WO2023085305A1 - Cu-Ag系合金線 - Google Patents

Cu-Ag系合金線 Download PDF

Info

Publication number
WO2023085305A1
WO2023085305A1 PCT/JP2022/041680 JP2022041680W WO2023085305A1 WO 2023085305 A1 WO2023085305 A1 WO 2023085305A1 JP 2022041680 W JP2022041680 W JP 2022041680W WO 2023085305 A1 WO2023085305 A1 WO 2023085305A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
alloy wire
phase
wire
content
Prior art date
Application number
PCT/JP2022/041680
Other languages
English (en)
French (fr)
Inventor
亮佑 松尾
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Priority to CN202280008450.8A priority Critical patent/CN116670315A/zh
Priority to EP22892803.2A priority patent/EP4431624A1/en
Priority to JP2023559663A priority patent/JPWO2023085305A1/ja
Priority to KR1020237022255A priority patent/KR20230138448A/ko
Publication of WO2023085305A1 publication Critical patent/WO2023085305A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • H01B1/026Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working

Definitions

  • the present invention relates to a Cu-Ag alloy wire.
  • wire diameters of electric wires used for connection cables for electrical and electronic devices are becoming thinner.
  • electric wires there is a tendency to use Cu alloy wires such as Cu--Sn, Cu--Cr, and Cu--Ag-based wires instead of pure Cu wires, which lack strength.
  • Cu alloy wires such as Cu--Sn, Cu--Cr, and Cu--Ag-based wires instead of pure Cu wires, which lack strength.
  • the wire diameter of electric wires tends to become smaller than before.
  • a Cu—Ag alloy wire can be mentioned as a copper alloy wire having a relatively high tensile strength and a relatively high electrical conductivity.
  • Patent Literature 1 discloses a method for producing a copper alloy having high strength and high electrical conductivity by stretching a eutectic phase of Cu and Ag into filaments.
  • Patent Document 2 discloses a Cu—Ag alloy fine wire that develops a recrystallized texture by heat treatment in the middle of the process and is made to have high strength by subsequent high working.
  • Patent Document 2 since appropriate wire drawing process conditions are not adopted before the heat treatment, embrittlement of the material progresses during the heat treatment, making it difficult to thin the wire. There is a problem that it does not become a certain product.
  • Patent Document 3 a part of the Ag crystal precipitates contains very fine granular Ag that is uniformly dispersed, so that Cu-Ag can have high tensile strength and high electrical conductivity.
  • a series alloy wire is disclosed.
  • Patent Document 3 specifies a predetermined distribution of Ag crystal precipitates, even if the desired structure is obtained by tracing the proposed manufacturing method, it is not always possible to obtain high tensile strength and high conductivity in a well-balanced manner. I have a problem that I can't.
  • an object of the present invention is to provide a Cu--Ag alloy wire which has high tensile strength and high electrical conductivity and which is also excellent in bending fatigue resistance.
  • the gist and configuration of the present invention are as follows.
  • a Cu—Ag alloy wire, wherein the average crystal grain size of the parent phase is in the range of 10 to 60 nm when measured at .
  • the numerical value of the product of the average diameter (nm) of the Ag phase measured in the cross section and the average crystal grain size (nm) of the matrix phase is the Cu—Ag
  • the Cu—Ag alloy wire according to (1) which is less than 60 times the Ag content (% by mass) in the alloy wire.
  • the Cu—Ag alloy wire contains at least one component selected from the group consisting of Sn, Mg, Zn, In, Ni, Co, Zr and Cr, each having a chemical composition of 0.05 to 0.
  • the Cu—Ag alloy wire is a ribbon wire having a width of 0.02 to 0.32 mm and a thickness of 0.002 to 0.040 mm, and having a substantially rectangular cross section.
  • the present invention it is possible to provide a Cu-Ag alloy wire that has high tensile strength and high electrical conductivity, and also has excellent resistance to bending fatigue. As a result, it has become possible to miniaturize electric and electronic equipment, save space in electric wire installation areas, and increase the number of signal wiring lines, which has not been possible until now. can contribute.
  • FIG. 1 shows an approximately conical sample prepared from a Cu—Ag alloy wire, which is one embodiment of the present invention, and a 140 nm distance from a first position (0 nm position) corresponding to the tip of the prepared sample.
  • FIG. 4 is a diagram of the isoconcentration surface of the Ag phase with a concentration of 2.0 atomic %.
  • FIG. 2 shows data obtained in the same manner as in FIG.
  • FIG. 1 is a diagram of an isoconcentration surface of an Ag phase having an Ag atomic concentration of 3.5 atomic % when the lower portion of the tip portion up to 1 is measured from the upper surface side.
  • FIG. 3 is a diagram when the extension direction and the number of each Ag phase are plotted and calculated from the result of the isoconcentration surface of the Ag phase shown in FIG.
  • FIG. 4 is a graph showing the interval (and the average diameter) between adjacent Ag phases calculated from the result of the equiconcentration surface of the Ag phase shown in FIG. 2 .
  • FIG. 5 is a photograph of a bright field image (BF) when observing the metal structure in a cross section perpendicular to the longitudinal direction of the Cu—Ag alloy wire using a scanning transmission electron microscope (STEM).
  • BF bright field image
  • a Cu—Ag alloy wire according to one embodiment of the present invention is a Cu—Ag alloy wire having a chemical composition containing 1.0 to 6.0% by mass of Ag, with the balance being Cu and unavoidable impurities.
  • the Cu—Ag alloy wire has a plurality of Ag phases distributed linearly in a matrix substantially in the longitudinal direction of the Cu—Ag alloy wire, and the Cu—Ag alloy wire
  • the average crystal grain size of the parent phase is in the range of 10 to 60 nm when measured in a cross section orthogonal to the longitudinal direction of the core.
  • the Cu—Ag alloy wire of the present invention contains 1.0 to 6.0% by mass of Ag. Ag is therefore an essential additive component. Ag exists in a solid solution state in Cu, which is the mother phase (first phase), or in a crystallized state as an Ag layer, which becomes a second phase during casting of a Cu—Ag alloy wire, and is solid. It exerts the action of solution strengthening or dispersion strengthening.
  • the Ag content is set to 1.0 to 6.0% by mass. Furthermore, in a wide range of applications, when more emphasis is placed on the balance of electrical conductivity, the Ag content is more preferably 1.0 to 4.5% by mass.
  • the Cu—Ag alloy wire which is one embodiment of the present invention, contains at least one component selected from the group consisting of Sn, Mg, Zn, In, Ni, Co, Zr and Cr as an optional additive component. , each preferably contained in the range of 0.05 to 0.30% by mass. All of these optionally added components are present mainly in the form of a solid solution in Cu, which is the matrix phase, and are elements that exert the effect of solid solution strengthening or dispersion strengthening, as in the case of Ag. In addition, when it is contained together with the Ag phase, it exists as a second phase of a ternary system or higher such as a Cu--Ag--Zr system, and contributes to further solid-solution strengthening or dispersion strengthening.
  • a ternary system or higher such as a Cu--Ag--Zr system
  • the content of each individual component is described below.
  • Sn (tin) content is 0.05% by mass or more, it contributes to the improvement of the strength of the copper alloy wire. do not have. Therefore, the Sn content is 0.05% by mass or more, preferably 0.07% by mass or more, more preferably 0.08% by mass or more, and particularly preferably 0.10% by mass or more.
  • the Sn content is 0.30% by mass or less, more preferably 0.18% by mass or less, still more preferably 0.15% by mass or less, and particularly preferably 0.12% by mass or less.
  • Mg manganesium
  • the content of Mg is 0.05% by mass or more, it contributes to improving the strength of the copper alloy wire and has the effect of alleviating the brittleness of the copper alloy wire.
  • the Mg content is 0.30% by mass or less, the electrical conductivity of the copper alloy wire and the manufacturability during casting are not greatly impaired. Therefore, the content of Mg is 0.05% by mass or more, preferably 0.07% by mass or more, more preferably 0.08% by mass or more, and particularly preferably 0.10% by mass or more.
  • the Mg content is 0.30% by mass or less, preferably 0.18% by mass or less, more preferably 0.15% by mass or less, and particularly preferably 0.12% by mass or less.
  • the Zn (zinc) content is 0.05% by mass or more, it contributes to the improvement of the strength of the copper alloy wire and has the effect of alleviating the brittleness of the copper alloy wire.
  • the Zn content is 0.30% by mass or less, the electrical conductivity of the copper alloy wire is not greatly impaired. Therefore, the Zn content is 0.05% by mass or more, preferably 0.07% by mass or more, more preferably 0.08% by mass or more, and particularly preferably 0.10% by mass or more.
  • the Zn content is 0.30% by mass or less, more preferably 0.25% by mass or less, even more preferably 0.20% by mass or less, and particularly preferably 0.15% by mass or less.
  • the In content is preferably 0.05% by mass or more, preferably 0.07% by mass or more, more preferably 0.08% by mass or more, and particularly preferably 0.10% by mass or more.
  • the In content is 0.30% by mass or less, preferably 0.18% by mass or less, more preferably 0.15% by mass or less, and particularly preferably 0.12% by mass or less.
  • Ni (nickel) content is 0.05% by mass or more, there is an effect of contributing to the strength improvement of the copper alloy wire.
  • the Ni content is 0.30% by mass or less, the electrical conductivity of the copper alloy wire is not greatly impaired. Therefore, the Ni content is 0.05% by mass or more, preferably 0.07% by mass or more, more preferably 0.08% by mass or more, and particularly preferably 0.10% by mass or more.
  • the Ni content is 0.30% by mass or less, preferably 0.25% by mass or less, more preferably 0.20% by mass or less, and particularly preferably 0.15% by mass or less.
  • Co (cobalt) content is 0.05% by mass or more, it contributes to the improvement of the strength of the copper alloy wire. do not have. Therefore, the Co content is 0.05% by mass or more, preferably 0.07% by mass or more, more preferably 0.08% by mass or more, and particularly preferably 0.10% by mass or more. On the other hand, the Co content is 0.30% by mass or less, preferably 0.18% by mass or less, more preferably 0.15% by mass or less, and particularly preferably 0.12% by mass or less.
  • ⁇ Zr 0.05 to 0.30% by mass>
  • the content of Zr zirconium
  • Zr zirconium
  • the Zr content is 0.05% by mass or more, preferably 0.07% by mass or more, more preferably 0.08% by mass or more, and particularly preferably 0.10% by mass or more.
  • the Zr content is 0.30% by mass or less, preferably 0.20% by mass or less, more preferably 0.15% by mass or less, and particularly preferably 0.12% by mass or less.
  • the Cr (chromium) content is 0.05% by mass or more, it contributes to improving the strength of the copper alloy wire. do not have. Therefore, the Cr content is 0.05% by mass or more, preferably 0.07% by mass or more, more preferably 0.08% by mass or more, and particularly preferably 0.10% by mass or more. On the other hand, the Cr content is 0.30% by mass or less, preferably 0.18% by mass or less, more preferably 0.15% by mass or less, and particularly preferably 0.12% by mass or less.
  • the optional additive components are preferably contained in a total amount of 0.05 to 1.0% by mass. If the content is less than 0.05% by mass, the decrease in electrical conductivity is small, but it does not contribute to high tensile strength. On the other hand, if the content exceeds 1.0% by mass, the tensile strength is significantly increased, but the electrical conductivity is greatly reduced, and high electrical conductivity cannot be maintained. Therefore, it is preferable that the total content of the optional additive components is in the range of 0.05 to 1.0% by mass. More preferably, the content is in the range of 0.1 to 0.5% by mass.
  • Cu and inevitable impurities The balance other than the above components is Cu and unavoidable impurities.
  • Cu is the parent phase of the Cu—Ag alloy wire of the present invention, and Ag and the like, which are essential additive components, are present in a solid solution state or in a precipitated state.
  • the unavoidable impurity is an impurity of a content level that can be unavoidably included in the manufacturing process of the Cu—Ag alloy wire of the present invention. Inevitable impurities may cause a decrease in conductivity depending on the content. Therefore, considering the decrease in conductivity, it is preferable to suppress the content of unavoidable impurities. Examples of unavoidable impurities include Pb, S, P, and the like.
  • a Cu—Ag alloy wire according to one embodiment of the present invention has a matrix in which a plurality of Ag phases are distributed in a line extending substantially in the longitudinal direction of the Cu—Ag alloy wire, and Cu -
  • the average crystal grain size of the parent phase when measured in a cross section orthogonal to the longitudinal direction of the Ag-based alloy wire is in the range of 10 to 60 nm.
  • a three-dimensional atom probe method 3DAP method
  • 1 to 4 are diagrams showing the state of existence of Ag phases in the parent phase of a Cu—Ag alloy wire according to one embodiment of the present invention by the 3DAP method.
  • the 3DAP method is an analysis technique that enables three-dimensional composition analysis of nanoprecipitates and clusters in metals and semiconductors. The principle is as follows. A needle-shaped sample with a diameter of about 100 nm is prepared with the tip formed in a substantially conical shape. Evaporate them one by one.
  • a two-dimensional position detector detects the time-of-flight and position measurement of ions field-evaporated by pulse voltage and laser irradiation, and measures the two-dimensional coordinate position of each ion.
  • Time-of-flight mass spectrometry analysis is also possible by measuring the time from the point of vaporization at the tip of the needle until the ion reaches the detector, so that the arriving ion species can be identified.
  • information on the two-dimensional coordinate position of the ions and information on the depth direction of the sample can be obtained.
  • three-dimensional composition information can be obtained. is possible.
  • FIG. 1 shows a substantially conical sample prepared from a Cu—Ag alloy wire (Ag concentration: 2.0% by mass), which is one embodiment of the present invention, and corresponds to the tip of the prepared sample.
  • FIG. 2 shows data obtained in the same manner as in FIG.
  • FIG. 4 shows an isoconcentration surface of the Ag phase with an Ag atomic concentration of 3.5 atomic % when the lower portion of the tip portion up to 1 is measured from the upper surface side.
  • FIG. 3 shows a graph obtained by figuring out the extending direction and the number of each Ag phase from the result of the isoconcentration surface of the Ag phase shown in FIG. 2 .
  • FIG. 4 shows a graph obtained by figuring out the distance (and average diameter) between adjacent Ag phases from the result of the isoconcentration surface of the Ag phase shown in FIG.
  • an Ag threshold with the same concentration as the Ag concentration is set, and the location where the concentration distribution exceeding this threshold can be confirmed is temporarily Ag phase and As shown in FIG. 1, it is possible to measure the longitudinal plane of the Ag phase having an atomic concentration exceeding a predetermined threshold value. Further, as shown in FIG. 2, it is possible to measure an image diagram of the Ag phase having an atomic concentration exceeding a predetermined threshold as viewed from the cross-sectional direction.
  • the number of phases was counted by assigning Ag confirmed when 3.5 at% of the Ag equiconcentration surface in the cross section of the alloy wire was set as the threshold.
  • FIG. 3 shows the result of assigning the Ag phase in the longitudinal direction of the line
  • FIG. 4 shows the result of assigning the Ag phase in the cross section of the line. This is the result shown.
  • the average diameter of the Ag phase was calculated from the area, assuming that the Ag phase is a perfect circle from the cross section perpendicular to the longitudinal direction of the selected Ag phase.
  • This series of analyzes can be performed using IVAS, software for 3DAP equipment provided by CAMECA.
  • FIG. 1 shows a substantially conical sample prepared from a Cu—Ag alloy wire (Ag concentration: 2.0% by mass), which is one embodiment of the present invention, and corresponds to the tip of the prepared sample.
  • FIG. 2 shows data obtained in the same manner as in FIG.
  • FIG. 4 shows an isoconcentration surface of the Ag phase with an Ag atomic concentration of 3.5 atomic % when the lower portion of the tip portion up to 1 is measured from the upper surface side.
  • FIG. 3 shows a graph obtained by figuring out the extending direction and the number of each Ag phase from the result of the isoconcentration surface of the Ag phase shown in FIG. 2 .
  • FIG. 4 shows a diagram when the average diameter of the Ag phase is plotted and calculated from the result of the isoconcentration surface of the Ag phase shown in FIG.
  • the Cu--Ag alloy wire of the present invention has a matrix in which a plurality of Ag phases are linearly distributed in series in the substantially longitudinal direction of the Cu--Ag alloy wire.
  • the Ag phases are not perfectly aligned in the longitudinal direction, but are substantially parallel and extend along the longitudinal direction of the wire.
  • the Ag phase has an Ag atomic concentration of 0.5 to 50.0% and is continuous in the longitudinal direction.
  • phase continuous in the longitudinal direction does not form a uniform phase with a constant Ag atomic concentration in the longitudinal direction, but the Ag atomic concentration is 0.5 to 50.0%.
  • a phase is formed while fluctuating between
  • the atomic concentration indicates the existence ratio of Ag, and if it is less than 0.5%, it is impossible to distinguish whether Ag is in a precipitated state or a solid solution state, and the second phase cannot be determined.
  • the Ag phase if it exceeds 50.0%, the Ag phase becomes sufficiently coarse and the phase spacing tends to become sparse, so high tensile strength cannot be obtained. Therefore, the Ag phase must have an Ag atomic concentration in the range of 0.5 to 50.0 atomic %.
  • the Ag phases are not continuous in the longitudinal direction, the intervals between the Ag phases become sparse, and the tensile strength and bending fatigue resistance cannot be improved. Therefore, the Ag phase forms a plurality of Ag phases distributed linearly in series in the substantially longitudinal direction of the Cu—Ag alloy wire.
  • the Ag phase preferably has an average diameter in the range of 0.5 to 20 nm when measured in a cross section orthogonal to the longitudinal direction. If the average diameter of the Ag phase is less than 0.5 nm, the size is almost the same as the atomic diameter, and it is difficult to determine the solid solution or precipitation state of Ag with the resolution of existing analytical equipment. It is set as the lower limit because the relationship with the characteristics can be sufficiently clarified by specifying the A diameter larger than 20 nm has a low abundance ratio and a wide phase spacing, so it hardly contributes to densification. From this, since the improvement in tensile strength and bending fatigue resistance is at a negligible level, the presence of 20 nm or more need not be considered.
  • the Cu—Ag alloy wire of the present invention is measured by a 3DAP device and analyzed by IVAS, and has an Ag atomic concentration in the range of 0.5 to 50.0 atomic% and an average diameter of 0.5 A phase in the range of ⁇ 20 nm is defined as an Ag phase.
  • the crystal grain size of the Cu—Ag alloy wire is observed with a scanning transmission electron microscope (STEM).
  • STEM is a device that irradiates an electron beam onto a sliced sample, captures electronic information transmitted through the sample, and performs high-magnification, high-resolution observation at a level that enables direct observation of atomic/molecular images. Therefore, STEM can image the atomic image distribution, morphology, composition image, crystal structure, etc. inside the sample by irradiating the sample with an electron beam focused to the minimum. In addition, STEM can capture the structure of substances in atomic images and sub-nm order.
  • a focused ion beam (FIB) method was used to prepare a sample to be observed by STEM.
  • SIINT-3050TB was used, and the acceleration voltage of the Ga ion beam was 30 kV.
  • 2 kV Ar ion milling was performed for 5 minutes after FIB thin film processing.
  • a JEOL ARM having an aberration correction function was used for STEM observation. Observations were made at an electron beam acceleration voltage of 200 kV.
  • a bright field (BF: Bright Field) and a high-angle scattering dark field (HAADF: High-angle Annular Dark Field) were photographed.
  • Energy dispersive X-ray spectroscopy (EDX) attached to STEM was used for elemental analysis.
  • the cutting method JIS H 0501 was used from the obtained bright field image (BF) of the line cross section.
  • the number of crystal grains completely cut by a line segment of known length was counted regardless of the direction on the image, and the average value (nm) of the cut length was taken.
  • FIG. 5 is a photograph of a bright field image (BF) showing the metal structure in a cross section perpendicular to the longitudinal direction of the Cu—Ag alloy wire observed by STEM.
  • the scale shown in FIG. 5 is 20 nm.
  • the average crystal grain size of the parent phase when measured in a cross section perpendicular to the longitudinal direction is in the range of 10 to 60 nm. Recognize.
  • the average crystal grain size of the parent phase is generally on the order of submicrons (0.1 ⁇ m or more) and at least larger than 60 nm.
  • the Cu—Ag based copper alloy wire of the present invention has an average crystal grain size in the range of 10 to 60 nm.
  • the parent phase is mainly composed of Cu and Ag dissolved therein. If the average crystal grain size observed from the cross section is less than 10 nm, the effect on the properties is unknown, but it was not confirmed within the scope of the present invention. When the average crystal grain size is within the range, the grain boundaries play a role of suppressing movement of dislocations and accumulating them, and can contribute to strength improvement (Hall-Petch rule).
  • the tensile strength will eventually decrease.
  • the average crystal grain size was quite coarse, but the Cu—Ag-based copper alloy wire of the present invention is controlled within the range of 10 to 60 nm. Achieves tensile strength and bending fatigue resistance. Specifically, when the crystal grain size is large, the amount of deformation carried by one crystal grain size is large, so the shear deformation within the crystal grain progresses and the shear band develops strongly. A large amount of precipitates causes stress concentration on brittle grain boundaries, creating a situation in which cracks are likely to occur at the grain boundaries.
  • the Cu—Ag alloy wire of the present invention is a numerical value of the product of the average diameter (nm) of the Ag phase measured in the cross section and the average crystal grain size (nm) of the matrix phase (hereinafter simply “ (sometimes referred to as "value of the product”) is preferably smaller than 60 times the Ag content (% by mass) in the Cu—Ag alloy wire. If the numerical value of the product is smaller than 60 times the Ag content (% by mass) in the Cu—Ag alloy wire, the average diameter of the Ag phase and the average crystal grain size of the matrix phase are each fine. , sufficient strength characteristics and resistance to bending fatigue, especially when the average crystal grain size of the matrix is in the range of 10 to 60 nm, resistance to bending fatigue is further improved.
  • the numerical value of the product is 60 times or more the Ag content (% by mass) in the Cu—Ag alloy wire, the Ag phase is very coarse with respect to the grain size of the parent phase, Tensile strength tends to decrease. Therefore, in the Cu--Ag alloy wire of the present invention, the value of the product is smaller than 60 times the Ag content (% by mass) in the Cu--Ag alloy wire.
  • both numerical values of the average diameter (nm) of the Ag phase and the average crystal grain size (nm) of the matrix phase measured in the cross section are controlled so as to be small in a well-balanced manner. can be done.
  • Cu—Ag alloy wires tend to have a finer wire diameter, and ultrafine wires are often used. Therefore, high tensile strength and high bending fatigue resistance are required.
  • the Cu—Ag alloy wire of the present invention can obtain a tensile strength of at least 900 MPa or more, more preferably 1000 MPa or more, by forming the metal structure described above. Therefore, a Cu--Ag alloy wire having a high strength can be obtained even if the wire diameter is reduced.
  • the use of ultra-fine wires requires high electrical conductivity.
  • the Cu—Ag alloy wire of the present invention can obtain a conductivity of at least 65% IACS, more preferably 75% IACS or more, by suppressing the amount of additive elements and optional additive elements.
  • the Cu—Ag alloy wire of the present invention is a round wire having a wire diameter of 0.01 mm to 0.08 mm and a substantially circular cross section. Even an ultra-thin wire (Cu—Ag alloy wire) having a wire diameter of 0.01 mm to 0.08 mm preferably has high tensile strength and high electrical conductivity. A Cu—Ag alloy wire with a wire diameter of less than 0.01 mm cannot be said to meet the needs of users. On the other hand, a Cu—Ag alloy wire with a wire diameter exceeding 0.08 mm cannot serve as an extra fine wire. Further, the Cu—Ag alloy wire may be a ribbon wire having a ribbon shape whose cross section is not substantially circular but substantially rectangular.
  • the dimensions of the ribbon are preferably 0.02 to 0.32 mm in width and 0.002 to 0.040 mm in thickness for the same reasons as the upper and lower limits of the wire diameter.
  • a manufacturing method for example, there is a method of rolling the drawn round wire into a desired shape.
  • the strip width corresponds to the width direction of the rolling rolls, and the strip thickness corresponds to the direction between the rolls. At the ends in the strip width direction, the non-contacting roll roll portions are deformed while maintaining the shape of an arc.
  • the longer value in the cross section of the ribbon wire is the width, and the shorter value is the thickness.
  • the method for producing a Cu—Ag alloy wire of the present invention includes a casting step of melting and casting a Cu—Ag alloy material having the chemical composition described above and cooling it to obtain an ingot, and A first wire drawing step of drawing a Cu—Ag alloy material, a first heat treatment step of heat-treating the drawn Cu—Ag alloy material, a second heat treatment step, and finally, and a second wire drawing step for obtaining a Cu—Ag alloy wire by performing a wire drawing process.
  • the strain relief annealing treatment can be performed between the wire drawing treatments of the second wire drawing process.
  • the cooling rate is set to 10° C./second or more in order to suppress excessive appearance of Ag crystal precipitates in the Cu matrix during cooling during casting. If the crystal precipitates during casting become large, the space between the Ag phases becomes large without forming an Ag phase with an appropriate diameter even by drawing in the subsequent wire drawing process, so the final Cu—Ag alloy wire It causes a decrease in tensile strength.
  • the working rate is preferably about 50 to 90% in order to promote sufficient precipitation of Ag during heat treatment. If the work ratio is less than 50%, sufficient precipitation is not generated, and the increase in strength with respect to the work ratio in the second wire drawing step and later steps becomes small. This is because the Cu—Ag alloy wire tends to have insufficient strength when the diameter is large, making it difficult to obtain high tensile strength. On the other hand, although precipitation is promoted in a wire drawing process with a working ratio of 90% or more, it is difficult to obtain a high tensile strength because the working ratio in the wire drawing process after the heat treatment cannot be high. , preferably set an upper limit of 90%.
  • the first heat treatment step introduces at least two heat treatment steps while drawing the ingot to the final diameter.
  • the purpose of this heat treatment is to precipitate Ag, and the holding temperature in the first heat treatment step is in the range of 350 to 450°C, and the holding temperature in the second heat treatment step is 250 to 375°C, for a total of 10 to 50 hours. within the range of The second heat treatment step needs to be performed at a low temperature of 25° C. or higher with respect to the first heat treatment step.
  • the second heat treatment process By introducing the second heat treatment process at a temperature lower than that of the first heat treatment process, a large amount of precipitation of the Ag phase is precipitated by the first heat treatment with a large driving force, the solid solubility limit is narrowed, and the temperature is low. Therefore, the final precipitation amount of the Ag phase is controlled in the second heat treatment step in which the driving force is low. If the heat treatment temperature is low or the treatment time is short, recrystallization does not proceed at this point and the growth of the Ag phase does not occur. Moreover, the numerical value of the product of the average diameter of the Ag phase and the average crystal grain size of the matrix tends to be the numerical value of Ag concentration ⁇ 60 or more.
  • the working rate of the second wire drawing step is desirably about 95% to 99.9999% in order to sufficiently develop the strength characteristics of the present alloy. If the processing rate is low, both the crystal grain size of the matrix phase and the Ag phase will not satisfy the quantity within the size range of the invention, and the tensile strength will not be increased sufficiently.
  • the upper limit of the processing rate is a practical limitation and is not related to the characteristics.
  • the working rate per pass is set in the range of 15 to 35%. A reduction greater than this may cause the wire to break.
  • the ribbon-shaped wire was produced by rolling the above circular wire to the specified thickness.
  • the work hardening may be saturated and the strength may be lowered. Saturation of work hardening may adversely affect the resistance to bending fatigue associated with twisting, so it is effective to apply an intermediate heat treatment for the purpose of strain relief without large softening.
  • the final Cu--Ag alloy wire can be obtained by the finishing heat treatment step in which heat treatment is performed at the end of the manufacturing process (product after heat treatment).
  • the conditions of this final heat treatment are not particularly limited, but it is preferable that the temperature is 450 to 600° C. and the time is 10 seconds to 30 minutes.
  • this ingot was drawn to a wire diameter of 1.0 to 9.5 mm ⁇ so that the processing rate was 35 to 95% (first wire drawing step).
  • aging heat treatment for both precipitation and recrystallization was performed at 350 to 550° C. for 3 to 50 hours (first heat treatment step).
  • the holding temperature was held at a lower temperature, similarly, at 250 to 375° C. for 1 to 60 hours (second heat treatment step).
  • cold wire drawing was performed to a wire diameter of 99.7 to 99.998% and 0.02 to 0.08 mm ⁇ (second wire drawing step).
  • stress relief annealing was performed during the cold wire drawing in the second wire drawing process.
  • Conductivity is measured using the four-probe method based on JIS H0505-1975 in a constant temperature bath controlled at 20 ° C. ( ⁇ 1 ° C.), and the conductivity is measured for two of each test piece, and the average value. (%IACS) was used as the measured value. At this time, the distance between terminals was set to 100 mm.
  • the 3DAP device evaporates the material, detects the evaporated atoms with a two-dimensional detector, and reconstructs the data to visualize the three-dimensional structure of the nanometer order.
  • Sample preparation for three-dimensional atom probe measurement was performed by FIB.
  • FIB For the FIB, SIINT-3050TB and Helios G4 (manufactured by FEI) were used.
  • a Ga ion beam with an acceleration voltage of 30 kV was used to fabricate a conical sample with a circular bottom surface with a diameter of about 80 nm and a length of about 140 nm.
  • the longitudinal direction of the Cu—Ag alloy wire was taken as the length direction of the sample, but the diameter direction of the cross section perpendicular to the longitudinal direction of the Cu—Ag alloy wire may be taken as the length direction.
  • the final finish used a 5 kV ion beam to reduce the damaged layer as much as possible.
  • the 3DAP device used was LEAP4000XSi (manufactured by AMETEK).
  • the irradiated pulsed laser was vaporized using ultraviolet light with a wavelength of 355 nm. Also, the voltage applied to the sample was set to 1 to 5 kV.
  • Analysis software such as IVAS 3.8.8 (manufactured by CAMECA) or IVAS LT was used to analyze the atomic concentration of the Ag phase and the shortest interval.
  • Average diameter of Ag phase In the 3DAP method, in a cross section orthogonal to the longitudinal direction of the Cu—Ag alloy wire, an Ag threshold with the same concentration as the Ag concentration is set, and the location where the concentration distribution exceeding this threshold can be confirmed is temporarily Ag phase and Corresponding to the tentative Ag phase, profile analysis was performed along the longitudinal direction, and the Ag phase having a continuous Ag atomic concentration of 0.5 to 50.0% in a length of 60 nm was selected as the Ag phase. The average diameter of the Ag phase was calculated from the area by assuming that the Ag phase is a perfect circle from the cross section perpendicular to the longitudinal direction of the selected Ag phase.
  • STEM observation an atomic resolution analytical electron microscope (ARM manufactured by JEOL Ltd.: JEM-ARM200F) with an aberration correction function was used. Observations were made at an electron beam acceleration voltage of 200 kV. STEM observations were performed in bright field (BF) and high-angle scattering dark field (HAADF), and elemental analysis was performed using TEM at locations where contrast that could be attributed to the Ag layer was confirmed. It was carried out by attached energy dispersive X-ray analysis (EDX: Energy Dispersive X-ray spectroscopy).
  • EDX Energy Dispersive X-ray spectroscopy
  • the average crystal grain size was calculated from the obtained bright-field image (BF) using the cutting method.
  • the cutting method is based on JIS H0501.
  • the analysis results of the 3DAP apparatus were also used to obtain the average value.
  • a numerical value was calculated from the product of the average diameter of the Ag phase and the average crystal grain size of the matrix phase.
  • Examples 1-1 to 1-12, Comparative Examples 1-1 to 1-11 use a Cu—Ag alloy wire having a chemical composition of Cu—1.5% by mass Ag, and a Cu— Using Ag-based alloy wires, samples were prepared by changing the working ratios in the first and second wire drawing steps and the manufacturing conditions in the first and second heat treatment steps.
  • Table 1 shows the manufacturing conditions of Examples 1-1 to 1-12 and Comparative Examples 1-1 to 1-11.
  • Example 1-10 a circular shape with a final diameter of 0.03 mm was processed and formed into a ribbon shape with a thickness of 0.008 mm and a width of 0.08 mm.
  • the underlines shown in the table indicate that they are outside the scope of the present invention.
  • Table 2 shows evaluation results of metal structures and properties of Examples 1-1 to 1-12 and Comparative Examples 1-1 to 1-11.
  • the evaluation items are the average crystal grain size of the matrix phase, the average diameter of the Ag phase, the numerical value of the product as the metal structure, and the tensile strength and bending fatigue resistance as the mechanical properties. Also, the numerical value of 60 times the Ag content (% by mass) is "90".
  • the average crystal grain size of the mother phase, the average diameter of the Ag phase, and the numerical value of the product are within the scope of the present invention. All of them have a high tensile strength of 1100 MPa or more.
  • the product value exceeds 90, which is 60 times the Ag content (% by mass), so the bending fatigue resistance is "O". ing.
  • the value of the product is within 90, which is 60 times the Ag content (% by mass). The fatigue property is "A”.
  • Comparative Examples 1-1 to 1-11 all have tensile strengths of 980 MPa or more, which are lower than those of Examples 1-1 to 1-12.
  • the bending fatigue resistance is also "x".
  • Example 2-1 to 2-12 Comparative Examples 2-1 to 2-11
  • samples were prepared using a Cu—Ag alloy wire having a chemical composition of Cu-2.0 mass % Ag. .
  • Table 3 shows the manufacturing conditions of Examples 2-1 to 2-12 and Comparative Examples 2-1 to 2-11.
  • Table 4 shows evaluation results of metal structures and properties of Examples 2-1 to 2-12 and Comparative Examples 2-1 to 2-11.
  • the numerical value of 60 times the Ag content (% by mass) is 120.
  • the average crystal grain size of the mother phase, the average diameter of the Ag phase, and the numerical value of the product are within the scope of the present invention. All of them have a high tensile strength of 1100 MPa or more.
  • the product value exceeds 120, which is 60 times the Ag content (% by mass), so the bending fatigue resistance is " ⁇ ”.
  • the product value is within 120, which is 60 times the Ag content (% by mass), so the bending fatigue resistance is "A”.
  • the average grain size of the mother phase and the numerical value of the product are outside the scope of the present invention, and the tensile strength is all 1000 MPa or more, and Examples 2-1 to 2-12 is getting lower.
  • the numerical value of the product is a value greater than 120, and the bending fatigue resistance is also "x".
  • Example 3-1 to 3-12 Comparative Examples 3-1 to 3-11
  • samples were prepared using a Cu—Ag alloy wire having a chemical composition of Cu-4.0 mass % Ag. .
  • Table 5 shows the manufacturing conditions of Examples 3-1 to 3-12 and Comparative Examples 3-1 to 3-11.
  • Table 6 shows evaluation results of metal structures and properties of Examples 3-1 to 3-12 and Comparative Examples 3-1 to 3-11.
  • the average crystal grain size of the matrix phase, the average diameter of the Ag phase, and the product values are all within the scope of the present invention. All of them have a high tensile strength of 1300 MPa or more.
  • the numerical value of the product exceeds the numerical value 240, which is 60 times the Ag content (mass%).
  • the fatigue property is " ⁇ ”.
  • the numerical value of the product is within 240, which is 60 times the Ag content (mass%), the bending fatigue resistance is " ⁇ ”.
  • Example 4-1 to 4-12 Comparative Examples 4-1 to 4-11
  • samples were prepared using a Cu—Ag alloy wire having a chemical composition of Cu-6.0 mass % Ag. .
  • Table 7 shows the manufacturing conditions of Examples 4-1 to 4-12 and Comparative Examples 4-1 to 4-11.
  • Table 8 shows evaluation results of metal structures and properties of Examples 4-1 to 4-12 and Comparative Examples 4-1 to 4-11.
  • the average crystal grain size of the matrix phase, the average diameter of the Ag phase, and the product values are all within the scope of the present invention. All of them have a high tensile strength of 1300 MPa or more.
  • the bending fatigue resistance is "O". ing.
  • the numerical value of the product is within 360, which is 60 times the Ag content (% by mass), the bending fatigue resistance is " ⁇ ”.
  • the average grain size of the mother phase and the numerical value of the product are outside the scope of the present invention, and the tensile strength is all 1000 MPa or more, and Examples 4-1 to 4-12 is getting lower.
  • the numerical value of the product is a value greater than 360, and the bending fatigue resistance is also "x".
  • Comparative Examples 5-1 to 5-4 are Cu—Ag alloy wires containing 1.0 to 6.0% by mass of Ag outside the range of the present invention, and Cu-0.5% by mass of Ag , Cu-0.8 mass % Ag, Cu-6.5 mass % Ag, and Cu-8.0 mass % Ag.
  • Table 9 shows the manufacturing conditions of Comparative Examples 5-1 to 5-4.
  • Table 10 shows evaluation results of metal structures and properties of Comparative Examples 5-1 to 5-4.
  • Comparative Example 5-4 the tensile strength was greater than 900 MPa because the upper limit of the amount of Ag added was greater than 6.0% by mass.
  • the numerical value of the product is within 480, which is 60 times the Ag content (% by mass)
  • the bending fatigue resistance is "A".
  • Comparative Example 5-3 and Example 4-3, and Comparative Example 5-4 and Example 4-4 are compared, there is no difference in the effects of tensile strength and bending fatigue resistance, and the amount of Ag added is Even if it is increased, the cost only increases, and there is no advantage in increasing it.
  • Examples 6-1 to 6-8 are Cu-2.0 wt% Ag and Cu having a chemical composition containing one selected from Sn, Mg, Zn, In, Ni, Co, Zr and Cr -Ag alloy wires
  • Comparative Examples 6-1 to 6-3 are Cu-Ag having chemical compositions containing Cu-2.0% by mass Ag and 0.5% by mass of Sn, Mg, and Zr, respectively
  • a sample is prepared using a series alloy wire.
  • Table 11 shows the manufacturing conditions of Examples 6-1 to 6-8 and Comparative Examples 6-1 to 6-3.
  • Table 12 shows evaluation results of metal structures and properties of Examples 6-1 to 6-8 and Comparative Examples 6-1 to 6-3.
  • the average crystal grain size of the matrix phase, the average diameter of the Ag phase, and the product values are all within the scope of the present invention. All of them have a high tensile strength of 1100 MPa or more. Further, in Examples 6-1 to 6-8, the product value is within 120, which is 60 times the Ag content (% by mass), and therefore the bending fatigue resistance is "A".
  • Comparative Example 6-1 containing 0.5% by mass of Sn and in Comparative Example 6-2 containing 0.5% by mass of Mg, the electrical conductivity is low, which poses a practical problem.
  • Comparative Example 6-3 the 0.5% by mass Zr content causes ingot cracks during production, making it difficult to produce round wires and the like, which is problematic in terms of production.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

高引張強度と高導電率を具備しながら、耐屈曲疲労特性にも優れるCu-Ag系合金線を提供する。1.0~6.0質量%のAgを含有し、残部がCuおよび不可避不純物からなる化学組成を有するCu-Ag系合金線であって、Cu-Ag系合金線は、母相中に、Cu-Ag系合金線の略長手方向に連なった線状に分布してなる複数のAg相を有し、Cu-Ag系合金線の長手方向に対して直交する横断面で測定したときの母相の平均結晶粒径が、10~60nmの範囲にある。

Description

Cu-Ag系合金線
 本発明は、Cu-Ag系合金線に関する。
 現在、電気・電子機器用接続ケーブル等に用いる電線は、線径の細線化が進んでいる。電線としては、強度が不足する純Cu線に代わり、Cu-Sn系、Cu-Cr系、Cu-Ag系等のCu合金線が使用される傾向がある。
 しかし、電子・電気機器製品の小型化、電線設置領域の省スペース化、信号配線ラインの増加等により、電線の線径は、従来に比べて更に細径化する傾向がある。
 銅合金線の中で、引張強度が比較的高く、導電率も比較的高い銅合金線としてはCu-Ag系合金線が挙げられる。
 例えば、特許文献1では、CuとAgの共晶相がフィラメント状に引き延ばされることによって、高強度、高導電率を有する銅合金の製造方法が開示されている。しかし、特許文献1では、特に伸線後強度に寄与する析出分布の制御が不適切であるために強度特性が不十分であるという問題がある。
 また、特許文献2では、プロセス途中の熱処理にて再結晶集合組織を発達させ、また、その後の高加工で高強度化させるCu-Ag合金細線が開示されている。しかし、特許文献2では、熱処理前に適切な伸線プロセス条件を採用していないため、熱処理中の材料脆化が進んで細線化することが困難となり、その生産性の悪さからコスト競争力のある製品にならないという問題がある。
 また、特許文献3では、Ag晶析出物のうち一部が非常に微細な粒状のAgが均一的に分散して存在することによって、高い引張強度と高い導電率を有することができるCu-Ag系合金線が開示されている。しかし、特許文献3では所定のAg晶析出物の分布を規定しているが、提示されている製法をトレースし所望の組織を得ても必ずしも高い引張強度と高い導電率をバランスよく得ることができないという問題がある。
特許第3325639号公報 特許第5051647号公報 特許第5713230号公報
 したがって、特許文献1ないし3では、いずれも、金属組織の制御が不十分で、従来のCu-Ag系合金線に比べて、より細径化するために必要な伸線性を確保する点や、高強度と高導電率の双方をバランスよく具備する極細線(Cu-Ag系合金線)を製造する点については、十分に検討されていないという問題がある。加えて、より細線化したCu-Ag系合金線に関し、屈曲を繰り返す使用状況下において疲労によって破断しにくい特性(耐屈曲疲労特性)を向上させる点についても、何ら検討がなされていないという問題もある。
 そこで、本発明の目的は、高引張強度と高導電率を具備しながら、耐屈曲疲労特性にも優れるCu-Ag系合金線を提供することである。
 上記目的を達成するため、本発明の要旨構成は、以下のとおりである。
(1)1.0~6.0質量%のAgを含有し、残部がCuおよび不可避不純物からなる化学組成を有するCu-Ag系合金線であって、前記Cu-Ag系合金線は、母相中に、前記Cu-Ag系合金線の略長手方向に連なった線状に分布してなる複数のAg相を有し、前記Cu-Ag系合金線の長手方向に対して直交する横断面で測定したときの前記母相の平均結晶粒径が、10~60nmの範囲にある、Cu-Ag系合金線。
(2)前記Cu-Ag系合金線は、前記横断面で測定した前記Ag相の平均径(nm)と前記母相の平均結晶粒径(nm)との積の数値が、前記Cu-Ag系合金線中のAg含有量(質量%)の60倍の数値よりも小さい、(1)に記載のCu-Ag系合金線。
(3)前記Cu-Ag系合金線は、前記化学組成がSn、Mg、Zn、In、Ni、Co、ZrおよびCrからなる群から選ばれる少なくとも1種の成分を、それぞれ0.05~0.30質量%の範囲で、さらに含有する、(1)又は(2)に記載のCu-Ag系合金線。
(4)前記Cu-Ag系合金線は、0.01mm~0.08mmの線径を有する丸線である、(1)~(3)のいずれか1つに記載のCu-Ag系合金線。
(5)前記Cu-Ag系合金線は、0.02~0.32mmの幅と0.002~0.040mmの厚さとを有する、横断面が略矩形状のリボン線である、(1)~(3)のいずれか1つに記載のCu-Ag系合金線。
 本発明により、高引張強度と高導電率を具備しながら、耐屈曲疲労特性にも優れるCu-Ag系合金線を提供することができる。これにより、これまで実現化できなかった電気・電子機器の小型化、電線設置領域の省スペース化、信号配線ラインの増加が可能となり、電気・電子製品の小型化に対して高付加価値化に寄与することができる。
図1は、本発明の一の実施形態であるCu-Ag系合金線から、略円錐形状の試料を作製し、その作製した試料の、先端に相当する第1位置(0nm位置)から140nmの長さに相当する第2位置(140nm位置)までの先端部において、Ag相を、3DAP装置を用いて得られたデータであって、試料の先端部を側面側から測定したときの、Ag原子濃度が2.0原子%であるAg相の等濃度面の図である。 図2は、図1と同様に得られたデータであって、試料の先端部のうち、第1位置から80nmの長さに相当する第3位置(80nm位置)から第2位置(140nm位置)までの先端部の下側部分を上面側から測定したときの、Ag原子濃度が3.5原子%であるAg相の等濃度面の図である。 図3は、図1に示すAg相の等濃度面の結果から、それぞれのAg相の延在方向および個数を図形化して割り出したときの図である。 図4は、図2に示すAg相の等濃度面の結果から、隣接するAg相同士の間隔(および平均径)を図形化して割り出したときの図である。 図5は、走査型透過電子顕微鏡(STEM)を用いて、Cu-Ag系合金線の長手方向に直交する横断面における金属組織を観察したときの明視野像(BF)の写真である。
 以下に、本発明の実施形態を説明する。なお、以下の説明はこの発明における実施形態の例であって、この特許請求の範囲を限定するものではない。
 本発明の一実施形態に係るCu-Ag系合金線について説明する。
 本発明の一実施形態に係るCu-Ag系合金線は、1.0~6.0質量%のAgを含有し、残部がCuおよび不可避不純物からなる化学組成を有するCu-Ag系合金線であって、Cu-Ag系合金線は、母相中に、Cu-Ag系合金線の略長手方向に連なった線状に分布してなる複数のAg相を有し、Cu-Ag系合金線の長手方向に対して直交する横断面で測定したときの母相の平均結晶粒径が、10~60nmの範囲にある。
(化学組成)
 本発明のCu-Ag系合金線では、1.0~6.0質量%のAgを含有している。したがって、Agは必須の添加成分である。Agは、母相(第一相)であるCu中に固溶した状態、または、Cu-Ag系合金線の鋳造の際に第二相となるAg層として晶析出した状態で存在し、固溶強化又は分散強化の作用を発揮する。
 Agの含有量が1.0質量%未満になると、Ag相の析出が十分に起きず所望の金属組織を得られないため引張強度が不足し、また、十分な耐屈曲疲労特性も得られない。一方、Agの含有量が6.0質量%を超えると、引張強度、耐屈曲疲労特性における効果において6.0質量%以下と差がなく、Ag添加量を増加させた分コストが高くなる。以上のことから、導電率を損なうことなく、より細径化した極細線のCu-Ag系合金線でも、引張強度及び耐屈曲疲労特性に優れた特性と良好なコストパフォーマンスを得るために、本発明では、Agの含有量は1.0~6.0質量%にする。さらに、広汎な用途において、導電率のバランス特性をより重視する場合には、Ag含有量は1.0~4.5質量%がより好ましい。
 さらに、本発明の一実施形態であるCu-Ag系合金線は、任意添加成分として、Sn、Mg、Zn、In、Ni、Co、ZrおよびCrからなる群から選ばれる少なくとも1種の成分を、それぞれ0.05~0.30質量%の範囲で含有することが好ましい。これらの任意添加成分は、いずれも母相であるCu中に主に固溶した状態で存在し、Agの場合と同様に、固溶強化又は分散強化の効果を発揮する元素である。また、Ag相と共に含有することで、例えば、Cu-Ag-Zr系といった三元系以上の第二相として存在し、さらなる固溶強化又は分散強化に寄与する。
 個々の各成分の含有量は以下に説明する。
<Sn:0.05~0.30質量%>
 Sn(スズ)の含有量が0.05質量%以上であると、銅合金線の強度向上に寄与し、Snの含有量が0.30質量%以下であると、導電性を大きく損ねることがない。このため、Snの含有量は、0.05質量%以上、好ましくは0.07質量%以上、さらに好ましくは0.08質量%以上、特に好ましくは0.10質量%以上である。一方で、Snの含有量は、0.30質量%以下、より好ましくは0.18質量%以下、さらに好ましくは0.15質量%以下、特に好ましくは0.12質量%以下である。
<Mg:0.05~0.30質量%>
 Mg(マグネシウム)の含有量が0.05質量%以上であると、銅合金線の強度向上に寄与し、銅合金線の脆性を緩和する効果がある。Mgの含有量が0.30質量%以下であると、銅合金線の導電性や鋳造時の製造性を大きく損ねることがない。このため、Mgの含有量は、0.05質量%以上、好ましくは0.07質量%以上、さらに好ましくは0.08質量%以上、特に好ましくは0.10質量%以上である。一方で、Mgの含有量は、0.30質量%以下、好ましくは0.18質量%以下、さらに好ましくは0.15質量%以下、特に好ましくは0.12質量%以下である。
<Zn:0.05~0.30質量%>
 Zn(亜鉛)の含有量が0.05質量%以上であると、銅合金線の強度向上に寄与し、銅合金線の脆性を緩和する効果がある。Znの含有量が0.30質量%以下であると、銅合金線の導電性を大きく損ねることがない。このため、Znの含有量は、0.05質量%以上、好ましくは0.07質量%以上、さらに好ましくは0.08質量%以上、特に好ましくは0.10質量%以上である。一方で、Znの含有量は、0.30質量%以下、より好ましくは0.25質量%以下、さらに好ましくは0.20質量%以下、特に好ましくは0.15質量%以下である。
<In:0.05~0.30質量%>
 In(インジウム)の含有量が0.05質量%以上であると、銅合金線の強度向上に寄与し、Inの含有量が0.30質量%以下であると、導電性を大きく損ねることがない。このため、Inの含有量は、好ましくは0.05質量%以上、好ましくは0.07質量%以上、さらに好ましくは0.08質量%以上、特に好ましくは0.10質量%以上である。一方で、Inの含有量は、0.30質量%以下、好ましくは0.18質量%以下、さらに好ましくは0.15質量%以下、特に好ましくは0.12質量%以下である。
<Ni:0.05~0.30質量%>
 Ni(ニッケル)の含有量が0.05質量%以上であると、銅合金線の強度向上に寄与する効果がある。Niの含有量が0.30質量%以下であると、銅合金線の導電性を大きく損ねることがない。このため、Niの含有量は、0.05質量%以上、好ましくは0.07質量%以上、さらに好ましくは0.08質量%以上、特に好ましくは0.10質量%以上である。一方で、Niの含有量は、0.30質量%以下、好ましくは0.25質量%以下、さらに好ましくは0.20質量%以下、特に好ましくは0.15質量%以下である。
<Co:0.05~0.30質量%>
 Co(コバルト)の含有量が0.05質量%以上であると、銅合金線の強度向上に寄与し、Coの含有量が0.30質量%以下であると、導電性を大きく損ねることがない。このため、Coの含有量は、0.05質量%以上、好ましくは0.07質量%以上、さらに好ましくは0.08質量%以上、特に好ましくは0.10質量%以上である。一方で、Coの含有量は、0.30質量%以下、好ましくは0.18質量%以下、さらに好ましくは0.15質量%以下、特に好ましくは0.12質量%以下である。
<Zr:0.05~0.30質量%>
 Zr(ジルコニウム)の含有量が0.05質量%以上であると、銅合金線の強度向上に寄与し、銅合金線の脆性を緩和する効果がある。Zrの含有量が0.30質量%以下であると、銅合金線の導電性や鋳造時の製造性を大きく損ねることがない。このため、Zrの含有量は、0.05質量%以上、好ましくは0.07質量%以上、さらに好ましくは0.08質量%以上、特に好ましくは0.10質量%以上である。方で、Zrの含有量は、0.30質量%以下、好ましくは0.20質量%以下、さらに好ましくは0.15質量%以下、特に好ましくは0.12質量%以下である。
<Cr:0.05~0.30質量%>
 Cr(クロム)の含有量が0.05質量%以上であると、銅合金線材の強度向上に寄与し、Crの含有量が0.30質量%以下であると、導電性を大きく損ねることがない。このため、Crの含有量は、0.05質量%以上、好ましくは0.07質量%以上、さらに好ましくは0.08質量%以上、特に好ましくは0.10質量%以上である。一方で、Crの含有量は、0.30質量%以下、好ましくは0.18質量%以下、さらに好ましくは0.15質量%以下、特に好ましくは0.12質量%以下である。
<任意添加成分:合計で0.05~1.0質量%>
 一方、上記任意添加成分は、合計で0.05~1.0質量%の範囲で含有することが好ましい。含有量が0.05質量%未満では、導電性の低下は少ないが、高引張強度に寄与しない。また、含有量が1.0質量%を超えると、引張強度は非常に大きくなるが、導電性の低下が大きく高導電性の特性を維持することができない。したがって、上記任意添加成分は、合計して0.05~1.0質量%質量%の範囲で含有することが好ましい。さらに好ましくは、0.1~0.5質量%質量%の範囲で含有することがさらに好ましい。
<残部:Cuおよび不可避不純物>
 上記した各成分以外の残部はCu及び不可避不純物である。Cuは、本発明のCu-Ag系合金線の母相であり、必須の添加成分であるAg等が固溶した状態又は析出物として析出した状態で存在している。不可避不純物とは、本発明のCu-Ag系合金線の製造工程上、不可避的に含まれうる含有量レベルの不純物である。不可避不純物は、含有量によっては導電性を低下させる要因になることがある。したがって、導電性の低下を考慮すると、不可避不純物の含有量を抑制することが好ましい。不可避不純物としては、例えば、Pb、S、P等が挙げられる。
 本発明のCu-Ag系合金線の金属組織を以下に説明する。
 本発明の一実施形態に係るCu-Ag系合金線は、母相中に、Cu-Ag系合金線の略長手方向に連なった線状に分布してなる複数のAg相を有し、Cu-Ag系合金線の長手方向に対して直交する横断面で測定したときの母相の平均結晶粒径が、10~60nmの範囲にある。
 Ag相は、3次元アトムプローブ法(3DAP法)により測定する。図1~4は、本発明の一実施形態であるCu-Ag系合金線を、3DAP法で、母相中におけるAg相の存在状態を示した図である。これらの金属組織は、Cu-Ag系合金線の母相に存在するAgの存在状態を3DAP法で観測することができる。
 3DAP法は、金属や半導体中のナノ析出物やクラスターを3次元で組成分析できる分析手法である。原理は、以下のとおりである。
 先端部を略円錐状に形成した直径が100nm程度の針状試料を作製し、3次元アトムプローブ電界イオン顕微鏡(3DAP装置)に搬入した後、高電圧をパルス印加し、試料の先端から1原子ずつ電界蒸発させる。また、針の先端に特定波長のパルスレーザーを照射し、電界蒸発を補助することにより、試料破壊の確率の低減、質量分解能の改善、半導体や絶縁物の測定が可能となる。パルス電圧とレーザー照射により電界蒸発させたイオンの飛行時間と位置測定を2次元位置検出器で検出し、各イオンの2次元座標位置を測定する。針の先で蒸発した時点から検出器に到達するまでの時間を計測することによって、飛行時間型質量分析としての解析も可能であるので、到達したイオン種を特定できる。レーザー照射を繰り返し行い、イオンの2次元座標位置の情報と、試料の深さ方向の情報が得られるので、針の先端形状を考慮したデータ解析を行うことにより、3次元の組成情報を得ることが可能である。
 ここに、3DAP法により測定した代表的な結果を示している。
 図1は、本発明の一の実施形態であるCu-Ag系合金線(Ag濃度:2.0質量%)から、略円錐形状の試料を作製し、その作製した試料の、先端に相当する第1位置(0nm位置)から140nmの長さに相当する第2位置(140nm位置)までの先端部において、Ag相を、3DAP装置を用いて得られたデータであって、試料の先端部を側面側から測定したときの、Ag原子濃度が2.0原子%であるAg相の等濃度面を示している。
 図2は、図1と同様に得られたデータであって、試料の先端部のうち、第1位置から80nmの長さに相当する第3位置(80nm位置)から第2位置(140nm位置)までの先端部の下側部分を上面側から測定したときの、Ag原子濃度が3.5原子%であるAg相の等濃度面を示している。
 図3は、図2に示すAg相の等濃度面の結果から、それぞれのAg相の延在方向および個数を図形化して割り出したときの図を示している。
 図4は、図2に示すAg相の等濃度面の結果から、隣接するAg相同士の間隔(および平均径)を図形化して割り出したときの図を示している。
 3DAP法は、Cu-Ag系合金線の長手方向に直交する横断面で、Ag濃度に対して同じ濃度のAg閾値を設け、この閾値を超える濃度分布が確認できた箇所を暫定的にAg相とした。これを、長手方向の平面で、図1に示すように、予め定めた閾値を超える原子濃度を有するAg相を長手方向から見たイメージ図を測定することができる。また、図2に示すように、予め定めた閾値を超える原子濃度を有するAg相を横断面方向から見たイメージ図を測定することができる。
 また、このときのAg相の特定は、図2に示すように合金線横断面おいてAg等濃度面3.5at%を閾値とした場合に確認されたAgをアサインし相数をカウントした。
 先の暫定的なAg相に対応して、長手方向に沿ってプロファイル解析を行い、60nm長においてAg原子濃度0.5~50.0%を連続的に有するものをAg相として選定した。図3、図4はその解析結果であり、図3は長手においてAg相をアサインした結果を線の長手方向から示した結果であり、図4はAg相をアサインした結果を線の横断面から示した結果である。
 また、Ag相の平均径は、選定されたAg相に対して長手方向に直交する横断面からAg相を真円と仮定し、面積より平均径を算出した。
 この一連の解析はCAMECA社が提供する3DAP装置のソフトウェアであるIVASを用いて実施できる。
 図1は、本発明の一の実施形態であるCu-Ag系合金線(Ag濃度:2.0質量%)から、略円錐形状の試料を作製し、その作製した試料の、先端に相当する第1位置(0nm位置)から140nmの長さに相当する第2位置(140nm位置)までの先端部において、Ag相を、3DAP装置を用いて得られたデータであって、試料の先端部を側面側から測定したときの、Ag原子濃度が2.0原子%であるAg相の等濃度面を示している。図2は、図1と同様に得られたデータであって、試料の先端部のうち、第1位置から80nmの長さに相当する第3位置(80nm位置)から第2位置(140nm位置)までの先端部の下側部分を上面側から測定したときの、Ag原子濃度が3.5原子%であるAg相の等濃度面を示している。図3は、図2に示すAg相の等濃度面の結果から、それぞれのAg相の延在方向および個数を図形化して割り出したときの図を示している。図4は、図2に示すAg相の等濃度面の結果から、Ag相の平均径を図形化して割り出したときの図を示している。
 本発明のCu-Ag系合金線は、母相中に、Cu-Ag系合金線の略長手方向に連なって線状に分布してなる複数のAg相を有している。図1及び図3を見ればわかるように、Ag相は、完全に長手方向に揃って並んでいるわけではないが、略平行で、線の長手方向に沿って延在している。また、Ag相は、Ag原子濃度が0.5~50.0%で、長手方向に連なる相である。ここでいう「長手方向に連なる相」とは、長手方向に、Ag原子濃度が一定の値で一様な相を形成しているのではなく、Ag原子濃度が0.5~50.0%の間で揺らぎながら相を形成している。ここで、原子濃度はAgの存在割合を示すものであり、0.5%未満であると、Agが析出もしくは固溶のいずれの状態にあるかの区別がつかず第2相の断定ができない。また、50.0%を超える場合は、Ag相が十分に粗大となり、相間隔が疎となりやすいため、高い引張強度が得られなくなる。したがって、Ag相は、Ag原子濃度が0.5~50.0原子%の範囲内にあることが必要となる。
 また、Ag相が長手方向に連ならなければ、Ag相の間隔が疎になってしまい、引張強度および耐屈曲疲労特性を上昇させることはできない。したがって、Ag相は、Cu-Ag系合金線の略長手方向に連なって線状に分布してなる複数のAg相を形成している。
 また、Ag相は、長手方向に対して直交する横断面で測定したときの平均径が、好ましくは0.5~20nmの範囲にする。Ag相の平均径が、0.5nm未満だと、原子径とほぼ同じサイズとなり、現存の解析機器の解像度ではAgの固溶もしくは析出状態の見極めが難しく、一方で、0.5nm以上の範囲を特定することで十分に特性との関係を明確化できることから下限として設ける。20nmよりも大きな径は、存在比が低く、相間隔も広いために、密度化にはほぼ寄与しない。このことから、引張強度及び耐屈曲疲労特性の向上も無視できるレベルであるため、20nm以上の存在は対象にする必要はない。
 したがって、本発明のCu-Ag系合金線は、3DAP装置で測定しIVASにて解析を行ない、Ag原子濃度が0.5~50.0原子%の範囲内であり、平均径が0.5~20nmの範囲にある相をAg相としている。
 また、これらの金属組織は、Cu-Ag系合金線の結晶粒径を走査型透過電子顕微鏡(STEM)で観測する。
 STEMは、薄片化した試料に電子ビームを照射し、試料を透過してきた電子情報を捉え、原子・分子像を直接観察可能なレベルでの高倍率・高分解能観察する装置である。STEMは、そこで、極小に絞った電子ビームを試料に照射することで、試料内部の原子像分布・形態・組成像・結晶構造などを画像化することができる。また、STEMは、原子像やサブnmオーダーで物質の構造を捉えることができる。
 STEMで観察する試料の作製は収束イオンビーム(FIB: Focused Ion Beam)法で行った。SIINT-3050TBを用い、Gaイオンビームの加速電圧は30kVで加工した。FIBによるダメージ除去のため、FIB薄膜加工の後、2kVのArイオンミリングを5分間行った。STEM観察は、収差補正機能を有する日本電子ARMを用いた.電子線の加速電圧は200kVで観察した。STEM観察では、明視野(BF: Bright Field)と高角度散乱暗視野(HAADF:High-angle Annular Dark Field)を撮影した。元素分析は、STEMに付属するエネルギー分散型X線分析(EDX:Energy Dispersive X-ray spectroscopy)を用いた。
 母相の平均結晶粒径については、得られた線横断面の明視野像(BF)より切断法(JIS H 0501)を用いた。像上にてその方向は問わず既知の長さの線分によって完全に切られる結晶粒数を数え、その切断長さの平均値(nm)とした。
 図5は、STEMで観察したCu-Ag系合金線の長手方向に直交する横断面における金属組織を示す明視野像(BF)の写真である。ここで、図5中に示すスケールは、20nmである。図5に示すように、本発明のCu-Ag系合金線は、長手方向に対して直交する横断面で測定したときの母相の平均結晶粒径が、10~60nmの範囲にあることがわかる。
 したがって、従来のCu-Ag系銅合金線は、母相の平均結晶粒径が、サブミクロンオーダー(0.1μm以上)であり、少なくとも60nmより大きいのが一般的である。しかし、本発明のCu-Ag系銅合金線は、平均結晶粒径が10~60nmの範囲にある。母相は、主としてCuと、固溶しているAgとからなり、横断面から観察される平均結晶粒径が10nm未満では特性の影響は分からないが、本発明範囲内では確認されなかった。平均結晶粒径が範囲内にあるとき、その粒界が転位の移動を抑止、蓄積する役割を果たし、強度向上に寄与することが出来る(ホール・ペッチ則)。60nmを超えると最終的に引張強度が低下する。
 平均結晶粒径は、従来において、かなり粗大なものであったが、本発明のCu-Ag系銅合金線は、10~60nmの範囲内に制御することで、従来では発現しえなかった高引張強度と耐屈曲疲労特性を達成している。詳細には、結晶粒径が大きい場合には1つの結晶粒径で担う変形量が大きいため、結晶粒内でのせん断変形が進行し、せん断帯が強く発達する。析出量が多く脆弱な粒界への応力集中が顕著となり粒界での割れが生じ易い状況が形成され、結晶粒径が大きい場合に粒界割れが発生して耐屈曲疲労特性が劣化する。母相の強度が高くても結晶粒径が小さい場合には、1つの結晶粒での変形が小さくせん断帯の発達が抑えられ、また、粒界への応力も分散されるため、耐屈曲疲労特性を良好に維持できる。したがって、良好な耐屈曲疲労特性を得るためには平均結晶粒径を10~60nmにする必要がある。
 このように、母相の平均結晶粒径を一定の範囲にすることで、耐屈曲疲労特性に優れたCu-Ag系合金線が得られた。さらに、その一方で、高い引張強度を得るためには、高温でAgをCu母相中に十分固溶させるか、または、AgをCu母相中に微細に析出させたAg相を形成する必要がある。すなわち、Ag相の平均径(nm)と、母相の平均結晶粒径(nm)の双方を制御することで、引張強度と耐屈曲疲労特性の両立が可能となる。具体的には、本発明のCu-Ag系合金線は、横断面で測定したAg相の平均径(nm)と母相の平均結晶粒径(nm)との積の数値(以下、単に「積の数値」と称することがある。)が、Cu-Ag系合金線中のAg含有量(質量%)の60倍の数値よりも小さいことが好ましい。積の数値が、Cu-Ag系合金線中のAg含有量(質量%)の60倍の数値よりも小さい場合は、Ag相の平均径及び母相の平均結晶粒径がそれぞれ微細であるため、十分な強度特性と耐屈曲疲労特性を有し、特に、母相の平均結晶粒径が10~60nmの範囲にあることによって、耐屈曲疲労特性がより改善される。一方、積の数値が、Cu-Ag系合金線中のAg含有量(質量%)の60倍の数値以上である場合は、母相結晶粒径に対してAg相が非常に粗大であり、引張強度が低下する傾向がある。したがって、本発明のCu-Ag系合金線は、積の数値を、Cu-Ag系合金線中のAg含有量(質量%)の60倍の数値よりも小さくしている。これまで、母相の結晶粒径を微細に製造することが難しく、母相中にAg相を微細に析出させることも困難であった。本発明のCu-Ag系合金線は、横断面で測定したAg相の平均径(nm)と母相の平均結晶粒径(nm)の双方の数値を、バランスよく小さくなるように制御することができる。
 現在、Cu-Ag系合金線は、さらに、線径が細くなる傾向にあり、超極細線材が使用されることが多くなっている。したがって、高い引張強度と高い耐屈曲疲労特性が求められている。本発明のCu-Ag系合金線は、上述の金属組織にすることで、少なくとも900MPa以上、より好ましくは1000MPa以上の引張強度を得ることができる。したがって、Cu-Ag系合金線は、線径を細くしても、強度の高いCu-Ag系合金線を得ることができる。
 また、超極細線材が使用されることで、高い導電率が求められている。本発明のCu-Ag系合金線は、添加元素、任意添加元素の添加量を抑えることで、少なくとも導電率を65%IACS以上、より好ましくは75%IACS以上の導電率を得ることができる。
 また、本発明のCu-Ag系合金線では、0.01mm~0.08mmの線径をもち、横断面が略円形状を有する丸線である。線径が0.01mm~0.08mmである極細線(Cu-Ag系合金線)であっても、高い引張強度と高い導電率を具備することが望ましい。線径が0.01mm未満のCu-Ag系合金線は、ユーザー側のニーズが十分にあるとはいえない。一方、線径が0.08mmを超えるCu-Ag系合金線は、極細線としての役割を果たせない。
 また、Cu-Ag系合金線は、横断面が略円形状以外で、略矩形状のリボン形状を有するリボン線であってもよい。リボン状の寸法は線径の上下限と同様の理由で、幅が0.02~0.32mm、厚さが0.002~0.040mmであることが好ましい。製法としては、例えば伸線した上記丸線を圧延で所望形状にする方法がある。板幅は圧延ロール幅方向、板厚はロール間方向にあたり、板幅方向端部の圧延ロール非接触部は変形を伴いながら円弧を維持した形状部が残る。ここでリボン線の横断面においてもっと長い値を幅、短い値を厚さとした。
 本発明のCu-Ag系合金線の製造方法について説明する。ただし記載された製造方法は本発明を製造する1例であり本発明を製造方法はこの方法に限らない。
 本発明のCu-Ag系合金線の製造方法は、上記した化学組成を有するCu-Ag系合金素材を溶解・鋳造して、冷却して鋳塊を得る鋳造工程と、鋳塊から得られたCu-Ag系合金材に伸線処理を施す第1伸線工程と、伸線処理したCu-Ag系合金材に熱処理する第1熱処理工程と、さらに第2熱処理工程と、つぎに、最終的な伸線処理を行ってCu-Ag系合金線を得る第2伸線工程とを有している。なお、この第2伸線工程の伸線処理の合間に、歪取焼鈍処理を行うことができる。
(鋳造工程)
 鋳造工程は、鋳造時における冷却中に、Cu母相中にAg晶析出物が過剰にでることを抑止するために、その冷却速度を10℃/秒以上にする。鋳造時における晶析出物が大きくなると、その後の伸線処理における伸線によっても、適切な径のAg相にならずにAg相間の間隔が大きくなるために、最終のCu-Ag系合金線における引張強度が低下する原因となる。
(第1伸線工程)
 次に、第1伸線工程は、鋳造工程後、熱処理工程前に伸線処理を施す。加工率は熱処理時にAgの十分な析出を促すため50~90%程度が望ましい。加工率は、50%未満であると十分な析出が生成されず、後の第2伸線工程以降における加工率に対しての強度上昇分が小さくなる。これは、Cu-Ag系合金線が太い径において強度不足になる傾向があり、高引張強度を得ることが困難になる。一方、加工率は、90%以上の伸線処理では析出が促進されるものの、後の熱処理後の伸線工程における加工率を高くとることができなくなり高引張強度を得ることが困難になるため、90%の上限を設けることが望ましい。
 なお、加工率は、伸線処理前の断面積S1、伸線処理後の断面積S2としたときに、加工率=((S1-S2)/S1)×100(%)で定義される。
(第1熱処理工程)→(第2熱処理工程)
 次に、第1熱処理工程は、鋳塊を最終径まで伸線する間に少なくとも2回の熱処理工程を導入する。この熱処理はAgの析出が狙いであり、熱処理は第1熱処理工程の保持温度は350~450℃の範囲を取り、第2熱処理工程の保持温度は250~375℃、更に合計で10~50時間の範囲で行う。第2の熱処理工程は、第1熱処理工程に対して25℃以上の低温で実施することが必要である。第1熱処理工程より低い温度の第2熱処理工程を導入することで、Ag相の析出量を駆動力の大きな第1熱処理で多くの量を析出させ、固溶限が狭くなり、かつ温度が低いためその駆動力が低くなる第2熱処理工程で、最終的なAg相の析出量を制御している。
 熱処理温度が低い、もしくは処理時間が短いとこの時点で再結晶が進行せず、かつAg相の成長が起きないため、最終工程後の母相の平均結晶粒径を10nm~60nmの範囲内にすることができず、また、Ag相の平均径と母相の平均結晶粒径との積の数値が、Ag濃度×60の数値以上になる傾向がある。
 また、熱処理温度が高い、もしくは処理時間が長いと再結晶粒及びAg相が共に粗大になり、この場合も同様に所望の最終組織を得ることはできない。Ag相の平均径、母相の平均結晶粒径との積の数値の制御に対して、熱処理前の塑性加工量によって各組織の成長駆動力は大きく変わり最適な熱処理条件も変わることから、本発明範囲の組織を得るために細かい制御を実施する必要がある。
(第2伸線工程)
 次に、第2伸線工程は、本合金の強度特性を十分に発現させるため、第2伸線工程の加工率は95%から99.9999%程度が望ましい。加工率が低いと、母相の結晶粒径、Ag相共に発明範囲のサイズにおける数量を満たすことはなく、引張強度の十分な上昇には至らない。加工率の上限は、現実的な制限からくるもので特性面には関係しない。第2伸線工程において、1パス当たりの加工率は15~35%の範囲とする。これより大きい加工率では、線を破断させることがある。
 なお、前工程の伸線工程と熱処理工程の組み合わせ次第では、加工率が高まると引張強度が飽和し、場合によっては低下することが確認された。この現象の詳細は不明であるが、転位分布や結晶方位分布など、引張強度に寄与する組織の変化が起きていることが想定される。引張強度が飽和した段階で更に伸線処理を続けると、耐屈曲疲労特性に悪影響を及ぼすことが多いため、その段階の手前で熱処理を入れ、現象を抑止する必要がある。引張強度が大きく低下する高温長時間の加熱を加えると伸線後の最終線径における引張強度も下がるため、200~400℃、10分~2時間相当の熱処理が望ましい。
 リボン形状の線は、上述の円形状で製造された線を指定の厚さまで圧延加工によって製造した。熱処理前の伸線、熱処理条件と最終の伸線条件の組み合わせ次第では加工硬化が飽和してしまい、更には強度低下を引き起こすことがある。加工硬化が飽和すると、捻じれを伴う耐屈曲疲労特性等にも悪影響が出ることがあるため、大きな軟化を伴わない歪取を目的とした中間熱処理を加えることが効果的である。
 また、特性への寄与はないが、伸線処理を容易にするためにプロセス過程で皮むき工程を入れることができる。また、製造工程の最後に熱処理する仕上熱処理工程ことによって、最終のCu-Ag系合金線を得ることができる(熱処理上がり品)。この最終熱処理の条件は、特に制限されるものではないが、温度が450~600℃と時間が10秒~30分行うことが好ましい。
 本発明を以下の実施例に基づき詳細に説明する。なお本発明は、以下に示す実施例に限定されるものではない。
 大気中で、Cu-1.5質量%Ag(実施例1-1~1-12、比較例1-1~1-11)、Cu-2.0質量%Ag(実施例2-1~2-12、比較例2-1~2-11)、Cu-4.0質量%Ag(実施例3-1~3-12、比較例3-1~3-11)、Cu-6.0質量%Ag(実施例4-1~4-12、比較例4-1~4-11)、Cu-0.5質量%Ag、-0.8質量%Ag、-6.5質量%Ag、-8.0質量%Ag(比較例5-1、5-2、5-3、5-4)、Cu-2.0質量%Ag-(Sn、Mg、Zn、In、Ni、Co、Zr、Crの1種の成分)(実施例6-1~6-8、比較例6-1~6-3)に示す化学組成を有するCu-Ag系合金を溶解し、これを鋳造して、冷却速度:8~50℃/秒で冷却して4.6~11.4mmφの鋳塊を作製した(鋳造工程)。
 次に、この鋳塊を加工率が35~95%となるように伸線して、線径を1.0~9.5mmφとした(第1伸線工程)。
 次に、析出と再結晶を兼ねた時効熱処理を、350~550℃にて3~50時間保持で行った(第1熱処理工程)。
 次に、より低温側の保持温度にて同じく、250~375℃にて1~60時間保持で行った(第2熱処理工程)。
 更に、冷却後に99.7~99.998%、0.02~0.08mmφの線径まで冷間伸線を行った(第2伸線工程)。また、その第2伸線工程における冷間伸線の間に歪取焼鈍を実施した。
(性能評価)
 以上により製造したCu-Ag系合金線を、引張強度、耐屈曲疲労特性、および必要によって導電率を測定し、さらに、3DAP装置と解析ソフトにて金属組織を解析し、STEMと付随EDXにて金属組織を観察及び分析した。
(引張強度)
 引張強度の測定は、試験片形状は元の線形状としたためJIS Z2201に沿わないが、試験条件はJIS Z2241に準拠し、3本の試験片(n=3)で測定し、測定した引張強度を平均した値(MPa)を測定値とした。
(耐屈曲疲労特性)
 耐屈曲疲労特性は、JIS H 0500 番号4100に準拠し、繰り返し曲げ試験を行った。疲労特性は線径依存性があることを考慮して、すべて外径0.03mmφで製作してもので試験をおこなった。屈曲時の曲げ支点における治具の半径Rを6mmとし、一端をつかみに固定し、他端を撓まないように30gの錘を吊り下げ、断線までの回数を測定し、その平均値(平均屈曲寿命、n=5)が、以下の式1および式2の関係を満たすか否かで評価した。すなわち、平均屈曲寿命の数値が、以下の式1を満たす場合には、耐屈曲疲労特性が優れているとして「◎」、式1は満たさないものの、式2を満たす場合には、耐屈曲疲労特性が良好であるとして「〇」、そして、式1および式2の双方ともに満たさない場合には、耐屈曲疲労特性が劣るとして「×」とした。
  式1:平均屈曲寿命≧5900×(Ag濃度)+40000
  式2:平均屈曲寿命≧5900×(Ag濃度)+20000
(導電率)
 導電率は、JIS H0505-1975に基づく四端子法を用いて、20℃(±1℃)に管理された恒温槽中で、各試験片の2本について導電率を測定し、その平均した値(%IACS)を測定値とした。このとき端子間距離は100mmとした。
(金属組織)
 Cu-Ag系合金線の金属組織の観察及び解析は、第二相のAg相がサブナノからナノオーダーのサイズであり、3DAP装置および解析ソフトにて行った。また、母相の結晶粒径がサブナノからナノオーダーのサイズであり、走査型透過電子顕微鏡(STEM)にて行った。
 3DAP装置では、材料を蒸発させ、蒸発した原子を2次元検出器で検出しデータを再構成することにより、ナノメートルオーダーの3次元構造を可視化できる。3次元アトムプローブ測定用の試料作製はFIBで行った。
 FIBは、SIINT-3050TB及びHeliosG4(FEI社製)を用いた。加速電圧30kVのGaイオンビームを用いて約80nmの直径を有する円形の底面を有し、約140nmの長さを有する円錐状の試料を作製した。解析の方向としては、Cu-Ag系合金線の長手方向を試料の長さ方向としたが、Cu-Ag系合金線の長手方向に直交する横断面の直径方向を長さ方向としても良い。最終仕上げは5kVのイオンビームを用いて、ダメージ層を可能な限り低減した。
 3DAP装置は、LEAP4000XSi(AMETEK社製)用いた。照射したパルスレーザーは、波長が355nmのである紫外光を用いて、蒸発させた。また、試料に印加した電圧は、1~5kVとした。Ag相の原子濃度、最短間隔の解析には、IVAS 3.8.8(CAMECA社製)又はIVAS LT等の解析ソフトウェアを用いた。
(Ag相の平均径)
 3DAP法は、Cu-Ag系合金線の長手方向に直交する横断面で、Ag濃度に対して同じ濃度のAg閾値を設け、この閾値を超える濃度分布が確認できた箇所を暫定的にAg相とした。
 暫定的なAg相に対応して、長手方向に沿ってプロファイル解析を行い、60nm長においてAg原子濃度0.5~50.0%を連続的に有するものをAg相として選定した。
 Ag相の平均径は、選定されたAg相に対して長手方向に直交する横断面からAg相を真円と仮定し、面積より平均径を算出した。
 STEMの観察は、収差補正機能を有する原子分解能分析電子顕微鏡(日本電子社製ARM:JEM-ARM200F)を用いた。電子線の加速電圧は200kVで観察した。STEM観察を明視野(BF:Bright Field)、高角度散乱暗視野(HAADF:High-angle Annular Dark Field)で行い、Ag層の可能性のあるコントラストが確認された箇所において、元素分析をTEMに付属するエネルギー分散型X線分析(EDX: Energy Dispersive X-ray spectroscopy)にて行った。
(母相の平均結晶粒径、Ag相の平均径×母相の平均結晶粒径)
 得られた明視野像(BF)より切断法を用いて平均結晶粒径の算出を行った。切断法は、JIS H 0501の規定に基づいている。なお、母相の結晶粒は大変微細でありSTEMのみでの判断が難しい場合は、3DAP装置の解析結果も併用し平均値を求めた。
 次に、Ag相の平均径と母相の平均結晶粒径との積によって数値を計算した。
(実施例1-1~1-12、比較例1-1~1-11)
 実施例1-1~1-12、比較例1-1~1-11は、Cu-1.5質量%Agの化学組成を有するCu-Ag系合金線を用いて、化学組成を有するCu-Ag系合金線を用いて第1及び第2の伸線工程における加工率、第1及び第2熱処理工程における製造条件を変えて試料を作製している。
 表1に、実施例1-1~1-12、比較例1-1~1-11の製造条件を示している。なお、実施例1-10は、円形状の最終径0.03mmを加工し、厚さ0.008mm、幅0.08mmのリボン状に成形した。なお、表中に示す下線は、本発明の範囲外であることを示している。
Figure JPOXMLDOC01-appb-T000001
 表2に、実施例1-1~1-12、比較例1-1~1-11の金属組織、特性の評価結果を示している。
 評価項目は、金属組織として、母相の平均結晶粒径、Ag相の平均径、積の数値、機械特性として引張強度、耐屈曲疲労特性である。また、Ag含有量(質量%)の60倍の数値は、「90」である。
Figure JPOXMLDOC01-appb-T000002
 表2に示すように、実施例1-1~1-12のいずれも、母相の平均結晶粒径、Ag相の平均径、積の数値が本発明の範囲内にある。引張強度は、いずれも1100MPa以上の高強度を有している。また、実施例1-5~1-6、1-11は、積の数値がAg含有量(質量%)の60倍の数値90を超えていることから耐屈曲疲労特性が「〇」になっている。その他の実施例1-1~1-4、1-7~1-10、1-12は、積の数値がAg含有量(質量%)の60倍の数値90以内であることから、耐屈曲疲労特性が「◎」である。
 なお、比較例1-1~1-11は、引張強度はいずれも980MPa以上で実施例1-1~1-12より低くなっている。また、母相の平均結晶粒径が本発明の範囲外であり、かつ、積の数値が本発明の範囲外で90より大きい値であることから、耐屈曲疲労特性も「×」になっている。
(実施例2-1~2-12、比較例2-1~2-11)
 実施例2-1~2-12、比較例2-1~2-11は、Cu-2.0質量%Agの化学組成を有するCu-Ag系合金線を用いて、試料を作製している。
 表3に、実施例2-1~2-12、比較例2-1~2-11の製造条件を示している。
Figure JPOXMLDOC01-appb-T000003
 表4に、実施例2-1~2-12、比較例2-1~2-11の金属組織、特性の評価結果を示している。なお、Ag含有量(質量%)の60倍の数値は120である。
Figure JPOXMLDOC01-appb-T000004
 表4に示すように、実施例2-1~2-12のいずれも、母相の平均結晶粒径、Ag相の平均径、積の数値が本発明の範囲内にある。引張強度は、いずれも1100MPa以上の高強度を有している。また、実施例2-5~2-8、2-10~2-12は、積の数値がAg含有量(質量%)の60倍の数値120を超えていることから耐屈曲疲労特性が「〇」になっている。その他の実施例2-1~2-4、2-9は、積の数値がAg含有量(質量%)の60倍の数値120以内であることから、耐屈曲疲労特性が「◎」である。
 なお、比較例2-1~2-11は、母相の平均結晶粒径、積の数値が本発明の範囲外であり、引張強度はいずれも1000MPa以上で実施例2-1~2-12より低くなっている。また、積の数値が120より大きい値であり、耐屈曲疲労特性も「×」になっている。
(実施例3-1~3-12、比較例3-1~3-11)
 実施例3-1~3-12、比較例3-1~3-11は、Cu-4.0質量%Agの化学組成を有するCu-Ag系合金線を用いて、試料を作製している。
 表5に、実施例3-1~3-12、比較例3-1~3-11の製造条件を示している。
Figure JPOXMLDOC01-appb-T000005
 表6に、実施例3-1~3-12、比較例3-1~3-11の金属組織、特性の評価結果を示している。
Figure JPOXMLDOC01-appb-T000006
 実施例3-1~3-12は、いずれも、母相の平均結晶粒径、Ag相の平均径、積の数値が本発明の範囲内にある。引張強度は、いずれも1300MPa以上の高強度を有している。また、実施例3-2、3-4~3-5、3-10~3-12は、積の数値がAg含有量(質量%)の60倍の数値240を超えていることから耐屈曲疲労特性が「〇」になっている。その他の実施例3-1、3-3、3-6~3-9は、積の数値がAg含有量(質量%)の60倍の数値240以内であることから、耐屈曲疲労特性が「◎」である。
 なお、比較例3-1~3-11は、母相の平均結晶粒径、積の数値が本発明の範囲外であり、引張強度はいずれも1000MPa以上で実施例3-1、3-2より低くなっている。また、積の数値が240より大きい値であり、耐屈曲疲労特性も「×」になっている。
(実施例4-1~4-12、比較例4-1~4-11)
 実施例4-1~4-12、比較例4-1~4-11は、Cu-6.0質量%Agの化学組成を有するCu-Ag系合金線を用いて、試料を作製している。
 表7に、実施例4-1~4-12、比較例4-1~4-11の製造条件を示している。
Figure JPOXMLDOC01-appb-T000007
 表8に、実施例4-1~4-12、比較例4-1~4-11の金属組織、特性の評価結果を示している。
Figure JPOXMLDOC01-appb-T000008
 実施例4-1~4-12は、いずれも、母相の平均結晶粒径、Ag相の平均径、積の数値が本発明の範囲内にある。引張強度は、いずれも1300MPa以上の高強度を有している。また、実施例4-2、4-5、4-12は、積の数値がAg含有量(質量%)の60倍の数値360を超えていることから耐屈曲疲労特性が「〇」になっている。その他の実施例4-1、4-3、4-6~4-11は、積の数値がAg含有量(質量%)の60倍の数値360以内であることから、耐屈曲疲労特性が「◎」である。
 なお、比較例4-1~4-11は、母相の平均結晶粒径、積の数値が本発明の範囲外であり、引張強度はいずれも1000MPa以上で実施例4-1~4-12より低くなっている。また、積の数値が360より大きい値であり、耐屈曲疲労特性も「×」になっている。
(比較例5-1~5-4)
 比較例5-1~5-11は、1.0~6.0質量%の本発明の範囲外にあるAgを含有するCu-Ag系合金線であって、Cu-0.5質量%Ag、Cu-0.8質量%Ag、Cu-6.5質量%Ag、Cu-8.0質量%Agの化学組成を有するCu-Ag系合金線を用いて、試料を作製している。
 表9に、比較例5-1~5-4の製造条件を示している。
Figure JPOXMLDOC01-appb-T000009
 表10に、比較例5-1~5-4の金属組織、特性の評価結果を示している。
Figure JPOXMLDOC01-appb-T000010
 しかし、表10に示すように、比較例5-1、5-2は、Agの添加量の下限値1.0質量%よりも小さいことから、3DAP装置による分析で、Ag相の析出を観察することができない。そのために、引張強度が900MPaより小さく、かつ、耐屈曲疲労特性が式1を満たさず、「×」である。
 比較例5-3、Agの添加量の上限値6.0質量%よりも大きいことから、引張強度が900MPaより大きかった。また、積の数値がAg含有量(質量%)の60倍の数値390以内であることから、耐屈曲疲労特性が「◎」である。比較例5-4、Agの添加量の上限値6.0質量%よりも大きいことから、引張強度が900MPaより大きかった。また、積の数値がAg含有量(質量%)の60倍の数値480以内であることから、耐屈曲疲労特性が「◎」である。
 しかしながら、比較例5-3と実施例4-3、比較例5-4と実施例4-4とを比較しても、引張強度、耐屈曲疲労特性における効果において差がなく、Ag添加量を増加させてもコストが高くなるだけで、増加させる利点がない。
(実施例6-1~6-8、比較例6-1~6-3)
 実施例6-1~6-8は、Cu-2.0質量%AgとSn、Mg、Zn、In、Ni、Co、ZrおよびCrの中から選択される1つを含む化学組成を有するCu-Ag系合金線、また、比較例6-1~6-3は、Cu-2.0質量%Agと0.5質量%のSn、Mg、Zrをそれぞれに含む化学組成を有するCu-Ag系合金線を用いて試料を作製している。
 表11に、実施例6-1~6-8、比較例6-1~6-3の製造条件を示している。
Figure JPOXMLDOC01-appb-T000011
 表12に、実施例6-1~6-8、比較例6-1~6-3の金属組織、特性の評価結果を示している。
Figure JPOXMLDOC01-appb-T000012
 実施例6-1~6-8は、いずれも、母相の平均結晶粒径、Ag相の平均径、積の数値が本発明の範囲内にある。引張強度は、いずれも1100MPa以上の高強度を有している。また、実施例6-1~6-8は、積の数値がAg含有量(質量%)の60倍の数値120以内であることから、耐屈曲疲労特性が「◎」である。
 なお、比較例6-1は0.5質量%Snを含有することにより、また、比較例6-2は0.5質量%Mgを含有することにより導電率が低く実用上に問題がある。また、比較例6-3は、0.5質量%Zrを含有することにより、製造時に鋳塊割れを生じ、丸線等の製造が困難で、製造上に問題がある。

 

Claims (5)

  1.  1.0~6.0質量%のAgを含有し、残部がCuおよび不可避不純物からなる化学組成を有するCu-Ag系合金線であって、
     前記Cu-Ag系合金線は、母相中に、前記Cu-Ag系合金線の略長手方向に連なった線状に分布してなる複数のAg相を有し、
     前記Cu-Ag系合金線の長手方向に対して直交する横断面で測定したときの前記母相の平均結晶粒径が、10~60nmの範囲にある、Cu-Ag系合金線。
  2.  前記Cu-Ag系合金線は、前記横断面で測定した前記Ag相の平均径(nm)と前記母相の平均結晶粒径(nm)との積の数値が、前記Cu-Ag系合金線中のAg含有量(質量%)の60倍の数値よりも小さい、請求項1に記載のCu-Ag系合金線。
  3.  前記Cu-Ag系合金線は、前記化学組成がSn、Mg、Zn、In、Ni、Co、ZrおよびCrからなる群から選ばれる少なくとも1種の成分を、それぞれ0.05~0.30質量%の範囲で、さらに含有する、請求項1又は2に記載のCu-Ag系合金線。
  4.  前記Cu-Ag系合金線は、0.01mm~0.08mmの線径を有する丸線である、請求項1~3のいずれか1つに記載のCu-Ag系合金線。
  5.  前記Cu-Ag系合金線は、0.02~0.32mmの幅と0.002~0.040mmの厚さとを有する、横断面が略矩形状のリボン線である、請求項1~3のいずれか1つに記載のCu-Ag系合金線。

     
PCT/JP2022/041680 2021-11-12 2022-11-09 Cu-Ag系合金線 WO2023085305A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280008450.8A CN116670315A (zh) 2021-11-12 2022-11-09 Cu-Ag系合金线
EP22892803.2A EP4431624A1 (en) 2021-11-12 2022-11-09 Cu-ag alloy wire
JP2023559663A JPWO2023085305A1 (ja) 2021-11-12 2022-11-09
KR1020237022255A KR20230138448A (ko) 2021-11-12 2022-11-09 Cu-Ag계 합금선

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-184764 2021-11-12
JP2021184764 2021-11-12

Publications (1)

Publication Number Publication Date
WO2023085305A1 true WO2023085305A1 (ja) 2023-05-19

Family

ID=86335742

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041680 WO2023085305A1 (ja) 2021-11-12 2022-11-09 Cu-Ag系合金線

Country Status (5)

Country Link
EP (1) EP4431624A1 (ja)
JP (1) JPWO2023085305A1 (ja)
KR (1) KR20230138448A (ja)
CN (1) CN116670315A (ja)
WO (1) WO2023085305A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3325639B2 (ja) 1993-03-31 2002-09-17 株式会社フジクラ 高強度高導電率銅合金の製造方法
JP2005336510A (ja) * 2004-05-24 2005-12-08 Hitachi Cable Ltd 極細銅合金線及びその製造方法
WO2011136284A1 (ja) * 2010-04-28 2011-11-03 住友電気工業株式会社 Cu-Ag合金線及びCu-Ag合金線の製造方法
JP5051647B2 (ja) 2005-10-17 2012-10-17 独立行政法人物質・材料研究機構 高強度・高導電率Cu−Ag合金細線とその製造方法
WO2015152166A1 (ja) * 2014-03-31 2015-10-08 古河電気工業株式会社 銅合金線材及びその製造方法
WO2018100916A1 (ja) * 2016-12-01 2018-06-07 古河電気工業株式会社 銅合金線材

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5051647U (ja) 1973-08-24 1975-05-19
JPS619713Y2 (ja) 1980-06-26 1986-03-28

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3325639B2 (ja) 1993-03-31 2002-09-17 株式会社フジクラ 高強度高導電率銅合金の製造方法
JP2005336510A (ja) * 2004-05-24 2005-12-08 Hitachi Cable Ltd 極細銅合金線及びその製造方法
JP5051647B2 (ja) 2005-10-17 2012-10-17 独立行政法人物質・材料研究機構 高強度・高導電率Cu−Ag合金細線とその製造方法
WO2011136284A1 (ja) * 2010-04-28 2011-11-03 住友電気工業株式会社 Cu-Ag合金線及びCu-Ag合金線の製造方法
JP5713230B2 (ja) 2010-04-28 2015-05-07 住友電気工業株式会社 Cu−Ag合金線及びCu−Ag合金線の製造方法
WO2015152166A1 (ja) * 2014-03-31 2015-10-08 古河電気工業株式会社 銅合金線材及びその製造方法
WO2018100916A1 (ja) * 2016-12-01 2018-06-07 古河電気工業株式会社 銅合金線材

Also Published As

Publication number Publication date
KR20230138448A (ko) 2023-10-05
EP4431624A1 (en) 2024-09-18
CN116670315A (zh) 2023-08-29
JPWO2023085305A1 (ja) 2023-05-19

Similar Documents

Publication Publication Date Title
JP5170916B2 (ja) 銅合金板材及びその製造方法
US10844468B2 (en) Copper alloy sheet material and current-carrying component
JP5261500B2 (ja) 導電性と曲げ性を改善したCu−Ni−Si−Mg系合金
KR102590058B1 (ko) 구리 합금 판재 및 그 제조 방법
JP2009242926A (ja) 電子材料用Cu−Ni−Si系合金
KR20120130342A (ko) 전자 재료용 Cu-Ni-Si 계 합금
KR20030057561A (ko) 굽힘가공성이 우수한 고강도 동합금과 그 제조방법 및그것을 사용한 단자ㆍ커넥터
CN107208191A (zh) 铜合金材料及其制造方法
US20110038753A1 (en) Copper alloy sheet material
JP2008075151A (ja) 高強度、高導電率および曲げ加工性に優れた銅合金
JP5468798B2 (ja) 銅合金板材
JP2008075152A (ja) 高強度、高導電率および曲げ加工性に優れた銅合金
EP2944703A1 (en) Copper alloy for electronic or electrical device, copper alloy thin sheet for electronic or electrical device, process for manufacturing copper alloy for electronic or electrical device, conductive component for electronic or electrical device, and terminal
KR20150109378A (ko) 전자·전기 기기용 구리 합금, 전자·전기 기기용 구리 합금 박판, 전자·전기 기기용 도전 부품 및 단자
WO2023085305A1 (ja) Cu-Ag系合金線
TWI639163B (zh) Cu-Co-Ni-Si alloy for electronic parts, and electronic parts
WO2023085306A1 (ja) Cu-Ag系合金線
JP2008088558A (ja) 延性に優れた高力高導電性銅合金
KR20150129719A (ko) 전자·전기 기기용 구리 합금, 전자·전기 기기용 구리 합금 박판, 전자·전기 기기용 도전 부품 및 단자
JP4349631B2 (ja) 電機、電子機器部品用コルソン合金細線の製造方法
JP6762453B1 (ja) 銅合金板材およびその製造方法
JP7355569B2 (ja) 銅合金、伸銅品及び電子機器部品
WO2023140314A1 (ja) 銅合金板材およびその製造方法
CN115427595A (zh) 铜合金线材
CN115398014A (zh) 铜合金线材

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023559663

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280008450.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22892803

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022892803

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022892803

Country of ref document: EP

Effective date: 20240612