WO2021261907A1 - 유기 발광 소자 - Google Patents

유기 발광 소자 Download PDF

Info

Publication number
WO2021261907A1
WO2021261907A1 PCT/KR2021/007878 KR2021007878W WO2021261907A1 WO 2021261907 A1 WO2021261907 A1 WO 2021261907A1 KR 2021007878 W KR2021007878 W KR 2021007878W WO 2021261907 A1 WO2021261907 A1 WO 2021261907A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
mmol
red
group
light emitting
Prior art date
Application number
PCT/KR2021/007878
Other languages
English (en)
French (fr)
Inventor
김민준
이동훈
서상덕
김영석
김동희
김서연
이다정
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN202180003843.5A priority Critical patent/CN114097103A/zh
Publication of WO2021261907A1 publication Critical patent/WO2021261907A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/626Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing more than one polycyclic condensed aromatic rings, e.g. bis-anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/636Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising heteroaromatic hydrocarbons as substituents on the nitrogen atom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/654Aromatic compounds comprising a hetero atom comprising only nitrogen as heteroatom
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6572Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ring system, e.g. phenanthroline or carbazole
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6574Polycyclic condensed heteroaromatic hydrocarbons comprising only oxygen in the heteroaromatic polycondensed ring system, e.g. cumarine dyes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/657Polycyclic condensed heteroaromatic hydrocarbons
    • H10K85/6576Polycyclic condensed heteroaromatic hydrocarbons comprising only sulfur in the heteroaromatic polycondensed ring system, e.g. benzothiophene

Definitions

  • the present invention relates to an organic light emitting device.
  • the organic light emitting phenomenon refers to a phenomenon in which electric energy is converted into light energy using an organic material.
  • the organic light emitting device using the organic light emitting phenomenon has a wide viewing angle, excellent contrast, fast response time, and excellent luminance, driving voltage, and response speed characteristics, and thus many studies are being conducted.
  • An organic light emitting device generally has a structure including an anode and a cathode and an organic material layer between the anode and the cathode.
  • the organic layer is often formed of a multi-layered structure composed of different materials in order to increase the efficiency and stability of the organic light-emitting device, for example, a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, and the like.
  • a voltage when a voltage is applied between the two electrodes, holes are injected into the organic material layer from the anode and electrons from the cathode are injected into the organic material layer. When the injected holes and electrons meet, excitons are formed, and the excitons It lights up when it falls back to the ground state.
  • Patent Document 1 Korean Patent Publication No. 10-2000-0051826
  • the present invention relates to an organic light emitting device having improved driving voltage, efficiency, and lifetime.
  • the present invention provides the following organic light emitting device:
  • anode anode
  • cathode anode
  • a light emitting layer between the anode and the cathode
  • the light emitting layer comprises a compound represented by the following formula (1) and a compound represented by the following formula (2),
  • Ar 1 and Ar 2 are each independently substituted or unsubstituted C 6-60 aryl; Or substituted or unsubstituted C 2-60 heteroaryl comprising any one or more selected from the group consisting of N, O and S,
  • L 1 and L 2 are each independently a single bond; Or a substituted or unsubstituted C 6-60 arylene,
  • L 3 is a single bond; Or a substituted or unsubstituted C 6-60 arylene,
  • each R 1 is independently hydrogen or deuterium; or two adjacent ones combine to form a benzene ring, and the remainder is hydrogen or deuterium;
  • each R 2 is independently hydrogen or deuterium; or two adjacent ones combine to form a benzene ring, and the remainder is hydrogen or deuterium;
  • Ar 3 and Ar 4 are each independently substituted or unsubstituted C 6-60 aryl; Or C 2-60 heteroaryl comprising at least one selected from the group consisting of substituted or unsubstituted O and S,
  • L 4 to L 6 are each independently a single bond; or substituted or unsubstituted C 6-60 arylene.
  • the above-described organic light emitting device may improve efficiency, low driving voltage, and/or lifespan characteristics.
  • FIG. 1 shows an example of an organic light emitting device including a substrate 1 , an anode 2 , a light emitting layer 3 , and a cathode 4 .
  • FIG. 2 shows a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, a light emitting layer 3, an electron transport layer 7, an electron injection layer 8 and a cathode 4 It shows an example of the organic light emitting device made up.
  • FIG. 3 is a substrate (1), anode (2), hole injection layer (5), hole transport layer (6), electron blocking layer (9), light emitting layer (3), hole blocking layer (10), electron transport layer (7) ), an example of an organic light emitting device comprising an electron injection layer 8 and a cathode 4 is shown.
  • substituted or unsubstituted refers to deuterium; halogen group; nitrile group; nitro group; hydroxyl group; carbonyl group; ester group; imid; amino group; a phosphine oxide group; alkoxy group; aryloxy group; alkyl thiooxy group; arylthioxy group; an alkyl sulfoxy group; arylsulfoxy group; silyl group; boron group; an alkyl group; cycloalkyl group; alkenyl group; aryl group; aralkyl group; aralkenyl group; an alkylaryl group; an alkylamine group; an aralkylamine group; heteroarylamine group; arylamine group; an arylphosphine group; Or N, O, and S atom means that it is substituted or unsubstituted with one or more substituents selected from the group consisting of a heterocycl
  • a substituent in which two or more substituents are connected may be a biphenyl group. That is, the biphenyl group may be an aryl group, and may be interpreted as a substituent in which two phenyl groups are connected.
  • the number of carbon atoms in the carbonyl group is not particularly limited, but preferably 1 to 40 carbon atoms. Specifically, it may be a substituent having the following structure, but is not limited thereto.
  • oxygen of the ester group may be substituted with a linear, branched or cyclic alkyl group having 1 to 25 carbon atoms or an aryl group having 6 to 25 carbon atoms. Specifically, it may be a substituent of the following structural formula, but is not limited thereto.
  • the number of carbon atoms of the imide group is not particularly limited, but it is preferably from 1 to 25 carbon atoms. Specifically, it may be a substituent having the following structure, but is not limited thereto.
  • the silyl group specifically includes a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, a propyldimethylsilyl group, a triphenylsilyl group, a diphenylsilyl group, a phenylsilyl group, and the like.
  • the present invention is not limited thereto.
  • the boron group specifically includes, but is not limited to, a trimethylboron group, a triethylboron group, a t-butyldimethylboron group, a triphenylboron group, a phenylboron group, and the like.
  • examples of the halogen group include fluorine, chlorine, bromine or iodine.
  • the alkyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 1 to 40. According to an exemplary embodiment, the number of carbon atoms in the alkyl group is 1 to 20. According to another exemplary embodiment, the number of carbon atoms in the alkyl group is 1 to 10. According to another exemplary embodiment, the alkyl group has 1 to 6 carbon atoms.
  • alkyl group examples include methyl, ethyl, propyl, n-propyl, isopropyl, butyl, n-butyl, isobutyl, tert-butyl, sec-butyl, 1-methyl-butyl, 1-ethyl-butyl, pentyl, n -pentyl, isopentyl, neopentyl, tert-pentyl, hexyl, n-hexyl, 1-methylpentyl, 2-methylpentyl, 4-methyl-2-pentyl, 3,3-dimethylbutyl, 2-ethylbutyl, heptyl , n-heptyl, 1-methylhexyl, cyclopentylmethyl, cyclohexylmethyl, octyl, n-octyl, tert-octyl, 1-methylheptyl, 2-ethylhexyl
  • the alkenyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 2 to 40. According to an exemplary embodiment, the carbon number of the alkenyl group is 2 to 20. According to another exemplary embodiment, the carbon number of the alkenyl group is 2 to 10. According to another exemplary embodiment, the alkenyl group has 2 to 6 carbon atoms.
  • Specific examples include vinyl, 1-propenyl, isopropenyl, 1-butenyl, 2-butenyl, 3-butenyl, 1-pentenyl, 2-pentenyl, 3-pentenyl, 3-methyl-1- Butenyl, 1,3-butadienyl, allyl, 1-phenylvinyl-1-yl, 2-phenylvinyl-1-yl, 2,2-diphenylvinyl-1-yl, 2-phenyl-2-( Naphthyl-1-yl)vinyl-1-yl, 2,2-bis(diphenyl-1-yl)vinyl-1-yl, stilbenyl group, styrenyl group, and the like, but are not limited thereto.
  • the cycloalkyl group is not particularly limited, but preferably has 3 to 60 carbon atoms, and according to an exemplary embodiment, the cycloalkyl group has 3 to 30 carbon atoms. According to another exemplary embodiment, the carbon number of the cycloalkyl group is 3 to 20. According to another exemplary embodiment, the cycloalkyl group has 3 to 6 carbon atoms.
  • the aryl group is not particularly limited, but preferably has 6 to 60 carbon atoms, and may be a monocyclic aryl group or a polycyclic aryl group. According to an exemplary embodiment, the carbon number of the aryl group is 6 to 30. According to an exemplary embodiment, the carbon number of the aryl group is 6 to 20.
  • the aryl group may be a monocyclic aryl group, such as a phenyl group, a biphenyl group, or a terphenyl group, but is not limited thereto.
  • the polycyclic aryl group may be a naphthyl group, an anthracenyl group, a phenanthryl group, a pyrenyl group, a perylenyl group, a chrysenyl group, a fluorenyl group, and the like, but is not limited thereto.
  • the fluorenyl group may be substituted, and two substituents may be bonded to each other to form a spiro structure.
  • the fluorenyl group is substituted, etc. can be
  • the present invention is not limited thereto.
  • the heterocyclic group is a heterocyclic group including at least one of O, N, Si and S as a heterogeneous element, and the number of carbon atoms is not particularly limited, but it is preferably from 2 to 60 carbon atoms.
  • heterocyclic group examples include a thiophene group, a furan group, a pyrrole group, an imidazole group, a thiazole group, an oxazole group, an oxadiazole group, a triazole group, a pyridyl group, a bipyridyl group, a pyrimidyl group, a triazine group, an acridyl group , pyridazine group, pyrazinyl group, quinolinyl group, quinazoline group, quinoxalinyl group, phthalazinyl group, pyrido pyrimidinyl group, pyrido pyrazinyl group, pyrazino pyrazinyl group, isoquinoline group, indole group , carbazole group, benzoxazole group, benzoimidazole group, benzothiazole group, benzocarbazole group, benzothioph
  • the aryl group in the aralkyl group, the aralkenyl group, the alkylaryl group, and the arylamine group is the same as the examples of the aryl group described above.
  • the alkyl group among the aralkyl group, the alkylaryl group, and the alkylamine group is the same as the example of the above-described alkyl group.
  • the description of the heterocyclic group described above for heteroaryl among heteroarylamines may be applied.
  • the alkenyl group among the aralkenyl groups is the same as the above-described examples of the alkenyl group.
  • the description of the above-described aryl group may be applied, except that arylene is a divalent group.
  • the description of the above-described heterocyclic group may be applied, except that heteroarylene is a divalent group.
  • the hydrocarbon ring is not a monovalent group, and the description of the above-described aryl group or cycloalkyl group may be applied, except that it is formed by combining two substituents.
  • the heterocyclic group is not a monovalent group, and the description of the above-described heterocyclic group may be applied, except that it is formed by combining two substituents.
  • the anode and cathode used in the present invention mean electrodes used in an organic light emitting device.
  • anode material a material having a large work function is generally preferred so that holes can be smoothly injected into the organic material layer.
  • the anode material include metals such as vanadium, chromium, copper, zinc, gold, or alloys thereof; metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); combinations of metals and oxides such as ZnO:Al or SnO 2 :Sb; conductive polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene](PEDOT), polypyrrole, and polyaniline, but are not limited thereto.
  • the cathode material is preferably a material having a small work function to facilitate electron injection into the organic material layer.
  • the anode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead, or alloys thereof; and a multi-layered material such as LiF/Al or LiO 2 /Al, but is not limited thereto.
  • the organic light emitting diode according to the present invention may include a hole injection layer between the anode and a hole transport layer to be described later, if necessary.
  • the hole injection layer is a layer for injecting holes from the electrode, and as a hole injection material, it has the ability to transport holes, so it has a hole injection effect at the anode, an excellent hole injection effect on the light emitting layer or the light emitting material, and is produced in the light emitting layer
  • a compound which prevents the movement of excitons to the electron injection layer or the electron injection material and is excellent in the ability to form a thin film is preferable.
  • the highest occupied molecular orbital (HOMO) of the hole injection material is between the work function of the positive electrode material and the HOMO of the surrounding organic material layer.
  • the hole injection material examples include metal porphyrin, oligothiophene, arylamine-based organic material, hexanitrile hexaazatriphenylene-based organic material, quinacridone-based organic material, and perylene-based organic material. of organic substances, anthraquinones, polyaniline and polythiophene-based conductive polymers, and the like, but are not limited thereto.
  • the organic light emitting diode according to the present invention may include a hole transport layer between the anode and the light emitting layer to be described later or between the electron blocking layer and the hole injection layer to be described later.
  • the hole transport layer is a layer that receives holes from the hole injection layer and transports them to the light emitting layer.
  • a hole transport material a material capable of transporting holes from the anode or hole injection layer to the light emitting layer and transferring them to the light emitting layer. This is suitable.
  • the hole transport material include, but are not limited to, an arylamine-based organic material, a conductive polymer, and a block copolymer having a conjugated portion and a non-conjugated portion together.
  • the electron blocking layer is a layer placed between the hole transport layer and the emission layer to prevent electrons injected from the cathode from passing to the hole transport layer without recombination in the emission layer, and is also called an electron blocking layer.
  • an electron blocking layer a material having an electron affinity lower than that of the electron transport layer is preferable.
  • the light emitting layer used in the present invention refers to a layer capable of emitting light in the visible ray region by combining holes and electrons transferred from the anode and the cathode.
  • the emission layer includes a host material and a dopant material, and in the present invention, the compound represented by Formula 1 and the compound represented by Formula 2 are included as hosts.
  • the formula 1 is represented by any one selected from the group consisting of the following formulas 1-1 to 1-9:
  • Ar 1 , Ar 2 , L 1 , L 2 , and L 3 are as defined above.
  • Ar 1 and Ar 2 are each independently substituted or unsubstituted C 6-20 aryl; Or it may be a C 2-20 heteroaryl comprising at least one selected from the group consisting of substituted or unsubstituted N, O and S.
  • Ar 1 and Ar 2 may each independently be phenyl, biphenylyl, naphthyl, phenanthrenyl, phenyl carbazolyl, dibenzofuranyl, dibenzothiophenyl, or benzonaphthofuranyl.
  • L 1 and L 2 are each independently a single bond; Or it may be a substituted or unsubstituted C 6-20 arylene.
  • L 1 and L 2 may each independently be a single bond, phenylene, or naphthylene.
  • L 1 and L 2 may each independently be a single bond or any one selected from the group consisting of:
  • L 3 is a single bond; Or it may be a substituted or unsubstituted C 6-60 arylene.
  • L 3 may be a single bond, phenylene, biphenylylene, or naphthylene.
  • L 3 may be a single bond or any one selected from the group consisting of:
  • the compound represented by Formula 1 may be prepared by, for example, a preparation method as in Scheme 1 below, and other compounds may be prepared similarly.
  • Ar 1 , Ar 2 , L 1 to L 3 , R 1 and R 2 are as defined in Formula 1 above, X 1 is halogen, and preferably X 1 is chloro or bromo.
  • Scheme 1 is an amine substitution reaction, preferably performed in the presence of a palladium catalyst and a base, and the reactor for the amine substitution reaction can be changed as known in the art.
  • the manufacturing method may be more specific in Preparation Examples to be described later.
  • Ar 3 and Ar 4 are each independently substituted or unsubstituted C 6-20 aryl; Or it may be C 2-20 heteroaryl including any one or more selected from the group consisting of substituted or unsubstituted O and S.
  • Ar 3 and Ar 4 are each independently phenyl, biphenylyl, terphenylyl, naphthyl, phenanthrenyl, dimethylfluorenyl, diphenylfluorenyl, dibenzofuranyl, dibenzo thiophenyl, or benzonaphthofuranyl.
  • Ar 3 and Ar 4 are each independently phenyl, biphenylyl, terphenylyl, naphthyl, phenanthrenyl, 9,9-dimethyl-9H-fluorenyl, 9,9-diphenyl -9H-fluorenyl, dibenzofuranyl, dibenzothiophenyl, or benzo[b]naphtho[2,3-d]furanyl.
  • L 4 to L 6 are each independently a single bond; Or it may be a substituted or unsubstituted C 6-20 arylene.
  • L 4 to L 6 may each independently be a single bond, phenylene, or dimethylfluorenylene.
  • L 4 to L 6 may each independently be a single bond, phenylene, or 9,9-dimethyl-9H-fluorenylene.
  • the compound represented by Formula 2 may be prepared by, for example, a preparation method as shown in Scheme 2 below, and other compounds may be prepared similarly.
  • Ar 3 , Ar 4 and L 4 to L 6 are as defined in Formula 2 above, X 2 is halogen, and preferably X 2 is chloro or bromo.
  • Scheme 2 is an amine substitution reaction, preferably performed in the presence of a palladium catalyst and a base, and the reactor for the amine substitution reaction can be changed as known in the art.
  • the manufacturing method may be more specific in Preparation Examples to be described later.
  • the weight ratio of the compound represented by Formula 1 to the compound represented by Formula 2 is 1:99 to 99:1, 5:95 to 95:5, or 10:90 to 90:10.
  • the dopant material is not particularly limited as long as it is a material used in an organic light emitting device.
  • examples include an aromatic amine derivative, a strylamine compound, a boron complex, a fluoranthene compound, and a metal complex.
  • the aromatic amine derivative is a condensed aromatic ring derivative having a substituted or unsubstituted arylamino group, and includes pyrene, anthracene, chrysene, periflanthene, and the like, having an arylamino group.
  • styrylamine compound a substituted or unsubstituted It is a compound in which at least one arylvinyl group is substituted in the arylamine, and one or two or more substituents selected from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group and an arylamino group are substituted or unsubstituted.
  • substituents selected from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group and an arylamino group are substituted or unsubstituted.
  • the metal complex include, but are not limited to, an iridium complex and a platinum complex.
  • one of the following compounds may be used as a dopant material, but is not limited thereto:
  • the hole blocking layer is a layer interposed between the electron transport layer and the emission layer to prevent the holes injected from the anode from passing to the electron transport layer without recombination in the emission layer, and is also called a hole blocking layer.
  • a material having high ionization energy is preferable for the hole blocking layer.
  • the organic light emitting device may include an electron transport layer between the light emitting layer and the cathode.
  • the electron transport layer is a layer that receives electrons from the electron injection layer formed on the cathode or the cathode, transports electrons to the light emitting layer, and suppresses the transfer of holes in the light emitting layer.
  • an electron transport material electrons are well injected from the cathode
  • a material that can receive and transfer to the light emitting layer a material with high electron mobility is suitable.
  • the electron transport material include an Al complex of 8-hydroxyquinoline; complexes containing Alq 3 ; organic radical compounds; hydroxyflavone-metal complexes, and the like, but are not limited thereto.
  • the electron transport layer may be used with any desired cathode material as used in accordance with the prior art.
  • suitable cathode materials are conventional materials having a low work function and followed by a layer of aluminum or silver. Specifically cesium, barium, calcium, ytterbium and samarium, followed in each case by an aluminum layer or a silver layer.
  • the organic light emitting diode according to the present invention may further include an electron injection layer between the electron transport layer and the cathode, if necessary.
  • the electron injection layer is a layer that injects electrons from the electrode, has the ability to transport electrons, has an electron injection effect from the cathode, an excellent electron injection effect on the light emitting layer or the light emitting material, and hole injection of excitons generated in the light emitting layer. It is preferable to use a compound which prevents movement to a layer and is excellent in the ability to form a thin film.
  • the material that can be used as the electron injection layer include fluorenone, anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylenetetracarboxylic acid, preole nylidene methane, anthrone and the like, derivatives thereof, metal complex compounds, nitrogen-containing 5-membered ring derivatives, and the like, but are not limited thereto.
  • the metal complex compound examples include 8-hydroxyquinolinato lithium, bis(8-hydroxyquinolinato)zinc, bis(8-hydroxyquinolinato)copper, bis(8-hydroxyquinolinato)manganese, Tris(8-hydroxyquinolinato)aluminum, tris(2-methyl-8-hydroxyquinolinato)aluminum, tris(8-hydroxyquinolinato)gallium, bis(10-hydroxybenzo[h] Quinolinato) beryllium, bis (10-hydroxybenzo [h] quinolinato) zinc, bis (2-methyl-8-quinolinato) chlorogallium, bis (2-methyl-8-quinolinato) ( o-crezolato)gallium, bis(2-methyl-8-quinolinato)(1-naphtolato)aluminum, bis(2-methyl-8-quinolinato)(2-naphtolato)gallium, etc.
  • the present invention is not limited thereto.
  • the "electron injection and transport layer” is a layer that performs both the role of the electron injection layer and the electron transport layer, and the materials serving the respective layers may be used alone or in combination, but limited thereto. doesn't happen
  • FIG. 1 shows an example of an organic light emitting device including a substrate 1 , an anode 2 , a light emitting layer 3 , and a cathode 4 .
  • FIG. 1 shows an example of an organic light emitting device including a substrate 1 , an anode 2 , a light emitting layer 3 , and a cathode 4 .
  • FIG. 1 shows an example of an organic light emitting device including a substrate 1 , an anode 2 , a light emitting layer 3 , and a cathode 4 .
  • FIG. 1 shows an example of an organic light emitting device including a substrate 1 , an anode 2 , a light emitting layer 3 , and a cathode 4 .
  • FIG. 1 shows an example of an organic light emitting device including a substrate 1 , an anode 2 , a light emitting layer 3 , and a cathode 4 .
  • FIG. 1 shows an example of an organic light emitting device including
  • FIG. 2 shows the substrate 1, the anode 2, the hole injection layer 5, the hole transport layer 6, the light emitting layer 3, the electron transport layer 7, the electron injection layer 8 and the cathode 4 ) shows an example of an organic light emitting device made of 3 is a substrate (1), anode (2), hole injection layer (5), hole transport layer (6), electron blocking layer (9), light emitting layer (3), hole blocking layer (10), electron transport layer (7) ), an example of an organic light emitting device comprising an electron injection layer 8 and a cathode 4 is shown.
  • the organic light emitting device may be manufactured by sequentially stacking the above-described components. At this time, by using a PVD (physical vapor deposition) method such as sputtering or e-beam evaporation, a metal or conductive metal oxide or an alloy thereof is deposited on a substrate to form an anode And, after forming each of the above-mentioned layers thereon, it can be prepared by depositing a material that can be used as a cathode thereon.
  • PVD physical vapor deposition
  • an organic light emitting device may be manufactured by sequentially depositing the anode material on the substrate in the reverse order of the above-described configuration from the cathode material (WO 2003/012890).
  • the light emitting layer may be formed by a solution coating method as well as a vacuum deposition method for the host and dopant.
  • the solution coating method refers to spin coating, dip coating, doctor blading, inkjet printing, screen printing, spray method, roll coating, and the like, but is not limited thereto.
  • the organic light emitting device according to the present invention may be a bottom emission device, a top emission device, or a double-sided light emitting device, and in particular, may be a bottom light emitting device requiring relatively high luminous efficiency.
  • 9H-carbazole (10 g, 59.8 mmol), compound sub5 (29.5 g, 62.8 mmol), and sodium tert-butoxide (7.5 g, 77.7 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.6 g, 1.2 mmol) was added. After 3 hours, the reaction was completed, the mixture was cooled to room temperature, and the solvent was removed under reduced pressure.
  • 9H-carbazole (10 g, 59.8 mmol), compound sub7 (27.2 g, 62.8 mmol), and sodium tert-butoxide (7.5 g, 77.7 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.6 g, 1.2 mmol) was added. After 2 hours, the reaction was completed and the solvent was removed under reduced pressure after cooling to room temperature.
  • 9H-carbazole (10 g, 59.8 mmol), compound sub8 (32.7 g, 62.8 mmol), and sodium tert-butoxide (7.5 g, 77.7 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.6 g, 1.2 mmol) was added. After 2 hours, the reaction was completed and the solvent was removed under reduced pressure after cooling to room temperature.
  • 9H-carbazole (10 g, 59.8 mmol), compound sub12 (27.9 g, 62.8 mmol), and sodium tert-butoxide (7.5 g, 77.7 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.6 g, 1.2 mmol) was added. After 2 hours, the reaction was completed and the solvent was removed under reduced pressure after cooling to room temperature.
  • 9H-carbazole (10 g, 59.8 mmol), compound sub15 (31 g, 62.8 mmol), and sodium tert-butoxide (7.5 g, 77.7 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.6 g, 1.2 mmol) was added. After 3 hours, the reaction was completed, the mixture was cooled to room temperature, and the solvent was removed under reduced pressure.
  • 9H-carbazole (10 g, 59.8 mmol), compound sub18 (32 g, 62.8 mmol), and sodium tert-butoxide (7.5 g, 77.7 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0) (0.6 g, 1.2 mmol) was added. After 2 hours, the reaction was completed and the solvent was removed under reduced pressure after cooling to room temperature.
  • sub1-1 (10 g, 29.5 mmol), compound amine 12 (7.6 g, 31 mmol), and sodium tert-butoxide (3.7 g, 38.4 mmol) were added to 200 ml of Xylene, and stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol) was added thereto. After 5 hours, the reaction was completed, the mixture was cooled to room temperature, and the solvent was removed under reduced pressure.
  • sub1-1 (10 g, 29.5 mmol), compound amine 13 (11.5 g, 31 mmol), and sodium tert-butoxide (3.7 g, 38.4 mmol) were added to 200 ml of Xylene, stirred and refluxed. Thereafter, bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol) was added thereto. After 5 hours, the reaction was completed, the mixture was cooled to room temperature, and the solvent was removed under reduced pressure.
  • a glass substrate coated with indium tin oxide (ITO) to a thickness of 1000 ⁇ was placed in distilled water in which detergent was dissolved and washed with ultrasonic waves.
  • ITO indium tin oxide
  • a product manufactured by Fischer Co. was used as the detergent
  • distilled water that was secondarily filtered with a filter manufactured by Millipore Co. was used as the distilled water.
  • ultrasonic cleaning was performed for 10 minutes by repeating twice with distilled water.
  • ultrasonic washing was performed with a solvent of isopropyl alcohol, acetone, and methanol, and after drying, it was transported to a plasma cleaner.
  • the substrate was transported to a vacuum evaporator.
  • the following compound HI-1 was formed to a thickness of 1150 ⁇ as a hole injection layer on the prepared ITO transparent electrode, but the following compound A-1 was p-doped at 1.5 wt%.
  • the following compound HT-1 was vacuum-deposited on the hole injection layer to form a hole transport layer having a thickness of 800 ⁇ .
  • the following compound EB-1 was vacuum-deposited to a film thickness of 150 ⁇ on the hole transport layer to form an electron blocking layer.
  • the compounds 1-1 and 2-1 prepared previously as a host and the Dp-7 compound as a dopant were vacuum-deposited in a weight ratio of 49:49:2 to form a 400 ⁇ thick red light emitting layer. .
  • a hole blocking layer was formed by vacuum-depositing the following compound HB-1 to a thickness of 30 ⁇ on the light emitting layer. Then, on the hole blocking layer, the following compound ET-1 and the following compound LiQ were vacuum-deposited at a weight ratio of 2:1 to form an electron injection and transport layer to a thickness of 300 ⁇ .
  • a cathode was formed by sequentially depositing lithium fluoride (LiF) to a thickness of 12 ⁇ and aluminum to a thickness of 1000 ⁇ on the electron injection and transport layer.
  • the deposition rate of organic material was maintained at 0.4 ⁇ 0.7 ⁇ /sec
  • the deposition rate of lithium fluoride of the negative electrode was maintained at 0.3 ⁇ /sec
  • the deposition rate of aluminum was maintained at 2 ⁇ /sec
  • the vacuum degree during deposition was 2 ⁇ 10
  • An organic light emitting device was manufactured in the same manner as in Example 1, except that in the organic light emitting device of Example 1, the first host and the second host compound described in Table 1 were used by co-deposition in a weight ratio of 1:1. did.
  • An organic light emitting device was manufactured in the same manner as in Example 1, except that in the organic light emitting device of Example 1, the first host and the second host compound described in Table 2 were used by co-deposition in a weight ratio of 1:1. did.
  • Compounds B-1 to B-3 of Table 2 are as follows.
  • An organic light emitting device was manufactured in the same manner as in Example 1, except that in the organic light emitting device of Example 1, the first host and the second host compound described in Table 3 were used by co-deposition in a weight ratio of 1:1. did.
  • Compounds C-1 to C-3 of Table 3 are as follows.
  • the red organic light emitting diode of the above embodiment has a structure in which compound EB-1, a material widely used in the prior art, is used as an electron blocking layer material, and compound Dp-7 is used as a red dopant material.
  • compound EB-1 a material widely used in the prior art
  • compound Dp-7 is used as a red dopant material.
  • Substrate 2 Anode

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

본 발명은 유기 발광 소자를 제공한다.

Description

유기 발광 소자
관련 출원(들)과의 상호 인용
본 출원은 2020년 6월 23일자 한국 특허 출원 제10-2020-0076673호 및 2021년 6월 23일자 한국 특허 출원 제10-2021-0081273호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원들의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본 발명은 유기 발광 소자에 관한 것이다.
일반적으로 유기 발광 현상이란 유기 물질을 이용하여 전기에너지를 빛에너지로 전환시켜주는 현상을 말한다. 유기 발광 현상을 이용하는 유기 발광 소자는 넓은 시야각, 우수한 콘트라스트, 빠른 응답 시간을 가지며, 휘도, 구동 전압 및 응답 속도 특성이 우수하여 많은 연구가 진행되고 있다.
유기 발광 소자는 일반적으로 양극과 음극 및 상기 양극과 음극 사이에 유기물 층을 포함하는 구조를 가진다. 상기 유기물 층은 유기 발광 소자의 효율과 안정성을 높이기 위하여 각기 다른 물질로 구성된 다층의 구조로 이루어진 경우가 많으며, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층 등으로 이루어질 수 있다. 이러한 유기 발광 소자의 구조에서 두 전극 사이에 전압을 걸어주게 되면 양극에서는 정공이, 음극에서는 전자가 유기물층에 주입되게 되고, 주입된 정공과 전자가 만났을 때 엑시톤(exciton)이 형성되며, 이 엑시톤이 다시 바닥상태로 떨어질 때 빛이 나게 된다.
상기와 같은 유기 발광 소자에 사용되는 유기물에 대하여 새로운 재료의 개발이 지속적으로 요구되고 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 한국특허 공개번호 제10-2000-0051826호
본 발명은 구동 전압, 효율 및 수명이 개선된 유기 발광 소자에 관한 것이다.
상기 과제를 해결하기 위하여, 본 발명은 하기의 유기 발광 소자를 제공한다:
양극; 음극; 및 상기 양극과 음극 사이의 발광층을 포함하고,
상기 발광층은 하기 화학식 1로 표시되는 화합물 및 하기 화학식 2로 표시되는 화합물을 포함하는,
유기 발광 소자:
[화학식 1]
Figure PCTKR2021007878-appb-img-000001
상기 화학식 1에서,
Ar1 및 Ar2는 각각 독립적으로 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴이고,
L1 및 L2는 각각 독립적으로 단일 결합; 또는 치환 또는 비치환된 C6-60 아릴렌이고,
L3는 단일 결합; 또는 치환 또는 비치환된 C6-60 아릴렌이고,
R1은 각각 독립적으로 수소, 또는 중수소이거나; 또는 인접한 두 개가 결합하여 벤젠 고리를 형성하고, 나머지는 수소, 또는 중수소이고,
R2는 각각 독립적으로 수소, 또는 중수소이거나; 또는 인접한 두 개가 결합하여 벤젠 고리를 형성하고, 나머지는 수소, 또는 중수소이고,
[화학식 2]
Figure PCTKR2021007878-appb-img-000002
상기 화학식 2에서,
Ar3 및 Ar4는 각각 독립적으로 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴이고,
L4 내지 L6는 각각 독립적으로 단일 결합; 또는 치환 또는 비치환된 C6-60 아릴렌이다.
상술한 유기 발광 소자는 효율의 향상, 낮은 구동전압 및/또는 수명 특성을 향상시킬 수 있다.
도 1은, 기판(1), 양극(2), 발광층(3) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
도 2는, 기판(1), 양극(2), 정공주입층(5), 정공수송층(6), 발광층(3), 전자수송층(7), 전자주입층(8) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
도 3은, 기판(1), 양극(2), 정공주입층(5), 정공수송층(6), 전자차단층(9), 발광층(3), 정공저지층(10), 전자수송층(7), 전자주입층(8) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
이하, 본 발명의 이해를 돕기 위하여 보다 상세히 설명한다.
본 명세서에서,
Figure PCTKR2021007878-appb-img-000003
또는
Figure PCTKR2021007878-appb-img-000004
는 다른 치환기에 연결되는 결합을 의미한다.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 할로겐기; 니트릴기; 니트로기; 히드록시기; 카보닐기; 에스테르기; 이미드기; 아미노기; 포스핀옥사이드기; 알콕시기; 아릴옥시기; 알킬티옥시기; 아릴티옥시기; 알킬술폭시기; 아릴술폭시기; 실릴기; 붕소기; 알킬기; 사이클로알킬기; 알케닐기; 아릴기; 아르알킬기; 아르알케닐기; 알킬아릴기; 알킬아민기; 아랄킬아민기; 헤테로아릴아민기; 아릴아민기; 아릴포스핀기; 또는 N, O 및 S 원자 중 1개 이상을 포함하는 헤테로고리기로 이루어진 군에서 선택된 1개 이상의 치환기로 치환 또는 비치환되거나, 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환 또는 비치환된 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 비페닐기일 수 있다. 즉, 비페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수 있다.
본 명세서에서 카보닐기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 40인 것이 바람직하다. 구체적으로 하기와 같은 구조의 치환기가 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2021007878-appb-img-000005
본 명세서에 있어서, 에스테르기는 에스테르기의 산소가 탄소수 1 내지 25의 직쇄, 분지쇄 또는 고리쇄 알킬기 또는 탄소수 6 내지 25의 아릴기로 치환될 수 있다. 구체적으로, 하기 구조식의 치환기가 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2021007878-appb-img-000006
본 명세서에 있어서, 이미드기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 25인 것이 바람직하다. 구체적으로 하기와 같은 구조의 치환기가 될 수 있으나, 이에 한정되는 것은 아니다.
Figure PCTKR2021007878-appb-img-000007
본 명세서에 있어서, 실릴기는 구체적으로 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기, 페닐실릴기 등이 있으나 이에 한정되지 않는다.
본 명세서에 있어서, 붕소기는 구체적으로 트리메틸붕소기, 트리에틸붕소기, t-부틸디메틸붕소기, 트리페닐붕소기, 페닐붕소기 등이 있으나 이에 한정되지 않는다.
본 명세서에 있어서, 할로겐기의 예로는 불소, 염소, 브롬 또는 요오드가 있다.
본 명세서에 있어서, 상기 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 6이다. 알킬기의 구체적인 예로는 메틸, 에틸, 프로필, n-프로필, 이소프로필, 부틸, n-부틸, 이소부틸, tert-부틸, sec-부틸, 1-메틸-부틸, 1-에틸-부틸, 펜틸, n-펜틸, 이소펜틸, 네오펜틸, tert-펜틸, 헥실, n-헥실, 1-메틸펜틸, 2-메틸펜틸, 4-메틸-2-펜틸, 3,3-디메틸부틸, 2-에틸부틸, 헵틸, n-헵틸, 1-메틸헥실, 사이클로펜틸메틸, 사이클로헥틸메틸, 옥틸, n-옥틸, tert-옥틸, 1-메틸헵틸, 2-에틸헥실, 2-프로필펜틸, n-노닐, 2,2-디메틸헵틸, 1-에틸-프로필, 1,1-디메틸-프로필, 이소헥실, 2-메틸펜틸, 4-메틸헥실, 5-메틸헥실 등이 있으나, 이들에 한정되지 않는다.
본 명세서에 있어서, 상기 알케닐기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나, 2 내지 40인 것이 바람직하다. 일 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 20이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 10이다. 또 하나의 실시상태에 따르면, 상기 알케닐기의 탄소수는 2 내지 6이다. 구체적인 예로는 비닐, 1-프로페닐, 이소프로페닐, 1-부테닐, 2-부테닐, 3-부테닐, 1-펜테닐, 2-펜테닐, 3-펜테닐, 3-메틸-1-부테닐, 1,3-부타디에닐, 알릴, 1-페닐비닐-1-일, 2-페닐비닐-1-일, 2,2-디페닐비닐-1-일, 2-페닐-2-(나프틸-1-일)비닐-1-일, 2,2-비스(디페닐-1-일)비닐-1-일, 스틸베닐기, 스티레닐기 등이 있으나 이들에 한정되지 않는다.
본 명세서에 있어서, 사이클로알킬기는 특별히 한정되지 않으나, 탄소수 3 내지 60인 것이 바람직하며, 일 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 30이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 20이다. 또 하나의 실시상태에 따르면, 상기 사이클로알킬기의 탄소수는 3 내지 6이다. 구체적으로 사이클로프로필, 사이클로부틸, 사이클로펜틸, 3-메틸사이클로펜틸, 2,3-디메틸사이클로펜틸, 사이클로헥실, 3-메틸사이클로헥실, 4-메틸사이클로헥실, 2,3-디메틸사이클로헥실, 3,4,5-트리메틸사이클로헥실, 4-tert-부틸사이클로헥실, 사이클로헵틸, 사이클로옥틸 등이 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 아릴기는 특별히 한정되지 않으나 탄소수 6 내지 60인 것이 바람직하며, 단환식 아릴기 또는 다환식 아릴기일 수 있다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 20이다. 상기 아릴기가 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트릴기, 파이레닐기, 페릴레닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 플루오레닐기는 치환될 수 있고, 치환기 2개가 서로 결합하여 스피로 구조를 형성할 수 있다. 상기 플루오레닐기가 치환되는 경우,
Figure PCTKR2021007878-appb-img-000008
등이 될 수 있다. 다만, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 헤테로고리기는 이종 원소로 O, N, Si 및 S 중 1개 이상을 포함하는 헤테로고리기로서, 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 60인 것이 바람직하다. 헤테로고리기의 예로는 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 트리아졸기, 피리딜기, 비피리딜기, 피리미딜기, 트리아진기, 아크리딜기, 피리다진기, 피라지닐기, 퀴놀리닐기, 퀴나졸린기, 퀴녹살리닐기, 프탈라지닐기, 피리도 피리미디닐기, 피리도 피라지닐기, 피라지노 피라지닐기, 이소퀴놀린기, 인돌기, 카바졸기, 벤조옥사졸기, 벤조이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨라닐기, 페난쓰롤린기(phenanthroline), 이소옥사졸릴기, 티아디아졸릴기, 페노티아지닐기 및 디벤조퓨라닐기 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서에 있어서, 아르알킬기, 아르알케닐기, 알킬아릴기, 아릴아민기 중의 아릴기는 전술한 아릴기의 예시와 같다. 본 명세서에 있어서, 아르알킬기, 알킬아릴기, 알킬아민기 중 알킬기는 전술한 알킬기의 예시와 같다. 본 명세서에 있어서, 헤테로아릴아민 중 헤테로아릴은 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 아르알케닐기 중 알케닐기는 전술한 알케닐기의 예시와 같다. 본 명세서에 있어서, 아릴렌은 2가기인 것을 제외하고는 전술한 아릴기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로아릴렌은 2가기인 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 탄화수소 고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 아릴기 또는 사이클로알킬기에 관한 설명이 적용될 수 있다. 본 명세서에 있어서, 헤테로고리는 1가기가 아니고, 2개의 치환기가 결합하여 형성한 것을 제외하고는 전술한 헤테로고리기에 관한 설명이 적용될 수 있다.
이하, 각 구성 별로 본 발명을 상세히 설명한다.
양극 및 음극
본 발명에서 사용되는 양극 및 음극은, 유기 발광 소자에서 사용되는 전극을 의미한다.
상기 양극 물질로는 통상 유기물 층으로 정공 주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 상기 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO2:Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 상기 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.
정공주입층
본 발명에 따른 유기 발광 소자는, 필요에 따라 상기 양극과 후술할 정공수송층 사이에 정공주입층을 포함할 수 있다.
상기 정공주입층은 전극으로부터 정공을 주입하는 층으로, 정공 주입 물질로는 정공을 수송하는 능력을 가져 양극에서의 정공 주입효과, 발광층 또는 발광재료에 대하여 우수한 정공 주입 효과를 갖고, 발광층에서 생성된 여기자의 전자주입층 또는 전자주입재료에의 이동을 방지하며, 또한, 박막 형성 능력이 우수한 화합물이 바람직하다. 또한, 정공 주입 물질의 HOMO(highest occupied molecular orbital)가 양극 물질의 일함수와 주변 유기물 층의 HOMO 사이인 것이 바람직하다.
정공 주입 물질의 구체적인 예로는 금속 포피린(porphyrin), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone)계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
정공수송층
본 발명에 따른 유기 발광 소자는, 상기 양극과 후술할 발광층 사이, 또는 후술할 전자억제층과 상기 정공주입층 사이에 정공수송층을 포함할 수 있다.
상기 정공수송층은 정공주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 층으로, 정공 수송 물질로 양극이나 정공 주입층으로부터 정공을 수송받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다.
상기 정공 수송 물질의 구체적인 예로는 아릴아민 계열의 유기물, 전도성 고분자, 및 공액 부분과 비공액 부분이 함께 있는 블록 공중합체 등이 있으나, 이들에만 한정되는 것은 아니다.
전자차단층
상기 전자억제층은 음극에서 주입된 전자가 발광층에서 재결합되지 않고 정공수송층으로 넘어가는 것을 방지하기 위해 정공수송층과 발광층의 사이에 두는 층으로, 전자억제층으로 불리기도 한다. 전자차단층에는 전자수송층보다 전자 친화력이 작은 물질이 바람직하다.
발광층
본 발명에서 사용되는 발광층은, 양극과 음극으로부터 전달받은 정공과 전자를 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 층을 의미한다. 일반적으로, 발광층은 호스트 재료와 도펀트 재료를 포함하며, 본 발명에는 상기 화학식 1로 표시되는 화합물과 상기 화학식 2로 표시되는 화합물을 호스트로 포함한다.
바람직하게는, 상기 화학식 1은 하기 화학식 1-1 내지 1-9로 구성되는 군으로부터 선택되는 어느 하나로 표시된다:
Figure PCTKR2021007878-appb-img-000009
상기 화학식 1-1 내지 1-9에서, Ar1, Ar2, L1, L2 및 L3는 앞서 정의한 바와 같다.
바람직하게는, Ar1 및 Ar2는 각각 독립적으로 치환 또는 비치환된 C6-20 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-20 헤테로아릴일 수 있다.
보다 바람직하게는, Ar1 및 Ar2는 각각 독립적으로 페닐, 비페닐릴, 나프틸, 페난트레닐, 페닐 카바졸릴, 디벤조퓨라닐, 디벤조티오페닐, 또는 벤조나프토퓨라닐일 수 있다.
바람직하게는, L1 및 L2는 각각 독립적으로 단일 결합; 또는 치환 또는 비치환된 C6-20 아릴렌일 수 있다.
보다 바람직하게는, L1 및 L2는 각각 독립적으로 단일 결합, 페닐렌, 또는 나프틸렌일 수 있다.
가장 바람직하게는, L1 및 L2는 각각 독립적으로 단일 결합 또는 하기로 구성되는 군으로부터 선택되는 어느 하나일 수 있다:
Figure PCTKR2021007878-appb-img-000010
.
바람직하게는, L3는 단일 결합; 또는 치환 또는 비치환된 C6-60 아릴렌일 수 있다.
보다 바람직하게는, L3는 단일 결합, 페닐렌, 비페닐릴렌, 또는 나프틸렌일 수 있다.
가장 바람직하게는, L3는 단일 결합 또는 하기로 구성되는 군으로부터 선택되는 어느 하나일 수 있다:
Figure PCTKR2021007878-appb-img-000011
.
상기 화학식 1로 표시되는 화합물의 대표적인 예는 하기와 같다:
Figure PCTKR2021007878-appb-img-000012
Figure PCTKR2021007878-appb-img-000013
Figure PCTKR2021007878-appb-img-000014
Figure PCTKR2021007878-appb-img-000015
Figure PCTKR2021007878-appb-img-000016
Figure PCTKR2021007878-appb-img-000017
Figure PCTKR2021007878-appb-img-000018
Figure PCTKR2021007878-appb-img-000019
Figure PCTKR2021007878-appb-img-000020
Figure PCTKR2021007878-appb-img-000021
Figure PCTKR2021007878-appb-img-000022
Figure PCTKR2021007878-appb-img-000023
Figure PCTKR2021007878-appb-img-000024
Figure PCTKR2021007878-appb-img-000025
Figure PCTKR2021007878-appb-img-000026
Figure PCTKR2021007878-appb-img-000027
Figure PCTKR2021007878-appb-img-000028
Figure PCTKR2021007878-appb-img-000029
Figure PCTKR2021007878-appb-img-000030
Figure PCTKR2021007878-appb-img-000031
Figure PCTKR2021007878-appb-img-000032
Figure PCTKR2021007878-appb-img-000033
Figure PCTKR2021007878-appb-img-000034
Figure PCTKR2021007878-appb-img-000035
Figure PCTKR2021007878-appb-img-000036
Figure PCTKR2021007878-appb-img-000037
Figure PCTKR2021007878-appb-img-000038
Figure PCTKR2021007878-appb-img-000039
Figure PCTKR2021007878-appb-img-000040
Figure PCTKR2021007878-appb-img-000041
Figure PCTKR2021007878-appb-img-000042
Figure PCTKR2021007878-appb-img-000043
Figure PCTKR2021007878-appb-img-000044
Figure PCTKR2021007878-appb-img-000045
Figure PCTKR2021007878-appb-img-000046
Figure PCTKR2021007878-appb-img-000047
Figure PCTKR2021007878-appb-img-000048
Figure PCTKR2021007878-appb-img-000049
Figure PCTKR2021007878-appb-img-000050
Figure PCTKR2021007878-appb-img-000051
Figure PCTKR2021007878-appb-img-000052
Figure PCTKR2021007878-appb-img-000053
Figure PCTKR2021007878-appb-img-000054
Figure PCTKR2021007878-appb-img-000055
Figure PCTKR2021007878-appb-img-000056
Figure PCTKR2021007878-appb-img-000057
Figure PCTKR2021007878-appb-img-000058
Figure PCTKR2021007878-appb-img-000059
Figure PCTKR2021007878-appb-img-000060
Figure PCTKR2021007878-appb-img-000061
Figure PCTKR2021007878-appb-img-000062
Figure PCTKR2021007878-appb-img-000063
Figure PCTKR2021007878-appb-img-000064
Figure PCTKR2021007878-appb-img-000065
Figure PCTKR2021007878-appb-img-000066
Figure PCTKR2021007878-appb-img-000067
Figure PCTKR2021007878-appb-img-000068
Figure PCTKR2021007878-appb-img-000069
Figure PCTKR2021007878-appb-img-000070
Figure PCTKR2021007878-appb-img-000071
Figure PCTKR2021007878-appb-img-000072
Figure PCTKR2021007878-appb-img-000073
Figure PCTKR2021007878-appb-img-000074
Figure PCTKR2021007878-appb-img-000075
Figure PCTKR2021007878-appb-img-000076
Figure PCTKR2021007878-appb-img-000077
Figure PCTKR2021007878-appb-img-000078
Figure PCTKR2021007878-appb-img-000079
Figure PCTKR2021007878-appb-img-000080
Figure PCTKR2021007878-appb-img-000081
Figure PCTKR2021007878-appb-img-000082
Figure PCTKR2021007878-appb-img-000083
Figure PCTKR2021007878-appb-img-000084
Figure PCTKR2021007878-appb-img-000085
Figure PCTKR2021007878-appb-img-000086
Figure PCTKR2021007878-appb-img-000087
Figure PCTKR2021007878-appb-img-000088
Figure PCTKR2021007878-appb-img-000089
Figure PCTKR2021007878-appb-img-000090
Figure PCTKR2021007878-appb-img-000091
Figure PCTKR2021007878-appb-img-000092
Figure PCTKR2021007878-appb-img-000093
Figure PCTKR2021007878-appb-img-000094
.
상기 화학식 1로 표시되는 화합물은 일례로 하기 반응식 1과 같은 제조 방법으로 제조할 수 있으며, 그 외 나머지 화합물도 유사하게 제조할 수 있다.
[반응식 1]
Figure PCTKR2021007878-appb-img-000095
상기 반응식 1에서, Ar1, Ar2, L1 내지 L3, R1 및 R2는 상기 화학식 1에서 정의한 바와 같으며, X1은 할로겐이고, 바람직하게는 X1은 클로로 또는 브로모이다.
상기 반응식 1은 아민 치환 반응으로서, 팔라듐 촉매와 염기 존재 하에 수행하는 것이 바람직하며, 아민 치환 반응을 위한 반응기는 당업계에 알려진 바에 따라 변경이 가능하다. 상기 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다.
바람직하게는, Ar3 및 Ar4는 각각 독립적으로 치환 또는 비치환된 C6-20 아릴; 또는 치환 또는 비치환된 O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-20 헤테로아릴일 수 있다.
보다 바람직하게는, Ar3 및 Ar4는 각각 독립적으로, 페닐, 비페닐릴, 터페닐릴, 나프틸, 페난트레닐, 디메틸플루오레닐, 디페닐플루오레닐, 디벤조퓨라닐, 디벤조티오페닐, 또는 벤조나프토퓨라닐일 수 있다.
가장 바람직하게는, Ar3 및 Ar4는 각각 독립적으로, 페닐, 비페닐릴, 터페닐릴, 나프틸, 페난트레닐, 9,9-디메틸-9H-플루오레닐, 9,9-디페닐-9H-플루오레닐, 디벤조퓨라닐, 디벤조티오페닐, 또는 벤조[b]나프토[2,3-d]퓨라닐일 수 있다.
바람직하게는, L4 내지 L6는 각각 독립적으로 단일 결합; 또는 치환 또는 비치환된 C6-20 아릴렌일 수 있다.
보다 바람직하게는, L4 내지 L6는 각각 독립적으로 단일 결합, 페닐렌, 또는 디메틸플루오레닐렌일 수 있다.
가장 바람직하게는, L4 내지 L6는 각각 독립적으로 단일 결합, 페닐렌, 또는 9,9-디메틸-9H-플루오레닐렌일 수 있다.
상기 화학식 2로 표시되는 화합물의 대표적인 예는 하기와 같다:
Figure PCTKR2021007878-appb-img-000096
Figure PCTKR2021007878-appb-img-000097
Figure PCTKR2021007878-appb-img-000098
Figure PCTKR2021007878-appb-img-000099
Figure PCTKR2021007878-appb-img-000100
Figure PCTKR2021007878-appb-img-000101
Figure PCTKR2021007878-appb-img-000102
Figure PCTKR2021007878-appb-img-000103
Figure PCTKR2021007878-appb-img-000104
Figure PCTKR2021007878-appb-img-000105
Figure PCTKR2021007878-appb-img-000106
Figure PCTKR2021007878-appb-img-000107
Figure PCTKR2021007878-appb-img-000108
Figure PCTKR2021007878-appb-img-000109
Figure PCTKR2021007878-appb-img-000110
Figure PCTKR2021007878-appb-img-000111
.
상기 화학식 2로 표시되는 화합물은 일례로 하기 반응식 2와 같은 제조 방법으로 제조할 수 있으며, 그 외 나머지 화합물도 유사하게 제조할 수 있다.
[반응식 2]
Figure PCTKR2021007878-appb-img-000112
상기 반응식 2에서, Ar3, Ar4 및 L4 내지 L6는 상기 화학식 2에서 정의한 바와 같으며, X2는 할로겐이고, 바람직하게는 X2는 클로로 또는 브로모이다.
상기 반응식 2는 아민 치환 반응으로서, 팔라듐 촉매와 염기 존재 하에 수행하는 것이 바람직하며, 아민 치환 반응을 위한 반응기는 당업계에 알려진 바에 따라 변경이 가능하다. 상기 제조 방법은 후술할 제조예에서 보다 구체화될 수 있다.
상기 발광층에서, 상기 화학식 1로 표시되는 화합물과 상기 화학식 2로 표시되는 화합물의 중량비는 1:99 내지 99:1, 5:95 내지 95:5, 또는 10:90 내지 90:10이다.
상기 도펀트 재료로는 유기 발광 소자에 사용되는 물질이면 특별히 제한되지 않는다. 일례로, 방향족 아민 유도체, 스트릴아민 화합물, 붕소 착체, 플루오란텐 화합물, 금속 착체 등이 있다. 구체적으로 방향족 아민 유도체로는 치환 또는 비치환된 아릴아미노기를 갖는 축합 방향족환 유도체로서, 아릴아미노기를 갖는 피렌, 안트라센, 크리센, 페리플란텐 등이 있으며, 스티릴아민 화합물로는 치환 또는 비치환된 아릴아민에 적어도 1개의 아릴비닐기가 치환되어 있는 화합물로, 아릴기, 실릴기, 알킬기, 사이클로알킬기 및 아릴아미노기로 이루어진 군에서 1 또는 2 이상 선택되는 치환기가 치환 또는 비치환된다. 구체적으로 스티릴아민, 스티릴디아민, 스티릴트리아민, 스티릴테트라아민 등이 있으나, 이에 한정되지 않는다. 또한, 금속 착체로는 이리듐 착체, 백금 착체 등이 있으나, 이에 한정되지 않는다.
일례로, 하기와 같은 화합물 중 하나를 도펀트 재료로 사용할 수 있으나, 이에 한정되는 것은 아니다:
Figure PCTKR2021007878-appb-img-000113
Figure PCTKR2021007878-appb-img-000114
Figure PCTKR2021007878-appb-img-000115
Figure PCTKR2021007878-appb-img-000116
.
정공저지층
상기 정공저지층은 양극에서 주입된 정공이 발광층에서 재결합되지 않고 전자수송층으로 넘어가는 것을 방지하기 위해 전자수송층과 발광층의 사이에 두는 층으로, 정공억제층으로 불리기도 한다. 정공저지층에는 이온화에너지가 큰 물질이 바람직하다.
전자수송층
본 발명에 따른 유기 발광 소자는, 상기 발광층과 음극 사이에 전자수송층을 포함할 수 있다.
상기 전자수송층은, 음극 또는 음극 상에 형성된 전자주입층으로부터 전자를 수취하여 발광층까지 전자를 수송하고, 또한 발광층에서 정공이 전달되는 것을 억제하는 층으로, 전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다.
상기 전자 수송 물질의 구체적인 예로는 8-히드록시퀴놀린의 Al 착물; Alq3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다. 전자 수송층은 종래기술에 따라 사용된 바와 같이 임의의 원하는 캐소드 물질과 함께 사용할 수 있다. 특히, 적절한 캐소드 물질의 예는 낮은 일함수를 가지고 알루미늄층 또는 실버층이 뒤따르는 통상적인 물질이다. 구체적으로 세슘, 바륨, 칼슘, 이테르븀 및 사마륨이고, 각 경우 알루미늄 층 또는 실버층이 뒤따른다.
전자주입층
본 발명에 따른 유기 발광 소자는 필요에 따라 상기 전자수송층과 음극 사이에 전자주입층을 추가로 포함할 수 있다.
상기 전자주입층은 전극으로부터 전자를 주입하는 층으로, 전자를 수송하는 능력을 갖고, 음극으로부터의 전자 주입 효과, 발광층 또는 발광 재료에 대하여 우수한 전자주입 효과를 가지며, 발광층에서 생성된 여기자의 정공주입층에의 이동을 방지하고, 또한, 박막형성능력이 우수한 화합물을 사용하는 것이 바람직하다.
상기 전자주입층으로 사용될 수 있는 물질의 구체적인 예로는, 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론 등과 그들의 유도체, 금속 착체 화합물 및 질소 함유 5원환 유도체 등이 있으나, 이에 한정되지 않는다.
상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스(8-하이드록시퀴놀리나토)아연, 비스(8-하이드록시퀴놀리나토)구리, 비스(8-하이드록시퀴놀리나토)망간, 트리스(8-하이드록시퀴놀리나토)알루미늄, 트리스(2-메틸-8-하이드록시퀴놀리나토)알루미늄, 트리스(8-하이드록시퀴놀리나토)갈륨, 비스(10-하이드록시벤조[h]퀴놀리나토)베릴륨, 비스(10-하이드록시벤조[h]퀴놀리나토)아연, 비스(2-메틸-8-퀴놀리나토)클로로갈륨, 비스(2-메틸-8-퀴놀리나토)(o-크레졸라토)갈륨, 비스(2-메틸-8-퀴놀리나토)(1-나프톨라토)알루미늄, 비스(2-메틸-8-퀴놀리나토)(2-나프톨라토)갈륨 등이 있으나, 이에 한정되지 않는다.
한편, 본 발명에 있어서 "전자 주입 및 수송층"은 상기 전자주입층과 상기 전자수송층의 역할을 모두 수행하는 층으로 상기 각 층의 역할을 하는 물질을 단독으로, 혹은 혼합하여 사용할 수 있으나, 이에 한정되지 않는다.
유기 발광 소자
본 발명에 따른 유기 발광 소자의 구조를 도 1 내지 도 3에 예시하였다. 도 1은, 기판(1), 양극(2), 발광층(3) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 또한, 도 2는, 기판(1), 양극(2), 정공주입층(5), 정공수송층(6), 발광층(3), 전자수송층(7), 전자주입층(8) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다. 도 3은, 기판(1), 양극(2), 정공주입층(5), 정공수송층(6), 전자차단층(9), 발광층(3), 정공저지층(10), 전자수송층(7), 전자주입층(8) 및 음극(4)으로 이루어진 유기 발광 소자의 예를 도시한 것이다.
본 발명에 따른 유기 발광 소자는 상술한 구성을 순차적으로 적층시켜 제조할 수 있다. 이때, 스퍼터링법(sputtering)이나 전자빔 증발법(e-beam evaporation)과 같은 PVD(physical Vapor Deposition)방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 상술한 각 층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시켜 제조할 수 있다.
이와 같은 방법 외에도, 기판 상에 음극 물질부터 상술한 구성의 역순으로 양극 물질까지 차례로 증착시켜 유기 발광 소자를 만들 수 있다(WO 2003/012890). 또한, 발광층은 호스트 및 도펀트를 진공 증착법 뿐만 아니라 용액 도포법에 의하여 형성될 수 있다. 여기서, 용액 도포법이라 함은 스핀 코팅, 딥코팅, 닥터 블레이딩, 잉크젯 프린팅, 스크린 프린팅, 스프레이법, 롤 코팅 등을 의미하지만, 이들만으로 한정되는 것은 아니다.
한편, 본 발명에 따른 유기 발광 소자는 배면 발광(bottom emission) 소자, 전면 발광(top emission) 소자, 또는 양면 발광 소자일 수 있으며, 특히 상대적으로 높은 발광 효율이 요구되는 배면 발광 소자일 수 있다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 이에 의해 본 발명의 내용이 한정되는 것은 아니다.
[제조예]
제조예 1-1
Figure PCTKR2021007878-appb-img-000117
질소 분위기에서 9H-carbazole(10 g, 59.8 mmol), 화합물 sub1(25.6 g, 62.8 mmol), Potassium Phosphate(38.1 g, 179.4 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.6 g, 1.2 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 1-1 17.7 g을 얻었다(수율 55 %, MS: [M+H]+= 539).
제조예 1-2
Figure PCTKR2021007878-appb-img-000118
질소 분위기에서 9H-carbazole(10 g, 59.8 mmol), 화합물 sub2(25.6 g, 62.8 mmol), Potassium Phosphate(38.1 g, 179.4 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.6 g, 1.2 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 1-2 19 g을 얻었다(수율 59 %, MS: [M+H]+= 539).
제조예 1-3
Figure PCTKR2021007878-appb-img-000119
질소 분위기에서 9H-carbazole(10 g, 59.8 mmol), 화합물 sub3(27.2 g, 62.8 mmol), Potassium Phosphate(38.1 g, 179.4 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.6 g, 1.2 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 1-3 18.5 g을 얻었다(수율 55 %, MS: [M+H]+= 564).
제조예 1-4
Figure PCTKR2021007878-appb-img-000120
질소 분위기에서 9H-carbazole(10 g, 59.8 mmol), 화합물 sub4(30.4 g, 62.8 mmol), Potassium Phosphate(38.1 g, 179.4 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.6 g, 1.2 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 1-4 20.9 g을 얻었다(수율 57 %, MS: [M+H]+= 615).
제조예 1-5
Figure PCTKR2021007878-appb-img-000121
질소 분위기에서 9H-carbazole(10 g, 59.8 mmol), 화합물 sub5(29.5 g, 62.8 mmol), sodium tert-butoxide(7.5 g, 77.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.6 g, 1.2 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 1-5 23.3 g을 얻었다(수율 65 %, MS: [M+H]+= 601).
제조예 1-6
Figure PCTKR2021007878-appb-img-000122
질소 분위기에서 9H-carbazole(10 g, 59.8 mmol), 화합물 sub6(29.5 g, 62.8 mmol), sodium tert-butoxide(7.5 g, 77.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.6 g, 1.2 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 1-6 20.5 g을 얻었다(수율 57 %, MS: [M+H]+= 601).
제조예 1-7
Figure PCTKR2021007878-appb-img-000123
질소 분위기에서 9H-carbazole(10 g, 59.8 mmol), 화합물 sub7(27.2 g, 62.8 mmol), sodium tert-butoxide(7.5 g, 77.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.6 g, 1.2 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 1-7 19.2 g을 얻었다(수율 57 %, MS: [M+H]+= 565).
제조예 1-8
Figure PCTKR2021007878-appb-img-000124
질소 분위기에서 9H-carbazole(10 g, 59.8 mmol), 화합물 sub8(32.7 g, 62.8 mmol), sodium tert-butoxide(7.5 g, 77.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.6 g, 1.2 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 1-8 26.4 g을 얻었다(수율 68 %, MS: [M+H]+= 651).
제조예 1-9
Figure PCTKR2021007878-appb-img-000125
질소 분위기에서 9H-carbazole(10 g, 59.8 mmol), 화합물 sub9(30.4 g, 62.8 mmol), sodium tert-butoxide(7.5 g, 77.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.6 g, 1.2 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 1-9 24.6 g을 얻었다(수율 67 %, MS: [M+H]+= 615).
제조예 1-10
Figure PCTKR2021007878-appb-img-000126
질소 분위기에서 9H-carbazole(10 g, 59.8 mmol), 화합물 sub10(30.4 g, 62.8 mmol), sodium tert-butoxide(7.5 g, 77.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.6 g, 1.2 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 1-10 23.5 g을 얻었다(수율 64 %, MS: [M+H]+= 615).
제조예 1-11
Figure PCTKR2021007878-appb-img-000127
질소 분위기에서 9H-carbazole(10 g, 59.8 mmol), 화합물 sub11(27.2 g, 62.8 mmol), sodium tert-butoxide(7.5 g, 77.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.6 g, 1.2 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 1-11 17.5 g을 얻었다(수율 52 %, MS: [M+H]+= 565).
제조예 1-12
Figure PCTKR2021007878-appb-img-000128
질소 분위기에서 9H-carbazole(10 g, 59.8 mmol), 화합물 sub12(27.9 g, 62.8 mmol), sodium tert-butoxide(7.5 g, 77.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.6 g, 1.2 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 1-12 18.2 g을 얻었다(수율 53 %, MS: [M+H]+= 575).
제조예 1-13
Figure PCTKR2021007878-appb-img-000129
질소 분위기에서 9H-carbazole(10 g, 59.8 mmol), 화합물 sub13(29.5 g, 62.8 mmol), sodium tert-butoxide(7.5 g, 77.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.6 g, 1.2 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 1-13 19.4 g을 얻었다(수율 54 %, MS: [M+H]+= 601).
제조예 1-14
Figure PCTKR2021007878-appb-img-000130
질소 분위기에서 9H-carbazole(10 g, 59.8 mmol), 화합물 sub14(35.1 g, 62.8 mmol), sodium tert-butoxide(7.5 g, 77.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.6 g, 1.2 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 1-14 28.4 g을 얻었다(수율 69 %, MS: [M+H]+= 690).
제조예 1-15
Figure PCTKR2021007878-appb-img-000131
질소 분위기에서 9H-carbazole(10 g, 59.8 mmol), 화합물 sub15(31 g, 62.8 mmol), sodium tert-butoxide(7.5 g, 77.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.6 g, 1.2 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 1-15 26.1 g을 얻었다(수율 70 %, MS: [M+H]+= 625).
제조예 1-16
Figure PCTKR2021007878-appb-img-000132
질소 분위기에서 9H-carbazole(10 g, 59.8 mmol), 화합물 sub16(31.4 g, 62.8 mmol), sodium tert-butoxide(7.5 g, 77.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.6 g, 1.2 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 1-16 22.2 g을 얻었다(수율 59 %, MS: [M+H]+= 631).
제조예 1-17
Figure PCTKR2021007878-appb-img-000133
질소 분위기에서 9H-carbazole(10 g, 59.8 mmol), 화합물 sub17(26.4 g, 62.8 mmol), sodium tert-butoxide(7.5 g, 77.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.6 g, 1.2 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 1-17 18.1 g을 얻었다(수율 55 %, MS: [M+H]+= 551).
제조예 1-18
Figure PCTKR2021007878-appb-img-000134
질소 분위기에서 9H-carbazole(10 g, 59.8 mmol), 화합물 sub18(32 g, 62.8 mmol), sodium tert-butoxide(7.5 g, 77.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.6 g, 1.2 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 1-18 24.5 g을 얻었다(수율 64 %, MS: [M+H]+= 641).
제조예 1-19
Figure PCTKR2021007878-appb-img-000135
질소 분위기에서 9H-carbazole(10 g, 59.8 mmol), 화합물 sub19(31.1 g, 62.8 mmol), sodium tert-butoxide(7.5 g, 77.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.6 g, 1.2 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 1-19 25.1 g을 얻었다(수율 67 %, MS: [M+H]+= 627).
제조예 1-20
Figure PCTKR2021007878-appb-img-000136
질소 분위기에서 9H-carbazole(10 g, 59.8 mmol), 화합물 sub20(33 g, 62.8 mmol), sodium tert-butoxide(7.5 g, 77.7 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.6 g, 1.2 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 1-20 20 g을 얻었다(수율 51 %, MS: [M+H]+= 657).
제조예 1-21
Figure PCTKR2021007878-appb-img-000137
질소 분위기에서 7H-benzo[c]carbazole(10 g, 46 mmol), 화합물 sub21(18.1 g, 48.3 mmol), Potassium Phosphate(29.3 g, 138.1 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.5 g, 0.9 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 1-21 14.3 g을 얻었다(수율 56 %, MS: [M+H]+= 555).
제조예 1-22
Figure PCTKR2021007878-appb-img-000138
질소 분위기에서 7H-benzo[c]carbazole(10 g, 46 mmol), 화합물 sub7(21 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.5 g, 0.9 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 1-22 14.7 g을 얻었다(수율 52 %, MS: [M+H]+= 615).
제조예 1-23
Figure PCTKR2021007878-appb-img-000139
질소 분위기에서 7H-benzo[c]carbazole(10 g, 46 mmol), 화합물 sub22(26.9 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.5 g, 0.9 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 1-23 22 g을 얻었다(수율 65 %, MS: [M+H]+= 737).
제조예 1-24
Figure PCTKR2021007878-appb-img-000140
질소 분위기에서 7H-benzo[c]carbazole(10 g, 46 mmol), 화합물 sub23(16.6 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.5 g, 0.9 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 1-24 12.1 g을 얻었다(수율 50 %, MS: [M+H]+= 525).
제조예 1-25
Figure PCTKR2021007878-appb-img-000141
질소 분위기에서 7H-benzo[c]carbazole(10 g, 46 mmol), 화합물 sub24(16.6 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.5 g, 0.9 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 1-25 12.5 g을 얻었다(수율 52 %, MS: [M+H]+= 525).
제조예 1-26
Figure PCTKR2021007878-appb-img-000142
질소 분위기에서 7H-benzo[c]carbazole(10 g, 46 mmol), 화합물 sub25(25.1 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.5 g, 0.9 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 1-26 20.3 g을 얻었다(수율 63 %, MS: [M+H]+= 701).
제조예 1-27
Figure PCTKR2021007878-appb-img-000143
질소 분위기에서 7H-benzo[c]carbazole(10 g, 46 mmol), 화합물 sub26(25.4 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.5 g, 0.9 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 1-27 18.2 g을 얻었다(수율 56 %, MS: [M+H]+= 707).
제조예 1-28
Figure PCTKR2021007878-appb-img-000144
질소 분위기에서 5H-benzo[b]carbazole(10 g, 46 mmol), 화합물 sub27(17.8 g, 48.3 mmol), Potassium Phosphate(29.3 g, 138.1 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.5 g, 0.9 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 1-28 16.9 g을 얻었다(수율 67 %, MS: [M+H]+= 549).
제조예 1-29
Figure PCTKR2021007878-appb-img-000145
질소 분위기에서 5H-benzo[b]carbazole(10 g, 46 mmol), 화합물 sub28(20.3 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.5 g, 0.9 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 1-29 19.3 g을 얻었다(수율 70 %, MS: [M+H]+= 601).
제조예 1-30
Figure PCTKR2021007878-appb-img-000146
질소 분위기에서 5H-benzo[b]carbazole(10 g, 46 mmol), 화합물 sub29(21.7 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.5 g, 0.9 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 1-30 17.7 g을 얻었다(수율 61 %, MS: [M+H]+= 631).
제조예 1-31
Figure PCTKR2021007878-appb-img-000147
질소 분위기에서 5H-benzo[b]carbazole(10 g, 46 mmol), 화합물 sub30(24.6 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.5 g, 0.9 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 1-31 20 g을 얻었다(수율 63 %, MS: [M+H]+= 690).
제조예 1-32
Figure PCTKR2021007878-appb-img-000148
질소 분위기에서 5H-benzo[b]carbazole(10 g, 46 mmol), 화합물 sub31(25.1 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.5 g, 0.9 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 1-32 21.3 g을 얻었다(수율 66 %, MS: [M+H]+= 701).
제조예 1-33
Figure PCTKR2021007878-appb-img-000149
질소 분위기에서 5H-benzo[b]carbazole(10 g, 46 mmol), 화합물 sub32(19 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.5 g, 0.9 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 1-33 14 g을 얻었다(수율 53 %, MS: [M+H]+= 575).
제조예 1-34
Figure PCTKR2021007878-appb-img-000150
질소 분위기에서 5H-benzo[b]carbazole(10 g, 46 mmol), 화합물 sub33(22.7 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.5 g, 0.9 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 1-34 15.3 g을 얻었다(수율 51 %, MS: [M+H]+= 651).
제조예 1-35
Figure PCTKR2021007878-appb-img-000151
질소 분위기에서 5H-benzo[b]carbazole(10 g, 46 mmol), 화합물 sub17(20.3 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.5 g, 0.9 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 1-35 18.2 g을 얻었다(수율 66 %, MS: [M+H]+= 601).
제조예 1-36
Figure PCTKR2021007878-appb-img-000152
질소 분위기에서 11H-benzo[a]carbazole(10 g, 46 mmol), 화합물 sub34(22.7 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.5 g, 0.9 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 1-36 15 g을 얻었다(수율 50 %, MS: [M+H]+= 651).
제조예 1-37
Figure PCTKR2021007878-appb-img-000153
질소 분위기에서 11H-benzo[a]carbazole(10 g, 46 mmol), 화합물 sub35(21.7 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.5 g, 0.9 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 1-37 20.3 g을 얻었다(수율 70 %, MS: [M+H]+= 631).
제조예 1-38
Figure PCTKR2021007878-appb-img-000154
질소 분위기에서 11H-benzo[a]carbazole(10 g, 46 mmol), 화합물 sub36(27.1 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.5 g, 0.9 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 1-38 20.4 g을 얻었다(수율 60 %, MS: [M+H]+= 741).
제조예 1-39
Figure PCTKR2021007878-appb-img-000155
질소 분위기에서 11H-benzo[a]carbazole(10 g, 46 mmol), 화합물 sub37(25.4 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.5 g, 0.9 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 1-39 17.9 g을 얻었다(수율 55 %, MS: [M+H]+= 707).
제조예 1-40
Figure PCTKR2021007878-appb-img-000156
질소 분위기에서 11H-benzo[a]carbazole(10 g, 46 mmol), 화합물 sub38(24.6 g, 48.3 mmol), sodium tert-butoxide(5.7 g, 59.8 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.5 g, 0.9 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 1-40 15.9 g을 얻었다(수율 50 %, MS: [M+H]+= 691).
제조예 1-41
Figure PCTKR2021007878-appb-img-000157
질소 분위기에서 7H-dibenzo[b,g]carbazole(10 g, 37.4 mmol), 화합물 sub39(14.7 g, 39.3 mmol), Potassium Phosphate(23.8 g, 112.2 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.4 g, 0.7 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 1-41 11.5 g을 얻었다(수율 51 %, MS: [M+H]+= 605).
제조예 1-42
Figure PCTKR2021007878-appb-img-000158
질소 분위기에서 7H-dibenzo[b,g]carbazole(10 g, 37.4 mmol), 화합물 sub40(19 g, 39.3 mmol), sodium tert-butoxide(4.7 g, 48.6 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.4 g, 0.7 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 1-42 13.9 g을 얻었다(수율 52 %, MS: [M+H]+= 715).
제조예 1-43
Figure PCTKR2021007878-appb-img-000159
질소 분위기에서 6H-dibenzo[b,h]carbazole(10 g, 37.4 mmol), 화합물 sub41(14.1 g, 39.3 mmol), Potassium Phosphate(23.8 g, 112.2 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.4 g, 0.7 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 1-43 13.6 g을 얻었다(수율 62 %, MS: [M+H]+= 589).
제조예 1-44
Figure PCTKR2021007878-appb-img-000160
질소 분위기에서 6H-dibenzo[b,h]carbazole(10 g, 37.4 mmol), 화합물 sub42(19.6 g, 39.3 mmol), sodium tert-butoxide(4.7 g, 48.6 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.4 g, 0.7 mmol)을 투입했다. 2 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 1-44 19.1 g을 얻었다(수율 70 %, MS: [M+H]+= 731).
제조예 1-45
Figure PCTKR2021007878-appb-img-000161
질소 분위기에서 13H-dibenzo[a,h]carbazole(10 g, 37.4 mmol), 화합물 sub43(16 g, 39.3 mmol), Potassium Phosphate(23.8 g, 112.2 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.4 g, 0.7 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 1-45 14.1 g을 얻었다(수율 59 %, MS: [M+H]+= 639).
제조예 1-46
Figure PCTKR2021007878-appb-img-000162
질소 분위기에서 13H-dibenzo[a,h]carbazole(10 g, 37.4 mmol), 화합물 sub44(17.7 g, 39.3 mmol), sodium tert-butoxide(4.7 g, 48.6 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.4 g, 0.7 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 1-46 13.7 g을 얻었다(수율 54 %, MS: [M+H]+= 681).
제조예 1-47
Figure PCTKR2021007878-appb-img-000163
질소 분위기에서 7H-dibenzo[c,g]carbazole(10 g, 37.4 mmol), 화합물 sub45(14.1 g, 39.3 mmol), Potassium Phosphate(23.8 g, 112.2 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.4 g, 0.7 mmol)을 투입했다. 3 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 1-47 12.1 g을 얻었다(수율 55 %, MS: [M+H]+= 589).
제조예 2-1
Figure PCTKR2021007878-appb-img-000164
질소 분위기에서 2-bromotriphenylene(10 g, 32.6 mmol), 화합물 amine 1(11g, 34.2 mmol), sodium tert-butoxide(4.1 g, 42.3 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-1 12.5 g을 얻었다(수율 70 %, MS: [M+H]+= 548).
제조예 2-2
Figure PCTKR2021007878-appb-img-000165
질소 분위기에서 2-bromotriphenylene(10 g, 32.6 mmol), 화합물 amine 2(12.7g, 34.2 mmol), sodium tert-butoxide(4.1 g, 42.3 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-2 13 g을 얻었다(수율 67 %, MS: [M+H]+= 598).
제조예 2-3
Figure PCTKR2021007878-appb-img-000166
질소 분위기에서 2-bromotriphenylene(10 g, 32.6 mmol), 화합물 amine 3(13.6g, 34.2 mmol), sodium tert-butoxide(4.1 g, 42.3 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-3 13.4 g을 얻었다(수율 66 %, MS: [M+H]+= 624).
제조예 2-4
Figure PCTKR2021007878-appb-img-000167
질소 분위기에서 2-bromotriphenylene(10 g, 32.6 mmol), 화합물 amine 4(12.7g, 34.2 mmol), sodium tert-butoxide(4.1 g, 42.3 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-4 11.7 g을 얻었다(수율 60 %, MS: [M+H]+= 598).
제조예 2-5
Figure PCTKR2021007878-appb-img-000168
질소 분위기에서 2-bromotriphenylene(10 g, 32.6 mmol), 화합물 amine 5(15.3g, 34.2 mmol), sodium tert-butoxide(4.1 g, 42.3 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-5 13.2 g을 얻었다(수율 60 %, MS: [M+H]+= 674)
제조예 2-6
Figure PCTKR2021007878-appb-img-000169
질소 분위기에서 2-bromotriphenylene(10 g, 32.6 mmol), 화합물 amine 6(10.1g, 34.2 mmol), sodium tert-butoxide(4.1 g, 42.3 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-6 10.9 g을 얻었다(수율 64 %, MS: [M+H]+= 522).
제조예 2-7
Figure PCTKR2021007878-appb-img-000170
질소 분위기에서 2-bromotriphenylene(10 g, 32.6 mmol), 화합물 amine 7(13.6g, 34.2 mmol), sodium tert-butoxide(4.1 g, 42.3 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-7 12.6 g을 얻었다(수율 62 %, MS: [M+H]+= 624).
제조예 2-8
Figure PCTKR2021007878-appb-img-000171
질소 분위기에서 2-bromotriphenylene(10 g, 32.6 mmol), 화합물 amine 8(13.6g, 34.2 mmol), sodium tert-butoxide(4.1 g, 42.3 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-8 11.2 g을 얻었다(수율 55 %, MS: [M+H]+= 624).
제조예 2-9
Figure PCTKR2021007878-appb-img-000172
질소 분위기에서 2-bromotriphenylene(10 g, 32.6 mmol), 화합물 amine 9(11.8g, 34.2 mmol), sodium tert-butoxide(4.1 g, 42.3 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-9 10.6 g을 얻었다(수율 57 %, MS: [M+H]+= 572).
제조예 2-10
Figure PCTKR2021007878-appb-img-000173
질소 분위기에서 2-bromotriphenylene(10 g, 32.6 mmol), 화합물 amine 10(10.9g, 34.2 mmol), sodium tert-butoxide(4.1 g, 42.3 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-10 10.3 g을 얻었다(수율 58 %, MS: [M+H]+= 546).
제조예 2-11
Figure PCTKR2021007878-appb-img-000174
질소 분위기에서 2-bromotriphenylene(10 g, 32.6 mmol), 화합물 amine 11(14.4g, 34.2 mmol), sodium tert-butoxide(4.1 g, 42.3 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-11 10.7 g을 얻었다(수율 51 %, MS: [M+H]+= 648).
제조예 2-12
Figure PCTKR2021007878-appb-img-000175
질소 분위기에서 2-bromotriphenylene(15 g, 48.8 mmol)와(4-chlorophenyl)boronic acid(7.6g, 48.8 mmol)를 THF 300 ml에 넣고 교반 및 환류하였다. 이 후 potassium carbonate(13.5g, 97.7 mmol)를 물 40 ml에 녹여 투입하고 충분히 교반한 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.5 mmol)을 투입하였다. 10 시간 반응 후 상온으로 식히고 유기층과 물층을 분리 후 유기층을 증류하였다. 이를 다시 클로로포름에 녹이고, 물로 2회 세척 후에 유기층을 분리하여, 무수황산마그네슘을 넣고 교반한 후 여과하여 여액을 감압 증류하였다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제하여 화합물 sub1-1을 12.4 g 제조하였다(수율 75 %, MS: [M+H]+= 339).
Figure PCTKR2021007878-appb-img-000176
질소 분위기에서 sub1-1(10 g, 29.5 mmol), 화합물 amine 12(7.6g, 31 mmol), sodium tert-butoxide(3.7 g, 38.4 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-12 10 g을 얻었다(수율 62 %, MS: [M+H]+= 548).
제조예 2-13
Figure PCTKR2021007878-appb-img-000177
질소 분위기에서 sub1-1(10 g, 29.5 mmol), 화합물 amine 13(11.5g, 31 mmol), sodium tert-butoxide(3.7 g, 38.4 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-13 10.9 g을 얻었다(수율 55 %, MS: [M+H]+= 674).
제조예 2-14
Figure PCTKR2021007878-appb-img-000178
질소 분위기에서 2-bromotriphenylene(10 g, 32.6 mmol), 화합물 amine 15(12g, 34.2 mmol), sodium tert-butoxide(4.1 g, 42.3 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-14 12.6 g을 얻었다(수율 67 %, MS: [M+H]+= 578).
제조예 2-15
Figure PCTKR2021007878-appb-img-000179
질소 분위기에서 2-bromotriphenylene(10 g, 32.6 mmol), 화합물 amine 17(13.2g, 34.2 mmol), sodium tert-butoxide(4.1 g, 42.3 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-15 11.7 g을 얻었다(수율 59 %, MS: [M+H]+= 612).
제조예 2-16
Figure PCTKR2021007878-appb-img-000180
질소 분위기에서 2-bromotriphenylene(10 g, 32.6 mmol), 화합물 amine 18(11.9g, 34.2 mmol), sodium tert-butoxide(4.1 g, 42.3 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-16 10.5 g을 얻었다(수율 56 %, MS: [M+H]+= 576).
제조예 2-17
Figure PCTKR2021007878-appb-img-000181
질소 분위기에서 2-bromotriphenylene(10 g, 32.6 mmol), 화합물 amine 19(12.5g, 34.2 mmol), sodium tert-butoxide(4.1 g, 42.3 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-17 12.1 g을 얻었다(수율 63 %, MS: [M+H]+= 592).
제조예 2-18
Figure PCTKR2021007878-appb-img-000182
질소 분위기에서 2-bromotriphenylene(10 g, 32.6 mmol), 화합물 amine 20(13g, 34.2 mmol), sodium tert-butoxide(4.1 g, 42.3 mmol)을 Xylene 200 ml에 넣고 교반 및 환류했다. 이 후 bis(tri-tert-butylphosphine)palladium(0)(0.2 g, 0.3 mmol)을 투입했다. 5 시간 후 반응이 종결되어서 상온으로 식히고 감압하여 용매를 제거했다. 이 후 화합물을 다시 클로로포름에 완전히 녹이고 물로 2회 세척 후에 유기층을 분리하여 무수황산마그네슘 처리 후 여과하여 여액을 감압 증류했다. 농축한 화합물을 실리카 겔 컬럼 크로마토그래피로 정제해서 화합물 2-18 11.1 g을 얻었다(수율 56 %, MS: [M+H]+= 608).
[실시예]
실시예 1
ITO(indium tin oxide)가 1000 Å의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척했다. 이때, 세제로는 피셔사(Fischer Co.) 제품을 사용하였으며, 증류수로는 밀러포어사(Millipore Co.) 제품의 필터(Filter)로 2차로 걸러진 증류수를 사용했다. ITO를 30 분간 세척한 후 증류수로 2회 반복하여 초음파 세척을 10 분간 진행했다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤, 메탄올의 용제로 초음파 세척을 하고 건조시킨 후 플라즈마 세정기로 수송시켰다. 또한, 산소 플라즈마를 이용하여 상기 기판을 5 분간 세정한 후 진공 증착기로 기판을 수송시켰다.
이렇게 준비된 ITO 투명 전극 위에 정공주입층으로 하기 화합물 HI-1을 1150 Å의 두께로 형성하되 하기 화합물 A-1을 1.5 중량%로 p-doping 했다. 상기 정공주입층 위에 하기 화합물 HT-1을 진공 증착하여 막 두께 800 Å의 정공수송층을 형성했다. 이어서, 상기 정공수송층 위에 막 두께 150 Å으로 하기 화합물 EB-1을 진공 증착하여 전자차단층을 형성했다. 이어서, 상기 EB-1 증착막 위에 호스트로 앞서 제조한 화합물 1-1, 화합물 2-1과 도판트로 Dp-7 화합물을 49:49:2의 중량비로 진공 증착하여 400 Å 두께의 적색 발광층을 형성했다. 상기 발광층 위에 막 두께 30 Å으로 하기 화합물 HB-1을 진공 증착하여 정공저지층을 형성했다. 이어서, 상기 정공저지층 위에 하기 화합물 ET-1과 하기 화합물 LiQ를 2:1의 중량비로 진공 증착하여 300 Å의 두께로 전자 주입 및 수송층을 형성했다. 상기 전자 주입 및 수송층 위에 순차적으로 12 Å 두께로 리튬플로라이드(LiF)와 1000 Å 두께로 알루미늄을 증착하여 음극을 형성했다.
Figure PCTKR2021007878-appb-img-000183
상기의 과정에서 유기물의 증착속도는 0.4 ~ 0.7 Å/sec를 유지하였고, 음극의 리튬플로라이드는 0.3 Å/sec, 알루미늄은 2 Å/sec의 증착 속도를 유지하였으며, 증착시 진공도는 2×10-7 ~ 5×10-6 torr를 유지하여, 유기 발광 소자를 제작했다.
실시예 2 내지 실시예 205
실시예 1의 유기 발광 소자에서 표 1에 기재된 제1 호스트 및 제2 호스트 화합물을 1:1의 중량비로 공증착하여 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 유기 발광 소자를 제조했다.
비교예 1 내지 비교예 30
실시예 1의 유기 발광 소자에서 표 2에 기재된 제1 호스트 및 제2 호스트 화합물을 1:1의 중량비로 공증착하여 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 유기 발광 소자를 제조했다. 표 2의 화합물 B-1 내지 B-3은 아래와 같다.
Figure PCTKR2021007878-appb-img-000184
비교예 31 내지 비교예 63
실시예 1의 유기 발광 소자에서 표 3에 기재된 제1 호스트 및 제2 호스트 화합물을 1:1의 중량비로 공증착하여 사용하는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 유기 발광 소자를 제조했다. 표 3의 화합물 C-1 내지 C-3은 아래와 같다.
Figure PCTKR2021007878-appb-img-000185
[실험예]
상기 실시예 1 내지 실시예 205 및 비교예 1 내지 비교예 63에서 제조한 유기 발광 소자에 전류를 인가하였을 때, 전압, 효율을 측정(15 mA/cm2 기준)하고 그 결과를 하기 표 1 내지 표 3에 나타냈다. 수명 T95는 휘도가 초기 휘도(6,000 nit)에서 95 %로 감소되는데 소요되는 시간을 의미한다.
구분 제1호스트 제2호스트 구동전압
(V)
효율
(cd/A)
수명 T95
(hr)
발광색
실시예 1 화합물1-1 화합물2-1 3.53 19.98 173 적색
실시예 2 화합물1-1 화합물2-5 3.64 20.45 183 적색
실시예 3 화합물1-1 화합물2-11 3.55 21.39 180 적색
실시예 4 화합물1-1 화합물2-15 3.62 21.98 183 적색
실시예 5 화합물1-1 화합물2-17 3.60 21.67 182 적색
실시예 6 화합물1-2 화합물2-3 3.62 20.29 177 적색
실시예 7 화합물1-2 화합물2-6 3.65 20.25 182 적색
실시예 8 화합물1-2 화합물2-13 3.55 20.32 177 적색
실시예 9 화합물1-2 화합물2-14 3.63 21.05 171 적색
실시예 10 화합물1-2 화합물2-18 3.58 20.88 188 적색
실시예 11 화합물1-3 화합물2-2 3.53 21.05 189 적색
실시예 12 화합물1-3 화합물2-7 3.55 20.97 172 적색
실시예 13 화합물1-3 화합물2-10 3.59 21.28 181 적색
실시예 14 화합물1-3 화합물2-12 3.64 21.85 174 적색
실시예 15 화합물1-3 화합물2-17 3.64 22.56 171 적색
실시예 16 화합물1-4 화합물2-4 3.87 18.62 197 적색
실시예 17 화합물1-4 화합물2-8 3.75 18.93 195 적색
실시예 18 화합물1-4 화합물2-9 3.81 18.45 193 적색
실시예 19 화합물1-4 화합물2-16 3.88 19.31 203 적색
실시예 20 화합물1-4 화합물2-18 3.87 19.26 192 적색
실시예 21 화합물1-5 화합물2-1 3.84 18.31 192 적색
실시예 22 화합물1-5 화합물2-5 3.82 18.65 206 적색
실시예 23 화합물1-5 화합물2-11 3.84 18.74 207 적색
실시예 24 화합물1-5 화합물2-15 3.80 18.80 193 적색
실시예 25 화합물1-5 화합물2-17 3.78 18.39 194 적색
실시예 26 화합물1-6 화합물2-3 3.55 20.38 183 적색
실시예 27 화합물1-6 화합물2-6 3.61 21.36 190 적색
실시예 28 화합물1-6 화합물2-13 3.58 22.91 189 적색
실시예 29 화합물1-6 화합물2-14 3.64 22.60 183 적색
실시예 30 화합물1-6 화합물2-18 3.60 22.26 180 적색
실시예 31 화합물1-7 화합물2-2 3.50 22.06 190 적색
실시예 32 화합물1-7 화합물2-7 3.62 22.09 183 적색
실시예 33 화합물1-7 화합물2-10 3.63 22.78 173 적색
실시예 34 화합물1-7 화합물2-12 3.64 20.79 188 적색
실시예 35 화합물1-7 화합물2-17 3.58 21.11 176 적색
실시예 36 화합물1-8 화합물2-4 3.64 19.83 184 적색
실시예 37 화합물1-8 화합물2-8 3.63 20.36 189 적색
실시예 38 화합물1-8 화합물2-9 3.56 21.01 183 적색
실시예 39 화합물1-8 화합물2-16 3.61 21.35 171 적색
실시예 40 화합물1-8 화합물2-18 3.58 21.32 179 적색
실시예 41 화합물1-9 화합물2-1 3.60 22.91 170 적색
실시예 42 화합물1-9 화합물2-5 3.65 20.00 176 적색
실시예 43 화합물1-9 화합물2-11 3.56 20.12 190 적색
실시예 44 화합물1-9 화합물2-15 3.56 20.80 188 적색
실시예 45 화합물1-9 화합물2-17 3.61 22.77 180 적색
실시예 46 화합물1-10 화합물2-3 3.65 20.95 172 적색
실시예 47 화합물1-10 화합물2-6 3.61 21.30 189 적색
실시예 48 화합물1-10 화합물2-13 3.62 22.60 174 적색
실시예 49 화합물1-10 화합물2-14 3.65 20.82 190 적색
실시예 50 화합물1-10 화합물2-18 3.62 21.39 190 적색
실시예 51 화합물1-11 화합물2-2 3.77 20.01 188 적색
실시예 52 화합물1-11 화합물2-7 3.55 21.75 172 적색
실시예 53 화합물1-11 화합물2-10 3.64 19.53 189 적색
실시예 54 화합물1-11 화합물2-12 3.64 20.73 176 적색
실시예 55 화합물1-11 화합물2-17 3.57 19.78 178 적색
실시예 56 화합물1-12 화합물2-4 3.57 21.97 179 적색
실시예 57 화합물1-12 화합물2-8 3.64 21.59 189 적색
실시예 58 화합물1-12 화합물2-9 3.59 21.52 190 적색
실시예 59 화합물1-12 화합물2-16 3.64 20.66 185 적색
실시예 60 화합물1-12 화합물2-18 3.55 21.13 188 적색
실시예 61 화합물1-13 화합물2-1 3.87 19.53 219 적색
실시예 62 화합물1-13 화합물2-5 3.87 20.44 216 적색
실시예 63 화합물1-13 화합물2-11 3.80 19.92 218 적색
실시예 64 화합물1-13 화합물2-15 3.87 19.18 230 적색
실시예 65 화합물1-13 화합물2-17 3.81 20.04 214 적색
실시예 66 화합물1-14 화합물2-3 3.87 20.28 216 적색
실시예 67 화합물1-14 화합물2-6 3.89 19.55 230 적색
실시예 68 화합물1-14 화합물2-13 3.89 19.30 208 적색
실시예 69 화합물1-14 화합물2-14 3.80 19.99 230 적색
실시예 70 화합물1-14 화합물2-18 3.88 20.48 224 적색
실시예 71 화합물1-15 화합물2-2 3.59 22.26 173 적색
실시예 72 화합물1-15 화합물2-7 3.57 20.99 179 적색
실시예 73 화합물1-15 화합물2-10 3.61 21.28 180 적색
실시예 74 화합물1-15 화합물2-12 3.58 22.58 189 적색
실시예 75 화합물1-15 화합물2-17 3.60 22.94 177 적색
실시예 76 화합물1-16 화합물2-4 3.61 19.91 185 적색
실시예 77 화합물1-16 화합물2-8 3.63 20.71 180 적색
실시예 78 화합물1-16 화합물2-9 3.58 20.33 180 적색
실시예 79 화합물1-16 화합물2-16 3.56 22.79 175 적색
실시예 80 화합물1-16 화합물2-18 3.55 21.69 183 적색
실시예 81 화합물1-17 화합물2-1 3.52 20.66 175 적색
실시예 82 화합물1-17 화합물2-5 3.64 21.76 174 적색
실시예 83 화합물1-17 화합물2-11 3.59 22.69 171 적색
실시예 84 화합물1-17 화합물2-15 3.64 20.80 184 적색
실시예 85 화합물1-17 화합물2-17 3.65 21.59 188 적색
실시예 86 화합물1-18 화합물2-3 3.59 21.67 171 적색
실시예 87 화합물1-18 화합물2-6 3.58 21.88 175 적색
실시예 88 화합물1-18 화합물2-13 3.65 21.45 188 적색
실시예 89 화합물1-18 화합물2-14 3.63 22.66 189 적색
실시예 90 화합물1-18 화합물2-18 3.56 21.77 178 적색
실시예 91 화합물1-19 화합물2-2 3.52 22.83 178 적색
실시예 92 화합물1-19 화합물2-7 3.62 19.78 186 적색
실시예 93 화합물1-19 화합물2-10 3.57 21.17 174 적색
실시예 94 화합물1-19 화합물2-12 3.61 22.73 189 적색
실시예 95 화합물1-19 화합물2-17 3.57 22.23 189 적색
실시예 96 화합물1-20 화합물2-4 3.58 20.19 178 적색
실시예 97 화합물1-20 화합물2-8 3.60 22.27 184 적색
실시예 98 화합물1-20 화합물2-9 3.65 21.55 177 적색
실시예 99 화합물1-20 화합물2-16 3.63 19.81 185 적색
실시예 100 화합물1-20 화합물2-18 3.60 19.88 190 적색
실시예 101 화합물1-21 화합물2-1 3.89 20.13 206 적색
실시예 102 화합물1-21 화합물2-5 3.84 19.69 219 적색
실시예 103 화합물1-21 화합물2-11 3.83 20.16 213 적색
실시예 104 화합물1-21 화합물2-15 3.86 20.19 226 적색
실시예 105 화합물1-21 화합물2-17 3.81 19.02 214 적색
실시예 106 화합물1-23 화합물2-3 3.89 19.12 218 적색
실시예 107 화합물1-23 화합물2-6 3.84 19.84 216 적색
실시예 108 화합물1-23 화합물2-13 3.88 19.73 210 적색
실시예 109 화합물1-23 화합물2-14 3.89 19.99 216 적색
실시예 110 화합물1-23 화합물2-18 3.88 20.21 228 적색
실시예 111 화합물1-25 화합물2-2 3.87 19.93 207 적색
실시예 112 화합물1-25 화합물2-7 3.80 19.39 214 적색
실시예 113 화합물1-25 화합물2-10 3.81 19.35 223 적색
실시예 114 화합물1-25 화합물2-12 3.83 20.32 216 적색
실시예 115 화합물1-25 화합물2-17 3.88 19.01 226 적색
실시예 116 화합물1-26 화합물2-4 3.83 19.97 210 적색
실시예 117 화합물1-26 화합물2-8 3.84 20.04 207 적색
실시예 118 화합물1-26 화합물2-9 3.82 19.64 223 적색
실시예 119 화합물1-26 화합물2-16 3.84 19.86 222 적색
실시예 120 화합물1-26 화합물2-18 3.84 20.18 224 적색
실시예 121 화합물1-27 화합물2-1 3.67 17.07 304 적색
실시예 122 화합물1-27 화합물2-5 3.61 17.62 291 적색
실시예 123 화합물1-27 화합물2-11 3.60 17.43 310 적색
실시예 124 화합물1-27 화합물2-15 3.60 17.49 291 적색
실시예 125 화합물1-27 화합물2-17 3.64 18.25 282 적색
실시예 126 화합물1-28 화합물2-3 3.65 17.96 288 적색
실시예 127 화합물1-28 화합물2-6 3.69 17.84 305 적색
실시예 128 화합물1-28 화합물2-13 3.60 17.48 289 적색
실시예 129 화합물1-28 화합물2-14 3.66 18.20 281 적색
실시예 130 화합물1-28 화합물2-18 3.69 17.82 292 적색
실시예 131 화합물1-32 화합물2-2 3.62 17.59 283 적색
실시예 132 화합물1-32 화합물2-7 3.63 17.21 282 적색
실시예 133 화합물1-32 화합물2-10 3.68 18.41 303 적색
실시예 134 화합물1-32 화합물2-12 3.61 17.46 304 적색
실시예 135 화합물1-32 화합물2-17 3.66 18.33 287 적색
실시예 136 화합물1-33 화합물2-4 3.62 17.20 299 적색
실시예 137 화합물1-33 화합물2-8 3.63 18.44 291 적색
실시예 138 화합물1-33 화합물2-9 3.60 17.71 287 적색
실시예 139 화합물1-33 화합물2-16 3.63 18.09 296 적색
실시예 140 화합물1-33 화합물2-18 3.65 17.56 303 적색
실시예 141 화합물1-34 화합물2-1 3.58 20.87 186 적색
실시예 142 화합물1-34 화합물2-5 3.63 22.98 189 적색
실시예 143 화합물1-34 화합물2-11 3.64 20.39 176 적색
실시예 144 화합물1-34 화합물2-15 3.63 21.82 175 적색
실시예 145 화합물1-34 화합물2-17 3.56 22.36 170 적색
실시예 146 화합물1-35 화합물2-3 3.57 21.51 172 적색
실시예 147 화합물1-35 화합물2-6 3.62 21.51 175 적색
실시예 148 화합물1-35 화합물2-13 3.56 20.41 182 적색
실시예 149 화합물1-35 화합물2-14 3.62 21.26 170 적색
실시예 150 화합물1-35 화합물2-18 3.59 19.89 190 적색
실시예 151 화합물1-36 화합물2-2 3.98 17.87 166 적색
실시예 152 화합물1-36 화합물2-7 3.91 17.07 180 적색
실시예 153 화합물1-36 화합물2-10 3.95 18.47 170 적색
실시예 154 화합물1-36 화합물2-12 3.99 18.03 172 적색
실시예 155 화합물1-36 화합물2-17 3.99 17.43 165 적색
실시예 156 화합물1-37 화합물2-4 3.94 17.05 176 적색
실시예 157 화합물1-37 화합물2-8 3.94 18.25 176 적색
실시예 158 화합물1-37 화합물2-9 3.93 17.73 170 적색
실시예 159 화합물1-37 화합물2-16 3.98 17.24 169 적색
실시예 160 화합물1-37 화합물2-18 3.96 17.44 172 적색
실시예 161 화합물1-38 화합물2-1 3.98 17.97 175 적색
실시예 162 화합물1-38 화합물2-5 3.96 17.64 174 적색
실시예 163 화합물1-38 화합물2-11 3.94 17.54 170 적색
실시예 164 화합물1-38 화합물2-15 3.96 17.26 171 적색
실시예 165 화합물1-38 화합물2-17 3.98 17.77 170 적색
실시예 166 화합물1-39 화합물2-3 3.93 17.51 172 적색
실시예 167 화합물1-39 화합물2-6 3.95 17.88 171 적색
실시예 168 화합물1-39 화합물2-13 3.92 17.24 170 적색
실시예 169 화합물1-39 화합물2-14 3.91 17.44 174 적색
실시예 170 화합물1-39 화합물2-18 3.95 18.13 177 적색
실시예 171 화합물1-41 화합물2-2 3.57 17.97 174 적색
실시예 172 화합물1-41 화합물2-7 3.58 17.64 172 적색
실시예 173 화합물1-41 화합물2-10 3.64 17.54 179 적색
실시예 174 화합물1-41 화합물2-12 3.58 17.26 178 적색
실시예 175 화합물1-41 화합물2-17 3.65 17.77 185 적색
실시예 176 화합물1-42 화합물2-4 3.65 17.51 176 적색
실시예 177 화합물1-42 화합물2-8 3.55 17.88 187 적색
실시예 178 화합물1-42 화합물2-9 3.64 17.24 176 적색
실시예 179 화합물1-42 화합물2-16 3.64 17.44 177 적색
실시예 180 화합물1-42 화합물2-18 3.60 18.13 173 적색
실시예 181 화합물1-43 화합물2-1 3.75 19.37 236 적색
실시예 182 화합물1-43 화합물2-5 3.76 18.70 221 적색
실시예 183 화합물1-43 화합물2-11 3.81 18.16 232 적색
실시예 184 화합물1-43 화합물2-15 3.84 18.53 229 적색
실시예 185 화합물1-43 화합물2-17 3.86 19.40 216 적색
실시예 186 화합물1-44 화합물2-3 3.55 21.64 175 적색
실시예 187 화합물1-44 화합물2-6 3.65 21.33 183 적색
실시예 188 화합물1-44 화합물2-13 3.61 19.63 175 적색
실시예 189 화합물1-44 화합물2-14 3.56 20.85 185 적색
실시예 190 화합물1-44 화합물2-18 3.58 20.07 188 적색
실시예 191 화합물1-45 화합물2-2 3.55 21.45 173 적색
실시예 192 화합물1-45 화합물2-7 3.63 22.21 180 적색
실시예 193 화합물1-45 화합물2-10 3.60 21.45 187 적색
실시예 194 화합물1-45 화합물2-12 3.59 22.29 173 적색
실시예 195 화합물1-45 화합물2-17 3.56 20.66 171 적색
실시예 196 화합물1-46 화합물2-4 3.58 22.51 177 적색
실시예 197 화합물1-46 화합물2-8 3.64 21.86 187 적색
실시예 198 화합물1-46 화합물2-9 3.59 21.48 172 적색
실시예 199 화합물1-46 화합물2-16 3.63 20.57 182 적색
실시예 200 화합물1-46 화합물2-18 3.59 20.69 179 적색
실시예 201 화합물1-47 화합물2-1 3.62 21.73 175 적색
실시예 202 화합물1-47 화합물2-5 3.62 20.79 170 적색
실시예 203 화합물1-47 화합물2-11 3.58 22.45 184 적색
실시예 204 화합물1-47 화합물2-15 3.58 21.61 173 적색
실시예 205 화합물1-47 화합물2-17 3.61 22.53 183 적색
구분 제1호스트 제2호스트 구동전압
(V)
효율
(cd/A)
수명 T95
(hr)
발광색
비교예 1 화합물B-1 화합물2-1 4.29 16.01 109 적색
비교예 2 화합물B-1 화합물2-5 4.32 16.47 109 적색
비교예 3 화합물B-1 화합물2-11 4.26 15.75 111 적색
비교예 4 화합물B-1 화합물2-15 4.25 15.86 113 적색
비교예 5 화합물B-1 화합물2-17 4.35 16.34 117 적색
비교예 6 화합물B-1 화합물2-3 4.35 15.68 135 적색
비교예 7 화합물B-1 화합물2-6 4.22 16.38 116 적색
비교예 8 화합물B-1 화합물2-13 4.30 15.93 129 적색
비교예 9 화합물B-1 화합물2-14 4.23 16.09 124 적색
비교예 10 화합물B-1 화합물2-18 4.27 16.80 113 적색
비교예 11 화합물B-2 화합물2-2 4.30 14.93 92 적색
비교예 12 화합물B-2 화합물2-7 4.44 14.66 95 적색
비교예 13 화합물B-2 화합물2-10 4.38 15.35 108 적색
비교예 14 화합물B-2 화합물2-12 4.35 15.41 99 적색
비교예 15 화합물B-2 화합물2-17 4.48 14.95 97 적색
비교예 16 화합물B-2 화합물2-4 4.37 14.71 95 적색
비교예 17 화합물B-2 화합물2-8 4.47 15.07 103 적색
비교예 18 화합물B-2 화합물2-9 4.36 15.28 91 적색
비교예 19 화합물B-2 화합물2-16 4.39 14.95 88 적색
비교예 20 화합물B-2 화합물2-18 4.47 14.71 99 적색
비교예 21 화합물B-3 화합물2-1 4.28 16.50 109 적색
비교예 22 화합물B-3 화합물2-5 4.25 16.32 112 적색
비교예 23 화합물B-3 화합물2-11 4.29 16.26 119 적색
비교예 24 화합물B-3 화합물2-15 4.29 16.86 121 적색
비교예 25 화합물B-3 화합물2-17 4.24 16.36 121 적색
비교예 26 화합물B-3 화합물2-3 4.33 15.74 125 적색
비교예 27 화합물B-3 화합물2-6 4.23 16.50 118 적색
비교예 28 화합물B-3 화합물2-13 4.21 15.96 130 적색
비교예 29 화합물B-3 화합물2-14 4.21 15.77 126 적색
비교예 30 화합물B-3 화합물2-18 4.30 16.65 108 적색
구분 제1호스트 제2호스트 구동전압
(V)
효율
(cd/A)
수명 T95
(hr)
발광색
비교예 31 화합물1-1 화합물C-1 4.39 15.04 107 적색
비교예 32 화합물1-4 화합물C-1 4.37 15.34 98 적색
비교예 33 화합물1-7 화합물C-1 4.39 14.62 101 적색
비교예 34 화합물1-13 화합물C-1 4.31 15.08 96 적색
비교예 35 화합물1-19 화합물C-1 4.30 15.44 109 적색
비교예 36 화합물1-23 화합물C-1 4.35 14.90 93 적색
비교예 37 화합물1-28 화합물C-1 4.41 14.65 91 적색
비교예 38 화합물1-32 화합물C-1 4.49 15.50 100 적색
비교예 39 화합물1-38 화합물C-1 4.48 14.73 106 적색
비교예 40 화합물1-41 화합물C-1 4.40 14.93 113 적색
비교예 41 화합물1-44 화합물C-1 4.30 15.16 91 적색
비교예 42 화합물1-2 화합물C-2 4.27 15.88 116 적색
비교예 43 화합물1-5 화합물C-2 4.33 15.89 127 적색
비교예 44 화합물1-8 화합물C-2 4.26 16.70 122 적색
비교예 45 화합물1-15 화합물C-2 4.27 16.56 125 적색
비교예 46 화합물1-20 화합물C-2 4.35 16.66 111 적색
비교예 47 화합물1-25 화합물C-2 4.30 15.77 117 적색
비교예 48 화합물1-30 화합물C-2 4.32 16.34 130 적색
비교예 49 화합물1-35 화합물C-2 4.32 16.21 115 적색
비교예 50 화합물1-39 화합물C-2 4.23 15.64 117 적색
비교예 51 화합물1-42 화합물C-2 4.26 16.44 128 적색
비교예 52 화합물1-45 화합물C-2 4.26 15.81 114 적색
비교예 53 화합물1-3 화합물C-3 4.24 15.74 119 적색
비교예 54 화합물1-6 화합물C-3 4.35 16.75 112 적색
비교예 55 화합물1-9 화합물C-3 4.30 17.00 110 적색
비교예 56 화합물1-17 화합물C-3 4.21 15.76 108 적색
비교예 57 화합물1-22 화합물C-3 4.25 16.06 124 적색
비교예 58 화합물1-26 화합물C-3 4.33 16.75 125 적색
비교예 59 화합물1-31 화합물C-3 4.31 16.95 129 적색
비교예 60 화합물1-36 화합물C-3 4.29 15.59 119 적색
비교예 61 화합물1-40 화합물C-3 4.25 15.73 109 적색
비교예 62 화합물1-43 화합물C-3 4.27 16.87 110 적색
비교예 63 화합물1-47 화합물C-3 4.26 15.80 122 적색
실시예 1 내지 205 및 비교예 1 내지 63에 의해 제작된 유기 발광 소자에 전류를 인가하였을 때, 상기 표 1 내지 표 3의 결과를 얻었다. 상기 실시예의 적색 유기 발광 소자에는 종래 널리 사용되고 있는 물질인 화합물 EB-1을 전자차단층 물질로, 화합물 Dp-7을 적색 도판트 물질로 사용하는 구조이다. 본 발명인 화학식 1로 표시되는 화합물과 화학식 2로 표시되는 화합물을 공증착하여 적색 발광층으로 사용했을 때 표 1과 같이 비교예 대비 구동 전압이 감소하고 효율 및 수명이 증가하는 것을 볼 수 있다. 또한 표 2에서와 같이 비교예 화합물 B-1 내지 B-3과 본 발명의 화학식 2의 화합물을 공증착하여 적색 발광층으로 사용했을 때 본 발명의 조합보다 대체적으로 구동전압은 상승하고 효율과 수명이 떨어 지는 결과를 보였고 표 3에서와 같이 비교예 화합물 C-1 내지 C-3과 본 발명의 화학식 1의 화합물을 공증착하여 적색 발광층으로 사용했을 때도 구동전압은 상승하고 효율과 수명이 떨어 지는 결과를 나타냈다.
이러한 결과들로부터 본 발명의 제1 호스트인 화학식 1의 화합물과 제2 호스트인 화학식 2의 화합물의 조합 시 적색 발광층 내의 적색 도판트로의 에너지 전달이 잘 이루어져, 구동 전압이 개선되고 효율 및 수명이 상승하는 것을 유추해볼 수 있다. 즉, 비교예 화합물과의 조합 보다 본 발명의 화학식 1로 표시되는 화합물과 화학식 2로 표시되는 화합물의 조합이 발광층 내로 더 안정적인 균형을 통해 전자와 정공이 결합하여 엑시톤을 형성하여 효율과 수명이 많이 상승하는 것을 확인 할 수 있었다. 결론적으로 본 발명의 화학식 1의 화합물과 화학식 2의 화합물을 조합하고 공증착하여 적색 발광층의 호스트로 사용하였을 때 유기 발광 소자의 구동전압, 발광 효율 및 수명 특성을 개선할 수 있다는 것을 확인하였다.
[부호의 설명]
1: 기판 2: 양극
3: 발광층 4: 음극
5: 정공주입층 6: 정공수송층
7: 전자수송층 8: 전자주입층
9: 전자차단층 10: 정공저지층

Claims (9)

  1. 양극; 음극; 및 상기 양극과 음극 사이의 발광층을 포함하고,
    상기 발광층은 하기 화학식 1로 표시되는 화합물 및 하기 화학식 2로 표시되는 화합물을 포함하는,
    유기 발광 소자:
    [화학식 1]
    Figure PCTKR2021007878-appb-img-000186
    상기 화학식 1에서,
    Ar1 및 Ar2는 각각 독립적으로 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 N, O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴이고,
    L1 및 L2는 각각 독립적으로 단일 결합; 또는 치환 또는 비치환된 C6-60 아릴렌이고,
    L3는 단일 결합; 또는 치환 또는 비치환된 C6-60 아릴렌이고,
    R1은 각각 독립적으로 수소, 또는 중수소이거나; 또는 인접한 두 개가 결합하여 벤젠 고리를 형성하고, 나머지는 수소, 또는 중수소이고,
    R2는 각각 독립적으로 수소, 또는 중수소이거나; 또는 인접한 두 개가 결합하여 벤젠 고리를 형성하고, 나머지는 수소, 또는 중수소이고,
    [화학식 2]
    Figure PCTKR2021007878-appb-img-000187
    상기 화학식 2에서,
    Ar3 및 Ar4는 각각 독립적으로 치환 또는 비치환된 C6-60 아릴; 또는 치환 또는 비치환된 O 및 S로 구성되는 군으로부터 선택되는 어느 하나 이상을 포함하는 C2-60 헤테로아릴이고,
    L4 내지 L6는 각각 독립적으로 단일 결합; 또는 치환 또는 비치환된 C6-60 아릴렌이다.
  2. 제1항에 있어서,
    상기 화학식 1은 하기 화학식 1-1 내지 1-9로 구성되는 군으로부터 선택되는 어느 하나로 표시되는,
    유기 발광 소자:
    Figure PCTKR2021007878-appb-img-000188
    상기 화학식 1-1 내지 1-9에서,
    Ar1, Ar2, L1, L2 및 L3는 제1항에서 정의한 바와 같다.
  3. 제1항에 있어서,
    Ar1 및 Ar2는 각각 독립적으로 페닐, 비페닐릴, 나프틸, 페난트레닐, 페닐 카바졸릴, 디벤조퓨라닐, 디벤조티오페닐, 또는 벤조나프토퓨라닐인,
    유기 발광 소자.
  4. 제1항에 있어서,
    L1 및 L2는 각각 독립적으로 단일 결합, 페닐렌, 또는 나프틸렌인,
    유기 발광 소자.
  5. 제1항에 있어서,
    L3는 단일 결합, 페닐렌, 비페닐릴렌, 또는 나프틸렌인,
    유기 발광 소자.
  6. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 하기로 구성되는 군으로부터 선택되는 어느 하나인,
    유기 발광 소자:
    Figure PCTKR2021007878-appb-img-000189
    Figure PCTKR2021007878-appb-img-000190
    Figure PCTKR2021007878-appb-img-000191
    Figure PCTKR2021007878-appb-img-000192
    Figure PCTKR2021007878-appb-img-000193
    Figure PCTKR2021007878-appb-img-000194
    Figure PCTKR2021007878-appb-img-000195
    Figure PCTKR2021007878-appb-img-000196
    Figure PCTKR2021007878-appb-img-000197
    Figure PCTKR2021007878-appb-img-000198
    Figure PCTKR2021007878-appb-img-000199
    Figure PCTKR2021007878-appb-img-000200
    Figure PCTKR2021007878-appb-img-000201
    Figure PCTKR2021007878-appb-img-000202
    Figure PCTKR2021007878-appb-img-000203
    Figure PCTKR2021007878-appb-img-000204
    Figure PCTKR2021007878-appb-img-000205
    Figure PCTKR2021007878-appb-img-000206
    Figure PCTKR2021007878-appb-img-000207
    Figure PCTKR2021007878-appb-img-000208
    Figure PCTKR2021007878-appb-img-000209
    Figure PCTKR2021007878-appb-img-000210
    Figure PCTKR2021007878-appb-img-000211
    Figure PCTKR2021007878-appb-img-000212
    Figure PCTKR2021007878-appb-img-000213
    Figure PCTKR2021007878-appb-img-000214
    Figure PCTKR2021007878-appb-img-000215
    Figure PCTKR2021007878-appb-img-000216
    Figure PCTKR2021007878-appb-img-000217
    Figure PCTKR2021007878-appb-img-000218
    Figure PCTKR2021007878-appb-img-000219
    Figure PCTKR2021007878-appb-img-000220
    Figure PCTKR2021007878-appb-img-000221
    Figure PCTKR2021007878-appb-img-000222
    Figure PCTKR2021007878-appb-img-000223
    Figure PCTKR2021007878-appb-img-000224
    Figure PCTKR2021007878-appb-img-000225
    Figure PCTKR2021007878-appb-img-000226
    Figure PCTKR2021007878-appb-img-000227
    Figure PCTKR2021007878-appb-img-000228
    Figure PCTKR2021007878-appb-img-000229
    Figure PCTKR2021007878-appb-img-000230
    Figure PCTKR2021007878-appb-img-000231
    Figure PCTKR2021007878-appb-img-000232
    Figure PCTKR2021007878-appb-img-000233
    Figure PCTKR2021007878-appb-img-000234
    Figure PCTKR2021007878-appb-img-000235
    Figure PCTKR2021007878-appb-img-000236
    Figure PCTKR2021007878-appb-img-000237
    Figure PCTKR2021007878-appb-img-000238
    Figure PCTKR2021007878-appb-img-000239
    Figure PCTKR2021007878-appb-img-000240
    Figure PCTKR2021007878-appb-img-000241
    Figure PCTKR2021007878-appb-img-000242
    Figure PCTKR2021007878-appb-img-000243
    Figure PCTKR2021007878-appb-img-000244
    Figure PCTKR2021007878-appb-img-000245
    Figure PCTKR2021007878-appb-img-000246
    Figure PCTKR2021007878-appb-img-000247
    Figure PCTKR2021007878-appb-img-000248
    Figure PCTKR2021007878-appb-img-000249
    Figure PCTKR2021007878-appb-img-000250
    Figure PCTKR2021007878-appb-img-000251
    Figure PCTKR2021007878-appb-img-000252
    Figure PCTKR2021007878-appb-img-000253
    Figure PCTKR2021007878-appb-img-000254
    Figure PCTKR2021007878-appb-img-000255
    Figure PCTKR2021007878-appb-img-000256
    Figure PCTKR2021007878-appb-img-000257
    Figure PCTKR2021007878-appb-img-000258
    Figure PCTKR2021007878-appb-img-000259
    Figure PCTKR2021007878-appb-img-000260
    Figure PCTKR2021007878-appb-img-000261
    Figure PCTKR2021007878-appb-img-000262
    Figure PCTKR2021007878-appb-img-000263
    Figure PCTKR2021007878-appb-img-000264
    Figure PCTKR2021007878-appb-img-000265
    Figure PCTKR2021007878-appb-img-000266
    Figure PCTKR2021007878-appb-img-000267
    Figure PCTKR2021007878-appb-img-000268
    Figure PCTKR2021007878-appb-img-000269
    Figure PCTKR2021007878-appb-img-000270
    Figure PCTKR2021007878-appb-img-000271
    .
  7. 제1항에 있어서,
    Ar3 및 Ar4는 각각 독립적으로, 페닐, 비페닐릴, 터페닐릴, 나프틸, 페난트레닐, 디메틸플루오레닐, 디페닐플루오레닐, 디벤조퓨라닐, 디벤조티오페닐, 또는 벤조나프토퓨라닐인,
    유기 발광 소자.
  8. 제1항에 있어서,
    L4 내지 L6는 각각 독립적으로 단일 결합, 페닐렌, 또는 디메틸플루오레닐렌인,
    유기 발광 소자.
  9. 제1항에 있어서,
    상기 화학식 2로 표시되는 화합물은 하기로 구성되는 군으로부터 선택되는 어느 하나인,
    유기 발광 소자:
    Figure PCTKR2021007878-appb-img-000272
    Figure PCTKR2021007878-appb-img-000273
    Figure PCTKR2021007878-appb-img-000274
    Figure PCTKR2021007878-appb-img-000275
    Figure PCTKR2021007878-appb-img-000276
    Figure PCTKR2021007878-appb-img-000277
    Figure PCTKR2021007878-appb-img-000278
    Figure PCTKR2021007878-appb-img-000279
    Figure PCTKR2021007878-appb-img-000280
    Figure PCTKR2021007878-appb-img-000281
    Figure PCTKR2021007878-appb-img-000282
    Figure PCTKR2021007878-appb-img-000283
    Figure PCTKR2021007878-appb-img-000284
    Figure PCTKR2021007878-appb-img-000285
    Figure PCTKR2021007878-appb-img-000286
    Figure PCTKR2021007878-appb-img-000287
    .
PCT/KR2021/007878 2020-06-23 2021-06-23 유기 발광 소자 WO2021261907A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202180003843.5A CN114097103A (zh) 2020-06-23 2021-06-23 有机发光器件

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2020-0076673 2020-06-23
KR20200076673 2020-06-23
KR10-2021-0081273 2021-06-23
KR1020210081273A KR102648796B1 (ko) 2020-06-23 2021-06-23 유기 발광 소자

Publications (1)

Publication Number Publication Date
WO2021261907A1 true WO2021261907A1 (ko) 2021-12-30

Family

ID=79178843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/007878 WO2021261907A1 (ko) 2020-06-23 2021-06-23 유기 발광 소자

Country Status (3)

Country Link
KR (1) KR102648796B1 (ko)
CN (1) CN114097103A (ko)
WO (1) WO2021261907A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009021336A (ja) * 2007-07-11 2009-01-29 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置
US20160013427A1 (en) * 2014-07-10 2016-01-14 Samsung Display Co., Ltd. Organic light-emitting device
KR20160031370A (ko) * 2014-09-12 2016-03-22 주식회사 엘지화학 유기 발광 소자
KR20180012199A (ko) * 2016-07-26 2018-02-05 주식회사 엘지화학 유기 발광 소자
KR20190047631A (ko) * 2017-10-27 2019-05-08 주식회사 엘지화학 헤테로고리 화합물을 이용한 유기 발광 소자

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100430549B1 (ko) 1999-01-27 2004-05-10 주식회사 엘지화학 신규한 착물 및 그의 제조 방법과 이를 이용한 유기 발광 소자 및 그의 제조 방법
KR102078365B1 (ko) * 2013-07-01 2020-04-03 삼성디스플레이 주식회사 유기 발광 장치
KR102227046B1 (ko) * 2018-06-14 2021-03-12 주식회사 엘지화학 화합물 및 이를 포함하는 유기 발광 소자

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009021336A (ja) * 2007-07-11 2009-01-29 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、表示装置及び照明装置
US20160013427A1 (en) * 2014-07-10 2016-01-14 Samsung Display Co., Ltd. Organic light-emitting device
KR20160031370A (ko) * 2014-09-12 2016-03-22 주식회사 엘지화학 유기 발광 소자
KR20180012199A (ko) * 2016-07-26 2018-02-05 주식회사 엘지화학 유기 발광 소자
KR20190047631A (ko) * 2017-10-27 2019-05-08 주식회사 엘지화학 헤테로고리 화합물을 이용한 유기 발광 소자

Also Published As

Publication number Publication date
KR20210158347A (ko) 2021-12-30
KR102648796B1 (ko) 2024-03-18
CN114097103A (zh) 2022-02-25

Similar Documents

Publication Publication Date Title
WO2021096228A1 (ko) 유기 발광 소자
WO2021210911A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2021221475A1 (ko) 유기 발광 소자
WO2022039520A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2022086168A1 (ko) 유기 발광 소자
WO2020159333A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2020159334A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2021261977A1 (ko) 유기 발광 소자
WO2021230714A1 (ko) 유기 발광 소자
WO2020222569A1 (ko) 유기 발광 소자
WO2022231389A1 (ko) 유기 발광 소자
WO2022086171A1 (ko) 유기 발광 소자
WO2021261962A1 (ko) 유기 발광 소자
WO2022086296A1 (ko) 유기 발광 소자
WO2021230715A1 (ko) 유기 발광 소자
WO2021210910A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2022045743A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2020263000A1 (ko) 신규한 화합물 및 이를 이용한 유기 발광 소자
WO2020189984A1 (ko) 유기 발광 소자
WO2020159335A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2020159332A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2021261907A1 (ko) 유기 발광 소자
WO2022177287A1 (ko) 신규한 화합물 및 이를 포함하는 유기발광 소자
WO2022177288A1 (ko) 신규한 화합물 및 이를 포함하는 유기발광 소자
WO2022231319A1 (ko) 유기 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21828365

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21828365

Country of ref document: EP

Kind code of ref document: A1