WO2023090201A1 - プロピレン重合体組成物からなる無延伸フィルム - Google Patents

プロピレン重合体組成物からなる無延伸フィルム Download PDF

Info

Publication number
WO2023090201A1
WO2023090201A1 PCT/JP2022/041517 JP2022041517W WO2023090201A1 WO 2023090201 A1 WO2023090201 A1 WO 2023090201A1 JP 2022041517 W JP2022041517 W JP 2022041517W WO 2023090201 A1 WO2023090201 A1 WO 2023090201A1
Authority
WO
WIPO (PCT)
Prior art keywords
propylene
mass
based polymer
molecular weight
polymer
Prior art date
Application number
PCT/JP2022/041517
Other languages
English (en)
French (fr)
Inventor
智也 大川
篤太郎 木村
博貴 志水
泰河 天野
淳 尾留川
友章 水川
Original Assignee
株式会社プライムポリマー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社プライムポリマー filed Critical 株式会社プライムポリマー
Priority to KR1020247012650A priority Critical patent/KR20240069765A/ko
Priority to CN202280076248.9A priority patent/CN118251449A/zh
Publication of WO2023090201A1 publication Critical patent/WO2023090201A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/16Elastomeric ethene-propene or ethene-propene-diene copolymers, e.g. EPR and EPDM rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene

Definitions

  • the present invention relates to an unstretched film made of a propylene polymer composition and a laminate containing the film.
  • Polyolefins (olefin polymers) represented by polyethylene and polypropylene require little energy for production, are lightweight, and have excellent recyclability. Reuse, Recycle) is gaining more attention. Polyolefins are used in various fields such as daily necessities, kitchen utensils, packaging films, home electric appliances, machine parts, electric parts, and automobile parts.
  • polypropylene has excellent rigidity and heat resistance, but is inferior to polyethylene in cold resistance and impact resistance. has been proposed (see, for example, Patent Documents 1 to 4).
  • unstretched polypropylene film has an excellent balance of rigidity and heat resistance. In some cases, the rigidity may not be sufficient.
  • An object of the present invention is to obtain an unstretched film with improved rigidity.
  • the present invention relates to the following [1] to [10].
  • a propylene-based polymer (a1) having a limiting viscosity [ ⁇ ] in the range of 10 to 12 dl/g measured in a tetralin solvent at 135°C was measured in a range of 20 to 50% by mass and in a tetralin solvent at 135°C.
  • the propylene polymer (a2) having a limiting viscosity [ ⁇ ] in the range of 0.5 to 1.5 dl/g is added in the range of 50 to 80% by mass [however, the total amount of (a1) and (a2) is 100 % by mass.
  • An unstretched film characterized by comprising a propylene polymer composition comprising:
  • the propylene polymer composition is characterized by being a composition containing the propylene-based polymer (A) in the range of 1 to 20% by mass and the propylene homopolymer (B1) in the range of 80 to 99% by mass.
  • the propylene polymer composition is characterized by being a composition containing the propylene-based polymer (A) in the range of 15 to 40% by mass and the propylene homopolymer (B2) in the range of 60 to 85% by mass.
  • the propylene-based polymer (A) has a melt flow rate (MFR) measured at a measurement temperature of 230°C and a load of 2.16 kg in accordance with JIS K 7210 in the range of 0.01 to 5 g/10 minutes and 230°C.
  • MFR melt flow rate
  • the propylene-based polymer (A) has a high-molecular-weight region having a molecular weight of 1,500,000 or more, which accounts for 7% or more of the total area surrounded by the molecular weight distribution curve measured by gel permeation chromatography (GPC).
  • GPC gel permeation chromatography
  • the propylene-based polymer (A) has two peaks in the molecular weight distribution curve measured by GPC, and the ratio (MH/ The unstretched film according to item [1], which is a polymer having ML) of 50 or more.
  • the propylene homopolymer (B1) is characterized by being a polymer having a weight average molecular weight (Mw) to number average molecular weight (Mn) ratio (Mw/Mn) in the range of 4.0 to 8.0.
  • Mw weight average molecular weight
  • Mn number average molecular weight
  • the unstretched film according to any one of items [1] to [6].
  • a laminate comprising the unstretched film according to any one of items [1] to [9].
  • the unstretched film of the present invention has good transparency and rigidity, so it can be used as a packaging film in a wide range of packaging fields.
  • the unstretched film of the present invention [hereinafter sometimes simply referred to as "film”. ] has an intrinsic viscosity [ ⁇ ] of 10 to 12 dl/g measured in a tetralin solvent at 135°C.
  • the propylene-based polymer (a1) in the range of 20 to 50% by mass, and the propylene-based polymer ( a2) in the range of 50 to 80% by mass [where the total amount of (a1) and (a2) is 100% by mass. ].
  • intrinsic viscosity [ ⁇ ] measured in a tetralin solvent at 135°C is also simply referred to as "intrinsic viscosity [ ⁇ ]".
  • the intrinsic viscosity [ ⁇ ] of the propylene-based polymer (a1) which is one of the components contained in the propylene-based polymer (A) according to the present invention, is in the range of 10 to 12 dl/g, preferably 10.5. It is in the range of ⁇ 11.5 dl/g.
  • the mass fraction of the propylene-based polymer (a1) in the propylene-based polymer (A) is in the range of 20 to 50% by mass, preferably 20 to 45% by mass, more preferably 20 to 40% by mass, More preferably, it is in the range of 22-40% by mass.
  • Examples of the propylene-based polymer (a1) according to the present invention include propylene homopolymers and copolymers of propylene and ⁇ -olefins having 2 to 8 carbon atoms (excluding propylene).
  • Examples of ⁇ -olefins having 2 to 8 carbon atoms include ethylene, 1-butene, 1-hexene, 1-octene and 4-methyl-1-pentene. Ethylene is preferred as these ⁇ -olefins.
  • One or more ⁇ -olefins can be used.
  • the content of structural units derived from propylene is usually 90% by mass or more, preferably 95% by mass or more, more preferably 98% by mass or more. and the content of structural units derived from ⁇ -olefins having 2 to 8 carbon atoms (excluding propylene) is usually 10% by mass or less, preferably 5% by mass or less, more preferably 2% by mass or less. is.
  • the content ratio can be measured by 13 C-NMR.
  • the film formability tends to deteriorate and the film surface appearance tends to deteriorate. Further, when the intrinsic viscosity [ ⁇ ] of the propylene-based polymer (a1) is less than 10 dl/g, the obtained film tends to have insufficient rigidity and heat resistance.
  • the mass fraction of the propylene-based polymer (a1) is less than 20% by mass, the resulting polymer composition tends to have insufficient melt tension, and the resulting film tends to have insufficient rigidity and heat resistance. If it exceeds 50% by mass, it tends to cause poor appearance during film molding.
  • the propylene-based polymer (a1) can be used alone or in combination of two or more.
  • the intrinsic viscosity [ ⁇ ] of the propylene-based polymer (a2) which is one of the components contained in the propylene-based polymer (A) according to the present invention, is preferably in the range of 0.5 to 1.5 dl/g. is in the range 0.6-1.5 dl/g, more preferably 0.8-1.5 dl/g.
  • the mass fraction of the propylene-based polymer (a2) in the propylene-based polymer (A) is in the range of 50 to 80% by mass, preferably 55 to 80% by mass, more preferably 60 to 80% by mass, More preferably, it is in the range of 60-78% by mass.
  • Examples of the propylene-based polymer (a2) according to the present invention include propylene homopolymers and copolymers of propylene and ⁇ -olefins having 2 to 8 carbon atoms (excluding propylene).
  • Examples of ⁇ -olefins having 2 to 8 carbon atoms include ethylene, 1-butene, 1-hexene, 1-octene and 4-methyl-1-pentene. Ethylene is preferred as these ⁇ -olefins.
  • One or more ⁇ -olefins can be used.
  • the content of structural units derived from propylene is usually 90% by mass or more, preferably 93% by mass or more, more preferably 94% by mass or more. and the content of structural units derived from ⁇ -olefins having 2 to 8 carbon atoms (excluding propylene) is usually 10% by mass or less, preferably 7% by mass or less, more preferably 6% by mass or less. is.
  • the content ratio can be measured by 13 C-NMR.
  • the melt tension of the propylene-based polymer (A) is insufficient, while the intrinsic viscosity [ ⁇ ] is 1.5 dl. /g, the viscosity tends to be high and the film formability tends to deteriorate.
  • the mass fraction of the propylene-based polymer (a2) is less than 50% by mass, it tends to cause poor appearance during film molding, and when it exceeds 80% by mass, the melt tension of the propylene-based polymer (A) In addition, the rigidity and heat resistance of the resulting film tend to be insufficient.
  • the propylene-based polymer (a2) can be used alone or in combination of two or more.
  • Additives such as an antioxidant, a neutralizing agent, a flame retardant, and a crystal nucleating agent can be added to the propylene-based polymer (A) according to the present invention, if necessary. Additives can be used alone or in combination of two or more. The proportion of the additive is not particularly limited and can be adjusted as appropriate.
  • the propylene-based polymer (A) according to the present invention has a melt flow rate (MFR) measured at 230° C. under a load of 2.16 kg, preferably from 0.01 to 5 g/10 minutes, more preferably from 0.05 to 4 g/10 min, more preferably in the range of 0.1 to 3 g/10 min.
  • MFR melt flow rate
  • the propylene-based polymer (A) according to the present invention preferably has a melt tension (MT) measured at 230°C in the range of 5 to 30 g, more preferably 7 to 25 g, and even more preferably 10 to 20 g.
  • MT melt tension
  • the melt tension (MT) of the propylene-based polymer (A) in the present invention can be measured using the following equipment and conditions.
  • the propylene-based polymer (A) according to the present invention is the total area of the region surrounded by the molecular weight distribution curve measured by gel permeation chromatography (GPC).
  • the area ratio of the high molecular weight region with a molecular weight of 1,500,000 or more (corresponding to the mass ratio of the high molecular weight component with a molecular weight of 1,500,000 or more) is preferably 7% or more, more preferably 10% or more, and still more preferably 12%. That's it.
  • the upper limit of the area ratio is, for example, 30%, preferably 25%.
  • the area ratio of the high-molecular-weight region occupies a specific ratio or more means that the propylene-based polymer (A) contains a high-molecular-weight component having a molecular weight of 1,500,000 or more. At least part of this high molecular weight component is a high molecular weight component having an intrinsic viscosity [ ⁇ ] of 10 to 12 dl/g. Therefore, if the proportion of the high molecular weight component is within the above range, the melt tension of the propylene-based polymer (A) will be more excellent.
  • the propylene-based polymer (A) according to the present invention preferably has two peaks in the molecular weight distribution curve measured by GPC.
  • the ratio (MH/ML) of the peak molecular weight (MH) on the high molecular weight side and the peak molecular weight (ML) on the low molecular weight side is preferably 50 or more, more preferably 70 or more, and still more preferably 90 or more.
  • the upper limit of the ratio (MH/ML) is, for example, 500, preferably 300.
  • the fact that the molecular weight distribution curve has two peaks and MH/ML is a specific value or more indicates that the polymer has a high content of high molecular weight components and a high intrinsic viscosity [ ⁇ ]. Therefore, the propylene-based polymer (A) having such an aspect contributes to improvement of melt tension and improvement of rigidity and heat resistance when formed into a film.
  • the propylene-based polymer (A) according to the present invention has a peak molecular weight ML on the low molecular weight side of the molecular weight distribution curve measured by GPC, from the viewpoint of viscosity and film formability, preferably 100,000 or less, more preferably It is 80,000 or less, more preferably 50,000 or less.
  • ⁇ Method for producing propylene-based polymer (A)>> As the method for producing the propylene-based polymer (A) according to the present invention, various known production methods can be mentioned. After that, the propylene-based polymer (a1) and the propylene-based polymer (a2) are mixed or melt-kneaded in the above range to obtain the propylene-based polymer (A) (1); A method (2) of obtaining the propylene-based polymer (A) by producing the coalescence (a1) and the propylene-based polymer (a2) in one polymerization system or two or more polymerization systems can be mentioned.
  • the propylene-based polymer (a1), the propylene-based polymer (a2) and, if necessary, additives and the like are mixed using a Henschel mixer, a V-type blender, a tumbler blender, a ribbon blender, or the like. Then, by melt-kneading using a single-screw extruder, a multi-screw extruder, a kneader, a Banbury mixer, or the like, a high-quality propylene-based polymer (A) in which the above components are uniformly dispersed and mixed can be obtained. can.
  • the resin temperature during melt-kneading is usually 180 to 280°C, preferably 200 to 260°C.
  • a propylene-based polymer (A) containing a relatively high-molecular-weight propylene-based polymer (a1) and a relatively low-molecular-weight propylene-based polymer (a2) is produced by multistage polymerization of two or more stages. can be obtained. Additives may be added to the obtained propylene-based polymer (A) as necessary.
  • a preferred method for producing the propylene-based polymer (A) includes the above-mentioned method (2). are used together, and a method of polymerizing in two or more stages of multi-stage polymerization can be mentioned.
  • propylene or propylene and an ⁇ -olefin having 2 to 8 carbon atoms are polymerized substantially in the absence of hydrogen, and the intrinsic viscosity [ ⁇ ] is 10. to 12 dl/g, preferably 10.5 to 11.5 dl/g relatively high molecular weight propylene polymer (a1) in propylene polymer (A) 20 to 50 mass%, preferably 20 to 45% by mass, more preferably 20 to 40% by mass, to produce a relatively low-molecular-weight propylene-based polymer (a2) in the second and subsequent polymerizations.
  • the intrinsic viscosity [ ⁇ ] of the relatively low-molecular-weight propylene-based polymer (a2) produced in the second and subsequent polymerizations is 0.5 to 1.5 dl/g, preferably 0.6 to 1 .5 dl/g, more preferably 0.8 to 1.5 dl/g.
  • This intrinsic viscosity [ ⁇ ] is the intrinsic viscosity [ ⁇ ] of the propylene-based polymer produced in that stage alone, and the intrinsic viscosity [ ⁇ ] of the entire propylene-based polymer including the propylene-based polymer up to the previous stage of that stage is do not have.
  • the MFR of the finally obtained propylene-based polymer (A) is preferably 0.01 to 5 g/10 min, more preferably 0.05 to 4 g/10 min, and further It is preferably adjusted to 0.1 to 3 g/10 minutes.
  • the method for adjusting the intrinsic viscosity [ ⁇ ] of the propylene-based polymer produced in the second stage and thereafter is not particularly limited, but a method using hydrogen as a molecular weight modifier is preferred.
  • the production order (polymerization order) of the propylene-based polymer (a1) and the propylene-based polymer (a2) in the first stage, the propylene-based polymer having a relatively high molecular weight is prepared substantially in the absence of hydrogen.
  • a relatively low-molecular-weight propylene-based polymer (a2) for example, in the presence of hydrogen in the second step or later.
  • the production order can be reversed, after producing a relatively low-molecular-weight propylene-based polymer (a2) in the first stage, a relatively high-molecular-weight propylene-based polymer is produced in the second and subsequent stages.
  • Each stage of the multi-stage polymerization can be carried out continuously or batchwise, preferably batchwise.
  • the propylene-based polymer (A) containing the propylene-based polymer (a1) and the propylene-based polymer (a2) obtained by multi-stage polymerization by a batch system contains the propylene-based polymer (a1), which is an ultra-high molecular weight component.
  • a film is obtained which is well dispersed and thus has excellent stiffness and heat resistance.
  • composition unevenness may occur between polymer particles due to residence time distribution, and fisheyes in the film may increase.
  • a film with less fish eyes can be obtained. Therefore, by adopting the batch method, a film with few fish eyes can be obtained in spite of using the propylene-based polymer (a1) having a high molecular weight.
  • the homopolymerization of propylene or the polymerization of propylene with an ⁇ -olefin having 2 to 8 carbon atoms can be carried out by known methods such as slurry polymerization and bulk polymerization. method can be done. In addition, it is preferable to use a polypropylene production catalyst, which will be described later.
  • the conditions for producing the propylene-based polymer (a1) are as follows: in the absence of hydrogen, the starting monomers are polymerized at a temperature of preferably 20 to 80° C., more preferably 40 to 70° C., and the polymerization pressure is generally normal pressure. It is preferably produced by bulk polymerization under conditions of up to 9.8 MPa, preferably 0.2 to 4.9 MPa.
  • the conditions for producing the propylene-based polymer (a2) include starting monomers at a polymerization temperature of preferably 20 to 80° C., more preferably 40 to 70° C., and a polymerization pressure of generally normal pressure to 9.8 MPa, preferably It is preferably produced by polymerization under conditions of 0.2 to 4.9 MPa and in the presence of hydrogen as a molecular weight modifier.
  • Catalysts for producing polypropylene that can be used for producing the propylene-based polymer (a1), the propylene-based polymer (a2) and the propylene-based polymer (A) include, for example, It can be formed from a solid catalyst component containing magnesium, titanium and halogen as essential components, an organometallic compound catalyst component such as an organoaluminum compound, and an electron-donating compound catalyst component such as an organosilicon compound. As a thing, the following catalyst components can be used.
  • Solid catalyst component As the carrier constituting the solid catalyst component, a carrier obtained from metallic magnesium, alcohol, and halogen and/or halogen-containing compound is preferable.
  • metal magnesium granular, ribbon-shaped, powdered magnesium, etc. can be used.
  • Metal magnesium is preferably not coated with magnesium oxide or the like on its surface.
  • the alcohol it is preferable to use a lower alcohol having 1 to 6 carbon atoms.
  • ethanol is used to obtain a carrier that significantly improves the expression of catalytic performance.
  • the amount of alcohol to be used is preferably 2 to 100 mol, more preferably 5 to 50 mol, per 1 mol of metallic magnesium. 1 type(s) or 2 or more types can be used for alcohol.
  • Halogen is preferably chlorine, bromine or iodine, preferably iodine.
  • MgCl 2 and MgI 2 are preferable.
  • the amount of the halogen or halogen-containing compound to be used is usually 0.0001 gram-atom or more, preferably 0.0005 gram-atom or more, and further It is preferably 0.001 gram-atom or greater. Halogens and halogen-containing compounds can be used singly or in combination of two or more.
  • a method of obtaining a carrier by reacting metallic magnesium, an alcohol, and a halogen and/or a halogen-containing compound includes, for example, metallic magnesium, an alcohol, and a halogen and/or a halogen-containing compound, under reflux (e.g., about 79° C.) until generation of hydrogen gas is no longer observed (usually for 20 to 30 hours).
  • the reaction is preferably carried out in an inert gas atmosphere such as nitrogen gas or argon gas.
  • the obtained carrier When the obtained carrier is used for the synthesis of the solid catalyst component, it may be dried or washed with an inert solvent such as heptane after filtering.
  • the obtained carrier is nearly granular and has a sharp particle size distribution. Furthermore, the variation in particle size is very small even for individual particles.
  • the sphericity (S) represented by the following formula (I) is less than 1.60, particularly less than 1.40, and the particle size distribution index (P) represented by the following formula (II) is preferably less than 5.0, especially less than 4.0.
  • E1 represents the projected contour length of the particle
  • E2 represents the perimeter of a circle equal to the projected area of the particle.
  • D90 refers to the particle diameter corresponding to a mass cumulative fraction of 90%. That is, it indicates that the sum of the mass of particles smaller than the particle diameter represented by D90 is 90% of the total mass of all particles.
  • D10 refers to the particle diameter corresponding to a mass cumulative fraction of 10%.
  • the solid catalyst component is usually obtained by bringing at least the titanium compound into contact with the carrier.
  • the contact with the titanium compound may be performed in multiple steps.
  • Titanium compounds include, for example, titanium compounds represented by general formula (III).
  • X 1 is a halogen atom, particularly preferably a chlorine atom
  • R 1 is a hydrocarbon group having 1 to 10 carbon atoms, preferably a linear or branched alkyl group, and R 1 is plural When present, they may be the same or different and n is an integer from 0-4.
  • titanium compounds include Ti(Oi-C 3 H 7 ) 4 , Ti(O-C 4 H 9 ) 4 , TiCl(O-C 2 H 5 ) 3 , TiCl(Oi —C 3 H 7 ) 3 , TiCl(O—C 4 H 9 ) 3 , TiCl 2 (O—C 4 H 9 ) 2 , TiCl 2 (Oi-C 3 H 7 ) 2 , TiCl 4 . , TiCl 4 are preferred.
  • One or two or more titanium compounds can be used.
  • the solid catalyst component is usually obtained by further contacting the carrier with an electron-donating compound.
  • Electron-donating compounds include, for example, di-n-butyl phthalate. 1 type(s) or 2 or more types can be used for an electron-donating compound.
  • a halogen-containing silicon compound such as silicon tetrachloride can be brought into contact.
  • a halogen-containing silicon compound such as silicon tetrachloride can be brought into contact.
  • One or more halogen-containing silicon compounds can be used.
  • the solid catalyst component can be prepared by a known method. For example, a method of using an inert hydrocarbon such as pentane, hexane, peptane, or octane as a solvent, adding the carrier, the electron-donating compound, and the halogen-containing silicon compound to the solvent, and then adding the titanium compound while stirring. is mentioned. Usually, 0.01 to 10 mol, preferably 0.05 to 5 mol, of the electron donating compound is added to 1 mol of the carrier in terms of magnesium atom, and titanium is added to 1 mol of the carrier in terms of magnesium atom. 1 to 50 mol, preferably 2 to 20 mol of the compound is added, and the contact reaction is carried out at 0 to 200° C.
  • an inert hydrocarbon such as pentane, hexane, peptane, or octane
  • the solid catalyst component may also be a component obtained by contacting a liquid magnesium compound and a liquid titanium compound in the presence of an electron donating compound.
  • the contact with the liquid titanium compound may be carried out in multiple times.
  • a liquid magnesium compound is obtained, for example, by contacting a known magnesium compound and an alcohol, preferably in the presence of a liquid hydrocarbon medium, to liquefy.
  • magnesium compounds include magnesium halides such as magnesium chloride and magnesium bromide.
  • Alcohols include, for example, aliphatic alcohols such as methanol, ethanol, n-propanol, isopropanol, n-butanol, isobutanol, 2-ethylhexyl alcohol.
  • liquid hydrocarbon media include hydrocarbon compounds such as heptane, octane, and decane.
  • the amount of alcohol used in preparing the liquid magnesium compound is generally 1.0 to 25 mol, preferably 1.5 to 10 mol, per 1 mol of the magnesium compound.
  • One or more liquid magnesium compounds can be used.
  • liquid titanium compound examples include the titanium compound represented by the general formula (III) described above.
  • the amount of the liquid titanium compound to be used is usually 0.1 to 1000 mol, preferably 1 to 200 mol, per 1 mol of magnesium atoms (Mg) contained in the liquid magnesium compound.
  • One or two or more liquid titanium compounds can be used.
  • electron-donating compounds include dicarboxylic acid ester compounds such as phthalates, acid anhydrides such as phthalic anhydride, organosilicon compounds such as dicyclopentyldimethoxysilane, dicyclohexyldimethoxysilane, cyclohexylmethyldimethoxysilane, and polyethers. , acid halides, acid amides, nitriles, and organic acid esters.
  • the amount of the electron-donating compound to be used is usually 0.01 to 5 mol, preferably 0.1 to 1 mol, per 1 mol of magnesium atoms (Mg) contained in the liquid magnesium compound. 1 type(s) or 2 or more types can be used for an electron-donating compound.
  • the temperature during contact is usually -70 to 200°C, preferably 10 to 150°C.
  • organoaluminum compound is preferable as the organometallic compound catalyst component.
  • organoaluminum compounds include compounds represented by general formula (IV).
  • R 2 is an alkyl group having 1 to 10 carbon atoms, a cycloalkyl group or an aryl group
  • X 2 is a halogen atom or an alkoxy group, preferably a chlorine atom or a bromine atom
  • n is 1 to 3 integers.
  • organoaluminum compounds include trialkylaluminum compounds such as trimethylaluminum, triethylaluminum and triisobutylaluminum, diethylaluminum monochloride, diisobutylaluminum monochloride, diethylaluminum monoethoxide, and ethylaluminum sesquichloride.
  • One or two or more organoaluminum compounds can be used.
  • the amount of the organometallic compound catalyst component used is usually 0.01 to 20 mol, preferably 0.05 to 10 mol, per 1 mol of titanium atom in the solid catalyst component.
  • organosilicon compounds are preferred as electron-donating compound components to be used in the polymerization system.
  • organosilicon compounds include dicyclopentyldimethoxysilane, cyclohexylmethyldimethoxysilane, diethylaminotriethoxysilane, diisopropyldimethoxysilane, and cyclohexylisobutyldimethoxysilane.
  • One or two or more organosilicon compounds can be used.
  • the amount of the electron donating compound component used is usually 0.01 to 20 mol, preferably 0.1 to 5 mol, per 1 mol of titanium atom in the solid catalyst component.
  • the solid catalyst component is subjected to pretreatment such as prepolymerization before being used for polymerization.
  • pretreatment such as prepolymerization before being used for polymerization.
  • an inert hydrocarbon such as pentane, hexane, peptane, octane, etc.
  • adding the solid catalyst component, the organometallic compound catalyst component, and, if necessary, the electron-donating compound component to the solvent Propylene is fed and reacted while stirring.
  • Propylene is preferably fed under a partial pressure of propylene higher than atmospheric pressure and pretreated at 0-100° C. for 0.1-24 hours.
  • the propylene homopolymer (B) which is one of the components of the propylene polymer composition forming the unstretched film of the present invention, is selected from the following propylene homopolymer (B1) or the following propylene homopolymer (B2).
  • the propylene homopolymer (B1) which is one of the propylene homopolymers (B) according to the present invention, has a melt flow rate (MFR ) is more than 10 g/10 min and 40 g/10 min or less, preferably a propylene homopolymer having an MFR in the range of 15 to 40 g/10 min.
  • MFR melt flow rate
  • the propylene homopolymer (B1) according to the present invention preferably has a weight average molecular weight (Mw) to number average molecular weight (Mn) ratio (Mw/Mn) of 4.0 to 8.0, more preferably 4. It ranges from 0.5 to 6.0.
  • the Mw/Mn of the propylene homopolymer (B1) was calculated by obtaining the average molecular weight (number average molecular weight Mn, weight average molecular weight Mw) from the molecular weight distribution curve measured by GPC.
  • the propylene homopolymer (B2) which is another one of the propylene homopolymers (B) according to the present invention, has a weight average molecular weight (Mw) to number average molecular weight (Mn) ratio (Mw/Mn) of 4. less than .0, preferably in the range of 2.0 to 4.0.
  • the Mw/Mn of the propylene homopolymer (B2) was calculated by obtaining the average molecular weight (number average molecular weight Mn, weight average molecular weight Mw) from the molecular weight distribution curve measured by GPC.
  • the propylene homopolymer (B2) according to the present invention has a melt flow rate (MFR) of usually 1 to 40 g/10 minutes, preferably 1 to 40 g/10 minutes, measured at a measurement temperature of 230°C and a load of 2.16 kg in accordance with JIS K 7210. has an MFR in the range of 5-20 g/10 min.
  • MFR melt flow rate
  • the propylene homopolymer (B) according to the present invention can be produced by homopolymerizing propylene using a catalyst, and a commercially available propylene homopolymer (homo PP) can be used.
  • the catalyst is formed from, for example, the aforementioned solid catalyst component containing magnesium, titanium and halogen as essential components, an organometallic compound catalyst component such as an organoaluminum compound, and an electron-donating compound catalyst component such as an organosilicon compound. metallocene catalysts using a metallocene compound as one component of the catalyst.
  • the propylene-based polymer (A) and propylene homopolymer (B) according to the present invention may each contain at least one biomass-derived monomer (propylene).
  • the same kind of monomers constituting the polymer may be only biomass-derived monomers, or may contain both biomass-derived monomers and fossil fuel-derived monomers.
  • Biomass-derived monomers are monomers derived from any renewable natural sources and their residues, such as plant-derived or animal-derived, including fungi, yeast, algae and bacteria, and containing 14C isotope as carbon.
  • the biomass carbon concentration (pMC) measured according to ASTM D 6866 is about 100 (pMC).
  • a biomass-derived monomer (propylene) is obtained by a conventionally known method.
  • the propylene-based polymer (A) or the propylene homopolymer (B) according to the present invention contains a biomass-derived monomer from the viewpoint of reducing environmental load. If the polymer production conditions such as the polymerization catalyst and polymerization temperature are the same, even if the raw material olefin contains biomass-derived olefin, the molecular structure other than containing the 14C isotope at a ratio of about 10 -12 is derived from fossil fuels. It is equivalent to a propylene-based polymer or a propylene homopolymer consisting of monomers. Therefore, the performance is assumed to be unchanged.
  • the propylene-based polymer (A) or the propylene homopolymer (B) according to the present invention contains a chemically recycled propylene-derived monomer.
  • the propylene constituting the polymer may be only propylene derived from chemical recycling, or may contain propylene derived from chemical recycling and propylene derived from fossil fuel and/or propylene derived from biomass. Chemically recycled propylene can be obtained by a conventionally known method.
  • the propylene homopolymer (A) according to the present invention contains propylene derived from chemical recycling from the viewpoint of reducing the environmental load (mainly reducing waste).
  • the monomer derived from chemical recycling is a monomer obtained by depolymerizing or thermally decomposing a polymer such as waste plastic into a monomer unit such as propylene, or using the monomer as a raw material. Since it is a produced monomer, its molecular structure is equivalent to that of a propylene homopolymer composed of a fossil fuel-derived monomer if polymer production conditions such as a polymerization catalyst, polymerization process and polymerization temperature are the same. Therefore, the performance is assumed to be unchanged.
  • the propylene polymer composition for forming the unstretched film of the present invention contains the propylene polymer (A) in an amount of 1 to 40% by mass and the propylene homopolymer (B) in an amount of 60 to 99% by mass. Range [However, the total amount of (A) and (B) shall be 100% by mass. ].
  • the propylene-based polymer (A) is preferably used. 1 to 20% by mass, more preferably 5 to 20% by mass, and 80 to 99% by mass, more preferably 80 to 97% by mass of the propylene homopolymer (B1) [where (A) and (B1) is 100% by mass. ].
  • the propylene homopolymer (B2) is used as the propylene homopolymer (B) which is a component of the propylene polymer composition forming the unstretched film of the present invention
  • the propylene-based polymer ( A) in the range of 15 to 40% by mass, more preferably 20 to 40% by mass
  • the propylene homopolymer (B2) in the range of 65 to 85% by mass, more preferably 60 to 80% by mass [however, The total amount of (A) and (B2) is 100% by mass. ].
  • the propylene polymer composition according to the present invention comprises the propylene-based polymer (A) and the propylene homopolymer (B), or the propylene homopolymer (B1) or the propylene homopolymer (B2). is contained in an amount within the above range, a non-stretched film having good transparency and rigidity (tensile modulus) can be obtained.
  • the transparency of the resulting non-stretched film may be significantly deteriorated, and the appearance of the film may be poor.
  • the amount of the propylene-based polymer (A) is less than the lower limit, the obtained unstretched film may not be improved in rigidity (tensile modulus).
  • the propylene polymer composition according to the present invention preferably has a melt flow rate (MFR) of 1 to 20 g/10 minutes, preferably 2, measured at a measurement temperature of 230°C and a load of 2.16 kg in accordance with JIS K 7210. -15 g/10 min, more preferably in the range of 3-10 g/10 min.
  • MFR melt flow rate
  • the propylene-based polymer composition according to the present invention contains, in addition to the propylene-based polymer (A) and the propylene homopolymer (B), a weather resistance stabilizer and a heat stabilizer within a range not impairing the object of the present invention.
  • agent anti-static agent, slip agent, anti-blocking agent, anti-fog agent, nucleating agent, decomposing agent, pigment, dye, plasticizer, hydrochloric acid absorber, antioxidant, cross-linking agent, cross-linking accelerator, reinforcing agent, filler
  • Additives such as agents, softening agents, processing aids, activators, moisture absorbents, pressure-sensitive adhesives, flame retardants, mold release agents, etc. can be contained. Additives can be used alone or in combination of two or more.
  • the propylene-based polymer composition according to the present invention may contain a nucleating agent in order to improve transparency and heat resistance.
  • Nucleating agents include, for example, sorbitol compounds such as dibenzylidene sorbitol, organic phosphoric ester compounds, rosinate compounds, C4-C12 aliphatic dicarboxylic acids and metal salts thereof. Among these, organic phosphoric acid ester compounds are preferred.
  • One or more nucleating agents can be used.
  • the amount of the nucleating agent is preferably 0.05 to 0.5 parts by mass, more preferably 0.1 to 0.1 part by mass, per 100 parts by mass in total of the propylene-based polymer (A) and the propylene homopolymer (B). 3 parts by mass can be used.
  • the propylene-based polymer composition according to the present invention can be produced by adopting any known method.
  • melt-kneading A method of granulating or pulverizing may be mentioned.
  • the unstretched film of the present invention is formed from the propylene-based polymer composition.
  • the unstretched film of the present invention exhibits higher rigidity and heat resistance than conventional unstretched polypropylene films.
  • the unstretched film is used, for example, as a packaging material for foods, beverages, industrial parts, miscellaneous goods, toys, daily necessities, office supplies, medical supplies, and the like.
  • the thickness of the unstretched film of the present invention is usually less than 200 ⁇ m, preferably 10-150 ⁇ m, more preferably 15-100 ⁇ m. Since the unstretched film of the present invention is excellent in rigidity, it can be easily made into a thin film.
  • the unstretched film of the present invention preferably has a longitudinal tensile modulus of 2500 MPa or more and a haze of 10% or less measured according to ASTM D-1003 (JIS K7105).
  • Examples of methods for producing the non-stretched film of the present invention include extrusion molding methods such as the T-die method and inflation method, compression molding methods, calendar molding methods, and casting methods.
  • a non-stretched film can be molded, for example, as follows.
  • the above components constituting the propylene-based polymer composition may be directly added to a hopper or the like of a film forming machine, or the above components may be mixed in advance using a ribbon blender, a Banbury mixer, a Henschel mixer, a super mixer, or the like.
  • the mixture may be melt-kneaded using a kneader such as a single-screw extruder, a twin-screw extruder, or a roll to obtain a propylene-based polymer composition, followed by film forming.
  • a specific production example of a non-stretched film will be described in terms of the T-die method.
  • a film is extruded through the die lip of a T-die, and the molten film is cooled and taken up by a take-up device such as nip rolls to obtain a non-stretched film.
  • Cooling methods for molten films include, for example, air knife method or air chamber method using rolls and air cooling, polishing roll method, swing roll method, narrow pressure cooling method such as belt casting method, contact with refrigerant such as water cooling method, etc. cooling method.
  • the obtained non-stretched film can be subjected to film treatment methods used for ordinary film molding, such as corona discharge treatment and liquid agent coating treatment.
  • the laminate of the present invention has the unstretched film of the present invention.
  • the laminate may be a laminate having two or more layers of the non-stretched film of the present invention, or may be a laminate having one or more layers of the non-stretched film of the present invention and one or more other layers.
  • Various functions can be imparted to the film by forming a laminated structure. Methods used in that case include a co-extrusion method and an extrusion coating method.
  • Other layers include, for example, a barrier layer for gases such as water vapor and oxygen, a sound absorbing layer, a light shielding layer, an adhesive layer, an adhesive layer, a colored layer, a conductive layer, and a recycled resin-containing layer.
  • gases such as water vapor and oxygen
  • a sound absorbing layer such as water vapor and oxygen
  • the unstretched film and laminate of the present invention are suitable for various food packaging fields such as fresh foods such as vegetables and fish meat, dried foods such as snacks and noodles, water foods such as soups and pickles; tablets, powders, liquids, etc. It can be used as a packaging film in a wide range of packaging fields, such as medical products used for various forms of medical products and medical peripheral materials; .
  • prepolymerization catalyst To 200 mL of heptane, 10 mmol of triethylaluminum, 2 mmol of dicyclopentyldimethoxysilane, and 1 mmol of the solid catalyst component obtained by the above adjustment were added in terms of titanium atoms. The internal temperature was kept at 20° C., and propylene was continuously introduced while stirring. After 60 minutes, the stirring was stopped, and as a result, a prepolymerized catalyst (prepolymerized catalyst) in which 4.0 g of propylene was polymerized per 1 g of the solid catalyst was obtained.
  • the intrinsic viscosity [ ⁇ ] of the propylene-based polymer (a1-1) polymerized under the same conditions as in the first stage was 11 dl/g.
  • composition, physical properties, etc. of the obtained propylene-based polymer (A-1) were measured by the methods described below.
  • Table 1 shows the measurement results.
  • the solid portion was collected by hot filtration, resuspended in 275 ml of titanium tetrachloride, and heated again at 110°C for 2 hours. After completion of the reaction, the solid portion was collected again by hot filtration and thoroughly washed with 110° C. decane and hexane until no free titanium compound was detected in the solution.
  • the solid titanium catalyst component prepared as described above was stored as a hexane slurry, and part of it was dried to investigate the catalyst composition.
  • the solid titanium catalyst component contained 2.3 wt% titanium, 61 wt% chlorine, 19 wt% magnesium and 12.5 wt% DIBP.
  • prepolymerized catalyst (b-1) 100.0 g of the solid titanium catalyst component (a-1), 19.2 ml of cyclohexylmethyldimethoxysilane, 65.6 mL of triethylaluminum, and 10 L of heptane were placed in an autoclave with an internal volume of 20 L and equipped with a stirrer, and the internal temperature was maintained at 15 to 20°C. 600 g of propylene was added and reacted with stirring for 100 minutes. After the polymerization was completed, the solid components were allowed to settle, and the supernatant was removed and washed with heptane twice. The resulting prepolymerized catalyst was resuspended in purified heptane, and the concentration of the solid catalyst component was adjusted to 1.0 g/L with heptane.
  • the obtained slurry was sent to a vessel polymerization vessel with an internal capacity of 70 L equipped with a stirrer, and polymerized further.
  • a vessel polymerization vessel with an internal capacity of 70 L equipped with a stirrer, and polymerized further.
  • 45 kg/hour of propylene and hydrogen were supplied so that the hydrogen concentration in the gas phase was 4.3 mol %.
  • Polymerization was carried out at a polymerization temperature of 70°C and a pressure of 3.1 MPa/G.
  • the obtained propylene homopolymer (B1-1) had an MFR of 15 g/10 min and an Mw/Mn of 5.0.
  • the solid portion was collected by hot filtration, resuspended in 275 ml of titanium tetrachloride, and heated again at 110°C for 2 hours. After completion of the reaction, the solid portion was collected again by hot filtration and thoroughly washed with 110° C. decane and hexane until no free titanium compound was detected in the solution.
  • the solid titanium catalyst component prepared as described above was stored as a hexane slurry, and part of it was dried to investigate the catalyst composition.
  • the solid titanium catalyst component contained 2.3 wt% titanium, 61 wt% chlorine, 19 wt% magnesium and 12.5 wt% DIBP.
  • prepolymerized catalyst (b-2) 100.0 g of the solid titanium catalyst component (a-1), 22.4 ml of dicyclopentyldimethoxysilane, 65.6 mL of triethylaluminum, and 10 L of heptane were placed in an autoclave with an internal volume of 20 L and equipped with a stirrer, and the internal temperature was maintained at 15 to 20°C. 600 g of propylene was added and reacted with stirring for 100 minutes. After the polymerization was completed, the solid components were allowed to settle, and the supernatant was removed and washed with heptane twice. The resulting prepolymerized catalyst was resuspended in purified heptane, and the concentration of the solid catalyst component was adjusted to 1.0 g/L with heptane.
  • the obtained slurry was sent to a vessel polymerization vessel with an internal capacity of 70 L equipped with a stirrer, and polymerized further.
  • a vessel polymerization vessel with an internal capacity of 70 L equipped with a stirrer, and polymerized further.
  • 45 kg/hour of propylene and hydrogen were supplied so that the hydrogen concentration in the gas phase was 15.8 mol %.
  • Polymerization was carried out at a polymerization temperature of 63° C. and a pressure of 3.2 MPa/G.
  • the resulting propylene homopolymer (B1-2) had an MFR of 30 g/10 min and an Mw/Mn of 5.2.
  • the solid portion was collected by hot filtration, resuspended in 275 ml of titanium tetrachloride, and heated again at 110°C for 2 hours. After completion of the reaction, the solid portion was collected again by hot filtration and thoroughly washed with 110° C. decane and hexane until no free titanium compound was detected in the solution.
  • the solid titanium catalyst component prepared as described above was stored as a hexane slurry, and part of it was dried to investigate the catalyst composition.
  • the solid titanium catalyst component contained 2.3 wt% titanium, 61 wt% chlorine, 19 wt% magnesium and 12.5 wt% DIBP.
  • prepolymerized catalyst (b-1) 100.0 g of the solid titanium catalyst component (a-1), 19.2 ml of cyclohexylmethyldimethoxysilane, 65.6 mL of triethylaluminum, and 10 L of heptane were placed in an autoclave with an internal volume of 20 L and equipped with a stirrer, and the internal temperature was maintained at 15 to 20°C. 600 g of propylene was added and reacted with stirring for 100 minutes. After the polymerization was completed, the solid components were allowed to settle, and the supernatant was removed and washed with heptane twice. The resulting prepolymerized catalyst was resuspended in purified heptane, and the concentration of the solid catalyst component was adjusted to 1.0 g/L with heptane.
  • the obtained slurry was sent to a vessel polymerization vessel with an internal capacity of 70 L equipped with a stirrer, and polymerized further.
  • a vessel polymerization vessel with an internal capacity of 70 L equipped with a stirrer, and polymerized further.
  • 45 kg/hour of propylene and hydrogen were supplied so that the hydrogen concentration in the gas phase was 2.9 mol %.
  • Polymerization was carried out at a polymerization temperature of 70°C and a pressure of 3.1 MPa/G.
  • the obtained propylene homopolymer (D-1) had an MFR of 9 g/10 min and an Mw/Mn of 5.0.
  • Propylene homopolymer (D-2) As the propylene homopolymer (D-2), a propylene homopolymer having an MFR of 6.5 g/10 min and an Mw/Mn of 5.2 (trade name: Prime Polypro F-704NP, manufactured by Prime Polymer Co., Ltd.) was used.
  • the intrinsic viscosity [ ⁇ ] (dl/g) was measured at 135°C in a tetralin solvent.
  • the intrinsic viscosity [ ⁇ ] 2 of the propylene-based polymer (corresponding to the propylene-based polymer (a2)) obtained in the second stage is a value calculated from the following formula.
  • [ ⁇ ] 2 ([ ⁇ ] total x 100 - [ ⁇ ] 1 x W 1 )/W 2 [ ⁇ ] total : Intrinsic viscosity of the entire propylene-based polymer [ ⁇ ] 1 : Intrinsic viscosity of the propylene-based polymer obtained in the first stage W 1 : Mass of the propylene-based polymer obtained in the first stage Fraction (%) W 2 : mass fraction (%) of the propylene-based polymer obtained in the second stage [Melt flow rate]
  • MFR melt flow rate
  • the ratio of the high molecular weight region having a molecular weight of 1,500,000 or more is the molecular weight of the total area surrounded by the molecular weight distribution curve (specifically, the molecular weight distribution curve and the horizontal axis) measured by GPC under the following equipment and conditions. It is the area ratio of the high molecular weight region of 1,500,000 or more.
  • the horizontal axis is molecular weight (logarithmic value) and the vertical axis is dw/dLog(M) [w: integrated mass fraction, M: molecular weight].
  • the peak molecular weight MH on the high molecular weight side and the peak molecular weight ML on the low molecular weight side of the molecular weight distribution curve were obtained to calculate MH/ML. Also, from the molecular weight distribution curve, the average molecular weight (number average molecular weight Mn, weight average molecular weight Mw) was obtained to calculate the molecular weight distribution (Mw/Mn).
  • Tensile modulus was measured according to the method of JIS K7161. The measurement was performed at 23° C. in the direction of extrusion (MD) and the direction perpendicular to MD (TD). It can be said that the higher the tensile modulus, the higher the rigidity.
  • the physical properties of the obtained unstretched film were measured by the methods described above.
  • Example 1 instead of the propylene polymer composition used in Comparative Example 1, the propylene-based polymer (A-1) obtained in Production Example 1: 10 parts by mass, and the propylene homopolymer obtained in Production Example 2 ( B1-1): A non-stretched film was obtained in the same manner as in Comparative Example 1, except that a propylene polymer composition comprising 90 parts by mass was used.
  • the physical properties of the obtained unstretched film were measured by the methods described above.
  • Example 2 instead of the propylene polymer composition used in Example 2, a propylene polymer comprising 20 parts by mass of a propylene polymer (A-1) and 80 parts by mass of a propylene homopolymer (B1-1). A non-stretched film was obtained in the same manner as in Example 1 except that the composition was used.
  • the physical properties of the obtained unstretched film were measured by the methods described above.
  • the physical properties of the obtained unstretched film were measured by the methods described above.
  • Example 3 A non-stretched film was obtained in the same manner as in Example 1, except that the propylene homopolymer (B1-2) was used in place of the propylene homopolymer (B1-1) used in Example 1.
  • the physical properties of the obtained unstretched film were measured by the methods described above.
  • Example 4 An unstretched film was obtained in the same manner as in Example 2, except that the propylene homopolymer (B1-2) was used in place of the propylene homopolymer (B1-1) used in Example 2.
  • the physical properties of the obtained unstretched film were measured by the methods described above.
  • the physical properties of the obtained unstretched film were measured by the methods described above.
  • the physical properties of the obtained unstretched film were measured by the methods described above.
  • the physical properties of the obtained unstretched film were measured by the methods described above.
  • the solid portion was collected by hot filtration, resuspended in 275 ml of titanium tetrachloride, and heated again at 110°C for 2 hours. After completion of the reaction, the solid portion was collected again by hot filtration and thoroughly washed with 110° C. decane and hexane until no free titanium compound was detected in the solution.
  • the solid titanium catalyst component prepared as described above was stored as a hexane slurry, and part of it was dried to investigate the catalyst composition.
  • the solid titanium catalyst component contained 2.3 wt% titanium, 61 wt% chlorine, 19 wt% magnesium and 12.5 wt% DIBP.
  • prepolymerized catalyst (b-2) 100.0 g of the solid titanium catalyst component (a-1), 22.4 ml of dicyclopentyldimethoxysilane, 65.6 mL of triethylaluminum, and 10 L of heptane were placed in an autoclave with an internal volume of 20 L and equipped with a stirrer, and the internal temperature was maintained at 15 to 20°C. 600 g of propylene was added and reacted with stirring for 100 minutes. After the polymerization was completed, the solid components were allowed to settle, and the supernatant was removed and washed with heptane twice. The resulting prepolymerized catalyst was resuspended in purified heptane, and the concentration of the solid catalyst component was adjusted to 1.0 g/L with heptane.
  • the obtained slurry was sent to a vessel polymerization vessel with an internal capacity of 70 L equipped with a stirrer, and polymerized further.
  • a vessel polymerization vessel with an internal capacity of 70 L equipped with a stirrer, and polymerized further.
  • 45 kg/hour of propylene and hydrogen were supplied so that the hydrogen concentration in the gas phase was 2.4 mol %.
  • Polymerization was carried out at a polymerization temperature of 70°C and a pressure of 2.9 MPa/G.
  • the obtained propylene polymer had an MFR of 3.0 g/10 minutes.
  • transition metal catalyst component (a-2) contained 2% by mass of titanium and 18% by mass of diisobutyl phthalate.
  • prepolymerized catalyst (b-3) 100 g of the transition metal catalyst component (a-2), 15.4 mL of triethylaluminum, and 100 L of heptane are placed in an autoclave with an internal capacity of 200 L and equipped with a stirrer. rice field. After the polymerization was completed, 4.1 mL of titanium tetrachloride was charged to obtain a prepolymerized catalyst (b-3).
  • This prepolymerized catalyst (b-3) contained 6 g of propylene homopolymer per 1 g of the transition metal catalyst component.
  • the obtained propylene homopolymer had an MFR of 1.7 g/10 minutes.
  • the obtained propylene homopolymer (B2-2) had an MFR of 9 g/10 minutes and an Mw/Mn of 3.7.
  • the solid portion was collected by hot filtration, resuspended in 275 ml of titanium tetrachloride, and heated again at 110°C for 2 hours. After completion of the reaction, the solid portion was collected again by hot filtration and thoroughly washed with 110° C. decane and hexane until no free titanium compound was detected in the solution.
  • the solid titanium catalyst component prepared as described above was stored as a hexane slurry, and part of it was dried to investigate the catalyst composition.
  • the solid titanium catalyst component contained 2.3 wt% titanium, 61 wt% chlorine, 19 wt% magnesium and 12.5 wt% DIBP.
  • prepolymerized catalyst (b-1) 100.0 g of the solid titanium catalyst component (a-1), 19.2 ml of cyclohexylmethyldimethoxysilane, 65.6 mL of triethylaluminum, and 10 L of heptane were placed in an autoclave with an internal volume of 20 L and equipped with a stirrer, and the internal temperature was maintained at 15 to 20°C. 600 g of propylene was added and reacted with stirring for 100 minutes. After the polymerization was completed, the solid components were allowed to settle, and the supernatant was removed and washed with heptane twice. The resulting prepolymerized catalyst was resuspended in purified heptane, and the concentration of the solid catalyst component was adjusted to 1.0 g/L with heptane.
  • the obtained slurry was sent to a vessel polymerization vessel with an internal capacity of 70 L equipped with a stirrer, and polymerized further.
  • a vessel polymerization vessel with an internal capacity of 70 L equipped with a stirrer, and polymerized further.
  • 45 kg/hour of propylene and hydrogen were supplied so that the hydrogen concentration in the gas phase was 2.9 mol %.
  • Polymerization was carried out at a polymerization temperature of 70°C and a pressure of 3.1 MPa/G.
  • the obtained propylene homopolymer had an MFR of 9 g/10 minutes.
  • the obtained propylene homopolymer (D2-1) had an MFR of 18 g/10 min and an Mw/Mn of 4.3.
  • the physical properties of the obtained unstretched film were measured by the methods described above.
  • Example 5 instead of the propylene polymer composition used in Comparative Example 10, the propylene-based polymer (A-1) obtained in Production Example 1: 10 parts by mass, and the propylene homopolymer obtained in Production Example 5 ( B2-1): A non-stretched film was obtained in the same manner as in Comparative Example 10 except that a propylene polymer composition consisting of 90 parts by mass was used.
  • the physical properties of the obtained unstretched film were measured by the methods described above.
  • Example 6 instead of the propylene polymer composition used in Example 5, a propylene polymer comprising 30 parts by mass of a propylene polymer (A-1) and 70 parts by mass of a propylene homopolymer (B2-1). A non-stretched film was obtained in the same manner as in Example 1 except that the composition was used.
  • the physical properties of the obtained unstretched film were measured by the methods described above.
  • the physical properties of the obtained unstretched film were measured by the methods described above.
  • Example 7 A non-stretched film was obtained in the same manner as in Example 5 except that the propylene homopolymer (B2-2) was used instead of the propylene homopolymer (B2-1) used in Example 5.
  • the physical properties of the obtained unstretched film were measured by the methods described above.
  • Example 8 A non-stretched film was obtained in the same manner as in Example 6 except that the propylene homopolymer (B2-2) was used in place of the propylene homopolymer (B2-1) used in Example 6.
  • the physical properties of the obtained unstretched film were measured by the methods described above.
  • the physical properties of the obtained unstretched film were measured by the methods described above.
  • the physical properties of the obtained unstretched film were measured by the methods described above.
  • the physical properties of the obtained unstretched film were measured by the methods described above.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本発明の目的は、さらに剛性が改良された無延伸フィルムを得ることにあり、 本発明は、135℃、テトラリン溶媒中で測定される極限粘度[η]が10~12dl/gの範囲にあるプロピレン系重合体(a1)を20~50質量%の範囲、および135℃、テトラリン溶媒中で測定した極限粘度[η]が0.5~1.5dl/gの範囲にあるプロピレン系重合体(a2)を50~80質量%の範囲〔但し、(a1)と(a2)の合計量を100質量%とする。〕で含むプロピレン系重合体(A)を1~40質量%の範囲、並びに特定のプロピレン単独重合体(B)を60~99質量%の範囲〔但し、(A)と(B)との合計量を100質量%とする。〕で含むプロピレン重合体組成物からなる無延伸フィルムにかかわる。

Description

プロピレン重合体組成物からなる無延伸フィルム
 本発明はプロピレン重合体組成物からなる無延伸フィルムおよび当該フィルムを含む積層体に関する。
 ポリエチレンやポリプロピレンに代表されるポリオレフィン(オレフィン系重合体)は、生産に係るエネルギーが小さく、軽量かつリサイクル性にも優れることから、各産業界における、循環型社会を形成するための3R(Reduce、Reuse、Recycle)への取り組みのなかで、更に注目が高まっている。ポリオレフィンは、日用雑貨、台所用品、包装用フィルム、家電製品、機械部品、電気部品、自動車部品など、種々の分野で利用されている。
 オレフィン系重合体の中でも、ポリプロピレンは剛性、耐熱性に優れるが、ポリエチレンに比べると、耐寒性、耐衝撃性に劣ることから、ポリプロピレンから得られるフィルムなどの成形体の物性を改良する方法として種々のプロピレン重合体組成物が提案されている(例えば、特許文献1~4参照)。
 また、プロピレン重合体組成物からなる無延伸フィルムの剛性、透明性などの物性を改良する方法も多々提案されている(例えば、特許文献5~7参照)。
国際公開第1999/007752号 国際公開第2005/097842号 特開2001-302858号公報 特開2006-045446号公報 特開2002-265712号公報 特開2005-320359号公報 特開2011-236357号公報
 無延伸ポリプロピレンフィルムは、前述のように剛性および耐熱性のバランスに優れてはいるが、基材として一般的に使用される二軸延伸ポリプロピレンフィルムや二軸延伸ポリエチレンテレフタレートフィルム等と比較すると、用途によっては、剛性が充分ではないことがある。
 本発明の目的は、さらに剛性が改良された無延伸フィルムを得ることにある。
 すなわち、本発明は以下の[1]~[10]に係る。
 [1]
 135℃、テトラリン溶媒中で測定される極限粘度[η]が10~12dl/gの範囲にあるプロピレン系重合体(a1)を20~50質量%の範囲、および135℃、テトラリン溶媒中で測定した極限粘度[η]が0.5~1.5dl/gの範囲にあるプロピレン系重合体(a2)を50~80質量%の範囲〔但し、(a1)と(a2)の合計量を100質量%とする。〕で含むプロピレン系重合体(A)を1~40質量%の範囲、並びに
 JIS K 7210に準拠して、測定温度230℃、荷重2.16kgで測定したメルトフローレート(MFR)が10g/10分を超え、40g/10分以下の範囲にあるプロピレン単独重合体(B1)、または、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が4.0未満であるプロピレン単独重合体(B2)から選ばれるプロピレン単独重合体(B)を60~99質量%の範囲〔但し、(A)と(B)との合計量を100質量%とする。〕で含むプロピレン重合体組成物からなることを特徴とする無延伸フィルム。
 [2]
 プロピレン重合体組成物が、プロピレン系重合体(A)を1~20質量%の範囲、および、プロピレン単独重合体(B1)を80~99質量%の範囲で含む組成物であることを特徴とする項[1]に記載の無延伸フィルム。
 [3]
 プロピレン重合体組成物が、プロピレン系重合体(A)を15~40質量%の範囲、およびプロピレン単独重合体(B2)を60~85質量%の範囲で含む組成物であることを特徴とする項[1]に記載の無延伸フィルム。
 [4]
 プロピレン系重合体(A)が、JIS K 7210に準拠して、測定温度230℃、荷重2.16kgで測定したメルトフローレート(MFR)が0.01~5g/10分の範囲、および230℃で測定される溶融張力が5~30gの範囲にある重合体であることを特徴とする項[1]に記載の無延伸フィルム。
 [5]
 プロピレン系重合体(A)が、ゲルパーミエイションクロマトグラフィー(GPC)で測定された分子量分布曲線で囲まれる全面積に占める分子量が150万以上の高分子量領域の面積の割合が7%以上である重合体であることを特徴とする項[1]に記載の無延伸フィルム。
 [6]
 プロピレン系重合体(A)が、GPCで測定した分子量分布曲線が二つのピークを有し、高分子量側のピークの分子量(MH)と低分子量側のピークの分子量(ML)の比(MH/ML)が50以上である重合体であることを特徴とする項[1]に記載の無延伸フィルム。
 [7]
 プロピレン系重合体(A)が、GPCで測定した分子量分布曲線の低分子量側のピークの分子量(ML)が10万以下の重合体であることを特徴とする項[1]に記載の無延伸フィルム。
 [8]
 プロピレン単独重合体(B1)が、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が4.0~8.0の範囲にある重合体であることを特徴とする項[1]~[6]の何れか一項に記載の無延伸フィルム。
 [9]
 無延伸フィルムが、縦方向の引張弾性率が2400MPa以上、および、ASTM D-1003(JIS K7105)に準拠して測定したヘイズが10%以下であることを特徴とする項[1]に記載の無延伸フィルム。
 [10]
 項[1]~[9]の何れか一項に記載の無延伸フィルムを有することを特徴とする積層体。
 本発明の無延伸フィルムは、透明性、剛性が良好であるので、広範囲な包装用分野における包装用フィルムとして使用することができる。
 以下、本発明を実施するための形態について説明する。
 <プロピレン系重合体(A)>
 本発明の無延伸フィルム〔以下、単に「フィルム」と略称する場合がある。〕を形成するプロピレン重合体組成物の成分の一つであるプロピレン系重合体(A)は、135℃、テトラリン溶媒中で測定される極限粘度[η]が10~12dl/gの範囲にあるプロピレン系重合体(a1)を20~50質量%の範囲、および135℃、テトラリン溶媒中で測定した極限粘度[η]が0.5~1.5dl/gの範囲にあるプロピレン系重合体(a2)を50~80質量%の範囲〔但し、(a1)と(a2)の合計量を100質量%とする。〕で含む。
 以下、135℃、テトラリン溶媒中で測定される極限粘度[η]を単に「極限粘度[η]」ともいう。
 ≪プロピレン系重合体(a1)≫
 本発明に係るプロピレン系重合体(A)に含まれる成分の一つであるプロピレン系重合体(a1)の極限粘度[η]は、10~12dl/gの範囲にあり、好ましくは10.5~11.5dl/gの範囲にある。また、プロピレン系重合体(A)におけるプロピレン系重合体(a1)の質量分率は、20~50質量%の範囲にあり、好ましくは20~45質量%、より好ましくは20~40質量%、さらに好ましくは22~40質量%の範囲にある。
 本発明に係るプロピレン系重合体(a1)としては、例えば、プロピレンの単独重合体、プロピレンと炭素数2~8のα-オレフィン(ただし、プロピレンを除く)との共重合体が挙げられる。炭素数2~8のα-オレフィンとしては、例えば、エチレン、1-ブテン、1-ヘキセン、1-オクテン、4-メチル-1-ペンテンが挙げられる。これらα-オレフィンとしてはエチレンが好ましい。α-オレフィンは1種または2種以上用いることができる。
 プロピレンと炭素数2~8のα-オレフィンとの共重合体において、プロピレンに由来する構成単位の含有割合は、通常は90質量%以上、好ましくは95質量%以上、より好ましくは98質量%以上であり、炭素数2~8のα-オレフィン(ただし、プロピレンを除く)に由来する構成単位の含有割合は、通常は10質量%以下、好ましくは5質量%以下、より好ましくは2質量%以下である。前記含有割合は、13C-NMRにより測定することができる。
 プロピレン系重合体(a1)の極限粘度[η]が12dl/gを超えると、フィルム成形性が劣り、フィルム表面外観が悪化する傾向にある。また、プロピレン系重合体(a1)の極限粘度[η]が10dl/g未満であると、得られるフィルムの剛性および耐熱性が不十分となる傾向にある。
 プロピレン系重合体(a1)の質量分率が20質量%未満では、得られる重合体組成物の溶融張力が不十分となり、得られるフィルムの剛性、および耐熱性が不十分となる傾向にあり、50質量%を超えると、フィルム成形時の外観不良の原因となる傾向にある。
 プロピレン系重合体(a1)は1種または2種以上用いることができる。
 ≪プロピレン系重合体(a2)≫
 本発明に係るプロピレン系重合体(A)に含まれる成分の一つであるプロピレン系重合体(a2)の極限粘度[η]は、0.5~1.5dl/gの範囲にあり、好ましくは0.6~1.5dl/g、より好ましくは0.8~1.5dl/gの範囲にある。また、プロピレン系重合体(A)におけるプロピレン系重合体(a2)の質量分率は、50~80質量%の範囲にあり、好ましくは55~80質量%、より好ましくは60~80質量%、さらに好ましくは60~78質量%の範囲にある。
 本発明に係るプロピレン系重合体(a2)としては、例えば、プロピレンの単独重合体、プロピレンと炭素数2~8のα-オレフィン(ただし、プロピレンを除く)との共重合体が挙げられる。炭素数2~8のα-オレフィンとしては、例えば、エチレン、1-ブテン、1-ヘキセン、1-オクテン、4-メチル-1-ペンテンが挙げられる。これらα-オレフィンとしてはエチレンが好ましい。α-オレフィンは1種または2種以上用いることができる。
 プロピレンと炭素数2~8のα-オレフィンとの共重合体において、プロピレンに由来する構成単位の含有割合は、通常は90質量%以上、好ましくは93質量%以上、より好ましくは94質量%以上であり、炭素数2~8のα-オレフィン(ただし、プロピレンを除く)に由来する構成単位の含有割合は、通常は10質量%以下、好ましくは7質量%以下、より好ましくは6質量%以下である。前記含有割合は、13C-NMRにより測定することができる。
 プロピレン系重合体(a2)の極限粘度[η]が0.5dl/g未満であると、プロピレン系重合体(A)の溶融張力が不十分となり、一方、極限粘度[η]が1.5dl/gを超えると、粘度が高く、フィルム成形性が悪化する傾向にある。
 プロピレン系重合体(a2)の質量分率が50質量%未満では、フィルム成形時の外観不良の原因となる傾向にあり、80質量%を超えると、プロピレン系重合体(A)の溶融張力が不十分となり、また得られるフィルムの剛性および耐熱性性が不十分となる傾向にある。
 プロピレン系重合体(a2)は1種または2種以上用いることができる。
 <添加剤>
 本発明に係るプロピレン系重合体(A)には、必要に応じて、酸化防止剤、中和剤、難燃剤、結晶核剤等の添加剤を配合することができる。添加剤は1種または2種以上用いることができる。添加剤の割合は特に制限されず、適宜調節することが可能である。
 ≪プロピレン系重合体(A)の物性≫
 本発明に係るプロピレン系重合体(A)は、230℃、2.16kg荷重で測定されるメルトフローレート(MFR)が、好ましくは0.01~5g/10分、より好ましくは0.05~4g/10分、さらに好ましくは0.1~3g/10分の範囲にある。プロピレン系重合体(A)のMFRが上記範囲にあると、フィルム成形性に優れる。
 本発明に係るプロピレン系重合体(A)は、230℃で測定される溶融張力(MT)が、好ましくは5~30g、より好ましくは7~25g、さらに好ましく10~20gの範囲にある。プロピレン系重合体(A)のMTが上記範囲にあると、フィルム成形性に優れる。
 本発明におけるプロピレン系重合体(A)の溶融張力(MT)は、以下の装置および条件で測定することができる。
  ・装置:東洋精機社製キャピログラフ1C(商品名)
  ・温度:230℃
  ・オリフィス:L=8mm、D=2.095mm
  ・押出速度:15mm/分
  ・引取速度:15m/分
 本発明に係るプロピレン系重合体(A)は、ゲルパーミエイションクロマトグラフィー(GPC)により測定された分子量分布曲線で囲まれる領域の全面積に占める、分子量150万以上の高分子量領域の面積割合(分子量150万以上の高分子量成分の質量割合に相当する)が、好ましくは7%以上、より好ましくは10%以上、さらに好ましくは12%以上である。前記面積割合の上限は、例えば30%、好ましくは25%である。
 前記高分子量領域の面積割合が特定の割合以上を占めているということは、プロピレン系重合体(A)中に分子量150万以上の高分子量成分が含有されていることを意味している。この高分子量成分の少なくとも一部は極限粘度[η]が10~12dl/gの高分子量成分である。したがって、前記高分子量成分の割合が前記範囲であれば、プロピレン系重合体(A)の溶融張力はより優れたものとなる。
 本発明に係るプロピレン系重合体(A)は、GPCにより測定された分子量分布曲線が2つのピークを有することが好ましい。ここで、高分子量側のピーク分子量(MH)と低分子量側のピーク分子量(ML)との比(MH/ML)は、好ましくは50以上、より好ましくは70以上、さらに好ましくは90以上である。比(MH/ML)の上限は、例えば500、好ましくは300である。分子量分布曲線が2つのピークを有し、MH/MLが特定の値以上になるということは、重合体における高分子量成分の含有量が多く、その極限粘度[η]も高いことを示す。したがって、このような態様のプロピレン系重合体(A)は、溶融張力の向上、フィルムとした場合の剛性、耐熱性の向上に寄与する。
 本発明に係るプロピレン系重合体(A)は、GPCにより測定された分子量分布曲線の前記低分子量側のピーク分子量MLが、粘性、フィルム成形性の観点から、好ましくは10万以下、より好ましくは8万以下、さらに好ましくは5万以下である。
 ≪プロピレン系重合体(A)の製造方法≫
 本発明に係るプロピレン系重合体(A)の製造方法としては、種々公知の製造方法が挙げられ、例えば、上記物性を満たすプロピレン系重合体(a1)およびプロピレン系重合体(a2)をそれぞれ製造した後、プロピレン系重合体(a1)とプロピレン系重合体(a2)とを上記範囲で混合または溶融混練してプロピレン系重合体(A)を得る方法(1);上記物性を満たすプロピレン系重合体(a1)およびプロピレン系重合体(a2)を一つの重合系もしくは二つ以上の重合系で製造してプロピレン系重合体(A)を得る方法(2)が挙げられる。
 方法(1)では、例えば、プロピレン系重合体(a1)、プロピレン系重合体(a2)および必要に応じて添加剤等をヘンシェルミキサー、V型ブレンダー、タンブラーブレンダー、リボンブレンダーなどを用いて混合した後、単軸押出機、多軸押出機、ニーダー、バンバリーミキサーなどを用いて溶融混練することによって、上記各成分が均一に分散混合された高品質のプロピレン系重合体(A)を得ることができる。溶融混練時の樹脂温度は、通常は180~280℃、好ましくは200~260℃である。
 方法(2)では、2段以上の多段重合により、相対的に高分子量のプロピレン系重合体(a1)および相対的に低分子量のプロピレン系重合体(a2)を含むプロピレン系重合体(A)を得ることができる。得られたプロピレン系重合体(A)に、必要に応じて添加剤を添加してもよい。
 プロピレン系重合体(A)の好ましい製造方法としては、前記方法(2)が挙げられ、例えば、高立体規則性ポリプロピレン製造用触媒の存在下に、プロピレンを単独で、またはプロピレンと他のモノマーとを併用して、2段以上の多段重合で重合させる方法が挙げられる。
 具体的には、第1段目の重合において、実質的に水素の非存在下で、プロピレン、またはプロピレンと炭素数2~8のα-オレフィンとを重合させて、極限粘度[η]が10~12dl/g、好ましくは10.5~11.5dl/gの相対的に高分子量のプロピレン系重合体(a1)をプロピレン系重合体(A)中の20~50質量%、好ましくは20~45質量%、より好ましくは20~40質量%製造し、第2段目以降の重合において、相対的に低分子量のプロピレン系重合体(a2)を製造する。
 第2段目以降の重合において製造される、相対的に低分子量のプロピレン系重合体(a2)の極限粘度[η]は、0.5~1.5dl/g、好ましくは0.6~1.5dl/g、より好ましくは0.8~1.5dl/gである。なお、この極限粘度[η]は、その段単独で製造されるプロピレン系重合体の極限粘度[η]であり、その段の前段までのプロピレン系重合体を含む全体の極限粘度[η]ではない。
 また、第2段目以降の重合において、最終的に得られるプロピレン系重合体(A)のMFRが好ましくは0.01~5g/10分、より好ましくは0.05~4g/10分、さらに好ましくは0.1~3g/10分となるように調整する。
 第2段目以降で製造するプロピレン系重合体の極限粘度[η]の調整方法は特に制限されないが、分子量調整剤として水素を使用する方法が好ましい。
 プロピレン系重合体(a1)とプロピレン系重合体(a2)の製造順序(重合順序)としては、第1段目で、実質的に水素の非存在下で相対的に高分子量のプロピレン系重合体(a1)を製造した後、第2段目以降で、例えば水素の存在下で相対的に低分子量のプロピレン系重合体(a2)を製造することが好ましい。製造順序を逆にすることもできるが、第1段目で相対的に低分子量のプロピレン系重合体(a2)を製造した後、第2段目以降で相対的に高分子量のプロピレン系重合体(a1)を製造するためには、第1段目の反応生成物中に含まれる水素などの分子量調整剤を、第2段目以降の重合開始前に限りなく除去する必要があるため、重合装置が複雑になり、また第2段目以降の極限粘度[η]が上がりにくい。
 多段重合における各段の重合は、連続的に行うこともできるし、バッチ式で行うこともできるが、バッチ式で行うことが好ましい。バッチ式による多段重合で得られた、プロピレン系重合体(a1)およびプロピレン系重合体(a2)を含むプロピレン系重合体(A)は、超高分子量成分であるプロピレン系重合体(a1)が良好に分散されており、よって剛性および耐熱性に優れるフィルムが得られる。また、プロピレン系重合体(A)を連続多段重合方法によって製造する場合、滞留時間分布によって重合粒子間の組成ムラが生じ、フィルムのフィッシュアイが増加することがあるが、バッチ式で重合することにより、フィッシュアイの少ないフィルムを得ることができる。したがって、バッチ式を採用することにより、分子量の高いプロピレン系重合体(a1)を用いているにもかかわらず、フィッシュアイの少ないフィルムを得ることができる。
 〈製造条件〉
 プロピレン系重合体(a1)およびプロピレン系重合体(a2)の製造において、プロピレンの単独重合、またはプロピレンと炭素数2~8のα-オレフィンとの重合は、スラリー重合、バルク重合など、公知の方法で行うことができる。また、後述するポリプロピレン製造用触媒を使用することが好ましい。
 プロピレン系重合体(a1)の製造条件としては、水素の非存在下で、原料モノマーを、重合温度として、好ましくは20~80℃、より好ましくは40~70℃、重合圧力として、一般に常圧~9.8MPa、好ましくは0.2~4.9MPaの条件下でバルク重合して製造することが好ましい。
 プロピレン系重合体(a2)の製造条件としては、原料モノマーを、重合温度として、好ましくは20~80℃、より好ましくは40~70℃、重合圧力として、一般に常圧~9.8MPa、好ましくは0.2~4.9MPa、分子量調節剤としての水素が存在する条件下で重合して製造することが好ましい。
 ≪ポリプロピレン製造用触媒≫
 プロピレン系重合体(a1)、プロピレン系重合体(a2)およびプロピレン系重合体(A)の製造に使用することのできるポリプロピレン製造用触媒(以下、単に「触媒」ともいう。)は、例えば、マグネシウム、チタンおよびハロゲンを必須成分とする固体触媒成分と、有機アルミニウム化合物等の有機金属化合物触媒成分と、有機ケイ素化合物等の電子供与性化合物触媒成分とから形成することができるが、代表的なものとして、以下のような触媒成分が使用できる。
 〈固体触媒成分〉
 固体触媒成分を構成する担体としては、金属マグネシウムと、アルコールと、ハロゲン及び/又はハロゲン含有化合物とから得られる担体が好ましい。
 金属マグネシウムとしては、顆粒状、リボン状、粉末状等のマグネシウムを用いることができる。また、金属マグネシウムは、表面に酸化マグネシウム等の被覆が生成されていないものが好ましい。
 アルコールとしては、炭素数1~6の低級アルコールを用いることが好ましく、特に、エタノールを用いると、触媒性能の発現を著しく向上させる担体が得られる。アルコールの使用量は、金属マグネシウム1モルに対して、好ましくは2~100モル、より好ましくは5~50モルである。アルコールは1種または2種以上用いることができる。
 ハロゲンとしては、塩素、臭素、ヨウ素が好ましく、ヨウ素が好ましい。また、ハロゲン含有化合物としては、MgCl2、MgI2が好ましい。ハロゲン又はハロゲン含有化合物の使用量は、金属マグネシウム1グラム原子に対して、ハロゲン原子又はハロゲン含有化合物中のハロゲン原子が、通常は0.0001グラム原子以上、好ましくは0.0005グラム原子以上、さらに好ましくは0.001グラム原子以上である。ハロゲンおよびハロゲン含有化合物はそれぞれ1種または2種以上用いることができる。
 金属マグネシウムと、アルコールと、ハロゲン及び/又はハロゲン含有化合物とを反応させて、担体を得る方法としては、例えば、金属マグネシウムとアルコールとハロゲン及び/又はハロゲン含有化合物とを、還流下(例:約79℃)で水素ガスの発生が認められなくなるまで(通常20~30時間)反応させる方法が挙げられる。前記反応は、窒素ガス、アルゴンガスなどの不活性ガス雰囲気下で行うことが好ましい。
 得られた担体を固体触媒成分の合成に用いる場合、乾燥させたものを用いてもよく、また濾別後ヘプタン等の不活性溶媒で洗浄したものを用いてもよい。
 得られた担体は粒状に近く、しかも粒径分布がシャープである。さらには、粒子一つ一つをとってみても、粒形度のばらつきは非常に小さい。この場合、下記の式(I)で表される球形度(S)が1.60未満、特に1.40未満であり、かつ下記の式(II)で表される粒径分布指数(P)が5.0未満、特に4.0未満であることが好ましい。
  S=(E1/E2)2・・・(I)
 式(I)中、E1は粒子の投影の輪郭長を示し、E2は粒子の投影面積に等しい円の周長を示す。
  P=D90/D10・・・(II)
 式(II)中、D90は質量累積分率が90%に対応する粒子径をいう。すなわち、D90で表される粒子径より小さい粒子群の質量和が全粒子総質量和の90%であることを示している。D10は質量累積分率が10%に対応する粒子径をいう。
 固体触媒成分は、通常、上記担体に少なくともチタン化合物を接触させて得られる。チタン化合物による接触は複数回に分けて行ってもよい。チタン化合物としては、例えば、一般式(III)で表されるチタン化合物が挙げられる。
  TiX1 n(OR14-n・・・(III)
 式(III)中、X1はハロゲン原子であり、特に塩素原子が好ましく、R1は炭素数1~10の炭化水素基であり、直鎖または分岐鎖のアルキル基が好ましく、R1が複数存在する場合にはそれらは互いに同じでも異なってもよく、nは0~4の整数である。
 チタン化合物としては、具体的には、Ti(O-i-C374、Ti(O-C494、TiCl(O-C253、TiCl(O-i-C373、TiCl(O-C493、TiCl2(O-C492、TiCl2(O-i-C372、TiCl4が挙げられ、TiCl4が好ましい。
 チタン化合物は1種または2種以上用いることができる。
 固体触媒成分は、通常、上記担体にさらに電子供与性化合物を接触させて得られる。電子供与性化合物としては、例えば、フタル酸ジ-n-ブチルが挙げられる。電子供与性化合物は1種または2種以上用いることができる。
 上記担体にチタン化合物と電子供与性化合物とを接触させる際に、四塩化ケイ素等のハロゲン含有ケイ素化合物を接触させることができる。ハロゲン含有ケイ素化合物は1種または2種以上用いることができる。
 固体触媒成分は、公知の方法で調製することができる。例えば、ペンタン、ヘキサン、ペプタンまたはオクタン等の不活性炭化水素を溶媒として用い、前記溶媒に、上記の担体、電子供与性化合物およびハロゲン含有ケイ素化合物を投入し、攪拌しながらチタン化合物を投入する方法が挙げられる。通常は、マグネシウム原子換算で担体1モルに対して電子供与性化合物は、0.01~10モル、好ましくは0.05~5モルを加え、また、マグネシウム原子換算で担体1モルに対してチタン化合物は、1~50モル、好ましくは2~20モルを加え、0~200℃にて、5分~10時間の条件、好ましくは30~150℃にて30分~5時間の条件で接触反応を行えばよい。反応終了後は、n-ヘキサン、n-ヘプタン等の不活性炭化水素を用いて、生成した固体触媒成分を洗浄することが好ましい。
 また、固体触媒成分は、液状マグネシウム化合物と液状チタン化合物とを、電子供与性化合物の存在下に接触させて得られる成分であってもよい。液状チタン化合物による接触は複数回に分けて行ってもよい。
 液状マグネシウム化合物は、例えば、公知のマグネシウム化合物およびアルコールを、好ましくは液状炭化水素媒体の存在下に接触させ、液状とすることにより得られる。マグネシウム化合物としては、例えば、塩化マグネシウム、臭化マグネシウムなどのハロゲン化マグネシウムが挙げられる。アルコールとしては、例えば、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、2-エチルヘキシルアルコールなどの脂肪族アルコールが挙げられる。液状炭化水素媒体としては、例えば、ヘプタン、オクタン、デカンなどの炭化水素化合物が挙げられる。液状マグネシウム化合物を調製する際のアルコールの使用量は、マグネシウム化合物1モルに対して、通常は1.0~25モル、好ましくは1.5~10モルである。液状マグネシウム化合物は1種または2種以上用いることができる。
 液状チタン化合物としては、前述した一般式(III)で表されるチタン化合物が挙げられる。液状マグネシウム化合物に含まれるマグネシウム原子(Mg)1モルに対する、液状チタン化合物の使用量は、通常は0.1~1000モル、好ましくは1~200モルである。液状チタン化合物は1種または2種以上用いることができる。
 電子供与性化合物としては、例えば、フタル酸エステル類等のジカルボン酸エステル化合物、無水フタル酸等の酸無水物、ジシクロペンチルジメトキシシラン、ジシクロヘキシルジメトキシシラン、シクロヘキシルメチルジメトキシシラン等の有機ケイ素化合物、ポリエーテル類、酸ハライド類、酸アミド類、ニトリル類、有機酸エステル類が挙げられる。液状マグネシウム化合物に含まれるマグネシウム原子(Mg)1モルに対する、電子供与性化合物の使用量は、通常は0.01~5モル、好ましくは0.1~1モルである。電子供与性化合物は1種または2種以上用いることができる。
 接触させる際の温度は、通常は-70~200℃、好ましくは10~150℃である。
 〈有機金属化合物触媒成分〉
 触媒成分の内、有機金属化合物触媒成分としては、有機アルミニウム化合物が好ましい。有機アルミニウム化合物としては、例えば、一般式(IV)で表される化合物が挙げられる。
  AlR2 n2 3-n・・・(IV)
 式(IV)中、R2は炭素数1~10のアルキル基、シクロアルキル基またはアリール基であり、X2はハロゲン原子またはアルコキシ基であり、塩素原子または臭素原子が好ましく、nは1~3の整数である。
 有機アルミニウム化合物としては、具体的には、トリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウム等のトリアルキルアルミニウム化合物、ジエチルアルミニウムモノクロリド、ジイソブチルアルミニウムモノクロリド、ジエチルアルミニウムモノエトキシド、エチルアルミニウムセスキクロリドが挙げられる。
 有機アルミニウム化合物は1種または2種以上用いることができる。
 有機金属化合物触媒成分の使用量は、固体触媒成分中のチタン原子1モルに対して、通常は0.01~20モル、好ましくは0.05~10モルである。
 〈電子供与性化合物成分〉
 触媒成分の内、重合系に供する電子供与性化合物成分としては、有機ケイ素化合物が好ましい。有機ケイ素化合物としては、例えば、ジシクロペンチルジメトキシシラン、シクロヘキシルメチルジメトキシシラン、ジエチルアミノトリエトキシシラン、ジイソプロピルジメトキシシラン、シクロヘキシルイソブチルジメトキシシランが挙げられる。
 有機ケイ素化合物は1種または2種以上用いることができる。
 電子供与性化合物成分の使用量は、固体触媒成分中のチタン原子1モルに対して、通常は0.01~20モル、好ましくは0.1~5モルである。
 〈前処理〉
 上記固体触媒成分は、予備重合等の前処理をしてから、重合に用いることが好ましい。例えば、ペンタン、ヘキサン、ペプタン、オクタン等の不活性炭化水素を溶媒として用い、前記溶媒に、上記の固体触媒成分、有機金属化合物触媒成分、および必要に応じて電子供与性化合物成分を投入し、攪拌しながら、プロピレンを供給し、反応させる。プロピレンは、大気圧よりも高いプロピレンの分圧下で供給し、0~100℃にて、0.1~24時間前処理することが好ましい。反応終了後は、n-ヘキサン、n-ヘプタン等の不活性炭化水素を用いて、前処理したものを洗浄することが好ましい。
 <プロピレン単独重合体(B)>
 本発明の無延伸フィルムを形成するプロピレン重合体組成物の成分の一つであるプロピレン単独重合体(B)は、下記プロピレン単独重合体(B1)、または下記プロピレン単独重合体(B2)から選ばれる。
 〈プロピレン単独重合体(B1)〉
 本発明に係わるプロピレン単独重合体(B)の一つであるプロピレン単独重合体(B1)は、JIS K 7210に準拠して、測定温度230℃、荷重2.16kgで測定したメルトフローレート(MFR)が10g/10分を超え、40g/10分以下、好ましくはMFRが15~40g/10分の範囲にあるプロピレンの単独重合体である。
 本発明に係るプロピレン単独重合体(B1)は、好ましくは、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が4.0~8.0、より好ましくは4.5~6.0の範囲にある。
 プロピレン単独重合体(B1)のMw/Mnが上記範囲にあると得られる無延伸フィルムのヘイズがより低く(=透明性が高い)、且つ、より弾性率が高いため、無延伸フィルムの剛性と透明性を両立することができる。
 また、Mw/Mnが上限以上の場合、得られる無延伸フィルムのヘイズが高くなる(=透明性が低い)虞がある。
 プロピレン単独重合体(B1)のMw/MnはGPCにより測定された分子量分布曲線から、平均分子量(数平均分子量Mn、重量平均分子量Mw)を得て算出した。
 <プロピレン単独重合体(B2)>
 本発明に係わるプロピレン単独重合体(B)の他の一つであるプロピレン単独重合体(B2)は、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が4.0未満、好ましくは2.0~4.0の範囲にある。
 プロピレン単独重合体(B2)のMw/MnはGPCにより測定された分子量分布曲線から、平均分子量(数平均分子量Mn、重量平均分子量Mw)を得て算出した。
 本発明にかかるプロピレン単独重合体(B2)は、JIS K 7210に準拠して、測定温度230℃、荷重2.16kgで測定したメルトフローレート(MFR)が通常、1~40g/10分、好ましくはMFRが5~20g/10分の範囲にある。
 ≪プロピレン単独重合体(B)の製造方法≫
 本発明に係るプロピレン単独重合体(B)は、触媒を用いてプロピレンを単独重合することにより製造することができ、また、市販されているプロピレン単独重合体(ホモPP)を用いることができる。触媒としては、例えば、前述した、マグネシウム、チタンおよびハロゲンを必須成分とする固体触媒成分と、有機アルミニウム化合物等の有機金属化合物触媒成分と、有機ケイ素化合物等の電子供与性化合物触媒成分とから形成される触媒;メタロセン化合物を触媒の一成分として用いたメタロセン触媒が挙げられる。
 本発明に係るプロピレン系重合体(A)およびプロピレン単独重合体(B)は、それぞれ、少なくとも1種以上のバイオマス由来モノマー(プロピレン)を含んでいてもよい。重合体を構成する同じ種類のモノマーがバイオマス由来モノマーのみでもよいし、バイオマス由来モノマーと化石燃料由来モノマーの両方を含んでもよい。バイオマス由来モノマーとは、菌類、酵母、藻類および細菌類を含む、植物由来または動物由来などの、あらゆる再生可能な天然原料およびその残渣を原料としてなるモノマーで、炭素として14C同位体を10-12程度の割合で含有し、ASTM D 6866に準拠して測定したバイオマス炭素濃度(pMC)が100(pMC)程度である。バイオマス由来モノマー(プロピレン)は、従来から知られている方法により得られる。
 本発明に係るプロピレン系重合体(A)またはプロピレン単独重合体(B)がバイオマス由来モノマーを含むことは環境負荷低減の観点から好ましい。重合用触媒、重合温度などの重合体製造条件が同等であれば、原料オレフィンがバイオマス由来オレフィンを含んでいても、14C同位体を10-12程度の割合で含む以外の分子構造は化石燃料由来モノマーからなるプロピレン系重合体またはプロピレン単独重合体と同等である。従って、性能も変わらないとされる。
 本発明に係るプロピレン系重合体(A)またはプロピレン単独重合体(B)がケミカルリサイクル由来プロピレン由来モノマーを含むことは環境負荷低減の観点から好ましい。重合体を構成するプロピレンがケミカルリサイクル由来プロピレンのみでもよいし、ケミカルリサイクル由来プロピレンと化石燃料由来プロピレンおよび/またはバイオマス由来プロピレンを含んでもよい。ケミカルリサイクルス由来プロピレンは、従来から知られている方法により得られる。本発明に係るプロピレン単独重合体(A)がケミカルリサイクル由来プロピレンを含むことは環境負荷低減(主に廃棄物削減)の観点から好ましい。原料モノマーがケミカルリサイクル由来モノマーを含んでいても、ケミカルリサイクル由来モノマーは廃プラスチックなどの重合体を解重合、熱分解等でプロピレンなどのモノマー単位にまで戻したモノマー、ならびに該モノマーを原料にして製造したモノマーであるので、重合用触媒、重合プロセス、重合温度などの重合体製造条件が同等であれば、分子構造は化石燃料由来モノマーからなるプロピレン単独重合体と同等である。従って、性能も変わらないとされる。
 <プロピレン重合体組成物>
 本発明の無延伸フィルムを形成するプロピレン重合体組成物は、上記プロピレン系重合体(A)を1~40質量%の範囲、および、上記プロピレン単独重合体(B)を60~99質量%の範囲〔但し、(A)と(B)との合計量を100質量%とする。〕で含む組成物である。
 本発明の無延伸フィルムを形成するプロピレン重合体組成物の成分であるプロピレン単独重合体(B)として、上記プロピレン単独重合体(B1)を用いる場合は、好ましくはプロピレン系重合体(A)を1~20質量%、より好ましくは5~20質量%の範囲、および、上記プロピレン単独重合体(B1)を80~99質量%、より好ましくは80~97質量%の範囲〔但し、(A)と(B1)との合計量を100質量%とする。〕で含む組成物である。
 また、本発明の無延伸フィルムを形成するプロピレン重合体組成物の成分であるプロピレン単独重合体(B)として、上記プロピレン単独重合体(B2)を用いる場合は、好ましくは上記プロピレン系重合体(A)を15~40質量%、より好ましくは20~40質量%の範囲、および、上記プロピレン単独重合体(B2)を65~85質量%、より好ましくは60~80質量%の範囲〔但し、(A)と(B2)との合計量を100質量%とする。〕で含む組成物である。
 本発明に係るプロピレン重合体組成物は、上記プロピレン系重合体(A)と上記プロピレン単独重合体(B)、あるいは、上記プロピレン単独重合体(B1)、若しくは上記プロピレン単独重合体(B2)とを上記範囲の量で含むので、透明性、剛性(引張弾性率)が良好な無延伸フィルムを得ることができる。
 プロピレン系重合体(A)の量が上限を超える組成物を用いた場合は、得られる無延伸フィルムの透明性が著しく悪化し、且つ、フィルムの外観不良が発生する虞がある。一方、プロピレン系重合体(A)の量が下限未満の場合は、得られる無延伸フィルムは、剛性(引張弾性率)が改良されない虞がある。
 本発明に係るプロピレン重合体組成物は、好ましくはJIS K 7210に準拠して、測定温度230℃、荷重2.16kgで測定したメルトフローレート(MFR)が1~20g/10分、好ましくは2~15g/10分、より好ましくは3~10g/10分の範囲にある。MFRが上記範囲にあると無延伸フィルムの成形性が良好であり、フィルム外観に優れるフィルムが得られる。
 本発明に係るプロピレン系重合体組成物には、上記プロピレン系重合体(A)および上記プロピレン単独重合体(B)に加え、本発明の目的を損なわない範囲で、耐候性安定剤、耐熱安定剤、帯電防止剤、スリップ剤、アンチブロッキング剤、防曇剤、造核剤、分解剤、顔料、染料、可塑剤、塩酸吸収剤、酸化防止剤、架橋剤、架橋促進剤、補強剤、充填剤、軟化剤、加工助剤、活性剤、吸湿剤、粘着剤、難燃剤、離型剤等の添加剤を含有することができる。添加剤は1種または2種以上用いることができる。
 本発明に係るプロピレン系重合体組成物は、透明性や耐熱性などの改良のため、造核剤を含有してもよい。造核剤としては、例えば、ジベンジリデンソルビトール等のソルビトール系化合物、有機リン酸エステル系化合物、ロジン酸塩系化合物、C4~C12の脂肪族ジカルボン酸およびその金属塩が挙げられる。これらのうちでは、有機リン酸エステル系化合物が好ましい。
 造核剤は1種または2種以上用いることができる。
 造核剤は、プロピレン系重合体(A)およびプロピレン単独重合体(B)の合計100質量部に対して、好ましくは0.05~0.5質量部、より好ましくは0.1~0.3質量部用いることができる。
 ≪プロピレン系重合体組成物の製造≫
 本発明に係るプロピレン系重合体組成物は、公知の任意の方法を採用して製造することができ、例えば、プロピレン系重合体(A)およびプロピレン単独重合体(B)、必要に応じてその他の成分を、ヘンシェルミキサー、V型ブレンダー、リボンブレンダー、タンブラーブレンダー等で混合する方法、または前記混合後、一軸押出機、二軸押出機、ニーダー、バンバリーミキサー、ロール等で溶融混練した後、造粒もしくは粉砕する方法が挙げられる。
 <無延伸フィルムおよび積層体>
 本発明の無延伸フィルムは、前記プロピレン系重合体組成物から形成される。本発明の無延伸フィルムは、従来の無延伸ポリプロピレンフィルムに対して高い剛性および耐熱性を示す。前記無延伸フィルムは、例えば、食品、飲料、工業用部品、雑貨、玩具、日用品、事務用品、医療用品などの包装材として用いられる。
 本発明の無延伸フィルムの厚さは、通常は200μm未満、好ましくは10~150μm、より好ましくは15~100μmである。本発明の無延伸フィルムは剛性に優れることから、薄膜化も容易である。
 本発明の無延伸フィルムは、好ましくは縦方向の引張弾性率が2500MPa以上、および、ASTM D-1003(JIS K7105)に準拠して測定したヘイズが10%以下である。
 本発明の無延伸フィルムの製造方法としては、例えば、Tダイ法やインフレーション法等の押出成形法、圧縮成形法、カレンダー成形法、流延法が挙げられる。
 無延伸フィルムの成形は、例えば、以下のように行うことができる。前記プロピレン系重合体組成物を構成する上記各成分をフィルム成形機のホッパー等に直接投入してもよいし、リボンブレンダー、バンバリーミキサー、ヘンシェルミキサー、スーパーミキサー等を用いて上記各成分を予め混合し、あるいはさらに、単軸または二軸押出機、ロールなどの混練機を用いて溶融混練してプロピレン系重合体組成物を得た後、フィルム成形してもよい。
 無延伸フィルムの具体的な製造例を、T-ダイ法で説明すると、押出機に上記各成分を投入し、通常は180~280℃、好ましくは200~270℃の温度で溶融混練した後、T-ダイのダイリップよりフィルム状に押出し、この溶融フィルムを冷却して、ニップロール等による引取機で引き取り、無延伸フィルムを得る。
 溶融フィルムの冷却法としては、例えば、エアーナイフ法やエアーチャンバー法によるロールと空冷による冷却法、ポリシングロール法、スイングロール法、ベルトキャスト法などによる狭圧冷却法、水冷法等による冷媒による接触冷却法が挙げられる。
 得られた無延伸フィルムには、通常のフィルム成形に用いられるフィルムの処理方法、例えば、コロナ放電処理、液剤塗布処理を行なうことができる。
 本発明の積層体は、本発明の無延伸フィルムを有する。
 前記積層体は、本発明の無延伸フィルムを2層以上有する積層体でもよく、本発明の無延伸フィルムを1層以上有し、他の層を1層以上有する積層体でもよい。積層構成とすることで更に様々な機能をフィルムに付与することができる。その場合に用いられる方法としては、共押出法、押出コーティング法が挙げられる。
 他の層としては、例えば、水蒸気や酸素などの気体のバリア層、吸音層、遮光層、接着層、粘着層、着色層、導電性層、再生樹脂含有層が挙げられる。他の層を形成する素材としては、具体的には、前記プロピレン系重合体組成物以外のオレフィン系重合体組成物、ガスバリアー性樹脂組成物、接着性樹脂組成物が挙げられる。
 本発明の無延伸フィルムおよび積層体は、例えば、野菜、魚肉などの生鮮食品、スナック、麺類の乾燥食品、スープ、漬物などの水物食品などの各種食品包装用分野;錠剤、粉末、液体などの各種形態の医療品、医療周辺材料などに用いる医療関連品包装用分野;カセットテープ、電気部品などの各種電気機器包装用分野など、広範囲な包装用分野における包装用フィルムとして使用することができる。
 以下、本発明を実施例に基づいて更に具体的に説明するが、本発明はこれら実施例に限定されない。なお、各例で得られた重合体、重合体組成物および無延伸フィルムの各種特性の測定、評価は、下記の通り行った。
 実施例および比較例で用いた重合体を以下に示す。
 〔プロピレン系重合体(A)〕
 〔プロピレン系重合体(A-1)の製造〕
 〔製造例1〕
 〔マグネシウム化合物の調製〕
 攪拌機付き反応槽(内容積500リットル)を窒素ガスで充分に置換し、エタノール97.2kg、ヨウ素640g、および金属マグネシウム6.4kgを投入し、攪拌しながら還流条件下で系内から水素ガスの発生が無くなるまで反応させ、固体状反応生成物を得た。この固体状反応生成物を含む反応液を減圧乾燥させることにより目的のマグネシウム化合物(固体触媒の担体)を得た。
 〔固体状触媒成分の調製〕
 窒素ガスで充分に置換した撹拌機付き反応槽(内容積500リットル)に、前期マグネシウム化合物(粉砕していないもの)30kg、精製ヘプタン(n-ヘプタン)150リットル、四塩化ケイ素4.5リットル、およびフタル酸ジ-n-ブチル5.4リットルを加えた。系内を90℃に保ち、攪拌しながら四塩化チタン144リットルを投入して110℃で2時間反応させた後、固体成分を分離して80℃の精製ヘプタンで洗浄した。さらに、四塩化チタン228リットルを加え、110℃で2時間反応させた後、精製ヘプタンで充分に洗浄し、固体触媒成分を得た。
 〔前重合触媒の製造〕
 ヘプタン200mL中にトリエチルアルミニウム10mmol、ジシクロペンチルジメトキシシラン2mmol、および上記調整で得られた固体状触媒成分をチタン原子換算で1mmol添加した。内温を20℃に保持し、攪拌しながらプロピレンを連続的に導入した。60分後、攪拌を停止し、結果的に固体触媒1gあたり4.0gのプロピレンが重合した予備重合触媒(前重合触媒)を得た。
 〔本重合〕
 600リットルのオートクレーブ中にプロピレン336リットル装入し、60℃に昇温した。その後、トリエチルアルミニウム8.7mL、ジシクロペンチルジメトキシシラン11.4mL、上記方法で得られた前重合触媒を2.9g装入して重合を開始した。重合開始より75分後に、10分間かけて50℃まで降温した(第1段目の重合終了)。
 第1段目と同様の条件にて重合したプロピレン系重合体(a1-1)の極限粘度[η]は11dl/gであった。
 降温後、圧力が3.3MPaGで一定となるよう水素を連続的に投入し、151分間重合を行った。次いでベントバルブを開け、未反応のプロピレンを、積算流量計を経由させてパージした(第2段目の重合終了)。
 こうして、51.8kgのパウダー状のプロピレン系重合体を得た。
 このプロピレン系重合体に、酸化防止剤として、イルガノックス1010〔チバ・スペシャルティ・ケミカルズ(株)製〕2000ppm、イルガホス168〔チバ・スペシャルティ・ケミカルズ(株)製〕2000ppm、サンドスタブP-EPQ〔クラリアントジャパン社製〕1000ppm、中和剤として、ステアリン酸カルシウム1000ppmを添加し、二軸押出機で溶融混練しペレット状のプロピレン系重合体を得た。このようにして最終的に得られたプロピレン系重合体(A-1)のMFRは1.2g/10分であった。また、物質収支から算出した最終的に得られたプロピレン系重合体(A-1)に占める第1段目の重合で生成したプロピレン系重合体(a1-1)の割合は25質量%であった。
 得られたプロピレン系重合体(A-1)の組成、物性などを下記記載の方法で測定した。
 測定結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 〔プロピレン単独重合体(B1)〕
 〔プロピレン単独重合体(B1-1)の製造〕
 〔製造例2〕
 〔固体状チタン触媒成分(a-1)の調製〕
 無水塩化マグネシウム95.2g、デカン442mlおよび2-エチルヘキシルアルコール390.6gを130℃で2時間加熱反応を行って均一溶液とした後、この溶液中に無水フタル酸21.3gを添加し、さらに130℃にて1時間攪拌混合を行い、無水フタル酸を溶解させた。
 このようにして得られた均一溶液を室温に冷却した後、-20℃に保持した四塩化チタン200ml中に、この均一溶液の75mlを1時間にわたって滴下装入した。装入終了後、この混合液の温度を4時間かけて110℃に昇温し、110℃に達したところでフタル酸ジイソブチル(DIBP)5.22gを添加し、これより2時間同温度にて攪拌保持した。
 2時間の反応終了後、熱濾過にて固体部を採取し、この固体部を275mlの四塩化チタンに再懸濁させた後、再び110℃で2時間、加熱した。反応終了後、再び熱濾過にて固体部を採取し、110℃のデカンおよびヘキサンにて溶液中に遊離のチタン化合物が検出されなくなるまで充分洗浄した。
 上記の様に調製された固体状チタン触媒成分はヘキサンスラリーとして保存されるが、このうち一部を乾燥して触媒組成を調べた。固体状チタン触媒成分は、チタンを2.3質量%、塩素を61質量%、マグネシウムを19質量%およびDIBPを12.5質量%の量で含有していた。
 〔予重合触媒(b-1)の製造〕
 固体状チタン触媒成分(a-1)100.0g、シクロヘキシルメチルジメトキシシラン19.2ml、トリエチルアルミニウム65.6mL、ヘプタン10Lを内容量20Lの攪拌機付きオートクレーブに挿入し、内温15~20℃に保ちプロピレンを600g挿入し、100分間攪拌しながら反応させた。重合終了後、固体成分を沈降させ、上澄み液の除去およびヘプタンによる洗浄を2回行った。得られた予重合触媒を精製ヘプタンに再懸濁して、固体触媒成分濃度で1.0g/Lとなるよう、ヘプタンにより調整を行った。
 〔プロピレン単独重合体(B1-1)の製造〕
 内容量58Lの管状重合器に、プロピレンを43kg/時間、水素を56NL/時間、予重合触媒(b-1)を0.77g/時間、トリエチルアルミニウムを2.3mL/時間、シクロヘキシルメチルジメトキシシランを4.3mL/時間で連続的に供給し、気相の存在しない満液の状態にて重合した。管状重合器の温度は70℃であり、圧力は3.4MPa/Gであった。
 得られたスラリーは内容量70Lの攪拌機付きベッセル重合器へ送り、更に重合を行った。重合器へは、プロピレンを45kg/時間、水素を気相部の水素濃度が4.3mol%になるように供給した。重合温度70℃、圧力3.1MPa/Gで重合を行った。
 得られたスラリーは失活後、プロピレンを蒸発させてパウダー状のプロピレン重合体(樹脂a)を得た。得られたプロピレン単独重合体(B1-1)は、MFRが15g/10分、Mw/Mnは5.0であった。
 〔プロピレン単独重合体(B1-2)の製造〕
 〔製造例3〕
 〔固体状チタン触媒成分(a-1)の調製〕
 無水塩化マグネシウム95.2g、デカン442mlおよび2-エチルヘキシルアルコール390.6gを130℃で2時間加熱反応を行って均一溶液とした後、この溶液中に無水フタル酸21.3gを添加し、さらに130℃にて1時間攪拌混合を行い、無水フタル酸を溶解させた。
 このようにして得られた均一溶液を室温に冷却した後、-20℃に保持した四塩化チタン200ml中に、この均一溶液の75mlを1時間にわたって滴下装入した。装入終了後、この混合液の温度を4時間かけて110℃に昇温し、110℃に達したところでフタル酸ジイソブチル(DIBP)5.22gを添加し、これより2時間同温度にて攪拌保持した。
 2時間の反応終了後、熱濾過にて固体部を採取し、この固体部を275mlの四塩化チタンに再懸濁させた後、再び110℃で2時間、加熱した。反応終了後、再び熱濾過にて固体部を採取し、110℃のデカンおよびヘキサンにて溶液中に遊離のチタン化合物が検出されなくなるまで充分洗浄した。
 上記の様に調製された固体状チタン触媒成分はヘキサンスラリーとして保存されるが、このうち一部を乾燥して触媒組成を調べた。固体状チタン触媒成分は、チタンを2.3重量%、塩素を61重量%、マグネシウムを19重量%およびDIBPを12.5重量%の量で含有していた。
 〔予重合触媒(b-2)の製造〕
 固体状チタン触媒成分(a-1)100.0g、ジシクロペンチルジメトキシシラン22.4ml、トリエチルアルミニウム65.6mL、ヘプタン10Lを内容量20Lの攪拌機付きオートクレーブに挿入し、内温15~20℃に保ちプロピレンを600g挿入し、100分間攪拌しながら反応させた。重合終了後、固体成分を沈降させ、上澄み液の除去およびヘプタンによる洗浄を2回行った。得られた予重合触媒を精製ヘプタンに再懸濁して、固体触媒成分濃度で1.0g/Lとなるよう、ヘプタンにより調整を行った。
 〔プロピレン単独重合体(B1-2)の製造〕
 内容量58Lの管状重合器に、プロピレンを43kg/時間、水素を163NL/時間、予重合触媒(b-2)を0.55g/時間、トリエチルアルミニウムを1.9mL/時間、ジシクロペンチルジメトキシシランを3.8mL/時間で連続的に供給し、気相の存在しない満液の状態にて重合した。管状重合器の温度は70℃であり、圧力は3.5MPa/Gであった。
 得られたスラリーは内容量70Lの攪拌機付きベッセル重合器へ送り、更に重合を行った。重合器へは、プロピレンを45kg/時間、水素を気相部の水素濃度が15.8mol%になるように供給した。重合温度63℃、圧力3.2MPa/Gで重合を行った。
 得られたスラリーは失活後、プロピレンを蒸発させてパウダー状のプロピレン重合体(樹脂b)を得た。得られたプロピレン単独重合体(B1-2)は、MFRが30g/10分、Mw/Mnは5.2であった。
 〔プロピレン単独重合体(D-1)の製造〕
 〔製造例4〕
 〔固体状チタン触媒成分(a-1)の調製〕
 無水塩化マグネシウム95.2g、デカン442mlおよび2-エチルヘキシルアルコール390.6gを130℃で2時間加熱反応を行って均一溶液とした後、この溶液中に無水フタル酸21.3gを添加し、さらに130℃にて1時間攪拌混合を行い、無水フタル酸を溶解させた。
 このようにして得られた均一溶液を室温に冷却した後、-20℃に保持した四塩化チタン200ml中に、この均一溶液の75mlを1時間にわたって滴下装入した。装入終了後、この混合液の温度を4時間かけて110℃に昇温し、110℃に達したところでフタル酸ジイソブチル(DIBP)5.22gを添加し、これより2時間同温度にて攪拌保持した。
 2時間の反応終了後、熱濾過にて固体部を採取し、この固体部を275mlの四塩化チタンに再懸濁させた後、再び110℃で2時間、加熱した。反応終了後、再び熱濾過にて固体部を採取し、110℃のデカンおよびヘキサンにて溶液中に遊離のチタン化合物が検出されなくなるまで充分洗浄した。
 上記の様に調製された固体状チタン触媒成分はヘキサンスラリーとして保存されるが、このうち一部を乾燥して触媒組成を調べた。固体状チタン触媒成分は、チタンを2.3重量%、塩素を61重量%、マグネシウムを19重量%およびDIBPを12.5重量%の量で含有していた。
 〔予重合触媒(b-1)の製造〕
 固体状チタン触媒成分(a-1)100.0g、シクロヘキシルメチルジメトキシシラン19.2ml、トリエチルアルミニウム65.6mL、ヘプタン10Lを内容量20Lの攪拌機付きオートクレーブに挿入し、内温15~20℃に保ちプロピレンを600g挿入し、100分間攪拌しながら反応させた。重合終了後、固体成分を沈降させ、上澄み液の除去およびヘプタンによる洗浄を2回行った。得られた予重合触媒を精製ヘプタンに再懸濁して、固体触媒成分濃度で1.0g/Lとなるよう、ヘプタンにより調整を行った。
 〔プロピレン単独重合体(D-1)の製造〕
 内容量58Lの管状重合器に、プロピレンを43kg/時間、水素を56NL/時間、予重合触媒(b-1)を0.77g/時間、トリエチルアルミニウムを2.3mL/時間、シクロヘキシルメチルジメトキシシランを4.3mL/時間で連続的に供給し、気相の存在しない満液の状態にて重合した。管状重合器の温度は70℃であり、圧力は3.4MPa/Gであった。
 得られたスラリーは内容量70Lの攪拌機付きベッセル重合器へ送り、更に重合を行った。重合器へは、プロピレンを45kg/時間、水素を気相部の水素濃度が2.9mol%になるように供給した。重合温度70℃、圧力3.1MPa/Gで重合を行った。
 得られたスラリーは失活後、プロピレンを蒸発させてパウダー状のプロピレン単独重合体(D-1)を得た。得られたプロピレン単独重合体(D-1)は、MFRが9g/10分、Mw/Mnは5.0であった。
 〔プロピレン単独重合体(D-2)〕
 プロピレン単独重合体(D-2)として、MFR:6.5g/10分、Mw/Mn:5.2のプロピレン単独重合体(プライムポリマー社製 商品名 プライムポリプロF-704NP)を用いた。
 〔プロピレン単独重合体(D-3)〕
 プロピレン単独重合体(D-3)として、MFR:7.2g/10分、Mw/Mn:4.8のプロピレン単独重合体(プライムポリマー社製 商品名 プライムポリプロF107BA)を用いた。
 〔プロピレン系重合体(A)における各成分の分率〕
 製造例1において、第1段目で得られたプロピレン系重合体(プロピレン系重合体(a1)に相当)および第2段目で得られたプロピレン系重合体(プロピレン系重合体(a2)に相当)の質量分率は、重合時に生じた反応熱の徐熱量から求めた。
 〔極限粘度[η]〕
 極限粘度[η](dl/g)は、135℃、テトラリン溶媒中で測定した。なお、第2段目で得られたプロピレン系重合体(プロピレン系重合体(a2)に相当)の極限粘度[η]2は、下記式より計算した値である。
 [η]2=([η]total×100-[η]1×W1)/W2
 [η]total:プロピレン系重合体全体の極限粘度
 [η]1:第1段目で得られたプロピレン系重合体の極限粘度
 W1:第1段目で得られたプロピレン系重合体の質量分率(%)
 W2:第2段目で得られたプロピレン系重合体の質量分率(%)
 〔メルトフローレート〕
 メルトフローレート(MFR)(g/10分)は、JIS-K7210に準拠し、測定温度230℃、荷重2.16kgfにて測定した。
 〔分子量150万以上の高分子量領域の割合、ML、MH/ML、分子量分布〕
 分子量150万以上の高分子量領域の割合は、下記の装置および条件のGPCにより測定された分子量分布曲線(具体的には、分子量分布曲線および横軸)で囲まれる領域の全面積に占める、分子量150万以上の高分子量領域の面積割合である。ここで、横軸:分子量(対数値)、縦軸:dw/dLog(M)[w:積算質量分率、M:分子量]とする。前記分子量分布曲線の高分子量側のピーク分子量MHと低分子量側のピーク分子量MLとを得て、MH/MLを算出した。また、前記分子量分布曲線から、平均分子量(数平均分子量Mn、重量平均分子量Mw)を得て、分子量分布(Mw/Mn)を算出した。
 〔GPC測定装置〕
 ゲル浸透クロマトグラフ HLC-8321 GPC/HT型 (東ソー社製)解析装置
 データ処理ソフトEmpower 3(Waters社製)測定条件
 カラム:TSKgel GMH6-HT×2 + TSKgel GMH6-HTL×2
 (いずれも7.5mmI.D.x30cm, 東ソー社製)
 カラム温度:140℃
 移動相:o-ジクロロベンゼン(0.025%BHT含有)
 検出器:示差屈折計
 流量:1.0mL/min
 試料濃度:0.1 %(w/v)
 注入量:0.4mL
 サンプリング時間間隔:1s
 カラム校正:単分散ポリスチレン(東ソー社製)
 分子量換算:PP換算/汎用校正法(PS(ポリスチレン)の粘度換算係数KPS=0.000138dl/g、
 αPS=0.700、PP(ポリプロピレン)の粘度換算係数KPP=0.000242dl/g、αPP=0.707)
 実施例および比較例で得た組成物を用いて得られた無延伸フィルムの物性は、以下の測定方法で測定した。
 〔ヘイズ〕
 ASTM D-1003(JIS K7105)に準拠して測定した。
 〔フィルム弾性率〕
 引張弾性率(MPa)は、JIS K7161の方法に従い測定した。なお、測定は成形の押出方向(MD)と、MDの垂直方向(TD)に対して、23℃の条件で行った。引張弾性率が高いほど、剛性が高いといえる。
 〔比較例1〕
 プロピレン重合体組成物として、製造例2で得られたプロピレン単独重合体(B1-1)を単独で用い、温度:286℃に設定したスクリュー径75mmの押出機の先端に幅:600mmのT-ダイを備えたフィルム成形機を用い、フィルム状に押出した後、温度:30℃に設定したチルロールで冷却して、厚さ:25μmの無延伸フィルムを得た。
 得られた無延伸フィルムの物性を上記記載の方法で測定した。
 結果を表2に示す。
 〔実施例1〕
 比較例1で用いたプロピレン重合体組成物に替えて、製造例1で得られたプロピレン系重合体(A-1):10質量部、および、製造例2で得られたプロピレン単独重合体(B1-1):90質量部とからなるプロピレン重合体組成物を用いる以外は比較例1と同様に行い無延伸フィルムを得た。
 得られた無延伸フィルムの物性を上記記載の方法で測定した。
 結果を表2に示す。
 〔実施例2〕
 実施例2で用いたプロピレン重合体組成物に替えて、プロピレン系重合体(A-1):20質量部、および、プロピレン単独重合体(B1-1):80質量部とからなるプロピレン重合体組成物を用いる以外は実施例1と同様に行い無延伸フィルムを得た。
 得られた無延伸フィルムの物性を上記記載の方法で測定した。
 結果を表2に示す。
 〔比較例2〕
 比較例1で用いたプロピレン単独重合体(B1-1)に替えて、製造例3で得られプロピレン単独重合体(B1-2)を用いる以外は、比較例1と同様に行い無延伸フィルムを得た。
 得られた無延伸フィルムの物性を上記記載の方法で測定した。
 結果を表2に示す。
 〔実施例3〕
 実施例1で用いたプロピレン単独重合体(B1-1)に替えて、プロピレン単独重合体(B1-2)を用いる以外は、実施例1と同様に行い無延伸フィルムを得た。
 得られた無延伸フィルムの物性を上記記載の方法で測定した。
 結果を表2に示す。
 〔実施例4〕
 実施例2で用いたプロピレン単独重合体(B1-1)に替えて、プロピレン単独重合体(B1-2)を用いる以外は、実施例2と同様に行い無延伸フィルムを得た。
 得られた無延伸フィルムの物性を上記記載の方法で測定した。
 結果を表2に示す。
 〔比較例3~5〕
 プロピレン重合体組成物として、プロピレン系重合体(A-1)およびプロピレン単独重合体(D-2)を表3に示す量で用いる以外は、比較例1と同様に行い無延伸フィルムを得た。
 得られた無延伸フィルムの物性を上記記載の方法で測定した。
 結果を表3に示す。
 〔比較例6、7〕
 プロピレン重合体組成物として、プロピレン系重合体(A-1)およびプロピレン単独重合体(D-3)を表3に示す量で用いる以外は、比較例1と同様に行い無延伸フィルムを得た。
 得られた無延伸フィルムの物性を上記記載の方法で測定した。
 結果を表3に示す。
 〔比較例8,9〕
 プロピレン重合体組成物として、プロピレン系重合体(A-1)およびプロピレン単独重合体(D-1)を表3に示す量で用いる以外は、比較例1と同様に行い無延伸フィルムを得た。
 得られた無延伸フィルムの物性を上記記載の方法で測定した。
 結果を表3に示す。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 〔プロピレン単独重合体(B2)〕
 〔プロピレン単独重合体(B2-1)の製造〕
 〔製造例5〕
 [固体状チタン触媒成分(a-1)の調製]
 無水塩化マグネシウム95.2g、デカン442mlおよび2-エチルヘキシルアルコール390.6gを130℃で2時間加熱反応を行って均一溶液とした後、この溶液中に無水フタル酸21.3gを添加し、さらに130℃にて1時間攪拌混合を行い、無水フタル酸を溶解させた。
 2時間の反応終了後、熱濾過にて固体部を採取し、この固体部を275mlの四塩化チタンに再懸濁させた後、再び110℃で2時間、加熱した。反応終了後、再び熱濾過にて固体部を採取し、110℃のデカンおよびヘキサンにて溶液中に遊離のチタン化合物が検出されなくなるまで充分洗浄した。
 上記の様に調製された固体状チタン触媒成分はヘキサンスラリーとして保存されるが、このうち一部を乾燥して触媒組成を調べた。固体状チタン触媒成分は、チタンを2.3質量%、塩素を61質量%、マグネシウムを19質量%およびDIBPを12.5質量%の量で含有していた。
 [予重合触媒(b-2)の製造]
 固体状チタン触媒成分(a-1)100.0g、ジシクロペンチルジメトキシシラン22.4ml、トリエチルアルミニウム65.6mL、ヘプタン10Lを内容量20Lの攪拌機付きオートクレーブに挿入し、内温15~20℃に保ちプロピレンを600g挿入し、100分間攪拌しながら反応させた。重合終了後、固体成分を沈降させ、上澄み液の除去およびヘプタンによる洗浄を2回行った。得られた予重合触媒を精製ヘプタンに再懸濁して、固体触媒成分濃度で1.0g/Lとなるよう、ヘプタンにより調整を行った。
 [プロピレン単独重合体(B2-1)の製造]
 内容量58Lの管状重合器に、プロピレンを43kg/時間、水素を40NL/時間、予重合触媒(b-2)を0.65g/時間、トリエチルアルミニウムを2.1mL/時間、ジシクロペンチルジメトキシシランを4.4mL/時間で連続的に供給し、気相の存在しない満液の状態にて重合した。管状重合器の温度は70℃であり、圧力は3.2MPa/Gであった。
 得られたスラリーは内容量70Lの攪拌機付きベッセル重合器へ送り、更に重合を行った。重合器へは、プロピレンを45kg/時間、水素を気相部の水素濃度が2.4mol%になるように供給した。重合温度70℃、圧力2.9MPa/Gで重合を行った。
 得られたスラリーは失活後、プロピレンを蒸発させてパウダー状のプロピレン単独4重合体を得た。得られたプロピレン重合体は、MFRが3.0g/10分であった。
 得られたプロピレン重合体:100質量部に対し、有機過酸化物〔商品名:パーヘキサ25B-40(日油株式会社製)〕:0.06質量部を加え、攪拌を十分に行った。これを神戸製鋼社製 KTX 30mm二軸押出機を用い、シリンダー温度230℃、押出量25kg/hrs.で溶融混練した。得られたプロピレン単独重合体(B2-1)のMFRは9g/10分、Mw/Mnは3.8であった。
 [プロピレン単独重合体(B2-2)の製造]
 [製造例6]
 [固体状チタン触媒成分(a-2)の調製]
 直径12mmの鋼球9kgの入った内容積4Lの粉砕用ポットを4個装備した振動ミルを用意した。各ポットに窒素雰囲気中で塩化マグネシウム300g、フタル酸ジイソブチル115mL、四塩化チタン60mLを加え40時間粉砕した。
 上記共粉砕物75gを5Lのフラスコに入れトルエン1.5Lを加え114℃で30分間攪拌処理し、次いで静置して上澄液を除去した。次いでn-ヘプタン1.5L、20℃で3回、固形分を洗浄しさらに1.5Lのn-ヘプタンに分散して遷移金属触媒成分スラリーとした。得られた遷移金属触媒成分(a-2)はチタンを2質量%含有しフタル酸ジイソブチルを18質量%含有していた。
 [予重合触媒(b-3)の製造]
 遷移金属触媒成分(a-2)100g、トリエチルアルミニウム15.4mL、ヘプタン100Lを内容量200Lの攪拌機付きオートクレーブに挿入し、内温5℃に保ちプロピレンを600g挿入し、60分間攪拌しながら反応させた。重合終了後、四塩化チタン4.1mLを装入し、予重合触媒(b-3)とした。この予重合触媒(b-3)は遷移金属触媒成分1g当りプロピレン単独重合体を6g含んでいた。
 [プロピレン単独重合体(B2-2)の製造]
 内容量500Lの攪拌機付きベッセル重合器に、プロピレンを130kg/時間、水素を136NL/時間、予重合触媒(b-3)を1.05g/時間、トリエチルアルミニウムを5.2mL/時間、シクロヘキシルメチルジメトキシシランを0.4mL/時間で連続的に供給し、水素を気相部の水素濃度が2.6mol%になるように供給した。攪拌機付きベッセル重合器の温度は73℃であり、圧力は3.2MPa/Gであった。
 得られたスラリーは失活後、プロピレンを蒸発させてパウダー状のプロピレン単独重合体を得た。得られたプロピレン単独重合体は、MFRが1.7g/10分であった。
 得られたプロピレン単独重合体:100質量部に対し、有機過酸化物〔商品名 パーヘキサ25B-40(日油株式会社製)〕:0.07質量部を加え、攪拌を十分に行った。これを神戸製鋼社製 KTX 30mm二軸押出機を用い、シリンダー温度230℃、押出量25kg/hで溶融混練した。得られたプロピレン単独重合体(B2-2)のMFRは9g/10分、Mw/Mnは3.7であった。
 [プロピレン単独重合体(D2-1)の製造]
 [製造例7]
 [固体状チタン触媒成分(a-1)の調製]
 無水塩化マグネシウム95.2g、デカン442mlおよび2-エチルヘキシルアルコール390.6gを130℃で2時間加熱反応を行って均一溶液とした後、この溶液中に無水フタル酸21.3gを添加し、さらに130℃にて1時間攪拌混合を行い、無水フタル酸を溶解させた。
 このようにして得られた均一溶液を室温に冷却した後、-20℃に保持した四塩化チタン200ml中に、この均一溶液の75mlを1時間にわたって滴下装入した。装入終了後、この混合液の温度を4時間かけて110℃に昇温し、110℃に達したところでフタル酸ジイソブチル(DIBP)5.22gを添加し、これより2時間同温度にて攪拌保持した。
 2時間の反応終了後、熱濾過にて固体部を採取し、この固体部を275mlの四塩化チタンに再懸濁させた後、再び110℃で2時間、加熱した。反応終了後、再び熱濾過にて固体部を採取し、110℃のデカンおよびヘキサンにて溶液中に遊離のチタン化合物が検出されなくなるまで充分洗浄した。
 上記の様に調製された固体状チタン触媒成分はヘキサンスラリーとして保存されるが、このうち一部を乾燥して触媒組成を調べた。固体状チタン触媒成分は、チタンを2.3質量%、塩素を61質量%、マグネシウムを19質量%およびDIBPを12.5質量%の量で含有していた。
 [予重合触媒(b-1)の製造]
 固体状チタン触媒成分(a-1)100.0g、シクロヘキシルメチルジメトキシシラン19.2ml、トリエチルアルミニウム65.6mL、ヘプタン10Lを内容量20Lの攪拌機付きオートクレーブに挿入し、内温15~20℃に保ちプロピレンを600g挿入し、100分間攪拌しながら反応させた。重合終了後、固体成分を沈降させ、上澄み液の除去およびヘプタンによる洗浄を2回行った。得られた予重合触媒を精製ヘプタンに再懸濁して、固体触媒成分濃度で1.0g/Lとなるよう、ヘプタンにより調整を行った。
 [プロピレン単独重合体(D2-1)の製造]
 内容量58Lの管状重合器に、プロピレンを43kg/時間、水素を56NL/時間、予重合触媒(b-1)を0.77g/時間、トリエチルアルミニウムを2.3mL/時間、シクロヘキシルメチルジメトキシシランを4.3mL/時間で連続的に供給し、気相の存在しない満液の状態にて重合した。管状重合器の温度は70℃であり、圧力は3.4MPa/Gであった。
 得られたスラリーは内容量70Lの攪拌機付きベッセル重合器へ送り、更に重合を行った。重合器へは、プロピレンを45kg/時間、水素を気相部の水素濃度が2.9mol%になるように供給した。重合温度70℃、圧力3.1MPa/Gで重合を行った。
 得られたスラリーは失活後、プロピレンを蒸発させてパウダー状のプロピレン単独重合体を得た。得られたプロピレン単独重合体は、MFRが9g/10分であった。
 得られたプロピレン単独重合体:100質量部に対し、有機過酸化物〔商品名 パーヘキサ25B-40(日油株式会社製)〕:0.05質量部を加え、攪拌を十分に行った。これを神戸製鋼社製 KTX 30mm二軸押出機を用い、シリンダー温度230℃、押出量25kg/hrs.で溶融混練した。得られたプロピレン単独重合体(D2-1)のMFRは18g/10分、Mw/Mnは4.3であった。
 〔比較例10〕
 プロピレン重合体組成物として、製造例5で得られたプロピレン単独重合体(B2-1)を単独で用い、温度:286℃に設定したスクリュー径75mmの押出機の先端に幅:600mmのT-ダイを備えたフィルム成形機を用い、フィルム状に押出した後、温度:30℃に設定したチルロールで冷却して、厚さ:25μmの無延伸フィルムを得た。
 得られた無延伸フィルムの物性を上記記載の方法で測定した。
 結果を表4に示す。
 〔実施例5〕
 比較例10で用いたプロピレン重合体組成物に替えて、製造例1で得られたプロピレン系重合体(A-1):10質量部、および、製造例5で得られたプロピレン単独重合体(B2-1):90質量部とからなるプロピレン重合体組成物を用いる以外は比較例10と同様に行い無延伸フィルムを得た。
 得られた無延伸フィルムの物性を上記記載の方法で測定した。
 結果を表4に示す。
 〔実施例6〕
 実施例5で用いたプロピレン重合体組成物に替えて、プロピレン系重合体(A-1):30質量部、および、プロピレン単独重合体(B2-1):70質量部とからなるプロピレン重合体組成物を用いる以外は実施例1と同様に行い無延伸フィルムを得た。
 得られた無延伸フィルムの物性を上記記載の方法で測定した。
 結果を表4に示す。
 〔比較例11〕
 比較例10で用いたプロピレン単独重合体(B2-1)に替えて、製造例6で得られプロピレン単独重合体(B2-2)を用いる以外は、比較例10と同様に行い無延伸フィルムを得た。
 得られた無延伸フィルムの物性を上記記載の方法で測定した。
 結果を表4に示す。
 〔実施例7〕
 実施例5で用いたプロピレン単独重合体(B2-1)に替えて、プロピレン単独重合体(B2-2)を用いる以外は、実施例5と同様に行い無延伸フィルムを得た。
 得られた無延伸フィルムの物性を上記記載の方法で測定した。
 結果を表4に示す。
 〔実施例8〕
 実施例6で用いたプロピレン単独重合体(B2-1)に替えて、プロピレン単独重合体(B2-2)を用いる以外は、実施例6と同様に行い無延伸フィルムを得た。
 得られた無延伸フィルムの物性を上記記載の方法で測定した。
 結果を表4に示す。
 〔比較例12~14〕
 プロピレン重合体組成物として、プロピレン系重合体(A-1)およびプロピレン単独重合体(D-2)を表3に示す量で用いる以外は、比較例10と同様に行い無延伸フィルムを得た。
 得られた無延伸フィルムの物性を上記記載の方法で測定した。
 結果を表5に示す。
 〔比較例15、16〕
 プロピレン重合体組成物として、プロピレン系重合体(A-1)およびプロピレン単独重合体(D-3)を表5に示す量で用いる以外は、比較例10と同様に行い無延伸フィルムを得た。
 得られた無延伸フィルムの物性を上記記載の方法で測定した。
 結果を表5に示す。
 〔比較例17~19〕
 プロピレン重合体組成物として、プロピレン系重合体(A-1)およびプロピレン単独重合体(D2-1)を表5に示す量で用いる以外は、比較例10と同様に行い無延伸フィルムを得た。
 得られた無延伸フィルムの物性を上記記載の方法で測定した。
 結果を表5に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005

Claims (10)

  1.  135℃、テトラリン溶媒中で測定される極限粘度[η]が10~12dl/gの範囲にあるプロピレン系重合体(a1)を20~50質量%の範囲、および135℃、テトラリン溶媒中で測定した極限粘度[η]が0.5~1.5dl/gの範囲にあるプロピレン系重合体(a2)を50~80質量%の範囲〔但し、(a1)と(a2)の合計量を100質量%とする。〕で含むプロピレン系重合体(A)を1~40質量%の範囲、並びに
     JIS K 7210に準拠して、測定温度230℃、荷重2.16kgで測定したメルトフローレート(MFR)が10g/10分を超え、40g/10分以下の範囲にあるプロピレン単独重合体(B1)、または、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が4.0未満であるプロピレン単独重合体(B2)から選ばれるプロピレン単独重合体(B)を60~99質量%の範囲〔但し、(A)と(B)との合計量を100質量%とする。〕で含むプロピレン重合体組成物からなることを特徴とする無延伸フィルム。
  2.  プロピレン重合体組成物が、プロピレン系重合体(A)を1~20質量%の範囲、および、プロピレン単独重合体(B1)を80~99質量%の範囲で含む組成物であることを特徴とする請求項1に記載の無延伸フィルム。
  3.  プロピレン重合体組成物が、プロピレン系重合体(A)を15~40質量%の範囲、およびプロピレン単独重合体(B2)を60~85質量%の範囲で含む組成物であることを特徴とする請求項1に記載の無延伸フィルム。
  4.  プロピレン系重合体(A)が、JIS K 7210に準拠して、測定温度230℃、荷重2.16kgで測定したメルトフローレート(MFR)が0.01~5g/10分の範囲、および230℃で測定される溶融張力が5~30gの範囲にある重合体であることを特徴とする請求項1に記載の無延伸フィルム。
  5.  プロピレン系重合体(A)が、ゲルパーミエイションクロマトグラフィー(GPC)で測定された分子量分布曲線で囲まれる全面積に占める分子量が150万以上の高分子量領域の面積の割合が7%以上である重合体であることを特徴とする請求項1に記載の無延伸フィルム。
  6.  プロピレン系重合体(A)が、GPCで測定した分子量分布曲線が二つのピークを有し、高分子量側のピークの分子量(MH)と低分子量側のピークの分子量(ML)の比(MH/ML)が50以上である重合体であることを特徴とする請求項1に記載の無延伸フィルム。
  7.  プロピレン系重合体(A)が、GPCで測定した分子量分布曲線の低分子量側のピークの分子量(ML)が10万以下の重合体であることを特徴とする請求項1に記載の無延伸フィルム。
  8.  プロピレン単独重合体(B1)が、重量平均分子量(Mw)と数平均分子量(Mn)との比(Mw/Mn)が4.0~8.0の範囲にある重合体であることを特徴とする請求項1~6の何れか一項に記載の無延伸フィルム。
  9.  無延伸フィルムが、縦方向の引張弾性率が2400MPa以上、および、ASTM D-1003(JIS K7105)に準拠して測定したヘイズが10%以下であることを特徴とする請求項1に記載の無延伸フィルム。
  10.  請求項1~9の何れか一項に記載の無延伸フィルムを有することを特徴とする積層体。
PCT/JP2022/041517 2021-11-17 2022-11-08 プロピレン重合体組成物からなる無延伸フィルム WO2023090201A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020247012650A KR20240069765A (ko) 2021-11-17 2022-11-08 프로필렌 중합체 조성물로 이루어지는 무연신 필름
CN202280076248.9A CN118251449A (zh) 2021-11-17 2022-11-08 由丙烯聚合物组合物形成的无拉伸膜

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021187382 2021-11-17
JP2021-187381 2021-11-17
JP2021-187382 2021-11-17
JP2021187381 2021-11-17

Publications (1)

Publication Number Publication Date
WO2023090201A1 true WO2023090201A1 (ja) 2023-05-25

Family

ID=86396877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041517 WO2023090201A1 (ja) 2021-11-17 2022-11-08 プロピレン重合体組成物からなる無延伸フィルム

Country Status (2)

Country Link
KR (1) KR20240069765A (ja)
WO (1) WO2023090201A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001302858A (ja) * 2000-04-21 2001-10-31 Sumitomo Chem Co Ltd ポリプロピレン系樹脂組成物及びそれからなる成形体
WO2005097842A1 (ja) * 2004-03-31 2005-10-20 Prime Polymer Co., Ltd. プロピレン系多段重合体及びその製造方法、並びにプロピレン系樹脂組成物
JP2019137847A (ja) * 2018-02-09 2019-08-22 株式会社プライムポリマー プロピレン系重合体組成物およびその発泡成形体
JP2020158652A (ja) * 2019-03-27 2020-10-01 株式会社プライムポリマー プロピレン系重合体組成物およびその成形体
WO2021025143A1 (ja) * 2019-08-08 2021-02-11 株式会社プライムポリマー 非発泡シートおよび容器
WO2021025142A1 (ja) * 2019-08-08 2021-02-11 株式会社プライムポリマー プロピレン系重合体組成物、無延伸フィルムおよび積層体

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0942013B1 (en) 1997-08-05 2004-02-04 Mitsui Chemicals, Inc. Polypropylene resin composition and use thereof
JP2002265712A (ja) 2001-03-14 2002-09-18 Sumitomo Chem Co Ltd 易引裂きフィルム
JP4815755B2 (ja) 2004-05-06 2011-11-16 住友化学株式会社 フィルム成形用樹脂組成物およびそれからなるフィルム
JP5010802B2 (ja) 2004-08-09 2012-08-29 日本ポリプロ株式会社 高剛性ポリプロピレン系組成物及び製造法
JP5742113B2 (ja) 2010-05-12 2015-07-01 住友化学株式会社 ポリプロピレン未延伸フィルム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001302858A (ja) * 2000-04-21 2001-10-31 Sumitomo Chem Co Ltd ポリプロピレン系樹脂組成物及びそれからなる成形体
WO2005097842A1 (ja) * 2004-03-31 2005-10-20 Prime Polymer Co., Ltd. プロピレン系多段重合体及びその製造方法、並びにプロピレン系樹脂組成物
JP2019137847A (ja) * 2018-02-09 2019-08-22 株式会社プライムポリマー プロピレン系重合体組成物およびその発泡成形体
JP2020158652A (ja) * 2019-03-27 2020-10-01 株式会社プライムポリマー プロピレン系重合体組成物およびその成形体
WO2021025143A1 (ja) * 2019-08-08 2021-02-11 株式会社プライムポリマー 非発泡シートおよび容器
WO2021025142A1 (ja) * 2019-08-08 2021-02-11 株式会社プライムポリマー プロピレン系重合体組成物、無延伸フィルムおよび積層体

Also Published As

Publication number Publication date
KR20240069765A (ko) 2024-05-20

Similar Documents

Publication Publication Date Title
JP7391516B2 (ja) プロピレン系重合体組成物およびその製造方法
TW505677B (en) Polypropylene composition and the preparing method for the same
JP7308954B2 (ja) プロピレン系重合体組成物、無延伸フィルムおよび積層体
JP2005146160A (ja) プロピレン系重合体、その重合体を含むポリプロピレン系樹脂組成物、および、その組成物からなる射出成形体
JP2000159949A (ja) ポリプロピレン樹脂組成物およびその製造方法
JP7257522B2 (ja) 非発泡シートおよび容器
JP3139525B2 (ja) プロピレン単独重合体及びそれを用いた延伸フィルム
WO2023090201A1 (ja) プロピレン重合体組成物からなる無延伸フィルム
JP6594137B2 (ja) プロピレン系樹脂組成物の製造方法
JP6594140B2 (ja) プロピレン系樹脂組成物の製造方法
JP4759235B2 (ja) ポリプロピレン系積層フィルム
JP2020158652A (ja) プロピレン系重合体組成物およびその成形体
CN118251449A (zh) 由丙烯聚合物组合物形成的无拉伸膜
JP2021024641A (ja) 延伸容器
JPS63241050A (ja) 超高分子量エチレン重合体組成物及びその製法
JP7410666B2 (ja) 射出成形体
JP3686456B2 (ja) プロピレン系重合体および該重合体を用いた中空成形体
JP5919768B2 (ja) 耐ブロッキング性に優れたフィルム
JP6890474B2 (ja) プロピレン系樹脂組成物およびその製造方法、ならびに該プロピレン系樹脂組成物を用いた成形体
WO2024070720A1 (ja) 積層フィルム
WO2023132306A1 (ja) 無延伸フィルム、シーラントフィルムおよび多層シーラントフィルム
JP4081598B2 (ja) ポリプロピレン樹脂組成物、その樹脂組成物の製造方法およびその樹脂組成物からなるフィルム
JP2007063396A (ja) ポリプロピレン系樹脂組成物、およびその組成物からなるフィルムまたはシート
JPH10231369A (ja) ポリプロピレン延伸フィルム
JP2017057314A (ja) プロピレン系樹脂組成物およびその製造方法、並びに成形体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895483

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20247012650

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2023561539

Country of ref document: JP

Kind code of ref document: A