxide (42.6 g, 2124.7 mmol) were added and stirred for 5 hours to form a solution at 0 °C.
  • 1-bromodibenzo[b,d]furan (15 g, 60.7 mmol) was added to 120 ml of 1,2,4-trichlorobenzene and stirred.
  • the prepared mixed solution of Trifluoromethanesulfonic anhydride and Deuterium oxide was slowly added dropwise to the mixed solution of 1-bromodibenzo[b,d]furan and 1,2,4-trichlorobenzene, and the temperature was raised to 140 °C and stirred while maintaining.
  • Trifluoromethanesulfonic anhydride (167.8 g, 594.9 mmol) and Deuterium oxide (59.6 g, 2974.6 mmol) were added at 0 ° C and stirred for 5 hours to form a solution.
  • 1-bromodibenzo[b,d]furan (15 g, 60.7 mmol) was added to 120 ml of 1,2,4-trichlorobenzene and stirred. After that, the prepared mixed solution of Trifluoromethanesulfonic anhydride and Deuterium oxide was slowly added dropwise to the mixed solution of 1-bromodibenzo[b,d]furan and 1,2,4-trichlorobenzene, and the temperature was raised to 140 °C and stirred while maintaining.
  • Trifluoromethanesulfonic anhydride (60.1 g, 213.1 mmol) and Deuterium oxide (21.4 g, 1065.6 mmol) were added and stirred for 5 hours to form a solution at 0 °C.
  • 1-bromo-7-chlorodibenzo[b,d]furan (15 g, 53.3 mmol) was added to 120 ml of 1,2,4-trichlorobenzene and stirred.
  • Trifluoromethanesulfonic anhydride (45.1 g, 159.8 mmol) and Deuterium oxide (16 g, 799.2 mmol) were added and stirred for 5 hours to form a solution at 0 °C.
  • 1-bromo-7-chlorodibenzo[b,d]furan (15 g, 53.3 mmol) was added to 120 ml of 1,2,4-trichlorobenzene and stirred.
  • Trifluoromethanesulfonic anhydride (60.1 g, 213.1 mmol) and Deuterium oxide (21.4 g, 1065.6 mmol) were added and stirred for 5 hours to form a solution at 0 °C.
  • 1-bromo-4-chlorodibenzo[b,d]furan (15 g, 53.3 mmol) was added to 120 ml of 1,2,4-trichlorobenzene and stirred.
  • Trifluoromethanesulfonic anhydride (30.1 g, 106.6 mmol) and Deuterium oxide (10.7 g, 532.8 mmol) were added and stirred for 5 hours to form a solution at 0 °C.
  • 1-bromo-8-chlorodibenzo[b,d]furan (15 g, 53.3 mmol) was added to 120 ml of 1,2,4-trichlorobenzene and stirred.
  • a solution was prepared by adding trifluoromethanesulfonic anhydride (48 g, 170 mmol) and Deuterium oxide (17 g, 849.9 mmol) and stirring for 5 hours at 0 °C.
  • 1-bromodibenzo[b,d]furan (15 g, 60.7 mmol) was added to 120 ml of 1,2,4-trichlorobenzene and stirred.
  • the prepared mixed solution of Trifluoromethanesulfonic anhydride and Deuterium oxide was slowly added dropwise to the mixed solution of 1-bromodibenzo[b,d]furan and 1,2,4-trichlorobenzene, and the temperature was raised to 140 °C and stirred while maintaining.
  • Trifluoromethanesulfonic anhydride (30.1 g, 106.6 mmol) and Deuterium oxide (10.7 g, 532.8 mmol) were added and stirred for 5 hours to form a solution at 0 °C.
  • 1-bromo-4-chlorodibenzo[b,d]furan (15 g, 53.3 mmol) was added to 120 ml of 1,2,4-trichlorobenzene and stirred.
  • Trifluoromethanesulfonic anhydride (30.1 g, 106.6 mmol) and Deuterium oxide (10.7 g, 532.8 mmol) were added and stirred for 5 hours to form a solution at 0 °C.
  • 1-bromo-7-chlorodibenzo[b,d]furan (15 g, 53.3 mmol) was added to 120 ml of 1,2,4-trichlorobenzene and stirred.
  • 9H-carbazole (10 g, 59.8 mmol), 5-bromo-2-chloro-1,1'-biphenyl (16.8 g, 62.8 mmol), and sodium tert-butoxide (7.5 g, 77.7 mmol) were mixed with Xylene 200 in a nitrogen atmosphere. ml, stirred and refluxed. After that, bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After 3 hours, the reaction was completed, cooled to room temperature, and the solvent was removed under reduced pressure.
  • 9H-carbazole (10 g, 59.8 mmol), 4-bromo-4'-chloro-1,1'-biphenyl (16.8 g, 62.8 mmol), and sodium tert-butoxide (7.5 g, 77.7 mmol) were mixed with Xylene in a nitrogen atmosphere. It was added to 200 ml and stirred and refluxed. After that, bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After 3 hours, the reaction was completed, cooled to room temperature, and the solvent was removed under reduced pressure.
  • 9H-carbazole (10 g, 59.8 mmol), 1-bromo-4-(4-chlorophenyl)naphthalene (19.9 g, 62.8 mmol), and sodium tert-butoxide (7.5 g, 77.7 mmol) were mixed in 200 ml of xylene in a nitrogen atmosphere. added, stirred and refluxed. After that, bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After 2 hours, the reaction was completed, cooled to room temperature, and the solvent was removed under reduced pressure.
  • 9H-carbazole (10 g, 59.8 mmol), 2-bromo-4'-chloro-1,1'-biphenyl (16.8 g, 62.8 mmol), and sodium tert-butoxide (7.5 g, 77.7 mmol) were mixed with Xylene in a nitrogen atmosphere. It was added to 200 ml and stirred and refluxed. After that, bis(tri-tert-butylphosphine)palladium(0) (0.3 g, 0.6 mmol) was added. After 2 hours, the reaction was completed, cooled to room temperature, and the solvent was removed under reduced pressure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Organic Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 구동 전압, 효율 및 수명이 개선된 유기 발광 소자를 제공한다.

Description

유기 발광 소자
관련 출원(들)과의 상호 인용
본 출원은 2021년 7월 21일자 한국 특허 출원 제10-2021-0095969호 및 2022년 7월 21일자 한국 특허 출원 제10-2022-0090385호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 구동 전압, 효율 및 수명이 개선된 유기 발광 소자에 관한 것이다.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 넓은 시야각, 우수한 콘트라스트, 빠른 응답 시간을 가지며, 휘도, 구동 전압 및 응답 속도 특성이 우수하여 많은 연구가 진행되고 있다.
유기 발광 소자는 일반적으로 양극과 음극 및 상기 양극과 음극 사이에 유기물 층을 포함하는 구조를 가진다. 상기 유기물 층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루어질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다.
상기와 같은 유기 발광 소자에 사용되는 유기물에 대하여 새로운 재료의 개발이 지속적으로 요구되고 있다.
선행기술문헌
특허문헌
(특허문헌 1) 한국특허 공개번호 제10-2000-0051826호
본 발명은 구동 전압, 효율 및 수명이 개선된 유기 발광 소자에 관한 것이다.
본 발명은 하기의 유기 발광 소자를 제공한다:
양극;
음극; 및
상기 양극과 음극 사이의 발광층을 포함하고,
상기 발광층은 하기 화학식 1로 표시되는 화합물 및 하기 화학식 2로 표시되는 화합물을 포함하는,
유기 발광 소자:
[화학식 1]
Figure PCTKR2022010727-appb-img-000001
상기 화학식 1에서,
R1은 각각 독립적으로, 수소, 중수소, 치환 또는 비치환된 C6-60 아릴, 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴이고,
R2는 각각 독립적으로, 수소, 또는 중수소이고,
Ar1 및 Ar2는 각각 독립적으로, 치환 또는 비치환된 C6-60 아릴, 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴이되,
R1이 각각 독립적으로, 수소, 또는 중수소일 때, Ar1 및 Ar2 중 적어도 하나는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴이고,
L1 및 L2는 각각 독립적으로, 단일결합, 또는 치환 또는 비치환된 C6-60 아릴렌이고,
a는 1 내지 7의 정수이고,
b는 1 내지 6의 정수이고,
상기 화학식 1로 표시되는 화합물은 중수소를 포함하지 않거나 하나 이상의 중수소를 포함할 수 있고,
[화학식 2]
Figure PCTKR2022010727-appb-img-000002
상기 화학식 2에서,
A는 인접한 고리와 융합된 벤젠 고리 또는 나프탈렌 고리이고,
Ar3 및 Ar4는 각각 독립적으로, 치환 또는 비치환된 C6-60 아릴, 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴이고,
L3는 치환 또는 비치환된 C6-60 아릴렌이고,
L4 및 L5는 각각 독립적으로, 단일결합, 치환 또는 비치환된 C6-60 아릴렌, 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴렌이다.
상술한 유기 발광 소자는 발광층에 상기 화학식 1로 표시되는 화합물 및 상기 화학식 2로 표시되는 화합물을 포함함으로써, 유기 발광 소자에서 효율의 향상, 낮은 구동전압 및/또는 수명 특성을 향상시킬 수 있다.
도 1은 기판(1), 양극(2), 발광층(3) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
도 2는 기판 (1), 양극(2), 정공주입층(5), 정공수송층(6), 전자저지층(7), 발광층(3), 정공저지층(8), 전자주입 및 수송층(9) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
이하, 본 발명의 이해를 돕기 위하여 보다 상세히 설명한다.
본 명세서에서,
Figure PCTKR2022010727-appb-img-000003
또는
Figure PCTKR2022010727-appb-img-000004
는 다른 치환기에 연결되는 결합을 의미한다.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 할로겐기; 니트릴기; 니트로기; 히드록시기; 카보닐기; 에스테르기; 이미드기; 아미노기; 포스핀옥사이드기; 알콕시기; 아릴옥시기; 알킬티옥시기; 아릴티옥시기; 알킬술폭시기; 아릴술폭시기; 실릴기; 붕소기; 알킬기; 사이클로알킬기; 알케닐기; 아릴기; 아르알킬기; 아르알케닐기; 알킬아릴기; 알킬아민기; 아랄킬아민기; 헤테로아릴아민기; 아릴아민기; 아릴포스핀기; 또는 N, O 및 S 원자 중 1개 이상을 포함하는 헤테로아릴기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환 또는 비치환된 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 비페닐기일 수 있다. 즉, 비페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수 있다.
본 명세서에서 카보닐기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 40인 것이 바람직하다. 구체적으로 하기와 같은 구조의 치환기가 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2022010727-appb-img-000005
본 명세서에 있어서, 에스테르기는 에스테르기의 산소가 탄소수 1 내지 25의 직쇄, 분지쇄 또는 고리쇄 알킬기 또는 탄소수 6 내지 25의 아릴기로 치환될 수 있다. 구체적으로, 하기 구조식의 치환기가 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2022010727-appb-img-000006
본 명세서에 있어서, 이미드기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 25인 것이 바람직하다. 구체적으로 하기와 같은 구조의 치환기가 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2022010727-appb-img-000007
본 명세서에 있어서, 실릴기는 구체적으로 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나 이에 한정되지 않는다.
본 명세서에 있어서, 붕소기는 구체적으로 트리메틸붕소기, 트리에틸붕소기, t-부틸디메틸붕소기, 트리페닐붕소기, 페닐붕소기 등이 있으나 이에 한정되지 않는다.
본 명세서에 있어서, 할로겐기의 예로는 불소, 염소, 브롬 또는 요오드가 있다.
본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 6이다. 알킬기의 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸-부틸, 1-에틸-부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 헥실, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸헥실, 사이클로펜틸메틸, 사이클로헥실메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸-프로필, 1,1-디메틸-프로필, 이소헥실, 2-메틸펜틸, 4-메틸헥실, 5-메틸헥실 등이 있으나, 이들에 한정되지 않는다.
본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 6이다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸-1-부테닐, 1,3-부타디에닐, 알릴, 1-페닐비닐-1-일, 2-페닐비닐-1-일, 2,2-디페닐비닐-1-일, 2-페닐-2-(나프틸-1-일)비닐-1-일, 2,2-비스(디페닐-1-일)비닐-1-일, 스틸베닐기, 스티레닐기 등이 있으나 이들에 한정되지 않는다.
본 명세서에 있어서, 사이클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 일 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 30이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 20이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 6이다. 구체적으로 사이클로프로필, 사이클로부틸, 사이클로펜틸, 3-메틸사이클로펜틸, 2,3-디메틸사이클로펜틸, 사이클로헥실, 3-메틸사이클로헥실, 4-메틸사이클로헥실, 2,3-디메틸사이클로헥실, 3,4,5-트리메틸사이클로헥실, 4-tert-부틸사이클로헥실, 사이클로헵틸, 사이클로옥틸 등이 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나 탄소수 6 내지 60인 것이 바람직하며, 단환식 아릴기 또는 다환식 아릴기일 수 있다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 20이다. 상기 아릴기가 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트릴기, 파이레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 플루오레닐기는 치환될 수 있고, 치환기 2개가 서로 결합하여 스피로 구조를 형성할 수 있다. 상기 플루오레닐기가 치환되는 경우,
Figure PCTKR2022010727-appb-img-000008
등이 될 수 있다. 다만, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 헤테로아릴기는 이종 원소로 O, N, Si 및 S 중 1개 이상을 포함하는 헤테로아릴기로서, 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 60인 것이 바람직하다. 일 실시상태에 따르면, 상기 헤테로아릴기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 헤테로아릴기의 탄소수는 6 내지 20이다. 헤테로아릴기의 예로는 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤조옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기, 페난쓰롤린기(phenanthroline), 이소옥사졸릴기, 티아디아졸릴기, 페노티아지닐기 및 디벤조퓨라닐기 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서에 있어서, 아르알킬기, 아르알케닐기, 알킬아릴기, 아릴아민기 중의 아릴기는 전술한 아릴기의 예시와 같다. 본 명세서에 있어서, 아르알킬기, 알킬아릴기, 알킬아민기 중 알킬기는 전술한 알킬기의 예시와 같다. 본 명세서에 있어서, 헤테로아릴아민 중 헤테로아릴은 전술한 헤테로아릴기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 아르알케닐기 중 알케닐기는 전술한 알케닐기의 예시와 같다. 본 명세서에 있어서, 아릴렌은 2가기인 것을 제외하고는 전술한 아릴기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로아릴렌은 2가기인 것을 제외하고는 전술한 헤테로아릴기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 탄화수소 고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 아릴기 또는 사이클로알킬기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로아릴은 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 헤테로아릴기에 관한 설명이 적용될 수 있다.
본 명세서 있어서, 용어 "중수소화된 또는 중수소로 치환된"이란, 각 화학식에서 적어도 하나의 이용가능한 수소가 중수소로 치환된 것을 의미한다. 구체적으로, 각 화학식 또는 치환기의 정의에서 중수소로 치환된다는 것은, 분자 내 수소가 결합될 수 있는 위치 중 적어도 하나 이상이 중수소로 치환되는 것을 의미한다.
또한, 본 명세서에 있어서, 용어 "중수소 치환율"이란, 각 화학식에 존재할 수 있는 수소의 총 개수 대비 치환된 중수소의 개수의 백분율을 의미한다.
이하, 각 구성 별로 본 발명을 상세히 설명한다.
양극 및 음극
본 발명에서 사용되는 양극 및 음극은, 유기 발광 소자에서 사용되는 전극을 의미한다.
상기 양극 물질로는 통상 유기물 층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 상기 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO2:Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 상기 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.
정공주입층
본 발명에 따른 유기 발광 소자는, 필요에 따라 상기 양극 상에 정공주입층을 추가로 포함할 수 있다.
상기 정공주입층은 전극으로부터 정공을 주입하는 층으로, 정공 주입 물질로는 정공을 수송하는 능력을 가져 양극에서의 정공 주입효과, 발광층 또는 발광재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층에서 생성된 여기자의 전자주입층 또는 전자주입재료에의 이동을 방지하며, 또한, 박막 형성 능력이 우수한 화합물이 바람직하다. 또한, 정공 주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물 층의 HOMO 사이인 것이 바람직하다.
정공 주입 물질의 구체적인 예로는 금속 포피린(porphyrin), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone)계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
정공수송층
본 발명에 따른 유기 발광 소자는, 필요에 따라 상기 양극 상에(또는 정공주입층이 존재하는 경우 정공주입층 상에) 정공수송층을 포함할 수 있다.
상기 정공수송층은 양극 또는 정공주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 층으로, 정공 수송 물질로 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다.
상기 정공 수송 물질의 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다.
전자차단층
본 발명에 따른 유기 발광 소자는 필요에 따라 정공수송층과 발광층 사이에 전자차단층을 포함할 수 있다. 상기 전자차단층은 상기 정공수송층 상에 형성되어, 바람직하게는 발광층에 접하여 구비되어, 정공이동도를 조절하고, 전자의 과다한 이동을 방지하여 정공-전자간 결합 확률을 높여줌으로써 유기 발광 소자의 효율을 개선하는 역할을 하는 층을 의미한다. 상기 전자차단층은 전자저지물질을 포함하고, 이러한 전자저지물질의 예로 아릴아민 계열의 유기물 등을 사용할 수 있으나, 이에 한정되는 것은 아니다.
발광층
본 발명에서 사용되는 발광층은, 양극과 음극으로부터 전달받은 정공과 전자를 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 층을 의미한다. 일반적으로, 발광층은 호스트 재료와 도펀트 재료를 포함하며, 본 발명에는 상기 화학식 1로 표시되는 화합물 및 상기 화학식 2로 표시되는 화합물을 호스트로 포함한다.
바람직하게는, 상기 화학식 1은 하기 화학식 1-1 내지 화학식 1-11 중 어느 하나로 표시될 수 있다:
Figure PCTKR2022010727-appb-img-000009
상기 화학식 1-1 내지 화학식 1-11에서,
R1, R2, Ar1, Ar2, L1, L2, a 및 b에 대한 설명은 화학식 1에서 정의한 바와 같다.
바람직하게는, R1 중 적어도 하나는 중수소, 치환 또는 비치환된 C6-60 아릴, 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴이고, Ar1 및 Ar2는 각각 독립적으로, 치환 또는 비치환된 C6-60 아릴, 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴일 수 있다.
보다 바람직하게는, R1 중 적어도 하나는 중수소, 페닐, 비페닐릴, 터페닐릴, 나프틸, 페난트레닐, 나프틸 페닐, 페닐 나프틸, 디벤조퓨라닐, 또는 디벤조티오페닐이고, 상기 페닐, 비페닐릴, 터페닐릴, 나프틸, 페난트레닐, 나프틸 페닐, 페닐 나프틸, 디벤조퓨라닐 및 디벤조티오페닐은 각각 독립적으로 비치환되거나 1개 이상의 중수소로 치환될 수 있고, Ar1 및 Ar2는 각각 독립적으로, 페닐, 비페닐릴, 터페닐릴, 나프틸, 페난트레닐, 디벤조퓨라닐, 디벤조티오페닐, 또는 트리페닐실릴 페닐이고, 상기 Ar1 및 Ar2의 수소가 각각 독립적으로, 비치환되거나 중수소로 치환될 수 있다.
바람직하게는, R1은 각각 독립적으로, 수소, 중수소, 치환 또는 비치환된 C6-20 아릴, 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-20 헤테로아릴일 수 있고,
보다 바람직하게는, R1은 각각 독립적으로, 수소, 중수소, 페닐, 비페닐릴, 터페닐릴, 나프틸, 페난트레닐, 나프틸 페닐, 페닐 나프틸, 디벤조퓨라닐, 또는 디벤조티오페닐일 수 있고, 상기 페닐, 비페닐릴, 터페닐릴, 나프틸, 페난트레닐, 나프틸 페닐, 페닐 나프틸, 디벤조퓨라닐 및 디벤조티오페닐의 수소가 각각 독립적으로 비치환되거나 중수소로 치환될 수 있다.
가장 바람직하게는, R1은 각각 독립적으로, 수소, 중수소, 또는 하기로 구성되는 군으로부터 선택되는 어느 하나일 수 있다:
Figure PCTKR2022010727-appb-img-000010
바람직하게는, Ar1 및 Ar2는 각각 독립적으로, 치환 또는 비치환된 C6-20 아릴, 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-20 헤테로아릴일 수 있고,
보다 바람직하게는, Ar1 및 Ar2는 각각 독립적으로, 페닐, 비페닐릴, 터페닐릴, 나프틸, 페난트레닐, 디벤조퓨라닐, 디벤조티오페닐 또는 트리페닐실릴 페닐일 수 있고, 상기 Ar1 및 Ar2의 수소가 각각 독립적으로, 비치환되거나 중수소로 치환될 수 있다.
가장 바람직하게는, Ar1 및 Ar2는 각각 독립적으로, 하기로 구성되는 군으로부터 선택되는 어느 하나일 수 있다:
Figure PCTKR2022010727-appb-img-000011
바람직하게는, L1 및 L2는 각각 독립적으로, 단일결합, 또는 치환 또는 비치환된 C6-20 아릴렌일 수 있고,
보다 바람직하게는, L1 및 L2는 각각 독립적으로, 단일결합, 페닐렌, 비페닐디일, 또는 나프탈렌디일일 수 있고, 상기 페닐렌, 비페닐디일 및 나프탈렌디일의 수소가 각각 독립적으로 비치환되거나 중수소로 치환될 수 있다.
또한, 상기 화학식 1로 표시되는 화합물은 중수소를 포함하지 않거나, 또는 1개 이상의 중수소를 포함할 수 있다.
일 예로, 상기 화합물이 중수소를 포함하는 경우, 화합물의 중수소 치환율은 1% 내지 100%일 수 있다. 구체적으로는, 상기 화합물의 중수소 치환율은 5% 이상, 10% 이상, 20% 이상, 30% 이상, 40% 이상, 50% 이상, 60% 이상, 70% 이상, 75% 이상, 80% 이상, 또는 90% 이상이면서, 100% 이하일 수 있다. 이러한 화합물의 중수소 치환율은 화학식 내 존재할 수 있는 수소의 총 개수 대비 치환된 중수소의 개수로 계산되며, 이때 치환된 중수소의 개수는 MALDI-TOF MS(Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometer) 분석을 통해 구해질 수 있다.
상기 화학식 1로 표시되는 화합물의 대표적인 예는 다음과 같다:
Figure PCTKR2022010727-appb-img-000012
Figure PCTKR2022010727-appb-img-000013
Figure PCTKR2022010727-appb-img-000014
Figure PCTKR2022010727-appb-img-000015
Figure PCTKR2022010727-appb-img-000016
Figure PCTKR2022010727-appb-img-000017
Figure PCTKR2022010727-appb-img-000018
Figure PCTKR2022010727-appb-img-000019
Figure PCTKR2022010727-appb-img-000020
Figure PCTKR2022010727-appb-img-000021
Figure PCTKR2022010727-appb-img-000022
Figure PCTKR2022010727-appb-img-000023
Figure PCTKR2022010727-appb-img-000024
Figure PCTKR2022010727-appb-img-000025
Figure PCTKR2022010727-appb-img-000026
Figure PCTKR2022010727-appb-img-000027
Figure PCTKR2022010727-appb-img-000028
Figure PCTKR2022010727-appb-img-000029
Figure PCTKR2022010727-appb-img-000030
Figure PCTKR2022010727-appb-img-000031
Figure PCTKR2022010727-appb-img-000032
Figure PCTKR2022010727-appb-img-000033
Figure PCTKR2022010727-appb-img-000034
.
상기 화합물에서 '[구조식]Dn'으로 표시된 화합물은 해당 '구조식'을 갖는 화합물 중 n개의 수소가 중수소로 치환된 화합물을 의미한다.
상기 화학식 1로 표시되는 화합물은 일례로 하기 반응식 1과 같은 제조 방법으로 제조할 수 있으며, 그 외 나머지 화합물도 유사하게 제조할 수 있다.
[반응식 1]
Figure PCTKR2022010727-appb-img-000035
상기 반응식 1에서, R1, R2, Ar1, Ar2, L1, L2, a 및 b에 대한 설명은 상기 화학식 1에서 정의한 바와 같으며, X는 할로겐이고, 바람직하게는 X는 클로로 또는 브로모이다.
상기 반응식 1은 스즈키 커플링 반응으로서, 팔라듐 촉매와 염기 존재 하에 수행하는 것이 바람직하며, 스즈키 커플링 반응을 위한 반응기는 당업계에 알려진 바에 따라 변경이 가능하다. 상기 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다.
바람직하게는, 상기 화학식 2로 표시되는 화합물은 하기 화학식 2-1 내지 화학식 2-4 중 어느 하나로 표시될 수 있다:
[화학식 2-1]
Figure PCTKR2022010727-appb-img-000036
[화학식 2-2]
Figure PCTKR2022010727-appb-img-000037
[화학식 2-3]
Figure PCTKR2022010727-appb-img-000038
[화학식 2-4]
Figure PCTKR2022010727-appb-img-000039
상기 화학식 2-1 내지 화학식 2-4에서,
Ar3, Ar4 및 L4 내지 L6는 제1항에서 정의한 바와 같다.
바람직하게는, Ar3 및 Ar4는 각각 독립적으로, 치환 또는 비치환된 C6-20 아릴, 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-20 헤테로아릴일 수 있고,
보다 바람직하게는, Ar3 및 Ar4는 각각 독립적으로, 페닐, 비페닐릴, 터페닐릴, 쿼터페닐릴, 트리페닐메틸 페닐, 트리페닐실릴 페닐, 나프틸, 페난트레닐, 트리페닐레닐, 플루오란테닐, 크라이세닐, 벤조[c]페난트레닐, 카바졸, 페닐 카바졸, 디메틸플루오레닐, 디벤조퓨라닐, 또는 디벤조티오페닐일 수 있다.
가장 바람직하게는, Ar3 및 Ar4는 각각 독립적으로, 하기로 구성되는 군으로부터 선택되는 어느 하나일 수 있다:
Figure PCTKR2022010727-appb-img-000040
바람직하게는, L3는 치환 또는 비치환된 C6-60 아릴렌일 수 있고,
보다 바람직하게는, L3는 페닐렌, 비페닐디일, 터페닐디일, 쿼터페닐디일, 나프탈렌디일, 페닐나프탈렌디일, 또는 1개의 페닐로 치환된 페닐나프탈렌디일일 수 있다.
가장 바람직하게는, L3는 하기로 구성되는 군으로부터 선택되는 어느 하나일 수 있다:
Figure PCTKR2022010727-appb-img-000041
.
바람직하게는, L4 및 L5는 각각 독립적으로, 단일결합, 치환 또는 비치환된 C6-20 아릴렌, 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-20 헤테로아릴렌일 수 있고,
보다 바람직하게는, L4 및 L5는 각각 독립적으로, 단일결합, 페닐렌, 비페닐디일, 나프탈렌디일, 페닐나프탈렌디일, 또는 카바졸디일일 수 있다.
가장 바람직하게는, L4 및 L5는 각각 독립적으로, 단일결합, 또는 하기로 구성되는 군으로부터 선택되는 어느 하나일 수 있다:
Figure PCTKR2022010727-appb-img-000042
.
상기 화학식 2로 표시되는 화합물의 대표적인 예는 다음과 같다:
Figure PCTKR2022010727-appb-img-000043
Figure PCTKR2022010727-appb-img-000044
Figure PCTKR2022010727-appb-img-000045
Figure PCTKR2022010727-appb-img-000046
Figure PCTKR2022010727-appb-img-000047
Figure PCTKR2022010727-appb-img-000048
Figure PCTKR2022010727-appb-img-000049
Figure PCTKR2022010727-appb-img-000050
Figure PCTKR2022010727-appb-img-000051
Figure PCTKR2022010727-appb-img-000052
Figure PCTKR2022010727-appb-img-000053
Figure PCTKR2022010727-appb-img-000054
Figure PCTKR2022010727-appb-img-000055
Figure PCTKR2022010727-appb-img-000056
Figure PCTKR2022010727-appb-img-000057
Figure PCTKR2022010727-appb-img-000058
Figure PCTKR2022010727-appb-img-000059
Figure PCTKR2022010727-appb-img-000060
Figure PCTKR2022010727-appb-img-000061
Figure PCTKR2022010727-appb-img-000062
Figure PCTKR2022010727-appb-img-000063
Figure PCTKR2022010727-appb-img-000064
Figure PCTKR2022010727-appb-img-000065
Figure PCTKR2022010727-appb-img-000066
Figure PCTKR2022010727-appb-img-000067
Figure PCTKR2022010727-appb-img-000068
Figure PCTKR2022010727-appb-img-000069
Figure PCTKR2022010727-appb-img-000070
Figure PCTKR2022010727-appb-img-000071
Figure PCTKR2022010727-appb-img-000072
Figure PCTKR2022010727-appb-img-000073
Figure PCTKR2022010727-appb-img-000074
Figure PCTKR2022010727-appb-img-000075
Figure PCTKR2022010727-appb-img-000076
Figure PCTKR2022010727-appb-img-000077
Figure PCTKR2022010727-appb-img-000078
Figure PCTKR2022010727-appb-img-000079
Figure PCTKR2022010727-appb-img-000080
Figure PCTKR2022010727-appb-img-000081
Figure PCTKR2022010727-appb-img-000082
Figure PCTKR2022010727-appb-img-000083
Figure PCTKR2022010727-appb-img-000084
Figure PCTKR2022010727-appb-img-000085
Figure PCTKR2022010727-appb-img-000086
Figure PCTKR2022010727-appb-img-000087
Figure PCTKR2022010727-appb-img-000088
Figure PCTKR2022010727-appb-img-000089
Figure PCTKR2022010727-appb-img-000090
Figure PCTKR2022010727-appb-img-000091
Figure PCTKR2022010727-appb-img-000092
Figure PCTKR2022010727-appb-img-000093
Figure PCTKR2022010727-appb-img-000094
Figure PCTKR2022010727-appb-img-000095
Figure PCTKR2022010727-appb-img-000096
Figure PCTKR2022010727-appb-img-000097
Figure PCTKR2022010727-appb-img-000098
Figure PCTKR2022010727-appb-img-000099
Figure PCTKR2022010727-appb-img-000100
Figure PCTKR2022010727-appb-img-000101
Figure PCTKR2022010727-appb-img-000102
Figure PCTKR2022010727-appb-img-000103
Figure PCTKR2022010727-appb-img-000104
Figure PCTKR2022010727-appb-img-000105
Figure PCTKR2022010727-appb-img-000106
Figure PCTKR2022010727-appb-img-000107
Figure PCTKR2022010727-appb-img-000108
Figure PCTKR2022010727-appb-img-000109
Figure PCTKR2022010727-appb-img-000110
Figure PCTKR2022010727-appb-img-000111
Figure PCTKR2022010727-appb-img-000112
Figure PCTKR2022010727-appb-img-000113
Figure PCTKR2022010727-appb-img-000114
Figure PCTKR2022010727-appb-img-000115
Figure PCTKR2022010727-appb-img-000116
Figure PCTKR2022010727-appb-img-000117
Figure PCTKR2022010727-appb-img-000118
Figure PCTKR2022010727-appb-img-000119
Figure PCTKR2022010727-appb-img-000120
Figure PCTKR2022010727-appb-img-000121
Figure PCTKR2022010727-appb-img-000122
Figure PCTKR2022010727-appb-img-000123
Figure PCTKR2022010727-appb-img-000124
Figure PCTKR2022010727-appb-img-000125
Figure PCTKR2022010727-appb-img-000126
Figure PCTKR2022010727-appb-img-000127
Figure PCTKR2022010727-appb-img-000128
Figure PCTKR2022010727-appb-img-000129
Figure PCTKR2022010727-appb-img-000130
Figure PCTKR2022010727-appb-img-000131
Figure PCTKR2022010727-appb-img-000132
Figure PCTKR2022010727-appb-img-000133
Figure PCTKR2022010727-appb-img-000134
Figure PCTKR2022010727-appb-img-000135
Figure PCTKR2022010727-appb-img-000136
Figure PCTKR2022010727-appb-img-000137
Figure PCTKR2022010727-appb-img-000138
Figure PCTKR2022010727-appb-img-000139
Figure PCTKR2022010727-appb-img-000140
Figure PCTKR2022010727-appb-img-000141
Figure PCTKR2022010727-appb-img-000142
Figure PCTKR2022010727-appb-img-000143
Figure PCTKR2022010727-appb-img-000144
Figure PCTKR2022010727-appb-img-000145
Figure PCTKR2022010727-appb-img-000146
Figure PCTKR2022010727-appb-img-000147
Figure PCTKR2022010727-appb-img-000148
Figure PCTKR2022010727-appb-img-000149
Figure PCTKR2022010727-appb-img-000150
Figure PCTKR2022010727-appb-img-000151
Figure PCTKR2022010727-appb-img-000152
Figure PCTKR2022010727-appb-img-000153
Figure PCTKR2022010727-appb-img-000154
Figure PCTKR2022010727-appb-img-000155
Figure PCTKR2022010727-appb-img-000156
Figure PCTKR2022010727-appb-img-000157
Figure PCTKR2022010727-appb-img-000158
Figure PCTKR2022010727-appb-img-000159
Figure PCTKR2022010727-appb-img-000160
Figure PCTKR2022010727-appb-img-000161
Figure PCTKR2022010727-appb-img-000162
Figure PCTKR2022010727-appb-img-000163
Figure PCTKR2022010727-appb-img-000164
Figure PCTKR2022010727-appb-img-000165
Figure PCTKR2022010727-appb-img-000166
Figure PCTKR2022010727-appb-img-000167
Figure PCTKR2022010727-appb-img-000168
Figure PCTKR2022010727-appb-img-000169
Figure PCTKR2022010727-appb-img-000170
Figure PCTKR2022010727-appb-img-000171
Figure PCTKR2022010727-appb-img-000172
Figure PCTKR2022010727-appb-img-000173
Figure PCTKR2022010727-appb-img-000174
Figure PCTKR2022010727-appb-img-000175
Figure PCTKR2022010727-appb-img-000176
Figure PCTKR2022010727-appb-img-000177
Figure PCTKR2022010727-appb-img-000178
Figure PCTKR2022010727-appb-img-000179
Figure PCTKR2022010727-appb-img-000180
Figure PCTKR2022010727-appb-img-000181
Figure PCTKR2022010727-appb-img-000182
Figure PCTKR2022010727-appb-img-000183
Figure PCTKR2022010727-appb-img-000184
Figure PCTKR2022010727-appb-img-000185
Figure PCTKR2022010727-appb-img-000186
Figure PCTKR2022010727-appb-img-000187
Figure PCTKR2022010727-appb-img-000188
Figure PCTKR2022010727-appb-img-000189
Figure PCTKR2022010727-appb-img-000190
Figure PCTKR2022010727-appb-img-000191
Figure PCTKR2022010727-appb-img-000192
Figure PCTKR2022010727-appb-img-000193
Figure PCTKR2022010727-appb-img-000194
Figure PCTKR2022010727-appb-img-000195
Figure PCTKR2022010727-appb-img-000196
Figure PCTKR2022010727-appb-img-000197
Figure PCTKR2022010727-appb-img-000198
Figure PCTKR2022010727-appb-img-000199
Figure PCTKR2022010727-appb-img-000200
Figure PCTKR2022010727-appb-img-000201
Figure PCTKR2022010727-appb-img-000202
Figure PCTKR2022010727-appb-img-000203
Figure PCTKR2022010727-appb-img-000204
Figure PCTKR2022010727-appb-img-000205
Figure PCTKR2022010727-appb-img-000206
Figure PCTKR2022010727-appb-img-000207
Figure PCTKR2022010727-appb-img-000208
Figure PCTKR2022010727-appb-img-000209
Figure PCTKR2022010727-appb-img-000210
Figure PCTKR2022010727-appb-img-000211
Figure PCTKR2022010727-appb-img-000212
Figure PCTKR2022010727-appb-img-000213
Figure PCTKR2022010727-appb-img-000214
Figure PCTKR2022010727-appb-img-000215
Figure PCTKR2022010727-appb-img-000216
Figure PCTKR2022010727-appb-img-000217
Figure PCTKR2022010727-appb-img-000218
Figure PCTKR2022010727-appb-img-000219
Figure PCTKR2022010727-appb-img-000220
Figure PCTKR2022010727-appb-img-000221
Figure PCTKR2022010727-appb-img-000222
Figure PCTKR2022010727-appb-img-000223
Figure PCTKR2022010727-appb-img-000224
Figure PCTKR2022010727-appb-img-000225
Figure PCTKR2022010727-appb-img-000226
Figure PCTKR2022010727-appb-img-000227
Figure PCTKR2022010727-appb-img-000228
.
상기 화합물에서 '[구조식]Dn'으로 표시된 화합물은 해당 '구조식'을 갖는 화합물 중 n개의 수소가 중수소로 치환된 화합물을 의미한다.
상기 화학식 2로 표시되는 화합물은 일례로 하기 반응식 2와 같은 제조 방법으로 제조할 수 있으며, 그 외 나머지 화합물도 유사하게 제조할 수 있다.
[반응식 2]
Figure PCTKR2022010727-appb-img-000229
상기 반응식 2에서, Ar3, Ar4 및 L4 내지 L6는 상기 화학식 2에서 정의한 바와 같으며, X'는 할로겐이고, 바람직하게는 X'는 클로로 또는 브로모이다.
상기 반응식 2는 아민 치환 반응으로서, 팔라듐 촉매와 염기 존재 하에 수행하는 것이 바람직하며, 아민 치환 반응을 위한 반응기는 당업계에 알려진 바에 따라 변경이 가능하다. 상기 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다.
바람직하게는, 상기 발광층에서 상기 화학식 1로 표시되는 화합물 및 상기 화학식 2로 표시되는 화합물의 중량비는 10:90 내지 90:10이고, 보다 바람직하게는 20:80 내지 80:20, 30:70 내지 70:30 또는 40:60 내지 60:40이다.
한편, 상기 발광층은 호스트 외에 도펀트를 추가로 포함할 수 있다. 상기 도펀트 재료로는 유기 발광 소자에 사용되는 물질이면 특별히 제한되지 않는다. 일례로, 방향족 아민 유도체, 스트릴아민 화합물, 붕소 착체, 플루오란텐 화합물, 금속 착체 등이 있다. 구체적으로 방향족 아민 유도체로는 치환 또는 비치환된 아릴아미노기를 갖는 축합 방향족환 유도체로서, 아릴아미노기를 갖는 피렌, 안트라센, 크리센, 페리플란텐 등이 있으며, 스티릴아민 화합물로는 치환 또는 비치환된 아릴아민에 적어도 1개의 아릴비닐기가 치환되어 있는 화합물로, 아릴기, 실릴기, 알킬기, 사이클로알킬기 및 아릴아미노기로 이루어진 군에서 1 또는 2 이상 선택되는 치환기가 치환 또는 비치환된다. 구체적으로 스티릴아민, 스티릴디아민, 스티릴트리아민, 스티릴테트라아민 등이 있으나, 이에 한정되지 않는다. 또한, 금속 착체로는 이리듐 착체, 백금 착체 등이 있으나, 이에 한정되지 않는다.
바람직하게는, 상기 도펀트 재료로 하기로 구성되는 군으로부터 어느 하나가 사용될 수 있으나, 이에 한정되는 것은 아니다:
Figure PCTKR2022010727-appb-img-000230
Figure PCTKR2022010727-appb-img-000231
Figure PCTKR2022010727-appb-img-000232
Figure PCTKR2022010727-appb-img-000233
정공저지층
본 발명에 따른 유기 발광 소자는 필요에 따라 발광층과 후술하는 전자수송층 사이에 정공저지층을 포함할 수 있다. 상기 정공저지층은 발광층 상에 형성되어, 바람직하게는 발광층에 접하여 구비되어, 전자이동도를 조절하고 정공의 과다한 이동을 방지하여 정공-전자간 결합 확률을 높여줌으로써 유기 발광 소자의 효율을 개선하는 역할을 하는 층을 의미한다. 상기 정공저지층은 정공저지물질을 포함하고, 이러한 정공저지물질의 예로 트리아진을 포함한 아진류유도체; 트리아졸 유도체; 옥사디아졸 유도체; 페난트롤린 유도체; 포스핀옥사이드 유도체 등의 전자흡인기가 도입된 화합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.
전자수송층
본 발명에 따른 유기 발광 소자는, 필요에 따라 상기 발광층 상에 전자수송층을 포함할 수 있다.
상기 전자수송층은, 음극 또는 음극 상에 형성된 전자주입층으로부터 전자를 수취하여 발광층까지 전자를 수송하고, 또한 발광층에서 정공이 전달되는 것을 억제하는 층으로, 전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다.
상기 전자 수송 물질의 구체적인 예로는 8-히드록시퀴놀린의 Al 착물; Alq3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다. 전자 수송층은 종래기술에 따라 사용된 바와 같이 임의의 원하는 캐소드 물질과 함께 사용할 수 있다. 특히, 적절한 캐소드 물질의 예는 낮은 일함수를 가지고 알루미늄층 또는 실버층이 뒤따르는 통상적인 물질이다. 구체적으로 세슘, 바륨, 칼슘, 이테르븀 및 사마륨이고, 각 경우 알루미늄 층 또는 실버층이 뒤따른다.
전자주입층
본 발명에 따른 유기 발광 소자는, 필요에 따라 상기 발광층 상에(또는 전자주송층이 존재하는 경우 전자수송층 상에) 전자주입층을 추가로 포함할 수 있다.
상기 전자주입층은 전극으로부터 전자를 주입하는 층으로, 전자를 수송하는 능력을 갖고, 음극으로부터의 전자 주입 효과, 발광층 또는 발광 재료에 대하여 우수한 전자주입 효과를 가지며, 발광층에서 생성된 여기자의 정공주입층에의 이동을 방지하고, 또한, 박막형성능력이 우수한 화합물을 사용하는 것이 바람직하다.
상기 전자주입층으로 사용될 수 있는 물질의 구체적인 예로는, 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 질소 함유 5원환 유도체 등이 있으나, 이에 한정되지 않는다.
상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스(8-하이드록시퀴놀리나토)아연, 비스(8-하이드록시퀴놀리나토)구리, 비스(8-하이드록시퀴놀리나토)망간, 트리스(8-하이드록시퀴놀리나토)알루미늄, 트리스(2-메틸-8-하이드록시퀴놀리나토)알루미늄, 트리스(8-하이드록시퀴놀리나토)갈륨, 비스(10-하이드록시벤조[h]퀴놀리나토)베릴륨, 비스(10-하이드록시벤조[h]퀴놀리나토)아연, 비스(2-메틸-8-퀴놀리나토)클로로갈륨, 비스(2-메틸-8-퀴놀리나토)(o-크레졸라토)갈륨, 비스(2-메틸-8-퀴놀리나토)(1-나프톨라토)알루미늄, 비스(2-메틸-8-퀴놀리나토)(2-나프톨라토)갈륨 등이 있으나, 이에 한정되지 않는다.
한편, 본 발명에 있어서 "전자 주입 및 수송층"은 상기 전자주입층과 상기 전자수송층의 역할을 모두 수행하는 층으로 상기 각 층의 역할을 하는 물질을 단독으로, 혹은 혼합하여 사용할 수 있으나, 이에 한정되지 않는다.
유기 발광 소자
본 발명에 따른 유기 발광 소자의 구조를 도 1 및 도 2에 예시하였다. 도 1은, 기판(1), 양극(2), 발광층(3), 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 도 2는 기판 (1), 양극(2), 정공주입층(5), 정공수송층(6), 전자저지층(7), 발광층(3), 정공저지층(8), 전자주입 및 수송층(9) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
본 발명에 따른 유기 발광 소자는 상술한 구성을 순차적으로 적층시켜 제조할 수 있다. 이때, 스퍼터링법(sputtering)이나 전자빔 증발법(e-beam evaporation)과 같은 PVD(physical Vapor Deposition)방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 상술한 각 층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시켜 제조할 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질부터 상술한 구성의 역순으로 양극 물질까지 차례로 증착시켜 유기 발광 소자를 만들 수 있다(WO 2003/012890). 또한, 발광층은 호스트 및 도펀트를 진공 증착법 뿐만 아니라 용액 도포법에 의하여 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.
한편, 본 발명에 따른 유기 발광 소자는 배면 발광(bottom emission) 소자, 전면 발광(top emission) 소자, 또는 양면 발광 소자일 수 있으며, 특히 상대적으로 높은 발광 효율이 요구되는 배면 발광 소자일 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 이에 의해 본 발명의 내용이 한정되는 것은 아니다.
합성예 1-1
Figure PCTKR2022010727-appb-img-000234
(8-chlorodibenzo[b,d]furan-1-yl)boronic acid(15 g, 60.9 mmol)와 화합물 Trz1(37 g, 63.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 5 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-1_P1을 28.5 g 제조하였다.(수율 67%, MS: [M+H]+= 700)
Figure PCTKR2022010727-appb-img-000235
화합물 1-1_P1(15 g, 21.4 mmol)와 phenylboronic acid(2.7 g, 22.5 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(8.9 g, 64.3 mmol)를 물 27 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입하였다. 4 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-1을 10.6 g 제조하였다.(수율 69%, MS: [M+H]+= 715)
합성예 1-2
Figure PCTKR2022010727-appb-img-000236
(8-chlorodibenzo[b,d]furan-1-yl)boronic acid(15 g, 60.9 mmol)와 화합물 Trz2(42.9 g, 63.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 5 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-2_P1을 31.8 g 제조하였다.(수율 66%, MS: [M+H]+= 792)
Figure PCTKR2022010727-appb-img-000237
화합물 1-2_P1(15 g, 21.4 mmol)와 phenylboronic acid(2.7 g, 22.5 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(8.9 g, 64.3 mmol)를 물 27 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입하였다. 3 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-2를 9.6 g 제조하였다.(수율 63%, MS: [M+H]+= 715)
합성예 1-3
Figure PCTKR2022010727-appb-img-000238
(8-chlorodibenzo[b,d]furan-1-yl)boronic acid(15 g, 60.9 mmol)와 화합물 Trz3(31.2 g, 63.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 2 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-3_P1을 24.1 g 제조하였다.(수율 65%, MS: [M+H]+= 610)
Figure PCTKR2022010727-appb-img-000239
화합물 1-3_P1(15 g, 24.6 mmol)와 phenylboronic acid(3.1 g, 25.8 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(10.2 g, 73.8 mmol)를 물 31 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입하였다. 3 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-3을 11.2 g 제조하였다.(수율 70%, MS: [M+H]+= 652)
합성예 1-4
Figure PCTKR2022010727-appb-img-000240
(8-chlorodibenzo[b,d]furan-1-yl)boronic acid(15 g, 60.9 mmol)와 화합물 Trz4(33.8 g, 63.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 5 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-4_P1을 27.7 g 제조하였다.(수율 70%, MS: [M+H]+= 650)
Figure PCTKR2022010727-appb-img-000241
화합물 1-4_P1(15 g, 23.1 mmol)와 dibenzo[b,d]furan-1-ylboronic acid(5.1 g, 24.2 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.6 g, 69.2 mmol)를 물 29 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입하였다. 2 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-4를 12.8 g 제조하였다.(수율 71%, MS: [M+H]+= 782)
합성예 1-5
Figure PCTKR2022010727-appb-img-000242
(7-chlorodibenzo[b,d]furan-1-yl)boronic acid(15 g, 60.9 mmol)와 화합물 Trz5(44.5 g, 63.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 2 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-5_P1을 31.8 g 제조하였다.(수율 64%, MS: [M+H]+= 818)
Figure PCTKR2022010727-appb-img-000243
화합물 1-5_P1(15 g, 18.3 mmol)와 phenylboronic acid(2.3 g, 19.2 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(7.6 g, 55 mmol)를 물 23 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입하였다. 2 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-5를 11.3 g 제조하였다.(수율 72%, MS: [M+H]+= 860)
합성예 1-6
Figure PCTKR2022010727-appb-img-000244
(7-chlorodibenzo[b,d]furan-1-yl)boronic acid(15 g, 60.9 mmol)와 화합물 Trz6(28 g, 63.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 4 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-6_P1을 23.5 g 제조하였다.(수율 69%, MS: [M+H]+= 560)
Figure PCTKR2022010727-appb-img-000245
화합물 1-6_P1(15 g, 26.8 mmol)와 naphthalen-2-ylboronic acid(4.8 g, 28.1 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(11.1 g, 80.3 mmol)를 물 33 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입하였다. 3 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-6을 11.9 g 제조하였다.(수율 68%, MS: [M+H]+= 652)
합성예 1-7
Figure PCTKR2022010727-appb-img-000246
(7-chlorodibenzo[b,d]furan-1-yl)boronic acid(15 g, 60.9 mmol)와 화합물 Trz7(34.4 g, 63.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 5 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-7_P1을 24.1 g 제조하였다.(수율 60%, MS: [M+H]+= 660)
Figure PCTKR2022010727-appb-img-000247
화합물 1-7_P1(15 g, 22.7 mmol)와 [1,1'-biphenyl]-3-ylboronic acid(4.7 g, 23.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.4 g, 68.2 mmol)를 물 28 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입하였다. 4 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-7을 11.8 g 제조하였다.(수율 67%, MS: [M+H]+= 778)
합성예 1-8
Figure PCTKR2022010727-appb-img-000248
(6-chlorodibenzo[b,d]furan-1-yl)boronic acid(15 g, 60.9 mmol)와 화합물 Trz6(28 g, 63.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 4 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-8_P1을 23.8 g 제조하였다.(수율 70%, MS: [M+H]+= 560)
Figure PCTKR2022010727-appb-img-000249
화합물 1-8_P1(15 g, 26.8 mmol)와 naphthalen-1-ylboronic acid(4.8 g, 28.1 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(11.1 g, 80.3 mmol)를 물 33 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입하였다. 3 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-8을 12 g 제조하였다.(수율 69%, MS: [M+H]+= 652)
합성예 1-9
Figure PCTKR2022010727-appb-img-000250
(4-chlorodibenzo[b,d]furan-1-yl)boronic acid(15 g, 60.9 mmol)와 화합물 Trz8(33.8 g, 63.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 5 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-9_P1을 25.7 g 제조하였다.(수율 65%, MS: [M+H]+= 650)
Figure PCTKR2022010727-appb-img-000251
화합물 1-9_P1(15 g, 23.1 mmol)와 naphthalen-2-ylboronic acid(4.2 g, 24.2 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.6 g, 69.2 mmol)를 물 29 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입하였다. 2 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-9를 11.8 g 제조하였다.(수율 69%, MS: [M+H]+= 742)
합성예 1-10
Figure PCTKR2022010727-appb-img-000252
(4-chlorodibenzo[b,d]furan-1-yl)boronic acid(15 g, 60.9 mmol)와 화합물 Trz3(31.2 g, 63.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 4 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-10_P1을 26 g 제조하였다.(수율 70%, MS: [M+H]+= 610)
Figure PCTKR2022010727-appb-img-000253
화합물 1-10_P1(15 g, 24.6 mmol)와 phenylboronic acid(3.1 g, 25.8 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(10.2 g, 73.8 mmol)를 물 31 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입하였다. 2 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-10을 12 g 제조하였다.(수율 75%, MS: [M+H]+= 652)
합성예 1-11
Figure PCTKR2022010727-appb-img-000254
화합물 1-10_P1(15 g, 24.6 mmol)와 dibenzo[b,d]furan-1-ylboronic acid(5.5 g, 25.8 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(10.2 g, 73.8 mmol)를 물 31 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입하였다. 5 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-11을 12 g 제조하였다.(수율 66%, MS: [M+H]+= 742)
합성예 1-12
Figure PCTKR2022010727-appb-img-000255
(8-chlorodibenzo[b,d]furan-1-yl)boronic acid(15 g, 60.9 mmol)와 화합물 Trz9(32.9 g, 63.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 3 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-12_P1을 24.4 g 제조하였다.(수율 63%, MS: [M+H]+= 636)
Figure PCTKR2022010727-appb-img-000256
화합물 1-12_P1(15 g, 23.6 mmol)와 naphthalen-2-ylboronic acid(4.3 g, 24.8 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.8 g, 70.7 mmol)를 물 29 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입하였다. 2 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-12를 11.5 g 제조하였다.(수율 67%, MS: [M+H]+= 728)
합성예 1-13
Figure PCTKR2022010727-appb-img-000257
(3-chlorodibenzo[b,d]furan-1-yl)boronic acid(15 g, 60.9 mmol)와 화합물 Trz10(36.1 g, 63.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 3 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-13_P1을 29.2 g 제조하였다.(수율 70%, MS: [M+H]+= 686)
Figure PCTKR2022010727-appb-img-000258
화합물 1-13_P1(15 g, 21.9 mmol)와 phenylboronic acid(2.8 g, 23 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.1 g, 65.6 mmol)를 물 27 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입하였다. 5 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-13을 10 g 제조하였다.(수율 63%, MS: [M+H]+= 728)
합성예 1-14
Figure PCTKR2022010727-appb-img-000259
(3-chlorodibenzo[b,d]furan-1-yl)boronic acid(15 g, 60.9 mmol)와 화합물 Trz11(37 g, 63.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 5 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-14_P1를 26.4 g 제조하였다.(수율 62%, MS: [M+H]+= 700)
Figure PCTKR2022010727-appb-img-000260
화합물 1-14_P1(15 g, 21.4 mmol)와 dibenzo[b,d]thiophen-4-ylboronic acid(5.1 g, 22.5 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(8.9 g, 64.3 mmol)를 물 27 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입하였다. 4 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-14를 13.6 g 제조하였다.(수율 75%, MS: [M+H]+= 848)
합성예 1-15
Figure PCTKR2022010727-appb-img-000261
(6-chlorodibenzo[b,d]furan-1-yl)boronic acid(15 g, 60.9 mmol)와 화합물 Trz12(34.8 g, 63.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 5 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-15_P1을 28.7 g 제조하였다.(수율 71%, MS: [M+H]+= 666)
Figure PCTKR2022010727-appb-img-000262
화합물 1-15_P1(15 g, 22.5 mmol)와 dibenzo[b,d]thiophen-3-ylboronic acid(5.4 g, 23.6 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.3 g, 67.5 mmol)를 물 28 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입하였다. 3 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-15를 12.5 g 제조하였다.(수율 68%, MS: [M+H]+= 814)
합성예 1-16
Figure PCTKR2022010727-appb-img-000263
(6-chlorodibenzo[b,d]furan-1-yl)boronic acid(15 g, 60.9 mmol)와 화합물 Trz13(37.6 g, 63.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 4 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-16_P1을 32.4 g 제조하였다.(수율 75%, MS: [M+H]+= 710)
Figure PCTKR2022010727-appb-img-000264
화합물 1-16_P1(15 g, 21.1 mmol)와 dibenzo[b,d]thiophen-4-ylboronic acid(5.1 g, 22.2 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(8.8 g, 63.4 mmol)를 물 26 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입하였다. 3 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-16을 12.3 g 제조하였다.(수율 68%, MS: [M+H]+= 858)
합성예 1-17
Figure PCTKR2022010727-appb-img-000265
(6-chlorodibenzo[b,d]furan-1-yl)boronic acid(15 g, 60.9 mmol)와 화합물 Trz14(34.4 g, 63.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 3 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-17_P1을 28.9 g 제조하였다.(수율 72%, MS: [M+H]+= 660)
Figure PCTKR2022010727-appb-img-000266
화합물 1-17_P1(15 g, 22.7 mmol)와 phenylboronic acid(2.9 g, 23.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.4 g, 68.2 mmol)를 물 28 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입하였다. 5 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-17을 9.7 g 제조하였다.(수율 61%, MS: [M+H]+= 702)
합성예 1-18
Figure PCTKR2022010727-appb-img-000267
(4-chlorodibenzo[b,d]furan-1-yl)boronic acid(15 g, 60.9 mmol)와 화합물 Trz15(38.6 g, 63.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 3 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-18_P1을 30.5 g 제조하였다.(수율 69%, MS: [M+H]+= 726)
Figure PCTKR2022010727-appb-img-000268
화합물 1-18_P1(15 g, 20.7 mmol)와 phenylboronic acid(2.6 g, 21.7 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(8.6 g, 62 mmol)를 물 26 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입하였다. 4 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-18을 11.4 g 제조하였다.(수율 72%, MS: [M+H]+= 768)
합성예 1-19
Figure PCTKR2022010727-appb-img-000269
(3-chlorodibenzo[b,d]furan-1-yl)boronic acid(15 g, 60.9 mmol)와 화합물 Trz16(33.8 g, 63.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 5 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-19_P1을 25.7 g 제조하였다.(수율 65%, MS: [M+H]+= 650)
Figure PCTKR2022010727-appb-img-000270
화합물 1-19_P1(15 g, 23.1 mmol)와 phenylboronic acid(3 g, 24.2 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.6 g, 69.2 mmol)를 물 29 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입하였다. 2 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-19를 11.6 g 제조하였다.(수율 73%, MS: [M+H]+= 692)
합성예 1-20
Figure PCTKR2022010727-appb-img-000271
(4-chlorodibenzo[b,d]furan-1-yl)boronic acid(15 g, 60.9 mmol)와 화합물 Trz17(34.8 g, 63.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 5 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-20_P1을 27.1 g 제조하였다.(수율 67%, MS: [M+H]+= 666)
Figure PCTKR2022010727-appb-img-000272
화합물 1-20_P1(15 g, 22.5 mmol)와 phenylboronic acid(2.9 g, 23.6 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.3 g, 67.5 mmol)를 물 28 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입하였다. 2 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-20을 11.5 g 제조하였다.(수율 72%, MS: [M+H]+= 708)
합성예 1-21
Figure PCTKR2022010727-appb-img-000273
(4-chlorodibenzo[b,d]furan-1-yl)boronic acid(15 g, 60.9 mmol)와 화합물 Trz18(34.8 g, 63.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 5 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-21_P1을 28.8 g 제조하였다.(수율 69%, MS: [M+H]+= 686)
Figure PCTKR2022010727-appb-img-000274
화합물 1-21_P1(15 g, 21.9 mmol)와 dibenzo[b,d]thiophen-4-ylboronic acid(5.2 g, 23 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.1 g, 65.6 mmol)를 물 27 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입하였다. 5 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-21을 13.7 g 제조하였다.(수율 75%, MS: [M+H]+= 834)
합성예 1-22
Figure PCTKR2022010727-appb-img-000275
(8-chlorodibenzo[b,d]furan-1-yl)boronic acid(15 g, 60.9 mmol)와 화합물 Trz19(36.1 g, 63.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 3 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-22_P1을 26.3 g 제조하였다.(수율 65%, MS: [M+H]+= 666)
Figure PCTKR2022010727-appb-img-000276
화합물 1-22_P1(15 g, 22.5 mmol)와 naphthalen-2-ylboronic acid(4.1 g, 23.6 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.3 g, 67.5 mmol)를 물 28 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입하였다. 2 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-22를 10.6 g 제조하였다.(수율 62%, MS: [M+H]+= 758)
합성예 1-23
Figure PCTKR2022010727-appb-img-000277
(7-chlorodibenzo[b,d]furan-1-yl)boronic acid(15 g, 60.9 mmol)와 화합물 Trz20(36.1 g, 63.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 5 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-23_P1을 30 g 제조하였다.(수율 72%, MS: [M+H]+= 686)
Figure PCTKR2022010727-appb-img-000278
화합물 1-23_P1(15 g, 21.9 mmol)와 phenylboronic acid(2.8 g, 23 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.1 g, 65.6 mmol)를 물 27 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입하였다. 3 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-23을 11 g 제조하였다.(수율 69%, MS: [M+H]+= 728)
합성예 1-24
Figure PCTKR2022010727-appb-img-000279
(3-chlorodibenzo[b,d]furan-1-yl)boronic acid(15 g, 60.9 mmol)와 화합물 Trz21(37.6 g, 63.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 5 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-24_P1을 28.9 g 제조하였다.(수율 67%, MS: [M+H]+= 710)
Figure PCTKR2022010727-appb-img-000280
화합물 1-24_P1(15 g, 21.1 mmol)와 phenylboronic acid(2.7 g, 22.2 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(8.8 g, 63.4 mmol)를 물 26 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입하였다. 2 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-24를 11.7 g 제조하였다.(수율 74%, MS: [M+H]+= 752)
합성예 1-25
Figure PCTKR2022010727-appb-img-000281
0 ℃ 조건에서 Trifluoromethanesulfonic anhydride(95.9 g, 340 mmol)와 Deuterium oxide(34 g, 1699.8 mmol)에 넣고 5 시간 동안 교반하여 용액을 만들었다. 1-bromodibenzo[b,d]furan(15 g, 60.7 mmol)를 1,2,4-trichlorobenzene 120 ml에 넣고 교반하였다. 이 후 만들어 놓은 Trifluoromethanesulfonic anhydride와 Deuterium oxide의 혼합용액을 1-bromodibenzo[b,d]furan과 1,2,4-trichlorobenzene의 혼합용액에 천천히 적가하고 140 ℃까지 승온 후 유지하면서 교반하였다. 20 시간 반응 후 상온으로 식히고 유기층과 물층을 분리하였다. 이후, potassium carbonate 수용액으로 유기층을 중성화하였다. 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-1-1을 5.6 g 제조하였다.(수율 37%, MS: [M+H]+= 251)
화합물 sub1-1-1(15 g, 59.7 mmol)와 bis(pinacolato)diboron(16.7 g, 65.7 mmol)를 1,4-dioxane 300 ml에 환류시키며 교반하였다. 이 후 potassium acetate(8.8 g, 89.6 mmol)를 투입하고 충분히 교반한 후 bis(dibenzylideneacetone)palladium(0)(1 g, 1.8 mmol) 및 tricyclohexylphosphine(1 g, 3.6 mmol)을 투입하였다. 5 시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-1-2를 12.5 g 제조하였다.(수율 70%, MS: [M+H]+= 299)
Figure PCTKR2022010727-appb-img-000282
화합물 sub1-1-2(15 g, 45.1 mmol)와 화합물 Trz22(23.2 g, 47.4 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(18.7 g, 135.3 mmol)를 물 56 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입하였다. 2 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-25를 20.8 g 제조하였다.(수율 74%, MS: [M+H]+= 625)
합성예 1-26
Figure PCTKR2022010727-appb-img-000283
0 ℃ 조건에서 Trifluoromethanesulfonic anhydride(119.9 g, 424.9 mmol)와 Deuterium oxide(42.6 g, 2124.7 mmol)에 넣고 5 시간 동안 교반하여 용액을 만들었다. 1-bromodibenzo[b,d]furan(15 g, 60.7 mmol)를 1,2,4-trichlorobenzene 120 ml에 넣고 교반하였다. 이 후 만들어 놓은 Trifluoromethanesulfonic anhydride와 Deuterium oxide의 혼합용액을 1-bromodibenzo[b,d]furan과 1,2,4-trichlorobenzene의 혼합용액에 천천히 적가하고 140 ℃까지 승온 후 유지하면서 교반하였다. 24 시간 반응 후 상온으로 식히고 유기층과 물층을 분리하였다. 이후, potassium carbonate 수용액으로 유기층을 중성화하였다. 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-2-1을 5.9 g 제조하였다.(수율 39%, MS: [M+H]+= 252)
화합물 sub1-2-1(15 g, 59.5 mmol)와 bis(pinacolato)diboron(16.6 g, 65.4 mmol)를 1,4-dioxane 300 ml에 환류시키며 교반하였다. 이 후 potassium acetate(8.8 g, 89.2 mmol)를 투입하고 충분히 교반한 후 bis(dibenzylideneacetone)palladium(0)(1 g, 1.8 mmol) 및 tricyclohexylphosphine(1 g, 3.6 mmol)을 투입하였다. 4 시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-2-2를 11.2 g 제조하였다.(수율 63%, MS: [M+H]+= 300)
Figure PCTKR2022010727-appb-img-000284
화합물 sub1-2-2(15 g, 50.1 mmol)와 화합물 Trz23(32.1 g, 52.6 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(20.8 g, 150.4 mmol)를 물 62 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.5 mmol)을 투입하였다. 5 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-26을 26.9 g 제조하였다.(수율 72%, MS: [M+H]+= 747)
합성예 1-27
Figure PCTKR2022010727-appb-img-000285
0 ℃ 조건에 Trifluoromethanesulfonic anhydride(167.8 g, 594.9 mmol)와 Deuterium oxide(59.6 g, 2974.6 mmol)에 넣고 5 시간 동안 교반하여 용액을 만들었다. 1-bromodibenzo[b,d]furan(15 g, 60.7 mmol)를 1,2,4-trichlorobenzene 120 ml에 넣고 교반하였다. 이 후 만들어 놓은 Trifluoromethanesulfonic anhydride와 Deuterium oxide의 혼합용액을 1-bromodibenzo[b,d]furan과 1,2,4-trichlorobenzene의 혼합용액에 천천히 적가하고 140 ℃까지 승온 후 유지하면서 교반하였다. 36 시간 반응 후 상온으로 식히고 유기층과 물층을 분리하였다. 이후, potassium carbonate 수용액으로 유기층을 중성화하였다. 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-3-1을 6.1 g 제조하였다.(수율 40%, MS: [M+H]+= 254)
화합물 sub1-3-1(15 g, 59 mmol)와 bis(pinacolato)diboron(16.5 g, 64.9 mmol)를 1,4-dioxane 300 ml에 환류시키며 교반하였다. 이 후 potassium acetate(8.7 g, 88.5 mmol)를 투입하고 충분히 교반한 후 bis(dibenzylideneacetone)palladium(0)(1 g, 1.8 mmol) 및 tricyclohexylphosphine(1 g, 3.5 mmol)을 투입하였다. 4 시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-3-2를 11.6 g 제조하였다.(수율 65%, MS: [M+H]+= 302)
Figure PCTKR2022010727-appb-img-000286
화합물 sub1-3-2(15 g, 50 mmol)와 화합물 Trz24(320.6 g, 52.5 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(20.7 g, 149.9 mmol)를 물 62 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.5 mmol)을 투입하였다. 3 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-27을 23.2 g 제조하였다.(수율 74%, MS: [M+H]+= 628)
합성예 1-28
Figure PCTKR2022010727-appb-img-000287
(7-chlorodibenzo[b,d]furan-1-yl)boronic acid(15 g, 60.9 mmol)와 화합물 Trz25(31.9 g, 63.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 4 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-28_P1을 24.9 g 제조하였다.(수율 66%, MS: [M+H]+= 621)
Figure PCTKR2022010727-appb-img-000288
화합물 1-28_P1(15 g, 24.1 mmol)와(phenyl-d5)boronic acid(3.1 g, 25.4 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(10 g, 72.4 mmol)를 물 30 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입하였다. 2 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-28을 11.1 g 제조하였다.(수율 69%, MS: [M+H]+= 668)
합성예 1-29
Figure PCTKR2022010727-appb-img-000289
0 ℃ 조건에서 Trifluoromethanesulfonic anhydride(60.1 g, 213.1 mmol)와 Deuterium oxide(21.4 g, 1065.6 mmol)에 넣고 5 시간 동안 교반하여 용액을 만들었다. 1-bromo-7-chlorodibenzo[b,d]furan(15 g, 53.3 mmol)를 1,2,4-trichlorobenzene 120 ml에 넣고 교반하였다. 이 후 만들어 놓은 Trifluoromethanesulfonic anhydride와 Deuterium oxide의 혼합용액을 1-bromo-7-chlorodibenzo[b,d]furan과 1,2,4-trichlorobenzene의 혼합용액에 천천히 적가하고 140 ℃까지 승온 후 유지하면서 교반하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리하였다. 이후, potassium carbonate 수용액으로 유기층을 중성화하였다. 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub3-1-1을 6.4 g 제조하였다.(수율 42%, MS: [M+H]+= 285)
화합물 sub3-1-1(15 g, 52.5 mmol)와 bis(pinacolato)diboron(14.7 g, 57.8 mmol)를 1,4-dioxane 300 ml에 환류시키며 교반하였다. 이 후 potassium acetate(7.7 g, 78.8 mmol)를 투입하고 충분히 교반한 후 bis(dibenzylideneacetone)palladium(0)(0.9 g, 1.6 mmol) 및 tricyclohexylphosphine(0.9 g, 3.2 mmol)을 투입하였다. 6 시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub3-1-2를 12 g 제조하였다.(수율 69%, MS: [M+H]+= 333)
Figure PCTKR2022010727-appb-img-000290
화합물 sub3-1-2(15 g, 45.1 mmol)와 화합물 Trz5(33 g, 47.4 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(18.7 g, 135.3 mmol)를 물 56 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입하였다. 3 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-29_P1을 25.2 g 제조하였다.(수율 68%, MS: [M+H]+= 822)
Figure PCTKR2022010727-appb-img-000291
화합물 1-29_P1(15 g, 18.2 mmol)와 phenylboronic acid(2.3 g, 19.1 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(7.6 g, 54.7 mmol)를 물 23 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입하였다. 4 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-29를 10.9 g 제조하였다.(수율 69%, MS: [M+H]+= 864)
합성예 1-30
Figure PCTKR2022010727-appb-img-000292
0 ℃ 조건에서 Trifluoromethanesulfonic anhydride(45.1 g, 159.8 mmol)와 Deuterium oxide(16 g, 799.2 mmol)에 넣고 5 시간 동안 교반하여 용액을 만들었다. 1-bromo-7-chlorodibenzo[b,d]furan(15 g, 53.3 mmol)를 1,2,4-trichlorobenzene 120 ml에 넣고 교반하였다. 이 후 만들어 놓은 Trifluoromethanesulfonic anhydride와 Deuterium oxide의 혼합용액을 1-bromo-7-chlorodibenzo[b,d]furan과 1,2,4-trichlorobenzene의 혼합용액에 천천히 적가하고 140 ℃까지 승온 후 유지하면서 교반하였다. 7 시간 반응 후 상온으로 식히고 유기층과 물층을 분리하였다. 이후, potassium carbonate 수용액으로 유기층을 중성화하였다. 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub3-2-1을 5.6 g 제조하였다.(수율 37%, MS: [M+H]+= 284)
화합물 sub3-2-1(15 g, 52.7 mmol)와 bis(pinacolato)diboron(14.7 g, 58 mmol)를 1,4-dioxane 300 ml에 환류시키며 교반하였다. 이 후 potassium acetate(7.8 g, 79.1 mmol)를 투입하고 충분히 교반한 후 bis(dibenzylideneacetone)palladium(0)(0.9 g, 1.6 mmol) 및 tricyclohexylphosphine(0.9 g, 3.2 mmol)을 투입하였다. 6 시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub3-2-2를 10.1 g 제조하였다.(수율 58%, MS: [M+H]+= 332)
Figure PCTKR2022010727-appb-img-000293
화합물 sub3-2-2(15 g, 45.2 mmol)와 화합물 Trz26(23.4 g, 47.5 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(18.8 g, 135.7 mmol)를 물 56 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입하였다. 2 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-30_P1을 16.7 g 제조하였다.(수율 60%, MS: [M+H]+= 618)
Figure PCTKR2022010727-appb-img-000294
화합물 1-30_P1(15 g, 24.3 mmol)와 phenylboronic acid(3.1 g, 25.5 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(10.1 g, 72.8 mmol)를 물 30 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입하였다. 5 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-30을 10.6 g 제조하였다.(수율 66%, MS: [M+H]+= 660)
합성예 1-31
Figure PCTKR2022010727-appb-img-000295
0 ℃ 조건에서 Trifluoromethanesulfonic anhydride(60.1 g, 213.1 mmol)와 Deuterium oxide(21.4 g, 1065.6 mmol)에 넣고 5 시간 동안 교반하여 용액을 만들었다. 1-bromo-4-chlorodibenzo[b,d]furan(15 g, 53.3 mmol)를 1,2,4-trichlorobenzene 120 ml에 넣고 교반하였다. 이 후 만들어 놓은 Trifluoromethanesulfonic anhydride와 Deuterium oxide의 혼합용액을 1-bromo-4-chlorodibenzo[b,d]furan과 1,2,4-trichlorobenzene의 혼합용액에 천천히 적가하고 140 ℃까지 승온 후 유지하면서 교반하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리하였다. 이후, potassium carbonate 수용액으로 유기층을 중성화하였다. 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub5-1-1을 6.4 g 제조하였다.(수율 42%, MS: [M+H]+= 285)
화합물 sub5-1-1(15 g, 52.5 mmol)와 bis(pinacolato)diboron(14.7 g, 57.8 mmol)를 1,4-dioxane 300 ml에 환류시키며 교반하였다. 이 후 potassium acetate(7.7 g, 78.8 mmol)를 투입하고 충분히 교반한 후 bis(dibenzylideneacetone)palladium(0)(0.9 g, 1.6 mmol) 및 tricyclohexylphosphine(0.9 g, 3.2 mmol)을 투입하였다. 6 시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub5-1-2를 12 g 제조하였다.(수율 69%, MS: [M+H]+= 333)
Figure PCTKR2022010727-appb-img-000296
화합물 sub5-1-2(15 g, 45.1 mmol)와 화합물 Trz27(21.2 g, 47.4 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(18.7 g, 135.3 mmol)를 물 56 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입하였다. 4 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-31_P1을 17.3 g 제조하였다.(수율 67%, MS: [M+H]+= 574)
Figure PCTKR2022010727-appb-img-000297
화합물 1-31_P1(15 g, 26.1 mmol)와 naphthalen-2-ylboronic acid(4.7 g, 27.4 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(10.8 g, 78.4 mmol)를 물 32 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입하였다. 3 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-31을 11.6 g 제조하였다.(수율 67%, MS: [M+H]+= 666)
합성예 1-32
Figure PCTKR2022010727-appb-img-000298
화합물 sub1-2-2(15 g, 50.1 mmol)와 화합물 Trz28(25.7 g, 52.6 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(20.8 g, 150.4 mmol)를 물 62 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.5 mmol)을 투입하였다. 2 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-32를 20.4 g 제조하였다.(수율 65%, MS: [M+H]+= 626)
합성예 1-33
Figure PCTKR2022010727-appb-img-000299
0 ℃ 조건에서 Trifluoromethanesulfonic anhydride(30.1 g, 106.6 mmol)와 Deuterium oxide(10.7 g, 532.8 mmol)에 넣고 5 시간 동안 교반하여 용액을 만들었다. 1-bromo-8-chlorodibenzo[b,d]furan(15 g, 53.3 mmol)를 1,2,4-trichlorobenzene 120 ml에 넣고 교반하였다. 이 후 만들어 놓은 Trifluoromethanesulfonic anhydride와 Deuterium oxide의 혼합용액을 1-bromo-8-chlorodibenzo[b,d]furan과 1,2,4-trichlorobenzene의 혼합용액에 천천히 적가하고 140 ℃까지 승온 후 유지하면서 교반하였다. 4 시간 반응 후 상온으로 식히고 유기층과 물층을 분리하였다. 이후, potassium carbonate 수용액으로 유기층을 중성화하였다. 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub2-1-1을 6.5 g 제조하였다.(수율 43%, MS: [M+H]+= 283)
화합물 sub2-1-1(15 g, 52.9 mmol)와 bis(pinacolato)diboron(14.8 g, 58.2 mmol)를 1,4-dioxane 300 ml에 환류시키며 교반하였다. 이 후 potassium acetate(7.8 g, 79.4 mmol)를 투입하고 충분히 교반한 후 bis(dibenzylideneacetone)palladium(0)(0.9 g, 1.6 mmol) 및 tricyclohexylphosphine(0.9 g, 3.2 mmol)을 투입하였다. 5 시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub2-1-2를 11.5 g 제조하였다.(수율 66%, MS: [M+H]+= 331)
Figure PCTKR2022010727-appb-img-000300
화합물 sub2-1-2(15 g, 45.4 mmol)와 화합물 Trz29(27.9 g, 47.6 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(18.8 g, 136.1 mmol)를 물 56 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입하였다. 5 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-33_P1을 22.2 g 제조하였다.(수율 69%, MS: [M+H]+= 709)
Figure PCTKR2022010727-appb-img-000301
화합물 1-33_P1(15 g, 21.1 mmol)와 naphthalen-2-ylboronic acid(3.8 g, 22.2 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(8.8 g, 63.4 mmol)를 물 26 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입하였다. 3 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-33을 11.7 g 제조하였다.(수율 69%, MS: [M+H]+= 801)
합성예 1-34
Figure PCTKR2022010727-appb-img-000302
화합물 sub1-2-2(15 g, 50.1 mmol)와 화합물 Trz30(28.1 g, 52.6 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(20.8 g, 150.4 mmol)를 물 62 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.5 mmol)을 투입하였다. 5 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-34를 19.7 g 제조하였다.(수율 63%, MS: [M+H]+= 626)
합성예 1-35
Figure PCTKR2022010727-appb-img-000303
0 ℃ 조건에서 Trifluoromethanesulfonic anhydride(48 g, 170 mmol)와 Deuterium oxide(17 g, 849.9 mmol)에 넣고 5 시간 동안 교반하여 용액을 만들었다. 1-bromodibenzo[b,d]furan(15 g, 60.7 mmol)를 1,2,4-trichlorobenzene 120 ml에 넣고 교반하였다. 이 후 만들어 놓은 Trifluoromethanesulfonic anhydride와 Deuterium oxide의 혼합용액을 1-bromodibenzo[b,d]furan과 1,2,4-trichlorobenzene의 혼합용액에 천천히 적가하고 140 ℃까지 승온 후 유지하면서 교반하였다. 8 시간 반응 후 상온으로 식히고 유기층과 물층을 분리하였다. 이후, potassium carbonate 수용액으로 유기층을 중성화하였다. 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-4-1을 6 g 제조하였다.(수율 40%, MS: [M+H]+= 249)
화합물 sub1-4-1(15 g, 60.2 mmol)와 bis(pinacolato)diboron(16.8 g, 66.2 mmol)를 1,4-dioxane 300 ml에 환류시키며 교반하였다. 이 후 potassium acetate(8.9 g, 90.3 mmol)를 투입하고 충분히 교반한 후 bis(dibenzylideneacetone)palladium(0)(1 g, 1.8 mmol) 및 tricyclohexylphosphine(1 g, 3.6 mmol)을 투입하였다. 4 시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-4-2를 12.5 g 제조하였다.(수율 70%, MS: [M+H]+= 297)
Figure PCTKR2022010727-appb-img-000304
화합물 sub1-4-2(15 g, 50.6 mmol)와 화합물 Trz31(29.6 g, 53.2 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(21 g, 151.9 mmol)를 물 63 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.5 mmol)을 투입하였다. 5 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-35를 23.4 g 제조하였다.(수율 65%, MS: [M+H]+= 691)
합성예 1-36
Figure PCTKR2022010727-appb-img-000305
(3-chlorodibenzo[b,d]furan-1-yl)boronic acid(15 g, 60.9 mmol)와 화합물 Trz32(33.5 g, 63.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 4 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-36_P1을 28.6 g 제조하였다.(수율 73%, MS: [M+H]+= 645)
Figure PCTKR2022010727-appb-img-000306
화합물 1-36_P1(15 g, 23.2 mmol)와 화합물 sub1-4-2(7.2 g, 24.4 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.6 g, 69.7 mmol)를 물 29 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입하였다. 3 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-36을 12.3 g 제조하였다.(수율 68%, MS: [M+H]+= 779)
합성예 1-37
Figure PCTKR2022010727-appb-img-000307
화합물 sub1-4-2(15 g, 50.6 mmol)와 화합물 Trz33(32.6 g, 53.2 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(21 g, 151.9 mmol)를 물 63 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.5 mmol)을 투입하였다. 2 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-37을 27.6 g 제조하였다.(수율 73%, MS: [M+H]+= 746)
합성예 1-38
Figure PCTKR2022010727-appb-img-000308
0 ℃ 조건에서 Trifluoromethanesulfonic anhydride(30.1 g, 106.6 mmol)와 Deuterium oxide(10.7 g, 532.8 mmol)에 넣고 5 시간 동안 교반하여 용액을 만들었다. 1-bromo-4-chlorodibenzo[b,d]furan(15 g, 53.3 mmol)를 1,2,4-trichlorobenzene 120 ml에 넣고 교반하였다. 이 후 만들어 놓은 Trifluoromethanesulfonic anhydride와 Deuterium oxide의 혼합용액을 1-bromo-4-chlorodibenzo[b,d]furan과 1,2,4-trichlorobenzene의 혼합용액에 천천히 적가하고 140 ℃까지 승온 후 유지하면서 교반하였다. 4 시간 반응 후 상온으로 식히고 유기층과 물층을 분리하였다. 이후, potassium carbonate 수용액으로 유기층을 중성화하였다. 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub5-2-1을 6 g 제조하였다.(수율 40%, MS: [M+H]+= 283)
화합물 sub5-2-1(15 g, 52.9 mmol)와 bis(pinacolato)diboron(14.8 g, 58.2 mmol)를 1,4-dioxane 300 ml에 환류시키며 교반하였다. 이 후 potassium acetate(7.8 g, 79.4 mmol)를 투입하고 충분히 교반한 후 bis(dibenzylideneacetone)palladium(0)(0.9 g, 1.6 mmol) 및 tricyclohexylphosphine(0.9 g, 3.2 mmol)을 투입하였다. 6 시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub5-2-2를 9.8 g 제조하였다.(수율 56%, MS: [M+H]+= 331)
Figure PCTKR2022010727-appb-img-000309
화합물 sub5-2-2(15 g, 45.4 mmol)와 화합물 Trz34(30.5 g, 47.6 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(18.8 g, 136.1 mmol)를 물 56 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입하였다. 5 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-38_P1을 25.6 g 제조하였다.(수율 74%, MS: [M+H]+= 764)
Figure PCTKR2022010727-appb-img-000310
화합물 1-38_P1(15 g, 19.6 mmol)와 phenyl boronic acid(2.5 g, 20.6 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(8.1 g, 58.9 mmol)를 물 24 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입하였다. 2 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-38을 9.8 g 제조하였다.(수율 62%, MS: [M+H]+= 806)
합성예 1-39
Figure PCTKR2022010727-appb-img-000311
화합물 sub1-2-2(15 g, 50.1 mmol)와 화합물 Trz35(25.7 g, 52.6 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(20.8 g, 150.4 mmol)를 물 62 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.5 mmol)을 투입하였다. 4 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-39를 22.3 g 제조하였다.(수율 71%, MS: [M+H]+= 626)
합성예 1-40
Figure PCTKR2022010727-appb-img-000312
0 ℃ 조건에서 Trifluoromethanesulfonic anhydride(30.1 g, 106.6 mmol)와 Deuterium oxide(10.7 g, 532.8 mmol)에 넣고 5 시간 동안 교반하여 용액을 만들었다. 1-bromo-7-chlorodibenzo[b,d]furan(15 g, 53.3 mmol)를 1,2,4-trichlorobenzene 120 ml에 넣고 교반하였다. 이 후 만들어 놓은 Trifluoromethanesulfonic anhydride와 Deuterium oxide의 혼합용액을 1-bromo-7-chlorodibenzo[b,d]furan과 1,2,4-trichlorobenzene의 혼합용액에 천천히 적가하고 140 ℃까지 승온 후 유지하면서 교반하였다. 4 시간 반응 후 상온으로 식히고 유기층과 물층을 분리하였다. 이후, potassium carbonate 수용액으로 유기층을 중성화하였다. 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub3-3-1을 6 g 제조하였다.(수율 40%, MS: [M+H]+= 283)
화합물 sub3-3-1(15 g, 52.9 mmol)와 bis(pinacolato)diboron(14.8 g, 58.2 mmol)를 1,4-dioxane 300 ml에 환류시키며 교반하였다. 이 후 potassium acetate(7.8 g, 79.4 mmol)를 투입하고 충분히 교반한 후 bis(dibenzylideneacetone)palladium(0)(0.9 g, 1.6 mmol) 및 tricyclohexylphosphine(0.9 g, 3.2 mmol)을 투입하였다. 6 시간 반응하고 상온으로 식히고 클로로포름과 물을 이용하여 유기층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub3-3-2를 9.8 g 제조하였다.(수율 56%, MS: [M+H]+= 331)
Figure PCTKR2022010727-appb-img-000313
화합물 sub3-3-2(15 g, 45.4 mmol)와 화합물 Trz36(21.4 g, 47.6 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(18.8 g, 136.1 mmol)를 물 56 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입하였다. 2 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-40_P1을 16.8 g 제조하였다.(수율 65%, MS: [M+H]+= 572)
Figure PCTKR2022010727-appb-img-000314
화합물 1-40_P1(15 g, 26.2 mmol)와 naphthalen-2-ylboronic acid(4.7 g, 27.5 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(10.9 g, 78.7 mmol)를 물 33 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입하였다. 4 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-40을 11.5 g 제조하였다.(수율 66%, MS: [M+H]+= 664)
합성예 1-41
Figure PCTKR2022010727-appb-img-000315
쉐이커 튜브에 화합물 1-11(10 g, 13.5 mmol), PtO2(0.9 g, 4 mmol), D2O 67 ml를 넣은 후, 튜브를 밀봉하고 250 ℃, 600 psi에서 12 시간 동안 가열하였다. 반응이 종료되면 클로로포름을 넣고 반응액을 분액 깔대기에 옮겨 추출하였다. 추출액을 MgSO4로 건조, 농축하고 시료를 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-41을 4.2 g 제조하였다.(수율 41%, MS: [M+H]+= 768)
합성예 1-42
Figure PCTKR2022010727-appb-img-000316
(4-chlorodibenzo[b,d]furan-1-yl)boronic acid(15 g, 60.9 mmol)와 화합물 Trz6(28 g, 63.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 3 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-42_P1을 24.2 g 제조하였다.(수율 71%, MS: [M+H]+= 561)
Figure PCTKR2022010727-appb-img-000317
화합물 1-42_P1(15 g, 26.8 mmol)와 naphthalen-2-ylboronic acid(4.8 g, 28.2 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(11.1 g, 80.5 mmol)를 물 33 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입하였다. 4 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-42_P2를 11.3 g 제조하였다.(수율 65%, MS: [M+H]+= 652)
쉐이커 튜브에 화합물 1-42_P2(10 g, 15.3 mmol), PtO2(1 g, 4.6 mmol), D2O 77 ml를 넣은 후, 튜브를 밀봉하고 250 ℃, 600 psi에서 12 시간 동안 가열하였다. 반응이 종료되면 클로로포름을 넣고 반응액을 분액 깔대기에 옮겨 추출하였다. 추출액을 MgSO4로 건조, 농축하고 시료를 실리카 겔 컬럼 정제하여 화합물 1-42를 3.7 g 제조하였다.(수율 36%, MS: [M+H]+= 679)
합성예 1-43
Figure PCTKR2022010727-appb-img-000318
화합물 1-42_P1(15 g, 26.8 mmol)와 dibenzo[b,d]furan-4-ylboronic acid(4.8 g, 28.1 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(11.1 g, 80.3 mmol)를 물 33 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입하였다. 2 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-43_P1을 13.7 g 제조하였다.(수율 74%, MS: [M+H]+= 692)
쉐이커 튜브에 화합물 1-43_P1(10 g, 14.5 mmol), PtO2(1 g, 4.3 mmol), D2O 72 ml를 넣은 후, 튜브를 밀봉하고 250 ℃, 600 psi에서 12 시간 동안 가열하였다. 반응이 종료되면 클로로포름을 넣고 반응액을 분액 깔대기에 옮겨 추출하였다. 추출액을 MgSO4로 건조, 농축하고 시료를 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-43을 5.1 g 제조하였다.(수율 49%, MS: [M+H]+= 716)
합성예 1-44
Figure PCTKR2022010727-appb-img-000319
(3-chlorodibenzo[b,d]furan-1-yl)boronic acid(15 g, 60.9 mmol)와 화합물 Trz6(28 g, 63.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 4 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-44_P1을 21.8 g 제조하였다.(수율 64%, MS: [M+H]+= 560)
Figure PCTKR2022010727-appb-img-000320
화합물 1-44_P1(15 g, 26.8 mmol)와 dibenzo[b,d]furan-4-ylboronic acid(6 g, 28.1 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(11.1 g, 80.3 mmol)를 물 33 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입하였다. 2 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-44_P2를 12.2 g 제조하였다.(수율 66%, MS: [M+H]+= 692)
쉐이커 튜브에 화합물 1-44_P2(10 g, 14.5 mmol), PtO2(1 g, 4.3 mmol), D2O 72 ml를 넣은 후, 튜브를 밀봉하고 250 ℃, 600 psi에서 12 시간 동안 가열하였다. 반응이 종료되면 클로로포름을 넣고 반응액을 분액 깔대기에 옮겨 추출하였다. 추출액을 MgSO4로 건조, 농축하고 시료를 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-44를 3.1 g 제조하였다.(수율 30%, MS: [M+H]+= 717)
합성예 1-45
Figure PCTKR2022010727-appb-img-000321
(6-chlorodibenzo[b,d]furan-1-yl)boronic acid(15 g, 60.9 mmol)와 화합물 Trz37(32.9 g, 63.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 4 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-45_P1을 25.1 g 제조하였다.(수율 65%, MS: [M+H]+= 636)
Figure PCTKR2022010727-appb-img-000322
화합물 1-45_P1(15 g, 23.6 mmol)와 naphthalen-2-ylboronic acid(4.3 g, 24.8 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.8 g, 70.7 mmol)를 물 29 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입하였다. 3 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-45_P2를 11.8 g 제조하였다.(수율 69%, MS: [M+H]+= 728)
쉐이커 튜브에 화합물 1-45_P2(10 g, 13.7 mmol), PtO2(0.9 g, 4.1 mmol), D2O 69 ml를 넣은 후, 튜브를 밀봉하고 250 ℃, 600 psi에서 12 시간 동안 가열하였다. 반응이 종료되면 클로로포름을 넣고 반응액을 분액 깔대기에 옮겨 추출하였다. 추출액을 MgSO4로 건조, 농축하고 시료를 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-45를 4.6 g 제조하였다.(수율 44%, MS: [M+H]+= 756)
합성예 1-46
Figure PCTKR2022010727-appb-img-000323
(7-chlorodibenzo[b,d]furan-1-yl)boronic acid(15 g, 60.9 mmol)와 화합물 Trz38(27.9 g, 63.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 5 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-46_P1을 24.5 g 제조하였다.(수율 72%, MS: [M+H]+= 560)
Figure PCTKR2022010727-appb-img-000324
화합물 1-46_P1(15 g, 26.8 mmol)와 naphthalen-2-ylboronic acid(4.8 g, 28.1 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(11.1 g, 80.3 mmol)를 물 33 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입하였다. 3 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-46_P2를 12.2 g 제조하였다.(수율 70%, MS: [M+H]+= 652)
쉐이커 튜브에 화합물 1-46_P2(10 g, 15.3 mmol), PtO2(1 g, 4.6 mmol), D2O 77 ml를 넣은 후, 튜브를 밀봉하고 250 ℃, 600 psi에서 12 시간 동안 가열하였다. 반응이 종료되면 클로로포름을 넣고 반응액을 분액 깔대기에 옮겨 추출하였다. 추출액을 MgSO4로 건조, 농축하고 시료를 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-46을 4.5 g 제조하였다.(수율 43%, MS: [M+H]+= 676)
합성예 1-47
Figure PCTKR2022010727-appb-img-000325
(4-chlorodibenzo[b,d]furan-1-yl)boronic acid(15 g, 60.9 mmol)와 화합물 Trz39(36.1 g, 63.9 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(25.2 g, 182.6 mmol)를 물 76 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입하였다. 3 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-47_P1을 30.9 g 제조하였다.(수율 74%, MS: [M+H]+= 686)
Figure PCTKR2022010727-appb-img-000326
화합물 1-47_P1(15 g, 21.9 mmol)와 phenylboronic acid(3.9 g, 23 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(9.1 g, 65.6 mmol)를 물 27 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입하였다. 3 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-47_P2를 11.6 g 제조하였다.(수율 73%, MS: [M+H]+= 728)
쉐이커 튜브에 화합물 1-47_P2(10 g, 13.7 mmol), PtO2(0.9 g, 4.1 mmol), D2O 69 ml를 넣은 후, 튜브를 밀봉하고 250 ℃, 600 psi에서 12 시간 동안 가열하였다. 반응이 종료되면 클로로포름을 넣고 반응액을 분액 깔대기에 옮겨 추출하였다. 추출액을 MgSO4로 건조, 농축하고 시료를 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 1-47을 3.7 g 제조하였다.(수율 36%, MS: [M+H]+= 756)
합성예 2-1
Figure PCTKR2022010727-appb-img-000327
질소 분위기에서 9H-carbazole(10 g, 59.8 mmol), 1-bromo-4-chlorobenzene(12 g, 62.8 mmol), sodium tert-butoxide(7.5 g, 77.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subA-1 10.3 g을 얻었다.(수율 62%, MS: [M+H]+= 278)
Figure PCTKR2022010727-appb-img-000328
질소 분위기에서 화합물 subA-1(10 g, 36 mmol), 화합물 amine1(15 g, 37.8 mmol), sodium tert-butoxide(4.5 g, 46.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-1 14.2 g을 얻었다.(수율 62%, MS: [M+H]+= 639)
합성예 2-2
Figure PCTKR2022010727-appb-img-000329
질소 분위기에서 화합물 subA-1(10 g, 36 mmol), 화합물 amine2(15.9 g, 37.8 mmol), sodium tert-butoxide(4.5 g, 46.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-2 17.4 g을 얻었다.(수율 73%, MS: [M+H]+= 663)
합성예 2-3
Figure PCTKR2022010727-appb-img-000330
질소 분위기에서 화합물 subA-1(10 g, 36 mmol), 화합물 amine3(15.5 g, 37.8 mmol), sodium tert-butoxide(4.5 g, 46.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-3 14.3 g을 얻었다.(수율 61%, MS: [M+H]+= 651)
합성예 2-4
Figure PCTKR2022010727-appb-img-000331
질소 분위기에서 화합물 subA-1(10 g, 36 mmol), 화합물 amine4(15.6 g, 37.8 mmol), sodium tert-butoxide(4.5 g, 46.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-4 14.3 g을 얻었다.(수율 61%, MS: [M+H]+= 653)
합성예 2-5
Figure PCTKR2022010727-appb-img-000332
질소 분위기에서 화합물 subA-1(10 g, 36 mmol), 화합물 amine5(15.5 g, 37.8 mmol), sodium tert-butoxide(4.5 g, 46.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-5 15 g을 얻었다.(수율 64%, MS: [M+H]+= 652)
합성예 2-6
Figure PCTKR2022010727-appb-img-000333
질소 분위기에서 화합물 subA-1(10 g, 36 mmol), 화합물 amine6(13.7 g, 37.8 mmol), sodium tert-butoxide(4.5 g, 46.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-6 15.8 g을 얻었다.(수율 73%, MS: [M+H]+= 603)
합성예 2-7
Figure PCTKR2022010727-appb-img-000334
질소 분위기에서 9H-carbazole(10 g, 59.8 mmol), 2-bromo-5-chloro-1,1'-bipheny(16.8 g, 62.8 mmol), sodium tert-butoxide(7.5 g, 77.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subA-2 14.8 g을 얻었다.(수율 70%, MS: [M+H]+= 354)
Figure PCTKR2022010727-appb-img-000335
질소 분위기에서 화합물 subA-2(10 g, 28.3 mmol), 화합물 amine7(14.5 g, 29.7 mmol), sodium tert-butoxide(3.5 g, 36.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-7 15.7 g을 얻었다.(수율 69%, MS: [M+H]+= 805)
합성예 2-8
Figure PCTKR2022010727-appb-img-000336
질소 분위기에서 화합물 subA-2(10 g, 28.3 mmol), 화합물 amine8(14 g, 29.7 mmol), sodium tert-butoxide(3.5 g, 36.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-8 13.6 g을 얻었다.(수율 61%, MS: [M+H]+= 789)
합성예 2-9
Figure PCTKR2022010727-appb-img-000337
질소 분위기에서 9H-carbazole(10 g, 59.8 mmol), 5-bromo-2-chloro-1,1'-biphenyl(16.8 g, 62.8 mmol), sodium tert-butoxide(7.5 g, 77.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subA-3 15.6 g을 얻었다.(수율 74%, MS: [M+H]+= 354)
Figure PCTKR2022010727-appb-img-000338
질소 분위기에서 화합물 subA-3(10 g, 28.3 mmol), 화합물 amine9(14 g, 29.7 mmol), sodium tert-butoxide(3.5 g, 36.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-9 13.4 g을 얻었다.(수율 60%, MS: [M+H]+= 789)
합성예 2-10
Figure PCTKR2022010727-appb-img-000339
질소 분위기에서 화합물 subA-2(10 g, 28.3 mmol), 화합물 amine10(13.2 g, 29.7 mmol), sodium tert-butoxide(3.5 g, 36.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-10 15.9 g을 얻었다.(수율 74%, MS: [M+H]+= 763)
합성예 2-11
Figure PCTKR2022010727-appb-img-000340
질소 분위기에서 9H-carbazole(10 g, 59.8 mmol), 1-bromo-4-chloronaphthalene(15.2 g, 62.8 mmol), sodium tert-butoxide(7.5 g, 77.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subA-4 12.7 g을 얻었다.(수율 65%, MS: [M+H]+= 328)
Figure PCTKR2022010727-appb-img-000341
질소 분위기에서 화합물 subA-4(10 g, 30.5 mmol), 화합물 amine11(12.8 g, 32 mmol), sodium tert-butoxide(3.8 g, 39.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-11 13.9 g을 얻었다.(수율 66%, MS: [M+H]+= 691)
합성예 2-12
Figure PCTKR2022010727-appb-img-000342
질소 분위기에서 9H-carbazole(10 g, 59.8 mmol), 4-bromo-4'-chloro-1,1'-biphenyl(16.8 g, 62.8 mmol), sodium tert-butoxide(7.5 g, 77.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subA-5 15.4 g을 얻었다.(수율 73%, MS: [M+H]+= 354)
Figure PCTKR2022010727-appb-img-000343
질소 분위기에서 화합물 subA-5(10 g, 28.3 mmol), 화합물 amine12(9.5 g, 29.7 mmol), sodium tert-butoxide(3.5 g, 36.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-12 11.2 g을 얻었다.(수율 62%, MS: [M+H]+= 639)
합성예 2-13
Figure PCTKR2022010727-appb-img-000344
질소 분위기에서 화합물 subA-5(10 g, 28.3 mmol), 화합물 amine13(10.4 g, 29.7 mmol), sodium tert-butoxide(3.5 g, 36.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-13 13.5 g을 얻었다.(수율 72%, MS: [M+H]+= 664)
합성예 2-14
Figure PCTKR2022010727-appb-img-000345
질소 분위기에서 화합물 subA-5(10 g, 28.3 mmol), 화합물 amine14(10.7 g, 29.7 mmol), sodium tert-butoxide(3.5 g, 36.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-14 12.5 g을 얻었다.(수율 65%, MS: [M+H]+= 679)
합성예 2-15
Figure PCTKR2022010727-appb-img-000346
질소 분위기에서 화합물 subA-5(10 g, 28.3 mmol), 화합물 amine15(14.9 g, 29.7 mmol), sodium tert-butoxide(3.5 g, 36.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-15 14.6 g을 얻었다.(수율 63%, MS: [M+H]+= 821)
합성예 2-16
Figure PCTKR2022010727-appb-img-000347
질소 분위기에서 화합물 subA-5(10 g, 28.3 mmol), 화합물 amine16(13.3 g, 29.7 mmol), sodium tert-butoxide(3.5 g, 36.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-16 15.6 g을 얻었다.(수율 72%, MS: [M+H]+= 765)
합성예 2-17
Figure PCTKR2022010727-appb-img-000348
질소 분위기에서 9H-carbazole(10 g, 59.8 mmol), 4-bromo-4'-chloro-1,1':3',1''-terphenyl(21.6 g, 62.8 mmol), sodium tert-butoxide(7.5 g, 77.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subA-6 15.4 g을 얻었다.(수율 60%, MS: [M+H]+= 430)
Figure PCTKR2022010727-appb-img-000349
질소 분위기에서 화합물 subA-6(10 g, 23.3 mmol), 화합물 amine12(7.8 g, 24.4 mmol), sodium tert-butoxide(2.9 g, 30.2 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-17 11.5 g을 얻었다.(수율 69%, MS: [M+H]+= 715)
합성예 2-18
Figure PCTKR2022010727-appb-img-000350
질소 분위기에서 9H-carbazole(10 g, 59.8 mmol), 1-bromo-4-(4-chlorophenyl)naphthalene(19.9 g, 62.8 mmol), sodium tert-butoxide(7.5 g, 77.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subA-7 15.7 g을 얻었다.(수율 65%, MS: [M+H]+= 404)
Figure PCTKR2022010727-appb-img-000351
질소 분위기에서 화합물 subA-7(10 g, 24.8 mmol), 화합물 amine17(11.6 g, 26 mmol), sodium tert-butoxide(3.1 g, 32.2 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-18 13.1 g을 얻었다.(수율 65%, MS: [M+H]+= 815)
합성예 2-19
Figure PCTKR2022010727-appb-img-000352
질소 분위기에서 9H-carbazole(10 g, 59.8 mmol), 1-bromo-4-(5-chloro-[1,1'-biphenyl]-2-yl)naphthalene(24.7 g, 62.8 mmol), sodium tert-butoxide(7.5 g, 77.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subA-8 18.6 g을 얻었다.(수율 65%, MS: [M+H]+= 480)
Figure PCTKR2022010727-appb-img-000353
질소 분위기에서 화합물 subA-8(10 g, 20.8 mmol), 화합물 amine18(9.8 g, 21.9 mmol), sodium tert-butoxide(2.6 g, 27.1 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-19 13.5 g을 얻었다.(수율 73%, MS: [M+H]+= 891)
합성예 2-20
Figure PCTKR2022010727-appb-img-000354
질소 분위기에서 9H-carbazole(10 g, 59.8 mmol), 4'-bromo-4-chloro-1,1':2',1''-terphenyl(21.6 g, 62.8 mmol), sodium tert-butoxide(7.5 g, 77.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subA-9 15.7 g을 얻었다.(수율 61%, MS: [M+H]+= 430)
Figure PCTKR2022010727-appb-img-000355
질소 분위기에서 화합물 subA-9(10 g, 23.3 mmol), 화합물 amine19(9.8 g, 24.4 mmol), sodium tert-butoxide(2.9 g, 30.2 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-20 11.6 g을 얻었다.(수율 63%, MS: [M+H]+= 793)
합성예 2-21
Figure PCTKR2022010727-appb-img-000356
질소 분위기에서 9H-carbazole(10 g, 59.8 mmol), 1-(4-bromophenyl)-4-chloronaphthalene(19.9 g, 62.8 mmol), sodium tert-butoxide(7.5 g, 77.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subA-10 17.4 g을 얻었다.(수율 72%, MS: [M+H]+= 404)
Figure PCTKR2022010727-appb-img-000357
질소 분위기에서 화합물 subA-10(10 g, 24.8 mmol), 화합물 amine20(8.4 g, 26 mmol), sodium tert-butoxide(3.1 g, 32.2 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-21 12.6 g을 얻었다.(수율 74%, MS: [M+H]+= 689)
합성예 2-22
Figure PCTKR2022010727-appb-img-000358
질소 분위기에서 9H-carbazole(10 g, 59.8 mmol), 2-bromo-4'-chloro-1,1'-biphenyl(16.8 g, 62.8 mmol), sodium tert-butoxide(7.5 g, 77.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subA-11 15.6 g을 얻었다.(수율 74%, MS: [M+H]+= 354)
Figure PCTKR2022010727-appb-img-000359
질소 분위기에서 화합물 subA-11(10 g, 28.3 mmol), 화합물 amine21(12.5 g, 29.7 mmol), sodium tert-butoxide(3.5 g, 36.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-22 12.9 g을 얻었다.(수율 62%, MS: [M+H]+= 739)
합성예 2-23
Figure PCTKR2022010727-appb-img-000360
질소 분위기에서 화합물 subA-11(10 g, 28.3 mmol), 화합물 amine22(13.3 g, 29.7 mmol), sodium tert-butoxide(3.5 g, 36.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-23 13.6 g을 얻었다.(수율 63%, MS: [M+H]+= 765)
합성예 2-24
Figure PCTKR2022010727-appb-img-000361
질소 분위기에서 화합물 subA-11(10 g, 28.3 mmol), 화합물 amine23(13.3 g, 29.7 mmol), sodium tert-butoxide(3.5 g, 36.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-24 13.4 g을 얻었다.(수율 62%, MS: [M+H]+= 765)
합성예 2-25
Figure PCTKR2022010727-appb-img-000362
질소 분위기에서 화합물 subA-11(10 g, 28.3 mmol), 화합물 amine24(14 g, 29.7 mmol), sodium tert-butoxide(3.5 g, 36.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-25 15.6 g을 얻었다.(수율 70%, MS: [M+H]+= 789)
합성예 2-26
Figure PCTKR2022010727-appb-img-000363
질소 분위기에서 화합물 subA-11(10 g, 28.3 mmol), 화합물 amine25(13.3 g, 29.7 mmol), sodium tert-butoxide(3.5 g, 36.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-26 14.5 g을 얻었다.(수율 67%, MS: [M+H]+= 765)
합성예 2-27
Figure PCTKR2022010727-appb-img-000364
질소 분위기에서 화합물 subA-11(10 g, 28.3 mmol), 화합물 amine26(14 g, 29.7 mmol), sodium tert-butoxide(3.5 g, 36.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-27 16.5 g을 얻었다.(수율 74%, MS: [M+H]+= 789)
합성예 2-28
Figure PCTKR2022010727-appb-img-000365
질소 분위기에서 화합물 subA-11(10 g, 28.3 mmol), 화합물 amine27(11 g, 29.7 mmol), sodium tert-butoxide(3.5 g, 36.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-28 11.7 g을 얻었다.(수율 60%, MS: [M+H]+= 689)
합성예 2-29
Figure PCTKR2022010727-appb-img-000366
질소 분위기에서 화합물 subA-11(10 g, 28.3 mmol), 화합물 amine28(14.9 g, 29.7 mmol), sodium tert-butoxide(3.5 g, 36.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-29 14.1 g을 얻었다.(수율 61%, MS: [M+H]+= 821)
합성예 2-30
Figure PCTKR2022010727-appb-img-000367
질소 분위기에서 화합물 subA-11(10 g, 28.3 mmol), 화합물 amine29(13.3 g, 29.7 mmol), sodium tert-butoxide(3.5 g, 36.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-30 15.3 g을 얻었다.(수율 71%, MS: [M+H]+= 765)
합성예 2-31
Figure PCTKR2022010727-appb-img-000368
질소 분위기에서 화합물 subA-11(10 g, 28.3 mmol), 화합물 amine30(11.4 g, 29.7 mmol), sodium tert-butoxide(3.5 g, 36.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-31 13.1 g을 얻었다.(수율 66%, MS: [M+H]+= 703)
합성예 2-32
Figure PCTKR2022010727-appb-img-000369
질소 분위기에서 화합물 subA-11(10 g, 28.3 mmol), 화합물 amine31(12.5 g, 29.7 mmol), sodium tert-butoxide(3.5 g, 36.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-32 14.2 g을 얻었다.(수율 68%, MS: [M+H]+= 739)
합성예 2-33
Figure PCTKR2022010727-appb-img-000370
질소 분위기에서 9H-carbazole(10 g, 59.8 mmol), 2-bromo-4'-chloro-1,1':2',1''-terphenyl(21.6 g, 62.8 mmol), sodium tert-butoxide(7.5 g, 77.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subA-12 16.9 g을 얻었다.(수율 66%, MS: [M+H]+= 430)
Figure PCTKR2022010727-appb-img-000371
질소 분위기에서 화합물 subA-12(10 g, 23.3 mmol), 화합물 amine32(9.1 g, 24.4 mmol), sodium tert-butoxide(2.9 g, 30.2 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-33 12.6 g을 얻었다.(수율 71%, MS: [M+H]+= 765)
합성예 2-34
Figure PCTKR2022010727-appb-img-000372
질소 분위기에서 9H-carbazole(10 g, 59.8 mmol), 2'-bromo-4-chloro-1,1':3',1''-terphenyl(21.6 g, 62.8 mmol), sodium tert-butoxide(7.5 g, 77.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subA-13 16.4 g을 얻었다.(수율 64%, MS: [M+H]+= 430)
Figure PCTKR2022010727-appb-img-000373
질소 분위기에서 화합물 subA-13(10 g, 23.3 mmol), 화합물 amine12(7.8 g, 24.4 mmol), sodium tert-butoxide(2.9 g, 30.2 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-34 11.8 g을 얻었다.(수율 71%, MS: [M+H]+= 715)
합성예 2-35
Figure PCTKR2022010727-appb-img-000374
질소 분위기에서 화합물 subA-12(10 g, 23.3 mmol), 화합물 amine33(9.1 g, 24.4 mmol), sodium tert-butoxide(2.9 g, 30.2 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-35 12.3 g을 얻었다.(수율 69%, MS: [M+H]+= 765)
합성예 2-36
Figure PCTKR2022010727-appb-img-000375
질소 분위기에서 9H-carbazole(10 g, 59.8 mmol), 3'-bromo-4''-chloro-1,1':2',1''-terpheny(21.6 g, 62.8 mmol), sodium tert-butoxide(7.5 g, 77.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subA-14 15.7 g을 얻었다.(수율 61%, MS: [M+H]+= 430)
Figure PCTKR2022010727-appb-img-000376
질소 분위기에서 화합물 subA-14(10 g, 23.3 mmol), 화합물 amine34(10.3 g, 24.4 mmol), sodium tert-butoxide(2.9 g, 30.2 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-36 13.6 g을 얻었다.(수율 72%, MS: [M+H]+= 815)
합성예 2-37
Figure PCTKR2022010727-appb-img-000377
질소 분위기에서 9H-carbazole(10 g, 59.8 mmol), 3-bromo-4'-chloro-1,1'-bipheny(16.8 g, 62.8 mmol), sodium tert-butoxide(7.5 g, 77.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subA-15 13.3 g을 얻었다.(수율 63%, MS: [M+H]+= 354)
Figure PCTKR2022010727-appb-img-000378
질소 분위기에서 화합물 subA-15(10 g, 2.8 mmol), 화합물 amine35(1.1 g, 3 mmol), sodium tert-butoxide(0.4 g, 3.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0 g, 0 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-37 1.3 g을 얻었다.(수율 68%, MS: [M+H]+= 689)
합성예 2-38
Figure PCTKR2022010727-appb-img-000379
질소 분위기에서 화합물 subA-15(10 g, 2.8 mmol), 화합물 amine36(1 g, 3 mmol), sodium tert-butoxide(0.4 g, 3.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0 g, 0 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-38 1.3 g을 얻었다.(수율 69%, MS: [M+H]+= 653)
합성예 2-39
Figure PCTKR2022010727-appb-img-000380
질소 분위기에서 화합물 subA-15(10 g, 2.8 mmol), 화합물 amine37(1.4 g, 3 mmol), sodium tert-butoxide(0.4 g, 3.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0 g, 0 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-39 1.4 g을 얻었다.(수율 60%, MS: [M+H]+= 805)
합성예 2-40
Figure PCTKR2022010727-appb-img-000381
질소 분위기에서 9H-carbazole(10 g, 59.8 mmol), 5'-bromo-4-chloro-1,1':3',1''-terphenyl(21.6 g, 62.8 mmol), sodium tert-butoxide(7.5 g, 77.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subA-16 18 g을 얻었다.(수율 70%, MS: [M+H]+= 430)
Figure PCTKR2022010727-appb-img-000382
질소 분위기에서 화합물 subA-16(10 g, 23.3 mmol), 화합물 amine38(9 g, 24.4 mmol), sodium tert-butoxide(2.9 g, 30.2 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-40 12.6 g을 얻었다.(수율 71%, MS: [M+H]+= 763)
합성예 2-41
Figure PCTKR2022010727-appb-img-000383
질소 분위기에서 9H-carbazole(10 g, 59.8 mmol), 5'-bromo-4-chloro-1,1':2',1''-terphenyl(21.6 g, 62.8 mmol), sodium tert-butoxide(7.5 g, 77.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subA-17 15.4 g을 얻었다.(수율 60%, MS: [M+H]+= 430)
Figure PCTKR2022010727-appb-img-000384
질소 분위기에서 화합물 subA-17(10 g, 23.3 mmol), 화합물 amine39(9.1 g, 24.4 mmol), sodium tert-butoxide(2.9 g, 30.2 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-41 11.7 g을 얻었다.(수율 66%, MS: [M+H]+= 766)
합성예 2-42
Figure PCTKR2022010727-appb-img-000385
질소 분위기에서 9H-carbazole(10 g, 59.8 mmol), 3-bromo-4'-chloro-1,1':2',1''-terphenyl(21.6 g, 62.8 mmol), sodium tert-butoxide(7.5 g, 77.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subA-18 19 g을 얻었다.(수율 74%, MS: [M+H]+= 430)
Figure PCTKR2022010727-appb-img-000386
질소 분위기에서 화합물 subA-18(10 g, 23.3 mmol), 화합물 amine40(7.8 g, 24.4 mmol), sodium tert-butoxide(2.9 g, 30.2 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-42 12.1 g을 얻었다.(수율 73%, MS: [M+H]+= 715)
합성예 2-43
Figure PCTKR2022010727-appb-img-000387
질소 분위기에서 9H-carbazole(10 g, 59.8 mmol), 3-bromo-4'-chloro-1,1':3',1''-terphenyl(21.6 g, 62.8 mmol), sodium tert-butoxide(7.5 g, 77.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subA-19 16.7 g을 얻었다.(수율 65%, MS: [M+H]+= 430)
Figure PCTKR2022010727-appb-img-000388
질소 분위기에서 화합물 subA-19(10 g, 23.3 mmol), 화합물 amine41(9.1 g, 24.4 mmol), sodium tert-butoxide(2.9 g, 30.2 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-43 12.6 g을 얻었다.(수율 71%, MS: [M+H]+= 765)
합성예 2-44
Figure PCTKR2022010727-appb-img-000389
질소 분위기에서 9H-carbazole(10 g, 59.8 mmol), 3-bromo-3'-chloro-1,1'-biphenyl(16.8 g, 62.8 mmol), sodium tert-butoxide(7.5 g, 77.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subA-20 14.1 g을 얻었다.(수율 67%, MS: [M+H]+= 354)
Figure PCTKR2022010727-appb-img-000390
질소 분위기에서 화합물 subA-20(10 g, 28.3 mmol), 화합물 amine42(11.1 g, 29.7 mmol), sodium tert-butoxide(3.5 g, 36.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-44 12.1 g을 얻었다.(수율 62%, MS: [M+H]+= 689)
합성예 2-45
Figure PCTKR2022010727-appb-img-000391
질소 분위기에서 9H-carbazole(10 g, 59.8 mmol), 2-bromo-3'-chloro-1,1'-biphenyl(16.8 g, 62.8 mmol), sodium tert-butoxide(7.5 g, 77.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subA-21 13.3 g을 얻었다.(수율 63%, MS: [M+H]+= 354)
Figure PCTKR2022010727-appb-img-000392
질소 분위기에서 화합물 subA-21(10 g, 28.3 mmol), 화합물 amine43(11.7 g, 29.7 mmol), sodium tert-butoxide(3.5 g, 36.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-45 14.7 g을 얻었다.(수율 73%, MS: [M+H]+= 713)
합성예 2-46
Figure PCTKR2022010727-appb-img-000393
질소 분위기에서 9H-carbazole(10 g, 59.8 mmol), 6'-bromo-3-chloro-1,1':3',1''-terpheny(21.6 g, 62.8 mmol), sodium tert-butoxide(7.5 g, 77.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subA-22 16.4 g을 얻었다.(수율 64%, MS: [M+H]+= 430)
Figure PCTKR2022010727-appb-img-000394
질소 분위기에서 화합물 subA-22(10 g, 23.3 mmol), 화합물 amine44(7.8 g, 24.4 mmol), sodium tert-butoxide(2.9 g, 30.2 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-46 10.1 g을 얻었다.(수율 61%, MS: [M+H]+= 715)
합성예 2-47
Figure PCTKR2022010727-appb-img-000395
질소 분위기에서 화합물 subA-20(10 g, 28.3 mmol), 화합물 amine45(13.3 g, 29.7 mmol), sodium tert-butoxide(3.5 g, 36.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-47 13.8 g을 얻었다.(수율 64%, MS: [M+H]+= 765)
합성예 2-48
Figure PCTKR2022010727-appb-img-000396
질소 분위기에서 9H-carbazole(10 g, 59.8 mmol), 1-bromo-2-chlorobenzene(12 g, 62.8 mmol), sodium tert-butoxide(7.5 g, 77.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subA-23 11.9 g을 얻었다.(수율 72%, MS: [M+H]+= 278)
Figure PCTKR2022010727-appb-img-000397
질소 분위기에서 화합물 subA-23(10 g, 36 mmol), 화합물 amine46(13.1 g, 37.8 mmol), sodium tert-butoxide(4.5 g, 46.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-48 13.9 g을 얻었다.(수율 66%, MS: [M+H]+= 587)
합성예 2-49
Figure PCTKR2022010727-appb-img-000398
질소 분위기에서 9H-carbazole(10 g, 59.8 mmol), 1-bromo-3-chlorobenzene(12 g, 62.8 mmol), sodium tert-butoxide(7.5 g, 77.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subA-24 9.9 g을 얻었다.(수율 60%, MS: [M+H]+= 278)
Figure PCTKR2022010727-appb-img-000399
질소 분위기에서 화합물 subA-24(10 g, 36 mmol), 화합물 amine47(16.8 g, 37.8 mmol), sodium tert-butoxide(4.5 g, 46.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-49 18 g을 얻었다.(수율 73%, MS: [M+H]+= 687)
합성예 2-50
Figure PCTKR2022010727-appb-img-000400
질소 분위기에서 화합물 subA-24(10 g, 36 mmol), 화합물 amine48(16.9 g, 37.8 mmol), sodium tert-butoxide(4.5 g, 46.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.4 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-50 17 g을 얻었다.(수율 69%, MS: [M+H]+= 687)
합성예 2-51
Figure PCTKR2022010727-appb-img-000401
질소 분위기에서 9H-carbazole(10 g, 59.8 mmol), 2-bromo-4-chloro-1,1'-biphenyl(16.8 g, 62.8 mmol), sodium tert-butoxide(7.5 g, 77.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subA-25 15.8 g을 얻었다.(수율 75%, MS: [M+H]+= 354)
Figure PCTKR2022010727-appb-img-000402
질소 분위기에서 화합물 subA-25(10 g, 28.3 mmol), 화합물 amine49(9.5 g, 29.7 mmol), sodium tert-butoxide(3.5 g, 36.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-51 13.5 g을 얻었다.(수율 75%, MS: [M+H]+= 637)
합성예 2-52
Figure PCTKR2022010727-appb-img-000403
질소 분위기에서 9H-carbazole(10 g, 59.8 mmol), 4-bromo-2-chloro-1,1'-bipheny(16.8 g, 62.8 mmol), sodium tert-butoxide(7.5 g, 77.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subA-26 15 g을 얻었다.(수율 71%, MS: [M+H]+= 354)
Figure PCTKR2022010727-appb-img-000404
질소 분위기에서 화합물 subA-26(10 g, 28.3 mmol), 화합물 amine50(14 g, 29.7 mmol), sodium tert-butoxide(3.5 g, 36.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-52 14.9 g을 얻었다.(수율 67%, MS: [M+H]+= 789)
합성예 2-53
Figure PCTKR2022010727-appb-img-000405
질소 분위기에서 9H-carbazole(10 g, 59.8 mmol), 3-bromo-5-chloro-1,1'-biphenyl(16.8 g, 62.8 mmol), sodium tert-butoxide(7.5 g, 77.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subA-27 15.6 g을 얻었다.(수율 74%, MS: [M+H]+= 354)
Figure PCTKR2022010727-appb-img-000406
질소 분위기에서 화합물 subA-27(10 g, 2.8 mmol), 화합물 amine43(1.2 g, 3 mmol), sodium tert-butoxide(0.4 g, 3.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0 g, 0 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-53 1.2 g을 얻었다.(수율 60%, MS: [M+H]+= 713)
합성예 2-54
Figure PCTKR2022010727-appb-img-000407
질소 분위기에서 화합물 subA-27(10 g, 2.8 mmol), 화합물 amine51(0.9 g, 3 mmol), sodium tert-butoxide(0.4 g, 3.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0 g, 0 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-54 1 g을 얻었다.(수율 60%, MS: [M+H]+= 613)
합성예 2-55
Figure PCTKR2022010727-appb-img-000408
질소 분위기에서 화합물 subA-20(10 g, 28.3 mmol), 화합물 amine52(12.5 g, 29.7 mmol), sodium tert-butoxide(3.5 g, 36.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-55 14.8 g을 얻었다.(수율 71%, MS: [M+H]+= 739)
합성예 2-56
Figure PCTKR2022010727-appb-img-000409
질소 분위기에서 9H-carbazole(10 g, 59.8 mmol), 3-bromo-5'-chloro-1,1':2',1''-terpheny(21.6 g, 62.8 mmol), sodium tert-butoxide(7.5 g, 77.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subA-28 15.4 g을 얻었다.(수율 60%, MS: [M+H]+= 430)
Figure PCTKR2022010727-appb-img-000410
질소 분위기에서 화합물 subA-28(10 g, 23.3 mmol), 화합물 amine53(9.1 g, 24.4 mmol), sodium tert-butoxide(2.9 g, 30.2 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-56 12.6 g을 얻었다.(수율 71%, MS: [M+H]+= 765)
합성예 2-57
Figure PCTKR2022010727-appb-img-000411
질소 분위기에서 9H-carbazole(10 g, 59.8 mmol), 3-bromo-5'-chloro-1,1':3',1''-terphenyl(21.6 g, 62.8 mmol), sodium tert-butoxide(7.5 g, 77.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subA-29 15.7 g을 얻었다.(수율 61%, MS: [M+H]+= 430)
Figure PCTKR2022010727-appb-img-000412
질소 분위기에서 화합물 subA-29(10 g, 23.3 mmol), 화합물 amine39(9.1 g, 24.4 mmol), sodium tert-butoxide(2.9 g, 30.2 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-57 13 g을 얻었다.(수율 73%, MS: [M+H]+= 765)
합성예 2-58
Figure PCTKR2022010727-appb-img-000413
질소 분위기에서 9H-carbazole(10 g, 59.8 mmol), 2-bromo-2'-chloro-1,1'-bipheny(16.8 g, 62.8 mmol), sodium tert-butoxide(7.5 g, 77.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subA-30 15 g을 얻었다.(수율 71%, MS: [M+H]+= 354)
Figure PCTKR2022010727-appb-img-000414
질소 분위기에서 화합물 subA-30(10 g, 28.3 mmol), 화합물 amine54(12.5 g, 29.7 mmol), sodium tert-butoxide(3.5 g, 36.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-58 12.7 g을 얻었다.(수율 61%, MS: [M+H]+= 739)
합성예 2-59
Figure PCTKR2022010727-appb-img-000415
질소 분위기에서 화합물 subA-30(10 g, 28.3 mmol), 화합물 amine55(11.8 g, 29.7 mmol), sodium tert-butoxide(3.5 g, 36.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-59 13.9 g을 얻었다.(수율 69%, MS: [M+H]+= 715)
합성예 2-60
Figure PCTKR2022010727-appb-img-000416
질소 분위기에서 9H-carbazole(10 g, 59.8 mmol), 3'-bromo-2-chloro-1,1'-biphenyl(16.8 g, 62.8 mmol), sodium tert-butoxide(7.5 g, 77.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subA-31 13.1 g을 얻었다.(수율 62%, MS: [M+H]+= 354)
Figure PCTKR2022010727-appb-img-000417
질소 분위기에서 화합물 subA-31(10 g, 28.3 mmol), 화합물 amine56(12.5 g, 29.7 mmol), sodium tert-butoxide(3.5 g, 36.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-60 14.8 g을 얻었다.(수율 71%, MS: [M+H]+= 739)
합성예 2-61
Figure PCTKR2022010727-appb-img-000418
질소 분위기에서 9H-carbazole(10 g, 59.8 mmol), 3-bromo-6'-chloro-1,1':2',1''-terphenyl(21.6 g, 62.8 mmol), sodium tert-butoxide(7.5 g, 77.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subA-32 17.5 g을 얻었다.(수율 68%, MS: [M+H]+= 430)
Figure PCTKR2022010727-appb-img-000419
질소 분위기에서 화합물 subA-32(10 g, 23.3 mmol), 화합물 amine57(9.7 g, 24.4 mmol), sodium tert-butoxide(2.9 g, 30.2 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-61 13.4 g을 얻었다.(수율 73%, MS: [M+H]+= 791)
합성예 2-62
Figure PCTKR2022010727-appb-img-000420
질소 분위기에서 9H-carbazole(10 g, 59.8 mmol), 4''-bromo-3'-chloro-1,1':2',1''-terphenyl(21.6 g, 62.8 mmol), sodium tert-butoxide(7.5 g, 77.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.3 g, 0.6 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subA-33 16.9 g을 얻었다.(수율 66%, MS: [M+H]+= 430)
Figure PCTKR2022010727-appb-img-000421
질소 분위기에서 화합물 subA-33(10 g, 23.3 mmol), 화합물 amine40(7.8 g, 24.4 mmol), sodium tert-butoxide(2.9 g, 30.2 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-62 10.1 g을 얻었다.(수율 61%, MS: [M+H]+= 715)
합성예 2-63
Figure PCTKR2022010727-appb-img-000422
질소 분위기에서 화합물 subA-31(10 g, 28.3 mmol), 화합물 amine58(14 g, 29.7 mmol), sodium tert-butoxide(3.5 g, 36.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-63 14.5 g을 얻었다.(수율 65%, MS: [M+H]+= 789)
합성예 2-64
Figure PCTKR2022010727-appb-img-000423
질소 분위기에서 11H-benzo[a]carbazole(10 g, 46 mmol), 1-bromo-4-chlorobenzene(9.3 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subB-1 9.5 g을 얻었다.(수율 63%, MS: [M+H]+= 328)
Figure PCTKR2022010727-appb-img-000424
질소 분위기에서 화합물 subB-1(10 g, 30.5 mmol), 화합물 amine59(10.3 g, 32 mmol), sodium tert-butoxide(3.8 g, 39.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-64 13.1 g을 얻었다.(수율 70%, MS: [M+H]+= 613)
합성예 2-65
Figure PCTKR2022010727-appb-img-000425
질소 분위기에서 화합물 subB-1(10 g, 30.5 mmol), 화합물 amine60(11.9 g, 32 mmol), sodium tert-butoxide(3.8 g, 39.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-65 12.5 g을 얻었다.(수율 62%, MS: [M+H]+= 663)
합성예 2-66
Figure PCTKR2022010727-appb-img-000426
질소 분위기에서 화합물 subB-1(10 g, 30.5 mmol), 화합물 amine61(23.3 g, 32 mmol), sodium tert-butoxide(3.8 g, 39.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-66 14.2 g을 얻었다.(수율 65%, MS: [M+H]+= 719)
합성예 2-67
Figure PCTKR2022010727-appb-img-000427
질소 분위기에서 화합물 subB-1(10 g, 30.5 mmol), 화합물 amine62(13.6 g, 32 mmol), sodium tert-butoxide(3.8 g, 39.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-67 16.4 g을 얻었다.(수율 75%, MS: [M+H]+= 716)
합성예 2-68
Figure PCTKR2022010727-appb-img-000428
질소 분위기에서 11H-benzo[a]carbazole(10 g, 46 mmol), 5-bromo-2-chloro-1,1'-biphenyl(12.9 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subB-2 13.9 g을 얻었다.(수율 75%, MS: [M+H]+= 404)
Figure PCTKR2022010727-appb-img-000429
질소 분위기에서 화합물 subB-2(10 g, 24.8 mmol), 화합물 amine63(9.7 g, 26 mmol), sodium tert-butoxide(3.1 g, 32.2 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-68 13.2 g을 얻었다.(수율 72%, MS: [M+H]+= 739)
합성예 2-69
Figure PCTKR2022010727-appb-img-000430
질소 분위기에서 11H-benzo[a]carbazole(10 g, 46 mmol), 2-bromo-5-chloro-1,1'-biphenyl(12.9 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subB-3 12.4 g을 얻었다.(수율 67%, MS: [M+H]+= 404)
Figure PCTKR2022010727-appb-img-000431
질소 분위기에서 화합물 subB-3(10 g, 24.8 mmol), 화합물 amine49(8.3 g, 26 mmol), sodium tert-butoxide(3.1 g, 32.2 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-69 11.6 g을 얻었다.(수율 68%, MS: [M+H]+= 687)
합성예 2-70
Figure PCTKR2022010727-appb-img-000432
질소 분위기에서 11H-benzo[a]carbazole(10 g, 46 mmol), 4-bromo-4'-chloro-1,1'-biphenyl(12.9 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subB-4 12.1 g을 얻었다.(수율 65%, MS: [M+H]+= 404)
Figure PCTKR2022010727-appb-img-000433
질소 분위기에서 화합물 subB-4(10 g, 24.8 mmol), 화합물 amine64(7.7 g, 26 mmol), sodium tert-butoxide(3.1 g, 32.2 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-70 11.6 g을 얻었다.(수율 71%, MS: [M+H]+= 663)
합성예 2-71
Figure PCTKR2022010727-appb-img-000434
질소 분위기에서 화합물 subB-4(10 g, 24.8 mmol), 화합물 amine65(7.7 g, 26 mmol), sodium tert-butoxide(3.1 g, 32.2 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-71 11.6 g을 얻었다.(수율 71%, MS: [M+H]+= 663)
합성예 2-72
Figure PCTKR2022010727-appb-img-000435
질소 분위기에서 11H-benzo[a]carbazole(10 g, 46 mmol), 1-bromo-4-(4-chlorophenyl)naphthalene(15.3 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subB-5 15.2 g을 얻었다.(수율 73%, MS: [M+H]+= 454)
Figure PCTKR2022010727-appb-img-000436
질소 분위기에서 화합물 subB-5(10 g, 22 mmol), 화합물 amine66(9.1 g, 23.1 mmol), sodium tert-butoxide(2.8 g, 28.6 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-72 12.2 g을 얻었다.(수율 68%, MS: [M+H]+= 813)
합성예 2-73
Figure PCTKR2022010727-appb-img-000437
질소 분위기에서 11H-benzo[a]carbazole(10 g, 46 mmol), 4'-bromo-4-chloro-1,1':2',1''-terphenyl(16.6 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subB-6 15 g을 얻었다.(수율 68%, MS: [M+H]+= 480)
Figure PCTKR2022010727-appb-img-000438
질소 분위기에서 화합물 subB-6(10 g, 20.8 mmol), 화합물 amine67(8.7 g, 21.9 mmol), sodium tert-butoxide(2.6 g, 27.1 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-73 12.4 g을 얻었다.(수율 71%, MS: [M+H]+= 839)
합성예 2-74
Figure PCTKR2022010727-appb-img-000439
질소 분위기에서 11H-benzo[a]carbazole(10 g, 46 mmol), 2-bromo-4'-chloro-1,1'-biphenyl(12.9 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subB-7 13.2 g을 얻었다.(수율 71%, MS: [M+H]+= 404)
Figure PCTKR2022010727-appb-img-000440
질소 분위기에서 화합물 subB-7(10 g, 24.8 mmol), 화합물 amine25(11.6 g, 26 mmol), sodium tert-butoxide(3.1 g, 32.2 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-74 13.3 g을 얻었다. (수율 66%, MS: [M+H]+= 815)
합성예 2-75
Figure PCTKR2022010727-appb-img-000441
질소 분위기에서 화합물 subB-7(10 g, 24.8 mmol), 화합물 amine42(9.7 g, 26 mmol), sodium tert-butoxide(3.1 g, 32.2 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-75 12.2 g을 얻었다.(수율 67%, MS: [M+H]+= 739)
합성예 2-76
Figure PCTKR2022010727-appb-img-000442
질소 분위기에서 11H-benzo[a]carbazole(10 g, 46 mmol), 3'-bromo-4''-chloro-1,1':2',1''-terphenyl(16.6 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subB-8 14.3 g을 얻었다.(수율 65%, MS: [M+H]+= 480)
Figure PCTKR2022010727-appb-img-000443
질소 분위기에서 화합물 subB-8(10 g, 20.8 mmol), 화합물 amine68(7.6 g, 21.9 mmol), sodium tert-butoxide(2.6 g, 27.1 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-76 12 g을 얻었다.(수율 73%, MS: [M+H]+= 789)
합성예 2-77
Figure PCTKR2022010727-appb-img-000444
질소 분위기에서 11H-benzo[a]carbazole(10 g, 46 mmol), 2-bromo-4'-chloro-1,1':3',1''-terphenyl(16.6 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subB-9 15.7 g을 얻었다.(수율 71%, MS: [M+H]+= 480)
Figure PCTKR2022010727-appb-img-000445
질소 분위기에서 화합물 subB-9(10 g, 20.8 mmol), 화합물 amine69(7 g, 21.9 mmol), sodium tert-butoxide(2.6 g, 27.1 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-77 9.6 g을 얻었다.(수율 60%, MS: [M+H]+= 765)
합성예 2-78
Figure PCTKR2022010727-appb-img-000446
질소 분위기에서 11H-benzo[a]carbazole(10 g, 46 mmol), 2-bromo-4'-chloro-1,1':2',1''-terphenyl(16.6 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subB-10 14.6 g을 얻었다.(수율 66%, MS: [M+H]+= 480)
Figure PCTKR2022010727-appb-img-000447
질소 분위기에서 화합물 subB-10(10 g, 20.8 mmol), 화합물 amine70(7.3 g, 21.9 mmol), sodium tert-butoxide(2.6 g, 27.1 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-78 11.8 g을 얻었다.(수율 73%, MS: [M+H]+= 779)
합성예 2-79
Figure PCTKR2022010727-appb-img-000448
질소 분위기에서 11H-benzo[a]carbazole(10 g, 46 mmol), 3-bromo-5-chloro-1,1'-biphenyl(12.9 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subB-11 13.5 g을 얻었다.(수율 73%, MS: [M+H]+= 404)
Figure PCTKR2022010727-appb-img-000449
질소 분위기에서 화합물 subB-11(10 g, 24.8 mmol), 화합물 amine71(9.7 g, 26 mmol), sodium tert-butoxide(3.1 g, 32.2 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-79 13.3 g을 얻었다.(수율 73%, MS: [M+H]+= 739)
합성예 2-80
Figure PCTKR2022010727-appb-img-000450
질소 분위기에서 11H-benzo[a]carbazole(10 g, 46 mmol), 3-bromo-4'-chloro-1,1'-biphenyl(12.9 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subB-12 13.4 g을 얻었다.(수율 72%, MS: [M+H]+= 404)
Figure PCTKR2022010727-appb-img-000451
질소 분위기에서 화합물 subB-12(10 g, 24.8 mmol), 화합물 amine31(11 g, 26 mmol), sodium tert-butoxide(3.1 g, 32.2 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-80 12.1 g을 얻었다.(수율 62%, MS: [M+H]+= 789)
합성예 2-81
Figure PCTKR2022010727-appb-img-000452
질소 분위기에서 11H-benzo[a]carbazole(10 g, 46 mmol), 5'-bromo-4-chloro-1,1':3',1''-terphenyl(16.6 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subB-13 15.2 g을 얻었다.(수율 69%, MS: [M+H]+= 480)
Figure PCTKR2022010727-appb-img-000453
질소 분위기에서 화합물 subB-13(10 g, 20.8 mmol), 화합물 amine20(7 g, 21.9 mmol), sodium tert-butoxide(2.6 g, 27.1 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-81 11.1 g을 얻었다.(수율 70%, MS: [M+H]+= 765)
합성예 2-82
Figure PCTKR2022010727-appb-img-000454
질소 분위기에서 11H-benzo[a]carbazole(10 g, 46 mmol), 3-bromo-4'-chloro-1,1':2',1''-terphenyl(16.6 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subB-14 13.7 g을 얻었다.(수율 62%, MS: [M+H]+= 480)
Figure PCTKR2022010727-appb-img-000455
질소 분위기에서 화합물 subB-14(10 g, 20.8 mmol), 화합물 amine72(7.6 g, 21.9 mmol), sodium tert-butoxide(2.6 g, 27.1 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-82 11.5 g을 얻었다.(수율 70%, MS: [M+H]+= 789)
합성예 2-83
Figure PCTKR2022010727-appb-img-000456
질소 분위기에서 11H-benzo[a]carbazole(10 g, 46 mmol), 3-bromo-4'-chloro-1,1':3',1''-terphenyl(16.6 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subB-15 16.5 g을 얻었다.(수율 75%, MS: [M+H]+= 480)
Figure PCTKR2022010727-appb-img-000457
질소 분위기에서 화합물 subB-15(10 g, 20.8 mmol), 화합물 amine73(8.7 g, 21.9 mmol), sodium tert-butoxide(2.6 g, 27.1 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-83 12.1 g을 얻었다.(수율 69%, MS: [M+H]+= 839)
합성예 2-84
Figure PCTKR2022010727-appb-img-000458
질소 분위기에서 11H-benzo[a]carbazole(10 g, 46 mmol), 3-bromo-3'-chloro-1,1'-biphenyl(12.9 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subB-16 12.1 g을 얻었다.(수율 65%, MS: [M+H]+= 404)
Figure PCTKR2022010727-appb-img-000459
질소 분위기에서 화합물 subB-16(10 g, 24.8 mmol), 화합물 amine74(9.7 g, 26 mmol), sodium tert-butoxide(3.1 g, 32.2 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-84 12.2 g을 얻었다.(수율 67%, MS: [M+H]+= 739)
합성예 2-85
Figure PCTKR2022010727-appb-img-000460
질소 분위기에서 11H-benzo[a]carbazole(10 g, 46 mmol), 4''-bromo-3'-chloro-1,1':2',1''-terphenyl(16.6 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subB-17 14.6 g을 얻었다.(수율 66%, MS: [M+H]+= 480)
Figure PCTKR2022010727-appb-img-000461
질소 분위기에서 화합물 subB-17(10 g, 20.8 mmol), 화합물 amine75(7 g, 21.9 mmol), sodium tert-butoxide(2.6 g, 27.1 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-85 11.2 g을 얻었다.(수율 66%, MS: [M+H]+= 815)
합성예 2-86
Figure PCTKR2022010727-appb-img-000462
질소 분위기에서 5H-benzo[b]carbazole(10 g, 46 mmol), 1-bromo-4-chlorobenzene(9.3 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subC-1 11.1 g을 얻었다.(수율 74%, MS: [M+H]+= 328)
Figure PCTKR2022010727-appb-img-000463
질소 분위기에서 화합물 subC-1(10 g, 30.5 mmol), 화합물 amine75(9.5 g, 32 mmol), sodium tert-butoxide(3.8 g, 39.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-86 10.9 g을 얻었다.(수율 61%, MS: [M+H]+= 587)
합성예 2-87
Figure PCTKR2022010727-appb-img-000464
질소 분위기에서 화합물 subC-1(10 g, 30.5 mmol), 화합물 amine55(12.7 g, 32 mmol), sodium tert-butoxide(3.8 g, 39.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-87 14.9 g을 얻었다.(수율 71%, MS: [M+H]+= 689)
합성예 2-88
Figure PCTKR2022010727-appb-img-000465
질소 분위기에서 화합물 subC-1(10 g, 30.5 mmol), 화합물 amine76(12.2 g, 32 mmol), sodium tert-butoxide(3.8 g, 39.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-88 21.6 g을 얻었다.(수율 73%, MS: [M+H]+= 973)
합성예 2-89
Figure PCTKR2022010727-appb-img-000466
질소 분위기에서 화합물 subC-1(10 g, 30.5 mmol), 화합물 amine77(13.1 g, 32 mmol), sodium tert-butoxide(3.8 g, 39.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-89 14.1 g을 얻었다.(수율 66%, MS: [M+H]+= 702)
합성예 2-90
Figure PCTKR2022010727-appb-img-000467
질소 분위기에서 5H-benzo[b]carbazole(10 g, 46 mmol), 2-bromo-5-chloro-1,1'-biphenyl(12.9 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subC-2 11.3 g을 얻었다.(수율 61%, MS: [M+H]+= 404)
Figure PCTKR2022010727-appb-img-000468
질소 분위기에서 화합물 subC-2(10 g, 24.8 mmol), 화합물 amine78(10 g, 26 mmol), sodium tert-butoxide(3.1 g, 32.2 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-90 11.1 g을 얻었다.(수율 60%, MS: [M+H]+= 751)
합성예 2-91
Figure PCTKR2022010727-appb-img-000469
질소 분위기에서 화합물 subC-2(10 g, 24.8 mmol), 화합물 amine12(8.4 g, 26 mmol), sodium tert-butoxide(3.1 g, 32.2 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-91 12.1 g을 얻었다.(수율 71%, MS: [M+H]+= 689)
합성예 2-92
Figure PCTKR2022010727-appb-img-000470
질소 분위기에서 5H-benzo[b]carbazole(10 g, 46 mmol), 2-bromo-5-chloro-1,1'-biphenyl(12.9 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subC-3 11.3 g을 얻었다.(수율 61%, MS: [M+H]+= 404)
Figure PCTKR2022010727-appb-img-000471
질소 분위기에서 화합물 subC-3(10 g, 24.8 mmol), 화합물 amine52(6.4 g, 26 mmol), sodium tert-butoxide(3.1 g, 32.2 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-92 10.3 g을 얻었다.(수율 68%, MS: [M+H]+= 613)
합성예 2-93
Figure PCTKR2022010727-appb-img-000472
질소 분위기에서 5H-benzo[b]carbazole(10 g, 46 mmol), 4-bromo-4'-chloro-1,1'-biphenyl(12.9 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subC-4 12.2 g을 얻었다.(수율 66%, MS: [M+H]+= 404)
Figure PCTKR2022010727-appb-img-000473
질소 분위기에서 화합물 subC-4(10 g, 24.8 mmol), 화합물 amine79(6.4 g, 26 mmol), sodium tert-butoxide(3.1 g, 32.2 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-93 9.5 g을 얻었다.(수율 63%, MS: [M+H]+= 613)
합성예 2-94
Figure PCTKR2022010727-appb-img-000474
질소 분위기에서 화합물 subC-4(10 g, 24.8 mmol), 화합물 amine80(8.7 g, 26 mmol), sodium tert-butoxide(3.1 g, 32.2 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-94 11 g을 얻었다.(수율 63%, MS: [M+H]+= 703)
합성예 2-95
Figure PCTKR2022010727-appb-img-000475
질소 분위기에서 5H-benzo[b]carbazole(10 g, 46 mmol), 4'-bromo-4-chloro-1,1':2',1''-terphenyl(16.6 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subC-5 13.7 g을 얻었다.(수율 62%, MS: [M+H]+= 480)
Figure PCTKR2022010727-appb-img-000476
질소 분위기에서 화합물 subC-5(10 g, 20.8 mmol), 화합물 amine40(7 g, 21.9 mmol), sodium tert-butoxide(2.6 g, 27.1 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-95 10 g을 얻었다.(수율 64%, MS: [M+H]+= 751)
합성예 2-96
Figure PCTKR2022010727-appb-img-000477
질소 분위기에서 5H-benzo[b]carbazole(10 g, 46 mmol), 1-bromo-4-(4-chlorophenyl)naphthalen(15.3 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subC-6 15.4 g을 얻었다.(수율 74%, MS: [M+H]+= 454)
Figure PCTKR2022010727-appb-img-000478
질소 분위기에서 화합물 subC-6(10 g, 22 mmol), 화합물 amine81(8.6 g, 23.1 mmol), sodium tert-butoxide(2.8 g, 28.6 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-96 11.8 g을 얻었다.(수율 68%, MS: [M+H]+= 789)
합성예 2-97
Figure PCTKR2022010727-appb-img-000479
질소 분위기에서 5H-benzo[b]carbazole(10 g, 46 mmol), 1-bromo-3-chlorobenzene(9.3 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subC-7 9 g을 얻었다.(수율 60%, MS: [M+H]+= 328)
Figure PCTKR2022010727-appb-img-000480
질소 분위기에서 화합물 subC-7(10 g, 30.5 mmol), 화합물 amine82(11.9 g, 32 mmol), sodium tert-butoxide(3.8 g, 39.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-97 14.3 g을 얻었다.(수율 71%, MS: [M+H]+= 663)
합성예 2-98
Figure PCTKR2022010727-appb-img-000481
질소 분위기에서 5H-benzo[b]carbazole(10 g, 46 mmol), 3-bromo-4'-chloro-1,1'-biphenyl(12.9 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subC-8 11.7 g을 얻었다.(수율 63%, MS: [M+H]+= 405)
Figure PCTKR2022010727-appb-img-000482
질소 분위기에서 화합물 subC-8(10 g, 24.8 mmol), 화합물 amine40(8.4 g, 26 mmol), sodium tert-butoxide(3.1 g, 32.2 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-98 11.2 g을 얻었다.(수율 66%, MS: [M+H]+= 689)
합성예 2-99
Figure PCTKR2022010727-appb-img-000483
질소 분위기에서 화합물 subC-8(10 g, 24.8 mmol), 화합물 amine36(8.7 g, 26 mmol), sodium tert-butoxide(3.1 g, 32.2 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-99 10.4 g을 얻었다.(수율 60%, MS: [M+H]+= 703)
합성예 2-100
Figure PCTKR2022010727-appb-img-000484
질소 분위기에서 5H-benzo[b]carbazole(10 g, 46 mmol), 5'-bromo-4-chloro-1,1':2',1''-terphenyl(16.6 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subC-9 14.6 g을 얻었다.(수율 66%, MS: [M+H]+= 480)
Figure PCTKR2022010727-appb-img-000485
질소 분위기에서 화합물 subC-9(10 g, 20.8 mmol), 화합물 amine12(7 g, 21.9 mmol), sodium tert-butoxide(2.6 g, 27.1 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-100 11.3 g을 얻었다.(수율 71%, MS: [M+H]+= 765)
합성예 2-101
Figure PCTKR2022010727-appb-img-000486
질소 분위기에서 5H-benzo[b]carbazole(10 g, 46 mmol), 2-bromo-4'-chloro-1,1'-biphenyl(12.9 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subC-10 11.9 g을 얻었다.(수율 64%, MS: [M+H]+= 404)
Figure PCTKR2022010727-appb-img-000487
질소 분위기에서 화합물 subC-10(10 g, 24.8 mmol), 화합물 amine35(9.7 g, 26 mmol), sodium tert-butoxide(3.1 g, 32.2 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-101 12.1 g을 얻었다.(수율 66%, MS: [M+H]+= 739)
합성예 2-102
Figure PCTKR2022010727-appb-img-000488
질소 분위기에서 5H-benzo[b]carbazole(10 g, 46 mmol), 2-bromo-4'-chloro-1,1':3',1''-terphenyl(16.6 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subC-11 13.9 g을 얻었다.(수율 63%, MS: [M+H]+= 480)
Figure PCTKR2022010727-appb-img-000489
질소 분위기에서 화합물 subC-11(10 g, 20.8 mmol), 화합물 amine55(8.6 g, 21.9 mmol), sodium tert-butoxide(2.6 g, 27.1 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-102 11.2 g을 얻었다.(수율 64%, MS: [M+H]+= 841)
합성예 2-103
Figure PCTKR2022010727-appb-img-000490
질소 분위기에서 5H-benzo[b]carbazole(10 g, 46 mmol), 2-bromo-4'-chloro-1,1':2',1''-terphenyl(16.6 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subC-12 15.2 g을 얻었다.(수율 69%, MS: [M+H]+= 480)
Figure PCTKR2022010727-appb-img-000491
질소 분위기에서 화합물 subC-12(10 g, 20.8 mmol), 화합물 amine83(6.5 g, 21.9 mmol), sodium tert-butoxide(2.6 g, 27.1 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-103 11.4 g을 얻었다.(수율 74%, MS: [M+H]+= 739)
합성예 2-104
Figure PCTKR2022010727-appb-img-000492
질소 분위기에서 5H-benzo[b]carbazole(10 g, 46 mmol), 2'-bromo-4-chloro-1,1':4',1''-terphenyl(16.6 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subC-13 14.6 g을 얻었다.(수율 66%, MS: [M+H]+= 480
Figure PCTKR2022010727-appb-img-000493
질소 분위기에서 화합물 subC-13(10 g, 20.8 mmol), 화합물 amine13(7.6 g, 21.9 mmol), sodium tert-butoxide(2.6 g, 27.1 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-104 10.9 g을 얻었다.(수율 66%, MS: [M+H]+= 793)
합성예 2-105
Figure PCTKR2022010727-appb-img-000494
질소 분위기에서 5H-benzo[b]carbazole(10 g, 46 mmol), 3'-bromo-2-chloro-1,1'-biphenyl(12.9 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subC-14 13.9 g을 얻었다.(수율 75%, MS: [M+H]+= 405)
Figure PCTKR2022010727-appb-img-000495
질소 분위기에서 화합물 subC-14(10 g, 24.8 mmol), 화합물 amine74(9.7 g, 26 mmol), sodium tert-butoxide(3.1 g, 32.2 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-105 13.2 g을 얻었다.(수율 72%, MS: [M+H]+= 739)
합성예 2-106
Figure PCTKR2022010727-appb-img-000496
질소 분위기에서 5H-benzo[b]carbazole(10 g, 46 mmol), 2'-bromo-2-chloro-1,1':3',1''-terphenyl(16.6 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subC-15 14.1 g을 얻었다.(수율 64%, MS: [M+H]+= 480)
Figure PCTKR2022010727-appb-img-000497
질소 분위기에서 화합물 subC-15(10 g, 20.8 mmol), 화합물 amine63(8.1 g, 21.9 mmol), sodium tert-butoxide(2.6 g, 27.1 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-106 11 g을 얻었다.(수율 65%, MS: [M+H]+= 815)
합성예 2-107
Figure PCTKR2022010727-appb-img-000498
질소 분위기에서 7H-benzo[c]carbazole(10 g, 46 mmol), 1-bromo-4-chlorobenzene(9.3 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subD-1 10.8 g을 얻었다.(수율 72%, MS: [M+H]+= 328)
Figure PCTKR2022010727-appb-img-000499
질소 분위기에서 화합물 subD-1(10 g, 30.5 mmol), 화합물 amine63(11.9 g, 32 mmol), sodium tert-butoxide(3.8 g, 39.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-107 14.5 g을 얻었다.(수율 72%, MS: [M+H]+= 663)
합성예 2-108
Figure PCTKR2022010727-appb-img-000500
질소 분위기에서 화합물 subD-1(10 g, 30.5 mmol), 화합물 amine84(12.9 g, 32 mmol), sodium tert-butoxide(3.8 g, 39.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-108 15.4 g을 얻었다.(수율 73%, MS: [M+H]+= 693)
합성예 2-109
Figure PCTKR2022010727-appb-img-000501
질소 분위기에서 7H-benzo[c]carbazole(10 g, 46 mmol), 1-(4-bromophenyl)-4-chloronaphthalene(15.3 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subD-2 14.8 g을 얻었다.(수율 71%, MS: [M+H]+= 454)
Figure PCTKR2022010727-appb-img-000502
질소 분위기에서 화합물 subD-2(10 g, 22 mmol), 화합물 amine85(8.6 g, 23.1 mmol), sodium tert-butoxide(2.8 g, 28.6 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-109 10.8 g을 얻었다.(수율 62%, MS: [M+H]+= 789)
합성예 2-110
Figure PCTKR2022010727-appb-img-000503
질소 분위기에서 7H-benzo[c]carbazole(10 g, 46 mmol), 1-bromo-4-chloronaphthalene(11.7 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subD-3 12.3 g을 얻었다.(수율 71%, MS: [M+H]+= 378)
Figure PCTKR2022010727-appb-img-000504
질소 분위기에서 화합물 subD-3(10 g, 26.5 mmol), 화합물 amine86(12.4 g, 27.8 mmol), sodium tert-butoxide(3.3 g, 34.4 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.3 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-110 14.6 g을 얻었다.(수율 70%, MS: [M+H]+= 789)
합성예 2-111
Figure PCTKR2022010727-appb-img-000505
질소 분위기에서 7H-benzo[c]carbazole(10 g, 46 mmol), 4-bromo-4'-chloro-1,1'-biphenyl(12.9 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subD-4 13.7 g을 얻었다.(수율 74%, MS: [M+H]+= 404)
Figure PCTKR2022010727-appb-img-000506
질소 분위기에서 화합물 subD-4(10 g, 24.8 mmol), 화합물 amine87(7.7 g, 26 mmol), sodium tert-butoxide(3.1 g, 32.2 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-111 11.8 g을 얻었다.(수율 72%, MS: [M+H]+= 663)
합성예 2-112
Figure PCTKR2022010727-appb-img-000507
질소 분위기에서 화합물 subD-4(10 g, 24.8 mmol), 화합물 amine44(8.4 g, 26 mmol), sodium tert-butoxide(3.1 g, 32.2 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-112 12.8 g을 얻었다.(수율 75%, MS: [M+H]+= 689)
합성예 2-113
Figure PCTKR2022010727-appb-img-000508
질소 분위기에서 화합물 subD-4(10 g, 24.8 mmol), 화합물 amine88(6.7 g, 26 mmol), sodium tert-butoxide(3.1 g, 32.2 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-113 10.1 g을 얻었다.(수율 65%, MS: [M+H]+= 627)
합성예 2-114
Figure PCTKR2022010727-appb-img-000509
질소 분위기에서 화합물 subD-4(10 g, 24.8 mmol), 화합물 amine89(8.7 g, 26 mmol), sodium tert-butoxide(3.1 g, 32.2 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-114 11.3 g을 얻었다.(수율 65%, MS: [M+H]+= 702)
합성예 2-115
Figure PCTKR2022010727-appb-img-000510
질소 분위기에서 7H-benzo[c]carbazole(10 g, 46 mmol), 4-bromo-4'-chloro-1,1':2',1''-terphenyl(16.6 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subD-5 15.7 g을 얻었다.(수율 71%, MS: [M+H]+= 480)
Figure PCTKR2022010727-appb-img-000511
질소 분위기에서 화합물 subD-5(10 g, 20.8 mmol), 화합물 amine90(7 g, 21.9 mmol), sodium tert-butoxide(2.6 g, 27.1 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-115 11.1 g을 얻었다.(수율 70%, MS: [M+H]+= 765)
합성예 2-116
Figure PCTKR2022010727-appb-img-000512
질소 분위기에서 7H-benzo[c]carbazole(10 g, 46 mmol), 4'-bromo-4-chloro-1,1':3',1''-terphenyl(16.6 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subD-6 16.1 g을 얻었다.(수율 73%, MS: [M+H]+= 480)
Figure PCTKR2022010727-appb-img-000513
질소 분위기에서 화합물 subD-6(10 g, 20.8 mmol), 화합물 amine91(8.1 g, 21.9 mmol), sodium tert-butoxide(2.6 g, 27.1 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-116 10.9 g을 얻었다.(수율 64%, MS: [M+H]+= 815)
합성예 2-117
Figure PCTKR2022010727-appb-img-000514
질소 분위기에서 7H-benzo[c]carbazole(10 g, 46 mmol), 2-bromo-4'-chloro-1,1'-biphenyl(12.9 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subD-7 13.4 g을 얻었다.(수율 72%, MS: [M+H]+= 404)
Figure PCTKR2022010727-appb-img-000515
질소 분위기에서 화합물 subD-7(10 g, 24.8 mmol), 화합물 amine1(10.3 g, 26 mmol), sodium tert-butoxide(3.1 g, 32.2 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-117 13.6 g을 얻었다.(수율 72%, MS: [M+H]+= 765)
합성예 2-118
Figure PCTKR2022010727-appb-img-000516
질소 분위기에서 화합물 subD-7(10 g, 24.8 mmol), 화합물 amine92(9.1 g, 26 mmol), sodium tert-butoxide(3.1 g, 32.2 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-118 12.1 g을 얻었다.(수율 68%, MS: [M+H]+= 719)
합성예 2-119
Figure PCTKR2022010727-appb-img-000517
질소 분위기에서 7H-benzo[c]carbazole(10 g, 46 mmol), 2-bromo-4'-chloro-1,1':2',1''-terphenyl(16.6 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subD-8 16.3 g을 얻었다.(수율 74%, MS: [M+H]+= 480)
Figure PCTKR2022010727-appb-img-000518
질소 분위기에서 화합물 subD-8(10 g, 20.8 mmol), 화합물 amine93(7 g, 21.9 mmol), sodium tert-butoxide(2.6 g, 27.1 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-119 10.5 g을 얻었다.(수율 66%, MS: [M+H]+= 765)
합성예 2-120
Figure PCTKR2022010727-appb-img-000519
질소 분위기에서 7H-benzo[c]carbazole(10 g, 46 mmol), 3'-bromo-4''-chloro-1,1':2',1''-terphenyl(16.6 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subD-9 15.4 g을 얻었다.(수율 70%, MS: [M+H]+= 480)
Figure PCTKR2022010727-appb-img-000520
질소 분위기에서 화합물 subD-9(10 g, 20.8 mmol), 화합물 amine34(9.2 g, 21.9 mmol), sodium tert-butoxide(2.6 g, 27.1 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-120 11.9 g을 얻었다.(수율 66%, MS: [M+H]+= 865)
합성예 2-121
Figure PCTKR2022010727-appb-img-000521
질소 분위기에서 7H-benzo[c]carbazole(10 g, 46 mmol), 2'-bromo-4-chloro-1,1':3',1''-terphenyl(16.6 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subD-10 15.4 g을 얻었다.(수율 70%, MS: [M+H]+= 480)
Figure PCTKR2022010727-appb-img-000522
질소 분위기에서 화합물 subD-10(10 g, 20.8 mmol), 화합물 amine91(8.1 g, 21.9 mmol), sodium tert-butoxide(2.6 g, 27.1 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-121 11.9 g을 얻었다.(수율 70%, MS: [M+H]+= 815)
합성예 2-122
Figure PCTKR2022010727-appb-img-000523
질소 분위기에서 7H-benzo[c]carbazole(10 g, 46 mmol), 6'-bromo-4-chloro-1,1':3',1''-terphenyl(16.6 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subD-11 15.4 g을 얻었다.(수율 70%, MS: [M+H]+= 480)
Figure PCTKR2022010727-appb-img-000524
질소 분위기에서 화합물 subD-11(10 g, 20.8 mmol), 화합물 amine91(8.1 g, 21.9 mmol), sodium tert-butoxide(2.6 g, 27.1 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-122 12.6 g을 얻었다.(수율 74%, MS: [M+H]+= 815)
합성예 2-123
Figure PCTKR2022010727-appb-img-000525
질소 분위기에서 7H-benzo[c]carbazole(10 g, 46 mmol), 1-bromo-3-chlorobenzene(9.3 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subD-12 10.7 g을 얻었다.(수율 71%, MS: [M+H]+= 328)
Figure PCTKR2022010727-appb-img-000526
질소 분위기에서 화합물 subD-12(10 g, 30.5 mmol), 화합물 amine91(11.9 g, 32 mmol), sodium tert-butoxide(3.8 g, 39.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-123 13.5 g을 얻었다.(수율 67%, MS: [M+H]+= 663)
합성예 2-124
Figure PCTKR2022010727-appb-img-000527
질소 분위기에서 7H-benzo[c]carbazole(10 g, 46 mmol), 2-bromo-3'-chloro-1,1'-biphenyl(12.9 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subD-13 12.6 g을 얻었다.(수율 68%, MS: [M+H]+= 404)
Figure PCTKR2022010727-appb-img-000528
질소 분위기에서 화합물 subD-13(10 g, 24.8 mmol), 화합물 amine43(10.3 g, 26 mmol), sodium tert-butoxide(3.1 g, 32.2 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-124 13.2 g을 얻었다.(수율 70%, MS: [M+H]+= 763)
합성예 2-125
Figure PCTKR2022010727-appb-img-000529
질소 분위기에서 화합물 subD-13(10 g, 24.8 mmol), 화합물 amine44(8.4 g, 26 mmol), sodium tert-butoxide(3.1 g, 32.2 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-125 11.4 g을 얻었다.(수율 67%, MS: [M+H]+= 689)
합성예 2-126
Figure PCTKR2022010727-appb-img-000530
질소 분위기에서 7H-benzo[c]carbazole(10 g, 46 mmol), 6'-bromo-3-chloro-1,1':3',1''-terphenyl(16.6 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subD-14 14.3 g을 얻었다.(수율 65%, MS: [M+H]+= 480)
Figure PCTKR2022010727-appb-img-000531
질소 분위기에서 화합물 subD-14(10 g, 20.8 mmol), 화합물 amine44(7 g, 21.9 mmol), sodium tert-butoxide(2.6 g, 27.1 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-126 10.2 g을 얻었다.(수율 64%, MS: [M+H]+= 765)
합성예 2-127
Figure PCTKR2022010727-appb-img-000532
질소 분위기에서 7H-benzo[c]carbazole(10 g, 46 mmol), 2'-bromo-3''-chloro-1,1':4',1''-terphenyl(16.6 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subD-15 15.9 g을 얻었다.(수율 72%, MS: [M+H]+= 480)
Figure PCTKR2022010727-appb-img-000533
질소 분위기에서 화합물 subD-15(10 g, 20.8 mmol), 화합물 amine92(10.3 g, 21.9 mmol), sodium tert-butoxide(2.6 g, 27.1 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-127 13.1 g을 얻었다.(수율 69%, MS: [M+H]+= 915)
합성예 2-128
Figure PCTKR2022010727-appb-img-000534
질소 분위기에서 7H-benzo[c]carbazole(10 g, 46 mmol), 2-bromo-2'-chloro-1,1'-biphenyl(12.9 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subD-16 11.7 g을 얻었다.(수율 63%, MS: [M+H]+= 404)
Figure PCTKR2022010727-appb-img-000535
질소 분위기에서 화합물 subD-16(10 g, 24.8 mmol), 화합물 amine1(10.3 g, 26 mmol), sodium tert-butoxide(3.1 g, 32.2 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-128 14 g을 얻었다.(수율 74%, MS: [M+H]+= 765)
합성예 2-129
Figure PCTKR2022010727-appb-img-000536
질소 분위기에서 7H-benzo[c]carbazole(10 g, 46 mmol), 3'-bromo-2-chloro-1,1'-biphenyl(12.9 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subD-17 13 g을 얻었다.(수율 70%, MS: [M+H]+= 404)
Figure PCTKR2022010727-appb-img-000537
질소 분위기에서 화합물 subD-17(10 g, 24.8 mmol), 화합물 amine93(11.6 g, 26 mmol), sodium tert-butoxide(3.1 g, 32.2 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-129 13.9 g을 얻었다.(수율 69%, MS: [M+H]+= 815)
합성예 2-130
Figure PCTKR2022010727-appb-img-000538
질소 분위기에서 7H-benzo[c]carbazole(10 g, 46 mmol), 4'-bromo-2-chloro-1,1'-biphenyl(12.9 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 subD-18 12.2 g을 얻었다.(수율 66%, MS: [M+H]+= 404)
Figure PCTKR2022010727-appb-img-000539
질소 분위기에서 화합물 subD-18(10 g, 24.8 mmol), 화합물 amine94(10.3 g, 26 mmol), sodium tert-butoxide(3.1 g, 32.2 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.1 g, 0.2 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-130 11.5 g을 얻었다.(수율 61%, MS: [M+H]+= 765)
실시예 1
ITO(indium tin oxide)가 1,000Å의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척했다. 이때, 세제로는 피셔사(Fischer Co.) 제품을 사용하였으며, 증류수로는 밀러포어사(Millipore Co.) 제품의 필터(Filter)로 2차로 걸러진 증류수를 사용했다. ITO를 30 분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10 분간 진행했다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5 분간 세정한 후 진공 증착기로 기판을 수송시켰다.
이렇게 준비된 ITO 투명 전극 위에 정공주입층으로 하기 화합물 HI-1을 1150 Å의 두께로 형성하되 하기 화합물 A-1을 1.5 중량% 농도로 p-doping 했다. 상기 정공주입층 위에 하기 화합물 HT-1을 진공 증착하여 막 두께 800 Å의 정공수송층을 형성했다. 이어서, 상기 정공수송층 위에 막 두께 150 Å으로 하기 화합물 EB-1을 진공 증착하여 전자차단층을 형성했다. 이어서, 상기 EB-1 증착막 위에 앞서 제조한 화합물 1-1, 화합물 2-1 및 하기 화합물 Dp-7을 49:49:2의 중량비로 진공 증착하여 400 Å 두께의 적색 발광층을 형성했다. 상기 발광층 위에 막 두께 30 Å으로 하기 화합물 HB-1을 진공 증착하여 정공저지층을 형성했다. 이어서, 상기 정공저지층 위에 하기 화합물 ET-1과 하기 화합물 LiQ를 2:1의 중량비로 진공 증착하여 300 Å의 두께로 전자 주입 및 수송층을 형성했다. 상기 전자 주입 및 수송층 위에 순차적으로 12 Å 두께로 리튬플로라이드(LiF)와 1,000Å 두께로 알루미늄을 증착하여 음극을 형성했다.
Figure PCTKR2022010727-appb-img-000540
상기의 과정에서 유기물의 증착속도는 0.4 ~ 0.7 Å/sec를 유지하였고, 음극의 리튬플로라이드는 0.3 Å/sec, 알루미늄은 2 Å/sec의 증착 속도를 유지하였으며, 증착시 진공도는 2 * 10-7 ~ 5 * 10-6 torr를 유지하여, 유기 발광 소자를 제작했다.
실시예 2 내지 실시예 235
실시예 1의 유기 발광 소자에서 제1 호스트 및 제2 호스트로 화합물 1-1 및 화합물 2-1 대신 하기 표 1 내지 표 6에 기재된 화학식 1로 표시되는 화합물과 화학식 2로 표시되는 화합물을 중량비 1:1로 공증착하여 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 유기 발광 소자를 제조했다.
비교예 1 내지 비교예 60
실시예 1의 유기 발광 소자에서 제1 호스트로 화합물 1-1 대신 하기 비교 화합물 A-1 내지 A-12를 사용하고, 제2 호스트로 화합물 2-1 대신 하기 표 7 및 표 8에 기재된 화학식 2로 표시되는 화합물을 사용하여, 중량비 1:1로 공증착하여 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 유기 발광 소자를 제조했다. 상기 화합물 A-1 내지 A-12의 구체적인 구조는 아래와 같다.
Figure PCTKR2022010727-appb-img-000541
비교예 61 내지 비교예 156
실시예 1의 유기 발광 소자에서 제1 호스트로 화합물 1-1 대신 하기 표 9 내지 표 11에 기재된 화학식 1로 표시되는 화합물을 사용하고, 제2 호스트로 화합물 2-1 대신 하기 비교 화합물 B-1 내지 B-12를 사용하여, 중량비 1:1로 공증착하여 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 유기 발광 소자를 제조했다. 상기 화합물 B-1 내지 B-12의 구체적인 구조는 아래와 같다.
Figure PCTKR2022010727-appb-img-000542
실험예
상기 실시예 1 내지 실시예 235 및 비교예 1 내지 비교예 156에서 제조한 유기 발광 소자에 전류를 인가하였을 때, 전압, 효율을 측정(15 mA/cm2 기준)하고 그 결과를 하기 표 1 내지 표 11에 나타냈다. 수명 T95는 7000 nit 기준으로 측정되었으며, T95는 초기 수명에서 95%로 감소되는데 소요되는 시간을 의미한다.
[표 1]
Figure PCTKR2022010727-appb-img-000543
[표 2]
Figure PCTKR2022010727-appb-img-000544
[표 3]
Figure PCTKR2022010727-appb-img-000545
[표 4]
Figure PCTKR2022010727-appb-img-000546
[표 5]
Figure PCTKR2022010727-appb-img-000547
[표 6]
Figure PCTKR2022010727-appb-img-000548
[표 7]
Figure PCTKR2022010727-appb-img-000549
[표 8]
Figure PCTKR2022010727-appb-img-000550
[표 9]
Figure PCTKR2022010727-appb-img-000551
[표 10]
Figure PCTKR2022010727-appb-img-000552
[표 11]
Figure PCTKR2022010727-appb-img-000553
실시예 1 내지 235 및 비교예 1 내지 156에서 제조된 유기 발광 소자에 전류를 인가하였을 때, 상기 표 1 내지 표 11의 결과를 얻었다. 상기 실시예 및 비교예의 적색 유기 발광 소자는 종래 널리 사용되고 있는 물질을 사용하였으며, 전자차단층으로 화합물 EB-1, 적색 발광층의 도판트로 Dp-7을 사용하는 구조이다. 표 7 및 표 8에서와 같이 비교예 화합물 A-1 내지 A-12와 본 발명의 화학식 2로 표시되는 화합물을 공증착하여 적색 발광층으로 사용했을 때 본 발명의 조합보다 대체적으로 구동전압은 상승하고 효율과 수명이 떨어 지는 결과를 보였고 표 9 내지 표 11에서와 같이 비교예 화합물 B-1 내지 B-12와 본 발명의 화학식 1로 표시되는 화합물을 공증착하여 적색 발광층으로 사용했을 때도 구동전압은 상승하고 효율과 수명이 떨어지는 결과를 나타냈다.
이러한 결과들로 유추했을 때 구동 전압이 개선되고 효율 및 수명이 상승하는 이유는 본 발명의 제1 호스트인 화학식 1의 화합물과 제2 호스트인 화학식 2의 화합물의 조합이 적색 발광층내의 적색 도판트로의 에너지 전달을 유리하게 하기 때문인 것으로 유추할 수 있다.
따라서 비교화합물과의 조합보다 본 발명의 화학식 1로 표시되는 화합물과 화학식 2로 표시되는 화합물의 조합이 발광층 내에 더 안정적인 균형을 이루기 때문에 전자와 정공이 결합하여 엑시톤을 형성하여 효율과 수명이 많이 상승하는 것을 확인할 수 있다. 이로부터 본 발명의 화학식 1로 표시되는 화합물과 화학식 2로 표시되는 화합물을 공증착하여 적색 발광층의 호스트로 사용하였을 때 유기 발광 소자의 구동전압, 발광 효율 및 수명 특성을 개선할 수 있음을 확인하였다.
[부호의 설명]
1: 기판 2: 양극
3: 발광층 4: 음극
5: 정공주입층 6: 정공수송층
7: 전자저지층 8: 정공저지층
9: 전자주입 및 수송층

Claims (10)

  1. 양극;
    음극; 및
    상기 양극과 음극 사이의 발광층을 포함하고,
    상기 발광층은 하기 화학식 1로 표시되는 화합물 및 하기 화학식 2로 표시되는 화합물을 포함하는,
    유기 발광 소자:
    [화학식 1]
    Figure PCTKR2022010727-appb-img-000554
    상기 화학식 1에서,
    R1은 각각 독립적으로, 수소, 중수소, 치환 또는 비치환된 C6-60 아릴, 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴이고,
    R2는 각각 독립적으로, 수소, 또는 중수소이고,
    Ar1 및 Ar2는 각각 독립적으로, 치환 또는 비치환된 C6-60 아릴, 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴이되,
    R1이 각각 독립적으로, 수소, 또는 중수소일 때, Ar1 및 Ar2 중 적어도 하나는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴이고,
    L1 및 L2는 각각 독립적으로, 단일결합, 또는 치환 또는 비치환된 C6-60 아릴렌이고,
    a는 1 내지 7의 정수이고,
    b는 1 내지 6의 정수이고,
    상기 화학식 1로 표시되는 화합물은 중수소를 포함하지 않거나 하나 이상의 중수소를 포함할 수 있고,
    [화학식 2]
    Figure PCTKR2022010727-appb-img-000555
    상기 화학식 2에서,
    A는 인접한 고리와 융합된 벤젠 고리 또는 나프탈렌 고리이고,
    Ar3 및 Ar4는 각각 독립적으로, 치환 또는 비치환된 C6-60 아릴, 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴이고,
    L3는 치환 또는 비치환된 C6-60 아릴렌이고,
    L4 및 L5는 각각 독립적으로, 단일결합, 치환 또는 비치환된 C6-60 아릴렌, 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴렌이다.
  2. 제1항에 있어서,
    상기 화학식 1은 하기 화학식 1-1 내지 화학식 1-11 중 어느 하나로 표시되는,
    유기 발광 소자:
    Figure PCTKR2022010727-appb-img-000556
    상기 화학식 1-1 내지 화학식 1-11에서,
    R1, R2, Ar1, Ar2, L1, L2, a 및 b에 대한 설명은 제1항에서 정의한 바와 같다.
  3. 제1항에 있어서,
    R1은 각각 독립적으로 수소, 중수소, 페닐, 비페닐릴, 터페닐릴, 나프틸, 페난트레닐, 나프틸 페닐, 페닐 나프틸, 디벤조퓨라닐, 또는 디벤조티오페닐이고,
    상기 페닐, 비페닐릴, 터페닐릴, 나프틸, 페난트레닐, 나프틸 페닐, 페닐 나프틸, 디벤조퓨라닐 및 디벤조티오페닐의 수소가 각각 독립적으로 비치환되거나 중수소로 치환된,
    유기 발광 소자.
  4. 제1항에 있어서,
    Ar1 및 Ar2는 각각 독립적으로, 페닐, 비페닐릴, 터페닐릴, 나프틸, 페난트레닐, 디벤조퓨라닐, 디벤조티오페닐, 또는 트리페닐실릴 페닐이고,
    상기 Ar1 및 Ar2의 수소가 각각 독립적으로, 비치환되거나 중수소로 치환된,
    유기 발광 소자.
  5. 제1항에 있어서,
    L1 및 L2는 각각 독립적으로, 단일결합, 페닐렌, 비페닐디일, 또는 나프탈렌디일이고,
    상기 페닐렌, 비페닐디일 및 나프탈렌디일의 수소가 각각 독립적으로 비치환되거나 중수소로 치환된,
    유기 발광 소자.
  6. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 하기로 구성되는 군으로부터 선택되는 어느 하나인,
    유기 발광 소자:
    Figure PCTKR2022010727-appb-img-000557
    Figure PCTKR2022010727-appb-img-000558
    Figure PCTKR2022010727-appb-img-000559
    Figure PCTKR2022010727-appb-img-000560
    Figure PCTKR2022010727-appb-img-000561
    Figure PCTKR2022010727-appb-img-000562
    Figure PCTKR2022010727-appb-img-000563
    Figure PCTKR2022010727-appb-img-000564
    Figure PCTKR2022010727-appb-img-000565
    Figure PCTKR2022010727-appb-img-000566
    Figure PCTKR2022010727-appb-img-000567
    Figure PCTKR2022010727-appb-img-000568
    Figure PCTKR2022010727-appb-img-000569
    Figure PCTKR2022010727-appb-img-000570
    Figure PCTKR2022010727-appb-img-000571
    Figure PCTKR2022010727-appb-img-000572
    Figure PCTKR2022010727-appb-img-000573
    Figure PCTKR2022010727-appb-img-000574
    Figure PCTKR2022010727-appb-img-000575
    Figure PCTKR2022010727-appb-img-000576
    Figure PCTKR2022010727-appb-img-000577
    Figure PCTKR2022010727-appb-img-000578
    Figure PCTKR2022010727-appb-img-000579
    .
  7. 제1항에 있어서, Ar3 및 Ar4는 각각 독립적으로, 페닐, 비페닐릴, 터페닐릴, 쿼터페닐릴, 트리페닐메틸 페닐, 트리페닐실릴 페닐, 나프틸, 페난트레닐, 트리페닐레닐, 플루오란테닐, 크라이세닐, 벤조[c]페난트레닐, 카바졸, 페닐 카바졸, 디메틸플루오레닐, 디벤조퓨라닐, 또는 디벤조티오페닐인,
    유기 발광 소자.
  8. 제1항에 있어서,
    L3는 페닐렌, 비페닐디일, 터페닐디일, 쿼터페닐디일, 나프탈렌디일, 페닐나프탈렌디일, 또는 1개의 페닐로 치환된 페닐나프탈렌디일인,
    유기 발광 소자.
  9. 제1항에 있어서,
    L4 및 L5는 각각 독립적으로, 단일결합, 페닐렌, 비페닐디일, 나프탈렌디일, 페닐나프탈렌디일, 또는 카바졸디일인,
    유기 발광 소자.
  10. 제1항에 있어서,
    상기 화학식 2로 표시되는 화합물은 하기로 구성되는 군으로부터 선택되는 어느 하나인,
    유기 발광 소자:
    Figure PCTKR2022010727-appb-img-000580
    Figure PCTKR2022010727-appb-img-000581
    Figure PCTKR2022010727-appb-img-000582
    Figure PCTKR2022010727-appb-img-000583
    Figure PCTKR2022010727-appb-img-000584
    Figure PCTKR2022010727-appb-img-000585
    Figure PCTKR2022010727-appb-img-000586
    Figure PCTKR2022010727-appb-img-000587
    Figure PCTKR2022010727-appb-img-000588
    Figure PCTKR2022010727-appb-img-000589
    Figure PCTKR2022010727-appb-img-000590
    Figure PCTKR2022010727-appb-img-000591
    Figure PCTKR2022010727-appb-img-000592
    Figure PCTKR2022010727-appb-img-000593
    Figure PCTKR2022010727-appb-img-000594
    Figure PCTKR2022010727-appb-img-000595
    Figure PCTKR2022010727-appb-img-000596
    Figure PCTKR2022010727-appb-img-000597
    Figure PCTKR2022010727-appb-img-000598
    Figure PCTKR2022010727-appb-img-000599
    Figure PCTKR2022010727-appb-img-000600
    Figure PCTKR2022010727-appb-img-000601
    Figure PCTKR2022010727-appb-img-000602
    Figure PCTKR2022010727-appb-img-000603
    Figure PCTKR2022010727-appb-img-000604
    Figure PCTKR2022010727-appb-img-000605
    Figure PCTKR2022010727-appb-img-000606
    Figure PCTKR2022010727-appb-img-000607
    Figure PCTKR2022010727-appb-img-000608
    Figure PCTKR2022010727-appb-img-000609
    Figure PCTKR2022010727-appb-img-000610
    Figure PCTKR2022010727-appb-img-000611
    Figure PCTKR2022010727-appb-img-000612
    Figure PCTKR2022010727-appb-img-000613
    Figure PCTKR2022010727-appb-img-000614
    Figure PCTKR2022010727-appb-img-000615
    Figure PCTKR2022010727-appb-img-000616
    Figure PCTKR2022010727-appb-img-000617
    Figure PCTKR2022010727-appb-img-000618
    Figure PCTKR2022010727-appb-img-000619
    Figure PCTKR2022010727-appb-img-000620
    Figure PCTKR2022010727-appb-img-000621
    Figure PCTKR2022010727-appb-img-000622
    Figure PCTKR2022010727-appb-img-000623
    Figure PCTKR2022010727-appb-img-000624
    Figure PCTKR2022010727-appb-img-000625
    Figure PCTKR2022010727-appb-img-000626
    Figure PCTKR2022010727-appb-img-000627
    Figure PCTKR2022010727-appb-img-000628
    Figure PCTKR2022010727-appb-img-000629
    Figure PCTKR2022010727-appb-img-000630
    Figure PCTKR2022010727-appb-img-000631
    Figure PCTKR2022010727-appb-img-000632
    Figure PCTKR2022010727-appb-img-000633
    Figure PCTKR2022010727-appb-img-000634
    Figure PCTKR2022010727-appb-img-000635
    Figure PCTKR2022010727-appb-img-000636
    Figure PCTKR2022010727-appb-img-000637
    Figure PCTKR2022010727-appb-img-000638
    Figure PCTKR2022010727-appb-img-000639
    Figure PCTKR2022010727-appb-img-000640
    Figure PCTKR2022010727-appb-img-000641
    Figure PCTKR2022010727-appb-img-000642
    Figure PCTKR2022010727-appb-img-000643
    Figure PCTKR2022010727-appb-img-000644
    Figure PCTKR2022010727-appb-img-000645
    Figure PCTKR2022010727-appb-img-000646
    Figure PCTKR2022010727-appb-img-000647
    Figure PCTKR2022010727-appb-img-000648
    Figure PCTKR2022010727-appb-img-000649
    Figure PCTKR2022010727-appb-img-000650
    Figure PCTKR2022010727-appb-img-000651
    Figure PCTKR2022010727-appb-img-000652
    Figure PCTKR2022010727-appb-img-000653
    Figure PCTKR2022010727-appb-img-000654
    Figure PCTKR2022010727-appb-img-000655
    Figure PCTKR2022010727-appb-img-000656
    Figure PCTKR2022010727-appb-img-000657
    Figure PCTKR2022010727-appb-img-000658
    Figure PCTKR2022010727-appb-img-000659
    Figure PCTKR2022010727-appb-img-000660
    Figure PCTKR2022010727-appb-img-000661
    Figure PCTKR2022010727-appb-img-000662
    Figure PCTKR2022010727-appb-img-000663
    Figure PCTKR2022010727-appb-img-000664
    Figure PCTKR2022010727-appb-img-000665
    Figure PCTKR2022010727-appb-img-000666
    Figure PCTKR2022010727-appb-img-000667
    Figure PCTKR2022010727-appb-img-000668
    Figure PCTKR2022010727-appb-img-000669
    Figure PCTKR2022010727-appb-img-000670
    Figure PCTKR2022010727-appb-img-000671
    Figure PCTKR2022010727-appb-img-000672
    Figure PCTKR2022010727-appb-img-000673
    Figure PCTKR2022010727-appb-img-000674
    Figure PCTKR2022010727-appb-img-000675
    Figure PCTKR2022010727-appb-img-000676
    Figure PCTKR2022010727-appb-img-000677
    Figure PCTKR2022010727-appb-img-000678
    Figure PCTKR2022010727-appb-img-000679
    Figure PCTKR2022010727-appb-img-000680
    Figure PCTKR2022010727-appb-img-000681
    Figure PCTKR2022010727-appb-img-000682
    Figure PCTKR2022010727-appb-img-000683
    Figure PCTKR2022010727-appb-img-000684
    Figure PCTKR2022010727-appb-img-000685
    Figure PCTKR2022010727-appb-img-000686
    Figure PCTKR2022010727-appb-img-000687
    Figure PCTKR2022010727-appb-img-000688
    Figure PCTKR2022010727-appb-img-000689
    Figure PCTKR2022010727-appb-img-000690
    Figure PCTKR2022010727-appb-img-000691
    Figure PCTKR2022010727-appb-img-000692
    Figure PCTKR2022010727-appb-img-000693
    Figure PCTKR2022010727-appb-img-000694
    Figure PCTKR2022010727-appb-img-000695
    Figure PCTKR2022010727-appb-img-000696
    Figure PCTKR2022010727-appb-img-000697
    Figure PCTKR2022010727-appb-img-000698
    Figure PCTKR2022010727-appb-img-000699
    Figure PCTKR2022010727-appb-img-000700
    Figure PCTKR2022010727-appb-img-000701
    Figure PCTKR2022010727-appb-img-000702
    Figure PCTKR2022010727-appb-img-000703
    Figure PCTKR2022010727-appb-img-000704
    Figure PCTKR2022010727-appb-img-000705
    Figure PCTKR2022010727-appb-img-000706
    Figure PCTKR2022010727-appb-img-000707
    Figure PCTKR2022010727-appb-img-000708
    Figure PCTKR2022010727-appb-img-000709
    Figure PCTKR2022010727-appb-img-000710
    Figure PCTKR2022010727-appb-img-000711
    Figure PCTKR2022010727-appb-img-000712
    Figure PCTKR2022010727-appb-img-000713
    Figure PCTKR2022010727-appb-img-000714
    Figure PCTKR2022010727-appb-img-000715
    Figure PCTKR2022010727-appb-img-000716
    Figure PCTKR2022010727-appb-img-000717
    Figure PCTKR2022010727-appb-img-000718
    Figure PCTKR2022010727-appb-img-000719
    Figure PCTKR2022010727-appb-img-000720
    Figure PCTKR2022010727-appb-img-000721
    Figure PCTKR2022010727-appb-img-000722
    Figure PCTKR2022010727-appb-img-000723
    Figure PCTKR2022010727-appb-img-000724
    Figure PCTKR2022010727-appb-img-000725
    Figure PCTKR2022010727-appb-img-000726
    Figure PCTKR2022010727-appb-img-000727
    Figure PCTKR2022010727-appb-img-000728
    Figure PCTKR2022010727-appb-img-000729
    Figure PCTKR2022010727-appb-img-000730
    Figure PCTKR2022010727-appb-img-000731
    Figure PCTKR2022010727-appb-img-000732
    Figure PCTKR2022010727-appb-img-000733
    Figure PCTKR2022010727-appb-img-000734
    Figure PCTKR2022010727-appb-img-000735
    Figure PCTKR2022010727-appb-img-000736
    Figure PCTKR2022010727-appb-img-000737
    Figure PCTKR2022010727-appb-img-000738
    Figure PCTKR2022010727-appb-img-000739
    Figure PCTKR2022010727-appb-img-000740
    Figure PCTKR2022010727-appb-img-000741
    Figure PCTKR2022010727-appb-img-000742
    Figure PCTKR2022010727-appb-img-000743
    Figure PCTKR2022010727-appb-img-000744
    Figure PCTKR2022010727-appb-img-000745
    Figure PCTKR2022010727-appb-img-000746
    Figure PCTKR2022010727-appb-img-000747
    Figure PCTKR2022010727-appb-img-000748
    Figure PCTKR2022010727-appb-img-000749
    Figure PCTKR2022010727-appb-img-000750
    Figure PCTKR2022010727-appb-img-000751
    Figure PCTKR2022010727-appb-img-000752
    Figure PCTKR2022010727-appb-img-000753
    Figure PCTKR2022010727-appb-img-000754
    Figure PCTKR2022010727-appb-img-000755
    Figure PCTKR2022010727-appb-img-000756
    Figure PCTKR2022010727-appb-img-000757
    Figure PCTKR2022010727-appb-img-000758
    Figure PCTKR2022010727-appb-img-000759
    Figure PCTKR2022010727-appb-img-000760
    Figure PCTKR2022010727-appb-img-000761
    Figure PCTKR2022010727-appb-img-000762
    Figure PCTKR2022010727-appb-img-000763
    Figure PCTKR2022010727-appb-img-000764
    Figure PCTKR2022010727-appb-img-000765
    .
PCT/KR2022/010727 2021-07-21 2022-07-21 유기 발광 소자 WO2023003403A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280009652.4A CN116670253A (zh) 2021-07-21 2022-07-21 有机发光器件
US18/273,021 US20240147853A1 (en) 2021-07-21 2022-07-21 Organic light emitting device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20210095969 2021-07-21
KR10-2021-0095969 2021-07-21
KR10-2022-0090385 2022-07-21
KR1020220090385A KR20230014671A (ko) 2021-07-21 2022-07-21 유기 발광 소자

Publications (1)

Publication Number Publication Date
WO2023003403A1 true WO2023003403A1 (ko) 2023-01-26

Family

ID=84979386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/010727 WO2023003403A1 (ko) 2021-07-21 2022-07-21 유기 발광 소자

Country Status (2)

Country Link
US (1) US20240147853A1 (ko)
WO (1) WO2023003403A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116375633A (zh) * 2023-04-07 2023-07-04 浙江虹舞科技有限公司 一种新型三芳胺类化合物以及包含该化合物的有机电致发光器件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170041886A (ko) * 2014-08-13 2017-04-17 메르크 파텐트 게엠베하 유기 전계발광 소자용 재료
KR20190008035A (ko) * 2017-07-14 2019-01-23 주식회사 엘지화학 유기 발광 소자
KR20200043269A (ko) * 2018-10-17 2020-04-27 롬엔드하스전자재료코리아유한회사 복수 종의 호스트 재료 및 이를 포함하는 유기 전계 발광 소자
KR20200134877A (ko) * 2019-05-24 2020-12-02 덕산네오룩스 주식회사 유기전기 소자용 화합물을 포함하는 유기전기소자 및 그 전자 장치
KR20220053509A (ko) * 2020-10-22 2022-04-29 주식회사 엘지화학 유기 발광 소자

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170041886A (ko) * 2014-08-13 2017-04-17 메르크 파텐트 게엠베하 유기 전계발광 소자용 재료
KR20190008035A (ko) * 2017-07-14 2019-01-23 주식회사 엘지화학 유기 발광 소자
KR20200043269A (ko) * 2018-10-17 2020-04-27 롬엔드하스전자재료코리아유한회사 복수 종의 호스트 재료 및 이를 포함하는 유기 전계 발광 소자
KR20200134877A (ko) * 2019-05-24 2020-12-02 덕산네오룩스 주식회사 유기전기 소자용 화합물을 포함하는 유기전기소자 및 그 전자 장치
KR20220053509A (ko) * 2020-10-22 2022-04-29 주식회사 엘지화학 유기 발광 소자

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116375633A (zh) * 2023-04-07 2023-07-04 浙江虹舞科技有限公司 一种新型三芳胺类化合物以及包含该化合物的有机电致发光器件

Also Published As

Publication number Publication date
US20240147853A1 (en) 2024-05-02

Similar Documents

Publication Publication Date Title
WO2021182893A1 (ko) 유기 발광 소자
WO2019221545A1 (ko) 유기발광소자
WO2021096228A1 (ko) 유기 발광 소자
WO2021230714A1 (ko) 유기 발광 소자
WO2021049843A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2021261977A1 (ko) 유기 발광 소자
WO2022019536A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2021261907A1 (ko) 유기 발광 소자
WO2022039365A1 (ko) 유기 화합물을 포함하는 유기 발광 소자
WO2021107681A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2021096273A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2023003403A1 (ko) 유기 발광 소자
WO2023132694A1 (ko) 유기 발광 소자
WO2023287228A1 (ko) 유기 발광 소자
WO2022231322A1 (ko) 유기 발광 소자
WO2022211498A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2022216018A1 (ko) 유기 발광 소자
WO2022131869A1 (ko) 신규한 화합물 및 이를 포함하는 유기발광 소자
WO2022240267A1 (ko) 유기 발광 소자
WO2022177374A1 (ko) 유기 발광 소자
WO2022086296A1 (ko) 유기 발광 소자
WO2021230715A1 (ko) 유기 발광 소자
WO2022019535A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2021261962A1 (ko) 유기 발광 소자
WO2020189984A1 (ko) 유기 발광 소자

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280009652.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18273021

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22846273

Country of ref document: EP

Kind code of ref document: A1