WO2023090009A1 - シリコンウェーハの洗浄方法及び自然酸化膜付きシリコンウェーハの製造方法 - Google Patents

シリコンウェーハの洗浄方法及び自然酸化膜付きシリコンウェーハの製造方法 Download PDF

Info

Publication number
WO2023090009A1
WO2023090009A1 PCT/JP2022/038278 JP2022038278W WO2023090009A1 WO 2023090009 A1 WO2023090009 A1 WO 2023090009A1 JP 2022038278 W JP2022038278 W JP 2022038278W WO 2023090009 A1 WO2023090009 A1 WO 2023090009A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleaning
oxide film
silicon wafer
natural oxide
surface roughness
Prior art date
Application number
PCT/JP2022/038278
Other languages
English (en)
French (fr)
Inventor
康太 藤井
達夫 阿部
剛 大槻
Original Assignee
信越半導体株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越半導体株式会社 filed Critical 信越半導体株式会社
Publication of WO2023090009A1 publication Critical patent/WO2023090009A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor

Definitions

  • the present invention relates to a method for cleaning a silicon wafer and a method for manufacturing a silicon wafer with a natural oxide film.
  • the main surface is finished in the polishing process. Furthermore, there is a cleaning process to remove abrasives and metal impurities adhered to the surface of the silicon wafer during the polishing process. In this cleaning process, a cleaning method called RCA cleaning is used.
  • This RCA cleaning is a cleaning method that combines SC1 (Standard Cleaning 1) cleaning, SC2 (Standard Cleaning 2) cleaning, and DHF (Diluted Hydrofluoric Acid) cleaning according to the purpose.
  • SC1 cleaning is a cleaning method using an alkaline cleaning solution in which ammonia water and hydrogen peroxide solution are mixed at an arbitrary ratio. This cleaning method utilizes repulsion to remove particles while suppressing redeposition to silicon wafers.
  • SC2 cleaning is a cleaning method for dissolving and removing metal impurities on the surface of a silicon wafer with a cleaning liquid in which hydrochloric acid and hydrogen peroxide are mixed at an arbitrary ratio.
  • DHF cleaning is a cleaning method for removing a natural oxide film on the surface of a silicon wafer with dilute hydrofluoric acid. Furthermore, ozone water cleaning with strong oxidizing power is sometimes used to remove organic matter adhering to the silicon wafer surface and to form a natural oxide film on the silicon wafer surface after DHF cleaning. Surface quality such as particles and surface roughness of silicon wafers after cleaning is important, and a combination of these cleaning processes is performed depending on the purpose.
  • Semiconductor elements such as MOS (Metal Oxide Semiconductor) capacitors and transistors are formed on the surface of a semiconductor silicon wafer.
  • An insulating film such as a gate oxide film formed in these semiconductor elements is used under a high electric field strength, and a silicon oxide film, which is easy to form, is often used as the insulating film.
  • Measurement using an ellipsometer can be cited as a method for evaluating the thickness of oxide films on silicon wafers.
  • An ellipsometer obtains the phase difference ( ⁇ delta) and amplitude ratio ( ⁇ psi) by making polarized light incident on a substrate sample and measuring the change in the polarization state of the incident light and the reflected light. .
  • incident light changes its polarization state by being reflected by the silicon oxide film on the outermost surface and the interface between the silicon oxide film and the silicon wafer.
  • ellipsometers There are two types of ellipsometers: a single-wavelength type that uses a laser as a light source and a spectroscopic type that uses a white light source containing multiple wavelength components.
  • the spectroscopic type can measure the delta and psi for each wavelength, and it is known that the spectroscopic type, which has a large amount of information, can be used to accurately evaluate the film thickness.
  • the information obtained by measuring the ellipsometer is the phase difference and amplitude ratio, and the film thickness cannot be obtained directly.
  • a model corresponding to the substrate sample is created, and the delta and psi obtained theoretically from this model are compared with the delta and psi obtained by ellipsometer measurement.
  • the model is created by setting conditions according to the physical properties of the sample. and so on. For setting each item, a known reference corresponding to the sample, a required dispersion formula showing the wavelength dependence of the dielectric constant and having a plurality of parameters, etc. are usually used.
  • a process of changing the parameters of the dispersion formula and the film thickness of each layer of the model is performed (also called fitting) so that the degree of difference between the two is minimized in the above comparison.
  • the difference between the two is usually obtained by calculation using the method of least squares.
  • the value of the parameter of the dispersion formula at that time can be used to determine the thickness of the membrane.
  • the film thickness can be obtained by obtaining the refractive index and the extinction coefficient and specifying the film thickness at that time as the film thickness of the sample. Modeling, fitting, etc. are generally performed manually or automatically based on a required program using a computer.
  • the concept of effective medium approximation may be used (for example, Patent Document 1, etc.).
  • This method is a method of improving the calculation result of the least-squares method by defining roughness and voids as one plane layer.
  • the effective medium approximation is applied not only to the case where roughness exists on the film surface of the sample, but also to the interface layer where roughness exists at the interface between the substrate and the film or between the film layers.
  • the effective medium approximation is sometimes used to lower the value of the refractive index as an analytical technique, regardless of the presence of roughness.
  • the use of the effective medium approximation changes the calculation result of the least squares method, and as a result, the value of the film thickness also changes. It is necessary to judge from
  • Patent Document 2 describes that the film thickness of a native oxide film on a silicon wafer obtained with an ellipsometer changes depending on the surface roughness. Specifically, the rougher the surface, the thicker the film thickness, and a method of quantitatively evaluating the surface roughness from the correlation between the surface roughness and the film thickness of the native oxide film is disclosed.
  • AFM Anamic Force Microscope
  • Ra is the arithmetic average height in the reference length and is a two-dimensional roughness index
  • Sa is a parameter obtained by extending Ra to a surface and is a three-dimensional roughness index.
  • conversion to the spatial frequency domain by spectrum analysis can also be performed. This method can extract a specific wavelength component from the measured surface profile, for example, parameters related to a specific spatial wavelength and the amplitude intensity at that wavelength, such as PSD (Power Spectrum Density). be done.
  • PSD Power Spectrum Density
  • a Haze value obtained by a particle counter using a laser scattering method can be used as an index of roughness.
  • Haze is expressed as so-called haze, and is widely used as an index of silicon surface roughness. A high haze level indicates that the surface of the wafer is rough.
  • a dense silicon oxide film with high insulating properties is produced by thermally oxidizing a silicon wafer. is often processed on silicon wafers on which a native oxide film is formed. At this time, it is known that the thickness of the thermal oxide film is affected by the film quality (film thickness and structure) of the natural oxide film before thermal oxidation.
  • the thermal oxide film is desired to be thin, the natural oxide film should also be thin, and if the thermal oxide film is to be thick, the natural oxide film should also be thick. Therefore, in recent years, there is a particular demand to control the film thickness of the native oxide film within a certain range with good reproducibility.
  • Patent Document 3 describes the relationship between silicon wafers cleaned under various conditions and the thickness of oxide films after thermal oxidation. Specifically, when the NH 4 OH concentration of the SC1 cleaning solution is increased, the amount of OH groups contained in the natural oxide film increases, and the film thickness after thermal oxidation increases. and the film thickness after thermal oxidation is used to control the film thickness after thermal oxidation.
  • the surface roughness of the wafer is formed by polishing and subsequent cleaning.
  • SC1 cleaning, hydrofluoric acid cleaning, and ozone water cleaning are used to clean wafers after polishing, but it is known that SC1 cleaning, which has an etching action, mainly roughens the surface in the cleaning process.
  • Patent Document 3 describes the surface roughness Ra after SC1 cleaning and ozone water cleaning, and its value is about 0.06 to 0.12 nm. Such an Ra value is the roughness value of silicon wafers used in recent years.
  • Patent Document 2 discloses that the surface roughness of a wafer affects the thickness of a native oxide film measured with an ellipsometer, but the surface roughness value in this case is 0.22 in terms of AFM Ra value. ⁇ 2.05 nm, which is very high compared with the surface roughness value of 0.06 to 0.12 nm described above.
  • the thickness of a natural oxide film is about 1 nm
  • Patent Document 2 when the Ra value is 0.22 nm, the film thickness of the natural oxide film is 0.097 nm, and the Ra value is 1.0 nm.
  • the Ra value is 23 nm, the thickness of the natural oxide film is 1.586 nm, and when the Ra value is 2.05 nm, the thickness of the natural oxide film is 3.313 nm.
  • the surface roughness and the film thickness of the natural oxide film in Patent Document 2 are significantly different from the surface roughness and the film thickness of the natural oxide film of silicon wafers used in recent years.
  • Patent Document 3 focusing on the Ra value of AFM and the thickness of the thermal oxide film obtained by the spectroscopic ellipsometry when the NH 4 OH concentration in SC1 cleaning is varied, which are described in Patent Document 3, the NH 4 OH concentration The higher the level of , the higher the Ra value of AFM, and the tendency is obtained that the thickness of the thermal oxide film is also thicker (Fig. 9 of Patent Document 3).
  • the composition (film quality) of a natural oxide film (chemical oxide film) formed in a cleaning process for example, the OH group measured by the ATR (Attenuated Total Reflectance)-FT (Fourier Transform)-IR (Infrared Spectroscopy) method. It is disclosed that the amount of has a correlation with the thickness of the thermal oxide film, and it is stated that the higher the NH 4 OH concentration, the thicker the thermal oxide film because the amount of OH groups increases.
  • the wafer surface roughness formed in the silicon wafer manufacturing process such as an Ra value of 0.06 to 0.12 nm, is one of the factors affecting the thickness of the oxide film, the natural oxide film and In terms of controlling the film thickness of the thermal oxide film, it can be considered as an important quality like the structure (film quality) of the above-described natural oxide film. Also, it would be useful if the film thickness of the native oxide film formed after cleaning could be controlled by appropriately adjusting the surface roughness of the wafer.
  • the present invention has been made to solve the above-mentioned problems, and is capable of controlling the thickness of a native oxide film with high precision and reproducibility by adjusting the surface roughness of the wafer.
  • the purpose is to provide a method.
  • the present invention has been made to achieve the above objects, and is a silicon wafer cleaning method, wherein a plurality of test silicon wafers are prepared in advance, and the SC1 cleaning conditions are changed to clean the test silicon wafers.
  • a correlation obtaining step of obtaining a correlation between the film thickness of the natural oxide film and the silicon wafer to be formed of the natural oxide film, the film thickness of the natural oxide film formed by cleaning the silicon wafer with the cleaning liquid having the oxidizing power is a predetermined thickness.
  • the surface roughness to be formed on the silicon wafer to be formed with the natural oxide film is determined so that the surface roughness becomes the determined surface roughness.
  • SC1 cleaning is performed.
  • a cleaning step and cleaning the silicon wafer on which the natural oxide film is to be formed after the SC1 cleaning step with hydrofluoric acid to completely remove the SC1 oxide film formed by the SC1 cleaning. and forming a natural oxide film by cleaning the silicon wafer from which the SC1 oxide film has been removed and from which the natural oxide film is to be formed, using the cleaning liquid having an oxidizing power.
  • a silicon wafer cleaning method for controlling the film thickness of a natural oxide film formed on a silicon wafer by cleaning is provided.
  • the film thickness of the natural oxide film can be controlled with good accuracy and reproducibility by utilizing the correlation between the surface roughness of the wafer and the film thickness of the natural oxide film.
  • the SC1 cleaning conditions can be a cleaning method for silicon wafers in which one or more of SC1 chemical solution concentration, cleaning temperature, and cleaning time are set.
  • the surface roughness can be a roughness component with a spatial frequency of 60 to 90/ ⁇ m.
  • the Haze value of the particle counter can be used as the index of the surface roughness.
  • the haze value can be easily obtained with a particle counter, the throughput is extremely high and the cleaning conditions can be set quickly and easily.
  • the index of the surface roughness can be an average value of power spectral densities with a spatial frequency of 60 to 90/ ⁇ m.
  • ozone water or hydrogen peroxide water can be used as the cleaning liquid having the oxidizing power.
  • ozone water and hydrogen peroxide water have a strong oxidizing power, can uniformly oxidize the wafer surface, and can easily and stably form an oxide film.
  • the method for cleaning a silicon wafer according to the present invention can be used as a method for manufacturing a silicon wafer with a natural oxide film.
  • the film thickness of the natural oxide film is controlled with good accuracy and reproducibility by utilizing the correlation between the surface roughness of the wafer and the film thickness of the natural oxide film. It becomes possible to control the film thickness of the natural oxide film.
  • 1 is a flow chart showing an example of a silicon wafer cleaning method according to the present invention.
  • 4 shows a flowchart relating to investigation of the relationship between the surface roughness of a silicon wafer and the film thickness of an oxide film.
  • 3 is a graph showing the relationship between the surface roughness (Haze) of a silicon wafer subjected to the roughening treatment of FIG. 2 by CMP and SC1 cleaning, and the natural oxide film and the 5 nm oxide film.
  • 3 is a graph showing the relationship between the surface roughness (Haze) of silicon wafers subjected to the roughening treatment of FIG. 2 by single wafer cleaning, and the natural oxide film and the 5 nm oxide film. Cleaning times when the roughening treatment in FIG .
  • FIG. 4 is a diagram showing the relationship between SC1 cleaning conditions and the film thickness of a native oxide film of a sample after hydrofluoric acid cleaning and ozone water cleaning. It is the figure which showed the relationship between the haze increase amount of each sample, and the film thickness of a natural oxide film.
  • the present inventors have investigated the roughness formed in the manufacturing process of silicon wafers, specifically, the roughness formed in the polishing process and the cleaning process and the natural oxidation measured with an ellipsometer. Focusing on the relationship between the thickness of the film and the thickness of the thermal oxide film, the present inventors diligently studied. As a result, when the average value of the power spectral density (intensity) in a specific frequency band exceeds a predetermined value, the film thickness of the oxide film increases. The inventors have found that the film thickness can be controlled, and completed the present invention.
  • the present inventors have developed a silicon wafer cleaning method in which a plurality of test silicon wafers are prepared in advance, and the test silicon wafers are subjected to SC1 cleaning under different SC1 cleaning conditions to reduce surface roughness.
  • the SC1 cleaning step of the test silicon wafers for producing the test silicon wafers of different levels, and the SC1 oxide film formed in the SC1 cleaning step of the test silicon wafers is completely removed by hydrofluoric acid cleaning.
  • An SC1 cleaning condition determination step of determining the surface roughness to be formed on the silicon wafer to be formed with the natural oxide film based on the correlation acquired in the acquisition step, and determining the SC1 cleaning conditions for achieving the determined surface roughness.
  • a step of removing the SC1 oxide film from the silicon wafer on which the natural oxide film is to be formed A step of forming an oxide film on the silicon wafer on which the natural oxide film is to be formed by cleaning the silicon wafer on which the natural oxide film is to be formed from which the SC1 oxide film has been removed, using a cleaning liquid having an oxidizing power. found that the thickness of the natural oxide film can be controlled with good precision and reproducibility by the silicon wafer cleaning method for controlling the thickness of the natural oxide film of the silicon wafer formed by cleaning, We have completed the present invention.
  • FIG. 2 is the survey flow chart.
  • a plurality of levels of silicon wafers were prepared by performing CMP processing or SC1 cleaning as a roughening treatment for forming roughness on the prepared silicon wafers by changing the CMP processing conditions and the SC1 cleaning conditions.
  • an oxide film was formed by cleaning with ozone water. In both levels, the oxide film formed by the SC1 cleaning of the roughening treatment is completely removed by hydrofluoric acid cleaning, and the subsequent oxide film is formed by ozone water, so the same method can be used for multiple levels of silicon wafers.
  • an oxide film is formed. After that, after performing Haze measurement with a particle counter, some wafers were thermally oxidized with a target film thickness of 5 nm, and the film thickness of the natural oxide film and the formed oxide film with a target film thickness of 5 nm were evaluated by spectroscopic ellipsometry.
  • FIG. 3 is a graph showing the relationship between the surface roughness (Haze) of a silicon wafer subjected to the roughening treatment of FIG. .
  • the CMP level
  • the film thickness of the natural oxide film and the oxide film aimed at 5 nm were the same even when the haze value exceeded 10 ppm.
  • Both of the oxide films aimed at 5 nm tended to be thicker. Since the oxide film was formed under the same conditions, it was assumed that the film thickness would be similar to that of the CMP level, but not the SC1 cleaning level.
  • FIG. 4 shows the surface roughness (Haze) of silicon wafers and the film thickness of the natural oxide film and the oxide film aiming at 5 nm when the roughening treatment in FIG. It shows the relationship with thickness.
  • hydrofluoric acid cleaning and ozone water cleaning after the roughening treatment were also performed by a single wafer method instead of a batch method. In this case, since the oxide film formation method is different from that of batch-type ozonized water, it is not possible to compare the film thickness of the above-mentioned SC1 and CMP levels with the single-wafer cleaning level. The impact can be debated.
  • the film thickness of the natural oxide film and the oxide film aiming at 5 nm were the same at the single-wafer cleaning level as with the CMP level, even if the haze changed.
  • the roughness formed by CMP and single wafer cleaning does not affect the thickness of the oxide film, and the surface roughness of the substrate formed by SC1 cleaning increases the thickness of the oxide film. It was newly found that
  • FIG. 5 shows the results of the film thickness and haze value of the native oxide film after completely removing the oxide film by acid cleaning and performing ozone water cleaning. Ref.
  • the film thickness of the natural oxide film was 1.207 nm without the cleaning time (0 min), 1.258 nm with the cleaning time of 3 min, 1.258 nm with the cleaning time of 6 min, and 1.261 nm with the cleaning time of 12 min.
  • the difference between the average film thickness of 1.259 nm for cleaning times of 3, 6, and 12 minutes and the film thickness of 1.207 nm without cleaning (cleaning time of 0 min) is 0.052 nm.
  • the amount of thickening is considered to be about 0.052 nm. Haze tended to increase as the cleaning time was longer. It is conceivable that the reason that the film thicknesses of 3, 6 and 12 min are the same is that the roughness component involved in the film thickness (thickening) is the same.
  • FIG. 6 shows the AFM measurement results and PSD curves of each sample.
  • CMP-1 the lowest level
  • CMP-2 the highest level with the haze value in FIG. 3 were evaluated.
  • CMP-2 the power spectral density (intensity) in the low frequency band (1 to 10/ ⁇ m) was very high, and roughness on the low frequency side was predominant.
  • the AFM image was also obtained as an image like a large undulation, which agreed with each other. Since the roughness formed by CMP does not affect the thickness of the oxide film as described above, it can be said that the low-frequency component does not affect the thickness of the oxide film.
  • single-wafer cleaning level As for single-wafer washing levels, the lowest haze value (single-wafer washing-1) and the highest haze value (single-wafer washing-2) in FIG. 4 were evaluated.
  • the power spectrum density (intensity) of the single-wafer cleaning level was intermediate between CMP and SC1 cleaning in the high frequency band (10 to 100/ ⁇ m).
  • the roughness component in the range of 60 to 90/ ⁇ m is the roughness component that affects the film thickness of the natural oxide film and the oxide film aiming at 5 nm.
  • the power spectral density (intensity) at a spatial frequency band of 50/ ⁇ m or less is within the three levels of SC1 cleaning.
  • 80°C/12min > 80°C/3min > 60°C/3min It becomes the magnitude relationship, and the magnitude relationship of the Sa value, 80°C/12min > 80°C/3min > 60°C/3min
  • the Sa value in this case is dominated by the roughness information on the low frequency side where the intensity is high. This is considered to be the cause of the difference in the film thickness of the oxide film despite the fact that the thickness is 0.108 nm.
  • the oxide film becomes thick when the average value of the power spectral density (intensity), which is the roughness component in the spatial frequency band of 60 to 90/ ⁇ m, is greater than or equal to the threshold.
  • the average value of the power spectral density (intensity) in the range of 60 to 90 / ⁇ m for the three levels of SC1 cleaning is calculated, it is 0.16 nm 3 for SC1 cleaning ⁇ 60° C./3 min, and 0 for SC1 cleaning ⁇ 80° C./3 min. 0.18 nm 3 and 0.17 nm 3 after SC1 washing at ⁇ 80° C./12 min.
  • the thickness of the oxide film is affected by the surface roughness of the wafer, and it can be determined that the film thickness due to the surface roughness of the substrate is included.
  • the surface roughness of a specific wafer is a factor that affects the thickness of the oxide film (film thickness influencing factor).
  • the film thickness influencing factors of the natural oxide film and the thermal oxide film include, for example, the structure of the natural oxide film (chemical oxide film) described in Patent Document 3 and the surface roughness of the silicon wafer described so far. Two are mentioned.
  • SC1 cleaning is cleaning in which a reaction of oxidizing Si with hydrogen peroxide and a reaction of etching oxidized SiO2 always progress. This oxidation and etching behavior changes. Under general conditions, the etching reaction of SiO 2 is rate-determining, so the surface is always covered with a natural oxide film. Since the film thickness of the natural oxide film after SC1 cleaning varies depending on the balance between oxidation and etching reactions, it is necessary to control the reaction between oxidation and etching in order to control the film thickness of the natural oxide film after SC1 cleaning. be.
  • methods for forming a natural oxide film on the wafer surface include ozone water and hydrogen peroxide water in addition to SC1 cleaning. These do not cause an etching reaction, and only an oxidation reaction proceeds.
  • ozone water has a very strong oxidizing power, an oxide film can be formed with better controllability than SC1 cleaning.
  • the inventors investigated whether the film thickness could be controlled by limiting the variation factor of the natural oxide film to only the wafer surface roughness. That is, SC1 cleaning is performed on a target wafer on which a natural oxide film is to be formed, and roughness within a spatial frequency band of 60 to 90/ ⁇ m is formed to thicken the film thickness of the natural oxide film. After that, for example, hydrofluoric acid cleaning is performed to completely remove the natural oxide film formed by the SC1 cleaning, and then the natural oxide film is formed with a cleaning liquid having an oxidizing power such as ozone water, which does not involve etching. By doing so, it was thought that the variation factor could be limited to the wafer surface roughness and the film thickness of the native oxide film could be controlled.
  • SC1 cleaning is performed on a target wafer on which a natural oxide film is to be formed, and roughness within a spatial frequency band of 60 to 90/ ⁇ m is formed to thicken the film thickness of the natural oxide film.
  • hydrofluoric acid cleaning is performed to completely remove the natural oxide
  • FIG. 1 is a flow chart showing an example of a silicon wafer cleaning method according to the present invention.
  • a test silicon wafer is used to acquire the correlation between the surface roughness of the silicon wafer after SC1 cleaning and the film thickness of the natural oxide film. Then, using this correlation, the surface roughness of the silicon wafer on which the natural oxide film is to be formed is determined, and the silicon wafer is subjected to SC1 cleaning under SC1 cleaning conditions according to the determined surface roughness of the silicon wafer to obtain a predetermined surface. After forming the roughness and removing the SC1 oxide film, a natural linearization film is formed.
  • the method for cleaning a silicon wafer according to the present invention will be described in detail.
  • test silicon wafer First, a plurality of test silicon wafers for obtaining the correlation are prepared (S1 in FIG. 1). There are no restrictions on the conductivity type and diameter of the silicon wafer. As for the surface roughness, it is preferable that the test silicon wafer and the later-described silicon wafer to be subjected to formation of a natural oxide film have a surface roughness Sa value of 0.5 nm or less. In such a range, the film thickness of the oxide film calculated by spectroscopic ellipsometry is about 1 nm, which is more suitable for the evaluation of the film thickness of the native oxide film of silicon wafers used in recent years. be.
  • the Sa value of the front surface of a silicon wafer after CMP is 0.1 nm or less, and the Sa value of the back surface (DSP surface) is about 0.2 to 0.4 nm.
  • any wafer after CMP processing can be preferably used in the method for cleaning a silicon wafer according to the present invention.
  • SC1 cleaning step of test silicon wafer Next, a plurality of prepared test silicon wafers are subjected to SC1 cleaning under different cleaning conditions (S2 in FIG. 1).
  • the cleaning conditions it is desirable to change at least one of the SC1 chemical solution concentration, cleaning temperature, and cleaning time. This is because these conditions are easy to change even in practical operations, and the cleaning conditions can be easily set.
  • the cleaning temperature may be adjusted within the range of 30 to 90°C.
  • the cleaning time may be adjusted within the range of 0.5 to 10 minutes.
  • One or more of the above conditions can be set, but it is preferable to set more cleaning conditions, and three or more of the above conditions can be set.
  • SC1 cleaning By performing SC1 cleaning in this manner, roughness is formed on the surface of the wafer, and an oxide film is formed at the same time.
  • oxide films formed by cleaning are sometimes collectively referred to as natural oxide films and chemical oxide films.
  • An oxide film formed by cleaning is called an "SC1 oxide film”
  • an oxide film formed by cleaning using a cleaning liquid having an oxidizing power other than the SC1 cleaning is called a "natural oxide film”.
  • Step of removing SC1 oxide film from test silicon wafer Next, the test silicon wafer after SC1 cleaning is cleaned with hydrofluoric acid to completely remove the SC1 oxide film (S3 in FIG. 1). As long as the SC1 oxide film can be completely removed, the hydrofluoric acid cleaning conditions are not limited. ⁇ 360 seconds.
  • the test silicon wafer from which the SC1 oxide film has been removed is washed with an oxidizing cleaning liquid to form a native oxide film (S4 in FIG. 1).
  • an oxidizing cleaning liquid As the cleaning liquid having oxidizing power, ozone water or hydrogen peroxide water is preferable, and ozone water having stronger oxidizing power is more preferable.
  • Ozone water or hydrogen peroxide water has a strong oxidizing power, can uniformly oxidize the wafer surface, and can easily and stably form an oxide film.
  • the ozone water used can have a concentration of 3 to 25 ppm, a temperature of 10 to 30° C., and a washing time of 60 to 360 seconds.
  • the concentration of the hydrogen peroxide solution used can be 0.2 to 5.0 wt %
  • the temperature can be 30 to 90° C.
  • the washing time can be 60 to 360 seconds.
  • carrying out a series of these washings in one batch reduces labor.
  • the correlation between the surface roughness of the test silicon wafer on which the oxide film is formed and the film thickness of the native oxide film is obtained (S5 in FIG. 1).
  • the film thickness of the natural oxide film may be measured using a known measuring method, for example, spectroscopic ellipsometry.
  • the index of surface roughness it is most convenient to acquire the Haze value with a particle counter.
  • the haze value roughness can be accurately reflected by using the difference between before and after cleaning (haze increase amount, ⁇ Haze).
  • a roughness index such as Sa may be used in AFM
  • a PSD curve is obtained from spectral analysis of AFM profile data
  • the average value of the power spectral density (intensity) in the spatial frequency band 60 to 90 / ⁇ m is You can use it.
  • the roughness evaluation may be performed after SC1 cleaning and before the correlation acquisition step, may be performed before hydrofluoric acid cleaning, and may be performed after SC1 cleaning, hydrofluoric acid cleaning, and cleaning with a cleaning liquid having oxidizing power. You may This is because hydrofluoric acid cleaning and cleaning with an oxidative power hardly change the surface roughness component that affects the film thickness of the oxide film.
  • hydrofluoric acid cleaning and ozone water cleaning are performed.
  • the higher the cleaning temperature the thicker the film thickness. This is because the higher the cleaning temperature is, the more the roughness component in the spatial frequency band of 60 to 90/ ⁇ m is formed. Since the Haze value of the particle counter reflects the roughness in the range of 60 to 90/ ⁇ m, the Haze value can be used as an index.
  • FIG. 8 shows the relationship between the amount of haze increase before and after cleaning and the film thickness for the level of cleaning time of 3 minutes.
  • the silicon wafer (S6 in FIG. 1) for natural oxide film formation is cleaned to form a natural oxide film of the desired thickness.
  • SC1 washing condition determination step In the SC1 cleaning condition determination step (S7 in FIG. 1), first, the film thickness of the natural oxide film to be formed is set. Next, the necessary surface roughness is estimated and determined from the correlation, and the SC1 cleaning conditions for achieving the determined surface roughness are determined.
  • the target film thickness value is set to 1.310 nm. From the correlation in FIG. 8, the Haze increase amount corresponding to the film thickness of 1.310 nm is 0.020 ppm. Further, from the correlation in FIG.
  • SC1 cleaning step of silicon wafer for native oxide film formation Next, SC1 cleaning is performed under the determined cleaning conditions for the silicon wafer on which the native oxide film is to be formed (S8 in FIG. 1).
  • the silicon wafer from which the SC1 oxide film is completely removed and which is to be subjected to natural oxide film formation has the same oxidizing power as when the natural oxide film was formed on the test silicon wafer (test silicon wafer oxide film forming step).
  • a native oxide film is formed by cleaning with a cleaning liquid (S10 in FIG. 1).
  • a natural oxide film was formed by washing with ozone water.
  • the natural oxide film of the silicon wafer after washing with ozone water was evaluated by spectroscopic ellipsometry, it was about 1.312 nm, which means that a natural oxide film equivalent to the set 1.310 nm can be formed.
  • Example 2 A plurality of silicon wafers subjected to CMP polishing and single-wafer cleaning were prepared as test silicon wafers.
  • a Haze value before SC1 cleaning was obtained using a particle counter SP3 manufactured by KLA.
  • SC1 cleaning, hydrofluoric acid cleaning, and ozone water cleaning were performed using a batch cleaning machine under the cleaning conditions described later.
  • the concentration of hydrofluoric acid was 0.5 wt %, the washing temperature was 25° C., and the washing time was 3 minutes.
  • the ozone water washing was the concentration of 20 ppm, the washing temperature of 25° C., and the washing time of 3 minutes.
  • SP3 evaluated the haze of the silicon wafer for a test after washing
  • J. A The film thickness of the natural oxide film was evaluated with a spectroscopic ellipsometer M-2000V manufactured by Woollam. Table 1 shows the results. The higher the cleaning temperature, the larger the increase in haze, and the film thickness tended to be thicker, and the correlation between the roughness and the film thickness could be obtained.
  • the target film thickness of the natural oxide film formed on the silicon wafer was set to 1.330 nm.
  • the film thickness of the natural oxide film could be controlled by using the relationship between the surface roughness and the film thickness of the natural oxide film.
  • the present invention is not limited to the above embodiments.
  • the above-described embodiment is an example, and any device having substantially the same configuration as the technical idea described in the claims of the present invention and exhibiting the same effect is the present invention. included in the technical scope of

Abstract

本発明は、SC1洗浄条件を変えて洗浄を行い表面粗さが異なるウェーハを作製する試験用ウェーハのSC1洗浄工程と、SC1洗浄で形成されたSC1酸化膜をフッ酸洗浄により除去する工程と、酸化力を有する洗浄液で洗浄し自然酸化膜を形成する工程と、SC1洗浄で形成された表面粗さと自然酸化膜の膜厚との相関関係を取得する工程と、自然酸化膜形成対象のウェーハについて、形成する自然酸化膜の膜厚と相関関係から表面粗さを決定し該表面粗さとなるSC1洗浄条件を決定する工程と、決定したSC1洗浄条件でSC1洗浄する工程と、SC1洗浄で形成されたSC1酸化膜を除去する工程と、酸化力を有する洗浄液を用いてSC1酸化膜が除去されたウェーハを洗浄し自然酸化膜を形成する工程を備えるシリコンウェーハの洗浄方法である。これにより、表面粗さを調整して自然酸化膜の膜厚を精度及び再現性良く制御するシリコンウェーハの洗浄方法を提供する。

Description

シリコンウェーハの洗浄方法及び自然酸化膜付きシリコンウェーハの製造方法
 本発明は、シリコンウェーハの洗浄方法及び自然酸化膜付きシリコンウェーハの製造方法に関する。
 半導体デバイス用の単結晶シリコンウェーハの製造工程において、その主表面は研磨工程において仕上げられる。さらに、シリコンウェーハ表面に研磨工程で付着した研磨剤と金属不純物を除去するために洗浄工程がある。この洗浄工程ではRCA洗浄と呼ばれる洗浄方法が用いられている。
 このRCA洗浄とはSC1(Standard Cleaning 1)洗浄、SC2(Standard Cleaning 2)洗浄、DHF(Diluted Hydrofluoric Acid)洗浄を、目的に応じて組み合わせて行う洗浄方法である。SC1洗浄とは、アンモニア水と過酸化水素水を任意の割合で混合したアルカリ性の洗浄液を用いた洗浄方法で、シリコンウェーハ表面のエッチングによって付着パーティクルをリフトオフさせ、さらにシリコンウェーハとパーティクルの静電気的な反発を利用して、シリコンウェーハへの再付着を抑えながらパーティクルを除去する洗浄方法である。また、SC2洗浄とは、塩酸と過酸化水素水を任意の割合で混合した洗浄液で、シリコンウェーハ表面の金属不純物を溶解除去する洗浄方法である。また、DHF洗浄とは、希フッ酸によってシリコンウェーハ表面の自然酸化膜を除去する洗浄方法である。さらに、強い酸化力を有するオゾン水洗浄も使用される場合があり、シリコンウェーハ表面に付着している有機物の除去や、DHF洗浄後のシリコンウェーハ表面の自然酸化膜形成を行っている。洗浄後のシリコンウェーハのパーティクルや表面粗さなどの表面品質は重要であり、目的に応じてこれらの洗浄を組み合わせた処理が行われている。
 半導体シリコンウェーハの表面には、MOS(Metal Oxide Semiconductor)キャパシタやトランジスタ等の半導体素子が形成される。これら半導体素子に形成されるゲート酸化膜等の絶縁膜は高い電界強度下で使用され、この絶縁膜としては形成が簡便なシリコン酸化膜が良く用いられる。
 シリコンウェーハ上の酸化膜の膜厚を評価する手法として、エリプソメーターを用いた測定が挙げられる。エリプソメーターとは、基板試料に偏光状態の光を入射させ、入射光と反射光の偏光状態の変化を測定することで、位相差(Δデルタ)及び振幅比(Ψプサイ)を求めるものである。シリコンウェーハ上のシリコン酸化膜を例にすると、入射光は最表面のシリコン酸化膜、及び、シリコン酸化膜とシリコンウェーハとの界面で反射することで偏光状態が変化する。なお、エリプソメーターには、光源としてレーザーを用いる単波長タイプと多数の波長成分を含み白色光源を用いる分光タイプが存在し、単波長タイプはある特定の波長(例えば633nm)に対するデルタとプサイを測定するのに対し、分光タイプは各波長に対するデルタとプサイを測定することができ、情報量の多い分光タイプを用いる方が精度よく膜厚を評価できることが知られている。
 上述したようにエリプソメーターの測定により得られる情報は位相差及び振幅比であり、直接膜厚を求めることは出来ない。膜厚を求めるには基板試料に応じたモデルを作成し、このモデルから理論的に求められるデルタ及びプサイと、エリプソメーターの測定で得られたデルタとプサイとの比較を行う。なお、モデルの作成には試料の物性に応じた条件を設定することで行われ、設定される条件の項目には、基板及び膜の材質、各膜層の膜厚、基板及び膜の光学定数などがある。また、各項目の設定には、試料に応じた既知のリファレンス、誘電率の波長依存性を示し且つ複数のパラメータを有する所要の分散式等が通常用いられる。
 さらに、上記比較に対して両者の相違する程度が最小となるように、分散式のパラメータ及びモデルの各膜層の膜厚などを変更するプロセスを行う(フィッティングともいう)。両者の相違は、通常、最小二乗法を用いた演算で求めており、フィッティングにより最小二乗法で得られた結果がある程度小さくなったと判断された場合、その時の分散式のパラメータの値から膜の屈折率及び消衰係数を求めるとともに、その時の膜厚を試料が有する膜の膜厚として特定することで、膜厚を求めることができる。なお、モデル作成やフィッティングなどは、コンピュータを用いて所要のプログラムに基づき、手動又は自動で行うことが一般的である。
 試料表面に凹凸(粗さもしくはラフネスともいう)が存在する場合は、有効媒質近似という考え方を用いる場合もある(例えば、特許文献1等)。この手法は、粗さと空隙を一つの平面層と定義することで、最小二乗法の演算結果を良好にする手法である。また、有効媒質近似は、試料の膜表面にラフネスが存在する場合だけではなく、基板と膜との界面又は膜層間の界面にラフネスが存在する場合における界面層に対し適用される場合もある。さらに、有効媒質近似は、ラフネスの存在には関係なく、解析を行う上でのテクニックとして、屈折率の値を下げるために用いられることもある。当然、有効媒質近似を用いることで最小二乗法の演算結果も変化し、その結果膜厚の値も変化するため、作業者は有効媒質近似を用いるか否かを、例えば最小二乗法の演算結果から判断する必要がある。
 特許文献2には、エリプソメーターで得られたシリコンウェーハ上の自然酸化膜の膜厚が、表面粗さに依って変化することが記載されている。具体的には、表面が粗いほど膜厚値も厚くなり、表面粗さと自然酸化膜の膜厚との相関関係から表面粗さを定量的に評価する方法が開示されている。
 また、シリコンウェーハ上の表面粗さを評価する方法として、AFM(Atomic Force Microscope)が知られている。表面粗さの指標としては、Ra値やSa値などの算術平均高さがよく用いられる。Raは基準長さにおける算術平均高さで2次元の粗さ指標、SaはRaを面に拡張したパラメータで3次元の粗さ指標である。より詳細にラフネスを評価する方法として、スペクトル解析による空間周波数領域への変換を行うこともできる。この手法は、測定された表面プロファイルから特定波長の成分を抽出することができ、例えば、特定の空間波長とその波長での振幅強度に関するパラメータ、例えばPSD(Power Spectrum Density:パワースペクトル密度)で表現される。このように、PSD解析を行うことで、支配的に形成されている粗さの空間周波数を特定することができる。また、レーザー散乱法を用いたパーティクルカウンターにより得られるHaze値を、粗さの指標とすることができる。Hazeとは、いわゆる曇りとして表現されるものであり、シリコン表面の粗さの指標として広く用いられている。このHazeレベルが高いとは、ウェーハの面が粗いことを示す。
 絶縁性が高い緻密なシリコン酸化膜はシリコンウェーハを熱酸化することで作製されるが、パーティクル付着等の観点から出荷時のシリコンウェーハには洗浄で形成した自然酸化膜が存在するため、熱酸化は自然酸化膜が形成されたシリコンウェーハに対し処理されることが多い。この際、熱酸化膜の厚さは熱酸化前の自然酸化膜の膜質(膜厚や構造)に影響されることが知られている。
 近年、半導体集積回路の微細化、多層化に伴って、素子を構成する絶縁膜を含めた各種膜についてより一層の薄膜化が要求されている。この薄膜化により、極薄の絶縁膜即ちシリコン酸化膜を、面内あるいは基板間で均一にかつ再現性良く形成する必要がある。そのためには、シリコン酸化膜の品質に影響を与えるシリコンウェーハ出荷時の自然酸化膜の膜質、特に膜厚を制御することが求められる。一般的には自然酸化膜が厚いと、熱酸化膜の厚さも厚くなる。熱酸化膜を薄くしたい場合は自然酸化膜も薄い方が良く、熱酸化膜を厚くしたい場合は自然酸化膜も厚い方が良い。したがって、ある一定の範囲内で自然酸化膜の膜厚を再現性良く制御することが、近年特に求められている。
 特許文献3には、種々の条件で洗浄したシリコンウェーハと熱酸化後の酸化膜の膜厚との関係について記載されている。具体的には、SC1洗浄液のNHOH濃度を高濃度にすると自然酸化膜中に含まれるOH基の量が多くなり熱酸化後の膜厚が厚くなること、自然酸化膜の構成(膜質)と熱酸化後の膜厚との相関関係を用いることで熱酸化後の膜厚を制御する方法が開示されている。
特開2005-283502号公報 特開平6-163662号公報 特許第6791453号公報
 上述のように、シリコンウェーハ上の自然酸化膜及び熱酸化膜の膜厚を制御することが求められている。一般的にシリコンウェーハの製造工程において、ウェーハの表面粗さは研磨とその後の洗浄で形成される。研磨後のウェーハの洗浄にはSC1洗浄やフッ酸洗浄やオゾン水洗浄が用いられるが、洗浄工程では主にエッチング作用のあるSC1洗浄で面が荒れることが知られている。
 特許文献3には、SC1洗浄やオゾン水洗浄後の表面粗さRaについて記載されており、その値は0.06~0.12nm程度である。このようなRa値が近年使用されるシリコンウェーハのラフネス値である。
 特許文献2には、ウェーハの表面粗さがエリプソメーターで測定される自然酸化膜の厚さに影響することが開示されているが、この際の表面ラフネス値はAFMのRa値で0.22~2.05nmであり、上述した表面ラフネス値0.06~0.12nmと比較すると非常に高い。
 また、一般的に自然酸化膜の膜厚は約1nm程度と知られているが、特許文献2では、Ra値が0.22nmでは自然酸化膜の膜厚は0.097nm、Ra値が1.23nmでは自然酸化膜の膜厚は1.586nm、Ra値が2.05nmでは自然酸化膜の膜厚は3.313nmと、全て膜厚が約1nmから大きくかけ離れている。このように特許文献2の表面粗さや自然酸化膜の膜厚は、近年使用されるシリコンウェーハの表面粗さや自然酸化膜の膜厚とは大きく異なる。この理由としては、特許文献2に記載の発明では、通常のシリコンウェーハの洗浄液では使用されないフッ酸と硝酸の混合液を用いて意図的に面を荒らす処理をしているためと考えられる。即ち、特許文献2に開示されている相関関係を用いて、例えばRaが0.06~0.12nmの範囲の粗さと自然酸化膜の厚さについて議論することは困難であり、専ら、例えばRa値で1nmを超えるような非常に荒れた場合に適用できると推定される。
 ここで、特許文献3に記載されている、SC1洗浄のNHOH濃度を振った場合のAFMのRa値と分光エリプソ法で得られた熱酸化膜の厚さに着目すると、NHOH濃度が高い水準の方がAFMのRa値が高く、熱酸化膜の厚さも厚くなっている傾向が得られている(特許文献3の図9)。特許文献3では洗浄工程で形成される自然酸化膜(化学酸化膜)の構成(膜質)、例えばATR(Attenuated Total Reflectance)-FT(Fourier Transform)-IR(Infrared Spectoroscopy)法で測定されるOH基の量が熱酸化膜の厚さと相関があることが開示されており、NHOH濃度が高い方がOH基の量が増加するため熱酸化膜が厚くなると記載されている。
 しかし、上述のようにAFM測定で得られるRa値と、エリプソメーターで得られる熱酸化後の膜厚には相関があるようにも解釈できる結果でもある。このように、近年使用されるシリコンウェーハの製造工程で形成されるウェーハの表面粗さが、エリプソメーターで得られる自然酸化膜及び熱酸化膜の厚さに与える影響について記載されている公知文献はない。仮に、例えばRa値0.06~0.12nmのようなシリコンウェーハの製造工程で形成されるウェーハ表面粗さが酸化膜の厚さに影響を与える因子の一つであれば、自然酸化膜及び熱酸化膜の膜厚を制御する上で、上述の自然酸化膜の構成(膜質)と同じく重要な品質と考えることができる。また、ウェーハの表面粗さを適宜調整することで、洗浄後に形成される自然酸化膜の膜厚を制御できるのであれば、有用と考えられる。
 そこで、本発明は上記問題を解決するためになされたものであり、ウェーハの表面粗さを調整することで、自然酸化膜の膜厚を精度及び再現性良く制御することができるシリコンウェーハの洗浄方法を提供することを目的とする。
 本発明は、上記目的を達成するためになされたものであり、シリコンウェーハの洗浄方法であって、予め、複数の試験用シリコンウェーハを用意し、SC1洗浄条件を変えて前記試験用シリコンウェーハのSC1洗浄を行うことで表面粗さが異なる複数水準の前記試験用シリコンウェーハを作製する前記試験用シリコンウェーハのSC1洗浄工程と、前記試験用シリコンウェーハのSC1洗浄工程で形成されたSC1酸化膜をフッ酸洗浄により完全に除去する前記試験用シリコンウェーハのSC1酸化膜除去工程と、酸化力を有する洗浄液を用いて、前記SC1酸化膜が除去された前記試験用シリコンウェーハを洗浄して自然酸化膜を形成する前記試験用シリコンウェーハの自然酸化膜形成工程と、前記試験用シリコンウェーハの前記SC1洗浄で形成された表面粗さと前記試験用シリコンウェーハの自然酸化膜形成工程で形成された自然酸化膜の膜厚との相関関係を取得する相関関係取得工程と、自然酸化膜形成対象のシリコンウェーハについて、前記酸化力を有する洗浄液で洗浄することで形成される自然酸化膜の膜厚が所定の厚さになるように、前記相関関係取得工程で取得した前記相関関係に基づいて、前記自然酸化膜形成対象のシリコンウェーハに形成する表面粗さを決定するとともに、前記決定した表面粗さとなるSC1洗浄条件を決定するSC1洗浄条件決定工程と、前記SC1洗浄条件決定工程で決定した前記SC1洗浄条件で前記自然酸化膜形成対象のシリコンウェーハのSC1洗浄を行う前記自然酸化膜形成対象のシリコンウェーハのSC1洗浄工程と、前記SC1洗浄工程後の前記自然酸化膜形成対象のシリコンウェーハをフッ酸洗浄して、前記SC1洗浄により形成されたSC1酸化膜を完全に除去する前記自然酸化膜形成対象のシリコンウェーハのSC1酸化膜除去工程と、前記酸化力を有する洗浄液を用いて、前記SC1酸化膜が除去された前記自然酸化膜形成対象のシリコンウェーハを洗浄して自然酸化膜を形成する前記自然酸化膜形成対象のシリコンウェーハの酸化膜形成工程とを備えることにより、洗浄により形成されるシリコンウェーハの自然酸化膜の膜厚を制御するシリコンウェーハの洗浄方法を提供する。
 このようなシリコンウェーハの洗浄方法によれば、ウェーハの表面粗さと自然酸化膜の膜厚の相関関係を利用することで、精度及び再現性よく自然酸化膜の膜厚を制御することができる。
 このとき、前記SC1洗浄条件は、SC1薬液濃度、洗浄温度、洗浄時間のいずれか一つ以上であるシリコンウェーハの洗浄方法とすることができる。
 これらは現実的な操業においても変更しやすい条件であるため、容易に洗浄条件の設定を行うことができる。
 このとき、前記表面粗さは、空間周波数が60~90/μmの粗さ成分とすることができる。
 このような粗さ成分が酸化膜の厚さにより大きな影響を与えるため、より精度高く安定した膜厚の評価、制御を行うことができる。
 このとき、前記表面粗さの指標を、パーティクルカウンターのHaze値とすることができる。
 Haze値はパーティクルカウンターにより容易に取得できるため、スループットが非常に高く、迅速かつ容易に洗浄条件を設定することができる。
 このとき、前記表面粗さの指標を、空間周波数が60~90/μmのパワースペクトル密度の平均値とすることができる。
 これにより、詳細に粗さを評価することができるため、より精度高く安定した膜厚の評価、制御を行うことができる。
 このとき、前記酸化力を有する洗浄液として、オゾン水又は過酸化水素水を用いることができる。
 これにより、オゾン水及び過酸化水素水は酸化力が強く、ウェーハ表面を均一に酸化することができ、簡便に安定して酸化膜を形成することができる。
 このとき、本発明に係るシリコンウェーハの洗浄方法により自然酸化膜付きシリコンウェーハを製造する自然酸化膜付きシリコンウェーハの製造方法とすることができる。
 これにより、高い精度で再現性高く膜厚の制御を行いながら、自然酸化膜付きシリコンウェーハを製造することができる。
 以上のように、本発明のシリコンウェーハの洗浄方法によれば、ウェーハの表面粗さと自然酸化膜の膜厚の相関関係を利用することで、精度及び再現性よく自然酸化膜の膜厚を制御することが可能となる。
本発明に係るシリコンウェーハの洗浄方法の一例を示すフローチャートである。 シリコンウェーハの表面粗さと酸化膜の膜厚との関係の調査に係るフローチャートを示す。 図2の粗化処理をCMP及びSC1洗浄で実施したシリコンウェーハの表面粗さ(Haze)と、自然酸化膜及び5nm酸化膜との関係を示したグラフを示す。 図2の粗化処理を枚葉洗浄で実施したシリコンウェーハの表面粗さ(Haze)と、自然酸化膜及び5nm酸化膜との関係を示したグラフを示す。 図2の粗化処理を液組成NHOH:H:HO=1:1:10、洗浄温度80℃、洗浄時間0,3,6,12minで洗浄したときの、洗浄時間と、Haze及び自然酸化膜の厚さの関係を示したグラフを示す。 各サンプルのAFM測定結果とPSD曲線を示す。 SC1洗浄条件と、フッ酸洗浄及びオゾン水洗浄後のサンプルの自然酸化膜の膜厚の関係を示した図である。 各サンプルのHaze増加量と自然酸化膜の膜厚との関係を示した図である。
 以下、本発明を詳細に説明するが、本発明はこれらに限定されるものではない。
 上述のように、ウェーハ表面粗さを調整することで、自然酸化膜の膜厚を精度及び再現性良く制御することができるシリコンウェーハの洗浄方法が求められていた。本発明者らはこのような課題を解決するために、シリコンウェーハの製造工程で形成される粗さ、具体的には研磨工程、洗浄工程で形成される粗さとエリプソメーターで測定される自然酸化膜及び熱酸化膜の膜厚との関係について着目し、鋭意検討した。その結果、ある特定の周波数帯のパワースペクトル密度(強度)の平均値が所定値以上になると、酸化膜の膜厚が厚くなること、そしてこの特定の粗さ成分を調整することで自然酸化膜の膜厚を制御できることを見出し、本発明を完成させた。
 すなわち、本発明者らは、シリコンウェーハの洗浄方法であって、予め、複数の試験用シリコンウェーハを用意し、SC1洗浄条件を変えて前記試験用シリコンウェーハのSC1洗浄を行うことで表面粗さが異なる複数水準の前記試験用シリコンウェーハを作製する前記試験用シリコンウェーハのSC1洗浄工程と、前記試験用シリコンウェーハのSC1洗浄工程で形成されたSC1酸化膜をフッ酸洗浄により完全に除去する前記試験用シリコンウェーハのSC1酸化膜除去工程と、酸化力を有する洗浄液を用いて、前記SC1酸化膜が除去された前記試験用シリコンウェーハを洗浄して自然酸化膜を形成する前記試験用シリコンウェーハの自然酸化膜形成工程と、前記試験用シリコンウェーハの前記SC1洗浄で形成された表面粗さと前記試験用シリコンウェーハの自然酸化膜形成工程で形成された自然酸化膜の膜厚との相関関係を取得する相関関係取得工程と、自然酸化膜形成対象のシリコンウェーハについて、前記酸化力を有する洗浄液で洗浄することで形成される自然酸化膜の膜厚が所定の厚さになるように、前記相関関係取得工程で取得した前記相関関係に基づいて、前記自然酸化膜形成対象のシリコンウェーハに形成する表面粗さを決定するとともに、前記決定した表面粗さとなるSC1洗浄条件を決定するSC1洗浄条件決定工程と、前記SC1洗浄条件決定工程で決定した前記SC1洗浄条件で前記自然酸化膜形成対象のシリコンウェーハのSC1洗浄を行う前記自然酸化膜形成対象のシリコンウェーハのSC1洗浄工程と、前記SC1洗浄工程後の前記自然酸化膜形成対象のシリコンウェーハをフッ酸洗浄して、前記SC1洗浄により形成されたSC1酸化膜を完全に除去する前記自然酸化膜形成対象のシリコンウェーハのSC1酸化膜除去工程と、前記酸化力を有する洗浄液を用いて、前記SC1酸化膜が除去された前記自然酸化膜形成対象のシリコンウェーハを洗浄して自然酸化膜を形成する前記自然酸化膜形成対象のシリコンウェーハの酸化膜形成工程とを備えることにより、洗浄により形成されるシリコンウェーハの自然酸化膜の膜厚を制御するシリコンウェーハの洗浄方法により、精度及び再現性よく自然酸化膜の膜厚を制御することができることを見出し、本発明を完成した。
 以下、図面を参照して説明する。
 初めに、シリコンウェーハの製造工程で形成される様々な表面粗さと、酸化膜の膜厚との関係について述べる。図2はその調査フローチャートである。用意したシリコンウェーハに対し、CMP加工条件、SC1洗浄条件を変え、粗さを形成する粗化処理としてのCMP加工又はSC1洗浄を行い、複数水準のシリコンウェーハを準備した。次いでバッチ洗浄機にてフッ酸洗浄により酸化膜を完全に除去した後、オゾン水洗浄で酸化膜を形成した。どちらの水準もフッ酸洗浄にて粗化処理のSC1洗浄で形成された酸化膜が完全に除去され、その後のオゾン水で酸化膜が形成されているため、複数水準のシリコンウェーハにおいて同一手法で酸化膜が形成されていると解釈できる。その後パーティクルカウンターによるHaze測定を行った後、一部のウェーハは膜厚5nm狙いで熱酸化を行い、分光エリプソメトリーにて自然酸化膜及び5nm狙いで形成した酸化膜の膜厚を評価した。
 図3は、図2の粗化処理をCMP及びSC1洗浄で実施したシリコンウェーハの表面粗さ(Haze)と、自然酸化膜及び5nm狙いの酸化膜の膜厚との関係を示したグラフである。CMP水準(■)では、Haze値が10ppmを超えても自然酸化膜及び5nm狙いの酸化膜の膜厚は同等であったが、SC1洗浄水準(●)では、Hazeが高くなると自然酸化膜及び5nm狙いの酸化膜のどちらも厚くなる傾向が得られた。同一条件で酸化膜を形成していることから、膜厚はCMP水準のように同等になると推定されたが、SC1洗浄水準はそうではなかった。
 さらに図4には、図2の粗化処理をフッ酸とオゾン水洗浄を組み合わせた枚葉洗浄で実施した、シリコンウェーハの表面粗さ(Haze)と自然酸化膜及び5nm狙いの酸化膜の膜厚との関係を示す。また、粗化処理後のフッ酸洗浄及びオゾン水洗浄も、バッチ方式ではなく枚葉方式で実施した。この場合、バッチ方式のオゾン水とは酸化膜形成方法が異なるため、上述のSC1及びCMP水準と枚葉洗浄水準の膜厚との比較をすることはできないが、枚葉洗浄水準内におけるHazeの影響は議論することができる。その結果、枚葉洗浄水準はCMP水準と同じように、Hazeが変化しても自然酸化膜及び5nm狙いの酸化膜の膜厚は同等であった。以上の結果をまとめると、CMPと枚葉洗浄で形成される粗さは酸化膜の膜厚に影響を与えず、SC1洗浄で形成される基板の表面粗さは酸化膜の膜厚を厚くするように影響を及ぼすことが新たに分かった。
 そこで、SC1洗浄水準について追加調査を行った結果について説明する。粗化処理のSC1洗浄を、液組成NHOH:H:HO=1:1:10、洗浄温度を80℃、洗浄時間を3,6,12minのバッチ洗浄で行い、フッ酸洗浄で酸化膜を完全に除去し、オゾン水洗浄を行った後の、自然酸化膜の膜厚とHaze値を示した結果が図5である。Ref.となる洗浄時間なし(0minとする)の自然酸化膜の膜厚1.207nmに対し、洗浄時間3minでは1.258nm、6minでは1.258nm、12minでは1.261nmとなった。洗浄時間3,6,12minの膜厚の平均値1.259nmと、洗浄なし(洗浄時間0min)の膜厚1.207nmの差分は0.052nmであることから、粗化処理のSC1洗浄起因の厚膜化量は約0.052nmと考えられる。Hazeは洗浄時間が長いほど高くなる傾向となったのに対し、洗浄時間3,6,12minの厚膜化量は同等であることを踏まえると、SC1洗浄で形成される特定の粗さ成分が膜厚の厚膜化挙動に影響を与え、3,6,12minの膜厚が同等なのは膜厚(厚膜化)に関与する粗さ成分が同等であることが考えられる。
 これらを検証するため、代表的なCMP、SC1洗浄、枚葉洗浄水準のウェーハの表面粗さをAFM(原子間力顕微鏡)で評価した。観察視野は1μm×1μmで、三次元の算術平均高さSaの他に、表面プロファイルデータのスペクトル解析からPSD曲線を取得した。図6に、各サンプルのAFM測定結果とPSD曲線を示す。
 初めにCMP水準に着目する。CMP水準では、図3でHaze値が最も小さい水準(CMP-1)と、最も大きい水準(CMP-2)を評価した。CMP-2では低周波数帯(1~10/μm)のパワースペクトル密度(強度)が非常に高く、主に低周波数側の粗さが支配的であった。AFM像もおおきなうねりのような像が得られており一致した。上述のようにCMPで形成される粗さは酸化膜の膜厚に影響しないことから、この低周波数側の成分は酸化膜の膜厚には影響しないと言える。
 次にSC1洗浄水準に着目する。SC1洗浄水準では、液組成NHOH:H:HO=1:1:10、洗浄温度と洗浄時間を60℃/3min、80℃/3min、80℃/12minの3水準を評価した。これらは同一手法で酸化膜を形成すると、同じ厚さ分膜厚が厚くなる水準である。図6に示すように、全3水準ともCMP-2と比較して高周波数帯(10~100/μm)の粗さが支配的であり、これはAFM像で細かな粒状の粗さが得られていることと一致する。したがって、CMPとSC1洗浄では形成される粗さ成分(空間周波数帯)が大きく異なることが言える。
 最後に枚葉洗浄水準に着目する。枚葉洗浄水準では図4でHaze値が最も小さい水準(枚葉洗浄-1)と最も大きい水準(枚葉洗浄-2)を評価した。枚葉洗浄水準のパワースペクトル密度(強度)は高周波数帯(10~100/μm)ではCMPとSC1洗浄の中間程度であった。
 これらの粗さ評価結果と酸化膜の膜厚への影響を考察する。特にSC1洗浄-80℃/3minと枚葉洗浄-2の両者のSa値はどちらも0.108nmであるのに対し、SC1洗浄-80℃/3minでは酸化膜の膜厚が厚くなり、枚葉洗浄-2では厚くならない結果に着目する。両者のPSD曲線をみると、低周波数帯(1~10/μm)におけるパワースペクトル密度(強度)は同等であるのに対し、高周波数帯(特に50/μm以上)のパワースペクトル密度(強度)は、SC1洗浄-80℃/3minの方が枚葉洗浄-2よりも大きい。したがって、AFM像では両者に大きな違いは見られないが、PSD曲線からはSC1洗浄-80℃/3minの方がより高周波数帯の粗さが支配的であることが言える。さらに図示したSC1洗浄の3水準(60℃/3min、80℃/3min、80℃/12min)は全て同じ厚さ分(約0.05nm)厚くなることを踏まえると、空間周波数帯60~90/μm範囲のパワースペクトル密度(強度)は全3水準とも同等であり、かつ枚葉洗浄-2よりも高いことが分かる。したがって、この60~90/μm範囲の粗さ成分が、自然酸化膜及び5nm狙いの酸化膜の膜厚に影響を与える粗さ成分であることが新たに明らかとなった。このような粗さ成分の表面粗さの評価、制御を行うことで、より精度高く安定した膜厚の制御を行うことができる。
 なお、空間周波数帯が50/μm以下のパワースペクトル密度(強度)はSC1洗浄の3水準内で、
 80℃/12min > 80℃/3min > 60℃/3min
の大小関係となり、Sa値の大小関係の、
 80℃/12min > 80℃/3min > 60℃/3min
とも一致しており、この場合のSa値は強度が高い低周波数側の粗さ情報が支配的であることが、上述した枚葉洗浄-2とSC1洗浄-80℃/3minが同じSa値0.108nmにも関わらず、酸化膜の膜厚に差が出た要因と考えられる。
 以上の結果をまとめると、空間周波数帯60~90/μmの粗さ成分であるパワースペクトル密度(強度)の平均値が閾値以上存在すると、酸化膜が厚くなると考えられる。ここでSC1洗浄の3水準の60~90/μm範囲のパワースペクトル密度(強度)の平均値を算出すると、SC1洗浄-60℃/3minでは0.16nm、SC1洗浄-80℃/3minでは0.18nm、SC1洗浄-80℃/12minでは0.17nmあった。一方、上述した酸化膜が厚くならない枚葉洗浄-2の平均値は0.11nmであった。したがって、60~90/μmのパワースペクトル密度(強度)の平均値0.15nmが閾値と考えられ、0.15nm以上のパワースペクトル密度(強度)の平均値が存在するシリコンウェーハ上のシリコン酸化膜の膜厚にはウェーハの表面粗さが影響し、基板の表面粗さ起因の膜厚が含まれていると判定することができる。
 以上の知見から、特定のウェーハの表面粗さが酸化膜の膜厚に影響を与える因子(膜厚影響因子)であると解釈することができる。ここで自然酸化膜及び熱酸化膜の膜厚影響因子としては、例えば、特許文献3に記載されている自然酸化膜(化学酸化膜)の構造と、これまで述べてきたシリコンウェーハの表面粗さの2つが挙げられる。
 ここでは、SC1洗浄後のウェーハの表面粗さと自然酸化膜の構造について考える。まず、SC1洗浄とは過酸化水素によりSiを酸化する反応と酸化されたSiOをエッチングする反応が常に進行する洗浄であり、例えば薬液濃度、洗浄温度、洗浄時間などの洗浄条件に依存してこの酸化及びエッチング挙動が変化する。なお、一般的な条件ではSiOのエッチング反応が律速であるため、常に表面は自然酸化膜で覆われる。SC1洗浄後の自然酸化膜の膜厚は酸化とエッチング反応のバランスに依って変動するため、SC1洗浄後の自然酸化膜の膜厚を制御するにはこの酸化とエッチングの反応を制御する必要がある。この酸化及びエッチング挙動はウェーハ表面粗さの他に、特許文献3に記載されているように自然酸化膜の構造の両方に影響を与える。即ち、SC1洗浄後の自然酸化膜及び熱酸化後の膜厚を制御するには、この2つの因子どちらも制御する必要があるといえる。言い換えれば、意図しない僅かな洗浄条件の変化が生じた際には、自然酸化膜の膜厚変動が大きくなることを示している。特に自然酸化膜の構造は熱酸化後の膜厚に大きく影響を与えるため、熱酸化後の膜厚を制御する場合に重要な品質となる。
 ここで、ウェーハ表面に自然酸化膜を形成する方法には、SC1洗浄以外にもオゾン水や過酸化水素水などがある。これらはエッチング反応が生じず、酸化反応のみが進行する。特にオゾン水は酸化力が非常に強いため、SC1洗浄よりも制御性よく酸化膜を形成することができる。
 そこで、本発明者らは、自然酸化膜の変動因子をウェーハ表面粗さのみに限定することで、膜厚を制御できないか検討を行った。即ち、自然酸化膜を形成する対象ウェーハに対して、SC1洗浄を行い、自然酸化膜の膜厚を厚くする空間周波数帯60~90/μmの範囲の粗さを形成する。その後、例えばフッ酸洗浄を行いSC1洗浄で形成された自然酸化膜を完全に剥離した後、例えばエッチングを伴わないオゾン水などの酸化力を有する洗浄液で自然酸化膜を形成する。これにより、変動因子をウェーハ表面粗さに限定し、自然酸化膜の膜厚を制御できると考えた。
 [シリコンウェーハの洗浄方法]
 上述の内容を踏まえて、以下、本発明に係るシリコンウェーハの洗浄方法を詳細に述べる。図1は、本発明に係るシリコンウェーハの洗浄方法の一例を示すフローチャートである。初めに試験用シリコンウェーハを用いて、SC1洗浄後のシリコンウェーハの表面粗さと自然酸化膜の膜厚との相関関係を取得する。そしてこの相関関係を利用して、自然酸化膜形成対象のシリコンウェーハの表面粗さを決定し、決定したシリコンウェーハの表面粗さに応じたSC1洗浄条件によりシリコンウェーハのSC1洗浄を行い所定の表面粗さを形成し、SC1酸化膜を除去した後、自然線化膜を形成する。以下、本発明に係るシリコンウェーハの洗浄方法を詳細に説明する。
 (試験用シリコンウェーハ)
 まず、相関関係取得のための試験用シリコンウェーハを複数用意する(図1のS1)。シリコンウェーハの導電型、直径に制限はない。表面粗さについては、試験用シリコンウェーハ及び後述する自然酸化膜形成対象のシリコンウェーハの表面粗さがSa値で0.5nm以下であることが好ましい。このような範囲のものは、分光エリプソメトリーで算出される酸化膜の膜厚が約1nm前後のものであり、近年使用されるシリコンウェーハの自然酸化膜の膜厚の評価により適しているためである。なお、一般的にCMP後のシリコンウェーハの表面のSa値は0.1nm以下、裏面(DSP面)のSa値は0.2~0.4nm程度であることから、少なくともDSP(両面研磨)加工後に続けて、CMP加工後のウェーハであれば、本発明に係るシリコンウェーハの洗浄方法に好適に用いることができる。
 (試験用シリコンウェーハのSC1洗浄工程)
 次に用意した複数の試験用シリコンウェーハに対し、洗浄条件を変えてSC1洗浄を行う(図1のS2)。洗浄条件としては、SC1の薬液濃度、洗浄温度、洗浄時間のいずれか一つ以上を変えることが望ましい。これらは現実的な操業においても変更しやすい条件であり、容易に洗浄条件の設定を行うことができるからである。例えば薬液濃度であれば、NHOH:H:HO=1:1:5~1:1:100の範囲で調整しても良い。例えば洗浄温度であれば、30~90℃の範囲で調整してもよい。例えば洗浄時間であれば、0.5~10minの範囲で調整しても良い。上記の条件のうちの一つ以上の条件を設定することができるが、設定する洗浄条件は多い方が好ましく、上記の3条件以上の条件を設定することもできる。このようにSC1洗浄を行うことでウェーハの表面には粗さが形成され、同時に酸化膜が形成される。
 なお、一般的には、洗浄を行うことで形成される酸化膜を総称して自然酸化膜、化学酸化膜と呼ぶことがあるが、本明細書では酸化膜の種類を区別するために、SC1洗浄により形成された酸化膜を「SC1酸化膜」といい、SC1洗浄以外の酸化力を有する洗浄液を用いた洗浄により形成された酸化膜を「自然酸化膜」という。
 (試験用シリコンウェーハのSC1酸化膜除去工程)
 次に、SC1洗浄後の試験用シリコンウェーハをフッ酸洗浄することで、SC1酸化膜を完全に除去する(図1のS3)。SC1酸化膜が完全に除去できれば、フッ酸洗浄条件に制限はなく、例えば条件の一例としては、フッ酸の濃度が0.3~5.0wt%、温度が10~30℃、洗浄時間が60~360秒である。
 (試験用シリコンウェーハの自然酸化膜形成工程)
 続いて、酸化力を有する洗浄液を用いてSC1酸化膜が除去された試験用シリコンウェーハを洗浄して、自然酸化膜を形成する(図1のS4)。酸化力を有する洗浄液としてはオゾン水又は過酸化水素水が好ましく、より酸化力の強いオゾン水の方が好ましい。オゾン水又は過酸化水素水は酸化力が強く、ウェーハ表面を均一に酸化することができ、簡便に安定して酸化膜を形成することができる。例えば、用いるオゾン水の濃度は3~25ppmの範囲で、温度は10~30℃、洗浄時間は60~360秒とすることができる。また例えば、用いる過酸化水素水の濃度は0.2~5.0wt%、温度は30~90℃、洗浄時間は60~360秒とすることができる。なお、バッチ式の洗浄機を用いる場合は、これら一連の洗浄を1バッチで実施することで、手間が少なくなる。
 (相関関係取得工程)
 続いて、酸化膜を形成した試験用シリコンウェーハの表面粗さと自然酸化膜の膜厚との相関関係を取得する(図1のS5)。自然酸化膜の膜厚は公知の測定方法を用いればよく、例えば分光エリプソメトリーで測定することができる。表面粗さの指標については、パーティクルカウンターにてHaze値を取得するのが最も簡便である。Haze値を用いる場合は、洗浄前後の差分(Haze増加量、ΔHaze)を用いることで、精度よく粗さを反映することができる。又はAFMにて例えばSa等の粗さ指標を用いても良く、AFMのプロファイルデータのスペクトル解析からPSD曲線を取得し、空間周波数帯60~90/μmのパワースペクトル密度(強度)の平均値を用いても良い。なお、粗さ評価はSC1洗浄後、相関関係取得工程の前までに行えばよく、フッ酸洗浄前に実施してもよく、SC1洗浄、フッ酸洗浄、酸化力を有する洗浄液での洗浄後に実施してもよい。これは、フッ酸洗浄及び酸化力を有する洗浄では酸化膜の膜厚に影響を与える表面粗さの成分がほぼ変化しないためである。
 図7には、SC1洗浄を、薬液濃度NHOH:H:HO=1:1:10とし、洗浄温度を40、50、55、60℃、洗浄時間を3、6minで行い、その後フッ酸洗浄、オゾン水洗浄を実施したときの各洗浄条件の自然酸化膜の膜厚を示した。洗浄時間3、6minどちらも洗浄温度が高いほど膜厚が厚くなる傾向が得られた。これは洗浄温度が高いほど上述した空間周波数帯60~90/μmの粗さ成分が形成されているためである。パーティクルカウンターのHaze値はこの60~90/μmの範囲の粗さを反映しているため、Haze値を指標とすることができる。
 図8に、洗浄時間3minの水準について、洗浄前後のHaze増加量と膜厚との関係を示した。このように、Haze増加量と膜厚にも良い相関関係があることがわかる。このようにして表面粗さと自然酸化膜の膜厚との相関関係を取得すればよい。
 次に、この相関関係を用いて、自然酸化膜形成対象のシリコンウェーハ(図1のS6)の洗浄を行い目的の厚さの自然酸化膜を形成する。
 (SC1洗浄条件決定工程)
 SC1洗浄条件決定工程(図1のS7)では、まず初めに、形成したい自然酸化膜の膜厚を設定する。次いで相関関係から必要な表面粗さを見積もり決定するとともに、決定した表面粗さとなるSC1洗浄条件を決定する。具体例では目標とする膜厚値を1.310nmとする。図8の相関関係より、膜厚1.310nmに対応するHaze増加量は0.020ppmである。また、図7の相関関係より、この0.020ppmの粗さを形成するには、液組成NHOH:H:HO=1:1:10、洗浄温度55℃、洗浄時間3minで洗浄すればよいことがわかる。この洗浄条件をSC1洗浄条件と決定した。
 (自然酸化膜形成対象のシリコンウェーハのSC1洗浄工程)
 次に、自然酸化膜形成対象のシリコンウェーハに対し、決定した洗浄条件でSC1洗浄を行う(図1のS8)。
 (自然酸化膜形成対象のシリコンウェーハのSC1酸化膜除去工程)
 次に、自然酸化膜形成対象のシリコンウェーハをフッ酸洗浄して、SC1洗浄により形成されたSC1酸化膜を完全に除去する(図1のS9)。
 (自然酸化膜形成対象のシリコンウェーハの酸化膜形成工程)
 次に、SC1酸化膜を完全に除去した自然酸化膜形成対象のシリコンウェーハについて、試験用シリコンウェーハに自然酸化膜を形成したとき(試験用シリコンウェーハの酸化膜形成工程)と同じ酸化力を有する洗浄液を用いて洗浄することで自然酸化膜を形成する(図1のS10)。具体例では、オゾン水洗浄で自然酸化膜を形成した。オゾン水洗浄後のシリコンウェーハの自然酸化膜を分光エリプソメトリーで評価したところ、約1.312nmとなり、設定した1.310nmと同等の自然酸化膜を形成することができることがわかる。
 [自然酸化膜付きシリコンウェーハの製造方法]
 本発明に係るシリコンウェーハの洗浄方法を用いれば、高い精度で膜厚の制御を行いながら、自然酸化膜付きシリコンウェーハを製造することができる。
 以下、実施例を挙げて本発明について具体的に説明するが、これは本発明を限定するものではない。
 (実施例)
 試験用シリコンウェーハとして、CMP研磨及び枚葉洗浄を行ったシリコンウェーハを複数枚用意した。初めにKLA製パーティクルカウンターSP3にて、SC1洗浄前のHaze値を取得した。次にバッチ洗浄機にて、後述の洗浄条件でSC1洗浄、フッ酸洗浄、オゾン水洗浄を行った。SC1洗浄条件は、液組成NHOH:H:HO=1:1:10、洗浄時間3minとし、洗浄温度を40、50、55、60℃で行った。フッ酸洗浄は、濃度0.5wt%、洗浄温度25℃、洗浄時間3min、オゾン水洗浄は、濃度20ppm、洗浄温度25℃、洗浄時間3minとした。次に洗浄後の試験用シリコンウェーハのHazeをSP3にて評価した。その後、J.A.Woollam社製分光エリプソメーターM-2000Vにて、自然酸化膜の膜厚を評価した。結果を表1に示す。洗浄温度が高いほど、Haze増加量も大きく、膜厚も厚くなる傾向となり、粗さと膜厚との相関関係を取得できた。
Figure JPOXMLDOC01-appb-T000001
 次に、シリコンウェーハに形成する自然酸化膜の狙い膜厚を1.330nmと設定した。取得した相関関係を用いると、膜厚1.330nm狙いとしたときのHaze増加量は約0.028ppmとなり、この表面粗さを形成するには洗浄温度60℃/洗浄時間3minの洗浄条件が適していることから、SC1洗浄条件を、液組成NHOH:H:HO=1:1:10、洗浄温度60℃/洗浄時間3minと決定した。
 次いで、対象のシリコンウェーハを決定した洗浄温度60℃/洗浄時間3minでSC1洗浄した後、上述の相関関係を取得したときと同じ条件でフッ酸洗浄とオゾン水洗浄を行った。その後、洗浄後の自然酸化膜をM-2000Vで評価したところ、厚さは1.332nmと求まり、狙い設定値1.330nmと同等であることを確認した。このように、本発明の実施例によれば、表面粗さと自然酸化膜の膜厚との関係を用いることで、自然酸化膜の膜厚を制御することができた。
 なお、本発明は、上記実施形態に限定されるものではない。上記実施形態は例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。

Claims (7)

  1.  シリコンウェーハの洗浄方法であって、
     予め、複数の試験用シリコンウェーハを用意し、SC1洗浄条件を変えて前記試験用シリコンウェーハのSC1洗浄を行うことで表面粗さが異なる複数水準の前記試験用シリコンウェーハを作製する前記試験用シリコンウェーハのSC1洗浄工程と、
     前記試験用シリコンウェーハのSC1洗浄工程で形成されたSC1酸化膜をフッ酸洗浄により完全に除去する前記試験用シリコンウェーハのSC1酸化膜除去工程と、
     酸化力を有する洗浄液を用いて、前記SC1酸化膜が除去された前記試験用シリコンウェーハを洗浄して自然酸化膜を形成する前記試験用シリコンウェーハの自然酸化膜形成工程と、
     前記試験用シリコンウェーハの前記SC1洗浄で形成された表面粗さと前記試験用シリコンウェーハの自然酸化膜形成工程で形成された自然酸化膜の膜厚との相関関係を取得する相関関係取得工程と、
     自然酸化膜形成対象のシリコンウェーハについて、前記酸化力を有する洗浄液で洗浄することで形成される自然酸化膜の膜厚が所定の厚さになるように、前記相関関係取得工程で取得した前記相関関係に基づいて、前記自然酸化膜形成対象のシリコンウェーハに形成する表面粗さを決定するとともに、前記決定した表面粗さとなるSC1洗浄条件を決定するSC1洗浄条件決定工程と、
     前記SC1洗浄条件決定工程で決定した前記SC1洗浄条件で前記自然酸化膜形成対象のシリコンウェーハのSC1洗浄を行う前記自然酸化膜形成対象のシリコンウェーハのSC1洗浄工程と、
     前記SC1洗浄工程後の前記自然酸化膜形成対象のシリコンウェーハをフッ酸洗浄して、前記SC1洗浄により形成されたSC1酸化膜を完全に除去する前記自然酸化膜形成対象のシリコンウェーハのSC1酸化膜除去工程と、
     前記酸化力を有する洗浄液を用いて、前記SC1酸化膜が除去された前記自然酸化膜形成対象のシリコンウェーハを洗浄して自然酸化膜を形成する前記自然酸化膜形成対象のシリコンウェーハの酸化膜形成工程とを備えることにより、洗浄により形成されるシリコンウェーハの自然酸化膜の膜厚を制御することを特徴とするシリコンウェーハの洗浄方法。
  2.  前記SC1洗浄条件は、SC1薬液濃度、洗浄温度、洗浄時間のいずれか一つ以上であることを特徴とする請求項1に記載のシリコンウェーハの洗浄方法。
  3.  前記表面粗さは、空間周波数が60~90/μmの粗さ成分であることを特徴とする請求項1又は2に記載のシリコンウェーハの洗浄方法。
  4.  前記表面粗さの指標を、パーティクルカウンターのHaze値とすることを特徴とする請求項1から3のいずれか一項に記載のシリコンウェーハの洗浄方法。
  5.  前記表面粗さの指標を、空間周波数が60~90/μmのパワースペクトル密度の平均値とすることを特徴とする請求項1から3のいずれか一項に記載のシリコンウェーハの洗浄方法。
  6.  前記酸化力を有する洗浄液として、オゾン水又は過酸化水素水を用いることを特徴とする請求項1から5のいずれか一項に記載のシリコンウェーハの洗浄方法。
  7.  請求項1から6のいずれか一項に記載のシリコンウェーハの洗浄方法により自然酸化膜付きシリコンウェーハを製造することを特徴とする自然酸化膜付きシリコンウェーハの製造方法。
PCT/JP2022/038278 2021-11-16 2022-10-13 シリコンウェーハの洗浄方法及び自然酸化膜付きシリコンウェーハの製造方法 WO2023090009A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-186095 2021-11-16
JP2021186095A JP2023073560A (ja) 2021-11-16 2021-11-16 シリコンウェーハの洗浄方法及び自然酸化膜付きシリコンウェーハの製造方法

Publications (1)

Publication Number Publication Date
WO2023090009A1 true WO2023090009A1 (ja) 2023-05-25

Family

ID=86396834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/038278 WO2023090009A1 (ja) 2021-11-16 2022-10-13 シリコンウェーハの洗浄方法及び自然酸化膜付きシリコンウェーハの製造方法

Country Status (3)

Country Link
JP (1) JP2023073560A (ja)
TW (1) TW202338952A (ja)
WO (1) WO2023090009A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090044812A (ko) * 2007-11-01 2009-05-07 주식회사 실트론 습식 게이트 산화막 형성 방법
KR20110036990A (ko) * 2009-10-05 2011-04-13 주식회사 엘지실트론 균일 산화막 형성 방법 및 세정 방법
WO2012081161A1 (ja) * 2010-12-16 2012-06-21 信越半導体株式会社 半導体ウェーハの洗浄方法
WO2013179569A1 (ja) * 2012-06-01 2013-12-05 信越半導体株式会社 半導体ウェーハの洗浄方法
WO2016203681A1 (ja) * 2015-06-18 2016-12-22 信越半導体株式会社 シリコンウェーハの洗浄方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090044812A (ko) * 2007-11-01 2009-05-07 주식회사 실트론 습식 게이트 산화막 형성 방법
KR20110036990A (ko) * 2009-10-05 2011-04-13 주식회사 엘지실트론 균일 산화막 형성 방법 및 세정 방법
WO2012081161A1 (ja) * 2010-12-16 2012-06-21 信越半導体株式会社 半導体ウェーハの洗浄方法
WO2013179569A1 (ja) * 2012-06-01 2013-12-05 信越半導体株式会社 半導体ウェーハの洗浄方法
WO2016203681A1 (ja) * 2015-06-18 2016-12-22 信越半導体株式会社 シリコンウェーハの洗浄方法

Also Published As

Publication number Publication date
TW202338952A (zh) 2023-10-01
JP2023073560A (ja) 2023-05-26

Similar Documents

Publication Publication Date Title
Angermann et al. Wet-chemical passivation of Si (111)-and Si (100)-substrates
US5835226A (en) Method for determining optical constants prior to film processing to be used improve accuracy of post-processing thickness measurements
US9340900B2 (en) Epitaxial wafer and method of producing same
WO2012081161A1 (ja) 半導体ウェーハの洗浄方法
JP4385978B2 (ja) 半導体ウエーハの評価方法及び製造方法
Angermann et al. Characterization of chemically prepared Si-surfaces by uv-vis and IR spectroscopic ellipsometry and surface photovoltage
EP1900858B1 (en) Epitaxial wafer and method of producing same
WO2023090009A1 (ja) シリコンウェーハの洗浄方法及び自然酸化膜付きシリコンウェーハの製造方法
US6384415B1 (en) Method of evaluating quality of silicon wafer and method of reclaiming the water
JPH0123938B2 (ja)
WO2023079919A1 (ja) 酸化膜の膜厚評価方法及び酸化膜付きシリコン基板の製造方法
US20190276778A1 (en) Composition for semiconductor process and semiconductor process
Bouchilaoun et al. A Hydrogen plasma treatment for soft and selective silicon nitride etching
KR20230008710A (ko) 반도체기판의 열산화막 형성방법
WO2022219937A1 (ja) シリコンウェーハの洗浄方法及び自然酸化膜付きシリコンウェーハの製造方法
JP2023112235A (ja) 膜厚測定装置用の標準サンプル群、その製造方法及び標準サンプル群を用いた膜厚測定装置の管理方法
JP2024034416A (ja) シリコン基板の評価方法およびシリコン基板の製造工程の管理方法
WO2023032488A1 (ja) シリコンウェーハの洗浄方法および製造方法
WO2022190830A1 (ja) シリコンウェーハの洗浄方法、シリコンウェーハの製造方法及びシリコンウェーハ
WO2022264843A1 (ja) 半導体基板の熱酸化膜形成方法及び半導体装置の製造方法
Henrion et al. Application of UV‐VIS and FTIR Spectroscopic Ellipsometry to the Characterization of Wet‐Chemically Treated Si Surfaces
JP2022138089A (ja) シリコンウェーハの洗浄方法、シリコンウェーハの製造方法及びシリコンウェーハ
WO2023032497A1 (ja) シリコンウェーハの洗浄方法および製造方法、並びに洗浄液中の過酸化水素濃度評価方法および過酸化水素濃度管理方法
Hansen et al. Chemical role of oxygen plasma in wafer bonding using borosilicate glasses
Sakai et al. Recent progress on spin-on inorganic materials

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22895295

Country of ref document: EP

Kind code of ref document: A1