WO2023090714A1 - 친환경 포토레지스트 박리액 조성물 - Google Patents

친환경 포토레지스트 박리액 조성물 Download PDF

Info

Publication number
WO2023090714A1
WO2023090714A1 PCT/KR2022/017208 KR2022017208W WO2023090714A1 WO 2023090714 A1 WO2023090714 A1 WO 2023090714A1 KR 2022017208 W KR2022017208 W KR 2022017208W WO 2023090714 A1 WO2023090714 A1 WO 2023090714A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
stripper composition
eco
inhibitor
ether
Prior art date
Application number
PCT/KR2022/017208
Other languages
English (en)
French (fr)
Inventor
윤상문
인치성
전중익
이혁재
Original Assignee
삼영순화(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼영순화(주) filed Critical 삼영순화(주)
Publication of WO2023090714A1 publication Critical patent/WO2023090714A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/42Stripping or agents therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/42Stripping or agents therefor
    • G03F7/422Stripping or agents therefor using liquids only
    • G03F7/425Stripping or agents therefor using liquids only containing mineral alkaline compounds; containing organic basic compounds, e.g. quaternary ammonium compounds; containing heterocyclic basic compounds containing nitrogen

Definitions

  • the present invention relates to an eco-friendly photoresist stripper composition, and more specifically, 20 to 50% by weight of glycol ether, 1 to 10% by weight of cyclic alcohol, 1 to 1 inhibitor for preventing corrosion of aluminum and copper 10% by weight, 0.5 to 10% by weight of alkanol amine, 0.01 to 10% by weight of a reducing sulfur compound, and the remaining amount of water, and thus an eco-friendly photoresist stripper composition that does not generate toxic formaldehyde.
  • photoresist is applied on a substrate coated with a conductive metal film or an insulating film, and this is selectively exposed and developed. Form a microcircuit made of aluminum or copper metal. At this time, a photoresist stripper is used for the purpose of removing unnecessary photoresist.
  • a photoresist stripper composition generally includes a condensate to which ethylene oxide or propylene oxide is added, and a large amount of formaldehyde is generated as unreacted ethylene oxide and propylene oxide are oxidized.
  • Formaldehyde is a toxic compound that irritates the nose and eyes of the human body and has recently been pointed out as a carcinogen.
  • formaldehyde generated from the photoresist stripper composition may be a serious hazard to workers' health.
  • Patent Publication No. 10-2015-0028526 (March 16, 2015) introduces a resist stripper composition comprising a formaldehyde scavenger and a water-soluble polar organic solvent.
  • 3-aminopentane-1,5-diol, 3-amino-3-methylpentane-1,5-diol, 3-amino-3-ethylpentane-1,5-diol At least one selected from among 3-aminopentane-1,3,5-triol, 3-amino-3-hydroxymethylpentane-1,5-diol, and 4-aminoheptane-2,6-diol is used.
  • Patent Publication No. 10-2016-0122328 (October 24, 2016)
  • a mixture of a first glycol-based compound containing formaldehyde, a hydrazide-based compound, and a sulfonic acid-based compound is stirred, and such stirring
  • a method of recovering a second glycol-based compound having a formaldehyde content of 0 ppm by fractional distillation of the mixture is proposed.
  • the hydrazide-based compound is a compound corresponding to a dehydration condensation product of an amino group of hydrazines and a carboxyl group of carboxylic acid, and serves as a formaldehyde scavenger through reaction and purification with formaldehyde, and prepared in this way
  • a glycol-based compound may be used as a raw material for a photoresist stripper.
  • this method requires a distillation process, complicated distillation equipment is required, and in particular, since a large amount of the target material is lost during the distillation process, the final yield of the stripper composition is reduced.
  • formaldehyde Since formaldehyde has a very low boiling point (20.8° C.), it exists in a gaseous state at room temperature, but exists in a dissolved state in glycol-type organic solvents. And unlike other organic solvents, since formaldehyde is continuously generated by a specific reaction in glycol organic solvents, there is a limit that formaldehyde cannot be completely removed by conventional distillation methods.
  • an object of the present invention is to provide a new eco-friendly photoresist stripper composition that has excellent photoresist removal ability, hardly damages metal circuits made of aluminum or copper, and does not generate toxic formaldehyde.
  • the eco-friendly photoresist stripper composition according to the present invention contains 20 to 50% by weight of glycol ether, 1 to 10% by weight of cyclic alcohol, 1 to 10% by weight of an inhibitor that prevents corrosion of aluminum and copper, alkanol amine It is characterized in that it is composed of 0.5 to 10% by weight, 0.01 to 10% by weight of a reducing sulfur compound, and the remaining amount of water.
  • the inhibitor is composed of 100 parts by weight of a polyhydric alcohol as a first inhibitor preventing corrosion of aluminum and 0.1 to 10 parts by weight of a second inhibitor of a nitrogen-containing heterocyclic compound as a second inhibitor preventing corrosion of copper. characterized by
  • the reducing sulfur compound is lithium bisulfate, sodium bisulfate, potassium bisulfate, ammonium bisulfate, lithium bisulfite, sodium bisulfite, potassium bisulfite, ammonium bisulfite, sulfite, lithium sulfite, sodium sulfite, potassium sulfite, ammonium sulfite , characterized in that at least one selected from sulfamic acid.
  • An eco-friendly photoresist stripper composition contains 30% by weight of diethylene glycol monobutyl ether, 4% by weight of benzyl alcohol, 3% by weight of xylitol, 0.2% by weight of pyrazole, and 1% by weight of monoisopropyl alcoholamine. %, 0.9% by weight of sulfamic acid, and the remaining amount of water.
  • the photoresist stripper composition according to the present invention has excellent photoresist removal ability in a lithography process, but hardly damages a metal circuit made of aluminum or copper, and in particular, a reducing compound reacts with formaldehyde to generate an irreversible salt compound. Therefore, toxic formaldehyde is not generated, and thus, there is an effect of providing a very safe working environment to workers.
  • 1a and 1b are scanning electron microscope (FE-SEM) photographs of surface changes of copper (Cu) circuits in specimens using the stripper composition prepared according to Example 7 of the present invention
  • 2a and 2b are electron scanning micrographs of surface changes of copper (Cu) circuits in specimens using the stripper composition prepared according to Comparative Example 2 of the present invention
  • 3a and 3b are electron scanning micrographs of surface changes of aluminum (Al) circuits in specimens using the stripper composition prepared according to Example 7 of the present invention.
  • 4a and 4b are electron scanning micrographs of surface changes of aluminum (Al) circuits in specimens using the stripper composition prepared according to Comparative Example 1 of the present invention
  • the eco-friendly photoresist stripper composition according to the present invention is used for dissolving and stripping unnecessary photoresist in a lithography process, and includes a glycol ether, a cyclic alcohol, an inhibitor, an alkanol amine, and a reducing sulfur compound. , And when the body content of all components is 100% by weight, it is composed of a residual amount of water.
  • glycol ether is an ethylene oxide condensate that penetrates into the photoresist made of a polymer material and functions to dissolve the photoresist, and the preferred content is 20 to 50% by weight based on the total weight of the stripper composition.
  • the content of the glycol ether is less than 20% by weight, there is a problem in that the peeling rate is lowered because the penetration and dissolving ability of the photoresist is reduced. On the contrary, if it exceeds 50% by weight, the solubility of the photoresist increases, but since the water content decreases and the alkalinity decreases, there is a problem of lowering the hydrolysis ability by alkanol amine described below.
  • glycol ether at least one selected from diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, diethylene glycol monopropyl ether, diethylene glycol monobutyl ether, and diethylene glycol monot-butyl ether may be used. there is.
  • glycol ether diethylene glycol monomethyl ether is most preferred.
  • the cyclic alcohol penetrates into the photoresist to promote peeling of the photoresist, and the preferred content is 1 to 10% by weight. If the content of the cyclic alcohol is less than 1% by weight, there is a problem that the peeling rate decreases due to a decrease in penetration, and if it exceeds 10% by weight, the polarity of the solution is lowered, resulting in layer separation in the stripper composition itself. .
  • cyclic alcohol any one or more of benzyl alcohol, p-cumyl phenol, cyclohexanol, and cyclopentanol may be used, and benzyl alcohol is most preferably used.
  • the inhibitor functions to prevent corrosion of metal circuits made of aluminum (Al) and copper (Cu), and the preferred content is 1 to 10% by weight.
  • the inhibitor may be composed of a first inhibitor that prevents corrosion of aluminum and a second inhibitor that prevents corrosion of copper, and their composition ratio is based on 100 parts by weight of the first inhibitor, the second inhibitor It is preferably composed of 0.1 to 10 parts by weight of beater.
  • the content of the first inhibitor is lower than the above content, the adsorption force for aluminum is lowered, and there is a risk of corrosion of the aluminum circuit. As a result, there is a problem in that the peeling ability for the photoresist is reduced.
  • the content of the second inhibitor is lower than the above content, there is a problem in that the adsorption force for copper decreases and the anti-corrosion effect for the copper circuit is lowered. There is a concern that the second inhibitor may remain on the surface of the copper circuit even afterward, and this result may cause semiconductor manufacturing defects in a subsequent process.
  • the first inhibitor is a polyhydric alcohol, for example, any one or more of glycerin, sorbitol, and xylitol can be used
  • the second inhibitor is a nitrogen-containing heterocyclic compound, for example, benzotriazole, 5-methylbenzotriazole, Any one or more of tolyl triazole, pyrazole, and 1,5-dimethyl pyrazole may be used.
  • Xylitol is most preferred as the first inhibitor
  • pyrazole is most preferred as the second inhibitor.
  • the alkanol amine functions to hydrolyze the polymer material constituting the photoresist, and the preferred content is 0.5 to 10% by weight. If the content of the alkanol amine is less than 0.5% by weight, the hydrolysis ability to the photoresist is insignificant and the peeling performance is reduced. Conversely, if it exceeds 10% by weight, the peeling ability increases with the increase in alkalinity, There is a problem of corrosion.
  • any one or more of monoethanol amine, diethanol amine, triethanol amine, monoisopropyl alcoholamine, diisopropyl alcoholamine, and aminoethoxy ethanol may be used, and monoisopropyl alcoholamine is the most desirable.
  • the reducing sulfur compound reacts with formaldehyde to remove formaldehyde and further promotes the peeling of the photoresist, and the preferred content is 0.01 to 10% by weight.
  • This reducing sulfur compound is one of the characteristic components of the present invention, and reacts with formaldehyde present in the stripper composition to produce hydroxy alkyl sulfonate.
  • the content of the reducing sulfur compound is less than 0.01% by weight, there is a problem in that the amount of reaction with formaldehyde is too small and formaldehyde is not sufficiently removed. ), the surface of the metal circuit may be corroded due to the increase in components.
  • At least one selected from ammonium and sulfamic acid may be used, and among them, sulfamic acid is most preferred.
  • sodium bisulfite (NaHSO 3 ) and sodium sulfite (Na 2 SO 3 ) react with formaldehyde (CH 2 O) to irreversibly produce hydroxyalkyl sulfonates.
  • NaHSO 3 sodium bisulfite
  • Na 2 SO 3 sodium sulfite
  • formaldehyde (CH 2 O) formaldehyde
  • a stripper composition composed of the components and contents and residual amount of water as shown in [Table 1] was prepared.
  • Example Composition and content (% by weight) glycol ether cyclic alcohol 1st Inhibitor 2nd Inhibitor alkanolamine sulfur compounds One EDG 30 BZOH 4 sorbitol 3 MBTA 0.05 MEA 1 AS 0.01 2 BDG-30 CHOH 3 Xylitol 5 BTA 0.01 MEA 3 ABSfa 1 3 t-BDG 25 CPOH 3 glycerin 5 MBTA 0.02 DEA 3 sulfamic acid 1 4 MDG 40 BZOH 3 Sorbitol 5 MBTA 0.05 DEA 4 ABSfi 1 5 PDG 30 CHOH 4 sorbitol 3 TTZ 0.01 TEA 5 AS 0.9 6 EDG 40 CPOH 3 glycerin 5 TTZ 0.03 TEA 6 ABSfa 0.9 7 BDG-30 BZOH 4 Xylitol 3 PYZ0.2 MIPA 1 Sulfamic acid 0.9 8 EDG 40 CHOH 4 Xylitol 5 MBTA 0.05 MIPA 3 ABSfi
  • a stripper composition composed of the components and contents and residual amount of water as shown in [Table 2] was prepared.
  • Comparative Example 1 is a stripper composition without a first inhibitor for preventing corrosion of an aluminum circuit
  • Comparative Example 2 is a stripper composition without a second inhibitor for preventing corrosion of a copper circuit.
  • the amounts of alkanol amine (MIPA) and glycol ether (EDG) were excessively included so as to exceed the content range according to the present invention.
  • Comparative Examples 5 and 6 the cyclic alcohol and reducing sulfur compound according to the present invention were not used, respectively, and in Comparative Example 7, neither the cyclic alcohol nor the reducing sulfur compound was used.
  • Comparative Examples 8 and 9 other sulfur compounds not specified in the present invention, namely cysteine and thioglycolic acid, were used as the reducing sulfur compound, respectively.
  • a specimen coated with photoresist to a thickness of 25 ⁇ m was prepared, and the specimen was immersed in the stripper composition prepared according to Examples 1 to 12 and Comparative Examples 1 to 9 of the present invention at a temperature of 40 ° C. Swing once.
  • the surfaces of the copper (Cu) circuit and the aluminum (Al) circuit formed on the specimen were analyzed by X-ray fluorescence spectrometer (XRF) and scanning electron microscope (FE-SEM), respectively. After immersing the specimen in each stripper composition at a temperature of 40 ° C., the thickness change of the copper circuit and the aluminum circuit was measured at the time when 10 min had elapsed, and according to the degree of decrease in the thickness ( ⁇ ) of each circuit, the following 3 classified into stages.
  • XRF X-ray fluorescence spectrometer
  • FE-SEM scanning electron microscope
  • LC analysis was performed according to EPA Method 8315 on each of the stripper compositions prepared in Examples 1 to 12 and Comparative Examples 1 to 9 to measure the formaldehyde content.
  • test results for items 1) to 3) are listed in the following [Table 3] and [Table 4].
  • Example photoresist removal ability Al circuit damage Cu circuit damage formaldehyde content
  • FIGS. 1 and 2 are electron scanning microscopes comparing surface changes of copper (Cu) circuits in specimens using the stripper compositions of Example 7 and Comparative Example 2 among the results of the 'measurement of damage to the metal circuit' ( FE-SEM) photograph (magnified 30,000 times), and attached FIGS. 3 and 4 are electron scanning microscopes (FE) comparing surface changes of aluminum (Al) circuits in specimens using the stripper compositions of Example 7 and Comparative Example 1 -SEM) photograph (magnified 20,000 times).
  • FIGS. 1a, 2a, 3a, and 4a are photomicrographs before using the stripper composition, respectively
  • FIGS. 1b, 2b, 3b, and 4b are photomicrographs after using the stripper composition, respectively. From FIGS. 1 to 4, it can be seen that the stripper compositions of Example 7 hardly damaged the surfaces of the copper and aluminum circuits, but the stripper compositions of Comparative Examples 1 and 2 severely damaged the surfaces of the copper and aluminum circuits, respectively. can
  • FIGS. 5 and 6 are LC chromatograms for confirming the detection of formaldehyde in the stripper composition prepared according to Example 7 of the present invention
  • Figure 6 shows the detection of formaldehyde in the stripper composition prepared according to Comparative Example 6.
  • LC chromatogram for confirmation As shown in FIGS. 5 and 6, in Comparative Example 6, a clear formaldehyde peak was observed at the 5.23 min position, whereas in Example 7, no peak was observed at the corresponding position. there is.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)

Abstract

본 발명은 친환경 포토레지스트 박리액 조성물에 관한 것으로, 좀더 상세하게 설명하자면, 글리콜 에테르 20~50 중량%, 환형 알코올 1~10 중량%, 알루미늄 및 구리의 부식을 방지하는 인히비터(inhibitor) 1~10 중량%, 알칸올 아민 0.5~10 중량%, 환원성 황화합물 0.01~10 중량%, 그리고 잔량의 물을 포함하여 구성됨으로써, 유독성 포름알데히드를 발생시키지 않는 친환경 포토레지스트 박리액 조성물에 관한 것이다.

Description

친환경 포토레지스트 박리액 조성물
본 발명은 친환경 포토레지스트 박리액 조성물에 관한 것으로, 좀더 상세하게 설명하자면, 글리콜 에테르 20~50 중량%, 환형 알코올 1~10 중량%, 알루미늄 및 구리의 부식을 방지하는 인히비터(inhibitor) 1~10 중량%, 알칸올 아민 0.5~10 중량%, 환원성 황화합물 0.01~10 중량%, 그리고 잔량의 물을 포함하여 구성됨으로써, 유독성 포름알데히드를 발생시키지 않는 친환경 포토레지스트 박리액 조성물에 관한 것이다.
반도체 소자의 집적회로나 평판 표시소자의 미세회로 등을 제조하는 리소그래피(lithography) 공정에서는 도전성 금속막이나 절연막이 도포된 기판 상에 포토레지스트(photoresist)를 도포하고, 이를 선택적으로 노광 및 현상 처리하여 알루미늄이나 구리 금속으로 이루어진 미세회로를 형성한다. 이때, 불필요한 포토레지스트를 제거하기 위한 용도로서 포토레지스트 박리액을 사용한다.
포토레지스트 박리액 조성물은 대체로 에틸렌 옥사이드나 프로필렌 옥사이드가 부가된 축합물을 포함하는데 미반응 에틸렌 옥사이드와 프로필렌 옥사이드가 산화되면서 다량의 포름알데히드(formaldehyde)가 발생한다. 이러한 포름알데히드는 인체의 코와 눈을 자극하는 유독성 화합물로서 최근에는 발암성 물질로도 지목되고 있다. 더구나 리소그래피 공정은 대부분 밀폐 구역에서 진행되기 때문에 포토레지스트 박리액 조성물에서 발생하는 포름알데히드는 작업자들의 건강에 심각한 위해가 될 수 있다.
따라서 종래에도 리소그래피 공정에 대한 작업환경을 개선하기 위하여 포름알데히드의 발생을 저감시킬 수 있는 친환경 포토레지스트 박리액의 개발이 진행되어 왔다. 예를 들면 공개특허 제10-2015-0028526호(2015년 03월 16일)에는, 포름알데히드 스캐빈저(scavenger)와 수용성 극성 유기용매를 포함하여 구성되는 레지스트 박리액 조성물이 소개되어 있다.
이때, 포름알데히드 스캐빈저로는, 3-아미노펜탄-1,5-디올, 3-아미노-3-메틸펜탄-1,5-디올, 3-아미노-3-에틸펜탄-1,5-디올, 3-아미노펜탄-1,3,5-트리올, 3-아미노-3-히드록시메틸펜탄-1,5-디올, 및 4-아미노헵탄-2,6-디올 중에서 선택된 1종 이상을 사용할 수 있다. 그러나 이러한 박리액 조성의 경우, 이민화 반응으로서 pH의 증감에 매우 민감하기 때문에 주변 환경에 따라 포름알데히드와 스케빈저로 다시 분해될 수 있다는 문제점이 있다.
또한 공개특허 제10-2016-0122328호(2016년 10월 24일)에는, 포름알데히드를 포함하는 제1 글리콜계 화합물과 히드라지드(hydrazide)계 화합물 및 설폰산계 화합물의 혼합물을 교반하고, 이러한 교반 혼합물을 분별 증류하여 포름알데히드의 함량이 0ppm 인 제2 글리콜계 화합물을 회수하는 방법이 제시되어 있다.
상기 히드라지드계 화합물은, 히드라진류의 아미노기와 카르복실산의 카르복실기의 탈수 축합 생성물에 해당하는 화합물로서, 포름알데히드와의 반응 및 정제를 통해서 포름알데히드 스캐빈저의 역할을 하고, 이러한 방법으로 제조된 글리콜계 화합물은 포토레지스 박리액의 원료로 사용될 수 있다. 그러나 이러한 방법은 증류과정을 거쳐야 하기 때문에 복잡한 증류 설비가 필요하고, 특히 증류과정에서 목적물질이 다량 소실되기 때문에 박리액 조성물의 최종 수율이 저하되는 문제가 있다.
포름알데히드는 비점(20.8℃)이 매우 낮기 때문에 상온에서는 기체 상태로 존재하지만 글리콜류 유기용제 내에서는 용해된 상태로 존재하게 된다. 그리고 다른 유기용제와는 달리 글리콜류 유기용제에서는 특정 반응에 의해 포름알데히드가 계속 생성되기 때문에 통상적인 증류방법으로는 포름알데히드를 완전히 제거 할 수가 없다는 한계가 있다.
이에 본 발명의 목적은 포토레지스트에 대한 제거 능력이 우수하고 알루미늄이나 구리로 이루어진 금속회로를 거의 손상시키지 않으며, 나아가 유독성 포름알데히드가 발생하지 않는 새로운 친환경 포토레지스트 박리액 조성물을 제공하는 것이다.
본 발명에 따른 친환경 포토레지스트 박리액 조성물은, 글리콜 에테르 20~50 중량%, 환형 알코올 1~10 중량%, 알루미늄 및 구리의 부식을 방지하는 인히비터(inhibitor) 1~10 중량%, 알칸올 아민 0.5~10 중량%, 환원성 황화합물 0.01~10 중량%, 그리고 잔량의 물을 포함하여 구성되는 것을 특징으로 한다.
상기 인히비터는, 알루미늄의 부식을 방지하는 제1 인히비터로서 다가 알코올 100 중량부와, 구리의 부식을 방지하는 제2 인히비터로서 함질소 헤테로 고리 화합물 제2 인히비터 0.1~10 중량부로 구성되는 것을 특징으로 한다.
상기 환원성 황화합물은, 중황산 리튬, 중황산 나트륨, 중황산 칼륨, 중황산 암모늄, 중아황산 리튬, 중아황산 나트륨, 중아황산 칼륨, 중아황산 암모늄, 아황산, 아황산 리튬, 아황산 나트륨, 아황산 칼륨, 아황산 암모늄, 술팜산 중에서 선택된 어느 하나 이상인 것을 특징으로 한다.
본 발명의 바람직한 실시예에 따른 친환경 포토레지스트 박리액 조성물은, 디에틸렌 글리콜 모노 부틸에테르 30 중량%, 벤질 알코올 4 중량%, 자일리톨 3 중량%, 피라졸 0.2 중량부, 모노이소프로필 알코올아민 1 중량%, 술팜산 0.9 중량%, 그리고 잔량의 물을 포함하여 구성되는 것을 특징으로 한다.
본 발명에 따른 포토레지스트 박리액 조성물은 리소그래피 공정에서 포토레지스트에 대한 제거능력이 우수하면서도 알루미늄이나 구리로 이루어진 금속회로를 거의 손상시키지 않으며, 특히 환원성 화합물이 포름알데히드와 반응하여 비가역적인 염 화합물을 생성하기 때문에 유독성 포름알데히드가 발생하지 않고, 따라서 작업자들에게 매우 안전한 작업환경을 제공할 수 있는 효과가 있다.
도 1a 및 1b는 본 발명의 실시예 7에 따라 제조된 박리액 조성물을 사용한 시편에서 구리(Cu) 회로의 표면 변화를 촬영한 전자주사 현미경(FE-SEM) 사진,
도 2a 및 2b는 본 발명의 비교예 2에 따라 제조된 박리액 조성물을 사용한 시편에서 구리(Cu) 회로의 표면 변화를 촬영한 전자주사 현미경 사진,
도 3a 및 3b는 본 발명의 실시예 7에 따라 제조된 박리액 조성물을 사용한 시편에서 알루미늄(Al) 회로의 표면 변화를 촬영한 전자주사 현미경 사진,
도 4a 및 4b는 본 발명의 비교예 1에 따라 제조된 박리액 조성물을 사용한 시편에서 알루미늄(Al) 회로의 표면 변화를 촬영한 전자주사 현미경 사진,
도 5는 본 발명의 실시예 7에 따라 제조된 박리액 조성물에 대한 LC 크로마토그램,
도 6은 본 발명의 비교예 6에 따라 제조된 박리액 조성물에 대한 LC 크로마토그램이다.
이하, 바람직한 실시예를 참조하여 본 발명을 상세하게 설명한다. 다만, 이러한 실시예에 의해서 본 발명의 권리범위가 제한되는 것은 아니다. 또한 본 발명을 실시하는데 꼭 필요한 구성이라 하더라도 종래기술에 소개되어 있거나, 통상의 기술자가 공지기술로부터 용이하게 실시할 수 있는 사항에 대해서는 구체적인 설명을 생략한다.
본 발명에 따른 친환경 포토레지스트 박리액 조성물은 리소그래피(lithography) 공정에서 불필요한 포토레지스트를 용해 및 박리시키는 용도로 사용되는 것으로, 글리콜 에테르와, 환형 알코올, 인히비터(inhibitor), 알칸올 아민, 환원성 황화합물, 그리고 모든 구성성분들의 천체 함량을 100 중량%라고 할 때 잔량의 물을 포함하여 구성된다.
먼저 글리콜 에테르는 에틸렌 옥사이드 축합물로서 고분자 물질로 이루어진 포토레지스트 내부로 침투하여 상기 포토레지스트를 용해시키는 기능을 하는 것으로, 바람직한 함량은 박리액 조성물 전체 중량에 대하여 20~50 중량%이다.
만일 글리콜 에테르의 함량이 20 중량% 미만이면, 포토레지스트에 대한 침투력 및 용해능력이 감소하여 박리속도가 저하되는 문제가 있다. 반대로 50 중량%를 초과이면 포토레지스트에 대한 용해능력은 증가하지만, 수분의 함량이 감소하여 알칼리도가 떨어지기 때문에 다음에 설명하는 알칸올 아민에 의한 가수분해 능력을 저하시키는 문제가 있다.
상기 글리콜 에테르로는, 디에틸렌 글리콜 모노메틸 에테르, 디에틸렌 글리콜 모노에틸 에테르, 디에틸렌 글리콜 모노프로필 에테르, 디에틸렌 글리콜 모노부틸 에테르, 디에틸렌 글리콜 모노 t-부틸 에테르 중에서 선택된 어느 하나 이상을 사용할 수 있다. 상기 글리콜 에테르로는, 디에틸렌 글리콜 모노메틸 에테르가 가장 바람직하다.
다음으로, 환형 알코올은 포토레지스트 내부로 침투하여 포토레지스트의 박리를 촉진시키는 기능을 하는 것으로, 바람직한 함량은 1~10 중량%이다. 만일 환형 알코올의 함량이 1 중량% 미만이면, 침투력이 감소하여 박리속도가 감소하는 문제가 있고, 반대로 10 중량%를 초과하면 용액의 극성이 낮아져서 박리액 조성물 자체에서 층 분리가 발생하는 문제가 있다.
상기 환형 알코올로는, 벤질 알코올, p-큐밀 페놀, 시클로 헥산올, 시클로 펜탄올 중 어느 하나 이상을 사용할 수 있고, 이중에서 벤질 알코올을 사용하는 것이 가장 바람직하다.
상기 인히비터(inhibitor)는 알루미늄(Al) 및 구리(Cu)로 이루어진 금속회로의 부식을 방지하는 기능을 하는 것으로, 바람직한 함량은 1~10 중량%이다. 상기 인히비터는, 알루미늄의 부식을 방지하는 제1 인히비터와, 구리의 부식을 방지하는 제2 인히비터로 구성될 수 있고, 이들의 구성 비율은 제1 인히비터 100 중량부에 대하여 제2 인히비터 0.1~10 중량부로 구성되는 것이 바람직하다.
만일, 제1 인히비터의 함량이 상기 함량보다 낮아지면 알루미늄에 대한 흡착력이 낮아져서 알루미늄 회로에 대한 부식이 발생할 우려가 있고, 반대로 상기 함량보다 높아지면 다음에 설명하는 알칸올 아민에서 알콕사이드의 생성량이 증가하여 결과적으로 포토레지스트에 대한 박리능력이 감소하는 문제가 있다.
또한 제2 인히비터의 함량이 상기 함량보다 낮아지면 구리에 대한 흡착력이 감소하여 구리 회로에 대한 부식방지 효과가 저하되는 문제가 있고, 반대로 상기 함량보다 높아지면 구리에 대한 흡착력이 증가하여 초 순수 린스 이후에도 구리 회로의 표면에 상기 제2 인히비터가 남아 있게 될 우려가 있고, 이러한 결과는 이후 공정에서 반도체 제조 불량의 원인이 될 수 있다.
상기 제1 인히비터는 다가 알코올로서, 예컨대 글리세린, 소르비톨, 자일리톨 중 어느 하나 이상을 사용할 수 있고, 상기 제2 인히비터는 함질소 헤테로 고리 화합물로서, 예컨대 벤조 트리아졸, 5-메틸 벤조 트리아졸, 톨릴 트리아졸, 피라졸, 1,5-디메틸 피라졸 중 어느 하나 이상을 사용할 수 있다. 상기 제1 인히비터로는 자일리톨, 상기 제2 인히비터로는 피라졸이 가장 바람직하다.
상기 알칸올 아민은 포토레지스트를 구성하는 고분자 물질을 가수분해 시키는 기능을 하는 것으로, 바람직한 함량은 0.5~10 중량%이다. 상기 알칸올 아민의 함량이 0.5 중량% 미만이면 포토레지스트에 대한 가수분해 능력이 미미하여 박리성능이 감소하고, 반대로 10 중량%를 초과하면 알칼리도의 증가에 따라 박리능력은 상승하지만, 금속회로 표면에 대한 부식이 발생하는 문제가 있다.
상기 알칸올 아민로는, 모노에탄올 아민, 디에탄올 아민, 트리에탄올 아민, 모노이소프로필 알코올아민, 디이소프로필 알코올아민, 아미노에톡시 에탄올 중 어느 하나 이상을 사용할 수 있고, 모노이소프로필 알코올아민이 가장 바람직하다.
마지막으로 상기 환원성 황화합물은 포름알데히드와 반응하여 포름알데히드를 제거하고, 나아가 포토레지스트의 박리를 촉진하는 기능을 하는 것으로, 바람직한 함량은 0.01~10 중량%이다. 이러한 환원성 황화합물은 본 발명의 특징적인 구성성분 중 하나로서, 박리액 조성물 내에 존재하는 포름알데히드와 반응하여 하이드록시 알킬 솔폰산염(hydroxy alkyl sulfonate)을 생성한다.
만일 환원성 황화합물의 함량이 0.01중량% 미만이면 포름알데히드와의 반응량이 너무 적어서 포름알데히드가 충분히 제거되지 못하는 문제가 있고, 반대로 10 중량%를 초과 하면 포름알데히드에 대한 제거 효율은 증가하지만, 황(S) 성분의 증가로 인해 금속회로의 표면이 부식되는 문제가 발생할 수 있다.
상기 환원성 황화합물로는, 중황산 리튬, 중황산 나트륨, 중황산 칼륨, 중황산 암모늄, 중아황산 리튬, 중아황산 나트륨, 중아황산 칼륨, 중아황산 암모늄, 아황산, 아황산 리튬, 아황산 나트륨, 아황산 칼륨, 아황산 암모늄, 술팜산 중에서 선택된 어느 하나 이상을 사용할 수 있고, 이중에서 술팜산이 가장 바람직하다.
상기 환원성 화합물들 중에서 중아황산 나트륨(NaHSO3)과 아황산 나트륨(Na2SO3)이 각각 포름알데히드(CH2O)와 반응하여 비가역적으로 하이드록시 알킬 솔폰산염을 생성하는 과정을 반응식으로 표시하면 다음과 같다.
NaHSO3 + CH2O → HOCH2SO3Na
Na2SO3 + CH2O → HOCH2SO3Na + NaOH
[실시예]
본 발명에 대한 실시예로서 하기 [표 1]과 같은 구성성분 및 함량과 잔량의 물로 이루어진 박리액 조성물을 제조하였다.
실시예 구성성분 및 함량(중량%)
글리콜에테르 환형알코올 제1인히비터 제2인히비터 알칸올아민 황화합물
1 EDG 30 BZOH 4 소르비톨 3 MBTA 0.05 MEA 1 AS 0.01
2 BDG 30 CHOH 3 자일리톨 5 BTA 0.01 MEA 3 ABSfa 1
3 t-BDG 25 CPOH 3 글리세린 5 MBTA 0.02 DEA 3 술팜산 1
4 MDG 40 BZOH 3 소르비톨 5 MBTA 0.05 DEA 4 ABSfi 1
5 PDG 30 CHOH 4 소르비톨 3 TTZ 0.01 TEA 5 AS 0.9
6 EDG 40 CPOH 3 글리세린 5 TTZ 0.03 TEA 6 ABSfa 0.9
7 BDG 30 BZOH 4 자일리톨 3 PYZ 0.2 MIPA 1 술팜산 0.9
8 EDG 40 CHOH 4 자일리톨 5 MBTA 0.05 MIPA 3 ABSfi 0.9
9 BDG 30 CPOH 4 소르비톨 5 MBTA 0.05 DIPA 2 AS 0.9
10 EDG 40 BZOH 3 자일리톨 5 TTZ 0.01 DIPA 4 ABSfa 0.7
11 MDG 30 CHOH 4 소르비톨 5 BTA 0.01 AEE 1 술팜산 0.9
12 EDG 30 CPOH 4 글리세린 5 PYZ 0.3 AEE 3 ABSfi 0.9
[비교예]
본 발명에 대한 비교예로서 하기 [표 2]와 같은 구성성분 및 함량과 잔량의 물로 이루어진 박리액 조성물을 제조하였다.
비교예 구성성분 및 함량(중량%)
글리콜에테르 환형알코올 제1인히비터 제2인히비터 알칸올아민 황화합물
1 EDG 30 BZOH 4 - MTBA 0.05 MEA 1 AS 0.1
2 BDG 30 CHOH 3 자일리톨 5 - MEA 3 ABSfa 1
3 BDG 30 BZOH 4 자일리톨 3 PYZ 0.2 MIPA 15 술팜산 0.9
4 EDG 60 CHOH 4 자일리톨 5 MTBA 0.05 MIPA 3 ABSfi 0.9
5 PDG 30 - 소르비톨 3 TTZ 0.01 TEA 5 AS 0.9
6 BDG 30 BZOH 4 소르비톨 5 PYZ 0.2 DIPA 4 -
7 PDG 30 - 소르비톨 3 TTZ 0.01 TEA 5 -
8 MDG 30 CHOH 4 소르비톨 5 BTA 0.01 AEE 1 시스테인 1
9 EDG 40 BZOH 3 자일리톨 5 TTZ 0.01 DIPA 4 TGA 0.1
상기 [표 1] 및 [표 2]에 사용된 구성성분들의 약자에 대한 설명은 다음과 같다.
EDG ; 디에틸렌 글리콜 모노 에틸에테르
BDG ; 디에틸렌 글리콜 모노 부틸에테르
MDG ; 디에틸렌 글리콜 모노 메틸에테르
PDG ; 디에틸렌 글리콜 모노 프로필 에테르
BZOH ; 벤질 알코올 - CHOH ; 시클로 헥산올
- CPOH ; p-큐밀 페놀 - MBTA ; 5-메틸 벤조 트리아졸
- BTA ; 벤조 트리아졸 - TTZ ; 톨릴 트리아졸
- PYZ ; 피라졸 - MEA ; 모노에탄올 아민
- DEA ; 디에탄올 아민 - TEA ; 트리에탄올 아민
- MIPA ; 모노이소프로필 알코올아민 - DIPA ; 디이소프로필 알코올아민
- AEE ; 아미노에톡시 에탄올
- AS ; 아황산 암모늄(ammonium sulfite)
- ABSfi ; 중아황산 암모늄(ammonium bisulfite)
- ABSfa ; 중황산 암모늄(ammonium bisulfate)
- TGA ; 티오 글리콜산(Thioglycolic acid)
참고로, 상기 비교예 1은 알루미늄 회로의 부식을 방지하는 제1 인히비터가 누락된 박리액 조성물이고, 비교예 2는 구리 회로의 부식을 방지하는 제2 인히비터가 누락된 박리액 조성물이다. 비교예 3과 비교예 4는 각각 알칸올 아민(MIPA)과 글리콜 에테르(EDG)의 사용량이 본 발명에 따른 함량범위를 초과하도록 과량으로 포함된 것이다.
또한 비교예 5 및 6에서는 각각 본 발명에 따른 환형 알코올과 환원성 황화합물을 사용하지 않았고, 비교예 7에서는 상기 환형 알코올과 환원성 황화합물을 모두 사용하지 않았다. 비교예 8 및 9에서는 상기 환원성 황화합물로서 본 발명에 명시되지 않은 다른 황화합물, 즉 시스테인과 티오 글리콜산(Thioglycolic acid)을 각각 사용하였다.
[성능시험]
1) 포토레지스트 제거능력 시험
포토레지스트가 25㎛의 두께로 도포된 시편을 준비하고, 상기 시편을 본 발명의 실시예 1~12 및 비교예 1~9에 따라 제조된 박리액 조성물에다 40℃의 온도에서 각각 침적한 후 초당 1회씩 스윙(swing) 하였다.
상기 시편을 육안으로 확인하면서 포토레지스트를 모두 제거하는데 소요되는 시간을 측정하고, 그 소요시간(sec)에 따라 다음과 같이 3 단계로 분류 하였다.
- ○ : 110sec 이내, △ : 110~130sec, × : 130sec 초과
2) 금속회로에 대한 손상여부 측정
상기 시편에 형성된 구리(Cu) 회로 및 알루미늄(Al) 회로의 표면을 X선 형광분석기(XRF) 및 전자주사 현미경(FE-SEM)으로 각각 분석하였다. 상기 시편을 40℃의 온도에서 각 박리액 조성물에 침지한 후 10min이 경과한 시점에서 구리 회로와 알루미늄 회로의 두께변화를 측정하고, 각 회로의 두께(Å)가 감소한 정도에 따라 다음과 같이 3 단계로 분류하였다.
- ○: 10Å 이내, △: 10~50Å, ×: 50 Å 초과
3) 포름알데히드의 함량 측정
상기 실시예 1~12 및 비교예 1~9에 따라 제조된 박리액 조성물에 대하여 각각 EPA Method 8315에 따라 액체 크로마토그래피(LC) 분석을 실시하여 포름알데히드의 함량을 측정하였다.
4) 시험결과
상기 항목 1) 내지 항목 3)에 대한 시험결과를 다음 [표 3] 및 [표 4]에 수록하였다.
실시예 포토레지스트
제거능력
Al 회로 손상 Cu 회로 손상 포름알데히드
함량
1 Not Detected.
2 Not Detected.
3 Not Detected.
4 Not Detected.
5 Not Detected.
6 Not Detected.
7 Not Detected.
8 Not Detected.
9 Not Detected.
10 Not Detected.
11 Not Detected.
12 Not Detected.
비교예 포토레지스트
제거능력
Al 회로 손상 Cu 회로 손상 포름알데히드
함량
1 × Not Detected.
2 × Not Detected.
3 Not Detected.
4 Not Detected.
5 Not Detected.
6 14 ppm
7 9 ppm
8 10 ppm
9 9 ppm
[평가]
상기 [표 3]에서 보는 바와 같이, 본 발명의 실시예 1~12에 따라 제조된 박리액 조성물들은 모두 포토레지스트에 대한 제거능력이 우수하고, 구리 및 알루미늄 회로를 거의 손상시키지 않으며, 유독성 포름알데히드가 전혀 검출되지 않는 것으로 확인되었다. 전체적으로 실시예 7의 박리액 조성물이 가장 우수한 가성비를 보였다.
반면, 상기 [표 4]에서 보는 바와 같이, 비교예 1~9에 따라 제조된 박리액 조성물의 경우, 상기 실시예에 비해 포토레지스트에 대한 제거능력이 부족하거나 금속 회로를 손상시키는 문제점이 있는 것으로 나타났다.
첨부 도 1 및 도 2는 상기 ‘금속회로에 대한 손상여부 측정’ 결과 중, 실시예 7과 비교예 2의 박리액 조성물을 사용한 시편에서 구리(Cu) 회로의 표면 변화를 비교한 전자주사 현미경(FE-SEM) 사진(30,000배 확대)이고, 첨부 도 3 및 도 4는 실시예 7과 비교예 1의 박리액 조성물을 사용한 시편에서 알루미늄(Al) 회로의 표면 변화를 비교한 전자주사 현미경(FE-SEM) 사진(20,000배 확대)이다.
상기 도 1 내지 도 4에서 도 1a, 2a, 3a, 4a는 각각 박리액 조성물을 사용하기 이전의 현미경 사진이고, 도 1b, 2b, 3b 및 4b는 각각 박리액 조성물을 사용한 이후의 현미경 사진이다. 상기 도 1 내지 도 4로부터 실시예 7의 박리액 조성물은 구리 및 알루미늄 회로의 표면을 거의 손상시키지 않았으나, 비교예 1, 2의 박리액 조성물은 각각 구리 및 알루미늄 회로의 표면을 심하게 손상시킨다는 것을 확인할 수 있다.
또한, 환원성 황화합물을 사용하지 않은 비교예 6, 7이나, 본 발명에 명시되지 않은 황화합물을 사용한 비교예 8, 9의 경우에는 각각 박리액 조성물에서 상당량의 포름알데히드가 검출되었다.
첨부 도 5는 본 발명의 실시예 7에 따라 제조된 박리액 조성물에서 포름알데히드의 검출을 확인하기 위한 LC 크로마토그램이고, 도 6은 비교예 6에 따라서 제조된 박리액 조성물에서 포름알데히드의 검출을 확인하기 위한 LC 크로마토그램이다. 상기 도 5 및 도 6에서 보는 바와 같이, 비교예 6의 경우에는 5.23 min 위치에서 확실한 포름알데히드 피크가 관찰되는데 비해, 실시예 7의 경우에는 이에 대응하는 위치에서 아무런 피크가 관찰되지 않는 것을 볼 수 있다.

Claims (8)

  1. 글리콜 에테르 20~50 중량%, 환형 알코올 1~10 중량%, 알루미늄 및 구리의 부식을 방지하는 인히비터(inhibitor) 1~10 중량%, 알칸올 아민 0.5~10 중량%, 환원성 황화합물 0.01~10 중량%, 그리고 잔량의 물을 포함하여 구성되는 것을 특징으로 하는, 친환경 포토레지스트 박리액 조성물.
  2. 제1항에 있어서, 상기 글리콜 에테르는, 디에틸렌 글리콜 모노메틸 에테르, 디에틸렌 글리콜 모노에틸 에테르, 디에틸렌 글리콜 모노프로필 에테르, 디에틸렌 글리콜 모노부틸 에테르, 디에틸렌 글리콜 모노 t-부틸 에테르 중에서 선택된 어느 하나 이상인 것을 특징으로 하는, 친환경 포토레지스트 박리액 조성물.
  3. 제1항에 있어서, 상기 환형 알코올은, 벤질 알코올, p-큐밀 페놀, 시클로 헥산올, 시클로 펜탄올 중 어느 하나 이상인 것을 특징으로 하는, 친환경 포토레지스트 박리액 조성물.
  4. 제1항에 있어서, 상기 인히비터는, 알루미늄의 부식을 방지하는 제1 인히비터로서 다가 알코올 100 중량부와, 구리의 부식을 방지하는 제2 인히비터로서 함질소 헤테로 고리 화합물 제2 인히비터 0.1~10 중량부로 구성되는 것을 특징으로 하는, 친환경 포토레지스트 박리액 조성물.
  5. 제4항에 있어서, 상기 제1 인히비터는 글리세린, 소르비톨, 자일리톨 중 어느 하나 이상이고, 상기 제2 인히비터는 벤조 트리아졸, 5-메틸벤조 트리아졸, 톨릴 트리아졸, 피라졸, 1,5-디메틸 피라졸 중 어느 하나 이상인 것을 특징으로 하는, 친환경 포토레지스트 박리액 조성물.
  6. 제1항에 있어서, 상기 알칸올 아민은 모노에탄올 아민, 디에탄올 아민, 트리에탄올 아민, 모노이소프로필 알코올아민, 디이소프로필 알코올아민, 아미노에톡시 에탄올 중 어느 하나 이상인 것을 특징으로 하는, 친환경 포토레지스트 박리액 조성물.
  7. 제1항에 있어서, 상기 환원성 황화합물은 중황산 리튬, 중황산 나트륨, 중황산 칼륨, 중황산 암모늄, 중아황산 리튬, 중아황산 나트륨, 중아황산 칼륨, 중아황산 암모늄, 아황산, 아황산 리튬, 아황산 나트륨, 아황산 칼륨, 아황산 암모늄, 설파믹산 중에서 선택된 어느 하나 이상인 것을 특징으로 하는, 친환경 포토레지스트 박리액 조성물.
  8. 디에틸렌 글리콜 모노 부틸에테르 30 중량%, 벤질 알코올 4 중량%, 자일리톨 3 중량%, 피라졸 0.2 중량부, 모노이소프로필 알코올아민 1 중량%, 술팜산 0.9 중량%, 그리고 잔량의 물을 포함하여 구성되는 것을 특징으로 하는, 친환경 포토레지스트 박리액 조성물.
PCT/KR2022/017208 2021-11-17 2022-11-04 친환경 포토레지스트 박리액 조성물 WO2023090714A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0158531 2021-11-17
KR1020210158531A KR20230072123A (ko) 2021-11-17 2021-11-17 친환경 포토레지스트 박리액 조성물

Publications (1)

Publication Number Publication Date
WO2023090714A1 true WO2023090714A1 (ko) 2023-05-25

Family

ID=86397351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/017208 WO2023090714A1 (ko) 2021-11-17 2022-11-04 친환경 포토레지스트 박리액 조성물

Country Status (2)

Country Link
KR (1) KR20230072123A (ko)
WO (1) WO2023090714A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101366957B1 (ko) * 2005-10-21 2014-02-25 삼성디스플레이 주식회사 박리액 조성물 및 이를 이용한 박리방법
KR20170100974A (ko) * 2016-02-26 2017-09-05 삼영순화(주) 포토레지스트 박리액 조성물
KR20190106755A (ko) * 2018-03-07 2019-09-18 버슘머트리얼즈 유에스, 엘엘씨 포토레지스트 스트리퍼
KR20190110171A (ko) * 2018-03-19 2019-09-30 삼성디스플레이 주식회사 식각액 조성물 및 이를 이용한 금속 패턴과 어레이 기판의 제조 방법
US20200339919A1 (en) * 2019-04-24 2020-10-29 Fujifilm Electronic Materials U.S.A., Inc. Stripping compositions for removing photoresists from semiconductor substrates

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102009533B1 (ko) 2013-09-06 2019-08-09 동우 화인켐 주식회사 레지스트 박리액 조성물 및 이를 이용한 평판표시장치의 제조방법
KR102395386B1 (ko) 2015-04-13 2022-05-09 삼성디스플레이 주식회사 고순도 글리콜계 화합물의 제조방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101366957B1 (ko) * 2005-10-21 2014-02-25 삼성디스플레이 주식회사 박리액 조성물 및 이를 이용한 박리방법
KR20170100974A (ko) * 2016-02-26 2017-09-05 삼영순화(주) 포토레지스트 박리액 조성물
KR20190106755A (ko) * 2018-03-07 2019-09-18 버슘머트리얼즈 유에스, 엘엘씨 포토레지스트 스트리퍼
KR20190110171A (ko) * 2018-03-19 2019-09-30 삼성디스플레이 주식회사 식각액 조성물 및 이를 이용한 금속 패턴과 어레이 기판의 제조 방법
US20200339919A1 (en) * 2019-04-24 2020-10-29 Fujifilm Electronic Materials U.S.A., Inc. Stripping compositions for removing photoresists from semiconductor substrates

Also Published As

Publication number Publication date
KR20230072123A (ko) 2023-05-24

Similar Documents

Publication Publication Date Title
JP6006711B2 (ja) 1級アルカノールアミンを含むlcd製造用フォトレジスト剥離液組成物
JP4773562B2 (ja) フォトレジスト用ストリッパー組成物
US8114825B2 (en) Photoresist stripping solution
US5753601A (en) Organic stripping composition
US6774097B2 (en) Resist stripper composition
KR101420571B1 (ko) 드라이필름 레지스트 박리제 조성물 및 이를 이용한 드라이필름 레지스트의 제거방법
KR100268108B1 (ko) 포토레지스트용 스트리퍼 조성물
WO2009125945A2 (ko) 포토레지스트 스트리퍼 조성물 및 이를 이용한 포토레지스트 박리방법
WO2011037300A1 (ko) 포토레지스트 스트리퍼 조성물 및 이를 이용한 포토레지스트 박리방법
KR101051438B1 (ko) 포토레지스트 스트리퍼 조성물 및 이를 이용한포토레지스트 박리방법
KR100544889B1 (ko) 포토레지스트용 스트리퍼 조성물
WO2011065603A1 (ko) 포토레지스트 스트리퍼 조성물 및 이를 이용한 포토레지스트 박리방법
WO2023090714A1 (ko) 친환경 포토레지스트 박리액 조성물
US6511547B1 (en) Dibasic ester stripping composition
KR100440484B1 (ko) 포토레지스트용 스트리퍼 조성물
KR100850163B1 (ko) 포토레지스트용 스트리퍼 조성물
WO2011031089A2 (ko) 세정액 조성물
WO2002095502A1 (en) Resist remover composition
KR100568558B1 (ko) 구리 배선용 포토레지스트 스트리퍼 조성물
KR20170088048A (ko) 포토레지스트 제거용 박리액 조성물
KR102224907B1 (ko) 드라이필름 레지스트 박리액 조성물
JP4165208B2 (ja) レジスト剥離方法
JP4671575B2 (ja) 超小型回路基板からナトリウム含有材料を除去するための方法および組成物
KR100544888B1 (ko) 구리 배선용 포토레지스트 스트리퍼 조성물
KR20080076535A (ko) N-메틸아세트아마이드를 포함하는 포토레지스트용 박리액조성물

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895921

Country of ref document: EP

Kind code of ref document: A1