WO2023093000A1 - 一种加氢催化剂及其制备方法和应用 - Google Patents

一种加氢催化剂及其制备方法和应用 Download PDF

Info

Publication number
WO2023093000A1
WO2023093000A1 PCT/CN2022/098593 CN2022098593W WO2023093000A1 WO 2023093000 A1 WO2023093000 A1 WO 2023093000A1 CN 2022098593 W CN2022098593 W CN 2022098593W WO 2023093000 A1 WO2023093000 A1 WO 2023093000A1
Authority
WO
WIPO (PCT)
Prior art keywords
carrier
hydrogenation catalyst
active component
auxiliary agent
honeycomb
Prior art date
Application number
PCT/CN2022/098593
Other languages
English (en)
French (fr)
Inventor
吴桐
王琪
李旭
刘练波
郜时旺
何忠
程阿超
Original Assignee
中国华能集团清洁能源技术研究院有限公司
华能国际电力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团清洁能源技术研究院有限公司, 华能国际电力股份有限公司 filed Critical 中国华能集团清洁能源技术研究院有限公司
Publication of WO2023093000A1 publication Critical patent/WO2023093000A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/56Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/60Platinum group metals with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/63Platinum group metals with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/12Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon dioxide with hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/153Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
    • C07C29/154Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing copper, silver, gold, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/153Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used
    • C07C29/156Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals or compounds thereof
    • C07C29/157Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the catalyst used containing iron group metals, platinum group metals or compounds thereof containing platinum group metals or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/02Monohydroxylic acyclic alcohols
    • C07C31/04Methanol
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C9/00Aliphatic saturated hydrocarbons
    • C07C9/02Aliphatic saturated hydrocarbons with one to four carbon atoms
    • C07C9/04Methane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the application belongs to the technical field of preparing hydrogenation catalysts, and in particular relates to a hydrogenation catalyst and its preparation method and application.
  • CO 2 emissions caused by human activities such as fossil fuel combustion, industry, and life are increasing year by year, and the global environmental changes caused by it have become a major concern of governments.
  • CO 2 can be converted into energy or chemical products with economic value. Therefore, it is of great strategic significance to realize the resource utilization of CO 2 in terms of solving energy problems and alleviating the greenhouse effect.
  • Methanol is not only an excellent fuel, but also a very important basic chemical raw material, which can be converted into a series of high value-added chemical products such as olefins and aromatics, and its demand is increasing worldwide. Therefore, the catalytic hydrogenation of CO2 to methanol using hydrogen generated from renewable energy has received extensive attention, and the development of catalysts is the key to the realization of CO2 hydrogenation to methanol.
  • the catalyst required in CO 2 catalytic hydrogenation to methanol technology requires a certain shape and a suitable particle size, and in order to ensure that the catalyst has a high structural stability in the reactor, the catalyst carrier must have a certain mechanical strength.
  • Granulation is usually used to meet the stringent requirements of catalytic reaction process and mechanical strength on the catalyst.
  • the granulated catalyst has structural defects such as reduced specific surface area and irregular pores, which will lead to problems such as reduced number of exposed catalytic active sites and sintering of active components at high temperature during the catalytic process, thus affecting catalytic activity. selectivity and stability.
  • the purpose of the present application is to overcome the defects of limited methanol selectivity and carbon dioxide conversion rate in the carbon dioxide hydrogenation methanol catalyst in the prior art, and to provide a catalyst with a honeycomb support structure and a preparation method thereof.
  • a hydrogenation catalyst optionally, the hydrogenation catalyst includes a carrier, an active component and an auxiliary agent;
  • the carrier has an oriented honeycomb structure, the pore diameter of the honeycomb is 5-20 ⁇ m, and the active component and the auxiliary agent are loaded on the outer surface of the carrier and the inner wall of the honeycomb hole, and a catalytic layer is formed on the outer surface of the carrier and the inner wall of the honeycomb hole, and the thickness of the catalytic layer is 30-100 nm.
  • the active component is selected from one or more of copper, palladium, platinum, and the auxiliary agent is selected from one or more of zinc oxide, titanium oxide, manganese oxide and gadolinium oxide, and the carrier One or more selected from zirconium oxide, aluminum oxide, cerium oxide, and titanium oxide.
  • the content of active components in terms of metal elements is 5-30 wt%
  • the content of additives in terms of metal elements is 1-15 wt%
  • the rest is carrier.
  • the present application also provides the preparation method of described hydrogenation catalyst, optionally, comprises the following steps:
  • the vacuum condition described in step 4) is treated at 8-12 Pa, and the treatment time is 5-15 min.
  • the freezing temperature in step 2) is -70 to -170°C
  • the freezing time is 60 to 300 minutes
  • the drying is vacuum drying
  • the drying temperature is 5 to 15°C
  • the drying time is 12 to 24 hours .
  • the carrier material in step 1) is selected from one or more of zirconia, aluminum oxide, cerium oxide, and titanium oxide;
  • the solvent is ethanol, the ultrasonic power is 80-120W, and the ultrasonic time is 10-30min;
  • the milling temperature is room temperature, and the milling time is 1 to 2 hours;
  • the binder is a magnesium aluminum silicate binder
  • the carrier raw material accounts for 5-60 wt% of the solvent mass
  • the binder accounts for 2 to 8 vol% of the volume of the solvent
  • the calcination temperature in step 3) is 1000-1700°C, and the calcination time is 1-5h;
  • the drying temperature in step 4) is 20-100°C, and the drying time is 2-12h; the calcination temperature is 200-1200°C, and the calcination time is 2-5h.
  • step 4 the way of adding the impregnated liquid of the precursor of the active component and the auxiliary agent to the surface of the catalyst support can be done dropwise, and can be carried out in multiple drops until the active component and the auxiliary agent reach the predetermined Just enough load.
  • the amount of the impregnating liquid for each precursor may be 0.1-5 wt% of the mass of the catalyst carrier.
  • the preparation method of the precursor immersion solution of the active component and auxiliary agent described in step 4) includes the following steps: mixing the active component metal salt, the auxiliary metal salt and water to prepare a precursor solution, and then A dispersant is added to the precursor solution and stirred to obtain a precursor impregnation solution of the active component and the auxiliary agent.
  • the active component metal salt is selected from one or more of copper nitrate, palladium nitrate, platinum nitrate; the auxiliary metal salt is selected from zinc nitrate, titanium nitrate, manganese nitrate, gadolinium One or more; the molar ratio of the active component metal salt and the auxiliary metal salt is (2-5): (1-2); the dispersant is urea, and the added amount of the dispersant accounts for 1-10 wt% of the mass of the precursor solution; the concentration of the active component metal salt in the precursor solution is 0.1-2 mol/L.
  • the present application also provides the application of the above-mentioned hydrogenation catalyst or the hydrogenation catalyst prepared by the above-mentioned preparation method in the synthesis of methanol from carbon dioxide hydrogenation.
  • the catalyst Before the hydrogenation reaction of carbon dioxide, the catalyst is first reduced, and the mixed gas of hydrogen and nitrogen with a volume ratio (1-5): 10 is introduced, and the reduction treatment is carried out at 300-600° C. for 1-6 hours.
  • the carrier has a directional honeycomb structure, the average pore diameter of the honeycomb is 5-20 ⁇ m, the active component and the auxiliary agent are loaded on the outer surface of the carrier and the inner wall of the honeycomb, and A catalytic layer is formed on the outer surface of the carrier and the inner wall of the honeycomb hole.
  • the thickness of the catalytic layer is 30 to 100 nm.
  • a nanoscale catalytic layer is formed on the outer surface of the carrier and the inner wall surface of the hole in the micron-scale oriented honeycomb structure to obtain
  • the hydrogenation catalyst has high specific surface area, high porosity and highly ordered pore structure, but also has high strength, and the number of effective loading sites of active components is high, which effectively improves the conversion rate of carbon dioxide and the selectivity of methanol and yield.
  • the active component is selected from one or more of copper, palladium, platinum
  • the auxiliary agent is selected from one or more of zinc oxide, titanium oxide, manganese oxide and gadolinium oxide multiple
  • the carrier is selected from one or more of zirconia, alumina, ceria, and titania.
  • the present application can further ensure the conversion rate of carbon dioxide and methanol selectivity by controlling the above-mentioned specific active components, auxiliary agents and carrier components.
  • the preparation method of the hydrogenation catalyst provided by this application can obtain a high-strength micron-sized honeycomb carrier by freezing, drying and calcining the carrier slurry, providing a high specific surface area for the effective loading of active components, and avoiding the need for one-step molding Granulation process: the impregnation method is used to add the precursor impregnating liquid to the surface of the catalyst carrier, and then place the catalyst carrier under vacuum conditions so that the impregnating liquid is evenly deposited on the inner surface of the pores of the honeycomb carrier, and then after drying and roasting, A uniformly dispersed nanoscale catalytic layer is prepared, which avoids high-temperature sintering of the catalyst.
  • Fig. 1 is the longitudinal section scanning electron microscope (SEM) figure of the gained catalyst of the embodiment 1 of the present application;
  • Fig. 2 is the cross-sectional scanning electron microscope (SEM) figure of the gained catalyst of embodiment 1 of the present application;
  • Fig. 3 is the transmission electron microscope (TEM) figure of the catalyst of the gained honeycomb support structure of the embodiment of the present application;
  • This embodiment provides a method for preparing a hydrogenation catalyst, comprising the steps of:
  • the hydrogenation catalyst prepared above is composed of a carrier, an active component and an auxiliary agent; the carrier has an oriented honeycomb structure, and the average pore diameter of the honeycomb is 12 ⁇ m, and the active component and the auxiliary agent are loaded on the The outer surface of the carrier and the inner wall of the honeycomb hole, and a catalytic layer is formed on the outer surface of the carrier and the inner wall of the honeycomb hole.
  • the thickness of the catalytic layer is 50nm; the active component metal copper, the auxiliary agent is zinc oxide, and the carrier is zirconia ; Based on the total weight of the catalyst, the content of active components in terms of metal elements is 18wt%, the content of additives in terms of metal elements is 9wt%, and the rest are carriers.
  • the catalyst was first reduced, and the mixed gas of hydrogen and nitrogen with a volume ratio of 1:10 was introduced, and the reduction treatment was carried out at 300 ° C for 3 hours.
  • the obtained catalyst carrier has a directional honeycomb structure. It can be seen from FIG. 3 that the thickness of the catalyst layer is 50 nm.
  • This embodiment provides a method for preparing a hydrogenation catalyst, comprising the steps of:
  • the hydrogenation catalyst prepared above is composed of a carrier, an active component and an auxiliary agent; the carrier has an oriented honeycomb structure, and the average pore diameter of the honeycomb is 11.5 ⁇ m, and the active component and the auxiliary agent are loaded on the The outer surface of the carrier and the inner wall of the honeycomb hole, and a catalytic layer is formed on the outer surface of the carrier and the inner wall of the honeycomb hole.
  • the thickness of the catalytic layer is 53nm; the active component metal copper, the auxiliary agent is zinc oxide, and the carrier is zinc oxide.
  • Zirconium based on the total weight of the catalyst, the content of active components in terms of metal elements is 18wt%, the content of additives in terms of metal elements is 9wt%, and the rest is carrier.
  • This embodiment provides a method for preparing a hydrogenation catalyst, comprising the steps of:
  • honeycomb carrier green body is transferred to a high-temperature furnace for calcination at 1500° C. for 2 hours to obtain a honeycomb catalyst carrier.
  • the hydrogenation catalyst prepared above is composed of a carrier, an active component and an auxiliary agent; the carrier has an oriented honeycomb structure, and the average pore diameter of the honeycomb is 10.3 ⁇ m, and the active component and the auxiliary agent are loaded on the The outer surface of the carrier and the inner wall of the honeycomb hole, and a catalytic layer is formed on the outer surface of the carrier and the inner wall of the honeycomb hole.
  • the thickness of the catalytic layer is 54nm; the active component metal copper, the auxiliary agent is zinc oxide, and the carrier is zinc oxide.
  • Zirconium based on the total weight of the catalyst, the content of the active component in terms of metal elements is 22.3wt%, the content of additives in terms of metal elements is 7.4wt%, and the rest is carrier.
  • This embodiment provides a method for preparing a hydrogenation catalyst, comprising the steps of:
  • the hydrogenation catalyst prepared above is composed of a carrier, an active component and an auxiliary agent; the carrier has an oriented honeycomb structure, and the average pore diameter of the honeycomb is 10 ⁇ m, and the active component and the auxiliary agent are loaded on the The outer surface of the carrier and the inner wall of the honeycomb hole, and a catalytic layer is formed on the outer surface of the carrier and the inner wall of the honeycomb hole.
  • the thickness of the catalytic layer is 65nm; the active component metal copper, the auxiliary agent is zinc oxide, and the carrier is cerium oxide ; Based on the total weight of the catalyst, the content of active components in terms of metal elements is 27.7wt%, the content of additives in terms of metal elements is 9.2wt%, and the rest is carrier.
  • This embodiment provides a method for preparing a hydrogenation catalyst, comprising the steps of:
  • the hydrogenation catalyst prepared above is composed of a carrier, an active component and an auxiliary agent; the carrier has an oriented honeycomb structure, and the average pore diameter of the honeycomb is 8 ⁇ m, and the active component and the auxiliary agent are loaded on the The outer surface of the carrier and the inner wall of the honeycomb hole, and a catalytic layer is formed on the outer surface of the carrier and the inner wall of the honeycomb hole.
  • the thickness of the catalytic layer is 52nm;
  • the active component metal copper, the auxiliary agent is zinc oxide, and the carrier is cerium oxide ;
  • the content of active components in terms of metal elements is 22.2wt%, the content of additives in terms of metal elements is 7.4wt%, and the rest is carrier.
  • the hydrogenation catalyst prepared above is composed of a carrier, an active component and an auxiliary agent; the carrier has an oriented honeycomb structure, and the average pore diameter of the honeycomb is 10.2 ⁇ m, and the active component and the auxiliary agent are loaded on the The outer surface of the carrier and the inner wall of the honeycomb hole, and a catalytic layer is formed on the outer surface of the carrier and the inner wall of the honeycomb hole.
  • the thickness of the catalytic layer is 56nm; the active component metal palladium, the auxiliary agent is gadolinium oxide, and the carrier is oxidized Zirconium and cerium oxide: based on the total weight of the catalyst, the content of the active component in terms of metal elements is 22.3wt%, the content of additives in terms of metal elements is 7.4wt%, and the rest is carrier.
  • This comparative example provides a hydrogenation catalyst and an activity evaluation method thereof. Compared with Example 1, the only difference is that the carrier slurry is not subjected to freeze-forming treatment in step (2).
  • 4 is a scanning electron microscope (SEM) image of the catalyst of Comparative Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本申请属于制备加氢催化剂的技术领域,具体涉及一种加氢催化剂及其制备方法和应用。本申请提供的加氢催化剂包括载体、活性组分和助剂;所述载体具有定向蜂窝孔结构,所述蜂窝孔的平均孔径为5~20μm,所述活性组分和助剂负载在所述载体外表面及蜂窝孔内壁,并在所述载体外表面及蜂窝孔内壁形成催化层,所述催化层的厚度为30~100nm。本申请提供的加氢催化剂可提高CO2催化加氢制甲醛技术中催化剂的催化活性、选择性和稳定性。

Description

一种加氢催化剂及其制备方法和应用
相关申请的交叉引用
本申请要求在2021年11月29日提交中国专利局、申请号为202111432410.X、发明名称为“一种加氢催化剂及其制备方法和应用”的中国专利申请的优先权,其全部内容通过引用的方式并入本文中。
技术领域
本申请属于制备加氢催化剂的技术领域,具体涉及一种加氢催化剂及其制备方法和应用。
背景技术
随着经济社会的快速发展,由化石能源燃烧、工业、生活等人类活动造成的CO 2排放量逐年攀升,其引起的全球环境变化已成为各国政府重点关注的问题。同时,CO 2作为一种丰富且可持续利用的碳资源,可以转化为具有经济价值的能源或者化工产品。因此,实现CO 2资源化利用,从解决能源问题和缓解温室效应等方面来说,都具有重要的战略意义。甲醇,不仅是一种优良的燃料,同时还是一种非常重要的基础化工原料,可以转化为烯烃、芳烃等一系列高附加值的化工产品,其需求量在全球范围内与日俱增。因此,利用可再生能源产生的氢气将CO 2催化加氢制甲醇技术受到了广泛关注,而催化剂的研发是实现CO 2加氢合成甲醇的关键。
对于CO 2催化加氢制甲醇技术中所需要的催化剂要求具备一定的形状和合适的粒度大小,且为保证催化剂在反应器中具有较高的结构稳定性, 催化剂载体需具备一定的机械强度。通常采用造粒的方式来满足催化反应工艺和机械强度对催化剂的苛刻要求。然而,造粒后的催化剂存在比表面积降低、孔道不规则等结构缺陷,在催化过程中会导致暴露出的催化活性位点数量降低、活性组分在高温下烧结等问题,从而影响催化活性、选择性和稳定性。近年来,也有预先成型催化剂载体方面的报道,但是载体均为不规则的多孔结构,会影响活性组分的分散效果和宏观分布,从而对催化剂本身的催化效果带来负面影响。
综上所述,开发一种具有高甲醇选择性、高二氧化碳转化效率的加氢催化剂具有非常重要的应用意义。
发明内容
本申请的目的在于克服上述现有技术中二氧化碳加氢合成甲醇催化剂的甲醇选择性、二氧化碳转化率有限的缺陷,进而提供一种具有蜂窝状载体结构的催化剂及其制备方法。
本申请为解决上述技术问题而采用的技术方案为:
一种加氢催化剂,可选地,所述加氢催化剂包括载体、活性组分和助剂;所述载体具有定向蜂窝孔结构,所述蜂窝孔的孔径为5~20μm,所述活性组分和助剂负载在所述载体外表面及蜂窝孔内壁,并在所述载体外表面及蜂窝孔内壁形成催化层,所述催化层的厚度为30~100nm。
可选地,所述活性组分选自铜、钯、铂中的一种或多种,助剂选自氧化锌、氧化钛、氧化锰和氧化钆中的一种或多种,所述载体选自氧化锆、氧化铝、氧化铈、氧化钛中的一种或多种。
可选地,以催化剂的总重量为基准,以金属元素计的活性组分的含量 为5~30wt%,以金属元素计的助剂的含量为1~15wt%,其余为载体。
本申请还提供所述加氢催化剂的制备方法,可选地,包括如下步骤:
1)将载体原料与溶剂混合,超声,然后加入粘结剂,球磨,得到载体浆液;
2)将所述载体浆液进行冷冻、干燥,得到载体素坯;
3)将所述载体素坯进行煅烧,得到催化剂载体;
4)将活性组分和助剂的前驱体浸渍液加入到所述催化剂载体的表面,然后将所述催化剂载体置于真空条件下处理,真空条件下处理结束后进行干燥、焙烧,得到所述加氢催化剂。
可选地,步骤4)中所述真空条件下处理8~12Pa,处理时间为5~15min。
可选地,步骤2)中所述冷冻温度为-70~-170℃,冷冻时间为60~300min,所述干燥为真空干燥,所述干燥温度为5~15℃,干燥时间为12~24h。
可选地,步骤1)中所述载体原料选自氧化锆、氧化铝、氧化铈、氧化钛中的一种或多种;
所述溶剂为乙醇,所述超声功率为80~120W,超声时间为10~30min;
所述球磨温度为室温,球磨时间为1~2h;
所述粘结剂为硅酸镁铝粘结剂;
所述载体原料占溶剂质量的5~60wt%;
所述粘结剂占溶剂体积的2~8vol%;
步骤3)中所述煅烧温度为1000~1700℃,煅烧时间为1~5h;
步骤4)中所述干燥温度为20~100℃,干燥时间为2~12h;焙烧温度为200~1200℃,焙烧时间为2~5h。
步骤4)中将活性组分和助剂的前驱体浸渍液加入到催化剂载体表面的方式可采用滴加的方式,可采用多次滴加的方式进行,直至活性组分和助剂达到预定的负载量即可。可选的,每次前驱体浸渍液的用量可为催化剂载体质量的0.1~5wt%。
可选地,步骤4)中所述活性组分和助剂的前驱体浸渍液的制备方法包括如下步骤:将活性组分金属盐、助剂金属盐与水混合,配制得到前驱体溶液,然后向前驱体溶液中加入分散剂,搅拌,得到所述活性组分和助剂的前驱体浸渍液。
可选地,所述活性组分金属盐选自硝酸铜、硝酸钯、硝酸铂中的一种或多种;所述助剂金属盐选自硝酸锌、硝酸钛、硝酸锰、硝酸钆中的一种或多种;所述活性组分金属盐、助剂金属盐的摩尔比为(2~5):(1~2);所述分散剂为尿素,所述分散剂的加入量占前驱体溶液质量的1~10wt%;所述前驱体溶液中活性组分金属盐的浓度为0.1~2mol/L。
本申请还提供如上所述的加氢催化剂或者如上所述的制备方法制备得到的加氢催化剂在二氧化碳加氢合成甲醇反应中的应用。
可选地,二氧化碳加氢合成甲醇的条件为:200~350℃,反应压力为1~5MPa,空速为1000~9000h -1,n(H 2):n(CO 2)摩尔比=1~5。
在进行二氧化碳加氢反应前,先对催化剂进行还原,通入体积比(1~5):10的氢气与氮气的混合气,于300~600℃还原处理1~6h。
本申请技术方案具有以下优点:
1.本申请提供的加氢催化剂,载体具有定向蜂窝孔结构,所述蜂窝孔的平均孔径为5~20μm,所述活性组分和助剂负载在所述载体外表面及蜂窝 孔内壁,并在所述载体外表面及蜂窝孔内壁形成催化层,所述催化层的厚度为30~100nm,本申请通过在微米级定向蜂窝孔结构的载体外表面以及孔内壁表面形成纳米级催化层,获得的加氢催化剂具有高比表面面积、高孔隙率以及高度有序孔结构,同时还具有较高的强度,活性组分的有效负载位点数量高,有效提高了二氧化碳的转化率以及甲醇选择性和产率。
2.本申请提供的加氢催化剂,所述活性组分选自铜、钯、铂中的一种或多种,助剂选自氧化锌、氧化钛、氧化锰和氧化钆中的一种或多种,所述载体选自氧化锆、氧化铝、氧化铈、氧化钛中的一种或多种。本申请通过控制上述特定的活性组分、助剂以及载体成分可进一步保证二氧化碳的转化率以及甲醇选择性。
3.本申请提供的加氢催化剂的制备方法,通过将载体浆液进行冷冻、干燥并煅烧可获得高强度的微米级蜂窝状载体,提供高比表面积供活性组分的有效负载,一步成型避免了造粒过程;采用浸渍法将前驱体浸渍液加入到催化剂载体表面,然后将催化剂载体置于真空条件下处理,使浸渍液均匀沉积在蜂窝状载体的孔道内表面,然后再经过干燥、焙烧,制备了均匀分散的纳米级催化层,避免了催化剂高温烧结。通过对蜂窝状载体的微观结构和活性组分的负载进行精准调控,可以实现在温度200~350℃、1~5MPa下保持高选择性和稳定性,达到提高催化剂活性、选择性和稳定性的目的,在未来有望进行工业化应用。
附图说明
为了更清楚地说明本申请具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地,下面描述中的附图是本申请的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请实施例1的所得催化剂的纵截面扫描电镜(SEM)图;
图2是本申请实施例1的所得催化剂的横截面扫描电镜(SEM)图;
图3是本申请实施例1的所得蜂窝状载体结构的催化剂的透射电镜(TEM)图;
图4是对比例1催化剂的扫描电镜(SEM)图。
具体实施方式
提供下述实施例是为了更好地进一步理解本申请,并不局限于所述最佳实施方式,不对本申请的内容和保护范围构成限制,任何人在本申请的启示下或是将本申请与其他现有技术的特征进行组合而得出的任何与本申请相同或相近似的产品,均落在本申请的保护范围之内。
实施例1
本实施例提供一种加氢催化剂的制备方法,包括如下步骤:
(1)在乙醇中加入载体原料氧化锆粉末,氧化锆粉末的加入量为乙醇质量的20wt%,在100W的超声功率下超声30min,然后加入硅酸镁铝粘结剂,硅酸镁铝粘结剂的加入量为乙醇体积的5vol%,所得混合液转移到球磨机中进行球磨,球磨温度为室温,球磨时间为1h,得到稳定的载体浆液;
(2)将载体浆液注入模具中,然后将模具放置于冷冻干燥机中进行冷冻,冷冻温度为-100℃,冷冻时间为120min,冷冻成型后转移至真空干燥箱中,在10℃条件下干燥12h,得到蜂窝状载体素坯;
(3)将蜂窝状载体素坯转移至高温炉中焙烧,在1500℃下焙烧2h,得到蜂窝状催化剂载体;
(4)将硝酸铜溶解于去离子水中,配制浓度为0.25mol/L的溶液,然后向溶液中加入硝酸锌(硝酸铜和硝酸锌的摩尔比为2:1),配制得到前驱体溶液,然后加入前驱体溶液质量5wt%的尿素,充分搅拌,取30μL上述溶液滴加到载体表面,再将载体转移至真空干燥箱中进行处理,处理压力为10Pa,处理时间为10min,真空条件下处理结束后,在50℃下干燥6h,然后在600℃下焙烧2h。多次重复上述步骤(4),至活性组分和助剂负载量达到催化剂总质量25.5wt%,得到加氢催化剂。
上述制备得到的加氢催化剂,由载体、活性组分和助剂组成;所述载体具有定向蜂窝孔结构,所述蜂窝孔的平均孔径为12μm,所述活性组分和助剂负载在所述载体外表面及蜂窝孔内壁,并在所述载体外表面及蜂窝孔内壁形成催化层,所述催化层的厚度为50nm;所述活性组分金属铜,助剂为氧化锌,载体为氧化锆;以催化剂总重量为基准,以金属元素计的活性组分的含量为18wt%,以金属元素计的助剂的含量为9wt%,其余为载体。
(5)催化剂活性评价在流化床反应器上进行,反应条件温度为320℃,反应压力为1MPa,空速为3000h -1,n(H 2):n(CO 2)摩尔比=2:1。在进行二氧化碳加氢反应前,先对催化剂进行还原,通入体积比1:10的氢气与氮气的混合气,于300℃还原处理3h。
由图1和图2可知,所得催化剂载体具有定向蜂窝孔结构。由图3可知,催化剂层的厚度为50nm。
实施例2
本实施例提供一种加氢催化剂的制备方法,包括如下步骤:
(1)在乙醇中加入载体原料氧化锆粉末,氧化锆粉末的加入量为乙醇质量的10wt%,在100W的超声功率下超声30min,然后加入硅酸镁铝粘结剂,硅酸镁铝粘结剂的加入量为乙醇体积的5vol%,所得混合液转移到球磨机中进行球磨,球磨温度为室温,球磨时间为2h,得到稳定的载体浆液;
(2)将载体浆液注入模具中,然后将模具放置于冷冻干燥机中进行冷冻,冷冻温度为-100℃,冷冻时间为180min,冷冻成型后转移至真空干燥箱中,在8℃条件下干燥12h,得到蜂窝状载体素坯;
(3)将蜂窝状载体素坯转移至高温炉中焙烧,在1500℃下焙烧2h,得到蜂窝状催化剂载体;
(4)将硝酸铜溶解于去离子水中,配制浓度为0.25mol/L的溶液,然后向溶液中加入硝酸锌(硝酸铜和硝酸锌的摩尔比为2:1),配制得到前驱体溶液,然后加入前驱体溶液质量5wt%的尿素,充分搅拌,取30μL上述溶液滴加到载体表面,再将载体转移至真空干燥箱中进行处理,处理压力为8Pa,处理时间为10min,真空条件下处理结束后,在50℃下干燥6h,然后在600℃下焙烧2h。多次重复上述步骤(4),至活性组分和助剂负载量达到催化剂总质量25.5wt%,得到加氢催化剂。
上述制备得到的加氢催化剂,由载体、活性组分和助剂组成;所述载体具有定向蜂窝孔结构,所述蜂窝孔的平均孔径为11.5μm,所述活性组分和助剂负载在所述载体外表面及蜂窝孔内壁,并在所述载体外表面及蜂窝孔内壁形成催化层,所述催化层的厚度为53nm;所述活性组分金属铜,助剂为氧化锌,载体为氧化锆;以催化剂总重量为基准,以金属元素计的活 性组分的含量为18wt%,以金属元素计的助剂的含量为9wt%,其余为载体。
(5)催化剂活性评价在流化床反应器上进行,反应条件同实施例1。
实施例3
本实施例提供一种加氢催化剂的制备方法,包括如下步骤:
(1)在乙醇中加入载体原料氧化锆粉末,氧化锆粉末的加入量为乙醇质量的15wt%,在100W的超声功率下超声30min,然后加入硅酸镁铝粘结剂,硅酸镁铝粘结剂的加入量为乙醇体积的10vol%,所得混合液转移到球磨机中进行球磨,球磨温度为室温,球磨时间为2h,得到稳定的载体浆液;
(2)将载体浆液注入模具中,然后将模具放置于冷冻干燥机中进行冷冻,冷冻温度为-150℃,冷冻时间为180min,冷冻成型后转移至真空干燥箱中,在8℃条件下干燥12h,得到蜂窝状载体素坯;
(3)将蜂窝状载体素坯转移至高温炉中焙烧,在1500℃下焙烧2h,得到蜂窝状催化剂载体。
(4)将硝酸铜溶解于去离子水中,配制浓度为0.25mol/L的溶液,然后向溶液中加入硝酸锌(硝酸铜和硝酸锌的摩尔比为3:1),配制得到前驱体溶液,然后加入前驱体溶液质量5wt%的尿素,充分搅拌,取30μL上述溶液滴加到载体表面,再将载体转移至真空干燥箱中进行处理,处理压力为10Pa,处理时间为12min,真空条件下处理结束后,在50℃下干燥6h,然后在600℃下焙烧2h。多次重复上述步骤(4),至活性组分和助剂负载量达到催化剂总质量28wt%,得到加氢催化剂。
上述制备得到的加氢催化剂,由载体、活性组分和助剂组成;所述载体具有定向蜂窝孔结构,所述蜂窝孔的平均孔径为10.3μm,所述活性组分 和助剂负载在所述载体外表面及蜂窝孔内壁,并在所述载体外表面及蜂窝孔内壁形成催化层,所述催化层的厚度为54nm;所述活性组分金属铜,助剂为氧化锌,载体为氧化锆;以催化剂总重量为基准,以金属元素计的活性组分的含量为22.3wt%,以金属元素计的助剂的含量为7.4wt%,其余为载体。
(5)催化剂活性评价在流化床反应器上进行,反应条件同实施例1。
实施例4
本实施例提供一种加氢催化剂的制备方法,包括如下步骤:
(1)在乙醇中加入载体原料氧化锆粉末,氧化锆粉末的加入量为乙醇溶液质量的15wt%,在100W的超声功率下超声30min,然后加入硅酸镁铝粘结剂,硅酸镁铝粘结剂的加入量为乙醇溶液体积的5vol%,所得混合液转移到球磨机中进行球磨,球磨温度为室温,球磨时间为2h,得到稳定的载体浆液;
(2)将载体浆液注入模具中,然后将模具放置于冷冻干燥机中进行冷冻,冷冻温度为-150℃,冷冻时间为180min,冷冻成型后转移至真空干燥箱中,在10℃条件下干燥12h,得到蜂窝状载体素坯;
(3)将蜂窝状载体素坯转移至高温炉中焙烧,在1500℃下焙烧2h,得到蜂窝状催化剂载体;
(4)将硝酸铜溶解于去离子水中,配制浓度为0.25mol/L的溶液,然后向溶液中加入硝酸锌(硝酸铜和硝酸锌的摩尔比为3:1),配制得到前驱体溶液,然后加入前驱体溶液质量5wt%的尿素,充分搅拌,取30μL上述溶液滴加到载体表面,再将载体转移至真空干燥箱中进行处理,处理压 力为10Pa,处理时间为10min,真空条件下处理结束后,在50℃下干燥6h,然后在600℃下焙烧2h。多次重复上述步骤(4),至活性组分和助剂负载量达到催化剂总质量35wt%,得到加氢催化剂。
上述制备得到的加氢催化剂,由载体、活性组分和助剂组成;所述载体具有定向蜂窝孔结构,所述蜂窝孔的平均孔径为10μm,所述活性组分和助剂负载在所述载体外表面及蜂窝孔内壁,并在所述载体外表面及蜂窝孔内壁形成催化层,所述催化层的厚度为65nm;所述活性组分金属铜,助剂为氧化锌,载体为氧化铈;以催化剂总重量为基准,以金属元素计的活性组分的含量为27.7wt%,以金属元素计的助剂的含量为9.2wt%,其余为载体。
(5)催化剂活性评价在流化床反应器上进行,反应条件同实施例1。
实施例5
本实施例提供一种加氢催化剂的制备方法,包括如下步骤:
(1)在乙醇中加入载体原料氧化锆粉末,氧化锆粉末的加入量为乙醇溶液质量的15wt%,在100W的超声功率下超声30min,然后加入硅酸镁铝粘结剂,硅酸镁铝粘结剂的加入量为乙醇溶液体积的5vol%,所得混合液转移到球磨机中进行球磨,球磨温度为室温,球磨时间为2h,得到稳定的载体浆液;
(2)将载体浆液注入模具中,然后将模具放置于冷冻干燥机中进行冷冻,冷冻温度为-170℃,冷冻时间为180min,冷冻成型后转移至真空干燥箱中,在10℃条件下干燥12h,得到蜂窝状载体素坯;
(3)将蜂窝状载体素坯转移至高温炉中焙烧,在1500℃下焙烧2h, 得到蜂窝状催化剂载体;
(4)将硝酸铜溶解于去离子水中,配制浓度为0.25mol/L的溶液,然后向溶液中加入硝酸锌(硝酸铜和硝酸锌的摩尔比为3:1)配制得到前驱体溶液,然后加入前驱体溶液质量5wt%的尿素,充分搅拌,取30μL上述溶液滴加到载体表面,再将载体转移至真空干燥箱中进行处理,处理压力为10Pa,处理时间为10min,真空条件下处理结束后,在50℃下干燥6h,然后在600℃下焙烧2h。多次重复上述步骤(4),至活性组分和助剂负载量达到催化剂总质量28wt%,得到加氢催化剂。
上述制备得到的加氢催化剂,由载体、活性组分和助剂组成;所述载体具有定向蜂窝孔结构,所述蜂窝孔的平均孔径为8μm,所述活性组分和助剂负载在所述载体外表面及蜂窝孔内壁,并在所述载体外表面及蜂窝孔内壁形成催化层,所述催化层的厚度为52nm;所述活性组分金属铜,助剂为氧化锌,载体为氧化铈;以催化剂总重量为基准,以金属元素计的活性组分的含量为22.2wt%,以金属元素计的助剂的含量为7.4wt%,其余为载体。
(5)催化剂活性评价在流化床反应器上进行,反应条件同实施例1。
实施例6
(1)在乙醇中加入载体原料氧化铝和氧化锆(氧化铝:氧化锆=1:1)粉末,粉末的加入量为乙醇溶液质量的15wt%,超声30min,然后加入硅酸镁铝粘结剂,硅酸镁铝粘结剂的加入量为乙醇溶液体积的10vol%,所得混合液转移到球磨机中进行球磨,球磨温度为室温,球磨时间为2h,得到稳定的载体浆液;
(2)将载体浆液注入模具中,然后将模具放置于冷冻干燥机中进行冷冻,冷冻温度为-150℃,冷冻时间为180min,冷冻成型后转移至真空干燥箱中,在8℃条件下干燥12h,得到蜂窝状载体素坯;
(3)将蜂窝状载体素坯转移至高温炉中焙烧,在1300℃下焙烧2h,得到蜂窝状催化剂载体;
(4)将硝酸钯溶解于去离子水中,配制浓度为0.25mol/L的溶液,然后向溶液中加入硝酸锌(硝酸钯和硝酸锌的摩尔比为3:1),配制得到前驱体溶液,然后加入前驱体溶液质量5wt%的尿素,充分搅拌,取30μL上述溶液滴加到载体表面,再将载体转移至真空干燥箱中进行处理,处理压力为10Pa,处理时间为10min,真空条件下处理结束后,在50℃下干燥6h,然后在700℃下焙烧2h。多次重复上述步骤(4),至活性组分和助剂负载量达到催化剂总质量28wt%,得到加氢催化剂。
上述制备得到的加氢催化剂,由载体、活性组分和助剂组成;所述载体具有定向蜂窝孔结构,所述蜂窝孔的平均孔径为10.2μm,所述活性组分和助剂负载在所述载体外表面及蜂窝孔内壁,并在所述载体外表面及蜂窝孔内壁形成催化层,所述催化层的厚度为56nm;所述活性组分金属钯,助剂为氧化钆,载体为氧化锆和氧化铈;以催化剂总重量为基准,以金属元素计的活性组分的含量为22.3wt%,以金属元素计的助剂的含量为7.4wt%,其余为载体。
(5)催化剂活性评价在流化床反应器上进行,反应条件同实施例1。
对比例1
本对比例提供一种加氢催化剂及其活性评价方法,其与实施例1相比 区别仅在于步骤(2)中不对载体浆液进行冷冻成型处理。图4是对比例1催化剂的扫描电镜(SEM)图。
测试例1
上述实施例和对比例催化剂活性评价结果见表1.
表1
Figure PCTCN2022098593-appb-000001
显然,上述实施例仅仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。

Claims (10)

  1. 一种加氢催化剂,其特征在于,所述加氢催化剂包括载体、活性组分和助剂;所述载体具有定向蜂窝孔结构,所述蜂窝孔的平均孔径为5~20μm,所述活性组分和助剂负载在所述载体外表面及蜂窝孔内壁,并在所述载体外表面及蜂窝孔内壁形成催化层,所述催化层的厚度为30~100nm。
  2. 根据权利要求1所述的加氢催化剂,其特征在于,所述活性组分选自铜、钯、铂中的一种或多种,助剂选自氧化锌、氧化钛、氧化锰和氧化钆中的一种或多种,所述载体选自氧化锆、氧化铝、氧化铈、氧化钛中的一种或多种。
  3. 根据权利要求1或2所述的加氢催化剂,其特征在于,以催化剂的总重量为基准,以金属元素计的活性组分的含量为5~30wt%,以金属元素计的助剂的含量为1~15wt%,其余为载体。
  4. 权利要求1-3中任一项所述的加氢催化剂的制备方法,其特征在于,包括如下步骤:
    1)将载体原料与溶剂混合,超声,然后加入粘结剂,球磨,得到载体浆液;
    2)将所述载体浆液进行冷冻、干燥,得到载体素坯;
    3)将所述载体素坯进行煅烧,得到催化剂载体;
    4)将活性组分和助剂的前驱体浸渍液加入到所述催化剂载体的表面, 然后将所述催化剂载体置于真空条件下处理,真空条件下处理结束后进行干燥、焙烧,得到所述加氢催化剂。
  5. 根据权利要求4所述的加氢催化剂的制备方法,其特征在于,步骤4)中所述真空条件下处理压力为8~12Pa,处理时间为5~15min。
  6. 根据权利要求4或5所述的加氢催化剂的制备方法,其特征在于,步骤2)中所述冷冻温度为-70~-170℃,冷冻时间为60~300min,所述干燥为真空干燥,所述干燥温度为5~15℃,干燥时间为12~24h。
  7. 根据权利要求4-6中任一项所述的加氢催化剂的制备方法,其特征在于,
    步骤1)中所述载体原料选自氧化锆、氧化铝、氧化铈、氧化钛中的一种或多种;
    所述溶剂为乙醇,所述超声功率为80~120W,超声时间为10~30min;
    所述球磨温度为室温,球磨时间为1~2h;
    所述粘结剂为硅酸镁铝粘结剂;
    所述载体原料占溶剂重量的5~60wt%;
    所述粘结剂占溶剂体积的2~8vol%;
    步骤3)中所述煅烧温度为1000~1700℃,煅烧时间为1~5h;
    步骤4)中所述干燥温度为20~100℃,干燥时间为2~12h;焙烧温度为200~1200℃,焙烧时间为2~5h。
  8. 根据权利要求4-7中任一项所述的加氢催化剂的制备方法,其特征在于,
    步骤4)中所述活性组分和助剂的前驱体浸渍液的制备方法包括如下步骤:将活性组分金属盐、助剂金属盐与水混合,配制得到前驱体溶液,然后向前驱体溶液中加入分散剂,搅拌,得到所述活性组分和助剂的前驱体浸渍液。
  9. 根据权利要求8所述的加氢催化剂的制备方法,其特征在于,
    所述活性组分金属盐选自硝酸铜、硝酸钯、硝酸铂中的一种或多种;
    所述助剂金属盐选自硝酸锌、硝酸钛、硝酸锰、硝酸钆中的一种或多种;
    所述活性组分金属盐、所述助剂金属盐的摩尔比为(2~5):(1~2);所述分散剂为尿素,所述分散剂的加入量占前驱体溶液质量的1~10wt%。
  10. 权利要求1-3中任一项所述的加氢催化剂或者权利要求4-9中任一项所述的制备方法制备得到的加氢催化剂在二氧化碳加氢合成甲醇反应中的应用。
PCT/CN2022/098593 2021-11-29 2022-06-29 一种加氢催化剂及其制备方法和应用 WO2023093000A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202111432410.X 2021-11-29
CN202111432410.XA CN116173947A (zh) 2021-11-29 2021-11-29 一种加氢催化剂及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2023093000A1 true WO2023093000A1 (zh) 2023-06-01

Family

ID=86437017

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/098593 WO2023093000A1 (zh) 2021-11-29 2022-06-29 一种加氢催化剂及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN116173947A (zh)
WO (1) WO2023093000A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4833115A (en) * 1986-09-19 1989-05-23 Dr. C. Otto Feuerfest Gmbh Ceramic honeycombed elongated catalyst carrier and method for production of same
CN1508233A (zh) * 2002-12-13 2004-06-30 中国科学院大连化学物理研究所 一种富氢条件下一氧化碳选择氧化催化剂及制备方法
JP2005087826A (ja) * 2003-09-16 2005-04-07 Nissan Motor Co Ltd ナノハニカム触媒およびその製造方法
CN102626621A (zh) * 2012-03-24 2012-08-08 中国石油化工股份有限公司 以蜂窝二氧化钛为载体的加氢催化剂及制备方法
WO2017161953A1 (zh) * 2016-03-21 2017-09-28 中国石油化工股份有限公司 用于二氧化碳加氢反应的整体式催化剂及其制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101429050B (zh) * 2008-12-04 2011-04-13 北京航空航天大学 一种采用冷冻干燥法制备具有定向结构多孔陶瓷的方法
CN103263922A (zh) * 2013-05-15 2013-08-28 武汉工程大学 一种高分散性间二硝基苯加氢结构化催化剂的制备方法
CN105498756B (zh) * 2014-09-25 2018-05-11 中国石油化工股份有限公司 二氧化碳加氢制甲醇的催化剂
CN110787789A (zh) * 2019-11-06 2020-02-14 江南大学 一种用于二氧化碳加氢制甲醇的催化剂的制备及其应用
CN110975938A (zh) * 2019-12-18 2020-04-10 华能国际电力股份有限公司 一种用于二氧化碳加氢制甲醇的催化剂及其制备方法
CN111569876A (zh) * 2020-04-29 2020-08-25 厦门大学 一种加氢催化剂及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4833115A (en) * 1986-09-19 1989-05-23 Dr. C. Otto Feuerfest Gmbh Ceramic honeycombed elongated catalyst carrier and method for production of same
CN1508233A (zh) * 2002-12-13 2004-06-30 中国科学院大连化学物理研究所 一种富氢条件下一氧化碳选择氧化催化剂及制备方法
JP2005087826A (ja) * 2003-09-16 2005-04-07 Nissan Motor Co Ltd ナノハニカム触媒およびその製造方法
CN102626621A (zh) * 2012-03-24 2012-08-08 中国石油化工股份有限公司 以蜂窝二氧化钛为载体的加氢催化剂及制备方法
WO2017161953A1 (zh) * 2016-03-21 2017-09-28 中国石油化工股份有限公司 用于二氧化碳加氢反应的整体式催化剂及其制备方法

Also Published As

Publication number Publication date
CN116173947A (zh) 2023-05-30

Similar Documents

Publication Publication Date Title
KR102304406B1 (ko) 루테늄계 암모니아 분해 촉매 및 그 제조방법
CN102039205B (zh) 整体式氮氧化物选择性还原催化剂及其制备方法
CN106694018A (zh) 一种具有梯度孔结构的钴、氮共掺杂炭氧气还原催化剂及其制备方法和应用
EP3049176A1 (en) High surface area catalyst
WO2017197980A1 (zh) 整体式铁钴双金属费托合成催化剂及其制备方法
CN107638878B (zh) 一种三明治结构纳米管复合催化剂的制备方法
CN101721997A (zh) 一种整体式金属载体三效催化剂及其制备方法
WO2017128946A1 (zh) 一种用于双氧水合成的高分散颗粒催化剂及其制备方法和应用
WO2020051957A1 (zh) 一种乙醇催化转化制备甲基苯甲醇的方法及所用催化剂
CN113000059A (zh) 一种用于甲烷二氧化碳干重整的镍基催化剂及其制备方法和应用
WO2023093000A1 (zh) 一种加氢催化剂及其制备方法和应用
CN106391035B (zh) 一种非均相类Fenton催化剂及其制备方法和在降解含酚废水中的应用
CN109364928B (zh) 具有相变蓄热功能的负载型催化剂及其制备方法与应用
CN108686714B (zh) SiC泡沫的制备方法、用于甲烷催化燃烧的SiC泡沫整体式催化剂及其制备方法
CN113117710B (zh) 生物质热解用催化剂载体、催化剂及其制法
CN110721683B (zh) 用于液氮洗尾气临氧条件氧化的催化剂及制备方法和用途
CN111715223A (zh) 一种新型Pd-Rh三效催化剂及其制备方法
CN111330570A (zh) 一种汽油车三效催化剂及其制备方法
CN110734800A (zh) 复合载氧体与其形成方法及氧化还原反应
CN105797708B (zh) 一种三元尾气催化剂的制备工艺
Gao et al. The effect of silver current collector on metal oxide infiltrated La0. 6Sr0. 4Co0. 2Fe0. 8O3/Ce0. 9Gd0. 1O2 in solid oxide fuel cells application
CN113731422A (zh) 一种浆态床甲烷合成催化剂的制备方法
CN110639570A (zh) 整体式催化剂及其制备方法和应用以及使用其的甲醇水蒸气重整制氢方法
CN113600187B (zh) 低Pt含量常温起活的催化氧化催化剂及其制备方法
CN114262813B (zh) 一种内生纳米高熵碳化物增强高熵合金基复合材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22897097

Country of ref document: EP

Kind code of ref document: A1