WO2023090490A1 - 이온성 액체를 이용한 노말-헥산과 1-헥센의 분리방법 - Google Patents

이온성 액체를 이용한 노말-헥산과 1-헥센의 분리방법 Download PDF

Info

Publication number
WO2023090490A1
WO2023090490A1 PCT/KR2021/017055 KR2021017055W WO2023090490A1 WO 2023090490 A1 WO2023090490 A1 WO 2023090490A1 KR 2021017055 W KR2021017055 W KR 2021017055W WO 2023090490 A1 WO2023090490 A1 WO 2023090490A1
Authority
WO
WIPO (PCT)
Prior art keywords
hexene
hexane
ionic liquid
normal
separating
Prior art date
Application number
PCT/KR2021/017055
Other languages
English (en)
French (fr)
Inventor
홍은지
김태균
정경철
유강용
한승호
권정회
Original Assignee
(주)웨니
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)웨니 filed Critical (주)웨니
Publication of WO2023090490A1 publication Critical patent/WO2023090490A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C11/00Aliphatic unsaturated hydrocarbons
    • C07C11/02Alkenes
    • C07C11/107Alkenes with six carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/54Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition of unsaturated hydrocarbons to saturated hydrocarbons or to hydrocarbons containing a six-membered aromatic ring with no unsaturation outside the aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C7/00Purification; Separation; Use of additives
    • C07C7/20Use of additives, e.g. for stabilisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C9/00Aliphatic saturated hydrocarbons
    • C07C9/14Aliphatic saturated hydrocarbons with five to fifteen carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C9/00Aliphatic saturated hydrocarbons
    • C07C9/14Aliphatic saturated hydrocarbons with five to fifteen carbon atoms
    • C07C9/15Straight-chain hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/54Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids

Definitions

  • the present invention relates to a method for separating normal-hexane and 1-hexene having similar physical and chemical properties, and more particularly, to a method for separating 1-hexene from normal-hexane in a mixture of normal-hexane and 1-hexene using an ionic liquid. It's about how to separate.
  • 1,2-Hexanediol which is effective for preservation of cosmetics and natural extracts, is widely used as a cosmetic moisturizer and skin conditioning agent.
  • 1,2-Hexanediol has excellent compatibility with water and alcohol and does not significantly affect cosmetic formulations, and has both hydrophilic and hydrophobic groups.
  • the antiseptic power of 1,2-hexanediol is very high, and unlike other preservatives, even a small amount prevents organic matter from decaying by the action of microorganisms.
  • normal-hexanediol In order to obtain 1,2-hexanediol, a process of converting normal-hexane into 1-hexene is required, and although a large amount of normal-hexane and 1-hexene is mixed in unreacted or by-products remaining after the process, normal-hexane and 1-hexene - Hexene has a similar material composition and boiling point (normal-hexane 69°C, 1-hexene 60 ⁇ 65°C), so conventional fractional distillation methods such as extractive distillation or vacuum distillation have very low energy efficiency and are not easy to separate. It is currently being discarded without being properly separated and recovered.
  • ethanol a conversion product of biomass, which can be said to be a raw material of microorganisms, is used as a starting material.
  • 1,2-hexanediol a catalytic process for converting normal-hexane to 1-hexene is required. It has low problems.
  • Ionic liquids refer to substances in which cations and anions do not form crystals due to size asymmetry and exist in a liquid state.
  • ionic liquids have a ring structure containing nitrogen as shown in FIG. It is a molten salt composed of organic cations and smaller inorganic anions.
  • ionic liquids are those that they can be selectively synthesized and used according to the purpose of use.
  • FIG. 2 shows the types of representative cations and anions of ionic liquids.
  • Cations include Morpholinium, Imidazolium, quaternary ammonium, and quaternary phosphonium.
  • Numerous anions such as Br-, Cl-, NO 3 -, BF 4 -, and PF 6 - exist as anions, which are about 1,018 types of ions.
  • ionic liquids are also called designer materials because they can be used by designing various types of cations and anions according to the purpose.
  • the ionic liquid has little volatility and has physicochemical properties that can easily dissolve various organic or inorganic compounds, making it a catalyst. It shows excellent performance in various fields such as reaction solvent and separation medium.
  • the present invention solves the problem of not properly separating and recovering 1-hexene remaining in the process of converting normal-hexane to 1-hexene to obtain 1,2-hexanediol, which is effective for preserving cosmetics and natural extracts, and discarding it.
  • An object of the present invention is to provide a method for recovering 1-hexene remaining in a process of converting normal-hexane to 1-hexene using an ionic liquid at a high concentration.
  • Another object of the present invention is to increase the yield of 1-hexene by utilizing an ionic liquid in a catalytic process for converting normal-hexane to 1-hexene in a microbial fermentation-based 1,2-hexanediol production process, thereby producing high-purity 1,2-hexanediol. It is to provide a method for efficiently producing 2-hexanediol.
  • Another object of the present invention is to properly separate and recover 1-hexene that remains in the process of converting normal-hexane to 1-hexene and recycle it, thereby preventing environmental pollution caused by the disposal of organic solvents and at the same time improving energy efficiency. It also provides a way to increase it.
  • the present invention more specifically provides the following.
  • the present invention is a method for separating normal-hexane and 1-hexene, comprising: 1) mixing a mixture of normal-hexane and 1-hexene with an ionic liquid; 2) Stirring and stabilizing the mixed liquid; 3) A method for separating normal-hexane and 1-hexene using an ionic liquid, comprising the steps of separating 1-hexene from the bottom product, is provided.
  • the ionic liquid may be selected from among 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, and 1-Butyl-3-methylimidazolium tetrafluoroborate.
  • normal-hexane, 1-hexene, and the ionic liquid have a mixing ratio of 20 to 30: 20 to 30: 40 to 60% by weight.
  • the mixed solution of normal-hexane, 1-hexene, and ionic liquid is stirred at 200 to 300 rpm for 8 to 10 hours under the mixed solution temperature condition of 40 to 50 ° C.
  • the mixed solution of normal-hexane, 1-hexene, and ionic liquid is stabilized at room temperature for 2 to 3 hours after stirring.
  • the present invention has an effect of providing a method for recovering 1-hexene remaining in a process of converting normal-hexane to 1-hexene in a high concentration to obtain 1,2-hexanediol effective for preservation of cosmetics and natural extracts.
  • the present invention increases the yield of 1,2-hexanediol by utilizing an ionic liquid in the catalytic process of converting normal-hexane to 1-hexene in the microbial fermentation-based 1,2-hexanediol production process. It has the effect of providing a way to maximize production.
  • the present invention uses an ionic liquid that is not properly recovered and discarded for separation of normal-hexane and 1-hexene to achieve separation and recovery of 1-hexene, which could not be achieved by conventional extraction methods or catalytic reactions, thereby providing stability in the reaction process. It has the effect of preventing energy waste and providing a way to solve environmental pollution problems.
  • FIG. 3 is a flow chart showing the steps of separating normal-hexane and 1-hexene using an ionic liquid according to an embodiment of the present invention.
  • FIG. 3 is a flow chart showing the steps of separating normal-hexane and 1-hexene using an ionic liquid according to an embodiment of the present invention.
  • the separation method of normal-hexane and 1-hexene using an ionic liquid includes: 1) mixing a mixture of normal-hexane and 1-hexene with an ionic liquid (S1) ; 2) Stirring and stabilizing the mixed liquid (S2); 3) Separating 1-hexene from the bottom ionic liquid (S3).
  • the cation of the ionic liquid used in one embodiment of the present invention is tridecyl pentaethoxy methyl ammonium, 1-octylquinolinium, 1,3-dimethylimidazolium, methyl-methyl-methyl-imidazolium, 1-ethyl-3-methylimidazolium, 1-ethyl- 2,3-dimethylimidazolium, 1-butyl-3-methylimidazolium, 1-butyl-2,3-dimethylimidazolium, 1-hexyl-3-methylimidazolium,
  • It may be selected from the group consisting of 1-methyl-3-pentylimidazolium, 1-methyl-3-octylimidazolium, 1-butyl-4-methylpyridinium, and ethyldiisopropylmethylammonium.
  • the anion of the ionic liquid used in one embodiment of the present invention is acetate, bis[1,2-benzenediolato(2-)-O,O']-borate, tetracyanoborate, tetrafluoroborate, bis(methylsulfonyl)amide, bis (malonato(2-))borate, bis(oxalato(2-))borate, bis(salicylato(2-))-borate, bis(trifluoromethylsulfonyl)amide, bis(trifluoromethylsulfonyl)imide,
  • any one of the ionic liquids consisting of 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, and 1-Butyl-3-methylimidazolium tetrafluoroborate is used to separate normal-hexane and 1-hexene. can be selected as an ionic liquid.
  • 1-ethyl-3-methylimidazolium tetrafluoroborate may be selected as an ionic liquid used for separation of normal-hexane and 1-hexene.
  • the selected ionic liquid is stirred at 200 rpm in a vacuum state to remove impurities. can be removed.
  • a mixed solution of normal-hexane and 1-hexene is mixed with the ionic liquid to separate 1-hexene from the mixed solution of normal-hexane and 1-hexene.
  • normal-hexane, 1-hexene, and ionic liquid have a mixing ratio of 20 to 30: 20 to 30: 40 to 60% by weight (other volume% or mol%).
  • normal-hexane, 1-hexene, and ionic liquids are located at the bottom of the container due to the difference in specific gravity, and normal-hexane and 1-hexene are located on the upper layer of the ionic liquid, so the mixed solution
  • the mixed solution is stirred for 8 to 10 hours at 200 to 300 rpm under the mixed solution temperature condition of 40 to 50 ° C so that the mixture can react well.
  • the obtained 1-hexene can be confirmed using headspace-gas chromatography (HSGC), and the recovery rate of 1-hexene can be obtained as follows.
  • HSGC headspace-gas chromatography
  • the used ionic liquid can be recycled in the next step of separating normal-hexane and 1-hexene.
  • the present invention provides a method for recovering residual 1-hexene at high concentration in a process of converting normal-hexane to 1-hexene to obtain 1,2-hexanediol, which is effective for preserving cosmetics and natural extracts, for industrial use. have a possibility

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Analytical Chemistry (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

본 발명은 이온성 액체를 이용하여 물리화학적 성질이 서로 유사한 노말-헥산과 1-헥센의 혼합물 중에서 1-헥센을 노말-헥산으로부터 분리하는 방법에 관한 것으로, 본 발명에 따른 이온성 액체를 이용한 노말-헥산과 1-헥센의 분리방법은 1) 노말-헥산, 1-헥센의 혼합액을 이온성 액체에 혼합하는 단계; 2) 혼합된 액을 교반하여 안정화하는 단계; 3) 바닥 생성물로부터 1-헥센을 분리하는 단계로 이루어진다.

Description

이온성 액체를 이용한 노말-헥산과 1-헥센의 분리방법
본 발명은 물리화학적 성질이 서로 유사한 노말-헥산과 1-헥센의 분리방법에 관한 것으로, 보다 상세하게는 이온성 액체를 이용하여 노말헥산과 1-헥센의 혼합물 중에서 1-헥센을 노말-헥산으로부터 분리하는 방법에 관한 것이다.
화장품과 천연 추출물의 보존에 효과적인 1,2-헥산디올(1,2-Hexanediol)은 화장품 보습제, 스킨 컨디셔닝제로 널리 사용되고 있다. 1,2-헥산디올은 물과 알콜에 상용성이 우수하여 화장품 제형에 큰 영향을 주지 않으며, 친수성기와 소수성기를 모두 가지고 있다.
특히, 1,2-헥산디올의 방부력은 매우 높은 편으로 타 방부제와 달리, 소량만으로도 유기물이 미생물의 작용에 의해 부패되는 것을 막아준다.
1,2-헥산디올을 얻기 위해서는 노말-헥산을 1-헥센으로 전환하는 공정이 필요하며, 공정 후 남은 미반응물이나 부산물에 노말-헥산과 1-헥센이 다량 혼합되어 있지만, 노말-헥산과 1-헥센은 물질의 구성 및 끓는점이 유사하여(노말-헥산 69℃, 1-헥센 60~65℃) 기존의 추출증류나 감압증류 등의 분별증류 방법으로는 에너지 효율이 매우 떨어지며 분리 또한 쉽지 않아 적절하게 분리·회수되지 못하고 폐기되고 있는 실정이다.
최근 친환경 천연소재를 이용한 화장품 원료에 대한 관심이 증대되면서 미생물 발효산물을 이용한 화장품 소재 생산에 대한 니즈가 높아지고 있으며, 이에 따라 미생물의 원료라고 할 수 있는 바이오매스의 전환 산물인 에탄올을 출발물질로 이용하여 최종 산물인 1,2-헥산디올을 생산하고자 할 경우, 노말-헥산을 1-헥센으로 전환하는 촉매공정이 필요한데, 이 촉매공정은 1-헥센 및 최종 1,2-헥산디올의 수율이 매우 낮은 문제점을 가지고 있다.
이온성 액체(ionic liquids, ILs)는 양이온과 음이온이 크기의 비대칭성으로 인해 결정체를 이루지 못하고 액체상태로 존재하는 물질을 말하며, 일반적으로 이온성 액체는 도 1과 같이 질소를 포함하는 링구조의 유기 양이온과 보다 작은 크기의 무기 음이온으로 이루어져 있는 용융염을 말한다.
이온성 액체의 가장 큰 장점은 양이온과 음이온의 구조를 사용목적에 따라 선택적으로 합성하여 사용할 수 있다는 점이다.
도 2는 이온성 액체의 대표적인 양이온과 음이온의 종류를 나타낸다. 양이온은 Morpholinium, Imidazolium, 4급 암모늄, 4급 포스포늄 등이 있으며 음이온으로는 Br-, Cl-, NO3-, BF4-, PF6- 등 수많은 음이온이 존재하는데, 이는 약 1,018종의 이온성 액체를 합성할 수 있을 정도의 많은 조합이다. 이렇게 이온성 액체는 다양한 종류의 양이온과 음이온을 목적에 맞게 디자인하여 사용가능하기에 Designer material 이라고도 불린다.
또한, 이온성 액체는 휘발성이 거의 없고, 다양한 유기화합물 또는 무기화합물을 쉽게 용해시킬 수 있는 물리화학적 성질을 가지고 있어 촉매. 반응용매, 분리매체 등 여러 부문에서 우수한 성능을 보여준다.
본 발명은 화장품과 천연 추출물의 보존에 효과적인 1,2-헥산디올을 얻기 위해 노말-헥산을 1-헥센으로 전환하는 공정에서 잔류하는 1-헥센을 적절하게 분리회수하지 못하고 폐기하는 문제점을 해결하기 위해 창안된 것으로, 본 발명의 목적은 이온성 액체를 이용하여 노말-헥산을 1-헥센으로 전환하는 공정에서 잔류하는 1-헥센을 고농도로 회수하는 방법을 제공하는 것이다.
본 발명의 다른 목적은 미생물 발효기반의 1,2-헥산디올 생산공정에서 노말-헥산을 1-헥센으로 전환하는 촉매공정에 이온성 액체를 활용하여 1-헥센의 수율을 높힘으로써 고순도의 1,2-헥산디올을 효율적으로 생산하는 방법을 제공하는 것이다.
본 발명의 또 다른 목적은 노말-헥산을 1-헥센으로 전환하는 공정에서 잔류하여 폐기되어지는 1-헥센을 적절히 분리회수하여 재활용까지 함으로써 유기용매의 폐기에 따른 환경오염을 방지함과 동시에 에너지 효율도 높힐 수 있는 방법을 제공하는 것이다.
상기 목적을 달성하기 위하여 본 발명은 보다 구체적으로 이하의 것을 제공한다.
본 발명은 노말-헥산과 1-헥센의 분리방법으로서, 1) 노말-헥산, 1-헥센의 혼합액을 이온성 액체에 혼합하는 단계; 2) 혼합된 액을 교반하여 안정화하는 단계; 3) 바닥 생성물로부터 1-헥센을 분리하는 단계로 이루어지는, 이온성 액체를 이용한 노말-헥산과 1-헥센의 분리방법을 제공한다.
여기서 이온성 액체는 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, 1-Butyl-3-methylimidazolium tetrafluoroborate 중 어느 하나가 선택되어질 수 있다.
또한, 여기서 노말-헥산, 1-헥센, 이온성 액체는 20~30 : 20~30 : 40~60 중량%의 혼합비율을 가진다.
또한, 여기서 노말-헥산, 1-헥센, 이온성 액체의 혼합액은 40~50℃의 혼합액 온도조건에서 200~300rpm으로 8~10시간 동안 교반된다.
또한, 여기서 노말-헥산, 1-헥센, 이온성 액체의 혼합액은 교반후 2~3시간 동안 상온에서 안정화된다.
본 발명은 화장품과 천연 추출물의 보존에 효과적인 1,2-헥산디올을 얻기 위해 노말-헥산을 1-헥센으로 전환하는 공정에서 잔류하는 1-헥센을 고농도로 회수하는 방법을 제공하는 효과를 가진다.
본 발명은 미생물 발효기반의 1,2-헥산디올 생산공정에서 노말-헥산을 1-헥센으로 전환하는 촉매공정에 이온성 액체를 활용하여 1-헥센의 수율을 높힘으로써 1,2-헥산디올의 생산량을 극대화하는 방법을 제공하는 효과를 가진다.
본 발명은 적절히 회수되지 못하고 폐기되는 이온성 액체를 노말-헥산, 1-헥센의 분리에 사용하여 기존의 추출방법이나 촉매반응으로 이루지 못한 1-헥센의 분리회수를 달성함으로써 반응공정의 안정성을 제공하며, 에너비 낭비를 막고, 환경오염문제도 해결하는 방법을 제공하는 효과를 가진다.
아울러 여기에서 명시적으로 언급되지 않은 효과라 하더라도, 이하의 명세서에 기재되어 있는 본 발명의 기술적 특징에 의해 기대되는 효과 및 그 잠정적인 효과는 본 발명의 명세서에 기재된 것과 같이 취급되어야 할 것이다.
도 1은 이온성 액체로서 octyl methyl imidazolium tetrafluoroborate의 구조식을 나타내고 있다.
도 2는 이온성 액체의 대표적인 양이온과 음이온을 나타내고 있다.
도 3은 본 발명의 일 실시예에 따라 이온성 액체를 이용하여 노말-헥산과 1-헥센을 분리하는 단계를 나타내는 흐름도이다.
[부호의 설명]
S1 : 이온성 액체를 이용한 노말-헥산과 1-헥센의 분리 1단계
S2 : 이온성 액체를 이용한 노말-헥산과 1-헥센의 분리 2단계
S3 : 이온성 액체를 이용한 노말-헥산과 1-헥센의 분리 3단계
이하, 첨부된 도면을 참조하면서 본 발명의 실시를 위한 구체적인 내용을 설명한다.
본 발명을 설명함에 있어 관련된 공지기능에 대하여 이 분야의 기술자에게 자명한 사항으로서 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략한다.
또한, 본 발명의 설명에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정하여 해석되어서는 안되며, 발명자는 그 자신의 발명을 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야 할 것이다.
도 3은 본 발명의 일 실시예에 따라 이온성 액체를 이용하여 노말-헥산과 1-헥센을 분리하는 단계를 나타내는 흐름도이다.
도 3에 의하면 본 발명의 일 실시예에 따른 이온성 액체를 이용한 노말-헥산과 1-헥센의 분리방법은 1) 노말-헥산, 1-헥센의 혼합액을 이온성 액체에 혼합하는 단계(S1); 2) 혼합된 액을 교반하여 안정화하는 단계(S2); 3) 바닥의 이온성 액체로부터 1-헥센을 분리하는 단계(S3)로 이루어진다.
본 발명의 일 실시예에 사용되는 이온성 액체의 양이온은 tridecyl pentaethoxy methyl ammonium, 1-octylquinolinium, 1,3-dimethylimidazolium, methyl-methyl-methyl-imidazolium, 1-ethyl-3-methylimidazolium, 1-ethyl-2,3-dimethylimidazolium, 1-butyl-3-methylimidazolium, 1-butyl-2,3-dimethylimidazolium, 1-hexyl-3-methylimidazolium,
1-methyl-3-pentylimidazolium, 1-methyl-3-octylimidazolium, 1-butyl-4-methylpyridinium, ethyldiisopropylmethylammonium로 이루어지는 그룹에서 선택되어질 수 있다.
또한, 본 발명의 일 실시예에 사용되는 이온성 액체의 음이온은 acetate, bis[1,2-benzenediolato(2-)-O,O’]-borate, tetracyanoborate, tetrafluoroborate, bis(methylsulfonyl)amide, bis(malonato(2-))borate, bis(oxalato(2-))borate, bis(salicylato(2-))-borate, bis(trifluoromethylsulfonyl)amide, bis(trifluoromethylsulfonyl)imide,
trifluoromethylsulfonate, methylsulfonate, methylsulfate, ethylsulfate, octylsulfate, chloride, dimethylphosphate, hydrogensulfate, N-methylsulfonylacetamide, 2-(2-methoxyethoxy)ethylsulfate, dicyanamide, bis(methylsulfonyl)amide, hexafluorophosphate, thiocyanate, p-toluenesulfonate, salicylate로 이루어지는 그룹에서 선택되어질 수 있다.
바람직하게는 상기 그룹의 양이온과 음이온을 각각 조합하여 합성된
1-ethyl-3-methylimidazolium tetrafluoroborate, 1-hexyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, 1-Butyl-3-methylimidazolium tetrafluoroborate로 이루어지는 이온성 액체 중에서 어느 하나를 노말-헥산과 1-헥센의 분리에 사용되는 이온성 액체로 선정할 수 있다.
보다 바람직하게는 1-ethyl-3-methylimidazolium tetrafluoroborate를 노말-헥산과 1-헥센의 분리에 사용되는 이온성 액체로 선정할 수 있다.
본 발명의 일 실시예에 따르면 노말-헥산과 1-헥센의 분리에 사용하기 위해 선정된 이온성 액체에는 휘발성 불순물이 첨가되어 있을 수 있기 때문에 선정된 이온성 액체를 진공상태에서 200rpm으로 교반하여 불순물을 제거할 수 있다.
이온성 액체가 선정되면 노말-헥산과 1-헥센의 혼합용액을 이온성 액체에 혼합하여 노말-헥산과 1-헥센의 혼합용액으로부터 1-헥센을 분리하게 된다.
이때, 노말-헥산, 1-헥센, 이온성 액체는 20~30 : 20~30 : 40~60 중량%(기타 체적% 또는 몰%)의 혼합비율을 가진다.
또한, 노말-헥산, 1-헥센, 이온성 액체는 비중의 차이로 인하여 이온성 액체는 용기의 바닥쪽에 위치하게 되고, 노말-헥산과 1-헥센은 이온성 액체의 상층에 위치하게 되므로, 혼합액이 잘 혼화하여 반응할 수 있도록 40~50℃의 혼합액 온도조건에서 200~300rpm으로 8~10시간 동안 혼합액을 교반한다.
한편, 노말-헥산은 구성 탄소들이 단일결합(C-C)을 이루고 있고, 1-헥센은 구성 탄소 중의 1번 탄소가 이중결합(C=C)을 이루고 있어 이중결합(C=C) 부위에 많은 전자구름을 형성하게 된다.
따라서 교반과정에서 이온성 액체와 1-헥센 사이에 분자 상호작용을 일으켜 1-헥센의 이중결합에 분포하고 있는 전자구름이 이온성 액체의 양이온쪽으로 이동하게 되고, 교반 후 상온에서 2~3시간 동안 혼합액을 안정화시키면 1-헥센이 바닥쪽에서 얻어진다.
얻어진 1-헥센은 headspace-gas chromatography(HSGC)를 사용하여 확인할 수 있으며, 1-헥센의 회수율은 아래와 같이 구해질 수 있다.
1-헥센의 회수율={(처리전 혼합액 중의 1-헥센의 중량% -처리후 혼합액 중의 1-헥센의 중량%) ÷ 처리전 혼합액 중의 1-헥센의 중량%} x 100
아울러 사용된 이온성 액체는 다음의 노말-헥산과 1-헥센의 분리공정 시 재활용할 수 있다.
이상에서 본 발명에 대한 기술사상을 첨부도면과 함께 서술하였지만, 이는 본 발명의 바람직한 실시예를 예시적으로 설명한 것이지 본 발명을 한정하는 것은 아니다.
또한, 이 기술분야에서 통상의 지식을 가진 사람이라면 누구나 본 발명의 기술사상의 범주를 이탈하지 않는 범위 내에서 본 발명의 다양한 변형 및 모방이 가능함은 자명한 사실이다.
본 발명은 화장품과 천연 추출물의 보존에 효과적인 1,2-헥산디올을 얻기 위해 노말-헥산을 1-헥센으로 전환하는 공정에서, 잔류하는 1-헥센을 고농도로 회수하는 방법을 제공함으로써 산업상의 이용가능성을 가진다.

Claims (5)

  1. 노말-헥산과 1-헥센의 분리방법으로서,
    1) 노말-헥산, 1-헥센의 혼합액을 이온성 액체에 혼합하는 단계;
    2) 혼합된 액을 교반하여 안정화하는 단계;
    3) 바닥의 이온성 액체로부터 1-헥센을 분리하는 단계로 이루어지는, 이온성 액체를 이용한 노말-헥산과 1-헥센의 분리방법.
  2. 제1항에 있어서,
    상기 이온성 액체는 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-hexyl-3-methylimidazolium bis (trifluoromethylsulfonyl)imide, 1-Butyl-3-methylimidazolium tetrafluoroborate 중 어느 하나인, 이온성 액체를 이용한 노말-헥산과 1-헥센의 분리방법.
  3. 제2항에 있어서,
    노말-헥산, 1-헥센, 이온성 액체가 20~30 : 20~30 : 40~60 중량%의 혼합비율을 가지는, 이온성 액체를 이용한 노말-헥산과 1-헥센의 분리방법.
  4. 제3항에 있어서,
    노말-헥산, 1-헥센, 이온성 액체의 혼합액을 40~50℃의 혼합액 온도조건에서 200~300rpm으로 8~10시간 동안 교반하는, 이온성 액체를 이용한 노말-헥산과 1-헥센의 분리방법.
  5. 제4항에 있어서,
    노말-헥산, 1-헥센, 이온성 액체의 혼합액을 교반후 2~3시간을 상온에서 안정화시키는, 이온성 액체를 이용한 노말-헥산과 1-헥센의 분리방법.
PCT/KR2021/017055 2021-11-16 2021-11-19 이온성 액체를 이용한 노말-헥산과 1-헥센의 분리방법 WO2023090490A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0157360 2021-11-16
KR20210157360 2021-11-16

Publications (1)

Publication Number Publication Date
WO2023090490A1 true WO2023090490A1 (ko) 2023-05-25

Family

ID=86397123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/017055 WO2023090490A1 (ko) 2021-11-16 2021-11-19 이온성 액체를 이용한 노말-헥산과 1-헥센의 분리방법

Country Status (2)

Country Link
KR (1) KR20230071703A (ko)
WO (1) WO2023090490A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5460700A (en) * 1994-05-19 1995-10-24 Lloyd Berg Separation of 1-hexene from hexane by extractive distillation
EP0476400B1 (de) * 1990-09-18 1998-01-21 BASF Aktiengesellschaft Verfahren zur Abtrennung von Cyclohexen aus Gemischen mit Benzol und Cyclohexan
JP2010138169A (ja) * 2008-11-14 2010-06-24 Asahi Kasei Chemicals Corp シクロヘキセンの精製及び製造方法
US20150251105A1 (en) * 2014-03-06 2015-09-10 Gtc Technology Us Llc Process of separating unsaturated hydrocarbons from saturated hydrocarbons wtih low energy consumption

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0476400B1 (de) * 1990-09-18 1998-01-21 BASF Aktiengesellschaft Verfahren zur Abtrennung von Cyclohexen aus Gemischen mit Benzol und Cyclohexan
US5460700A (en) * 1994-05-19 1995-10-24 Lloyd Berg Separation of 1-hexene from hexane by extractive distillation
JP2010138169A (ja) * 2008-11-14 2010-06-24 Asahi Kasei Chemicals Corp シクロヘキセンの精製及び製造方法
US20150251105A1 (en) * 2014-03-06 2015-09-10 Gtc Technology Us Llc Process of separating unsaturated hydrocarbons from saturated hydrocarbons wtih low energy consumption

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AYUSO MIGUEL; VARELA JORGE; GARCÍA-SOMOZA NOELIA; GARCÍA JULIÁN; RODRÍGUEZ FRANCISCO: "Experimental screening of ionic liquids as mass agents in the n-hexane/1-hexene extractive distillation", FLUID PHASE EQUILIBRIA, ELSEVIER, AMSTERDAM, NL, vol. 549, 27 August 2021 (2021-08-27), AMSTERDAM, NL, XP086835317, ISSN: 0378-3812, DOI: 10.1016/j.fluid.2021.113205 *
LEI, Z. ; ARLT, W. ; WASSERSCHEID, P.: "Separation of 1-hexene and n-hexane with ionic liquids", FLUID PHASE EQUILIBRIA, ELSEVIER, AMSTERDAM, NL, vol. 241, no. 1-2, 15 March 2006 (2006-03-15), AMSTERDAM, NL, pages 290 - 299, XP024936961, ISSN: 0378-3812, DOI: 10.1016/j.fluid.2005.12.024 *

Also Published As

Publication number Publication date
KR20230071703A (ko) 2023-05-23

Similar Documents

Publication Publication Date Title
CN103880596B (zh) 一种适合工业化生产的硝酸布康唑中间体的制备方法
CN110128235B (zh) 一种低共熔溶剂及其制备方法与作为萃取剂的应用
CN110003299A (zh) 一种倍他米松17α-丙酸酯的制备方法
CN103012252A (zh) 一种从吡啶盐酸盐水溶液中回收吡啶的方法
CN109704926B (zh) 抗癌活性分子骨架1,4-烯炔类化合物及其制备方法与应用
WO2008140496A2 (en) Preparation and purification of ionic liquids and precursors
CA1178967A (en) Etherification process for hexitols and anhydrohexitols
WO2023090490A1 (ko) 이온성 액체를 이용한 노말-헥산과 1-헥센의 분리방법
CN104860797A (zh) 基于氯化胆碱深共融溶剂的异丙醚-异丙醇共沸物精馏分离方法
CN110218866A (zh) 一种p204掺杂聚噻吩轻稀土固相萃取剂的制备方法及其应用
CN104927056B (zh) 一种双组份催化体系合成乙烯基氟硅油的制备方法
CN104860830B (zh) 一种右旋苯乙胺盐及右旋苯乙胺的制备方法
CN105001055A (zh) 基于混合溶剂作为萃取剂的异丙醇-乙腈共沸物精馏分离方法
CN107814755A (zh) 一种阴离子型双子表面活性剂及其制备方法
CN102675108B (zh) 一种除虫菊酯粗提物的精制方法
CN106518618A (zh) 一种混合溶剂连续萃取精馏分离异丙醇—异丙醚共沸物的方法
CN106831338B (zh) 一种高纯度二氟乙醇的制备方法
CN101709055A (zh) 离子液体的合成制备方法
CN107382697A (zh) 一种高效拆分制备(s)‑四氢‑1‑萘甲酸的方法
CN107382743A (zh) 一种萃取精馏提纯精制三乙胺的方法
CN104788296B (zh) 盐酸考来维仑杂质甲癸醚的制备方法
CN1821227A (zh) 一种离子液体的制备方法
CN107474008B (zh) 一种α-甲酰基四氢吡啶类化合物的合成方法
CN106916072A (zh) 一种五(二甲氨基)钽合成方法
CN111499497A (zh) 一种麝香草酚的制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21964876

Country of ref document: EP

Kind code of ref document: A1