WO2023085306A1 - Cu-Ag系合金線 - Google Patents

Cu-Ag系合金線 Download PDF

Info

Publication number
WO2023085306A1
WO2023085306A1 PCT/JP2022/041681 JP2022041681W WO2023085306A1 WO 2023085306 A1 WO2023085306 A1 WO 2023085306A1 JP 2022041681 W JP2022041681 W JP 2022041681W WO 2023085306 A1 WO2023085306 A1 WO 2023085306A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy wire
mass
phase
phases
wire
Prior art date
Application number
PCT/JP2022/041681
Other languages
English (en)
French (fr)
Inventor
亮佑 松尾
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to KR1020237022256A priority Critical patent/KR20230138449A/ko
Priority to CN202280008536.0A priority patent/CN116710588A/zh
Priority to JP2023559664A priority patent/JPWO2023085306A1/ja
Publication of WO2023085306A1 publication Critical patent/WO2023085306A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Definitions

  • the present invention relates to a Cu-Ag alloy wire.
  • wire diameters of electric wires used for connection cables for electrical and electronic devices are becoming thinner.
  • electric wires there is a tendency to use Cu alloy wires such as Cu--Sn, Cu--Cr, and Cu--Ag-based wires instead of pure Cu wires, which lack strength.
  • Cu alloy wires such as Cu--Sn, Cu--Cr, and Cu--Ag-based wires instead of pure Cu wires, which lack strength.
  • the wire diameter of electric wires tends to become smaller than before.
  • a Cu—Ag alloy wire can be mentioned as a copper alloy wire having a relatively high tensile strength and a relatively high electrical conductivity.
  • Patent Literature 1 discloses a method for producing a copper alloy having high strength and high electrical conductivity by stretching a eutectic phase of Cu and Ag into filaments.
  • Patent Document 2 discloses a Cu—Ag alloy fine wire that develops a recrystallized texture by heat treatment in the middle of the process and is made to have high strength by subsequent high working.
  • Patent Document 2 since appropriate wire drawing process conditions are not adopted before the heat treatment, embrittlement of the material progresses during the heat treatment, making it difficult to thin the wire. There is a problem that it does not become a certain product.
  • Patent Document 3 a part of the Ag crystal precipitates contains very fine granular Ag that is uniformly dispersed, so that Cu-Ag can have high tensile strength and high electrical conductivity.
  • a series alloy wire is disclosed.
  • Patent Document 3 specifies a predetermined distribution of Ag crystal precipitates, even if the desired structure is obtained by tracing the proposed manufacturing method, it is not always possible to obtain high tensile strength and high conductivity in a well-balanced manner. I have a problem that I can't.
  • an object of the present invention is to provide a Cu--Ag alloy wire which is excellent in bending fatigue resistance while having high strength and high electrical conductivity.
  • the gist and configuration of the present invention are as follows.
  • the phase has a plurality of Ag phases distributed linearly in series in the substantially longitudinal direction of the Cu—Ag alloy wire, and the Ag atomic concentration of the Ag phase is 0.5 to 50.0%. range, and the Ag phase having an average diameter of 0.5 to 20.0 nm when measured in a cross section perpendicular to the longitudinal direction of the Cu—Ag alloy wire is the Cu—Ag alloy wire.
  • the average value of the narrowest and shortest distances among the distances between the adjacent Ag phases measured in the cross section is in the range of 3 to 30 nm.
  • the Cu—Ag alloy wire contains at least one component selected from the group consisting of Sn, Mg, Zn, In, Ni, Co, Zr and Cr, each having a chemical composition of 0.05 to 0.
  • the Cu—Ag alloy wire is a ribbon wire having a width of 0.02 to 0.32 mm and a thickness of 0.002 to 0.040 mm, and having a substantially rectangular cross section.
  • the present invention it is possible to provide a Cu-Ag alloy wire that has high tensile strength and high electrical conductivity, and also has excellent resistance to bending fatigue. As a result, it has become possible to miniaturize electric and electronic equipment, save space in electric wire installation areas, and increase the number of signal wiring lines, which has not been possible until now. can contribute.
  • FIG. 1 shows an approximately conical sample prepared from a Cu—Ag alloy wire, which is one embodiment of the present invention, and a 140 nm distance from a first position (0 nm position) corresponding to the tip of the prepared sample.
  • FIG. 3 is a diagram of the isoconcentration surface of an Ag phase with an Ag atomic concentration of 2.0 atomic %, as measured from the side;
  • FIG. 2 shows data obtained in the same manner as in FIG.
  • FIG. 1 is a diagram of an isoconcentration surface of an Ag phase having an Ag atomic concentration of 3.5 atomic % when the lower portion of the tip portion up to 1 is measured from the upper surface side.
  • FIG. 3 is a diagram when the extension direction and the number of each Ag phase are plotted and calculated from the result of the isoconcentration surface of the Ag phase shown in FIG.
  • FIG. 4 is a graph showing the interval (and the average diameter) between adjacent Ag phases calculated from the result of the equiconcentration surface of the Ag phase shown in FIG. 2 .
  • FIG. 5 shows, for one Ag phase out of the plurality of Ag phases calculated by FIG. 2 is a graph showing the results of atomic concentration analysis of the elements Cu, Ag, N, and O in the lower portion of the tip portion up to .
  • a Cu—Ag alloy wire according to one embodiment of the present invention is a Cu—Ag alloy wire having a chemical composition containing 1.0 to 6.0% by mass of Ag, with the balance being Cu and unavoidable impurities.
  • a Cu--Ag-based alloy wire has a plurality of Ag phases distributed linearly in a matrix in a matrix along a substantially longitudinal direction of the Cu--Ag-based alloy wire, and Ag atoms in the Ag phase
  • the concentration is in the range of 0.5 to 50.0%, and the average diameter when measured in a cross section perpendicular to the longitudinal direction of the Cu—Ag alloy wire is in the range of 0.5 to 20.0 nm.
  • the number of Ag phases present in a measurement region of 10000 nm 2 in the cross section of the Cu—Ag alloy wire is in the range of 10 to 400 lines.
  • the Cu—Ag alloy wire of the present invention contains 1.0 to 6.0% by mass of Ag. Ag is therefore an essential additive component. Ag exists in a solid solution state in Cu, which is the mother phase (first phase), or in a crystallized state as an Ag phase, which becomes a second phase during casting of a Cu—Ag alloy wire, and is solid. It exerts the action of solution strengthening or dispersion strengthening.
  • the Ag content is set to 1.0 to 6.0% by mass. Furthermore, in a wide range of applications, when more emphasis is placed on the balance of electrical conductivity, the Ag content is more preferably 1.0 to 4.5% by mass.
  • the Cu—Ag alloy wire which is one embodiment of the present invention, contains at least one component selected from the group consisting of Sn, Mg, Zn, In, Ni, Co, Zr and Cr as an optional additive component. , respectively in the range of 0.05 to 0.30% by mass. All of these optionally added components are present mainly in the form of a solid solution in Cu, which is the matrix phase, and are elements that exert the effect of solid solution strengthening or dispersion strengthening, as in the case of Ag. In addition, when it is contained together with the Ag phase, it exists as a second phase of a ternary system or higher such as a Cu--Ag--Zr system, and contributes to further solid-solution strengthening or dispersion strengthening.
  • a ternary system or higher such as a Cu--Ag--Zr system
  • the content of each individual component is described below.
  • Sn (tin) content is 0.05% by mass or more, it contributes to the improvement of the strength of the copper alloy wire. do not have. Therefore, the Sn content is 0.05% by mass or more, preferably 0.07% by mass or more, more preferably 0.08% by mass or more, and particularly preferably 0.10% by mass or more.
  • the Sn content is 0.30% by mass or less, more preferably 0.18% by mass or less, still more preferably 0.15% by mass or less, and particularly preferably 0.12% by mass or less.
  • Mg manganesium
  • the content of Mg is 0.05% by mass or more, it contributes to improving the strength of the copper alloy wire and has the effect of alleviating the brittleness of the copper alloy wire.
  • the Mg content is 0.30% by mass or less, the electrical conductivity of the copper alloy wire and the manufacturability during casting are not greatly impaired. Therefore, the content of Mg is 0.05% by mass or more, preferably 0.07% by mass or more, more preferably 0.08% by mass or more, and particularly preferably 0.10% by mass or more.
  • the Mg content is 0.30% by mass or less, preferably 0.18% by mass or less, more preferably 0.15% by mass or less, and particularly preferably 0.12% by mass or less.
  • the Zn (zinc) content is 0.05% by mass or more, it contributes to the improvement of the strength of the copper alloy wire and has the effect of alleviating the brittleness of the copper alloy wire.
  • the Zn content is 0.30% by mass or less, the electrical conductivity of the copper alloy wire is not greatly impaired. Therefore, the Zn content is 0.05% by mass or more, preferably 0.07% by mass or more, more preferably 0.08% by mass or more, and particularly preferably 0.10% by mass or more.
  • the Zn content is 0.30% by mass or less, more preferably 0.25% by mass or less, even more preferably 0.20% by mass or less, and particularly preferably 0.15% by mass or less.
  • the In content is preferably 0.05% by mass or more, preferably 0.07% by mass or more, more preferably 0.08% by mass or more, and particularly preferably 0.10% by mass or more.
  • the In content is 0.30% by mass or less, preferably 0.18% by mass or less, more preferably 0.15% by mass or less, and particularly preferably 0.12% by mass or less.
  • Ni (nickel) content is 0.05% by mass or more, there is an effect of contributing to the strength improvement of the copper alloy wire.
  • the Ni content is 0.30% by mass or less, the electrical conductivity of the copper alloy wire is not greatly impaired. Therefore, the Ni content is 0.05% by mass or more, preferably 0.07% by mass or more, more preferably 0.08% by mass or more, and particularly preferably 0.10% by mass or more.
  • the Ni content is 0.30% by mass or less, preferably 0.25% by mass or less, more preferably 0.20% by mass or less, and particularly preferably 0.15% by mass or less.
  • Co (cobalt) content is 0.05% by mass or more, it contributes to the improvement of the strength of the copper alloy wire. do not have. Therefore, the Co content is 0.05% by mass or more, preferably 0.07% by mass or more, more preferably 0.08% by mass or more, and particularly preferably 0.10% by mass or more. On the other hand, the Co content is 0.30% by mass or less, preferably 0.18% by mass or less, more preferably 0.15% by mass or less, and particularly preferably 0.12% by mass or less.
  • ⁇ Zr 0.05 to 0.30% by mass>
  • the content of Zr zirconium
  • Zr zirconium
  • the Zr content is 0.05% by mass or more, preferably 0.07% by mass or more, more preferably 0.08% by mass or more, and particularly preferably 0.10% by mass or more.
  • the Zr content is 0.30% by mass or less, preferably 0.20% by mass or less, more preferably 0.15% by mass or less, and particularly preferably 0.12% by mass or less.
  • the Cr (chromium) content is 0.05% by mass or more, it contributes to improving the strength of the copper alloy wire. do not have. Therefore, the Cr content is 0.05% by mass or more, preferably 0.07% by mass or more, more preferably 0.08% by mass or more, and particularly preferably 0.10% by mass or more. On the other hand, the Cr content is 0.30% by mass or less, preferably 0.18% by mass or less, more preferably 0.15% by mass or less, and particularly preferably 0.12% by mass or less.
  • the optional additive components are preferably contained in a total amount of 0.05 to 1.0% by mass. If the content is less than 0.05% by mass, the decrease in electrical conductivity is small, but it does not contribute to high tensile strength. On the other hand, if the content exceeds 1.0% by mass, the tensile strength is further increased, but the electrical conductivity is significantly lowered and the high electrical conductivity characteristics cannot be maintained. Therefore, it is preferable that the total content of the optional additive components is in the range of 0.05 to 0.7% by mass. More preferably, the content is in the range of 0.05 to 0.5% by mass.
  • the balance other than the above components is Cu and unavoidable impurities.
  • Cu is the mother phase of the Cu—Ag alloy wire of the present invention, and Ag and the like, which are essential additive components, are present in a solid solution state or a precipitated state.
  • the unavoidable impurity is an impurity of a content level that can be unavoidably included in the manufacturing process of the Cu—Ag alloy wire of the present invention. Inevitable impurities may cause a decrease in electrical conductivity depending on the content. Therefore, considering the decrease in electrical conductivity, it is preferable to suppress the content of unavoidable impurities. Examples of unavoidable impurities include Pb, S, P, and the like.
  • the metal structure of the Cu—Ag alloy wire of the present invention is described below.
  • the Cu—Ag alloy wire of the present invention has a plurality of Ag phases linearly distributed in a matrix in a matrix extending in a substantially longitudinal direction of the Cu—Ag alloy wire, and the Ag phase comprises Ag atoms.
  • the concentration is in the range of 0.5 to 50.0%, and the average diameter when measured in a cross section orthogonal to the longitudinal direction of the Cu—Ag alloy wire is in the range of 0.5 to 20.0 nm.
  • the number existing in the measurement area of 10000 nm 2 in the cross section is in the range of 10 to 400 lines.
  • a three-dimensional atom probe (3DAP) method is measured by a three-dimensional atom probe (3DAP) method.
  • 3DAP method is an analysis technique that enables three-dimensional composition analysis of nanoprecipitates and clusters in metals and semiconductors. The principle is as follows. A needle-shaped sample with a diameter of about 100 nm is prepared with the tip formed in a substantially conical shape. Evaporate them one by one.
  • a two-dimensional position detector detects the time-of-flight and position measurement of ions field-evaporated by pulse voltage and laser irradiation, and measures the two-dimensional coordinate position of each ion.
  • Time-of-flight mass spectrometry analysis is also possible by measuring the time from the point of vaporization at the tip of the needle until the ion reaches the detector, so that the arriving ion species can be identified.
  • information on the two-dimensional coordinate position of the ions and information on the depth direction of the sample can be obtained.
  • three-dimensional composition information can be obtained. is possible.
  • FIG. 1 shows a substantially conical sample prepared from a Cu—Ag alloy wire (Ag concentration: 2.0% by mass), which is one embodiment of the present invention, and corresponds to the tip of the prepared sample.
  • FIG. 2 shows data obtained in the same manner as in FIG.
  • FIG. 4 shows an isoconcentration surface of the Ag phase with an Ag atomic concentration of 3.5 atomic % when the lower portion of the tip portion up to 1 is measured from the upper surface side.
  • FIG. 3 shows a graph obtained by figuring out the extending direction and the number of each Ag phase from the result of the isoconcentration surface of the Ag phase shown in FIG. 2 .
  • FIG. 4 shows a graph obtained by figuring out the distance (and average diameter) between adjacent Ag phases from the result of the isoconcentration surface of the Ag phase shown in FIG.
  • an Ag threshold with the same concentration as the Ag concentration is set, and the location where the concentration distribution exceeding this threshold can be confirmed is temporarily Ag phase and As shown in FIG. 1, it is possible to measure the longitudinal plane of the Ag phase having an atomic concentration exceeding a predetermined threshold value. Further, as shown in FIG. 2, it is possible to measure an image diagram of the Ag phase having an atomic concentration exceeding a predetermined threshold as viewed from the cross-sectional direction.
  • the number of phases was counted by assigning Ag confirmed when 3.5 at% of the Ag equiconcentration surface in the cross section of the alloy wire was set as the threshold.
  • the average diameter of the Ag phase was calculated from the area, assuming that the Ag phase is a perfect circle from the cross section perpendicular to the longitudinal direction of the tentative Ag phase.
  • a phase having an average diameter in the range of 0.5 to 20.0 nm was selected as the Ag phase.
  • the Ag atomic concentration was measured by analyzing the profile of the temporary Ag phase along the longitudinal direction, and selecting those having a continuous Ag atomic concentration of 0.5 to 50% in a length of 60 nm.
  • the number of Ag phases counts the number of Ag phases that satisfy both the average diameter of the Ag phase and the selection based on the Ag atomic concentration, and the number of Ag phases is proportional to the area. 2 range equivalent.
  • FIG. 3 shows the result of assigning the Ag phase in the longitudinal direction of the line
  • FIG. 4 shows the result of assigning the Ag phase in the cross section of the line. This is the result shown.
  • FIG. 5 shows, for one Ag phase out of the plurality of Ag phases calculated by FIG. 2 is a graph showing the results of atomic concentration analysis of Cu, Ag, and (N, O) elements in the lower portion of the tip portion up to .
  • the Ag atomic concentration in the Ag phase varies (fluctuates) within the range of 2 to 7 atomic concentration %.
  • the amount of (N, O) elements is very small and is affected by noise in the surrounding environment, and the influence on the Cu--Ag alloy is very small and negligible.
  • the Cu--Ag alloy wire of the present invention has a matrix in which a plurality of Ag phases are linearly distributed in series in the substantially longitudinal direction of the Cu--Ag alloy wire.
  • the Ag phases are not perfectly aligned in the longitudinal direction, but are substantially parallel and extend along the longitudinal direction of the wire.
  • the term “a phase continuous in the longitudinal direction” does not form a uniform phase with a constant Ag atomic concentration in the longitudinal direction. while forming a phase.
  • the atomic concentration indicates the existence ratio of Ag, and it is important that a phase continuous in the longitudinal direction exists in the range of 0.5 to 50.0%.
  • the Ag phase If it is less than 0.5%, it is impossible to distinguish whether Ag is in a precipitated state or in a solid solution state, making it impossible to determine the second phase. On the other hand, if it exceeds 50.0%, the Ag phase becomes sufficiently coarse, and the intervals between the Ag phases tend to become sparse, so high tensile strength cannot be obtained. Therefore, the Ag phase must have an Ag atomic concentration within the range of 0.5 to 50.0 atomic percent. Moreover, if the Ag phases are not continuous in the longitudinal direction, the intervals between the Ag phases become sparse, and the tensile strength and bending fatigue resistance cannot be improved. Therefore, the Ag phase forms a plurality of Ag phases distributed linearly in series in the substantially longitudinal direction of the Cu—Ag alloy wire.
  • the Ag phase has an average diameter in the range of 0.5 to 20 nm when measured in a cross section orthogonal to the longitudinal direction, and 10000 nm 2 in a cross section that is continuously or intermittently connected in the longitudinal direction. There are 10 to 400 lines existing in the measurement area of . If the average diameter of the Ag phase is less than 0.5 nm, the size is almost the same as the atomic diameter, and it is difficult to determine the solid solution or precipitation state of Ag with the resolution of existing analytical equipment. It is set as the lower limit because the relationship with the characteristics can be sufficiently clarified by specifying the .
  • the presence ratio is low and the interval between the Ag phases is wide, so it hardly contributes to densification. From this, since the improvement in tensile strength and bending fatigue resistance is at a negligible level, the presence of 20 nm or more need not be considered.
  • the intervals between the Ag phases become sparse, resulting in tensile strength and bending fatigue resistance. cannot be improved.
  • the upper limit of the number of Ag phases present in the measurement region of 10000 nm 2 in the cross section of the Cu—Ag alloy wire was because there were no Cu—Ag alloy wires with more than 400 Ag phases. , 400.
  • the Cu—Ag alloy wire has the shortest distance between the outer circumferences among the distances between adjacent Ag phases measured in the cross section (see FIGS. 2 and 4).
  • the average value is preferably in the range of 3-30 nm. 2 and 4 indicate the cross section of the Ag phase. When the average value of the shortest spacing of the Ag phase exceeds 30 nm, the strength contribution of the Ag phase becomes small.
  • the lower limit of the average value of the shortest interval of the Ag phase is not set in terms of characteristics, and as in the case of the average diameter of the Ag phase, there is a possibility that there may be an Ag phase that cannot be confirmed in terms of resolution,
  • the lower limit was set because the characteristics can be clarified by specifying the average value of the shortest distances between the Ag phases in the above range.
  • the bending fatigue resistance of metals is a phenomenon in which the durability of metal materials decreases when they are subjected to continuous or repeated bending of mechanical stress. characteristics are determined.
  • the Cu—Ag alloy wire of the present invention has a unique metal structure, for example, one of which is the outer circumference of the adjacent Ag phase, which is analyzed and measured from the cross section perpendicular to the longitudinal direction and the side surface. By setting the average value of the shortest distances between 3 and 30 nm, the structural change can be suppressed, and high tensile strength and improved bending fatigue resistance can be achieved at the same time.
  • the Cu—Ag alloy wire of the present invention has these unique metal structures, so that high tensile strength and excellent bending fatigue resistance can be obtained without lowering high electrical conductivity.
  • the Cu—Ag alloy wire preferably has an electrical conductivity of 65% IACS or higher, more preferably 75% IACS or higher.
  • Cu-Ag alloy wires tend to be used more and more as ultra-thin wires, which are thinner than conventional wire diameters. Even such ultrafine wires are required to have high tensile strength and high electrical conductivity.
  • a Cu alloy with high tensile strength is desired, and the Cu—Ag alloy wire of the present invention preferably has a tensile strength of at least 900 MPa or more, more preferably 1000 MPa or more. As a result, even if the wire diameter of the Cu--Ag alloy wire of the present invention is reduced, a Cu--Ag alloy wire with high tensile resistance can be obtained.
  • the Cu—Ag alloy wire of the present invention is preferably a round wire having a wire diameter of 0.01 mm to 0.08 mm.
  • high tensile strength and high conductivity materials with a diameter of 0.01 mm to 0.08 mm are required as conductors used in parts.
  • the lower limit of the wire diameter of 0.01 mm ⁇ reflects the needs of the market, and if there is a demand for further reduction in diameter in the future, the Cu—Ag alloy wire of the present invention will be applied. Is possible. If the wire diameter exceeds 0.08 mm ⁇ , the dimensions are too large and the wire cannot function as an extra fine wire.
  • the Cu—Ag alloy wire of the present invention is preferably a ribbon wire having a width of 0.02 to 0.32 mm and a thickness of 0.002 to 0.040 mm and having a substantially rectangular cross section. .
  • a manufacturing method for example, there is a method of rolling the drawn round wire into a desired shape.
  • the dimensions of the ribbon are preferably 0.02 to 0.32 mm in width and 0.002 to 0.040 mm in thickness for the same reason as the upper and lower limits of the wire diameter.
  • the strip width corresponds to the width direction of the rolling rolls, and the strip thickness corresponds to the direction between the rolls. At the ends in the strip width direction, the non-contacting roll roll portions are deformed while maintaining the shape of an arc.
  • the longer value in the cross section of the ribbon wire is the width, and the shorter value is the thickness.
  • a method for producing a Cu—Ag alloy wire according to the present invention will be described. However, the described manufacturing method is an example of manufacturing the present invention, and the manufacturing method of the present invention is not limited to this method.
  • a method for producing a Cu—Ag alloy wire according to the present invention includes a casting step of melting and casting a Cu—Ag alloy material having a predetermined chemical composition and cooling to obtain an ingot, and A first wire drawing step in which the Cu—Ag alloy material is subjected to wire drawing treatment, a first heat treatment step in which the wire drawn Cu—Ag alloy material is subjected to heat treatment, and a second wire drawing step in which wire drawing is performed.
  • It has a wire process, a second heat treatment process for further heat treatment, and a third wire drawing process for obtaining a Cu--Ag alloy wire by performing a final wire drawing process.
  • the wire drawing process the precipitate size becomes smaller and the interval narrows, so the production distribution is controlled in each heat treatment so that the precipitate system and phase interval at the stage when the final wire drawing is completed are within the scope of the invention. ing.
  • the cooling rate is set to 10° C./second or more in order to suppress excessive appearance of Ag crystal precipitates in the Cu matrix during cooling during casting. If the crystal precipitates during casting become large, the subsequent wire drawing in the wire drawing process will not produce an Ag phase with an appropriate average diameter, or the spacing between Ag phases will increase, so the final Cu It causes the tensile strength of the -Ag alloy wire to decrease.
  • the working rate is preferably about 50 to 90% in order to promote sufficient precipitation of Ag during heat treatment. If the work ratio is less than 50%, sufficient precipitation is not generated and the Ag phase spacing after wire drawing is not sufficiently narrowed, so that the increase in strength with respect to the work ratio in the second and subsequent wire drawing steps becomes small. This makes it difficult to obtain high tensile strength when the wire diameter of the Cu—Ag alloy wire is relatively large. On the other hand, although precipitation is promoted in a wire drawing process with a working ratio of 90% or more, it is difficult to obtain a high tensile strength because the working ratio in the wire drawing process after the heat treatment cannot be high. , preferably set an upper limit of 90%.
  • the first heat treatment step is a step of performing a heat treatment for precipitating Ag in the Cu matrix to form an Ag phase.
  • heat treatment is performed in the temperature range of 350 to 500° C. for 2 to 10 hours.
  • the second wire drawing step is a step of performing a wire drawing treatment with a reduction ratio of 5 to 40% in order to precipitate Ag and promote the formation of the Ag phase in the subsequent second heat treatment step.
  • heat treatment is performed in the temperature range of 350 to 500° C. for 10 to 20 hours.
  • the treatment temperature or treatment time in the first and second heat treatment steps is below the lower limit of the above range, the amount of precipitation of Ag phase decreases, and a metal structure having a precipitation density of Ag phase within the scope of the present invention is obtained. cannot be obtained, and finally high tensile strength cannot be obtained.
  • the treatment temperature exceeds the upper limit the solid solubility limit decreases and the amount of Ag phase precipitates decreases.
  • the average value of the shortest distance exceeds the upper limit due to the decrease in the number of precipitates within the range of the invention, so sufficient tensile strength and bending fatigue resistance cannot be obtained.
  • the number density is not sufficient with the desired precipitate size, and similarly the average value of the shortest distance exceeds the upper limit, resulting in insufficient strength characteristics and bending fatigue resistance. Therefore, in order to further improve strength characteristics and bending fatigue resistance, it is necessary to increase the number density of Ag phases, and (second wire drawing step) ⁇ (second heat treatment step) may be inserted.
  • the driving force for precipitation of the Ag phase changes greatly depending on the amount of plastic working before heat treatment, and the optimum heat treatment conditions also change. It is not necessary to adhere to this condition.
  • the working rate of the third wire drawing step is desirably about 90% to 99.9999% in order to sufficiently develop the strength characteristics of the present alloy.
  • a low processing rate does not result in a sufficient increase in strength.
  • the upper limit of the processing rate comes from a practical limit and has nothing to do with the characteristics.
  • a ribbon-shaped wire was produced by rolling a round wire produced in a circular shape to a specified thickness.
  • the final Cu--Ag alloy wire can be obtained by the finishing heat treatment step in which heat treatment is performed at the end of the manufacturing process (product after heat treatment).
  • the conditions of this final heat treatment are not particularly limited, but it is preferable that the temperature is 450 to 600° C. and the time is 10 seconds to 30 minutes.
  • this ingot was drawn to a wire diameter of 1.0 to 9.5 mm ⁇ so that the processing rate was 35 to 95% (first wire drawing step).
  • an aging heat treatment for both precipitation and recrystallization was performed at 350 to 550° C. for 1 to 15 hours (first heat treatment step).
  • second wire drawing step 3 to 99.9% wire drawing was performed (second wire drawing step).
  • the temperature was maintained at 350 to 550° C. for 5 to 50 hours, and aging heat treatment was performed at 350 to 550° C. for 1 to 15 hours (second heat treatment step).
  • cold wire drawing was performed to a wire diameter of 65 to 99.998% and 0.02 to 0.08 mm ⁇ (third wire drawing step).
  • Bending fatigue resistance was measured by a repeated bending test according to JIS H 0500 No. 4100. Since the fatigue properties depend on the wire diameter, 0.03 mm ⁇ was used as the test target, and for this test, samples with a smaller diameter, rolled material, or large diameter material were used in the process of processing, and the wire was drawn again. Unify the wire diameter.
  • Conductivity was measured using a four-probe method based on JIS H 0505-1975 in a constant temperature bath controlled at 20 ° C. ( ⁇ 1 ° C.), and the conductivity was measured for two of each test piece and averaged. The value (%IACS) was taken as the measured value. At this time, the distance between terminals was set to 100 mm.
  • FIB For the FIB, SIINT-3050TB and Helios G4 (manufactured by FEI) were used.
  • a Ga ion beam with an acceleration voltage of 30 kV is used to fabricate a conical sample with a circular bottom surface with a diameter of about 80 nm and a length of about 140 nm.
  • the longitudinal direction of the Cu—Ag alloy wire was taken as the length direction of the sample, but the diameter direction of the cross section perpendicular to the longitudinal direction of the Cu—Ag alloy wire may be taken as the length direction.
  • the final finish used a 5 kV ion beam to reduce the damaged layer as much as possible.
  • LEAP4000XSi manufactured by AMETEK was used as the 3DAP analysis device.
  • the irradiated pulsed laser was vaporized using ultraviolet light with a wavelength of 355 nm. Also, the voltage applied to the sample was set to 1 to 5 kV.
  • Analysis software such as IVAS 3.8.8 (manufactured by CAMECA) or IVAS LT was used to analyze the atomic concentration of the Ag phase and the shortest interval.
  • the analysis software IVAS is used to set the Ag threshold of the same concentration as the Ag concentration in the cross section perpendicular to the longitudinal direction of the Cu—Ag alloy wire, and the concentration exceeding this threshold
  • the portion where the distribution could be confirmed was tentatively defined as the Ag phase.
  • the average diameter of the Ag phase was calculated from the area by assuming that the Ag phase is a perfect circle from a cross section perpendicular to the longitudinal direction of the provisional Ag phase.
  • phases having an average diameter in the range of 0.5 to 20.0 nm were selected as Ag phases.
  • the Ag atomic concentration was measured by analyzing the profile of the temporary Ag phase along the longitudinal direction, and selecting those having a continuous Ag atomic concentration of 0.5 to 50% in a length of 60 nm.
  • the number of Ag phases the number of Ag phases satisfying both the average diameter of the Ag phases and the selection based on the Ag atomic concentration was counted.
  • the area range of the target sample was approximately 5000 nm 2 , which was converted to an area of 10000 nm 2 and used as the provisional phase number.
  • the shortest distance between the Ag phases is defined as the shortest distance between the outer circumferences of the Ag phases that are closest to each other, and the average value (n ⁇ 10) of the shortest distances between the Ag phases in the cross section of the bottom surface of the same sample. Calculated.
  • Examples 1-1 to 1-12, Comparative Examples 1-1 to 1-10) use a Cu—Ag alloy wire having a chemical composition of Cu—1.5 mass % Ag, and change the manufacturing conditions. , the Ag atomic concentration of the Ag phase, the average diameter, the number of Ag phases, and the average value of the shortest distance between the Ag phases.
  • Table 1 shows the manufacturing conditions of Examples 1-1 to 1-12 and Comparative Examples 1-1 to 1-10.
  • Example 1-10 a circular shape with a final diameter of 0.03 mm was processed and formed into a ribbon shape with a thickness of 0.008 mm and a width of 0.08 mm.
  • the underlines shown in the table indicate that they are outside the scope of the present invention.
  • Table 2 shows evaluation results of metal structures and properties of Examples 1-1 to 1-12 and Comparative Examples 1-1 to 1-10.
  • the evaluation items are the minimum and maximum Ag atomic concentration % of the Ag phase as the metal structure, the average diameter of the Ag phase, the number of Ag phases, the average value of the shortest interval of the Ag phase, and the tensile strength and bending fatigue resistance as mechanical properties. It is a characteristic.
  • the average value of the final diameter, the Ag atomic concentration of the Ag phase, the average diameter of the Ag phase, the number of Ag phases, and the shortest interval of the Ag phase It is within the scope of the present invention. All of them have a high tensile strength of 1000 MPa or more. Further, in Examples 1-7 to 1-12, the bending fatigue resistance is "O".
  • Examples 1-1 to 1-6 the average value of the shortest distance between the Ag phases was in the range of 3 to 30 nm, so the bending fatigue resistance was "excellent.”
  • the final diameter, the Ag atomic concentration of the Ag phase, and the average diameter of the Ag phase are within the scope of the present invention, but the number of Ag phases is small and the number of Ag phases is small. Since the average value of the shortest distance is 30 nm or more, the tensile strength is low and the bending fatigue resistance is also "x".
  • the number of Ag phases is within the scope of the present invention by making the third processing rate very low, but the average value of the shortest intervals of Ag phases is 30 nm or more. , the tensile strength is low, and the bending fatigue resistance is also "x".
  • Example 2-1 to 2-12 Comparative Examples 2-1 to 2-10
  • samples were prepared using a Cu—Ag alloy wire having a chemical composition of Cu-2.0 mass % Ag. .
  • Table 3 shows the manufacturing conditions of Examples 2-1 to 2-12 and Comparative Examples 2-1 to 2-10.
  • Table 4 shows evaluation results of metal structures and properties of Examples 2-1 to 2-12 and Comparative Examples 2-1 to 2-10.
  • Examples 2-1 to 2-12 have metal structures within the scope of the present invention.
  • the tensile strength is as high as 1100 MPa or more.
  • the bending fatigue resistance is "O".
  • the average value of the shortest distance between Ag phases is in the range of 3 to 30 nm, the bending fatigue resistance is "excellent”.
  • the final diameter, the Ag atomic concentration of the Ag phase, and the average diameter of the Ag phase are within the scope of the present invention, but the number of Ag phases is small and the number of Ag phases is small.
  • the number of Ag phases is within the scope of the present invention by making the third processing rate very low, but the average value of the shortest intervals of Ag phases is 30 nm or more. , the tensile strength is low, and the bending fatigue resistance is also "x".
  • Examples 3-1 to 3-12, Comparative Examples 3-1 to 3-10) In Examples 3-1 to 3-12 and Comparative Examples 3-1 to 3-10, samples were prepared using a Cu—Ag alloy wire having a chemical composition of Cu-4.0 mass % Ag. .
  • Table 5 shows the manufacturing conditions of Examples 3-1 to 3-12 and Comparative Examples 3-1 to 3-10.
  • Table 6 shows evaluation results of metal structures and properties of Examples 3-1 to 3-12 and Comparative Examples 3-1 to 3-10.
  • Examples 3-1 to 3-12 have metal structures within the scope of the present invention.
  • the tensile strength is as high as 1300 MPa or more.
  • the bending fatigue resistance is "O".
  • the average value of the shortest distance between the Ag phases is in the range of 3 to 30 nm, so the bending fatigue resistance is "excellent”.
  • the final diameter, the Ag atomic concentration of the Ag phase, and the average diameter of the Ag phase are within the scope of the present invention, but the number of Ag phases is small and the number of Ag phases is small.
  • the number of Ag phases is within the scope of the present invention by making the third processing rate very low, but the average value of the shortest intervals of Ag phases is 30 nm or more. , the tensile strength is low, and the bending fatigue resistance is also "x".
  • Example 4-1 to 4-12 Comparative Examples 4-1 to 4-10
  • samples were prepared using a Cu—Ag alloy wire having a chemical composition of Cu-6.0 mass % Ag. .
  • Table 7 shows the manufacturing conditions of Examples 4-1 to 4-12 and Comparative Examples 4-1 to 4-10.
  • Table 8 shows evaluation results of metal structures and properties of Examples 4-1 to 4-12 and Comparative Examples 4-1 to 4-10.
  • Examples 4-1 to 4-12 have metal structures within the scope of the present invention.
  • the tensile strength is as high as 1400 MPa or more.
  • the bending fatigue resistance is "O".
  • the average value of the shortest distance between the Ag phases was in the range of 3 to 30 nm, so the bending fatigue resistance was "excellent”.
  • the final diameter, the Ag atomic concentration of the Ag phase, the number of Ag phases, and the average value of the shortest interval are within the scope of the present invention, but the average diameter of the Ag phase is 30 nm. From the above, the tensile strength is low and the bending fatigue resistance is "x".
  • Comparative Example 4-10 it is difficult to make the number of Ag phases within the range of the present invention by making the third processing rate very low, and the number is 20 nm or more, so the tensile strength is low and , and the bending fatigue resistance is also "x".
  • Comparative Examples 5-1 to 5-4 are Cu—Ag alloy wires containing 1.0 to 6.0% by mass of Ag outside the range of the present invention, and Cu-0.5% by mass of Ag , Cu-0.8 mass % Ag, Cu-6.5 mass % Ag, and Cu-8.0 mass % Ag.
  • Table 9 shows the manufacturing conditions of Comparative Examples 5-1 to 5-4.
  • Table 10 shows evaluation results of metal structures and properties of Comparative Examples 5-1 to 5-4.
  • Comparative Example 5-4 the tensile strength was greater than 900 MPa because the Ag addition amount was greater than the upper limit of 6.0% by mass.
  • the atomic concentration and the like of the Ag phase are within the range of the present invention, the bending fatigue resistance is "A".
  • Comparative Example 5-3 and Example 4-3, and Comparative Example 5-4 and Example 4-4 are compared, there is no difference in the effects of tensile strength and bending fatigue resistance, and the amount of Ag added is Even if it is increased, there is a problem that the cost becomes high.
  • Examples 6-1 to 6-8, Comparative Examples 6-1 to 6-3 are selected from Cu-2.0 mass% Ag and Sn, Mg, Zn, In, Ni, Co, Zr and Cr A sample is prepared using a Cu—Ag alloy wire having a chemical composition containing one.
  • Table 11 shows the manufacturing conditions of Examples 6-1 to 6-8 and Comparative Examples 6-1 to 6-3.
  • Table 12 shows evaluation results of metal structures and properties of Examples 6-1 to 6-8 and Comparative Examples 6-1 to 6-3.
  • Examples 6-1 to 6-8 have metal structures within the scope of the present invention. As a result, the tensile strength is as high as 1100 MPa or more. Further, in Examples 6-1 to 6-8, the average value of the shortest distance between the Ag phases was in the range of 3 to 30 nm, so that the bending fatigue resistance was "excellent". In addition, Comparative Example 6-1 contains 0.5% by mass of Sn, and Comparative Example 6-2 contains 0.5% by mass of Mg, so that the conductivity is 60% IACS or less. The rate is low and there is a problem in practical use. In Comparative Example 6-3, the 0.5% by mass Zr content causes ingot cracks during production, making it difficult to produce round wires and the like, which is problematic in terms of production.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

高導電率を維持しながら、金属組織を制御し、かつ、更なる高引張強度に優れるCu-Ag系合金線を提供する。1.0~6.0質量%のAgを含有し、残部がCuおよび不可避不純物からなる化学組成を有するCu-Ag系合金線であって、前記Cu-Ag系合金線は、母相中に、Cu-Ag系合金線の略長手方向に連なって線状に分布してなる複数のAg相を有し、該Ag相のAg原子濃度が0.5~50.0%の範囲であり、Cu-Ag系合金線の長手方向に対して直交する横断面で測定したときの平均径が0.5~20.0nmの範囲であるAg相が、Cu-Ag系合金線の横断面における10000nmの測定領域に存在する個数が、10~400本の範囲である。

Description

Cu-Ag系合金線
 本発明は、Cu-Ag系合金線に関する。
 現在、電気・電子機器用接続ケーブル等に用いる電線は、線径の細線化が進んでいる。電線としては、強度が不足する純Cu線に代わり、Cu-Sn系、Cu-Cr系、Cu-Ag系等のCu合金線が使用される傾向がある。
 しかし、電子・電気機器製品の小型化、電線設置領域の省スペース化、信号配線ラインの増加等により、電線の線径は、従来に比べて更に細径化する傾向がある。
 銅合金線の中で、引張強度が比較的高く、導電率も比較的高い銅合金線としてはCu-Ag系合金線が挙げられる。
 例えば、特許文献1では、CuとAgの共晶相がフィラメント状に引き延ばされることによって、高強度、高導電率を有する銅合金の製造方法が開示されている。しかし、特許文献1では、特に伸線後強度に寄与する析出分布の制御が不適切であるために強度特性が不十分であるという問題がある。
 また、特許文献2では、プロセス途中の熱処理にて再結晶集合組織を発達させ、また、その後の高加工で高強度化させるCu-Ag合金細線が開示されている。しかし、特許文献2では、熱処理前に適切な伸線プロセス条件を採用していないため、熱処理中の材料脆化が進んで細線化することが困難となり、その生産性の悪さからコスト競争力のある製品にならないという問題がある。
 また、特許文献3では、Ag晶析出物のうち一部が非常に微細な粒状のAgが均一的に分散して存在することによって、高い引張強度と高い導電率を有することができるCu-Ag系合金線が開示されている。しかし、特許文献3では所定のAg晶析出物の分布を規定しているが、提示されている製法をトレースし所望の組織を得ても必ずしも高い引張強度と高い導電率をバランスよく得ることができないという問題がある。
特許第3325639号公報 特許第5051647号公報 特許第5713230号公報
 したがって、特許文献1ないし3では、いずれも、金属組織の制御が不十分で、従来のCu-Ag系合金線に比べて、より細径化するために必要な伸線性を確保する点や、高強度と高導電率の双方をバランスよく具備する極細線(Cu-Ag系合金線)を製造する点については、十分に検討されていないという問題がある。加えて、より細線化したCu-Ag系合金線に関し、屈曲を繰り返す使用状況下において疲労によって破断しにくい特性(耐屈曲疲労特性)を向上させる点についても、何ら検討がなされていないという問題もある。
 そこで、本発明の目的は、高強度と高導電率を具備しながら、耐屈曲疲労特性にも優れるCu-Ag系合金線を提供することである。
 上記目的を達成するため、本発明の要旨構成は、以下のとおりである。
(1)1.0~6.0質量%のAgを含有し、残部がCuおよび不可避不純物からなる化学組成を有するCu-Ag系合金線であって、前記Cu-Ag系合金線は、母相中に、前記Cu-Ag系合金線の略長手方向に連なって線状に分布してなる複数のAg相を有し、該Ag相のAg原子濃度が0.5~50.0%の範囲であり、前記Cu-Ag系合金線の長手方向に対して直交する横断面で測定したときの平均径が0.5~20.0nmであるAg相が、前記Cu-Ag系合金線の横断面における10000nmの測定領域に存在する個数が、10~400本の範囲である、Cu-Ag系合金線。
(2)前記Cu-Ag系合金線は、前記横断面で測定した、隣接する前記Ag相同士の間隔のうち、最も狭い最短間隔の平均値が、3~30nmの範囲である、(1)に記載のCu-Ag系合金線。
(3)前記Cu-Ag系合金線は、前記化学組成がSn、Mg、Zn、In、Ni、Co、ZrおよびCrからなる群から選ばれる少なくとも1種の成分を、それぞれ0.05~0.30質量%の範囲でさらに含有する、(1)又は(2)に記載のCu-Ag系合金線。
(4)前記Cu-Ag系合金線は、0.01mm~0.08mmの直径を有する丸線である、(1)~(3)のいずれか1つに記載のCu-Ag系合金線。
(5)前記Cu-Ag系合金線は、0.02~0.32mmの幅と0.002~0.040mmの厚さとを有する、横断面が略矩形状のリボン線である、(1)~(3)のいずれか1つに記載のCu-Ag系合金線。
 本発明により、高引張強度と高導電率を具備しながら、耐屈曲疲労特性にも優れるCu-Ag系合金線を提供することができる。これにより、これまで実現化できなかった電気・電子機器の小型化、電線設置領域の省スペース化、信号配線ラインの増加が可能となり、電気・電子製品の小型化に対して高付加価値化に寄与することができる。
図1は、本発明の一の実施形態であるCu-Ag系合金線から、略円錐形状の試料を作製し、その作製した試料の、先端に相当する第1位置(0nm位置)から140nmの長さに相当する第2位置(140nm位置)までの先端部において、Ag相を、3次元アトムプローブ電界イオン顕微鏡(3DAP装置)を用いて得られたデータであって、試料の先端部を側面側から測定したときの、Ag原子濃度が2.0原子%であるAg相の等濃度面の図である。 図2は、図1と同様に得られたデータであって、試料の先端部のうち、第1位置から80nmの長さに相当する第3位置(80nm位置)から第2位置(140nm位置)までの先端部の下側部分を上面側から測定したときの、Ag原子濃度が3.5原子%であるAg相の等濃度面の図である。 図3は、図1に示すAg相の等濃度面の結果から、それぞれのAg相の延在方向および個数を図形化して割り出したときの図である。 図4は、図2に示すAg相の等濃度面の結果から、隣接するAg相同士の間隔(および平均径)を図形化して割り出したときの図である。 図5は、図3によって割り出した複数本のAg相のうちの1本のAg相について、そのAg相の長さ方向に沿って、第3位置(80nm位置)から第2位置(140nm位置)までの先端部の下側部分におけるCu、Ag、N、Oの元素の原子濃度分析を行ったときの結果を示すグラフである。
 以下に、本発明の実施形態を説明する。なお、以下の説明はこの発明における実施形態の例であって、この特許請求の範囲を限定するものではない。
 本発明の一実施形態に係るCu-Ag系合金線について説明する。
 本発明の一実施形態に係るCu-Ag系合金線は、1.0~6.0質量%のAgを含有し、残部がCuおよび不可避不純物からなる化学組成を有するCu-Ag系合金線であって、Cu-Ag系合金線は、母相中に、Cu-Ag系合金線の略長手方向に連なって線状に分布してなる複数のAg相を有し、該Ag相のAg原子濃度が0.5~50.0%の範囲であり、Cu-Ag系合金線の長手方向に対して直交する横断面で測定したときの平均径が0.5~20.0nmの範囲である該Ag相が、Cu-Ag系合金線の横断面における10000nmの測定領域に存在する個数が、10~400本の範囲である。
(化学組成)
 本発明のCu-Ag系合金線では、1.0~6.0質量%のAgを含有している。したがって、Agは必須の添加成分である。Agは、母相(第一相)であるCu中に固溶した状態、または、Cu-Ag系合金線の鋳造の際に第二相となるAg相として晶析出した状態で存在し、固溶強化又は分散強化の作用を発揮する。
 Agの含有量が1.0質量%未満になると、Ag相の析出が十分に起きず所望の金属組織を得られないため引張強度が不足し、また、十分な耐屈曲疲労特性も得られない。一方、Agの含有量が6.0質量%を超えると、引張強度、耐屈曲疲労特性における効果において6.0質量%以下と差がなく、Ag添加量を増加させた分コストが高くなる。以上のことから、導電率を損なうことなく、より細径化した極細線のCu-Ag系合金線でも、引張強度及び耐屈曲疲労特性に優れた特性と良好なコストパフォーマンスを得るために、本発明では、Agの含有量は1.0~6.0質量%にする。さらに、広汎な用途において、導電率のバランス特性をより重視する場合には、Ag含有量は1.0~4.5質量%がより好ましい。
 さらに、本発明の一実施形態であるCu-Ag系合金線は、任意添加成分として、Sn、Mg、Zn、In、Ni、Co、ZrおよびCrからなる群から選ばれる少なくとも1種の成分を、それぞれ0.05~0.30質量%の範囲でさらに含有することが好ましい。これらの任意添加成分は、いずれも母相であるCu中に主に固溶した状態で存在し、Agの場合と同様に、固溶強化又は分散強化の効果を発揮する元素である。また、Ag相と共に含有することで、例えば、Cu-Ag-Zr系といった三元系以上の第二相として存在し、さらなる固溶強化又は分散強化に寄与する。
 個々の各成分の含有量は以下に説明する。
<Sn:0.05~0.30質量%>
 Sn(スズ)の含有量が0.05質量%以上であると、銅合金線の強度向上に寄与し、Snの含有量が0.30質量%以下であると、導電性を大きく損ねることがない。このため、Snの含有量は、0.05質量%以上、好ましくは0.07質量%以上、さらに好ましくは0.08質量%以上、特に好ましくは0.10質量%以上である。一方で、Snの含有量は、0.30質量%以下、より好ましくは0.18質量%以下、さらに好ましくは0.15質量%以下、特に好ましくは0.12質量%以下である。
<Mg:0.05~0.30質量%>
 Mg(マグネシウム)の含有量が0.05質量%以上であると、銅合金線の強度向上に寄与し、銅合金線の脆性を緩和する効果がある。Mgの含有量が0.30質量%以下であると、銅合金線の導電性や鋳造時の製造性を大きく損ねることがない。このため、Mgの含有量は、0.05質量%以上、好ましくは0.07質量%以上、さらに好ましくは0.08質量%以上、特に好ましくは0.10質量%以上である。一方で、Mgの含有量は、0.30質量%以下、好ましくは0.18質量%以下、さらに好ましくは0.15質量%以下、特に好ましくは0.12質量%以下である。
<Zn:0.05~0.30質量%>
 Zn(亜鉛)の含有量が0.05質量%以上であると、銅合金線の強度向上に寄与し、銅合金線の脆性を緩和する効果がある。Znの含有量が0.30質量%以下であると、銅合金線の導電性を大きく損ねることがない。このため、Znの含有量は、0.05質量%以上、好ましくは0.07質量%以上、さらに好ましくは0.08質量%以上、特に好ましくは0.10質量%以上である。一方で、Znの含有量は、0.30質量%以下、より好ましくは0.25質量%以下、さらに好ましくは0.20質量%以下、特に好ましくは0.15質量%以下である。
<In:0.05~0.30質量%>
 In(インジウム)の含有量が0.05質量%以上であると、銅合金線の強度向上に寄与し、Inの含有量が0.30質量%以下であると、導電性を大きく損ねることがない。このため、Inの含有量は、好ましくは0.05質量%以上、好ましくは0.07質量%以上、さらに好ましくは0.08質量%以上、特に好ましくは0.10質量%以上である。一方で、Inの含有量は、0.30質量%以下、好ましくは0.18質量%以下、さらに好ましくは0.15質量%以下、特に好ましくは0.12質量%以下である。
<Ni:0.05~0.30質量%>
 Ni(ニッケル)の含有量が0.05質量%以上であると、銅合金線の強度向上に寄与する効果がある。Niの含有量が0.30質量%以下であると、銅合金線の導電性を大きく損ねることがない。このため、Niの含有量は、0.05質量%以上、好ましくは0.07質量%以上、さらに好ましくは0.08質量%以上、特に好ましくは0.10質量%以上である。一方で、Niの含有量は、0.30質量%以下、好ましくは0.25質量%以下、さらに好ましくは0.20質量%以下、特に好ましくは0.15質量%以下である。
<Co:0.05~0.30質量%>
 Co(コバルト)の含有量が0.05質量%以上であると、銅合金線の強度向上に寄与し、Coの含有量が0.30質量%以下であると、導電性を大きく損ねることがない。このため、Coの含有量は、0.05質量%以上、好ましくは0.07質量%以上、さらに好ましくは0.08質量%以上、特に好ましくは0.10質量%以上である。一方で、Coの含有量は、0.30質量%以下、好ましくは0.18質量%以下、さらに好ましくは0.15質量%以下、特に好ましくは0.12質量%以下である。
<Zr:0.05~0.30質量%>
 Zr(ジルコニウム)の含有量が0.05質量%以上であると、銅合金線の強度向上に寄与し、銅合金線の脆性を緩和する効果がある。Zrの含有量が0.30質量%以下であると、銅合金線の導電性や鋳造時の製造性を大きく損ねることがない。このため、Zrの含有量は、0.05質量%以上、好ましくは0.07質量%以上、さらに好ましくは0.08質量%以上、特に好ましくは0.10質量%以上である。方で、Zrの含有量は、0.30質量%以下、好ましくは0.20質量%以下、さらに好ましくは0.15質量%以下、特に好ましくは0.12質量%以下である。
<Cr:0.05~0.30質量%>
 Cr(クロム)の含有量が0.05質量%以上であると、銅合金線材の強度向上に寄与し、Crの含有量が0.30質量%以下であると、導電性を大きく損ねることがない。このため、Crの含有量は、0.05質量%以上、好ましくは0.07質量%以上、さらに好ましくは0.08質量%以上、特に好ましくは0.10質量%以上である。一方で、Crの含有量は、0.30質量%以下、好ましくは0.18質量%以下、さらに好ましくは0.15質量%以下、特に好ましくは0.12質量%以下である。
<任意添加成分:合計で0.05~1.0質量%>
 一方、上記任意添加成分は、合計で0.05~1.0質量%の範囲で含有することが好ましい。含有量が0.05質量%未満では、導電率の低下は少ないが、高引張強度に寄与しない。また、含有量が1.0質量%を超えると、引張強度はより高くなるが、導電率の低下が大きく高導電率の特性を維持することができない。したがって、上記任意添加成分は、合計して0.05~0.7質量%の範囲で含有することが好ましい。さらに好ましくは、0.05~0.5質量%の範囲で含有することがさらに好ましい。
<残部:Cuおよび不可避不純物>
 上記した各成分以外の残部はCu及び不可避不純物である。Cuは、本発明のCu-Ag系合金線の母相であり、必須の添加成分であるAg等が固溶した状態又は析出した状態で存在している。不可避不純物とは、本発明のCu-Ag系合金線の製造工程上、不可避的に含まれうる含有量レベルの不純物である。不可避不純物は、含有量によっては導電率を低下させる要因になることがある。したがって、導電率の低下を考慮すると、不可避不純物の含有量を抑制することが好ましい。不可避不純物としては、例えば、Pb、S、P等が挙げられる。
 本発明のCu-Ag系合金線の金属組織を以下に説明する。
 本発明のCu-Ag系合金線は、母相中に、Cu-Ag系合金線の略長手方向に連なって線状に分布してなる複数のAg相を有し、該Ag相はAg原子濃度が0.5~50.0%の範囲であり、Cu-Ag系合金線の長手方向に対して直交する横断面で測定したときの平均径が0.5~20.0nmの範囲であり、かつ、横断面における10000nmの測定領域に存在する個数が、10~400本の範囲である。
 Ag相は、3次元アトムプローブ(3DAP)法により測定する。図1~4は、本発明の一実施形態であるCu-Ag系合金線を、3DAP法で、母相中におけるAg相の存在状態を示した図である。これらの金属組織は、Cu-Ag系合金線の母相に存在するAgの存在状態を3DAP法で観測することができる。
 3DAP法は、金属や半導体中のナノ析出物やクラスターを3次元で組成分析できる分析手法である。原理は、以下のとおりである。
 先端部を略円錐状に形成した直径が100nm程度の針状試料を作製し、3次元アトムプローブ電界イオン顕微鏡(3DAP装置)に搬入した後、高電圧をパルス印加し、試料の先端から1原子ずつ電界蒸発させる。また、針の先端に特定波長のパルスレーザーを照射し、電界蒸発を補助することにより、試料破壊の確率の低減、質量分解能の改善、半導体や絶縁物の測定が可能となる。パルス電圧とレーザー照射により電界蒸発させたイオンの飛行時間と位置測定を2次元位置検出器で検出し、各イオンの2次元座標位置を測定する。針の先で蒸発した時点から検出器に到達するまでの時間を計測することによって、飛行時間型質量分析としての解析も可能であるので、到達したイオン種を特定できる。レーザー照射を繰り返し行い、イオンの2次元座標位置の情報と、試料の深さ方向の情報が得られるので、針の先端形状を考慮したデータ解析を行うことにより、3次元の組成情報を得ることが可能である。
 ここに、3DAP法により測定した代表的な結果を示している。
 図1は、本発明の一の実施形態であるCu-Ag系合金線(Ag濃度:2.0質量%)から、略円錐形状の試料を作製し、その作製した試料の、先端に相当する第1位置(0nm位置)から140nmの長さに相当する第2位置(140nm位置)までの先端部において、Ag相を、3次元アトムプローブ電界イオン顕微鏡(3DAP装置)を用いて得られたデータであって、試料の先端部を側面側から測定したときの、Ag原子濃度が2.0原子%であるAg相の等濃度面を示している。
 図2は、図1と同様に得られたデータであって、試料の先端部のうち、第1位置から80nmの長さに相当する第3位置(80nm位置)から第2位置(140nm位置)までの先端部の下側部分を上面側から測定したときの、Ag原子濃度が3.5原子%であるAg相の等濃度面を示している。
図3は、図2に示すAg相の等濃度面の結果から、それぞれのAg相の延在方向および個数を図形化して割り出したときの図を示している。
図4は、図2に示すAg相の等濃度面の結果から、隣接するAg相同士の間隔(および平均径)を図形化して割り出したときの図を示している。
 3DAP法は、Cu-Ag系合金線の長手方向に直交する横断面で、Ag濃度に対して同じ濃度のAg閾値を設け、この閾値を超える濃度分布が確認できた箇所を暫定的にAg相とする。これを、長手方向の平面で、図1に示すように、予め定めた閾値を超える原子濃度を有するAg相を長手方向から見たイメージ図を測定することができる。また、図2に示すように、予め定めた閾値を超える原子濃度を有するAg相を横断面方向から見たイメージ図を測定することができる。
 また、このときのAg相の特定は、図2に示すように合金線横断面おいてAg等濃度面3.5at%を閾値とした場合に確認されたAgをアサインし相数をカウントした。
 Ag相の平均径は、先の暫定的なAg相に対して長手方向に直交する横断面からAg相を真円と仮定し、面積より平均径を算出した。本発明のCu-Ag系合金では、平均径が0.5~20.0nmの範囲にある相をAg相として選定した。
 また、Ag原子濃度の測定は、先の暫定Ag相を長手方向に沿ってプロファイル解析を行い、60nm長においてAg原子濃度0.5~50%を連続的に有するものを選定した。
 また、Ag相の本数は、先のAg相の平均径とAg原子濃度による選定がともに満たすAg相の本数をカウントし、Ag相の本数が面積に比例することを前提に、測定面積を10000nmの範囲相当に換算した。
 また、最近接するAg相の最短間隔の平均値については、対象とするAg相の中心同士が最短となる間隔を個別に導出し、その平均値を算出した。
 図3、図4はその解析結果であり、図3は長手においてAg相をアサインした結果を線の長手方向から示した結果であり、図4はAg相をアサインした結果を線の横断面から示した結果である。
 図5は、図3によって割り出した複数本のAg相のうちの1本のAg相について、そのAg相の長さ方向に沿って、第3位置(80nm位置)から第2位置(140nm位置)までの先端部の下側部分におけるCu、Ag、(N、O)の元素の原子濃度分析を行ったときの結果を示すグラフである。図5に示すように、Ag相中のAg原子濃度は、2~7原子濃度%の範囲内で変化している(揺らいでいる)のがわかる。なお、(N、O)元素の量は微小でありまた周囲環境によるノイズによる影響によるところもあり、Cu-Ag系合金に与える影響は非常に小さく、無視できる程度である。
 本発明のCu-Ag系合金線は、母相中に、Cu-Ag系合金線の略長手方向に連なって線状に分布してなる複数のAg相を有している。図1及び図3を見ればわかるように、Ag相は、完全に長手方向に揃って並んでいるわけではないが、略平行で、線の長手方向に沿って延在している。ここでいう「長手方向に連なる相」とは、長手方向に、Ag原子濃度が一定の値で一様な相を形成しているのではなく、図5に示すように、Ag原子濃度が揺らぎながら相を形成している。
 ここで、原子濃度はAgの存在割合を示すものであり、0.5~50.0%の範囲で、長手方向に連なる相が存在することが重要である。0.5%未満であると、Agが析出もしくは固溶のいずれの状態にあるかの区別がつかず第2相の断定ができない。また、50.0%を超える場合は、Ag相が十分に粗大となり、Ag相の間隔が疎となりやすいため、高い引張強度が得られなくなる。したがって、Ag相は、Ag原子濃度が0.5~50.0原子%の範囲内であることが必要となる。
 また、Ag相が長手方向に連ならなければ、Ag相の間隔が疎になってしまい、引張強度および耐屈曲疲労特性を上昇させることはできない。したがって、Ag相は、Cu-Ag系合金線の略長手方向に連なって線状に分布してなる複数のAg相を形成している。
 また、Ag相は、長手方向に対して直交する横断面で測定したときの平均径が0.5~20nmの範囲であり、連続的ないし断続的に長手方向に連なっている横断面における10000nmの測定領域に存在する個数が10~400本を有している。
 Ag相の平均径が、0.5nm未満だと、原子径とほぼ同じサイズとなり、現存の解析機器の解像度ではAgの固溶もしくは析出状態の見極めが難しく、一方で、0.5nm以上の範囲を特定することで十分に特性との関係を明確化できることから下限として設けた。一方、Ag相の平均径が、20nmよりも大きな径は、存在比が低くAg相の間隔も広いために、密度化にはほぼ寄与しない。このことから、引張強度及び耐屈曲疲労特性の向上も無視できるレベルであるため、20nm以上の存在は対象にする必要はない。
 また、Ag相は、Cu-Ag系合金線の横断面における10000nmの測定領域に存在する個数が10本未満だと、Ag相の間隔が疎になってしまい、引張強度および耐屈曲疲労特性を向上させることはできない。なお、Cu-Ag系合金線の横断面における10000nmの測定領域に存在するAg相の個数の上限は、Ag相の個数が400本を超えたCu-Ag系合金線が存在しなかったので、400本とした。
 また、Cu-Ag系合金線は、図2および図4に示すように、横断面(図2および図4参照)で測定した、隣接するAg相同士の間隔のうち、外周同士の最短間隔の平均値が、3~30nmの範囲であることが好ましい。なお、図2および図4の白抜きの丸部分が、Ag相の横断面を示している。
 Ag相の最短間隔の平均値が30nmを超えると、Ag相の強度寄与が小さくなる。なお、Ag相の最短間隔の平均値の下限値については、特性面において設けたものではなく、Ag相の平均径の場合と同様、解像度上確認できないAg相が存在する可能性があるものの、上記範囲のAg相同士の最短間隔の平均値を特定することで特性を明確化できることから下限値を設定した。Ag相の最短間隔の平均値を本発明の範囲内に制御すると、高い引張強度に加え、耐屈曲疲労特性を改善することができる。
 金属の耐屈曲疲労特性とは、金属が力学的応力を継続的に、あるいは屈曲を繰り返し受けた場合にその金属材料の耐久性が低下する現象であり、内部の金属組織の変化によって耐屈曲疲労特性が決まる。本発明のCu-Ag系合金線は、特有の金属組織を有することで、例えば、その一つとして長手方向に対して直交する横断面並びに側面より解析及び測定した、隣接するAg相の外周同士の最短間隔の平均値が、3~30nmの範囲にすることでその組織変化を抑えることができ、高引張強度と耐屈曲疲労特性の向上とを同時に達成することができる。
 本発明のCu-Ag系合金線は、これらの特有の金属組織を有することで、高導電率を低下させることなく、高い引張強度と優れた耐屈曲疲労特性を得ることができる。
 Cu-Ag系合金線は、導電率が65%IACS以上であることが好ましく、より好ましくは75%IACS以上である。
 Cu-Ag系合金線は、従来の線径よりもさらに細くした超極細線として使用される場合が増加する傾向にある。このような超極細線であっても、高い引張強度と高い導電率が求められている。特に、高引張強度のCu合金が要望されており、本発明のCu-Ag系合金線は、引張強度が少なくとも900MPa以上であることが好ましく、1000MPa以上であることがより好ましい。これにより、本発明のCu-Ag系合金線は、線径を細くしても、引張抗力の高いCu-Ag系合金線を得ることができる。
 また、本発明のCu-Ag系合金線は、0.01mm~0.08mmの線径を有する丸線であることが好ましい。市場では部品に使用する導体として0.01mmφ~0.08mmφの高引張強度高導電材が求められている。線径が0.01mmφを下限としたのは市場のニーズを反映したものであり、今後更なる細径化の要求があれば、本発明のCu-Ag系合金線を応用することで対応することが可能である。線径が0.08mmφを超えると寸法が大きく、極細線としての役割を果たせない。
 また、本発明のCu-Ag系合金線は、0.02~0.32mmの幅と0.002~0.040mmの厚さとを有する、横断面が略矩形状のリボン線であることが好ましい。製法としては、例えば伸線した上記丸線を圧延で所望形状にする方法がある。リボン状の寸法は、線径の上下限と同様の理由で板幅0.02~0.32mm、板厚0.002~0.040mmの寸法にすることが好ましい。板幅は圧延ロール幅方向、板厚はロール間方向にあたり、板幅方向端部の圧延ロール非接触部は変形を伴いながら円弧を維持した形状部が残る。ここでリボン線の横断面においてもっと長い値を幅、短い値を厚さとした。
 本発明のCu-Ag系合金線の製造方法について説明する。ただし記載された製造方法は本発明を製造する1例であり本発明を製造方法はこの方法に限らない。
 本発明のCu-Ag系合金線の製造方法は、所定の化学組成を有するCu-Ag系合金素材を溶解・鋳造して、冷却して鋳塊を得る鋳造工程と、鋳塊から得られたCu-Ag系合金材に伸線処理を施す第1伸線工程と、伸線処理を施したCu-Ag系合金材に熱処理を施す第1熱処理工程と、さらに伸線処理を施す第2伸線工程と、さらに熱処理を施す第2熱処理工程と、最終的な伸線処理を施してCu-Ag系合金線を得る第3伸線工程とを有している。伸線工程にて析出サイズは小さくなり間隔は狭まっていくため、最終の伸線が完了した段階における析出物の系、相間隔が発明範囲に収まるように各熱処理にて製出分布を制御している。
(鋳造工程)
 鋳造工程は、鋳造時における冷却中に、Cu母相中にAg晶析出物が過剰にでることを抑止するために、その冷却速度を10℃/秒以上にする。鋳造時における晶析出物が大きくなると、その後の伸線処理における伸線によっても、適切な大きさの平均径のAg相にならず、あるいは、Ag相同士の間隔が大きくなるため、最終のCu-Ag系合金線における引張強度が低下する原因となる。
(第1伸線工程)
 第1伸線工程は、鋳造工程後に伸線処理を施す。加工率は熱処理時にAgの十分な析出を促すため50~90%程度が望ましい。加工率は、50%未満であると十分な析出が生成されず、伸線後のAg相間隔が十分狭くならないため第2伸線工程以降における加工率に対しての強度上昇分が小さくなる。これは、Cu-Ag系合金線の線径が比較的大きい場合において高い引張強度を得ることが困難になる。一方、加工率は、90%以上の伸線処理では析出が促進されるものの、後の熱処理後の伸線工程における加工率を高くとることができなくなり高引張強度を得ることが困難になるため、90%の上限を設けることが望ましい。
 なお、加工率は、伸線処理前の断面積S1、伸線処理後の断面積S2としたときに、加工率=((S1-S2)/S1)×100(%)で定義される。
(第1熱処理工程)→(第2伸線工程)→(第2熱処理工程)
 本発明では、鋳塊を最終径まで伸線する間に、第1熱処理工程と第2熱処理工程の少なくとも2回の熱処理を行うことが好ましい。
 第1熱処理工程は、Cu母相中のAgを析出してAg相を形成するための熱処理を施す工程である。第1熱処理工程は、350~500℃の温度範囲で、2~10時間の範囲で熱処理する。
 その後、第2伸線工程は、次の第2熱処理工程でAgを析出させてAg相の形成を促進するために、加工率5~40%の伸線処理を施す工程である。
 次に、第2熱処理工程は、350~500℃の温度範囲で、10~20時間の範囲で熱処理する。
 第1及び第2熱処理工程の処理温度又は処理時間が、上記範囲の下限を下回ると、Ag相の析出量が低下することで、本発明範囲内のAg相の析出密度となる金属組織が得られず、最終的に高い引張強度が得られない。また処理温度が上限を上回ると、固溶限が低くなりAg相の析出量が減少し、また、処理時間が上限を上回ると、Ag相の析出物の多くが発明範囲を超えたサイズとなり、その結果、発明範囲の析出数が減ることで最短間隔の平均値が上限を上回るため、十分な引張強度および耐屈曲疲労特性が得られない。
 第1熱処理工程のみの場合は、所望の析出サイズにて、その数密度が十分にならず同様に最短間隔の平均値が上限を上回るため強度特性および耐屈曲疲労特性が不足する。したがって、強度特性および耐屈曲疲労特性をさらに高めるために、Ag相の数密度を増加させることが必要となり、(第2伸線工程)→(第2熱処理工程)を挿入することがある。熱処理前の塑性加工量によりAg相を析出させる駆動力は大きく変わり最適な熱処理条件も変わることから、本発明に規定するCu-Ag系合金線の金属組織を得られる十分な析出量が得られれば本条件にこだわる必要はない。
(第3伸線工程)
 次に、第3伸線工程は、本合金の強度特性を十分に発現させるため、第3伸線工程の加工率は90%から99.9999%程度が望ましい。加工率が低いと強度の十分な上昇には至らない。加工率の上限は現実的な制限からくるもので特性面には関係しない。リボン形状の線は、円形状で製造された丸線を指定の厚さまで圧延加工によって製造した。
 また、特性への寄与はないが、表面品質を向上させるため、または外傷起因の形状異常や断線を防ぐためプロセス過程で皮むき工程を入れることができる。また、製造工程の最後に熱処理する仕上熱処理工程ことによって、最終のCu-Ag系合金線を得ることができる(熱処理上がり品)。この最終熱処理の条件は、特に制限されるものではないが、温度が450~600℃と時間が10秒~30分行うことが好ましい。
 本発明を以下の実施例に基づき詳細に説明する。なお、本発明は、以下に示す実施例に限定されるものではない。
 大気中で、Cu-1.5質量%Ag(実施例1-1~1-12、比較例1-1~1-11)、Cu-2.0質量%Ag(実施例2-1~2-12、比較例2-1~2-11)、Cu-4.0質量%Ag(実施例3-1~3-12、比較例3-1~3-11)、Cu-6.0質量%Ag(実施例4-1~4-12、比較例4-1~4-11)、Cu-0.5質量%Ag、-0.8質量%Ag、-6.5質量%Ag、-8.0質量%Ag(比較例5-1、5-2、5-3、5-4)、Cu-2.0質量%Ag-(Sn、Mg、Zn、In、Ni、Co、Zr、Crの1種の成分)(実施例6-1~6-8、比較例6-1~6-3)に示す化学組成を有するCu-Ag系合金を溶解し、これを鋳造して、冷却速度:8~50℃/秒で冷却して6.3~16mmφの鋳塊を作製した(鋳造工程)。
 次に、この鋳塊を加工率が35~95%となるように伸線して、線径を1.0~9.5mmφとした(第1伸線工程)。
 次に、析出と再結晶を兼ねた時効熱処理を、350~550℃にて1~15時間保持で行った(第1熱処理工程)。
 次に、冷却後に3~99.9%の伸線を行った(第2伸線工程)。
 次に、350~550℃にて5~50時間保持し、時効熱処理を、350~550℃にて1~15時間保持で行った(第2熱処理工程)。
 更に、冷却後に65~99.998%、0.02~0.08mmφの線径まで冷間伸線を行った(第3伸線工程)。
(性能評価)
 以上により製造したCu-Ag系合金線を、引張強度、耐屈曲疲労特性、および必要によって導電率を測定し、さらに、3DAP装置及び解析ソフトにて金属組織を解析した。
(引張強度)
 引張強度の測定は、試験片形状は元の線形状としたためJIS Z 2201に沿わないが、試験条件はJIS Z 2241に準拠し、3本の試験片(n=3)で測定し、測定した引張強度を平均した値(MPa)を測定値とした。
(耐屈曲疲労特性)
 耐屈曲疲労特性は、JIS H 0500 番号4100に準拠し、繰り返し曲げ試験を行った。疲労特性は線径依存性があるため、0.03mmφを試験対象とし、それ未満の細径材や圧延材、もしくは太径材も本試験に関しては加工途中のサンプルを使用し、改めて伸線を施し線径を統一した。屈曲時の曲げ支点における治具の半径Rを6mmとし、一端をつかみに固定し、他端を撓まないように30gの錘を吊り下げ、断線までの繰り返し平均回数(n=5)を測定し、測定した数値の平均値(平均屈曲寿命)が、以下の式1および式2の関係を満たすか否かで評価した。すなわち、平均屈曲寿命の数値が、以下の式1を満たす場合には、耐屈曲疲労特性が優れているとして「◎」、式1は満たさないものの、式2を満たす場合には、耐屈曲疲労特性が良好であるとして「〇」、そして、式1および式2の双方ともに満たさない場合には、耐屈曲疲労特性が劣るとして「×」とした。
  式1:平均屈曲寿命≧5900×(Ag濃度)+40000
  式2:平均屈曲寿命≧5900×(Ag濃度)+20000
(導電率)
 導電率は、JIS H 0505-1975に基づく四端子法を用いて、20℃(±1℃)に管理された恒温槽中で、各試験片の2本について導電率を測定し、その平均した値(%IACS)を測定値とした。このとき端子間距離は100mmとした。
(金属組織)
 Cu-Ag系合金線の金属組織の観察及び解析は、第二相のAg相がサブナノからナノオーダーのサイズであり、3DAP装置にて行った。
 3DAP装置では、材料を蒸発させ、蒸発した原子を2次元検出器で検出しデータを再構成することにより、ナノメートルオーダーの3次元構造を可視化できる。3次元アトムプローブ測定用の試料作製はFIB(Focused Ion Beam)で行った。
 FIBは、SIINT-3050TB及びHeliosG4(FEI社製)を用いた。加速電圧30kVのGaイオンビームを用いて約80nmの直径を有する円形の底面を有し、約140nmの長さを有する円錐状の試料を作製している。解析の方向としては、Cu-Ag系合金線の長手方向を試料の長さ方向としたが、Cu-Ag系合金線の長手方向に直交する横断面の直径方向を長さ方向としても良い。最終仕上げは5kVのイオンビームを用いて、ダメージ層を可能な限り低減した。
 3DAP解析装置は、LEAP4000XSi(AMETEK社製)用いた。照射したパルスレーザーは、波長が355nmのである紫外光を用いて、蒸発させた。また、試料に印加した電圧は、1~5kVとした。Ag相の原子濃度、最短間隔の解析には、IVAS 3.8.8(CAMECA社製)又はIVAS LT等の解析ソフトウェアを用いた。
(Ag相の平均径、原子濃度、本数測定)
 3DAP法にて採取したサンプル情報について、解析ソフトIVASにて、Cu-Ag系合金線の長手方向に直交する横断面で、Ag濃度に対して同じ濃度のAg閾値を設け、この閾値を超える濃度分布が確認できた箇所を暫定的にAg相とした。
 Ag相の平均径は、暫定的なAg相に対して長手方向に直交する横断面からAg相を真円と仮定し、面積より平均径を算出した。先の暫定Ag相のうち、平均径が0.5~20.0nmの範囲にある相をAg相として選定した。
 また、Ag原子濃度の測定は、先の暫定Ag相を長手方向に沿ってプロファイル解析を行い、60nm長においてAg原子濃度0.5~50%を連続的に有するものを選定した。
 Ag相の本数は、先のAg相の平均径とAg原子濃度による選定がともに満たすAg相の本数をカウントした。対象サンプルの面積範囲は約5000nmであり、10000nmの面積に換算し直し暫定相数とした。
(Ag相の最短間隔の平均値)
 また、Ag相の最短間隔は、最近接するAg相の外周同士の最短間隔をAg相の最短となる間隔とし、同サンプルの底面断面における各Ag相の最短間隔の平均値(n≧10)を算出した。
(実施例1-1~1-12、比較例1-1~1-10)
 実施例1-1~1-12、比較例1-1~1-10は、Cu-1.5質量%Agの化学組成を有するCu-Ag系合金線を用いて、製造条件を変えることで、Ag相のAg原子濃度、平均径、Ag相の本数、Ag相の最短間隔の平均値を変えて試料を作製している。
 表1に、実施例1-1~1-12、比較例1-1~1-10の製造条件を示している。なお、実施例1-10は、円形状の最終径0.03mmを加工し、厚さ0.008mm、幅0.08mmのリボン状に成形した。なお、表中に示す下線は、本発明の範囲外であることを示している。
Figure JPOXMLDOC01-appb-T000001
 表2に、実施例1-1~1-12、比較例1-1~1-10の金属組織、特性の評価結果を示している。
 評価項目は、金属組織としてAg相のAg原子濃度%の最小値と最大値、Ag相の平均径、Ag相の本数、Ag相の最短間隔の平均値と機械特性として引張強度、耐屈曲疲労特性である。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、実施例1-1~1-12のいずれも、最終径、Ag相のAg原子濃度、Ag相の平均径、Ag相の本数、Ag相の最短間隔の平均値が本発明の範囲内である。引張強度は、いずれも1000MPa以上の高強度を有している。また、実施例1-7~1-12は、耐屈曲疲労特性が「〇」になっている。一方、実施例1-1~1-6は、Ag相の最短間隔の平均値が3~30nmの範囲にあることで、耐屈曲疲労特性が「◎」になっている。
 なお、比較例1-1~1-9は、最終径、Ag相のAg原子濃度、Ag相の平均径が本発明の範囲内であるが、Ag相の本数が少なく、かつ、Ag相の最短間隔の平均値が30nm以上であることから、引張強度が低く、かつ、耐屈曲疲労特性も「×」になっている。また、比較例1-10は、第3加工率を非常に低くすることで、Ag相の本数が本発明の範囲内であるが、Ag相の最短間隔の平均値が30nm以上であることから、引張強度が低く、かつ、耐屈曲疲労特性も「×」になっている。
(実施例2-1~2-12、比較例2-1~2-10)
 実施例2-1~2-12、比較例2-1~2-10は、Cu-2.0質量%Agの化学組成を有するCu-Ag系合金線を用いて、試料を作製している。
 表3に、実施例2-1~2-12、比較例2-1~2-10の製造条件を示している。
Figure JPOXMLDOC01-appb-T000003
 表4に、実施例2-1~2-12、比較例2-1~2-10の金属組織、特性の評価結果を示している。
Figure JPOXMLDOC01-appb-T000004
 実施例2-1~2-12は、いずれも、金属組織が本発明の範囲内である。これにより、引張強度は、いずれも1100MPa以上の高強度を有している。また、実施例2-9~2-12は、耐屈曲疲労特性が「〇」になっている。一方、実施例2-1~2-8は、Ag相の最短間隔の平均値が3~30nmの範囲にあることで、耐屈曲疲労特性が「◎」になっている。
 なお、比較例2-1~2-10は、最終径、Ag相のAg原子濃度、Ag相の平均径が本発明の範囲内であるが、Ag相の本数が少なく、かつ、Ag相の最短間隔の平均値が30nm以上であることから、引張強度が低く、かつ、耐屈曲疲労特性も「×」になっている。また、比較例2-10は、第3加工率を非常に低くすることで、Ag相の本数が本発明の範囲内であるが、Ag相の最短間隔の平均値が30nm以上であることから、引張強度が低く、かつ、耐屈曲疲労特性も「×」になっている。
(実施例3-1~3-12、比較例3-1~3-10)
 実施例3-1~3-12、比較例3-1~3-10は、Cu-4.0質量%Agの化学組成を有するCu-Ag系合金線を用いて、試料を作製している。
 表5に、実施例3-1~3-12、比較例3-1~3-10の製造条件を示している。
Figure JPOXMLDOC01-appb-T000005
 表6に、実施例3-1~3-12、比較例3-1~3-10の金属組織、特性の評価結果を示している。
Figure JPOXMLDOC01-appb-T000006
 実施例3-1~3-12は、いずれも、金属組織が本発明の範囲内である。これにより、引張強度は、いずれも1300MPa以上の高強度を有している。また、実施例3-10~3-12は、耐屈曲疲労特性が「〇」になっている。一方、実施例3-1~3-9は、Ag相の最短間隔の平均値が3~30nmの範囲にあることで、耐屈曲疲労特性が「◎」になっている。
 なお、比較例3-1~3-9は、最終径、Ag相のAg原子濃度、Ag相の平均径が本発明の範囲内であるが、Ag相の本数が少なく、かつ、Ag相の最短間隔の平均値が30nm以上であることから、引張強度が低く、かつ、耐屈曲疲労特性も「×」になっている。また、比較例3-10は、第3加工率を非常に低くすることで、Ag相の本数が本発明の範囲内であるが、Ag相の最短間隔の平均値が30nm以上であることから、引張強度が低く、かつ、耐屈曲疲労特性も「×」になっている。
(実施例4-1~4-12、比較例4-1~4-10)
 実施例4-1~4-12、比較例4-1~4-10は、Cu-6.0質量%Agの化学組成を有するCu-Ag系合金線を用いて、試料を作製している。
 表7に、実施例4-1~4-12、比較例4-1~4-10の製造条件を示している。
Figure JPOXMLDOC01-appb-T000007
 表8に、実施例4-1~4-12、比較例4-1~4-10の金属組織、特性の評価結果を示している。
Figure JPOXMLDOC01-appb-T000008
 実施例4-1~4-12は、いずれも、金属組織が本発明の範囲内である。これにより、引張強度は、いずれも1400MPa以上の高強度を有している。また、実施例4-1~4-11は、耐屈曲疲労特性が「〇」になっている。一方、実施例4-12は、Ag相の最短間隔の平均値が3~30nmの範囲にあることで、耐屈曲疲労特性が「◎」になっている。 なお、比較例4-1~4-10は、最終径、Ag相のAg原子濃度、Ag相の本数、最短間隔の平均値が本発明の範囲内であるが、Ag相の平均径が30nm以上であることから、引張強度が低く、かつ、耐屈曲疲労特性も「×」になっている。また、比較例4-10は、第3加工率を非常に低くすることで、Ag相の本数が本発明の範囲内にすることが困難で20nm以上であることから、引張強度が低く、かつ、耐屈曲疲労特性も「×」になっている。
(比較例5-1~5-4)
 比較例5-1~5-4は、1.0~6.0質量%の本発明の範囲外にあるAgを含有するCu-Ag系合金線であって、Cu-0.5質量%Ag、Cu-0.8質量%Ag、Cu-6.5質量%Ag、Cu-8.0質量%Agの化学組成を有するCu-Ag系合金線を用いて、試料を作製している。
 表9に、比較例5-1~5-4の製造条件を示している。
Figure JPOXMLDOC01-appb-T000009
 表10に、比較例5-1~5-4の金属組織、特性の評価結果を示している。
Figure JPOXMLDOC01-appb-T000010
 表10に示すように、比較例5-1、5-2は、Agの添加量の下限値1.0質量%よりも小さいことから、3DAP装置による分析で、Ag相の析出を観察することができない。したがって、Ag相の原子濃度、平均径、Ag相の本数、最短間隔の平均値が測定できない。そのために、引張強度が900MPaより小さく、かつ、耐屈曲疲労特性が式1を満たさず、「×」である。
 比較例5-3は、Agの添加量の上限値6.0質量%よりも大きいことから、引張強度が900MPaより大きかった。また、Ag相の原子濃度等が、本発明の範囲内であることから、耐屈曲疲労特性が「◎」である。比較例5-4は、Agの添加量の上限値6.0質量%よりも大きいことから、引張強度が900MPaより大きかった。また、Ag相の原子濃度等が、本発明の範囲内であることから、耐屈曲疲労特性が「◎」である。
 しかしながら、比較例5-3と実施例4-3、比較例5-4と実施例4-4とを比較しても、引張強度、耐屈曲疲労特性における効果において差がなく、Ag添加量を増加させてもコストが高くなる問題がある。
(実施例6-1~6-8、比較例6-1~6-3)
 実施例6-1~6-8、比較例6-1~6-3は、Cu-2.0質量%AgとSn、Mg、Zn、In、Ni、Co、ZrおよびCrの中から選択される1つを含む化学組成を有するCu-Ag系合金線を用いて、試料を作製している。
 表11に、実施例6-1~6-8、比較例6-1~6-3の製造条件を示している。
Figure JPOXMLDOC01-appb-T000011
 表12に、実施例6-1~6-8、比較例6-1~6-3の金属組織、特性の評価結果を示している。
Figure JPOXMLDOC01-appb-T000012
 実施例6-1~6-8は、いずれも、金属組織が本発明の範囲内である。これにより、引張強度は、いずれも1100MPa以上の高強度を有している。また、実施例6-1~6-8は、Ag相の最短間隔の平均値が3~30nmの範囲にあることで、耐屈曲疲労特性が「◎」になっている。
 なお、比較例6-1は0.5質量%Snを含有することにより、また、比較例6-2は0.5質量%Mgを含有することにより導電率が60%IACS以下であり、導電率が低く実用上に問題がある。また、比較例6-3は、0.5質量%Zrを含有することにより、製造時に鋳塊割れを生じ、丸線等の製造が困難で、製造上に問題がある。

 

Claims (5)

  1.  1.0~6.0質量%のAgを含有し、残部がCuおよび不可避不純物からなる化学組成を有するCu-Ag系合金線であって、
     前記Cu-Ag系合金線は、母相中に、前記Cu-Ag系合金線の略長手方向に連なって線状に分布してなる複数のAg相を有し、
     該Ag相のAg原子濃度が0.5~50.0%の範囲であり、
     前記Cu-Ag系合金線の長手方向に対して直交する横断面で測定したときの平均径が0.5~20.0nmの範囲であるAg相が、前記Cu-Ag系合金線の横断面における10000nmの測定領域に存在する個数が、10~400本の範囲である、Cu-Ag系合金線。
  2.  前記Cu-Ag系合金線は、前記横断面で測定した、隣接する前記Ag相同士の間隔のうち、最も狭い最短間隔の平均値が、3~30nmの範囲である、請求項1に記載のCu-Ag系合金線。
  3.  前記Cu-Ag系合金線は、前記化学組成がSn、Mg、Zn、In、Ni、Co、ZrおよびCrからなる群から選ばれる少なくとも1種の成分を、それぞれ0.05~0.30質量%の範囲でさらに含有する、請求項1又は2に記載のCu-Ag系合金線。
  4.  前記Cu-Ag系合金線は、0.01mm~0.08mmの直径を有する丸線である、請求項1~3のいずれか1つに記載のCu-Ag系合金線。
  5.  前記Cu-Ag系合金線は、0.02~0.32mmの幅と0.002~0.040mmの厚さとを有する、横断面が略矩形状のリボン線である、請求項1~3のいずれか1つに記載のCu-Ag系合金線。

     
PCT/JP2022/041681 2021-11-12 2022-11-09 Cu-Ag系合金線 WO2023085306A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237022256A KR20230138449A (ko) 2021-11-12 2022-11-09 Cu-Ag계 합금선
CN202280008536.0A CN116710588A (zh) 2021-11-12 2022-11-09 Cu-Ag系合金线
JP2023559664A JPWO2023085306A1 (ja) 2021-11-12 2022-11-09

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021184765 2021-11-12
JP2021-184765 2021-11-12

Publications (1)

Publication Number Publication Date
WO2023085306A1 true WO2023085306A1 (ja) 2023-05-19

Family

ID=86335803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041681 WO2023085306A1 (ja) 2021-11-12 2022-11-09 Cu-Ag系合金線

Country Status (4)

Country Link
JP (1) JPWO2023085306A1 (ja)
KR (1) KR20230138449A (ja)
CN (1) CN116710588A (ja)
WO (1) WO2023085306A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3325639B2 (ja) 1993-03-31 2002-09-17 株式会社フジクラ 高強度高導電率銅合金の製造方法
JP2005336510A (ja) * 2004-05-24 2005-12-08 Hitachi Cable Ltd 極細銅合金線及びその製造方法
WO2011136284A1 (ja) * 2010-04-28 2011-11-03 住友電気工業株式会社 Cu-Ag合金線及びCu-Ag合金線の製造方法
JP5051647B2 (ja) 2005-10-17 2012-10-17 独立行政法人物質・材料研究機構 高強度・高導電率Cu−Ag合金細線とその製造方法
JP2017002337A (ja) * 2015-06-04 2017-01-05 古河電気工業株式会社 高耐屈曲疲労性銅系合金線
WO2017199906A1 (ja) * 2016-05-16 2017-11-23 古河電気工業株式会社 銅系合金線材
WO2018100919A1 (ja) * 2016-12-02 2018-06-07 古河電気工業株式会社 銅合金線材及び銅合金線材の製造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5051647U (ja) 1973-08-24 1975-05-19
JPS619713Y2 (ja) 1980-06-26 1986-03-28

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3325639B2 (ja) 1993-03-31 2002-09-17 株式会社フジクラ 高強度高導電率銅合金の製造方法
JP2005336510A (ja) * 2004-05-24 2005-12-08 Hitachi Cable Ltd 極細銅合金線及びその製造方法
JP5051647B2 (ja) 2005-10-17 2012-10-17 独立行政法人物質・材料研究機構 高強度・高導電率Cu−Ag合金細線とその製造方法
WO2011136284A1 (ja) * 2010-04-28 2011-11-03 住友電気工業株式会社 Cu-Ag合金線及びCu-Ag合金線の製造方法
JP5713230B2 (ja) 2010-04-28 2015-05-07 住友電気工業株式会社 Cu−Ag合金線及びCu−Ag合金線の製造方法
JP2017002337A (ja) * 2015-06-04 2017-01-05 古河電気工業株式会社 高耐屈曲疲労性銅系合金線
WO2017199906A1 (ja) * 2016-05-16 2017-11-23 古河電気工業株式会社 銅系合金線材
WO2018100919A1 (ja) * 2016-12-02 2018-06-07 古河電気工業株式会社 銅合金線材及び銅合金線材の製造方法

Also Published As

Publication number Publication date
KR20230138449A (ko) 2023-10-05
CN116710588A (zh) 2023-09-05
JPWO2023085306A1 (ja) 2023-05-19

Similar Documents

Publication Publication Date Title
JP5170916B2 (ja) 銅合金板材及びその製造方法
KR102196590B1 (ko) 구리 합금 판재 및 이의 제조 방법 및 통전 부품
JP5261500B2 (ja) 導電性と曲げ性を改善したCu−Ni−Si−Mg系合金
KR102590058B1 (ko) 구리 합금 판재 및 그 제조 방법
WO2013147270A1 (ja) アルミニウム合金線およびその製造方法
KR20120130342A (ko) 전자 재료용 Cu-Ni-Si 계 합금
US20190139668A1 (en) Aluminum alloy wire, aluminum alloy stranded wire, covered electric wire, and wire harness
US20110038753A1 (en) Copper alloy sheet material
JP2012193408A (ja) 曲げ加工性に優れたCu−Ni−Si系合金
KR20170138391A (ko) 구리 합금 판재 및 그 제조 방법
KR20050007139A (ko) 연성이 우수한 고력 고도전성 구리합금
JP6328380B2 (ja) 導電性及び曲げたわみ係数に優れる銅合金板
KR20200075875A (ko) 구리 합금 판재 및 그 제조 방법 및 전기 전자기기용 방열 부품 및 실드 케이스
JP2008075152A (ja) 高強度、高導電率および曲げ加工性に優れた銅合金
EP2944703A1 (en) Copper alloy for electronic or electrical device, copper alloy thin sheet for electronic or electrical device, process for manufacturing copper alloy for electronic or electrical device, conductive component for electronic or electrical device, and terminal
WO2023085306A1 (ja) Cu-Ag系合金線
JP2011231394A (ja) 銅合金展伸材、銅合金部品および銅合金展伸材の製造方法
WO2023085305A1 (ja) Cu-Ag系合金線
JP7145847B2 (ja) 銅合金板材およびその製造方法
EP4455322A1 (en) Cu-ag alloy wire
JP4349631B2 (ja) 電機、電子機器部品用コルソン合金細線の製造方法
JP2020158837A (ja) 金型摩耗性に優れたCu−Ni−Si系銅合金条
JP6762453B1 (ja) 銅合金板材およびその製造方法
CN115427595A (zh) 铜合金线材
CN115398014A (zh) 铜合金线材

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023559664

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280008536.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22892804

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022892804

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022892804

Country of ref document: EP

Effective date: 20240612