WO2023085193A1 - 回転電気機械、圧縮機、および冷凍装置 - Google Patents

回転電気機械、圧縮機、および冷凍装置 Download PDF

Info

Publication number
WO2023085193A1
WO2023085193A1 PCT/JP2022/041044 JP2022041044W WO2023085193A1 WO 2023085193 A1 WO2023085193 A1 WO 2023085193A1 JP 2022041044 W JP2022041044 W JP 2022041044W WO 2023085193 A1 WO2023085193 A1 WO 2023085193A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator core
yoke
crimped
radial
circumferential direction
Prior art date
Application number
PCT/JP2022/041044
Other languages
English (en)
French (fr)
Inventor
峻介 清水
正樹 平野
祥司郎 中
よし美 木津
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to EP22892692.9A priority Critical patent/EP4407837A1/en
Priority to CN202280074680.4A priority patent/CN118216062A/zh
Publication of WO2023085193A1 publication Critical patent/WO2023085193A1/ja
Priority to US18/652,572 priority patent/US20240305148A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/18Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures
    • H02K1/185Means for mounting or fastening magnetic stationary parts on to, or to, the stator structures to outer stators

Definitions

  • the present disclosure relates to rotating electric machines, compressors, and refrigeration equipment.
  • the motor described in Patent Document 1 has a closed container and a stator fixed inside the closed container.
  • the stator has a plurality of magnetic steel sheets laminated in the axial direction.
  • the electromagnetic steel sheets are provided with crimps, and the electromagnetic steel sheets adjacent to each other in the stacking direction are fastened by the crimps.
  • An object of the present disclosure is to suppress an increase in iron loss of a rotating electrical machine.
  • the first mode has a casing (11), a plurality of laminated electromagnetic steel plates, a substantially cylindrical yoke (34), arranged side by side in the circumferential direction, and radially inward from the yoke (34).
  • the compressive stress in the circumferential direction is applied to both sides of the crimped portion (50) in the circumferential direction. is known to occur.
  • the compressive stress of the crimped part (50) is reduced by the circumferential tensile stress of the radial fixed part (60). be done.
  • the circumferential compressive stress applied to the stator core is canceled, and an increase in iron loss can be suppressed.
  • a second aspect of the present disclosure provides, in the first aspect, The radial fixing portion (60) is arranged at a position that reduces the compressive stress acting in the circumferential direction of the yoke (34) due to the crimped portion (50).
  • the compressive stress acting in the circumferential direction of the yoke (34) caused by the crimped portion (50) is acted upon by the tensile stress acting in the same direction as the compressive stress caused by the radial fixing portion (60).
  • the compressive stress generated in the circumferential direction of the yoke (34) can be reduced.
  • a third aspect of the present disclosure is, in the first or second aspect,
  • the crimped portion (50) has a second angle between two lines connecting the axial center of the stator core (32) and the two circumferentially adjacent radial fixed portions (60), which is 1 /4 to 3/4.
  • the crimped portion (50) by arranging the crimped portion (50) between 1/4 and 3/4 of the second angle sandwiched between the adjacent radial fixed portions (60), the crimped portion (50)
  • the compressive stress caused by the radial fixing portion (60) can be reduced by the tensile stress caused by the radial fixing portion (60).
  • a fourth aspect of the present disclosure is, in any one of the first to third aspects,
  • the crimped portion (50) has a length from the outer peripheral edge of the yoke (34) to the inner peripheral edge of the yoke (34) in the radial direction of the stator core (32). It is arranged so that it is 1/3 or less of the length to
  • the tensile stress due to the radial fixing portion (60) is generated near the outer peripheral edge of the yoke (34). Therefore, by providing the crimped portion (50) at a position close to the outer periphery of the yoke (34), the compressive stress due to the crimped portion (50) is generated near the outer periphery of the yoke (34) and is generated in the yoke (34). Compressive stress can be reduced by tensile stress.
  • the radial fixing portion (60) is arranged entirely between the adjacent crimped portions (50) in the circumferential direction of the stator core (32).
  • the circumferential compressive stress generated over the entire circumference of the yoke (34) can be reduced.
  • the crimped portion (50) has an inclined surface (52) inclined from both short sides toward the center of the long side in a cross-sectional view orthogonal to the circumferential direction of the stator core (32).
  • the compressive stress acting in the circumferential direction of the stator core (32) increases. Therefore, by reducing the size of the crimped portion (50) when the stator core (32) is viewed from the axial direction, the compressive stress in the circumferential direction of the stator core (32) can be reduced and deterioration of the magnetic properties of the stator core (32) can be suppressed, an increase in iron loss in the stator core (32) can be suppressed, and a drop in efficiency of the electric motor (30) can be suppressed.
  • a seventh aspect in any one of the first to sixth, The crimped portion (50) is arranged radially outward of the teeth (35).
  • the radially outer side where the teeth (35) are arranged has a relatively low magnetic flux density during operation of the rotating electrical machine.
  • An eighth aspect is a compressor provided with the rotary electric machine according to any one of the first to seventh aspects.
  • a ninth aspect is a refrigeration system comprising the compressor of the eighth aspect.
  • FIG. 1 is a schematic configuration diagram of a refrigeration system according to an embodiment.
  • FIG. 2 is a longitudinal sectional view corresponding to a section parallel to the axial direction of the compressor according to the embodiment.
  • FIG. 3 is a cross-sectional view corresponding to a cross-section perpendicular to the axial direction of the electric motor.
  • FIG. 4 is an enlarged view of a part of the IV-IV arrow cross section of FIG.
  • FIG. 5 is a cross-sectional view corresponding to a cross-section perpendicular to the axial direction in the electric motor of FIG. 3, with a radial fixing portion added.
  • FIG. 6 is a diagram showing the distribution of stress generated around the crimped portion when only the crimped portion is provided.
  • FIG. 1 is a schematic configuration diagram of a refrigeration system according to an embodiment.
  • FIG. 2 is a longitudinal sectional view corresponding to a section parallel to the axial direction of the compressor according to the embodiment.
  • FIG. 3 is a cross-
  • FIG. 7 is a table showing respective stresses when only the crimped portion, only the radial fixing portion, and both the crimping portion and the radial fixing portion are provided.
  • FIG. 8 is a table corresponding to FIG. 7 when the crimped portion and the radial fixing portion are arranged in the same radial direction.
  • FIG. 9 is a schematic diagram showing the magnetic flux density generated from the teeth toward the yoke.
  • FIG. 10 is a diagram corresponding to FIG. 4 of a crimped portion according to a modification.
  • FIG. 11 is a diagram corresponding to FIG. 5, which corresponds to a cross section perpendicular to the axial direction of the electric motor according to another embodiment.
  • a compressor (10) of the present disclosure is provided in a refrigeration system (1).
  • a refrigerating device (1) shown in Fig. 1 includes a compressor (10) of the present disclosure.
  • a refrigerating device (1) has a refrigerant circuit (R) filled with a refrigerant.
  • a refrigerant circuit (R) has a compressor (10), a radiator (2), a decompression mechanism (3), and an evaporator (4).
  • the decompression mechanism (3) is an expansion valve.
  • the refrigerant circuit (R) performs a vapor compression refrigeration cycle.
  • the refrigerant compressed by the compressor (10) releases heat to the air in the radiator (2).
  • the refrigerant that has released heat is decompressed by the decompression mechanism (3) and evaporated in the evaporator (4).
  • the evaporated refrigerant is sucked into the compressor (10).
  • the refrigerator (1) is an air conditioner.
  • the air conditioner may be a cooling-only machine, a heating-only machine, or an air conditioner that switches between cooling and heating.
  • the air conditioner has a switching mechanism (for example, a four-way switching valve) that switches the circulation direction of the refrigerant.
  • the refrigerating device (1) may be a water heater, a chiller unit, a cooling device for cooling the air inside the refrigerator, or the like. Chillers cool the air inside refrigerators, freezers, containers, and the like.
  • the expansion mechanism consists of an electronic expansion valve, a temperature sensitive expansion valve, an expander, or a capillary tube.
  • the compressor (10) has a casing (11), an electric motor (30), a drive shaft (20), and a compression mechanism (22).
  • the compressor (10) is a rotary compressor. Strictly speaking, the compressor (10) is an oscillating piston type compressor.
  • the compressor (10) may be a scroll, screw or turbo compressor.
  • the casing (11) accommodates the electric motor (30), drive shaft (20), and compression mechanism (22).
  • a casing (11) is a completely closed container.
  • the inside of the casing (11) is filled with high-pressure refrigerant discharged from the compression mechanism (22).
  • the casing (11) is made of a metal material.
  • the casing (11) has a body (12), a bottom (13) and a top (14).
  • the body (12) is a cylindrical member made of metal. Openings are formed at both axial ends of the body (12). In this example, the axial direction of the body (12) corresponds to the vertical direction.
  • the bottom (13) closes the opening on the underside of the body (12).
  • the top (14) closes the upper opening of the body (12).
  • the electric motor (30) shown in FIGS. 2 and 3 is an example of a rotary electric machine.
  • the electric motor (30) is arranged above the compression mechanism (22).
  • the electric motor (30) has its operating frequency controlled by an inverter device.
  • the compressor (10) is of an inverter type with a variable operating frequency.
  • the electric motor (30) has a stator (31) and a rotor (40).
  • the stator (31) is supported by the body (12) of the casing (11).
  • the stator (31) has a stator core (32) and a coil (33) wound around the stator core (32).
  • the stator core (32) is configured by laminating electromagnetic steel sheets (M) in the axial direction.
  • the stator core (32) includes a cylindrical yoke (34) and a plurality of stator cores (34) arranged side by side in the circumferential direction of the yoke (34) and extending radially inward from the yoke (34). It has teeth (35) (nine in this example).
  • the yoke (34) is provided with a crimped portion (50) for fixing electromagnetic steel plates adjacent to each other in the stacking direction. Details of the stator core (32) and its fixing structure will be described later.
  • a plurality of (nine in this example) core cuts (36) are formed on the outer peripheral surface of the yoke (34).
  • a core cut (36) is a groove extending in the axial direction of the stator core (32).
  • Each core cut (36) is formed on the opposite side of the teeth (35) across the yoke (34).
  • the rotor (40) is arranged inside the stator core (32).
  • a drive shaft (20) is fixed to the axial center of the rotor (40).
  • a plurality of permanent magnets are embedded in the rotor (40) (not shown).
  • An annular gap (G) is formed between the teeth (35) of the stator (31) and the rotor (40) in a cross-sectional view.
  • the drive shaft (20) extends vertically along the axis of the casing (11).
  • the drive shaft (20) is rotationally driven by an electric motor (30).
  • the drive shaft (20) is rotatably supported by a bearing (21).
  • the compression mechanism (22) has a cylinder (23) and a piston (24) provided inside the cylinder (23).
  • a cylinder chamber (25) is formed between the inner peripheral surface of the cylinder (23) and the outer peripheral surface of the piston (24). In the cylinder chamber (25), fluid is compressed by a piston (24) driven by the drive shaft (20).
  • the compressor (10) has a suction pipe (26) and a discharge pipe (27).
  • the suction pipe (26) radially penetrates the body (12) and communicates with the cylinder chamber (25).
  • Low-pressure refrigerant in the refrigerant circuit (R) is sucked into the cylinder chamber (25) through the suction pipe (26).
  • the discharge pipe (27) axially penetrates the top (14) and communicates with the internal space of the casing (11).
  • the refrigerant compressed by the compression mechanism (22) flows through the core cut (36) and the gap (G) of the electric motor (30), and then is sent to the refrigerant circuit (R) through the discharge pipe (27).
  • FIG. 1 Details of Stator Core (3-1) Configuration of Core Portion of Stator Core Details of the stator core (32) will be described with reference to FIGS. 2 to 4.
  • FIG. 1 "axial direction”, “circumferential direction” and “radial direction” mean the axial direction, circumferential direction and radial direction of the stator (31), respectively, unless otherwise specified.
  • the axial direction of the stator (31) corresponds to the axial direction of the drive shaft (20) as shown in FIG.
  • stator core (32) a plurality of electromagnetic steel sheets (M) are laminated from one end to the other end in the axial direction.
  • stator core (32) of this example all the electromagnetic steel plates (M) have the same structure. Strictly speaking, all the magnetic steel sheets (M) have the same shape, thickness and material. All the electromagnetic steel sheets (M) are arranged so as to overlap each other as a whole.
  • each crimped portion (50) is rectangular when viewed from the axial direction of the stator core (32). Specifically, when the stator core (32) is viewed from the axial direction, the crimped portion (50) has a long side a extending in the radial direction of the stator core (32) and a short side b extending in the circumferential direction of the stator core (32). formed along the The crimped portion (50) is recessed on the surface of the yoke (34). Specifically, the crimped portion (50) has a bottom surface (51) (see FIG. 4).
  • the bottom surface (51) is formed flat in a cross-sectional view perpendicular to the circumferential direction of the stator core (32).
  • the three crimped parts (50) have the same shape. All the crimped portions (50) provided on the yoke (34) have long sides a along the radial direction of the stator core (32) and short sides b along the stator core (32) when viewed from the axial direction. It is formed in a rectangular shape along the circumferential direction of (32).
  • the stator core (32) when the stator core (32) is viewed from the axial direction, the stator core (32) is formed into a rectangular shape with long sides a extending along the circumferential direction of the stator core (32) and short sides b extending along the radial direction of the stator core (32).
  • the crimped portion is not provided on the yoke (34).
  • the three crimped portions (50) are arranged side by side at equal intervals (equal pitch) in the circumferential direction of the stator core (32). Specifically, if the angle between two lines connecting the axial center of the stator core (32) and each of the two crimped portions (50) adjacent in the circumferential direction is defined as a first angle ⁇ 1, then The two crimped portions (50) are arranged such that the first angle ⁇ 1 is 120°.
  • the crimped portion (50) has a length from the outer peripheral edge of the yoke (34) to the crimped portion (50) equal to the length from the outer peripheral edge to the inner peripheral edge of the yoke (34). It is arranged so that it becomes 1/3 or less.
  • the radial distance from the outer peripheral edge to the inner peripheral edge of the yoke (34) is d1
  • all of the long sides of the crimped portion (50) are d1 from the outer peripheral edge of the yoke (34). within 1/3 of 1 (see FIG. 4).
  • the crimped portion (50) is arranged radially outward of the teeth (35) in the radial direction of the stator core (32). In other words, the crimped portion (50) and the teeth (35) are arranged in the same radial direction.
  • the stator (31) has a radial fixing portion (60) that fixes the stator core (32) and the casing (11).
  • the radial fixing portion (60) fixes the inner peripheral surface of the casing (11) and the outer peripheral surface of the stator core (32).
  • the radially fixed portion (60) is configured to apply compressive stress to the stator core (32) from radially outward to radially inward to hold the casing (11) and stator core (32) together. fixed.
  • the radial fixing portion (60) of the present embodiment fixes the casing (11) and the stator core (32) by arc welding (strictly speaking, plug welding). Specifically, by pressing an electrode for arc welding against the stator core (32), compressive stress is transmitted from the electrode to the stator core (32) in dots.
  • the stator (31) has three radial fixing portions (60).
  • the three radial fixings (60) are arranged on the same plane.
  • Each radial fixing portion (60) is arranged in a radial direction passing through the centers of two circumferentially adjacent teeth (35) when viewed from the axial direction of the stator core (32).
  • the radial fixing portions (60) are arranged circumferentially at equal intervals (equal pitch). Specifically, each radial fixation (60) is positioned within a first angle. In this embodiment, the radial fixing portion (60) is provided at a position that is an intermediate angle between the first angles.
  • the radially fixed portion (60) extends from one of the two crimped portions (50) adjacent in the circumferential direction about the axis of the stator core (32) to the other. It is provided at a position of 60°.
  • the radial fixing portions (60) of the present embodiment are arranged one each between all adjacent crimped portions (50) in the circumferential direction of the stator core (32).
  • the three radial fixing portions (60) are arranged at the same height position.
  • the three radially fixed portions (60) are preferably arranged at a central height position between the upper end and the lower end.
  • a method of fixing the casing (11) and the stator (31) by arc welding includes the following steps.
  • a through hole is made in the body (12) of the casing (11).
  • the automatic welding machine presses the electrodes against the outer peripheral surface of the stator core (32) through the through holes. At this time, a point-like compressive stress is applied to the stator core (32) from radially outward to radially inward.
  • the automatic welding machine moves the electrodes radially outward so that the gap between the electrodes and the stator core is set to a predetermined value.
  • the automatic welding machine causes arc discharge between the electrodes and the stator core. This welds the casing (11) and the stator core (32) together. The through hole is closed by the welded portion.
  • the partially enlarged view of the yoke (34) in FIG. 6 shows contour lines of the stress distribution around the crimped portion (50) of the present embodiment.
  • circumferential compressive stress is generated in the regions P adjacent to the crimped portion (50) in the circumferential direction. That is, if only the crimped portion (50) of the present embodiment is provided, a compressive stress is generated in the circumferential direction of the yoke (34) in the vicinity of the crimped portion (50).
  • the circumferential compressive stress is generated by the crimped portion (50) in the region P, and the radial fixing portion ( 60) generates tensile stress in the circumferential direction. Therefore, when the radial fixing portion (60) and the crimped portion (50) are provided, the circumferential compressive stress in the region P becomes smaller than the circumferential compressive stress when only the crimped portion (50) is provided. .
  • the electric motor (30) of this embodiment has a radial fixing portion (60) and a crimped portion (50).
  • the radial fixing portion (60) is arranged within a first angle range between two lines connecting the axial center of the stator core (32) and each of the two adjacent crimped portions (50), and
  • the casing (11) and the stator core (32) are fixed by applying a compressive stress to the stator core (32) from radially outward to radially inward.
  • the crimped portion (50) has long sides along the radial direction of the stator core (32) and short sides along the circumferential direction of the stator core (32) when the stator core (32) is viewed from the axial direction. is formed into a rectangle.
  • the crimped portion (50) By forming the crimped portion (50) in a rectangular shape with long sides in the radial direction and short sides in the circumferential direction in this manner, circumferential compressive stress is generated on both sides of the crimped portion (50) in the circumferential direction.
  • the circumferential tensile stress of the radial fixed part (60) causes the crimped part (50) to move in the circumferential direction.
  • compressive stress is reduced.
  • an increase in iron loss can be suppressed.
  • the force applied to the stator core (32) is dispersed, deformation and buckling of the stator (31) can be suppressed.
  • the radially fixed portion (60) is arranged at a position that reduces the compressive stress acting in the circumferential direction of the yoke (34) due to the crimped portion (50).
  • the crimped portion (50) has a length from the outer peripheral edge of the yoke (34) to the crimped portion (50) in the radial direction of the stator core (32). 1/3 or less of the length from the outer peripheral edge to the inner peripheral edge.
  • a circumferential tensile stress by the radial fixing portion (60) is generated near the outer peripheral edge of the yoke (34). Therefore, by providing the crimped portion (50) near the outer periphery of the yoke (34), the circumferential compressive stress generated by the crimped portion (50) generated near the outer periphery of the yoke (34) can be ) can be reliably reduced by the tensile stress in the circumferential direction.
  • the radial fixing portions (60) are arranged entirely between the adjacent crimped portions (50) in the circumferential direction of the stator core (32).
  • the crimped portion (50) is arranged radially outward of the teeth (35).
  • the magnetic flux generated during operation of the electric motor (30) flows from the radially inner side to the outer side of the teeth (35), and further flows through the yoke (34). It tries to flow in the circumferential direction. Since the magnetic flux tends to flow through a shorter path, more magnetic flux flows near the inner periphery of the yoke (34), while less magnetic flux flows near the outer periphery of the yoke (34).
  • a region relatively close to the teeth (35) has a high magnetic flux density
  • a region relatively far from the teeth (35) has a low magnetic flux density. Since the iron loss density is high in a region where the magnetic flux density is high, by arranging the crimped portion (50) in such a region where the magnetic flux density is relatively low, an increase in iron loss due to the crimped portion can be suppressed.
  • the crimped portion (50) of this example has an inclined surface (52) that inclines from both short sides toward the center of the long side.
  • the bottom surface (51) is V-shaped in a cross section perpendicular to the circumferential direction of the stator core (32).
  • the V-shaped bottom surface (51) is the inclined surface (52).
  • the stator core (32) may be broken along the long side of the crimped portion (50).
  • the bottom surface (51) is flatter than the crimped portion (50) of the above embodiment.
  • the circumferential compressive stress of the stator core (32) increases. Therefore, the crimped portion (50) of this example can be made smaller than the crimped portion (broken line in FIG. 10) of the above embodiment. If the crimped portion (50) can be made smaller, deterioration of the magnetic properties around the crimped portion (50) can be reduced accordingly, an increase in iron loss in the stator core (32) can be suppressed, and a decrease in efficiency of the electric motor (30) can be suppressed. . Further, since the crimped portion (50) can be made small, the entire long side a of the crimped portion can be easily arranged within a range of 1/3 of d1 from the outer peripheral edge of the yoke (34).
  • the caulking portion (50) ) should be arranged between 1/4 and 3/4 of the second angle ⁇ 2.
  • the three radial fixing portions (60) are arranged at regular intervals in the circumferential direction, so the second angle is 120°. Therefore, the crimped portion (50) extends from one crimped portion (50) to the other crimped portion ( 50), it should be arranged in the range of 30° or more and 90° or less. In this example, the crimped portion (50) is arranged at 1/2 of ⁇ 2.
  • the entire long side of the crimped portion (50) does not have to be within the range of 1/3 of the first distance d from the outer peripheral edge of the yoke (34). Part of the long side of the crimped portion (50) should be within a range of 1/3 of the first distance d from the outer peripheral edge of the yoke (34).
  • the crimped portion (50) may be arranged near the outer periphery of the yoke (34).
  • the radial fixing portion (60) does not have to be arranged entirely between the adjacent crimped portions (50) in the circumferential direction of the stator core (32), but may be arranged partially between the adjacent crimped portions (50). may have been
  • the inclined surface (52) of the crimped portion (50) may be formed in a U shape, or the inclined surface (52) may be formed on a part of the bottom surface (51).
  • the bottom surface (51) may be composed of two slanted surfaces sloping from both short sides toward the long side and a flat surface connecting the two slanted surfaces.
  • the method of applying the compressive stress to the radially fixed portion (60) may be a method of pressing the stator core (32) from radially outward to radially inward at points or screwing.
  • the method of applying compressive stress to the radial fixed portion (60) may be linear welding along the axial direction to the stator core (32).
  • the method of applying compressive stress to the radially fixed portion (60) is such that the outer peripheral surface of the stator core (32) and the inner peripheral surface of the casing (11) are partially in contact with each other in the circumferential direction. ) and a method of fixing the casing (11) by interference fit.
  • the radial fixing part (60) in this method is the outer peripheral surface of the stator core (32) that contacts the inner peripheral surface of the casing (11).
  • An interference fit is, for example, a shrink fit, a cold fit, or a press fit.
  • the core cut (36) is formed on the outer peripheral surface of the stator core (32), so that the stator core (32) and the casing (11) are partially in contact with each other. Specifically, the stator core (32) and the casing (11) come into contact with each other within a range narrower than the first angle ⁇ 1, and the effects of the invention of the present disclosure can be obtained.
  • the present disclosure is useful for rotating electrical machines, compressors, and refrigerators.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

回転電気機械は、ケーシング(11)と、ステータコア(32)と、ステータコア(32)に対して径方向外方から径方向内方へ点状に圧縮応力を加える方法を用いてケーシング(11)とステータコア(32)とを固定する径方向固定部(60)とを備える。径方向固定部(60)は、ステータコア(32)の軸心と、周方向に隣り合う2つのカシメ部(50)とのそれぞれを結んだ2線の間の第1角度の範囲内に配置される。カシメ部(50)は、ステータコア(32)を軸方向から見たときに、長辺がステータコア(32)の径方向に沿い、かつ、短辺がステータコア(32)の周方向に沿うように矩形に形成される。

Description

回転電気機械、圧縮機、および冷凍装置
 本開示は、回転電気機械、圧縮機、および冷凍装置に関する。
 特許文献1に記載のモータは、密閉容器と該密閉容器内に固定されるステータとを有する。ステータは、軸方向に積層された複数の電磁鋼板を有する。電磁鋼板には、カシメが設けられ、カシメにより積層方向に隣り合う電磁鋼板が締結される。
特開2017-034819号公報
 アーク溶接のようにステータコアに対して、電極を押し付けてからケーシングとステータコアとを固定する方法では、溶接部分に圧縮応力が集中して鉄損が増大する場合がある。これを回避するために、特許文献1では、ステータコアの同一径方向上にカシメと溶接部分とを設けている。しかしながら、ステータコアに発生する応力分布によっては、鉄損の増大を十分に抑制できないおそれがあった。
 本開示の目的は、回転電気機械の鉄損の増大を抑制することにある。
 第1の態様は、ケーシング(11)と、積層された複数の電磁鋼板を有し、略円筒状のヨーク(34)、周方向に並んで配置され、該ヨーク(34)から径方向内方に向かって延びる複数のティース(35)、及び、該ヨーク(34)に配置され、積層方向に隣り合う電磁鋼板を互いに固定するカシメ部(50)を含むステータコア(32)と、前記ステータコア(32)の軸心と、周方向に隣り合う2つの前記カシメ部(50)のそれぞれとを結んだ2線の間の第1角度の範囲内に配置され、かつ、前記ステータコア(32)に対して径方向外方から径方向内方へ圧縮応力を加える方法を用いて前記ケーシング(11)と前記ステータコア(32)とを固定する径方向固定部(60)とを備え、前記カシメ部(50)は、前記ステータコア(32)を軸方向から見たときに、長辺が前記ステータコア(32)の径方向に沿い、かつ、短辺が前記ステータコア(32)の周方向に沿うように矩形に形成される回転電気機械である。
 第1の態様では、カシメ部(50)を長辺が径方向に、短辺が周方向に沿うように配置することで、周方向におけるカシメ部(50)の両隣りに周方向の圧縮応力が発生することが知見として得られている。径方向固定部(60)とカシメ部(50)とを周方向にずらして配置することで、径方向固定部(60)による周方向の引張応力によって、カシメ部(50)による圧縮応力が低減される。その結果、ステータコアにかかる周方向の圧縮応力が相殺され、鉄損の増大を抑制できる。
 本開示の第2の態様は、第1の態様において、
 前記径方向固定部(60)は、前記カシメ部(50)による前記ヨーク(34)の周方向に働く圧縮応力を低減する位置に配置される。
 第2の態様では、カシメ部(50)によるヨーク(34)の周方向に働く圧縮応力に対して、該圧縮応力と同じ方向に働く径方向固定部(60)による引張応力が作用することで、ヨーク(34)の周方向に生じる圧縮応力を低減できる。
 本開示の第3の態様は、第1または第2の態様において、
 前記カシメ部(50)は、前記ステータコア(32)の軸心と、周方向に隣り合う2つの前記径方向固定部(60)のそれぞれを結んだ2線の間の第2角度のうち、1/4~3/4の間に配置される。
 第3の態様では、隣り合う径方向固定部(60)に挟まれる第2角度のうち、1/4~3/4の間にカシメ部(50)を配置することで、カシメ部(50)による圧縮応力を径方向固定部(60)による引張応力によって低減できる。
 本開示の第4の態様は、第1~第3の態様のいずれか1つにおいて、
 前記カシメ部(50)は、前記ステータコア(32)の径方向において、前記ヨーク(34)の外周縁から該カシメ部(50)までの長さが、前記ヨーク(34)の外周縁から内周縁までの長さの1/3以下となるよう配置される。
 第4の態様では、径方向固定部(60)による引張応力は、ヨーク(34)の外周縁寄りに発生する。そのため、カシメ部(50)をヨーク(34)外周縁に近い位置に設けることで、カシメ部(50)による圧縮応力はヨーク(34)の外周縁寄りに発生し、ヨーク(34)に発生する圧縮応力を引張応力により低減できる。
 第5の態様は、第1~第4の態様のいずれか1つにおいて、
 前記径方向固定部(60)は、前記ステータコア(32)の周方向において、隣り合う前記カシメ部(50)間の全てに配置される。
 第5の態様では、ヨーク(34)の全周に亘って発生する周方向の圧縮応力を低減できる。
 第6の態様は、第1~第5の態様のいずれか1つにおいて、
 前記カシメ部(50)は、前記ステータコア(32)を周方向に直交する断面視において、両短辺から長辺の中央に向かって傾斜する傾斜面(52)を有する。
 第6の態様では、ステータコア(32)の周方向に働く圧縮応力が増大する。そのため、ステータコア(32)を軸方向から見たときのカシメ部(50)の大きさを小さくすることで、ステータコア(32)の周方向の圧縮応力を小さくでき、かつ、カシメ部(50)周辺の磁気特性の劣化が小さくなり、ステータコア(32)の鉄損の増加を抑制し、電動機(30)の効率の低下を抑制できる。
 第7の態様は、第1~第6のいずれか1つにおいて、
 前記カシメ部(50)は、前記ティース(35)の径方向外方側に配置される。
 第7の態様では、ティース(35)が配置される径方向外方側は、回転電気機械を運転している際の磁束密度が相対的に低い。このような、ティース(35)の径方向外方側の磁束密度が比較的低い位置にカシメ部(50)を配置することで、カシメ部(50)による鉄損増加を抑制できる。
 第8の態様は、第1~第7のいずれか1つの態様の回転電気機械を備えた圧縮機である。
 第9の態様は、第8の態様の圧縮機を備えた冷凍装置である。
図1は、実施形態に係る冷凍装置の概略の構成図である。 図2は、実施形態に係る圧縮機における軸方向に平行な断面に相当する縦断面図である。 図3は、電動機における軸方向に垂直な断面に相当する横断面図である。 図4は、図3のIV-IV矢視断面の一部を拡大した図である。 図5は、図3の電動機における軸方向に垂直な断面に相当する横断面図に径方向固定部を付加した図である。 図6は、カシメ部のみを設けた場合のカシメ部周辺に発生する応力の分布を表した図である。 図7は、カシメ部のみ、径方向固定部のみ、及びカシメ部と径方向固定部両方を設けた場合のそれぞれの応力を示すテーブルである。 図8は、カシメ部と径方向固定部とを同一径方向上に配置した場合の、図7に相当するテーブルである。 図9は、ティースからヨークに向けて発生する磁束密度を表した模式図である。 図10は、変形例に係るカシメ部の図4に相当する図である。 図11は、その他の実施形態に係る電動機における軸方向に垂直な断面に相当する図5に相当する図である。
 以下、本開示の実施形態について、図面を参照しながら詳細に説明する。なお、本開示は、以下に示される実施形態に限定されるものではなく、本開示の技術的思想を逸脱しない範囲内で各種の変更が可能である。各図面は、本開示を概念的に説明するためのものであるから、理解容易のために必要に応じて寸法、比または数を誇張または簡略化して表す場合がある。
 本開示の圧縮機(10)は、冷凍装置(1)に設けられる。
 (1)冷凍装置の概要
 図1に示す冷凍装置(1)は、本開示の圧縮機(10)を備える。冷凍装置(1)は、冷媒が充填された冷媒回路(R)を有する。冷媒回路(R)は、圧縮機(10)、放熱器(2)、減圧機構(3)、および蒸発器(4)を有する。減圧機構(3)は、膨張弁である。冷媒回路(R)は、蒸気圧縮式の冷凍サイクルを行う。
 冷凍サイクルでは、圧縮機(10)によって圧縮された冷媒が、放熱器(2)において空気に放熱する。放熱した冷媒は、減圧機構(3)によって減圧され、蒸発器(4)において蒸発する。蒸発した冷媒は、圧縮機(10)に吸入される。
 冷凍装置(1)は、空気調和装置である。空気調和装置は、冷房専用機、暖房専用機、あるいは冷房と暖房とを切り換える空気調和装置であってもよい。この場合、空気調和装置は、冷媒の循環方向を切り換える切換機構(例えば四方切換弁)を有する。冷凍装置(1)は、給湯器、チラーユニット、庫内の空気を冷却する冷却装置などであってもよい。冷却装置は、冷蔵庫、冷凍庫、コンテナなどの内部の空気を冷却する。膨張機構は、電子膨張弁、感温式膨張弁、膨張機、またはキャピラリーチューブで構成される。
 (2)圧縮機
 図2に示すように、圧縮機(10)は、ケーシング(11)と、電動機(30)と、駆動軸(20)と、圧縮機構(22)とを有する。圧縮機(10)は、ロータリ型の圧縮機である。厳密には、圧縮機(10)は揺動ピストン型の圧縮機である。圧縮機(10)は、スクロール型、スクリュー型、あるいはターボ型の圧縮機であってもよい。
 (2-1)ケーシング
 ケーシング(11)は、電動機(30)、駆動軸(20)、および圧縮機構(22)を収容する。ケーシング(11)は全密閉型の容器である。ケーシング(11)の内部は、圧縮機構(22)から吐出された高圧の冷媒で満たされる。
 ケーシング(11)は、金属材料で構成される。ケーシング(11)は、胴体(12)、底部(13)、および頂部(14)を有する。胴体(12)は、金属製の筒状の部材である。胴体(12)の軸方向の両端にはそれぞれ開口が形成される。本例では、胴体(12)の軸方向が鉛直方向に対応する。底部(13)は胴体(12)の下側の開口を閉塞する。頂部(14)は胴体(12)の上側の開口を閉塞する。
 (2-2)電動機
 図2および図3に示す電動機(30)は、回転電気機械の一例である。電動機(30)は、圧縮機構(22)の上方に配置される。電動機(30)は、インバータ装置によって運転周波数が制御される。言い換えると、圧縮機(10)は、運転周波数が可変なインバータ式である。
 電動機(30)は、ステータ(31)と、ロータ(40)とを有する。ステータ(31)は、ケーシング(11)の胴体(12)に支持される。ステータ(31)は、ステータコア(32)と、ステータコア(32)に巻回されるコイル(33)とを有する。ステータコア(32)は、電磁鋼板(M)が軸方向に積層されて構成される。図3に示すように、ステータコア(32)は、円筒状のヨーク(34)と、ヨーク(34)の周方向に並んで配置され、該ヨーク(34)から径方向内方に向かって延びる複数(本例では9つ)のティース(35)とを有する。ヨーク(34)には、積層方向に隣り合う電磁鋼板を互いに固定するカシメ部(50)が設けられる。ステータコア(32)およびその固定構造の詳細は後述する。
 ヨーク(34)の外周面には、複数(本例では9つ)のコアカット(36)が形成される。コアカット(36)は、ステータコア(32)の軸方向に延びる溝である。各コアカット(36)は、ヨーク(34)を挟んでティース(35)と反対側の位置に形成される。
 ロータ(40)は、ステータコア(32)の内部に配置される。ロータ(40)の軸心には駆動軸(20)が固定される。ロータ(40)の内部には、複数の永久磁石が埋め込まれる(図示省略)。
 ステータ(31)のティース(35)と、ロータ(40)との間には、横断面視において環状のギャップ(G)が形成される。
 (2-3)駆動軸
 駆動軸(20)は、ケーシング(11)の軸心に沿って鉛直方向に延びる。駆動軸(20)は、電動機(30)によって回転駆動される。駆動軸(20)は、軸受け(21)によって回転可能に支持される。
 (2-4)圧縮機構
 圧縮機構(22)は、シリンダ(23)と、シリンダ(23)の内部に設けられるピストン(24)とを有する。シリンダ(23)の内周面とピストン(24)の外周面との間にシリンダ室(25)が形成される。シリンダ室(25)では、駆動軸(20)によって駆動されるピストン(24)により流体が圧縮される。
 (2-5)吸入管および吐出管
 圧縮機(10)は、吸入管(26)および吐出管(27)を有する。吸入管(26)は、胴体(12)を径方向に貫通し、シリンダ室(25)と連通する。冷媒回路(R)の低圧冷媒が、吸入管(26)を介してシリンダ室(25)に吸い込まれる。吐出管(27)は、頂部(14)を軸方向に貫通し、ケーシング(11)の内部空間と連通する。圧縮機構(22)で圧縮された冷媒は、電動機(30)のコアカット(36)およびギャップ(G)を流れた後、吐出管(27)より冷媒回路(R)へ送られる。
 (3)ステータコアの詳細
 (3-1)ステータコアのコア部の構成
 ステータコア(32)の詳細について図2~図4を参照しながら説明する。なお、以下の説明においては、「軸方向」、「周方向」、および「径方向」は、特に言及しない限り、ステータ(31)の軸方向、周方向、および径方向をそれぞれ意味する。本例では、ステータ(31)の軸方向は、図2に示すように駆動軸(20)の軸方向に相当する。
 ステータコア(32)では、複数の電磁鋼板(M)が軸方向の一端から他端に亘って積層される。本例のステータコア(32)では、全ての電磁鋼板(M)の構造が同じである。厳密には、全ての電磁鋼板(M)の形状、厚み、および材質が互いに同じである。全ての電磁鋼板(M)は、その全体が互いに重なるように配置される。
 本実施形態では、3つのカシメ部(50)がヨーク(34)に設けられる。ステータコア(32)の軸心方向から見て、各カシメ部(50)は、矩形に形成される。具体的に、ステータコア(32)を軸心方向から見て、カシメ部(50)は、長辺aがステータコア(32)の径方向に沿い、かつ、短辺bがステータコア(32)の周方向に沿うように形成される。カシメ部(50)は、ヨーク(34)表面において窪むように形成される。具体的に、カシメ部(50)は、底面(51)を有する(図4参照)。底面(51)は、ステータコア(32)の周方向に直交する断面視において、平坦に形成される。3つのカシメ部(50)は、同一形状である。ヨーク(34)に設けられる全てのカシメ部(50)は、ステータコア(32)を軸方向から見たときに、長辺aがステータコア(32)の径方向に沿い、かつ、短辺bがステータコア(32)の周方向に沿うように矩形に形成される。言い換えると、ステータコア(32)を軸方向から見たときに、長辺aがステータコア(32)の周方向に沿い、かつ、短辺bがステータコア(32)の径方向に沿うように矩形に形成されるカシメ部は、ヨーク(34)に設けられていない。
 3つのカシメ部(50)は、ステータコア(32)の周方向に等間隔(等ピッチ)に並んで配置される。具体的に、ステータコア(32)の軸心と、周方向に隣り合う2つのカシメ部(50)のそれぞれとを結んだ2線の間の角度を第1角度θ1とすると、周方向に隣り合う2つのカシメ部(50)は、第1角度θ1が120°となるように配置される。
 カシメ部(50)は、ステータコア(32)の径方向において、ヨーク(34)の外周縁からカシメ部(50)までの長さが、ヨーク(34)の外周縁から内周縁までの長さの1/3以下となるように配置される。本実施形態では、ヨーク(34)の外周縁から内周縁までの径方向の距離をdとしたときに、カシメ部(50)の長辺のすべてが、ヨーク(34)の外周縁からdの1/3の範囲内にある(図4参照)。
 カシメ部(50)は、ステータコア(32)の径方向のうち、ティース(35)の径方向外方に配置される。言い換えると、カシメ部(50)とティース(35)とは、同一径方向上に配置される。
 (3-2)ステータコアの固定構造
 ステータ(31)は、ステータコア(32)とケーシング(11)とを固定する径方向固定部(60)を有する。径方向固定部(60)は、ケーシング(11)の内周面と、ステータコア(32)の外周面とを固定する。具体的には、径方向固定部(60)は、ステータコア(32)に対して径方向外方から径方向内方へ圧縮応力を加える方法を用いてケーシング(11)とステータコア(32)とを固定する。本実施形態の径方向固定部(60)は、アーク溶接(厳密には、プラグ溶接)により、ケーシング(11)とステータコア(32)とを固定する。具体的には、アーク溶接の電極をステータコア(32)に押し付けることで、電極からステータコア(32)に点状に圧縮応力が伝わる。
 図5に示すように、本実施形態では、ステータ(31)は3つの径方向固定部(60)を有する。3つの径方向固定部(60)は、同一平面上に配置される。各径方向固定部(60)は、ステータコア(32)の軸心方向から見て、周方向に隣り合う2つのティース(35)の中央を通る径方向に配置される。径方向固定部(60)は、周方向に等間隔(等ピッチ)で並んでいる。具体的に、各径方向固定部(60)は、第1角度の範囲内に配置される。本実施形態では、径方向固定部(60)は、第1角度の中間の角度となる位置に設けられる。本実施形態の第1角度は120°であるため、径方向固定部(60)は、ステータコア(32)の軸心を中心に周方向に隣り合う2つのカシメ部(50)の一方から他方に向かって60°の位置に設けられる。本実施形態の径方向固定部(60)は、ステータコア(32)の周方向において、隣り合うカシメ部(50)の間の全てに、それぞれ1つずつ配置される。
 また、ステータコア(32)の軸方向端部の一方を上端とし、他方を下端としたときに、3つの径方向固定部(60)は、同じ高さ位置に配置される。3つの径方向固定部(60)は、上端と下端との中央の高さ位置に配置されることが好ましい。
 (3-3)ステータの固定方法
 アーク溶接によるケーシング(11)とステータ(31)とを固定する方法は、以下の工程を含む。
 第1工程)ケーシング(11)の胴体(12)に貫通穴を空ける。
 第2工程)自動溶接機は、貫通穴を通じてステータコア(32)の外周面に電極を押し当てる。この際、ステータコア(32)に対して径方向外方から径方向内方へ点状に圧縮応力が加わる。
 第3工程)自動溶接機は、電極とステータコアとの間隔を所定値とするように、電極を径方向外方へ移動させる。
 第4工程)自動溶接機は、電極とステータコアとの間でアーク放電を生起させる。これにより、ケーシング(11)とステータコア(32)とを溶接する。溶接部分により貫通穴が閉塞される。
 (4)径方向固定部及びカシメ部を設ける位置によって生じる課題
 アーク溶接のようにステータコアの周方向に複数の径方向固定部を設けてケーシングとステータとを固定する場合、径方向固定部が設けられたヨークの両隣りのヨークにはケーシングに抑えつけられることによる圧縮応力集中部が形成される。このような圧縮応力集中部にカシメが設けられていると、圧縮応力がさらに増大して鉄損が増大する結果、電動機の効率が低下してしまう。そのため、径方向固定部を、カシメ部が配置される径方向上に配置(カシメ部と径方向固定部とを同一径方向上に配置)すれば、圧縮応力集中部での応力の増大を避けることができる。
 しかし、カシメ部と径方向固定部とを同一径方向上に配置すると、カシメ部と径方向固定部で発生する周方向の圧縮応力が足し合わされる結果、カシメ部付近のヨークにより大きな圧縮応力が発生し、鉄損が増大するおそれがある。鉄損の増大を抑制するためには、ステータコア(32)に働く応力の種類・方向・大きさを考慮した応力分布を基にカシメ部と径方向固定部とを配置する必要があるが、これまでこのような応力分布については検討されてこなかった。
 (5)径方向固定部及びカシメ部によるヨークに発生する応力分布
 本実施要形態の電動機(30)の径方向固定部(60)及びカシメ部(50)による応力分布について説明する。なお、以下に説明する径方向固定部(60)及びカシメ部(50)は、本実施形態で説明した位置に設けられる。
 図6のヨーク(34)の一部拡大図は、本実施形態のカシメ部(50)周辺の応力分布を等高線で表している。図6及び図7に示すように、カシメ部(50)の周方向の両隣りの領域Pには周方向の圧縮応力が発生している。すなわち、本実施形態のカシメ部(50)のみを設けると、カシメ部(50)付近においてヨーク(34)の周方向に圧縮応力が発生する。
 カシメ部(50)を設けずに、径方向固定部(60)を設けた場合では、領域Pでは周方向の引張応力が発生する。このように、本実施形態の径方向固定部(60)及びカシメ部(50)の配置によれば、領域Pではカシメ部(50)により周方向の圧縮応力が発生し、径方向固定部(60)により周方向の引張応力が発生する。そこで、径方向固定部(60)とカシメ部(50)とを設けると、領域Pにおける周方向の圧縮応力は、カシメ部(50)のみを設けた場合の周方向の圧縮応力よりも小さくなる。
 圧縮応力は、鉄損を増加させる一方、引張応力は、鉄損を減少させることが知見として得られている。カシメ部(50)により周方向の圧縮応力が発生する領域Pに、周方向の引張応力が発生するように径方向固定部(60)を設けることで、ステータコア(32)周方向に発生する圧縮応力を抑えることができる。
 (6)比較例
 カシメ部(50)と径方向固定部(60)とを、ステータコア(32)の同一径方向上に配置した場合の応力分布について説明する。図8に示すように、カシメ部(50)を設けずに、径方向固定部(60)を設けた場合、領域Pでは周方向の圧縮応力が発生する。また、径方向固定部(60)を設けずに、カシメ部(50)を設けた場合、領域Pには周方向の圧縮応力が発生する。さらに、径方向固定部(60)とカシメ部(50)とを設けた場合では、径方向固定部(60)及びカシメ部(50)のいずれか一方のみ設けた場合よりも領域Pに発生する周方向の圧縮応力が増大する。このように、カシメ部(50)と径方向固定部(60)とを、ステータコア(32)の同一径方向上に配置すると、領域Pでは、カシメ部(50)及び径方向固定部(60)によるヨーク(34)の周方向の圧縮応力が足し合わされることで、周方向の圧縮応力が増大する。
 (7)特徴
 (7-1)
 本実施形態の電動機(30)は、径方向固定部(60)とカシメ部(50)とを有する。径方向固定部(60)は、ステータコア(32)の軸心と、隣り合う2つのカシメ部(50)のそれぞれとを結んだ2線の間の第1角度の範囲内に配置され、かつ、ステータコア(32)に対して径方向外方から径方向内方へ圧縮応力を加える方法を用いてケーシング(11)とステータコア(32)とを固定する。カシメ部(50)は、ステータコア(32)を軸方向から見たときに、長辺が前記ステータコア(32)の径方向に沿い、かつ、短辺が前記ステータコア(32)の周方向に沿うように矩形に形成される。
 このようにカシメ部(50)を、長辺が径方向に、短辺が周方向に沿う矩形に形成することで、周方向におけるカシメ部(50)の両隣りに周方向の圧縮応力が発生するが、径方向固定部(60)とカシメ部(50)とを周方向にずらして配置することで、径方向固定部(60)による周方向の引張応力によりカシメ部(50)による周方向の圧縮応力が低減される。その結果、鉄損の増大を抑制できる。また、ステータコア(32)にかかる力が分散されるため、ステータ(31)の変形や座屈を抑制できる。
 (7-2)
 本実施形態の電動機(30)では、径方向固定部(60)は、カシメ部(50)によるヨーク(34)の周方向に働く圧縮応力を低減する位置に配置される。
 カシメ部(50)による圧縮応力と同じ方向に働く径方向固定部(60)による引張応力が該圧縮応力を打ち消し合うように作用するため、カシメ部(50)によるヨーク(34)の周方向に生じる圧縮応力を低減できる。
 (7-3)
 本実施形態の電動機(30)では、カシメ部(50)は、ステータコア(32)の径方向において、ヨーク(34)の外周縁から該カシメ部(50)までの長さが、ヨーク(34)の外周縁から内周縁までの長さの1/3以下となるよう配置される。
 径方向固定部(60)による周方向の引張応力は、ヨーク(34)の外周縁寄りに発生する。そのため、カシメ部(50)をヨーク(34)外周縁寄りに設けることで、ヨーク(34)の外周縁寄りに発生するカシメ部(50)による周方向の圧縮応力を、径方向固定部(60)による周方向の引張応力によって確実に低減できる。
 (7-4)
 本実施形態の電動機(30)では、径方向固定部(60)は、ステータコア(32)の周方向において、隣り合うカシメ部(50)間の全てに配置される。このように、周方向に隣り合うカシメ部(50)の各間に径方向固定部(60)が設けられることで、ステータコア(32)の全周に亘って発生する周方向の圧縮応力の増大を抑制できる。
 (7-5)
 本実施形態の電動機(30)では、カシメ部(50)は、ティース(35)の径方向外方に配置される。ここで、図9の矢印が示すように電動機(30)の運転中において発生する磁束は、ティース(35)の径方向内方側から外方側に向かって流れて、さらにヨーク(34)の周方向に流れようとする。磁束はより短い経路を流れようとするため、ヨーク(34)の内周縁寄りにはより多くの磁束が流れる一方、ヨーク(34)の外周縁寄りには磁束が流れにくい。その結果、ヨーク(34)において、ティース(35)から比較的近い領域では磁束密度が高く、ティース(35)から比較的遠い領域では磁束密度が低くなる。磁束密度が高い領域では鉄損密度が高くなるため、このような相対的に磁束密度が低い領域にカシメ部(50)を配置することで、カシメ部による鉄損増加を抑制できる。
 加えて、ケーシング(11)内にステータコア(32)を固定すると、ヨーク(34)のうちティース(35)に接続される部分は、ティース(35)によって径方向内方側の変形が抑制される。そのため、ティース(35)とヨーク(34)の接続部分を起点として、径方向外方側に周方向の引張応力が加わりやすいため、ティース(35)の径方向外方側にカシメ部(50)を設けることで、カシメ部(50)による周方向の圧縮応力を低減できる。
 (8)変形例
 本例の電動機(30)では、カシメ部(50)の形状が上記実施形態の電動機(30)と異なる。以下では、上記実施形態と異なる構成について説明する。
 本例のカシメ部(50)は、両短辺から長辺の中央に向かって傾斜する傾斜面(52)を有する。具体的に、図10に示すようにステータコア(32)の周方向と直交する断面において、底面(51)は、V字状に形成される。本例では、このV字状の底面(51)が傾斜面(52)である。カシメ部(50)の長辺に沿って、ステータコア(32)が破断していてもよい。
 このようにカシメ部(50)を、底面(51)が傾斜面(52)を有するように形成することで、その特性から底面(51)が平坦な上記実施形態のカシメ部(50)よりも、ステータコア(32)の周方向の圧縮応力が増大する。そのため、本例のカシメ部(50)は、上記実施形態のカシメ部(図10の破線)よりも小さくできる。カシメ部(50)を小さくできれば、その分カシメ部(50)周辺の磁気特性の劣化が小さくなり、ステータコア(32)の鉄損の増加を抑制し、電動機(30)の効率の低下を抑制できる。また、カシメ部(50)を小さくできるため、カシメ部の長辺a全部をヨーク(34)の外周縁からd1の1/3の範囲内に容易に配置することができる。
 (9)その他の実施形態
 上記実施形態については、以下のような構成としてもよい。
 図11に示すように、ステータコア(32)の軸心と周方向に隣り合う2つの径方向固定部(60)のそれぞれを結んだ2線の間を第2角度θ2とすると、カシメ部(50)は、第2角度θ2の1/4~3/4の間に配置されていればよい。例えば上記実施形態では、3つの径方向固定部(60)は、周方向に等間隔に配置されるため、第2角度は120°となる。従って、カシメ部(50)は、周方向に隣り合う2つの径方向固定部(60)の間の第2角度(120°)の範囲において、一方のカシメ部(50)から他方のカシメ部(50)に向かって、30°以上であって90°以下の範囲に配置されていればよい。本例では、カシメ部(50)はθ2の1/2に配置される。このような範囲にカシメ部(50)を配置することで、カシメ部(50)による周方向の圧縮応力が低減され、鉄損の増大を抑制できる。
 カシメ部(50)の長辺の全体が、ヨーク(34)の外周縁から第1距離dの1/3の範囲内になくてもよい。カシメ部(50)の長辺の一部が、ヨーク(34)の外周縁から第1距離dの1/3の範囲内にあればよい。このように、カシメ部(50)は、ヨーク(34)の外周縁寄りに配置されていればよい。
 径方向固定部(60)は、ステータコア(32)の周方向において、隣り合うカシメ部(50)の間の全てに配置されなくてよく、隣り合うカシメ部(50)の間の一部に配置されていてもよい。
 上記変形例において、カシメ部(50)の傾斜面(52)はU字状に形成されてもよいし、傾斜面(52)は、底面(51)の一部に形成されてもよい。例えば、底面(51)は、両短辺から長辺に向かって傾斜する2つの傾斜面と、該2つの傾斜面とを接続する平坦面とで構成されてもよい。
 径方向固定部(60)に用いられる圧縮応力を加える方法は、ステータコア(32)に対して径方向外方から径方向内方へ点状に圧接、またはねじ止めによる方法であってもよい。
 径方向固定部(60)に用いられる圧縮応力を加える方法は、ステータコア(32)に対して軸方向に沿って線状に溶接するものであってもよい。
 径方向固定部(60)に用いられる圧縮応力を加える方法は、ステータコア(32)の外周面とケーシング(11)の内周面とが、周方向に部分的に接触するように、ステータコア(32)及びケーシング(11)を締り嵌めにより固定する方法であっても良い。この方法での径方向固定部(60)は、ケーシング(11)の内周面と接触するステータコア(32)の外周面である。締り嵌めは、例えば、焼き嵌め、冷やし嵌め、または圧入である。上記実施形態ではステータコア(32)の外周面にはコアカット(36)が形成されているため、部分的にステータコア(32)とケーシング(11)とが接することなる。具体的には、第1角度θ1よりも狭い範囲でステータコア(32)とケーシング(11)とは接触することになって、本開示の発明の効果を得ることができる。
 以上、実施形態および変形例を説明したが、特許請求の範囲の趣旨および範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。また、以上の実施形態、変形例、その他の実施形態は、本開示の対象の機能を損なわない限り、適宜組み合わせたり、置換したりしてもよい。
 以上に述べた「第1」、「第2」、「第3」…という記載は、これらの記載が付与された語句を区別するために用いられており、その語句の数や順序までも限定するものではない。
 以上に説明したように、本開示は、回転電気機械、圧縮機、および冷凍装置について有用である。
  11   ケーシング 
  32   ステータコア
  34   ヨーク
  35   ティース
  50   カシメ部
  52   傾斜面
  60   径方向固定部

Claims (9)

  1.  ケーシング(11)と、
     積層された複数の電磁鋼板を有し、円筒状のヨーク(34)、周方向に並んで配置され、該ヨーク(34)から径方向内方に向かって延びる複数のティース(35)、及び、該ヨーク(34)に配置され、積層方向に隣り合う電磁鋼板を互いに固定するカシメ部(50)を含むステータコア(32)と、
     前記ステータコア(32)の軸心と、周方向に隣り合う2つの前記カシメ部(50)のそれぞれとを結んだ2線の間の第1角度の範囲内に配置され、かつ、前記ステータコア(32)に対して径方向外方から径方向内方へ圧縮応力を加える方法を用いて前記ケーシング(11)と前記ステータコア(32)とを固定する径方向固定部(60)とを備え、
     前記カシメ部(50)は、前記ステータコア(32)を軸方向から見たときに、長辺が前記ステータコア(32)の径方向に沿い、かつ、短辺が前記ステータコア(32)の周方向に沿うように矩形に形成される回転電気機械。
  2.  前記径方向固定部(60)は、前記カシメ部(50)による前記ヨーク(34)の周方向に働く圧縮応力を低減する位置に配置される請求項1に記載の回転電気機械。
  3.  前記カシメ部(50)は、前記ステータコア(32)の軸心と、周方向に隣り合う2つの前記径方向固定部(60)のそれぞれを結んだ2線の間の第2角度のうち、1/4~3/4の間に配置される請求項1または2に記載の回転電気機械。
  4.  前記カシメ部(50)は、前記ステータコア(32)の径方向において、前記ヨーク(34)の外周縁から該カシメ部(50)までの長さが、前記ヨーク(34)の外周縁から内周縁までの長さの1/3以下となるよう配置される請求項1~3のいずれか1つに記載の回転電気機械。
  5.  前記径方向固定部(60)は、前記ステータコア(32)の周方向において、隣り合う前記カシメ部(50)間の全てに配置される請求項1~4のいずれか1つに記載の回転電気機械。
  6.  前記カシメ部(50)は、前記ステータコア(32)を周方向に直交する断面視において、両短辺から長辺の中央に向かって傾斜する傾斜面(52)を有する請求項1~5のいずれか1つに記載の回転電気機械。
  7.  前記カシメ部(50)は、前記ティース(35)の径方向外方に配置される請求項1~6のいずれか1つに記載の回転電気機械。
  8.  請求項1~7のいずれか1つに記載の回転電気機械を備えた圧縮機。
  9.  請求項8に記載の圧縮機を備えた冷凍装置。
PCT/JP2022/041044 2021-11-09 2022-11-02 回転電気機械、圧縮機、および冷凍装置 WO2023085193A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22892692.9A EP4407837A1 (en) 2021-11-09 2022-11-02 Rotating electric machine, compressor, and refrigerator device
CN202280074680.4A CN118216062A (zh) 2021-11-09 2022-11-02 旋转电气机械、压缩机及制冷装置
US18/652,572 US20240305148A1 (en) 2021-11-09 2024-05-01 Rotating electric machine, compressor, and refrigerator device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-182476 2021-11-09
JP2021182476 2021-11-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/652,572 Continuation US20240305148A1 (en) 2021-11-09 2024-05-01 Rotating electric machine, compressor, and refrigerator device

Publications (1)

Publication Number Publication Date
WO2023085193A1 true WO2023085193A1 (ja) 2023-05-19

Family

ID=86331632

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041044 WO2023085193A1 (ja) 2021-11-09 2022-11-02 回転電気機械、圧縮機、および冷凍装置

Country Status (5)

Country Link
US (1) US20240305148A1 (ja)
EP (1) EP4407837A1 (ja)
JP (1) JP7436908B2 (ja)
CN (1) CN118216062A (ja)
WO (1) WO2023085193A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000224787A (ja) * 1999-01-27 2000-08-11 Denso Corp 密閉型電動圧縮機
JP2013162676A (ja) * 2012-02-07 2013-08-19 Daikin Ind Ltd 電動機および圧縮機
JP2017034819A (ja) 2015-07-31 2017-02-09 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド 永久磁石同期機、圧縮機及び空気調和機
JP2018085853A (ja) * 2016-11-24 2018-05-31 アイシン・エィ・ダブリュ株式会社 ステータコア
WO2019087358A1 (ja) * 2017-11-02 2019-05-09 三菱電機株式会社 回転電機の電機子鉄心、及び回転電機の電機子鉄心の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5560007B2 (ja) 2009-08-26 2014-07-23 アイチエレック株式会社 電動機および圧縮機
JP5740436B2 (ja) 2013-06-14 2015-06-24 本田技研工業株式会社 回転電機のステータコア
JP6885380B2 (ja) 2017-10-12 2021-06-16 ダイキン工業株式会社 ステータ、モータおよび圧縮機

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000224787A (ja) * 1999-01-27 2000-08-11 Denso Corp 密閉型電動圧縮機
JP2013162676A (ja) * 2012-02-07 2013-08-19 Daikin Ind Ltd 電動機および圧縮機
JP2017034819A (ja) 2015-07-31 2017-02-09 ジョンソンコントロールズ ヒタチ エア コンディショニング テクノロジー(ホンコン)リミテッド 永久磁石同期機、圧縮機及び空気調和機
JP2018085853A (ja) * 2016-11-24 2018-05-31 アイシン・エィ・ダブリュ株式会社 ステータコア
WO2019087358A1 (ja) * 2017-11-02 2019-05-09 三菱電機株式会社 回転電機の電機子鉄心、及び回転電機の電機子鉄心の製造方法

Also Published As

Publication number Publication date
JP7436908B2 (ja) 2024-02-22
US20240305148A1 (en) 2024-09-12
CN118216062A (zh) 2024-06-18
JP2023070660A (ja) 2023-05-19
EP4407837A1 (en) 2024-07-31

Similar Documents

Publication Publication Date Title
US11437877B2 (en) Rotor, motor, compressor, and air conditioner
JP4710993B2 (ja) 電機子用コア
WO2017038489A1 (ja) 回転子、回転電機、電動圧縮機および冷凍空調装置
US8912701B2 (en) Induction motor, compressor and refrigerating cycle apparatus
US11264848B2 (en) Rotor, motor, compressor, fan, and air conditioning apparatus
KR101892405B1 (ko) 압축기 및 압축기 제조 방법
JP2010279126A (ja) 電動機固定子鉄心、電動機、密閉型圧縮機、冷凍サイクル装置
JP6290065B2 (ja) 圧縮機製造装置及び圧縮機製造方法
US11770033B2 (en) Electric motor, compressor, fan, and refrigerating and air conditioning apparatus
WO2023085193A1 (ja) 回転電気機械、圧縮機、および冷凍装置
AU2018448343B2 (en) Rotor, motor, compressor, air, conditioner, and, manufacturing, method of rotor
JP2023070357A (ja) 回転電気機械、圧縮機、および冷凍装置
JP7288238B1 (ja) 電動機
JP6590904B2 (ja) 圧縮機製造装置及び圧縮機製造方法
US20240186870A1 (en) Method for manufacturing compressor
WO2023112078A1 (ja) ステータ、モータ、圧縮機および冷凍サイクル装置
WO2023074320A1 (ja) 圧縮機、冷凍装置、および圧縮機の製造方法
WO2023190599A1 (ja) 空気調和装置用電動機
WO2023007644A1 (ja) 固定子、回転電機、圧縮機、及び冷凍サイクル装置
JP7511759B2 (ja) 圧縮機用電動機、圧縮機、冷凍サイクル装置及び圧縮機用電動機の製造方法
US20230318368A1 (en) Motor, compressor, refrigeration cycle apparatus, and manufacturing method of motor
JP5093336B2 (ja) 電機子用コア
JPWO2017064782A1 (ja) 固定子鉄心、圧縮機及び冷凍サイクル装置
CN118872186A (zh) 空调装置用电动机
CN115803993A (zh) 定子、电动机、压缩机、制冷循环装置以及空调装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22892692

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022892692

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022892692

Country of ref document: EP

Effective date: 20240422

WWE Wipo information: entry into national phase

Ref document number: 202280074680.4

Country of ref document: CN