WO2023084707A1 - 光増幅装置および光増幅方法 - Google Patents

光増幅装置および光増幅方法 Download PDF

Info

Publication number
WO2023084707A1
WO2023084707A1 PCT/JP2021/041581 JP2021041581W WO2023084707A1 WO 2023084707 A1 WO2023084707 A1 WO 2023084707A1 JP 2021041581 W JP2021041581 W JP 2021041581W WO 2023084707 A1 WO2023084707 A1 WO 2023084707A1
Authority
WO
WIPO (PCT)
Prior art keywords
core optical
cores
amplification
transmission line
optical
Prior art date
Application number
PCT/JP2021/041581
Other languages
English (en)
French (fr)
Inventor
仁士 竹下
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to PCT/JP2021/041581 priority Critical patent/WO2023084707A1/ja
Publication of WO2023084707A1 publication Critical patent/WO2023084707A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating

Definitions

  • the present invention relates to an optical amplification device and an optical amplification method, and more particularly to an optical amplification device and an optical amplification method used in a multi-core optical fiber transmission system.
  • Spatial multiplexing technology which is a multiplexing technology of a different dimension than conventional multiplexing technology, is being developed.
  • Spatial multiplexing technology includes multi-core technology for increasing the number of cores per optical fiber and multi-mode technology for increasing the number of propagation modes. Both the number of cores and the number of modes used in current optical fiber communication are one. Therefore, by increasing the number of cores and the number of modes, it is possible to dramatically expand the communication capacity.
  • the core pumping method the intensity of an optical signal optically transmitted through each core is individually amplified using an individual pumping light source for each core.
  • the cladding pumping method the intensity of the optical signal optically transmitted through each core is collectively amplified using a common pumping light source.
  • the configuration of the current single-core pumping optical amplifier can be used in principle as it is as the configuration of the cladding pumping method.
  • Patent Document 1 An example of an optical amplifier using such a cladding pumping method is described in Patent Document 1.
  • a related optical amplifier described in Patent Document 1 includes a multicore optical fiber 91, a pumping light source 92, an optical isolator 94, an optical multiplexer 93, and multicore optical fibers 97#1 and 97#2.
  • the multi-core optical fiber 91 a plurality of cores doped with rare earth ions are arranged in the first clad.
  • the multi-core optical fiber 91 includes a second clad arranged around the first clad and reflecting excitation light having a wavelength for exciting rare earth ions.
  • the plurality of cores are configured to have an inter-core distance at which propagating light is coupled.
  • Patent Documents 2 and 3 there are technologies described in Patent Documents 2 and 3 as related technologies.
  • multi-core optical amplifiers such as the related optical amplifiers described above are inserted between the multi-core optical transmission lines. Therefore, each core of the multi-core optical transmission line and each core of the multi-core optical amplifier must be optically connected.
  • the multi-core optical fiber has restrictions on the number of cores and the arrangement of cores in order to pack the cores densely. Therefore, the number of cores of the multi-core optical transmission line and the number of cores of the multi-core optical amplifier do not match, and it may be difficult to connect the multi-core optical transmission line and the multi-core optical amplifier.
  • An optical amplifying device of the present invention comprises multi-core optical amplifying means having a plurality of amplification cores, connecting means for connecting the multi-core optical amplifying means, and a multi-core optical transmission line having a plurality of transmission line cores.
  • the total number of the plurality of amplification cores is equal to or greater than the number of transmission cores through which the signal light propagates among the plurality of transmission line cores.
  • the optical amplification method of the present invention is a multi-core optical amplifier having a plurality of amplification cores and a multi-core optical transmission line having a plurality of transmission line cores.
  • the number of transmission cores is greater than or equal to the number of transmission cores through which the signal light propagates, and the signal light is amplified by a plurality of amplification cores.
  • optical amplifying device and the optical amplifying method of the present invention it is possible to connect the multi-core optical transmission line and the multi-core optical amplifier even when the number of cores of the multi-core optical transmission line and the number of cores of the multi-core optical amplifier do not match. can.
  • FIG. 1 is a block diagram showing the configuration of an optical amplifying device according to a first embodiment of the present invention
  • FIG. 4 is a flow chart for explaining an optical amplification method according to the first embodiment of the present invention
  • FIG. 4 is a block diagram showing the configuration of an optical amplifying device according to a second embodiment of the present invention
  • FIG. 5 is a block diagram showing another configuration of the optical amplifying device according to the second embodiment of the present invention
  • FIG. 10 is a diagram showing an example of information on the configuration of a multi-core optical amplifier included in the optical amplifier according to the second embodiment of the present invention
  • 8 is a flow chart for explaining an optical amplification method according to a second embodiment of the present invention
  • FIG. 11 is a block diagram showing the configuration of an optical amplifying device according to a third embodiment of the present invention
  • 9 is a flow chart for explaining an optical amplification method according to a third embodiment of the present invention
  • FIG. 1 is a block diagram showing the configuration of an optical amplifying device 100 according to the first embodiment of the present invention.
  • the optical amplification device 100 has a multi-core optical amplification section (multi-core optical amplification means) 110 and a connection section (connection means) 120 .
  • the multi-core optical amplification unit 110 includes a plurality of amplification cores.
  • the connection unit 120 connects the multicore optical amplifier 110 and the multicore optical transmission line 10 having a plurality of transmission line cores.
  • the total number of the plurality of amplification cores is equal to or greater than the number of transmission cores through which signal light propagates among the plurality of transmission line cores.
  • the optical amplifying device 100 of this embodiment is configured to include the multi-core optical amplifying section 110 in which the total number of amplification cores is greater than or equal to the number of transmission cores. Therefore, according to the optical amplifying device 100 of this embodiment, even if the number of cores of the multi-core optical transmission line and the number of cores of the multi-core optical amplifier do not match, the multi-core optical transmission line and the multi-core optical amplifier can be connected. can.
  • each of the plurality of amplification cores described above contains rare earth ions
  • the multi-core optical amplification section 110 can be configured to have a double clad structure.
  • the multicore optical amplifier 110 typically, a multicore erbium doped fiber (MC-EDF) using erbium ions as rare earth ions can be used.
  • M-EDF multicore erbium doped fiber
  • the multi-core optical amplification section 110 can be configured to include a plurality of multi-core optical amplification sections with different numbers of amplification cores. Mixing multi-core optical amplifiers with different numbers of cores increases the degree of freedom in combination, so it is possible to increase the options for the connection form between the multi-core optical transmission line and the multi-core optical amplifiers.
  • connection section 120 can be configured to connect the multi-core optical amplification section 110 and the multi-core optical transmission line 10 according to the operation mode of the optical amplification device 100 . As described above, by mixing multi-core optical amplifiers with different numbers of cores, it is possible to increase the degree of freedom in selecting the connection form according to the operation mode.
  • the connection unit 120 is configured such that the total sum of pumping light intensity for each multicore optical amplifier unit 110 is minimized, and the multicore optical amplifier unit 110 and the multicore optical transmission line 10.
  • the pumping light intensity is determined by the configuration of the multi-core optical amplification section 110, including the number of amplification cores.
  • the pumping light intensity depends on the clad diameter and the number of cores, and is determined by the ratio of the total cross-sectional area of the cores to the cross-sectional area of the fiber. .
  • the connection unit 120 is configured such that the sum of pumping densities of the multi-core optical amplifiers 110 is maximized, and the multi-core optical amplifiers 110 and the multi-core optical transmission are connected.
  • the pumping density is determined by the configuration of the multi-core optical amplification section 110 including the number of amplification cores.
  • the pumping density depends on the clad diameter and the number of cores, and is determined by the ratio of the total core cross-sectional area to the fiber cross-sectional area.
  • the operation mode is not limited to the mode for minimizing power consumption and the mode for maximizing the degree of optical amplification described above, and an operation mode can be set according to the required specifications.
  • a multi-core optical amplifier having a plurality of amplification cores and a multi-core optical transmission line having a plurality of transmission line cores are connected (step S11).
  • the connection is made so that the sum of the number m k of the plurality of amplification cores ( ⁇ (m k ⁇ N k )) is greater than or equal to the number n of the transmission cores through which the signal light propagates among the plurality of transmission line cores.
  • N k indicates the number of multi-core optical amplifiers
  • “k” indicates a variable for obtaining the sum.
  • the signal light is amplified by these multiple amplification cores (step S12).
  • the optical amplification method of this embodiment is configured to connect the multi-core optical amplifier and the multi-core optical transmission line so that the total number of amplification cores is greater than or equal to the number of transmission cores. Therefore, according to the optical amplification method of this embodiment, even if the number of cores of the multi-core optical transmission line and the number of cores of the multi-core optical amplifier do not match, the multi-core optical transmission line and the multi-core optical amplifier can be connected. .
  • Connecting the multi-core optical amplifier and the multi-core optical transmission line may include connecting the multi-core optical amplifier and the multi-core optical transmission line according to the overall operation mode of the multi-core optical amplifier. .
  • connecting the multi-core optical amplifier and the multi-core optical transmission line is a connection form that minimizes the total pumping light intensity for each multi-core optical amplifier. It includes connecting an amplifier and a multi-core optical transmission line.
  • the pumping light intensity is determined by the configuration of the multi-core optical amplifier, including the number of amplification cores.
  • connecting the multi-core optical amplifier and the multi-core optical transmission line is a connection mode that maximizes the total pumping density of each multi-core optical amplifier. It includes connecting an optical amplifier and a multi-core optical transmission line.
  • the pumping density is determined by the configuration of the multi-core optical amplifier, including the number of amplification cores.
  • a multi-core optical amplifier can be connected.
  • FIG. 3 shows the configuration of an optical amplifying device 1000 according to this embodiment.
  • the optical amplification device 1000 has a multi-core optical amplification section (multi-core optical amplification means) 1100 and a connection section (connection means) 1200 .
  • the multi-core optical amplification section 1100 includes a plurality of amplification cores. Each of the plurality of amplification cores contains rare earth ions, and the multi-core optical amplification section 1100 can be configured to have a double clad structure.
  • a multicore erbium doped fiber (MC-EDF) using erbium ions as rare earth ions can be used.
  • the multi-core optical amplification section 1100 can be configured to include a plurality of multi-core optical amplification sections having different numbers of amplification cores.
  • FIG. 3 shows a configuration including four multi-core optical amplifiers 1101 to 1104 as an example.
  • the number of amplification cores is, for example, 2 in the multi-core optical amplifier 1101, 4 in the multi-core optical amplifier 1102, 7 in the multi-core optical amplifier 1103, and 19 in the multi-core optical amplifier 1104. .
  • the connecting section 1200 connects the multi-core optical amplifier section 1100 and the multi-core optical transmission line 10 having a plurality of transmission line cores.
  • a first connection section 1210 connecting the multicore optical transmission line 11 on the input side and the multicore optical amplification section 1100 and a second connection section 1210 connecting the multicore optical transmission line 12 on the output side and the multicore optical amplification section 1100 are shown. shows a configuration with a connection 1220 of .
  • the total number of the plurality of amplification cores is equal to or greater than the number of transmission cores through which signal light propagates among the plurality of transmission line cores. Therefore, according to the optical amplifier device 1000 of this embodiment, even if the number of cores of the multi-core optical transmission line and the number of cores of the multi-core optical amplifier do not match, the multi-core optical transmission line and the multi-core optical amplifier can be connected. can.
  • the connection unit 1200 can be configured to connect the multi-core optical amplification unit 1100 and the multi-core optical transmission line 10 according to the operation mode of the optical amplification device 1000 .
  • the connection unit 1200 is configured to switch connections between the plurality of amplification cores and the plurality of transmission line cores according to the operation mode. That is, the configuration is such that any transmission line core of the multi-core optical transmission line 10 can be switched and controlled to be connected to any one of the multi-core optical amplifiers 1101 to 1104 .
  • the first connection portion 1210 and the second connection portion 1220 are respectively the first fan-in-fan-out portions (first fan-in-fan-out means) 1211 and 1221
  • the optical The configuration includes switching units (optical switching means) 1212 and 1222 and second fan-in-fan-out units (second fan-in-fan-out means) 1213 and 1223 .
  • First fan-in fan-out units 1211 and 1221 connect the plurality of transmission line cores and the first single-core optical transmission line, respectively.
  • the optical switching units 1212 and 1222 switch connection between the first single-core optical transmission line and the second single-core optical transmission line.
  • Second fan-in fan-out units 1213 and 1223 connect the second single-core optical transmission line and the plurality of amplification cores, respectively.
  • Optical switches can typically be used as the optical switching units 1212 and 1222 .
  • first fan-in-fan-out unit 1211 for example, "n" transmission cores of one input-side multi-core optical transmission line 11 are coupled to "n" first single-core optical transmission lines. Fanout (1:nFO) can be used.
  • second fan-in fan-out unit 1213 for example, a fan-in (2: 1 FI) can be used.
  • the optical amplifying device 1000 includes a pumping light generating section (pumping light generating means) 1300, a variable branching section (variable branching means) 1400, and a control section 1500 having a pumping light control section (pumping light control means).
  • a pumping light generating section (pumping light generating means) 1300
  • variable branching section variable branching means
  • control section 1500 having a pumping light control section (pumping light control means).
  • a combiner 1410 that couples the excitation light to the multi-core optical fiber.
  • Pumping light generating section 1300, variable branching section 1400, and pumping light control means constitute pumping light introduction means, and pumping light for pumping a plurality of amplification cores is introduced into multi-core optical amplification section 1100 by the cladding pumping method.
  • the number of pumping light generators 1300 can be reduced to one regardless of the number of amplification cores.
  • the excitation light generator 1300 generates excitation light.
  • the pumping light generation unit 1300 includes a plurality of light sources 1310 that generate laser light, and a combining unit (combining means) 1320 that combines the laser lights generated by the plurality of light sources and outputs the pumping light. can be configured. By providing a plurality of light sources 1310 in this way, excitation light can be generated even if one of the light sources fails.
  • a semiconductor laser can typically be used as the light source 1310 .
  • FIG. 4 also shows a driver 1330 for driving the light source 1310 .
  • variable branching unit 1400 branches pumping light and supplies the branched pumping light to the multi-core optical amplifier unit 1100 .
  • a variable coupler can be used as the variable branching unit 1400 .
  • the pumping light control section provided in the control section 1500 determines the branching ratio of the variable branching section 1400 according to the operation mode, and sets the determined branching ratio in the variable branching section 1400 . This makes it possible to supply the pumping light only to the multi-core optical amplifiers 1101 to 1104 that need to be activated according to the operation mode.
  • the control unit 1500 can be configured to include a connection configuration determination unit (connection configuration determination means).
  • the connection configuration determination unit determines the connection configuration between the multicore optical transmission line 10 and the multicore optical amplification unit 1100 according to the operation mode using information on the number of transmission cores and the configuration of the multicore optical amplification unit 1100 .
  • the control unit 1500 then controls the optical switching units 1212 and 1222 so as to achieve the determined connection form.
  • FIG. 5 shows an example of information regarding the configuration of the multi-core optical amplifier 1100 described above.
  • information related to the configuration of the multi-core optical amplifier 1100
  • the pumping density ratio ⁇ indicates a value for each core when the pumping density of the multi-core optical amplifier 1100 having two cores is "1 W/ ⁇ m 2 ".
  • the pumping density is proportional to the optical amplification efficiency of the multi-core optical amplification section 1100, and thus affects the achievable optical amplification and maximum output light intensity.
  • the light intensity required to generate an excited state indicates a value for each core when the light intensity for each core of the multi-core optical amplifier 1100 having two cores is 1 [W/core].
  • the required pumping light intensity P[W] is the light intensity required for the entire multi-core optical amplifying section 1100 . Therefore, the required pumping light intensity P is proportional to the power consumption of the multi-core optical amplifier 1100.
  • the required excitation light intensity P is a value obtained by multiplying the light intensity required for each core to generate an excited state by the number of cores.
  • connection topology determination unit Next, an example of the operation of the connection topology determination unit will be described.
  • connection configuration determination unit determines the connection configuration between the multicore optical transmission line 10 and the multicore optical amplification unit 1100 from the information regarding the configuration of the multicore optical amplification unit 1100 and the following conditions (1) to (3). .
  • N k , m k , n are integers greater than or equal to 0 (3)
  • P k is the required pumping light intensity
  • N k is the number of multicore optical amplifiers 1100
  • m k is the number of amplification cores
  • n is the number of transmission cores. Note that "k” is a variable when calculating the sum ( ⁇ ).
  • connection topology determining unit determines the number “N k ” of multi-core optical amplifiers 1100 having “m k ” number of amplification cores so as to satisfy the conditions (1) to (3).
  • Conditions (1) to (3) are to find a value that minimizes a certain linear expression among the values of the variables that satisfy the linear inequality and the linear equality. Therefore, conditions (1)-(3) can be solved using the well-known linear programming method.
  • condition (2) is expressed as follows.
  • condition (1) 7 ⁇ N 1 +7 ⁇ N 2 +7 ⁇ N 3 +19 ⁇ N 4 ⁇ 14 (2-1) Also, ⁇ (N k ⁇ P k ) of condition (1) is expressed as follows.
  • 2.1 ⁇ N 1 +2.1 ⁇ N 2 +2.1 ⁇ N 3 +5 ⁇ N 4 2.1 ⁇ (N 1 +N 2 +N 3 )+5 ⁇ N 4 (1 ⁇ 1)
  • cores to be input may be selected in order of decreasing required excitation light intensity Pk .
  • N 1 +N 2 +N 3 ) ⁇ 14 that is, N 1 +N 2 +N 3 ⁇ 2. Therefore, from the equation (1-1), from among the combinations of N 1 to N 3 where N 1 +N 2 +N 3 ⁇ 2 holds, N 1 that minimizes 2.1 ⁇ (N 1 +N 2 +N 3 ) ⁇ N 3 combinations should be found.
  • connection configuration determination unit determines the connection configuration between the multicore optical transmission line 10 and the multicore optical amplification unit 1100 from the information regarding the configuration of the multicore optical amplification unit 1100 and the following conditions (4) to (7). .
  • connection topology determination unit determines the number “N k ” of multi-core optical amplifiers 1100 having “m k ” number of amplification cores so as to satisfy the conditions (4) to (7).
  • Conditions (4) to (7) are to find a value that minimizes a certain linear expression among the values of the variables that satisfy the linear inequality and the linear equality. Therefore, conditions (4)-(7) can be solved using the well-known linear programming method.
  • condition (6) is expressed as follows.
  • N 4 1 is set first because cores to be input may be selected in order of increasing excitation density ratio ⁇ k .
  • connecting all 14 transmission cores to one 19-core-multi-core optical amplification unit provides a greater optical amplification than connecting each to two 7-core-multi-core optical amplification units.
  • the maximum optical amplification at this time is 3.8.
  • connection configuration determination unit uses information about the number of transmission cores and the configuration of the multicore optical amplification unit 1100 to determine the connection configuration between the multicore optical transmission line 10 and the multicore optical amplification unit 1100 according to the operation mode. can be determined.
  • a network management system designates an operation mode for the optical amplifying device 1000, and the optical amplifying device 1000 operates in an operation mode according to a request from the network management system (NMS). becomes possible.
  • the network management system uses information on the number of transmission cores and the configuration of the multi-core optical amplifier 1100 to determine the connection configuration between the multi-core optical transmission line 10 and the multi-core optical amplifier 1100. It is also possible to In other words, the network management system (NMS) may employ linear programming to obtain solutions that satisfy conditions (1) to (3) or conditions (4) to (7).
  • the optical amplifying device 1000 can be configured to have a connection configuration receiving section (connection configuration receiving means) that receives information about the connection configuration according to the operation mode.
  • a multi-core optical amplifier having a plurality of amplification cores and a multi-core optical transmission line having a plurality of transmission line cores are connected (step S11).
  • the connection is made so that the sum of the number m k of the plurality of amplification cores ( ⁇ (m k ⁇ N k )) is greater than or equal to the number n of the transmission cores through which the signal light propagates among the plurality of transmission line cores. .
  • the signal light is amplified by these multiple amplification cores (step S12).
  • the optical amplification method of this embodiment is configured to connect the multi-core optical amplifier and the multi-core optical transmission line so that the total number of amplification cores is greater than or equal to the number of transmission cores. Therefore, according to the optical amplification method of this embodiment, even if the number of cores of the multi-core optical transmission line and the number of cores of the multi-core optical amplifier do not match, the multi-core optical transmission line and the multi-core optical amplifier can be connected. .
  • connecting the multi-core optical amplifier and the multi-core optical transmission line may include switching connection between the plurality of amplification cores and the plurality of transmission line cores according to the operation mode. can.
  • step S21 information about the number of transmission cores and the configuration of the multi-core optical amplifier is used to determine the connection form according to the operation mode.
  • amplifying the signal light described above includes generating pumping light for pumping a plurality of amplification cores, branching the pumping light at a branching ratio according to the operation mode, and dividing the branched pumping light into Incorporation into a multi-core optical amplifier with a cladding pumping scheme may be included.
  • a multi-core optical amplifier can be connected.
  • FIG. 7 shows the configuration of an optical amplifying device 2000 according to this embodiment. Note that the same reference numerals are given to the same configurations as those of the optical amplifying device 1000 according to the first embodiment, and detailed description thereof may be omitted.
  • the optical amplification device 2000 has a multi-core optical amplification section (multi-core optical amplification means) 1100 and a connection section (connection means) 2200 .
  • the multi-core optical amplification section 1100 includes a plurality of amplification cores.
  • the multi-core optical amplification section 1100 can be configured to include a plurality of multi-core optical amplification sections having different numbers of amplification cores.
  • FIG. 7 shows a configuration including four multi-core optical amplifiers 1101 to 1104 as an example.
  • the connecting section 2200 connects the multi-core optical amplifier section 1100 and the multi-core optical transmission line 10 having a plurality of transmission line cores.
  • a first connecting portion 2210 connecting the multicore optical transmission line 11 on the input side and the multicore optical amplifying section 1100, and a second connecting portion 2210 connecting the multicore optical transmission line 12 on the output side and the multicore optical amplifying section 1100 are shown.
  • the total number of the plurality of amplification cores is equal to or greater than the number of transmission cores through which signal light propagates among the plurality of transmission line cores. Therefore, according to the optical amplifying device 2000 of this embodiment, even if the number of cores of the multi-core optical transmission line and the number of cores of the multi-core optical amplifier do not match, the multi-core optical transmission line and the multi-core optical amplifier can be connected. can.
  • the connection unit 2200 can be configured to connect the multi-core optical amplification unit 1100 and the multi-core optical transmission line 10 according to the operation mode of the optical amplification device 2000 .
  • the connecting section 2200 connects a plurality of amplification cores of the multi-core optical amplifying section 1100 selected according to the operation mode and a plurality of transmission line cores. bottom.
  • the first connecting portion 1210 and the second connecting portion 1220 are respectively the third fan-in fan-out portions (third fan-in fan-out means) 2211, 2221 and the fourth fan-in fan-out portion (fourth fan-out means).
  • (fan-in/fan-out means) 2213 and 2223 may be provided.
  • the third fan-in fan-out units 2211 and 2221 connect the plurality of transmission line cores and the single core optical transmission lines 2212 and 2222, respectively.
  • Fourth fan-in fan-out units 2213 and 2223 connect the single-core optical transmission lines 2212 and 2222 to the plurality of amplification cores, respectively.
  • the configuration of the multi-core optical amplifier 1100 is the number of multi-core optical amplifiers 1100 for each number of amplification cores.
  • the optical amplifying device 2000 is configured to incorporate the required number of multi-core optical amplifying sections 1100 for each number of amplification cores selected according to a predetermined operation mode. Therefore, only the minimum necessary multi-core optical amplifier section 1100 needs to be mounted, and the connection section 2200 does not need to be provided with an optical switching section (optical switch). Furthermore, the control unit 2500 of the optical amplifying device 2000 does not require the connection configuration determination unit provided in the control unit 1500 of the optical amplifying device 1000 according to the second embodiment. As a result, according to the optical amplifying device 2000 of this embodiment, the manufacturing cost can be greatly reduced.
  • the optical amplifying device 2000 of the present embodiment it is possible to obtain an optical amplifying device specialized for a specific application with low manufacturing cost.
  • the optical amplifying device 2000 can be used in a submarine optical repeater that has a fixed number of input/output transmission cores and operates in a mode that minimizes power consumption.
  • a multi-core optical amplifier having a plurality of amplification cores and a multi-core optical transmission line having a plurality of transmission line cores are connected (step S11).
  • the connection is made so that the sum of the number m k of the plurality of amplification cores ( ⁇ (m k ⁇ N k )) is greater than or equal to the number n of the transmission cores through which the signal light propagates among the plurality of transmission line cores. .
  • the signal light is amplified by these multiple amplification cores (step S12).
  • the optical amplification method of this embodiment is configured to connect the multi-core optical amplifier and the multi-core optical transmission line so that the total number of amplification cores is greater than or equal to the number of transmission cores. Therefore, according to the optical amplification method of this embodiment, even if the number of cores of the multi-core optical transmission line and the number of cores of the multi-core optical amplifier do not match, the multi-core optical transmission line and the multi-core optical amplifier can be connected. .
  • connecting the multi-core optical amplifier and the multi-core optical transmission line includes connecting the multi-core optical amplifier and the multi-core optical transmission line according to the overall operation mode of the multi-core optical amplifier. be able to.
  • connecting the multi-core optical amplifier and the multi-core optical transmission line includes connecting a plurality of amplification cores of the multi-core optical amplifier selected according to the operation mode and a plurality of transmission line cores.
  • the optical amplifying device 2000 and the optical amplifying method of this embodiment even if the number of cores of the multi-core optical transmission line and the number of cores of the multi-core optical amplifier do not match, A multi-core optical amplifier can be connected. Furthermore, the manufacturing cost of the optical amplifying device can be greatly reduced.
  • Multi-core optical amplification means having a plurality of amplification cores; and connection means for connecting the multi-core optical amplification means and a multi-core optical transmission line having a plurality of transmission line cores,
  • An optical amplifying device wherein the total number of the plurality of amplification cores is equal to or greater than the number of transmission cores through which signal light propagates among the plurality of transmission line cores.
  • Appendix 2 The optical amplifying device according to Appendix 1, wherein the multi-core optical amplification means includes a plurality of the multi-core optical amplification means having different numbers of the plurality of amplification cores.
  • connection means When the operation mode is a mode for minimizing power consumption, the connection means has a connection configuration in which the total sum of pumping light intensity for each of the multi-core optical amplification means is minimized, and the multi-core optical amplification means and 3.
  • connection means has a connection configuration that maximizes the sum of excitation densities of the multi-core optical amplification means and the multi-core optical amplification means. 3.
  • Appendix 7 The optical amplifying device according to appendix 6, wherein the pumping density is determined by the configuration of the multi-core optical amplifying means, including the number of the plurality of amplification cores.
  • Appendix 8 The optical amplifying device according to any one of Appendices 3 to 7, wherein the connecting means switches connection between the plurality of amplification cores and the plurality of transmission line cores according to the operation mode.
  • connection means includes first fan-in-fan-out means for connecting the plurality of transmission line cores and the first single-core optical transmission line, and the first single-core optical transmission line and the second and second fan-in-fan-out means for respectively connecting said second single-core optical transmission line and said plurality of amplification cores.
  • An optical amplification device as described.
  • Supplementary note 10 Any one of Supplementary notes 4 to 9, further comprising a connection configuration determination unit that determines the connection configuration according to the operation mode using information regarding the number of transmission cores and the configuration of the multi-core optical amplification unit.
  • the optical amplifier device described in The optical amplifier device described in .
  • connection means is any one of Supplementary notes 3 to 7, which connects the plurality of amplification cores of the multi-core optical amplification means selected according to the operation mode and the plurality of transmission line cores.
  • connection means includes third fan-in-fan-out means for connecting the plurality of transmission line cores and the single-core optical transmission line, respectively, and connecting the single-core optical transmission line and the plurality of amplification cores, respectively.
  • a pumping light introducing means for introducing pumping light for pumping the plurality of amplification cores into the multi-core light amplifying means by a cladding pumping method, the pumping light introducing means comprising: pumping light generating means for generating the pumping light; variable branching means for branching the pumping light and supplying the branched pumping light to the multi-core optical amplifier; 15.
  • the optical amplifying device according to any one of appendices 3 to 14, further comprising pumping light control means for determining the branching ratio according to and setting the determined branching ratio in the variable branching means.
  • the excitation light generating means includes a plurality of light sources that generate laser light, and a multiplexing means that multiplexes the laser light generated by the plurality of light sources and outputs the excitation light. 16.
  • a multi-core optical amplifier having a plurality of amplification cores and a multi-core optical transmission line having a plurality of transmission line cores, wherein the total number of the plurality of amplification cores is equal to the plurality of transmission line cores an optical amplification method for amplifying the signal light by means of the plurality of amplification cores.
  • Appendix 18 Connecting the multi-core optical amplifier and the multi-core optical transmission line is performed by connecting the multi-core optical amplifier and the multi-core optical transmission line according to the overall operation mode of the multi-core optical amplifier. 18.
  • Appendix 20 The optical amplification method according to Appendix 19, wherein the pumping light intensity is determined by the configuration of the multi-core optical amplifier, including the number of the plurality of amplification cores.
  • Appendix 22 The optical amplification method according to appendix 21, wherein the pumping density is determined by the configuration of the multi-core optical amplifier, including the number of the plurality of amplification cores.
  • Connecting the multi-core optical amplifier and the multi-core optical transmission line includes switching connection between the plurality of amplification cores and the plurality of transmission line cores according to the operation mode. 23.
  • the optical amplification method according to any one of 18 to 22.
  • Appendix 24 Any one of appendices 19 to 22, further comprising determining the connection configuration according to the operation mode using information about the number of transmission cores and the configuration of the multi-core optical amplifier. light amplification method.
  • Appendix 25 Any one of appendices 18 to 22, further comprising selecting the multi-core optical amplifier according to the operation mode using information about the number of transmission cores and the configuration of the multi-core optical amplifier. optical amplification method.
  • Connecting the multi-core optical amplifier and the multi-core optical transmission line includes connecting the plurality of amplification cores of the multi-core optical amplifier selected according to the operation mode and the plurality of transmission line cores. 26.
  • Amplifying the signal light includes generating pumping light for pumping the plurality of amplification cores, branching the pumping light at a branching ratio according to the operation mode, and branching the pumping light 27.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)

Abstract

マルチコア光ファイバ伝送システムにおいては、マルチコア光伝送路とマルチコア光増幅器を接続することが困難な場合が生じるため、本発明の光増幅装置は、複数の増幅用コアを備えたマルチコア光増幅手段と、マルチコア光増幅手段と、複数の伝送路コアを備えたマルチコア光伝送路とを接続する接続手段、とを有し、複数の増幅用コアの個数の総和は、複数の伝送路コアのうち信号光が伝搬する伝送コアの個数以上である。

Description

光増幅装置および光増幅方法
 本発明は、光増幅装置および光増幅方法に関し、特に、マルチコア光ファイバ伝送システムにおいて用いられる光増幅装置および光増幅方法に関する。
 モバイルトラフィックやビデオサービスの急速な拡大などにより、コアネットワークにおける通信容量の拡大が求められている。この容量拡大の要求は、今後も継続する傾向にある。通信容量の拡大はこれまで、時間多重技術や波長多重技術を用いることによって実現されてきた。この時間多重技術や波長多重技術は、シングルコア光ファイバによる光通信システムに適用されてきた。
 通信容量をさらに拡大するため、これまでの多重技術とは異なる次元の多重技術である空間多重技術が開発されている。空間多重技術には、光ファイバ1本あたりのコア数を増大させるマルチコア技術と、伝播モード数を増大させるマルチモード技術がある。現在の光ファイバ通信で用いられているコア数およびモード数は、いずれも一個である。そのため、コア数およびモード数を増大させることによって通信容量を飛躍的に拡大することが可能である。
 マルチコア技術で用いられるマルチコア光ファイバに適した光増幅方式としては、コア励起方式とクラッド励起方式の二方式がある。コア励起方式では、各コアを通して光伝送される光信号の強度をコア毎に個別の励起光源を用いて個別に増幅する。一方、クラッド励起方式では、各コアを通して光伝送される光信号の強度を共通の励起光源を用いて一括して増幅する。
 マルチコア光ファイバを伝送する光信号の光強度を効率よく増幅するためには、各コアを通して光伝送される光信号の強度を共通の励起光源を用いて一括して増幅するクラッド励起方式が望ましい。また、クラッド励起方式では、現在の単一コア励起方式による光増幅器の構成を原理的にはそのままクラッド励起方式の光増幅器の構成として用いることができる。
 このようなクラッド励起方式による光増幅器の一例が、特許文献1に記載されている。
 特許文献1に記載された関連する光増幅器は、マルチコア光ファイバ91、励起用光源92、光アイソレータ94、光合波器93、マルチコア光ファイバ97#1及び97#2を備える。ここで、マルチコア光ファイバ91には、希土類イオンを添加した複数のコアが第1クラッド中に配置されている。さらに、マルチコア光ファイバ91は、第1クラッドの周囲に配置されかつ希土類イオンを励起する波長を有する励起光を反射する第2クラッドを備える。そして、複数のコアは、伝搬光が結合するコア間距離を有する構成としている。
 また、関連技術としては、特許文献2、3に記載された技術がある。
特開2017-21070号公報 特開2019-139029号公報 特表2020-513162号公報
 マルチコア光ファイバを用いたマルチコア光ファイバ伝送システムにおいては、マルチコア光伝送路の間に上述した関連する光増幅器のようなマルチコア光増幅器が挿入される。したがって、マルチコア光伝送路の各コアとマルチコア光増幅器の各コアが光学的に接続される必要がある。ここで、マルチコア光ファイバは、コアを稠密充填するためにコア数やコアの配置に制限がある。そのため、マルチコア光伝送路のコア数とマルチコア光増幅器のコア数が一致せず、マルチコア光伝送路とマルチコア光増幅器を接続することが困難な場合が生じる。
 このように、マルチコア光ファイバ伝送システムにおいては、マルチコア光伝送路とマルチコア光増幅器を接続することが困難な場合が生じる、という問題があった。
 本発明の目的は、上述した課題である、マルチコア光ファイバ伝送システムにおいては、マルチコア光伝送路とマルチコア光増幅器を接続することが困難な場合が生じる、という課題を解決する光増幅装置および光増幅方法を提供することにある。
 本発明の光増幅装置は、複数の増幅用コアを備えたマルチコア光増幅手段と、マルチコア光増幅手段と、複数の伝送路コアを備えたマルチコア光伝送路とを接続する接続手段、とを有し、複数の増幅用コアの個数の総和は、複数の伝送路コアのうち信号光が伝搬する伝送コアの個数以上である。
 本発明の光増幅方法は、複数の増幅用コアを備えたマルチコア光増幅器と、複数の伝送路コアを備えたマルチコア光伝送路とを、複数の増幅用コアの個数の総和が、複数の伝送路コアのうち信号光が伝搬する伝送コアの個数以上となるように接続し、複数の増幅用コアによって信号光を増幅する。
 本発明の光増幅装置および光増幅方法によれば、マルチコア光伝送路のコア数とマルチコア光増幅器のコア数が一致しない場合であっても、マルチコア光伝送路とマルチコア光増幅器を接続することができる。
本発明の第1の実施形態に係る光増幅装置の構成を示すブロック図である。 本発明の第1の実施形態に係る光増幅方法を説明するためのフローチャートである。 本発明の第2の実施形態に係る光増幅装置の構成を示すブロック図である。 本発明の第2の実施形態に係る光増幅装置の別の構成を示すブロック図である。 本発明の第2の実施形態に係る光増幅装置が備えるマルチコア光増幅部の構成に関する情報の一例を示す図である。 本発明の第2の実施形態に係る光増幅方法を説明するためのフローチャートである。 本発明の第3の実施形態に係る光増幅装置の構成を示すブロック図である。 本発明の第3の実施形態に係る光増幅方法を説明するためのフローチャートである。
 以下に、図面を参照しながら、本発明の実施形態について説明する。
 〔第1の実施形態〕
 図1は、本発明の第1の実施形態に係る光増幅装置100の構成を示すブロック図である。光増幅装置100は、マルチコア光増幅部(マルチコア光増幅手段)110と接続部(接続手段)120とを有する。
 マルチコア光増幅部110は、複数の増幅用コアを備える。接続部120は、マルチコア光増幅部110と、複数の伝送路コアを備えたマルチコア光伝送路10とを接続する。ここで、複数の増幅用コアの個数の総和は、複数の伝送路コアのうち信号光が伝搬する伝送コアの個数以上である。
 このように、本実施形態の光増幅装置100は、増幅用コアの個数の総和が伝送コアの個数以上であるマルチコア光増幅部110を備えた構成としている。したがって、本実施形態の光増幅装置100によれば、マルチコア光伝送路のコア数とマルチコア光増幅器のコア数が一致しない場合であっても、マルチコア光伝送路とマルチコア光増幅器を接続することができる。
 ここで、上記の複数の増幅用コアはそれぞれ希土類イオンを含み、マルチコア光増幅部110はダブルクラッド構造からなる構成とすることができる。マルチコア光増幅部110として、典型的には、希土類イオンとしてエルビウムイオンを用いたマルチコアエルビウム添加ファイバ(Multicore Erbium Doped Fiber:MC-EDF)を用いることができる。
 マルチコア光増幅部110は、複数の増幅用コアの個数が異なる複数のマルチコア光増幅部を含む構成とすることができる。コア数が異なるマルチコア光増幅部を混在させることにより組み合わせの自由度が増大するので、マルチコア光伝送路とマルチコア光増幅部との接続形態の選択肢を増やすことが可能になる。
 接続部120は、光増幅装置100の動作モードに応じて、マルチコア光増幅部110とマルチコア光伝送路10とを接続する構成とすることができる。上述したように、コア数が異なるマルチコア光増幅部を混在させることにより、動作モードに応じた接続形態を選択する自由度を増大させることが可能である。
 この動作モードが消費電力を最小化するモードである場合、接続部120は、マルチコア光増幅部110ごとの励起光強度の総和が最小となる接続形態で、マルチコア光増幅部110とマルチコア光伝送路10とを接続する。ここで、励起光強度は、複数の増幅用コアの個数を含む、マルチコア光増幅部110の構成により定まる。具体的には、マルチコア光増幅部110としてマルチコアエルビウム添加ファイバ(MC-EDF)を用いる場合、励起光強度はクラッド径とコア数に依存し、ファイバ断面積に対するコアの総断面積の比により定まる。
 また、動作モードが光増幅度を最大化するモードである場合、接続部120は、マルチコア光増幅部110ごとの励起密度の総和が最大となる接続形態で、マルチコア光増幅部110とマルチコア光伝送路10とを接続する。ここで、励起密度は、複数の増幅用コアの個数を含む、マルチコア光増幅部110の構成により定まる。具体的には、マルチコア光増幅部110としてマルチコアエルビウム添加ファイバ(MC-EDF)を用いる場合、励起密度はクラッド径とコア数に依存し、ファイバ断面積に対するコアの総断面積の比により定まる。
 このように、予め定められた要求仕様に基づいて動作モードを設定することによって、マルチコア光増幅部110の構成の簡略化、および低コスト化を図ることができる。なお、動作モードは上述した消費電力を最小化するモードおよび光増幅度を最大化するモードに限らず、要求仕様に応じた動作モードを設定することができる。
 次に、本実施形態による光増幅方法について、図2に示したフローチャートを用いて説明する。
 本実施形態による光増幅方法においては、まず、複数の増幅用コアを備えたマルチコア光増幅器と、複数の伝送路コアを備えたマルチコア光伝送路とを接続する(ステップS11)。このとき、複数の増幅用コアの個数mの総和(Σ(m×N))が、複数の伝送路コアのうち信号光が伝搬する伝送コアの個数n以上となるように接続する。ここで、「N」はマルチコア光増幅器の個数を、「k」は総和を求める際の変数を示す。そして、これらの複数の増幅用コアによって信号光を増幅する(ステップS12)。
 このように、本実施形態の光増幅方法は、増幅用コアの個数の総和が伝送コアの個数以上となるように、マルチコア光増幅器とマルチコア光伝送路を接続する構成としている。したがって、本実施形態の光増幅方法によれば、マルチコア光伝送路のコア数とマルチコア光増幅器のコア数が一致しない場合であっても、マルチコア光伝送路とマルチコア光増幅器を接続することができる。
 マルチコア光増幅器とマルチコア光伝送路とを接続すること(ステップS11)は、マルチコア光増幅器の全体の動作モードに応じて、マルチコア光増幅器とマルチコア光伝送路とを接続することを含むものとすることができる。
 この動作モードが消費電力を最小化するモードである場合、マルチコア光増幅器とマルチコア光伝送路とを接続することは、マルチコア光増幅器ごとの励起光強度の総和が最小となる接続形態で、マルチコア光増幅器とマルチコア光伝送路とを接続することを含む。ここで、励起光強度は、複数の増幅用コアの個数を含む、マルチコア光増幅器の構成により定まる。
 また、動作モードが光増幅度を最大化するモードである場合、マルチコア光増幅器とマルチコア光伝送路とを接続することは、マルチコア光増幅器ごとの励起密度の総和が最大となる接続形態で、マルチコア光増幅器とマルチコア光伝送路とを接続することを含む。ここで、励起密度は、複数の増幅用コアの個数を含む、マルチコア光増幅器の構成により定まる。
 以上説明したように、本実施形態の光増幅装置100および光増幅方法によれば、マルチコア光伝送路のコア数とマルチコア光増幅器のコア数が一致しない場合であっても、マルチコア光伝送路とマルチコア光増幅器を接続することができる。
 〔第2の実施形態〕
 次に、本発明の第2の実施形態について説明する。図3に、本実施形態による光増幅装置1000の構成を示す。光増幅装置1000は、マルチコア光増幅部(マルチコア光増幅手段)1100と接続部(接続手段)1200とを有する。
 マルチコア光増幅部1100は、複数の増幅用コアを備える。複数の増幅用コアはそれぞれ希土類イオンを含み、マルチコア光増幅部1100はダブルクラッド構造からなる構成とすることができる。マルチコア光増幅部1100として、典型的には、希土類イオンとしてエルビウムイオンを用いたマルチコアエルビウム添加ファイバ(Multicore Erbium Doped Fiber:MC-EDF)を用いることができる。マルチコア光増幅部1100は、複数の増幅用コアの個数が異なる複数のマルチコア光増幅部を含む構成とすることができる。図3では例として、4個のマルチコア光増幅部1101~1104を備えた構成を示す。ここで、増幅用コアの個数は、例えば、マルチコア光増幅部1101は2個、マルチコア光増幅部1102は4個、マルチコア光増幅部1103は7個、そしてマルチコア光増幅部1104は19個である。
 接続部1200は、マルチコア光増幅部1100と、複数の伝送路コアを備えたマルチコア光伝送路10とを接続する。図3では例として、入力側のマルチコア光伝送路11とマルチコア光増幅部1100を接続する第1の接続部1210、および出力側のマルチコア光伝送路12とマルチコア光増幅部1100を接続する第2の接続部1220を備えた構成を示す。
 ここで、複数の増幅用コアの個数の総和は、複数の伝送路コアのうち信号光が伝搬する伝送コアの個数以上である。したがって、本実施形態の光増幅装置1000によれば、マルチコア光伝送路のコア数とマルチコア光増幅器のコア数が一致しない場合であっても、マルチコア光伝送路とマルチコア光増幅器を接続することができる。
 具体的には例えば、上述した例で増幅用コアの個数の総和は32(=2+4+7+19)であり、40個の伝送路コアを備えたマルチコア光伝送路10のうち14個の伝送コアを信号光が伝搬する構成とすることができる。
 接続部1200は、光増幅装置1000の動作モードに応じて、マルチコア光増幅部1100とマルチコア光伝送路10とを接続する構成とすることができる。そして、本実施形態の光増幅装置1000においては、接続部1200が、複数の増幅用コアと複数の伝送路コアとの接続を、動作モードに応じて切り替える構成とした。すなわち、マルチコア光伝送路10のいずれかの伝送路コアが、マルチコア光増幅部1101~1104のいずれかと接続されるように切り替えて制御できる構成とした。
 具体的には図3に示すように、第1の接続部1210および第2の接続部1220はそれぞれ、第1のファンインファンアウト部(第1のファンインファンアウト手段)1211、1221、光切替部(光切替手段)1212、1222、および第2のファンインファンアウト部(第2のファンインファンアウト手段)1213、1223を備えた構成とした。第1のファンインファンアウト部1211、1221は、複数の伝送路コアと第1のシングルコア光伝送路をそれぞれ接続する。光切替部1212、1222は、第1のシングルコア光伝送路と第2のシングルコア光伝送路との接続を切り替える。そして、第2のファンインファンアウト部1213、1223は、第2のシングルコア光伝送路と複数の増幅用コアをそれぞれ接続する。
 光切替部1212、1222として、典型的には光スイッチを用いることができる。第1のファンインファンアウト部1211として例えば、1本の入力側のマルチコア光伝送路11の「n」個の伝送コアを、「n」本の第1のシングルコア光伝送路にそれぞれ結合するファンアウト(1:n FO)を用いることができる。また、第2のファンインファンアウト部1213として例えば、2本の第2のシングルコア光伝送路を、1本のマルチコア光増幅部1101の2個の増幅用コアに結合するファンイン(2:1 FI)を用いることができる。
 光増幅装置1000は図4に示すように、励起光生成部(励起光生成手段)1300、可変分岐部(可変分岐手段)1400、励起光制御部(励起光制御手段)を備えた制御部1500を有する構成とすることができる。図4には、励起光をマルチコア光ファイバに結合させるコンバイナ1410もあわせて示した。
 励起光生成部1300、可変分岐部1400、および励起光制御手段が励起光導入手段を構成し、複数の増幅用コアを励起する励起光をクラッド励起方式によりマルチコア光増幅部1100に導入する。クラッド励起方式を用いることにより、増幅用コアの個数によらず励起光生成部1300の個数を一個とすることができるので、光増幅装置1000の小型化を図ることができる。
 励起光生成部1300は、励起光を生成する。ここで励起光生成部1300は、レーザ光を生成する複数の光源1310、および複数の光源が生成するレーザ光を合波して励起光を送出する合波部(合波手段)1320を備えた構成とすることができる。このように、複数の光源1310を備えることにより、いずれかの光源が故障した場合であっても励起光を生成することが可能である。光源1310として、典型的には半導体レーザを用いることができる。図4には、光源1310を駆動するためのドライバ1330もあわせて示した。
 可変分岐部1400は、励起光を分岐し、分岐した励起光をマルチコア光増幅部1100に供給する。可変分岐部1400として例えば、可変カプラを用いることができる。
 制御部1500が備える励起光制御部は、可変分岐部1400の分岐比を、動作モードに応じて決定し、決定した分岐比を可変分岐部1400に設定する。これにより、動作モードに応じて稼働状態とすることが必要となるマルチコア光増幅部1101~1104のみに励起光を供給することが可能である。
 制御部1500は、接続形態決定部(接続形態決定手段)を備えた構成とすることができる。接続形態決定部は、伝送コアの個数およびマルチコア光増幅部1100の構成に関する情報を用いて、動作モードに応じた、マルチコア光伝送路10とマルチコア光増幅部1100との接続形態を決定する。そして制御部1500は、決定された接続形態となるように光切替部1212、1222を制御する。
 上述したマルチコア光増幅部1100の構成に関する情報の一例を図5に示す。図5では、マルチコア光増幅部1100の構成に関する情報(パラメータ)として、マルチコア光増幅部1100のコア数ごとの励起密度比η、励起状態生成に要する光強度[W/core]、および所要励起光強度P[W]を示した。
 励起密度比ηは、コア数が2個であるマルチコア光増幅部1100の励起密度を「1W/μm」とした場合のコアごとの値を示す。励起密度は、マルチコア光増幅部1100の光増幅効率に比例するため、達成可能な光増幅度および最大出力光強度に影響を与える。
 励起状態生成に要する光強度は、コア数が2個であるマルチコア光増幅部1100のコアごとの光強度を1[W/core]とした場合のコアごとの値を示す。そして、所要励起光強度P[W]は、マルチコア光増幅部1100の全体で必要となる光強度である。したがって、所要励起光強度Pはマルチコア光増幅部1100の消費電力に比例する。
 コア数が増加するとコアごとのクラッド面積は減少するので、図5に示したように、コアごとの励起密度は増大する。コア数が増加するにしたがってコアごとの励起密度が増大することから、必要となるコアごとの光強度は、コア数が増加するにしたがって減少することになる。そして、所要励起光強度Pは、励起状態生成に要するコアごとの光強度にコア数を乗じた値となる。
 次に、接続形態決定部の動作の例を説明する。
 まず、光増幅装置1000の動作モードが消費電力を最小化するモードである場合における、接続形態決定部の動作について説明する。この場合、接続形態決定部は、マルチコア光増幅部1100の構成に関する情報と以下の条件(1)~(3)とから、マルチコア光伝送路10とマルチコア光増幅部1100との接続形態を決定する。
min[Σ(N×P)]                (1)
Σ(m×N)≧n                   (2)
、m、nは0以上の整数               (3)
 ここで、「P」は所要励起光強度、「N」はマルチコア光増幅部1100の個数、「m」は増幅用コアの個数、「n」は伝送コアの個数をそれぞれ示す。なお、「k」は総和(Σ)を求める際の変数である。
 このとき、接続形態決定部は、条件(1)~(3)を満たすように、増幅用コアの個数が「m」であるマルチコア光増幅部1100の個数「N」を決定する。条件(1)~(3)は、1次不等式および1次等式を満たす変数の値の中で、ある1次式を最小化する値を求めることになる。したがって、条件(1)~(3)は広く知られている線形計画法を利用して解くことができる。
 以下では具体的な例として、伝送コアの個数n=14、マルチコア光増幅部1101~1104のそれぞれの増幅用コアの個数mをm=7、m=7、m=7、m=19とした場合を例として説明する。この場合、マルチコア光増幅部1101~1104を励起状態とするのに必要な所要励起光強度P[W]はそれぞれ、図5から、P=2.1、P=2.1、P=2.1、P=5となる。
 このとき、条件(2)Σ(m×N)≧nを満たすマルチコア光増幅部1100の個数Nのうち、条件(1)からΣ(N×P)が最小になるNを見つければよい。上記の値を条件(2)に代入すると、条件(2)は下記のように表わされる。
 7×N+7×N+7×N+19×N≧14     (2-1)
 また、条件(1)のΣ(N×P)は下記のように表わされる。
 2.1×N+2.1×N+2.1×N+5×N=2.1×(N+N+N)+5×N                     (1-1)
 消費電力を最小化するモードである場合は、所要励起光強度Pが小さい順に入力するコアを選択すればよいので、まず、N=0とすると、(2-1)式は7×(N+N+N)≧14、すなわち、N+N+N≧2となる。したがって、(1-1)式とから、N+N+N≧2が成立するN~Nの組み合わせの中から2.1×(N+N+N)を最小にするN~Nの組み合わせを探せばよいことになる。
 ここで、N~Nは、増幅用コアの個数がいずれも7個であるマルチコア光増幅部1101~1103の個数を表している。したがって、N=N=1、N=0としても、N=0、N=N=1としても、増幅用コアの個数が7個であるマルチコア光増幅部が2個必要になることに変わりはない。このとき(1-1)式の値は、2.1×2=4.2となる。
 一方、N=1とすると、(2-1)式からN=N=N=0とすべきことは明らかである。このとき(1-1)式の値は5×1=5となる。
 以上より、14個の伝送コアを、2個の7コア-マルチコア光増幅部に接続した方が、1個の19コア-マルチコア光増幅部に接続する場合よりも低消費電力となることがわかる。このときの最小消費電力は4.2[W]である。
 次に、光増幅装置1000の動作モードが光増幅度を最大化するモードである場合における、接続形態決定部の動作について説明する。この場合、接続形態決定部は、マルチコア光増幅部1100の構成に関する情報と以下の条件(4)~(7)とから、マルチコア光伝送路10とマルチコア光増幅部1100との接続形態を決定する。
max[Σ(N×η)]/ΣN          (4)
min[Σ(m×N)-n]            (5)
Σ(m×N)-n≧0               (6)
、m、nは0以上の整数             (7)
 このとき、接続形態決定部は、条件(4)~(7)を満たすように、増幅用コアの個数が「m」であるマルチコア光増幅部1100の個数「N」を決定する。条件(4)~(7)は、1次不等式および1次等式を満たす変数の値の中で、ある1次式を最小化する値を求めることになる。したがって、条件(4)~(7)は広く知られている線形計画法を利用して解くことができる。
 以下では、上述した消費電力を最小化するモードの場合と同様に、伝送コアの個数n=14、マルチコア光増幅部1101~1104のそれぞれの増幅用コアの個数mをm=7、m=7、m=7、m=19とした場合を例として説明する。この場合、マルチコア光増幅部1101~1104のコア数ごとの励起密度比ηはそれぞれ、図5から、η=3、η=3、η=3、η=3.8となる。
 このとき、条件(6)Σ(m×N)-n≧0を満たすマルチコア光増幅部1100の個数Nのうち、条件(4)からΣ(N×η)]/ΣNが最大になるNを見つければよい。上記の値を条件(6)に代入すると、条件(6)は下記のように表わされる。
 7×N+7×N+7×N+19×N-14≧0    (6-1)
 また、条件(4)のΣ(N×η)]/ΣNは下記のように表わされる。
 (3×N+3×N+3×N+3.8×N)/(N+N+N+N
=(3×(N+N+N+N)+0.8×N)/(N+N+N+N)                          (4-1)
 光増幅度を最大化するモードである場合は、励起密度比ηが大きい順に入力するコアを選択すればよいので、まず、N=1とする。この場合、(6-1)式と条件(5)とから、
7×(N+N+N)+5                (6-2)
が最小であり、かつ、(4-1)式から
3+0.8/(N+N+N+1)            (4-2)
が最大となるN~Nの組み合わせを探せばよいことになる。(6-2)式を最小化する N~NはN=N=N=0であることは明らかである。このとき(4-2)式の値は、3+0.8=3.8となる。
 一方、N=0とすると、条件(5)および(6)から、7×(N+N+N)-14が0以上であり、かつ最小となるN~Nの組み合わせを探せばよいことになる。この場合、N~Nのいずれか一つが0であり、残りが1となればよいことがわかる。このとき条件(4)の値は(1×3+1×3)/(1+1)=3となる。
 以上より、14個の伝送コアを、1個の19コア-マルチコア光増幅部にすべて接続した方が、2個の7コア-マルチコア光増幅部にそれぞれ接続するよりも大きな光増幅度が得られることがわかる。このときの最大光増幅度は3.8である。
 このようにして、接続形態決定部は、伝送コアの個数およびマルチコア光増幅部1100の構成に関する情報を用いて、動作モードに応じた、マルチコア光伝送路10とマルチコア光増幅部1100との接続形態を決定するができる。この場合、例えばネットワーク管理システム(Network Management System:NMS)が光増幅装置1000に対して動作モードを指定し、光増幅装置1000はネットワーク管理システム(NMS)からの要求に応じた動作モードで動作することが可能になる。
 上述した構成に限らず、ネットワーク管理システム(NMS)が、伝送コアの個数およびマルチコア光増幅部1100の構成に関する情報を用いて、マルチコア光伝送路10とマルチコア光増幅部1100との接続形態を決定することとしてもよい。すなわち、ネットワーク管理システム(NMS)が上記条件(1)~(3)または条件(4)~(7)を満たす解を線形計画法により求める構成としてもよい。この場合、光増幅装置1000は、動作モードに応じた接続形態に関する情報を受け付ける接続形態受付部(接続形態受付手段)を有する構成とすることができる。
 次に、本実施形態による光増幅方法について、図6に示したフローチャートを用いて説明する。
 本実施形態による光増幅方法においては、複数の増幅用コアを備えたマルチコア光増幅器と、複数の伝送路コアを備えたマルチコア光伝送路とを接続する(ステップS11)。このとき、複数の増幅用コアの個数mの総和(Σ(m×N))が、複数の伝送路コアのうち信号光が伝搬する伝送コアの個数n以上となるように接続する。そして、これらの複数の増幅用コアによって信号光を増幅する(ステップS12)。
 このように、本実施形態の光増幅方法は、増幅用コアの個数の総和が伝送コアの個数以上となるように、マルチコア光増幅器とマルチコア光伝送路を接続する構成としている。したがって、本実施形態の光増幅方法によれば、マルチコア光伝送路のコア数とマルチコア光増幅器のコア数が一致しない場合であっても、マルチコア光伝送路とマルチコア光増幅器を接続することができる。
 ここで、マルチコア光増幅器とマルチコア光伝送路とを接続すること(ステップS11)は、複数の増幅用コアと複数の伝送路コアとの接続を、動作モードに応じて切り替えることを含むものとすることができる。
 この場合、本実施形態による光増幅方法においては、伝送コアの個数およびマルチコア光増幅器の構成に関する情報を用いて、動作モードに応じた接続形態を決定すること(ステップS21)とした。
 また、上述した信号光を増幅すること(ステップS12)は、複数の増幅用コアを励起する励起光を生成し、励起光を、動作モードに応じた分岐比で分岐し、分岐した励起光をクラッド励起方式によりマルチコア光増幅器に導入することを含むものとすることができる。
 以上説明したように、本実施形態の光増幅装置1000および光増幅方法によれば、マルチコア光伝送路のコア数とマルチコア光増幅器のコア数が一致しない場合であっても、マルチコア光伝送路とマルチコア光増幅器を接続することができる。
 〔第3の実施形態〕
 次に、本発明の第3の実施形態について説明する。図7に、本実施形態による光増幅装置2000の構成を示す。なお、第1の実施形態による光増幅装置1000と同様の構成については同一の符号を付し、その詳細な説明は省略する場合がある。
 光増幅装置2000は、マルチコア光増幅部(マルチコア光増幅手段)1100と接続部(接続手段)2200とを有する。
 マルチコア光増幅部1100は、複数の増幅用コアを備える。そして、マルチコア光増幅部1100は、複数の増幅用コアの個数が異なる複数のマルチコア光増幅部を含む構成とすることができる。図7では例として、4個のマルチコア光増幅部1101~1104を備えた構成を示す。
 接続部2200は、マルチコア光増幅部1100と、複数の伝送路コアを備えたマルチコア光伝送路10とを接続する。図7では例として、入力側のマルチコア光伝送路11とマルチコア光増幅部1100を接続する第1の接続部2210、および出力側のマルチコア光伝送路12とマルチコア光増幅部1100を接続する第2の接続部2220を備えた構成を示す。
 ここで、複数の増幅用コアの個数の総和は、複数の伝送路コアのうち信号光が伝搬する伝送コアの個数以上である。したがって、本実施形態の光増幅装置2000によれば、マルチコア光伝送路のコア数とマルチコア光増幅器のコア数が一致しない場合であっても、マルチコア光伝送路とマルチコア光増幅器を接続することができる。
 接続部2200は、光増幅装置2000の動作モードに応じて、マルチコア光増幅部1100とマルチコア光伝送路10とを接続する構成とすることができる。そして、本実施形態の光増幅装置2000においては、接続部2200が、動作モードに応じて選択されたマルチコア光増幅部1100の複数の増幅用コアと、複数の伝送路コアとを接続する構成とした。
 第1の接続部1210および第2の接続部1220はそれぞれ、第3のファンインファンアウト部(第3のファンインファンアウト手段)2211、2221と第4のファンインファンアウト部(第4のファンインファンアウト手段)2213、2223を備えた構成とすることができる。第3のファンインファンアウト部2211、2221は、複数の伝送路コアとシングルコア光伝送路2212、2222をそれぞれ接続する。第4のファンインファンアウト部2213、2223は、シングルコア光伝送路2212、2222と複数の増幅用コアをそれぞれ接続する。
 ここで本実施形態では、マルチコア光伝送路10の伝送コアの個数が固定的であり、光増幅装置2000の動作モードが予め定まっている場合について説明する。この場合、図5に示したマルチコア光増幅部1100の構成に関する情報(パラメータ)を用いることにより、光増幅装置2000に内蔵すべきマルチコア光増幅部1100の構成を、第2の実施形態で示したように線形計画法によって算出することができる。ここで、マルチコア光増幅部1100の構成とは、増幅用コアの個数ごとのマルチコア光増幅部1100の個数である。
 すなわち、本実施形態による光増幅装置2000は、予め定められた動作モードに応じて選択された、増幅用コアの個数ごとに必要となる個数のマルチコア光増幅部1100を内蔵した構成とした。したがって、必要最小限のマルチコア光増幅部1100だけを搭載すればよく、また、接続部2200に光切替部(光スイッチ)を備える必要がなくなる。さらに、光増幅装置2000の制御部2500は、第2の実施形態による光増幅装置1000の制御部1500が備える接続形態決定部は不要となる。以上の結果、本実施形態の光増幅装置2000によれば、製造コストを大幅に削減することができる。
 このように、本実施形態の光増幅装置2000によれば、製造コストが小さく、用途に特化した光増幅装置を得ることができる。具体的には例えば、入出力の伝送コアの個数が固定的であり、消費電力を最小化するモードで動作する海底光中継器において、光増幅装置2000を用いることができる。
 次に、本実施形態による光増幅方法について、図8に示したフローチャートを用いて説明する。
 本実施形態による光増幅方法においては、複数の増幅用コアを備えたマルチコア光増幅器と、複数の伝送路コアを備えたマルチコア光伝送路とを接続する(ステップS11)。このとき、複数の増幅用コアの個数mの総和(Σ(m×N))が、複数の伝送路コアのうち信号光が伝搬する伝送コアの個数n以上となるように接続する。そして、これらの複数の増幅用コアによって信号光を増幅する(ステップS12)。
 このように、本実施形態の光増幅方法は、増幅用コアの個数の総和が伝送コアの個数以上となるように、マルチコア光増幅器とマルチコア光伝送路を接続する構成としている。したがって、本実施形態の光増幅方法によれば、マルチコア光伝送路のコア数とマルチコア光増幅器のコア数が一致しない場合であっても、マルチコア光伝送路とマルチコア光増幅器を接続することができる。
 ここで、マルチコア光増幅器とマルチコア光伝送路とを接続すること(ステップS11)は、マルチコア光増幅器の全体の動作モードに応じて、マルチコア光増幅器とマルチコア光伝送路とを接続することを含むものとすることができる。
 この場合、本実施形態による光増幅方法においては、伝送コアの個数およびマルチコア光増幅器の構成に関する情報を用いて、動作モードに応じたマルチコア光増幅器を選択すること(ステップS31)とした。このとき、マルチコア光増幅器とマルチコア光伝送路とを接続すること(ステップS11)は、動作モードに応じて選択されたマルチコア光増幅器の複数の増幅用コアと、複数の伝送路コアとを接続することを含むものとすることができる。
 以上説明したように、本実施形態の光増幅装置2000および光増幅方法によれば、マルチコア光伝送路のコア数とマルチコア光増幅器のコア数が一致しない場合であっても、マルチコア光伝送路とマルチコア光増幅器を接続することができる。さらに、光増幅装置の製造コストを大幅に削減することができる。
 上記の実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
 (付記1)複数の増幅用コアを備えたマルチコア光増幅手段と、前記マルチコア光増幅手段と、複数の伝送路コアを備えたマルチコア光伝送路とを接続する接続手段、とを有し、前記複数の増幅用コアの個数の総和は、前記複数の伝送路コアのうち信号光が伝搬する伝送コアの個数以上である光増幅装置。
 (付記2)前記マルチコア光増幅手段は、前記複数の増幅用コアの個数が異なる複数の前記マルチコア光増幅手段を含む付記1に記載した光増幅装置。
 (付記3)前記接続手段は、前記光増幅装置の動作モードに応じて、前記マルチコア光増幅手段と前記マルチコア光伝送路とを接続する付記1または2に記載した光増幅装置。
 (付記4)前記接続手段は、前記動作モードが消費電力を最小化するモードである場合、前記マルチコア光増幅手段ごとの励起光強度の総和が最小となる接続形態で、前記マルチコア光増幅手段と前記マルチコア光伝送路とを接続する付記3に記載した光増幅装置。
 (付記5)前記励起光強度は、前記複数の増幅用コアの個数を含む、前記マルチコア光増幅手段の構成により定まる付記4に記載した光増幅装置。
 (付記6)前記接続手段は、前記動作モードが光増幅度を最大化するモードである場合、前記マルチコア光増幅手段ごとの励起密度の総和が最大となる接続形態で、前記マルチコア光増幅手段と前記マルチコア光伝送路とを接続する付記3に記載した光増幅装置。
 (付記7)前記励起密度は、前記複数の増幅用コアの個数を含む、前記マルチコア光増幅手段の構成により定まる付記6に記載した光増幅装置。
 (付記8)前記接続手段は、前記複数の増幅用コアと前記複数の伝送路コアとの接続を、前記動作モードに応じて切り替える付記3から7のいずれか一項に記載した光増幅装置。
 (付記9)前記接続手段は、前記複数の伝送路コアと第1のシングルコア光伝送路をそれぞれ接続する第1のファンインファンアウト手段と、前記第1のシングルコア光伝送路と第2のシングルコア光伝送路との接続を切り替える光切替手段と、前記第2のシングルコア光伝送路と前記複数の増幅用コアをそれぞれ接続する第2のファンインファンアウト手段、を備える付記8に記載した光増幅装置。
 (付記10)前記伝送コアの個数および前記マルチコア光増幅手段の構成に関する情報を用いて、前記動作モードに応じた前記接続形態を決定する接続形態決定手段を有する付記4から9のいずれか一項に記載した光増幅装置。
 (付記11)前記動作モードに応じた前記接続形態に関する情報を受け付ける接続形態受付手段を有する付記4から9のいずれか一項に記載した光増幅装置。
 (付記12)前記接続手段は、前記動作モードに応じて選択された前記マルチコア光増幅手段の前記複数の増幅用コアと、前記複数の伝送路コアとを接続する付記3から7のいずれか一項に記載した光増幅装置。
 (付記13)前記接続手段は、前記複数の伝送路コアとシングルコア光伝送路をそれぞれ接続する第3のファンインファンアウト手段と、前記シングルコア光伝送路と前記複数の増幅用コアをそれぞれ接続する第4のファンインファンアウト手段、を備える付記12に記載した光増幅装置。
 (付記14)前記複数の増幅用コアはそれぞれ希土類イオンを含み、前記マルチコア光増幅手段は、ダブルクラッド構造からなる付記1から13のいずれか一項に記載した光増幅装置。
 (付記15)前記複数の増幅用コアを励起する励起光をクラッド励起方式により前記マルチコア光増幅手段に導入する励起光導入手段を有し、前記励起光導入手段は、
  前記励起光を生成する励起光生成手段と、前記励起光を分岐し、分岐した前記励起光を前記マルチコア光増幅手段に供給する可変分岐手段と、前記可変分岐手段の分岐比を、前記動作モードに応じて決定し、決定した前記分岐比を前記可変分岐手段に設定する励起光制御手段、を備える付記3から14のいずれか一項に記載した光増幅装置。
 (付記16)前記励起光生成手段は、レーザ光を生成する複数の光源と、前記複数の光源が生成する前記レーザ光を合波して前記励起光を送出する合波手段、とを備える付記15に記載した光増幅装置。
 (付記17)複数の増幅用コアを備えたマルチコア光増幅器と、複数の伝送路コアを備えたマルチコア光伝送路とを、前記複数の増幅用コアの個数の総和が、前記複数の伝送路コアのうち信号光が伝搬する伝送コアの個数以上となるように接続し、前記複数の増幅用コアによって前記信号光を増幅する光増幅方法。
 (付記18)前記マルチコア光増幅器と前記マルチコア光伝送路とを接続することは、前記マルチコア光増幅器の全体の動作モードに応じて、前記マルチコア光増幅器と前記マルチコア光伝送路とを接続することを含む付記17に記載した光増幅方法。
 (付記19)前記マルチコア光増幅器と前記マルチコア光伝送路とを接続することは、前記動作モードが消費電力を最小化するモードである場合、前記マルチコア光増幅器ごとの励起光強度の総和が最小となる接続形態で、前記マルチコア光増幅器と前記マルチコア光伝送路とを接続することを含む付記18に記載した光増幅方法。
 (付記20)前記励起光強度は、前記複数の増幅用コアの個数を含む、前記マルチコア光増幅器の構成により定まる付記19に記載した光増幅方法。
 (付記21)前記マルチコア光増幅器と前記マルチコア光伝送路とを接続することは、前記動作モードが光増幅度を最大化するモードである場合、前記マルチコア光増幅器ごとの励起密度の総和が最大となる接続形態で、前記マルチコア光増幅器と前記マルチコア光伝送路とを接続することを含む付記18に記載した光増幅方法。
 (付記22)前記励起密度は、前記複数の増幅用コアの個数を含む、前記マルチコア光増幅器の構成により定まる付記21に記載した光増幅方法。
 (付記23)前記マルチコア光増幅器と前記マルチコア光伝送路とを接続することは、前記複数の増幅用コアと前記複数の伝送路コアとの接続を、前記動作モードに応じて切り替えることを含む付記18から22のいずれか一項に記載した光増幅方法。
 (付記24)前記伝送コアの個数および前記マルチコア光増幅器の構成に関する情報を用いて、前記動作モードに応じた前記接続形態を決定することをさらに含む付記19から22のいずれか一項に記載した光増幅方法。
 (付記25)前記伝送コアの個数および前記マルチコア光増幅器の構成に関する情報を用いて、前記動作モードに応じた前記マルチコア光増幅器を選択することをさらに含む付記18から22のいずれか一項に記載した光増幅方法。
 (付記26)前記マルチコア光増幅器と前記マルチコア光伝送路とを接続することは、前記動作モードに応じて選択された前記マルチコア光増幅器の前記複数の増幅用コアと、前記複数の伝送路コアとを接続することを含む付記25に記載した光増幅方法。
 (付記27)前記信号光を増幅することは、前記複数の増幅用コアを励起する励起光を生成し、前記励起光を、前記動作モードに応じた分岐比で分岐し、分岐した前記励起光をクラッド励起方式により前記マルチコア光増幅器に導入することを含む付記18から26のいずれか一項に記載した光増幅方法。
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 100、1000、2000  光増幅装置
 110、1100、1101~1104  マルチコア光増幅部
 120、1200、2200  接続部
 1210、2210  第1の接続部
 1211、1221  第1のファンインファンアウト部
 1212、1222  光切替部
 1213、1223  第2のファンインファンアウト部
 1220、2220  第2の接続部
 1300  励起光生成部
 1310  光源
 1320  合波部
 1330  ドライバ
 1400  可変分岐部
 1410  コンバイナ
 1500、2500  制御部
 2211、2221  第3のファンインファンアウト部
 2212、2222  シングルコア光伝送路
 2213、2223  第4のファンインファンアウト部
 10、11、12  マルチコア光伝送路

Claims (27)

  1. 複数の増幅用コアを備えたマルチコア光増幅手段と、
     前記マルチコア光増幅手段と、複数の伝送路コアを備えたマルチコア光伝送路とを接続する接続手段、とを有し、
     前記複数の増幅用コアの個数の総和は、前記複数の伝送路コアのうち信号光が伝搬する伝送コアの個数以上である
     光増幅装置。
  2. 前記マルチコア光増幅手段は、前記複数の増幅用コアの個数が異なる複数の前記マルチコア光増幅手段を含む
     請求項1に記載した光増幅装置。
  3. 前記接続手段は、前記光増幅装置の動作モードに応じて、前記マルチコア光増幅手段と前記マルチコア光伝送路とを接続する
     請求項1または2に記載した光増幅装置。
  4. 前記接続手段は、前記動作モードが消費電力を最小化するモードである場合、前記マルチコア光増幅手段ごとの励起光強度の総和が最小となる接続形態で、前記マルチコア光増幅手段と前記マルチコア光伝送路とを接続する
     請求項3に記載した光増幅装置。
  5. 前記励起光強度は、前記複数の増幅用コアの個数を含む、前記マルチコア光増幅手段の構成により定まる
     請求項4に記載した光増幅装置。
  6. 前記接続手段は、前記動作モードが光増幅度を最大化するモードである場合、前記マルチコア光増幅手段ごとの励起密度の総和が最大となる接続形態で、前記マルチコア光増幅手段と前記マルチコア光伝送路とを接続する
     請求項3に記載した光増幅装置。
  7. 前記励起密度は、前記複数の増幅用コアの個数を含む、前記マルチコア光増幅手段の構成により定まる
     請求項6に記載した光増幅装置。
  8. 前記接続手段は、前記複数の増幅用コアと前記複数の伝送路コアとの接続を、前記動作モードに応じて切り替える
     請求項4から7のいずれか一項に記載した光増幅装置。
  9. 前記接続手段は、
     前記複数の伝送路コアと第1のシングルコア光伝送路をそれぞれ接続する第1のファンインファンアウト手段と、
     前記第1のシングルコア光伝送路と第2のシングルコア光伝送路との接続を切り替える光切替手段と、
     前記第2のシングルコア光伝送路と前記複数の増幅用コアをそれぞれ接続する第2のファンインファンアウト手段、を備える
     請求項8に記載した光増幅装置。
  10. 前記伝送コアの個数および前記マルチコア光増幅手段の構成に関する情報を用いて、前記動作モードに応じた前記接続形態を決定する接続形態決定手段を有する
     請求項4から9のいずれか一項に記載した光増幅装置。
  11. 前記動作モードに応じた前記接続形態に関する情報を受け付ける接続形態受付手段を有する
     請求項4から9のいずれか一項に記載した光増幅装置。
  12. 前記接続手段は、前記動作モードに応じて選択された前記マルチコア光増幅手段の前記複数の増幅用コアと、前記複数の伝送路コアとを接続する
     請求項3から7のいずれか一項に記載した光増幅装置。
  13. 前記接続手段は、
     前記複数の伝送路コアとシングルコア光伝送路をそれぞれ接続する第3のファンインファンアウト手段と、
     前記シングルコア光伝送路と前記複数の増幅用コアをそれぞれ接続する第4のファンインファンアウト手段、を備える
     請求項12に記載した光増幅装置。
  14. 前記複数の増幅用コアはそれぞれ希土類イオンを含み、
     前記マルチコア光増幅手段は、ダブルクラッド構造からなる
     請求項1から13のいずれか一項に記載した光増幅装置。
  15. 前記複数の増幅用コアを励起する励起光をクラッド励起方式により前記マルチコア光増幅手段に導入する励起光導入手段を有し、
     前記励起光導入手段は、
      前記励起光を生成する励起光生成手段と、
      前記励起光を分岐し、分岐した前記励起光を前記マルチコア光増幅手段に供給する可変分岐手段と、
      前記可変分岐手段の分岐比を、前記動作モードに応じて決定し、決定した前記分岐比を前記可変分岐手段に設定する励起光制御手段、を備える
     請求項3から13のいずれか一項に記載した光増幅装置。
  16. 前記励起光生成手段は、
     レーザ光を生成する複数の光源と、
     前記複数の光源が生成する前記レーザ光を合波して前記励起光を送出する合波手段、とを備える
     請求項15に記載した光増幅装置。
  17. 複数の増幅用コアを備えたマルチコア光増幅器と、複数の伝送路コアを備えたマルチコア光伝送路とを、前記複数の増幅用コアの個数の総和が、前記複数の伝送路コアのうち信号光が伝搬する伝送コアの個数以上となるように接続し、
     前記複数の増幅用コアによって前記信号光を増幅する
     光増幅方法。
  18. 前記マルチコア光増幅器と前記マルチコア光伝送路とを接続することは、前記マルチコア光増幅器の全体の動作モードに応じて、前記マルチコア光増幅器と前記マルチコア光伝送路とを接続することを含む
     請求項17に記載した光増幅方法。
  19. 前記マルチコア光増幅器と前記マルチコア光伝送路とを接続することは、前記動作モードが消費電力を最小化するモードである場合、前記マルチコア光増幅器ごとの励起光強度の総和が最小となる接続形態で、前記マルチコア光増幅器と前記マルチコア光伝送路とを接続することを含む
     請求項18に記載した光増幅方法。
  20. 前記励起光強度は、前記複数の増幅用コアの個数を含む、前記マルチコア光増幅器の構成により定まる
     請求項19に記載した光増幅方法。
  21. 前記マルチコア光増幅器と前記マルチコア光伝送路とを接続することは、前記動作モードが光増幅度を最大化するモードである場合、前記マルチコア光増幅器ごとの励起密度の総和が最大となる接続形態で、前記マルチコア光増幅器と前記マルチコア光伝送路とを接続することを含む
     請求項18に記載した光増幅方法。
  22. 前記励起密度は、前記複数の増幅用コアの個数を含む、前記マルチコア光増幅器の構成により定まる
     請求項21に記載した光増幅方法。
  23. 前記マルチコア光増幅器と前記マルチコア光伝送路とを接続することは、前記複数の増幅用コアと前記複数の伝送路コアとの接続を、前記動作モードに応じて切り替えることを含む
     請求項18から22のいずれか一項に記載した光増幅方法。
  24. 前記伝送コアの個数および前記マルチコア光増幅器の構成に関する情報を用いて、前記動作モードに応じた前記接続形態を決定することをさらに含む
     請求項19から22のいずれか一項に記載した光増幅方法。
  25. 前記伝送コアの個数および前記マルチコア光増幅器の構成に関する情報を用いて、前記動作モードに応じた前記マルチコア光増幅器を選択することをさらに含む
     請求項18から22のいずれか一項に記載した光増幅方法。
  26. 前記マルチコア光増幅器と前記マルチコア光伝送路とを接続することは、前記動作モードに応じて選択された前記マルチコア光増幅器の前記複数の増幅用コアと、前記複数の伝送路コアとを接続することを含む
     請求項25に記載した光増幅方法。
  27. 前記信号光を増幅することは、
     前記複数の増幅用コアを励起する励起光を生成し、
     前記励起光を、前記動作モードに応じた分岐比で分岐し、
     分岐した前記励起光をクラッド励起方式により前記マルチコア光増幅器に導入することを含む
     請求項18から26のいずれか一項に記載した光増幅方法。
PCT/JP2021/041581 2021-11-11 2021-11-11 光増幅装置および光増幅方法 WO2023084707A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/041581 WO2023084707A1 (ja) 2021-11-11 2021-11-11 光増幅装置および光増幅方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/041581 WO2023084707A1 (ja) 2021-11-11 2021-11-11 光増幅装置および光増幅方法

Publications (1)

Publication Number Publication Date
WO2023084707A1 true WO2023084707A1 (ja) 2023-05-19

Family

ID=86335343

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041581 WO2023084707A1 (ja) 2021-11-11 2021-11-11 光増幅装置および光増幅方法

Country Status (1)

Country Link
WO (1) WO2023084707A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110134943A1 (en) * 2005-10-17 2011-06-09 Imra America, Inc. Laser based frequency standards and their applications
JP2017021070A (ja) 2015-07-07 2017-01-26 日本電信電話株式会社 マルチコア光ファイバ及び光増幅器
WO2017090598A1 (ja) * 2015-11-26 2017-06-01 日本電信電話株式会社 光増幅システム及び光増幅方法
JP2018198287A (ja) * 2017-05-24 2018-12-13 日本電信電話株式会社 増幅用ファイバ
JP2019075450A (ja) * 2017-10-16 2019-05-16 住友電気工業株式会社 光増幅器およびマルチコア光ファイバ
JP2019139029A (ja) 2018-02-08 2019-08-22 日本電信電話株式会社 光ノード装置
JP2020009999A (ja) * 2018-07-12 2020-01-16 日本電信電話株式会社 光増幅中継システム
WO2020137820A1 (ja) * 2018-12-27 2020-07-02 日本電気株式会社 光増幅器、光増幅器の等化方法、および伝送システム
WO2020171103A1 (ja) * 2019-02-22 2020-08-27 日本電気株式会社 光増幅器、及びその制御方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110134943A1 (en) * 2005-10-17 2011-06-09 Imra America, Inc. Laser based frequency standards and their applications
JP2017021070A (ja) 2015-07-07 2017-01-26 日本電信電話株式会社 マルチコア光ファイバ及び光増幅器
WO2017090598A1 (ja) * 2015-11-26 2017-06-01 日本電信電話株式会社 光増幅システム及び光増幅方法
JP2018198287A (ja) * 2017-05-24 2018-12-13 日本電信電話株式会社 増幅用ファイバ
JP2019075450A (ja) * 2017-10-16 2019-05-16 住友電気工業株式会社 光増幅器およびマルチコア光ファイバ
JP2019139029A (ja) 2018-02-08 2019-08-22 日本電信電話株式会社 光ノード装置
JP2020009999A (ja) * 2018-07-12 2020-01-16 日本電信電話株式会社 光増幅中継システム
WO2020137820A1 (ja) * 2018-12-27 2020-07-02 日本電気株式会社 光増幅器、光増幅器の等化方法、および伝送システム
WO2020171103A1 (ja) * 2019-02-22 2020-08-27 日本電気株式会社 光増幅器、及びその制御方法

Similar Documents

Publication Publication Date Title
US11264776B2 (en) Optical amplifier, optical network including the same, and method for amplifying optical signal
CN101971531B (zh) 用于控制掺铒光纤放大器(edfa)以及放大器装置的方法
WO2020171103A1 (ja) 光増幅器、及びその制御方法
JP2002229084A (ja) ラマン増幅器およびそれを用いた光伝送システム
JP2017021070A (ja) マルチコア光ファイバ及び光増幅器
US6043930A (en) Optical amplifier and optical fiber applicable to optical amplifier
JPH09281532A (ja) 光増幅器及び方法並びに光増幅器を有する光伝送システム
WO2020137820A1 (ja) 光増幅器、光増幅器の等化方法、および伝送システム
JP7036199B2 (ja) 光増幅装置および光増幅方法
CN113330650A (zh) 光学放大设备及光学放大方法
US11374377B2 (en) Optical amplifying apparatus and method of amplifying optical signal
JP7188085B2 (ja) マルチコア光ファイバ増幅器およびマルチコア光ファイバ増幅媒体を用いた光増幅方法
WO2023084707A1 (ja) 光増幅装置および光増幅方法
JP2001196671A (ja) 波長多重伝送用光ファイバ増幅器
WO2019003797A1 (ja) 光ファイバ増幅器および光ファイバ増幅システム
US20230121874A1 (en) Integrated Optical Switch Having Doped Fiber/Waveguide Amplifiers Packaged in A Transposer
JP6992907B2 (ja) 光増幅装置および光増幅方法
JP7485195B2 (ja) 光増幅装置および光増幅方法
JP7416226B2 (ja) 光増幅装置および光増幅方法
JP2022177878A (ja) 光増幅装置、光伝送システム、および光増幅方法
JP2013231838A (ja) 光回路および光増幅器用励起光源
JP6904108B2 (ja) 光ファイバ増幅器および光ファイバ増幅システム
CN112313844A (zh) 光源设备和光学放大器
JP4095159B2 (ja) 光通信システム及び光増幅システム
WO2023017585A1 (ja) 光増幅システム、光増幅方法及び記憶媒体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21964062

Country of ref document: EP

Kind code of ref document: A1